
Deep Learning Toolbox™
User's Guide

Mark Hudson Beale
Martin T. Hagan
Howard B. Demuth

R2023a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Deep Learning Toolbox™ User's Guide
© COPYRIGHT 1992–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Revision History
June 1992 First printing
April 1993 Second printing
January 1997 Third printing
July 1997 Fourth printing
January 1998 Fifth printing Revised for Version 3 (Release 11)
September 2000 Sixth printing Revised for Version 4 (Release 12)
June 2001 Seventh printing Minor revisions (Release 12.1)
July 2002 Online only Minor revisions (Release 13)
January 2003 Online only Minor revisions (Release 13SP1)
June 2004 Online only Revised for Version 4.0.3 (Release 14)
October 2004 Online only Revised for Version 4.0.4 (Release 14SP1)
October 2004 Eighth printing Revised for Version 4.0.4
March 2005 Online only Revised for Version 4.0.5 (Release 14SP2)
March 2006 Online only Revised for Version 5.0 (Release 2006a)
September 2006 Ninth printing Minor revisions (Release 2006b)
March 2007 Online only Minor revisions (Release 2007a)
September 2007 Online only Revised for Version 5.1 (Release 2007b)
March 2008 Online only Revised for Version 6.0 (Release 2008a)
October 2008 Online only Revised for Version 6.0.1 (Release 2008b)
March 2009 Online only Revised for Version 6.0.2 (Release 2009a)
September 2009 Online only Revised for Version 6.0.3 (Release 2009b)
March 2010 Online only Revised for Version 6.0.4 (Release 2010a)
September 2010 Online only Revised for Version 7.0 (Release 2010b)
April 2011 Online only Revised for Version 7.0.1 (Release 2011a)
September 2011 Online only Revised for Version 7.0.2 (Release 2011b)
March 2012 Online only Revised for Version 7.0.3 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.0.1 (Release 2013a)
September 2013 Online only Revised for Version 8.1 (Release 2013b)
March 2014 Online only Revised for Version 8.2 (Release 2014a)
October 2014 Online only Revised for Version 8.2.1 (Release 2014b)
March 2015 Online only Revised for Version 8.3 (Release 2015a)
September 2015 Online only Revised for Version 8.4 (Release 2015b)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 10.0 (Release 2017a)
September 2017 Online only Revised for Version 11.0 (Release 2017b)
March 2018 Online only Revised for Version 11.1 (Release 2018a)
September 2018 Online only Revised for Version 12.0 (Release 2018b)
March 2019 Online only Revised for Version 12.1 (Release 2019a)
September 2019 Online only Revised for Version 13 (Release 2019b)
March 2020 Online only Revised for Version 14 (Release 2020a)
September 2020 Online only Revised for Version 14.1 (Release 2020b)
March 2021 Online only Revised for Version 14.2 (Release 2021a)
September 2021 Online only Revised for Version 14.3 (Release 2021b)
March 2022 Online only Revised for Version 14.4 (Release 2022a)
September 2022 Online only Revised for Version 14.5 (Release 2022b)
March 2023 Online only Revised for Version 14.6 (Release 2023a)





Deep Networks
1

Deep Learning in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
What Is Deep Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Start Deep Learning Faster Using Transfer Learning . . . . . . . . . . . . . . . . 1-2
Deep Learning Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Deep Learning Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Train Classifiers Using Features Extracted from Pretrained Networks . . . 1-7
Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Deep Learning Using Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Deep Learning Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Deep Learning Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Deep Learning Import and Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

Pretrained Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Compare Pretrained Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Load Pretrained Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Visualize Pretrained Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Import and Export Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Pretrained Neural Networks for Audio Applications . . . . . . . . . . . . . . . . 1-19
Pretrained Models on GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19

Learn About Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 1-21

Example Deep Learning Networks Architectures . . . . . . . . . . . . . . . . . . . 1-23

Multiple-Input and Multiple-Output Networks . . . . . . . . . . . . . . . . . . . . . 1-41
Multiple-Input Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41
Multiple-Output Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41

List of Deep Learning Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43
Deep Learning Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43

Specify Layers of Convolutional Neural Network . . . . . . . . . . . . . . . . . . . 1-53
Image Input Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54
Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54
Batch Normalization Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-58
ReLU Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-58
Cross Channel Normalization (Local Response Normalization) Layer . . . 1-59
Max and Average Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-59
Dropout Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-60
Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-60
Output Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-61

v

Contents



Set Up Parameters and Train Convolutional Neural Network . . . . . . . . . 1-64
Specify Solver and Maximum Number of Epochs . . . . . . . . . . . . . . . . . . 1-64
Specify and Modify Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-64
Specify Validation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-65
Select Hardware Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-65
Save Checkpoint Networks and Resume Training . . . . . . . . . . . . . . . . . . 1-66
Set Up Parameters in Convolutional and Fully Connected Layers . . . . . . 1-66
Train Your Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-66

Train Network with Numeric Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-68

Train Network on Image and Feature Data . . . . . . . . . . . . . . . . . . . . . . . . 1-74

Compare Activation Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-81

Deep Learning Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-87
Choose Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-87
Choose Training Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-89
Improve Training Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-90
Fix Errors in Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-91
Prepare and Preprocess Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-92
Use Available Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-94
Fix Errors With Loading from MAT-Files . . . . . . . . . . . . . . . . . . . . . . . . . 1-95

Long Short-Term Memory Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 1-97
LSTM Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-97
Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-100
Classification, Prediction, and Forecasting . . . . . . . . . . . . . . . . . . . . . . 1-101
Sequence Padding, Truncation, and Splitting . . . . . . . . . . . . . . . . . . . . 1-101
Normalize Sequence Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-105
Out-of-Memory Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-105
Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-105
LSTM Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-105

Deep Network Designer
2

Transfer Learning with Deep Network Designer . . . . . . . . . . . . . . . . . . . . . 2-2

Build Networks with Deep Network Designer . . . . . . . . . . . . . . . . . . . . . . 2-15
Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Sequence Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Numeric Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Convert Classification Network into Regression Network . . . . . . . . . . . . 2-23
Multiple-Input and Multiple-Output Networks . . . . . . . . . . . . . . . . . . . . . 2-23
Deep Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Advanced Deep Learning Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
dlnetwork for Custom Training Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Check Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29

vi Contents



Train Networks Using Deep Network Designer . . . . . . . . . . . . . . . . . . . . . 2-31
Select Training Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
Train Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34

Import Custom Layer into Deep Network Designer . . . . . . . . . . . . . . . . . 2-35

Import Data into Deep Network Designer . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Import Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Image Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
Validation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50

Create Simple Sequence Classification Network Using Deep Network
Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53

Train Network for Time Series Forecasting Using Deep Network Designer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60

Generate MATLAB Code from Deep Network Designer . . . . . . . . . . . . . . 2-73
Generate MATLAB Code to Recreate Network Layers . . . . . . . . . . . . . . . 2-73
Generate MATLAB Code to Train Network . . . . . . . . . . . . . . . . . . . . . . . 2-73

View Autogenerated Custom Layers Using Deep Network Designer . . . . 2-76

Image-to-Image Regression in Deep Network Designer . . . . . . . . . . . . . 2-79

Generate Experiment Using Deep Network Designer . . . . . . . . . . . . . . . . 2-86

Transfer Learning with Pretrained Audio Networks in Deep Network
Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-93

Export Image Classification Network from Deep Network Designer to
Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-102

Deep Learning with Images
3

Classify Webcam Images Using Deep Learning . . . . . . . . . . . . . . . . . . . . . 3-2

Train Deep Learning Network to Classify New Images . . . . . . . . . . . . . . . 3-6

Train Residual Network for Image Classification . . . . . . . . . . . . . . . . . . . 3-13

Classify Image Using GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Extract Image Features Using Pretrained Network . . . . . . . . . . . . . . . . . 3-24

Transfer Learning Using Pretrained Network . . . . . . . . . . . . . . . . . . . . . . 3-29

Transfer Learning Using AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36

vii



Create Simple Deep Learning Neural Network for Classification . . . . . . 3-43

Train Convolutional Neural Network for Regression . . . . . . . . . . . . . . . . 3-49

Train Network with Multiple Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-57

Convert Classification Network into Regression Network . . . . . . . . . . . . 3-66

Train Generative Adversarial Network (GAN) . . . . . . . . . . . . . . . . . . . . . . 3-72

Train Conditional Generative Adversarial Network (CGAN) . . . . . . . . . . 3-86

Train Wasserstein GAN with Gradient Penalty (WGAN-GP) . . . . . . . . . . 3-100

Train Fast Style Transfer Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-112

Train a Siamese Network to Compare Images . . . . . . . . . . . . . . . . . . . . 3-126

Train a Siamese Network for Dimensionality Reduction . . . . . . . . . . . . 3-140

Train Neural ODE Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-152

Train Variational Autoencoder (VAE) to Generate Images . . . . . . . . . . . 3-163

Lane and Vehicle Detection in Simulink Using Deep Learning . . . . . . . 3-173

Classify ECG Signals in Simulink Using Deep Learning . . . . . . . . . . . . 3-179

Classify Images in Simulink Using GoogLeNet . . . . . . . . . . . . . . . . . . . . 3-183

Multilabel Image Classification Using Deep Learning . . . . . . . . . . . . . . 3-188

Acceleration for Simulink Deep Learning Models . . . . . . . . . . . . . . . . . 3-203
Run Acceleration Mode from the User Interface . . . . . . . . . . . . . . . . . . 3-203
Run Acceleration Mode Programmatically . . . . . . . . . . . . . . . . . . . . . . 3-204

Deep Learning with Time Series, Sequences, and Text
4

Sequence Classification Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . 4-3

Sequence Classification Using 1-D Convolutions . . . . . . . . . . . . . . . . . . . 4-10

Time Series Forecasting Using Deep Learning . . . . . . . . . . . . . . . . . . . . . 4-16

Train Speech Command Recognition Model Using Deep Learning . . . . . 4-27

Sequence-to-Sequence Classification Using Deep Learning . . . . . . . . . . 4-39

Sequence-to-Sequence Regression Using Deep Learning . . . . . . . . . . . . 4-44

viii Contents



Sequence-to-One Regression Using Deep Learning . . . . . . . . . . . . . . . . 4-53

Train Network with Complex-Valued Data . . . . . . . . . . . . . . . . . . . . . . . . . 4-60

Train Network with LSTM Projected Layer . . . . . . . . . . . . . . . . . . . . . . . . 4-68

Predict Battery State of Charge Using Deep Learning . . . . . . . . . . . . . . . 4-78

Classify Videos Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-87

Classify Videos Using Deep Learning with Custom Training Loop . . . . . 4-97

Train Sequence Classification Network Using Data With Imbalanced
Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-112

Sequence-to-Sequence Classification Using 1-D Convolutions . . . . . . . 4-122

Time Series Anomaly Detection Using Deep Learning . . . . . . . . . . . . . . 4-132

Sequence Classification Using CNN-LSTM Network . . . . . . . . . . . . . . . 4-144

Train Latent ODE Network with Irregularly Sampled Time-Series Data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-157

Multivariate Time Series Anomaly Detection Using Graph Neural Network
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-177

Classify Text Data Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 4-195

Classify Text Data Using Convolutional Neural Network . . . . . . . . . . . . 4-203

Multilabel Text Classification Using Deep Learning . . . . . . . . . . . . . . . . 4-210

Classify Text Data Using Custom Training Loop . . . . . . . . . . . . . . . . . . . 4-229

Generate Text Using Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-240

Define Text Encoder Model Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-252

Define Text Decoder Model Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-259

Sequence-to-Sequence Translation Using Attention . . . . . . . . . . . . . . . 4-266

Generate Text Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-280

Pride and Prejudice and MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-286

Word-By-Word Text Generation Using Deep Learning . . . . . . . . . . . . . . 4-292

Image Captioning Using Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-299

Language Translation Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . 4-323

Predict and Update Network State in Simulink . . . . . . . . . . . . . . . . . . . 4-345

ix



Classify and Update Network State in Simulink . . . . . . . . . . . . . . . . . . . 4-349

Time Series Prediction in Simulink Using Deep Learning Network . . . 4-353

Battery State of Charge Estimation in Simulink Using Deep Learning
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-358

Improve Performance of Deep Learning Simulations in Simulink . . . . 4-361

Physical System Modeling Using LSTM Network in Simulink . . . . . . . . 4-365

Deep Learning Tuning and Visualization
5

Explore Network Predictions Using Deep Learning Visualization
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Deep Dream Images Using GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16

Grad-CAM Reveals the Why Behind Deep Learning Decisions . . . . . . . . 5-22

Interpret Deep Learning Time-Series Classifications Using Grad-CAM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25

Understand Network Predictions Using Occlusion . . . . . . . . . . . . . . . . . . 5-39

Investigate Classification Decisions Using Gradient Attribution
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-46

Understand Network Predictions Using LIME . . . . . . . . . . . . . . . . . . . . . 5-57

Investigate Spectrogram Classifications Using LIME . . . . . . . . . . . . . . . 5-64

Interpret Deep Network Predictions on Tabular Data Using LIME . . . . . 5-74

Explore Semantic Segmentation Network Using Grad-CAM . . . . . . . . . . 5-81

Investigate Audio Classifications Using Deep Learning Interpretability
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-88

Generate Untargeted and Targeted Adversarial Examples for Image
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-102

Train Image Classification Network Robust to Adversarial Examples . 5-109

Generate Adversarial Examples for Semantic Segmentation . . . . . . . . 5-121

Verify Robustness of Deep Learning Neural Network . . . . . . . . . . . . . . 5-132

Out-of-Distribution Detection for Deep Neural Networks . . . . . . . . . . . 5-139

x Contents



Out-of-Distribution Data Discriminator for YOLO v4 Object Detector . 5-154

Resume Training from Checkpoint Network . . . . . . . . . . . . . . . . . . . . . . 5-172

Deep Learning Using Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . 5-177

Train Deep Learning Networks in Parallel . . . . . . . . . . . . . . . . . . . . . . . 5-187

Monitor Deep Learning Training Progress . . . . . . . . . . . . . . . . . . . . . . . 5-192

Customize Output During Deep Learning Network Training . . . . . . . . . 5-196

Detect Issues During Deep Neural Network Training . . . . . . . . . . . . . . 5-200

Detect Vanishing Gradients in Deep Neural Networks by Plotting
Gradient Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-209

Investigate Network Predictions Using Class Activation Mapping . . . . 5-220

View Network Behavior Using tsne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-226

Visualize Activations of a Convolutional Neural Network . . . . . . . . . . . 5-238

Visualize Activations of LSTM Network . . . . . . . . . . . . . . . . . . . . . . . . . . 5-249

Visualize Features of a Convolutional Neural Network . . . . . . . . . . . . . 5-253

Visualize Image Classifications Using Maximal and Minimal Activating
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-260

Monitor GAN Training Progress and Identify Common Failure Modes 5-279
Convergence Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-279
Mode Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-281

Deep Learning Visualization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-283
Visualization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-283
Interpretability Methods for Nonimage Data . . . . . . . . . . . . . . . . . . . . . 5-288

ROC Curve and Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-290
Introduction to ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-290
Performance Curve with MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-291
ROC Curve for Multiclass Classification . . . . . . . . . . . . . . . . . . . . . . . . 5-291
Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-293
Classification Scores and Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 5-295
Pointwise Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-299

Compare Deep Learning Models Using ROC Curves . . . . . . . . . . . . . . . 5-301

xi



Manage Deep Learning Experiments
6

Create a Deep Learning Experiment for Classification . . . . . . . . . . . . . . . 6-2

Create a Deep Learning Experiment for Regression . . . . . . . . . . . . . . . . 6-10

Use Experiment Manager to Train Networks in Parallel . . . . . . . . . . . . . 6-18
Set Up Parallel Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19

Offload Experiments as Batch Jobs to Cluster . . . . . . . . . . . . . . . . . . . . . . 6-21
Create Batch Job on Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
Track Progress of Batch Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22
Interrupt Training in Batch Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23
Retrieve Results and Clean Up Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23

Evaluate Deep Learning Experiments by Using Metric Functions . . . . . 6-25

Try Multiple Pretrained Networks for Transfer Learning . . . . . . . . . . . . 6-33

Experiment with Weight Initializers for Transfer Learning . . . . . . . . . . . 6-41

Tune Experiment Hyperparameters by Using Bayesian Optimization . . 6-49

Choose Training Configurations for LSTM Using Bayesian Optimization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-60

Run a Custom Training Experiment for Image Comparison . . . . . . . . . . 6-73

Use Experiment Manager to Train Generative Adversarial Networks
(GANs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-89

Use Bayesian Optimization in Custom Training Experiments . . . . . . . . 6-104

Custom Training with Multiple GPUs in Experiment Manager . . . . . . . 6-117

Keyboard Shortcuts for Experiment Manager . . . . . . . . . . . . . . . . . . . . 6-130
Shortcuts for General Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-130
Shortcuts for Experiment Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-130
Shortcuts for Results Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-131

Debug Code Before and After Running Experiments . . . . . . . . . . . . . . . 6-132
Debug Setup and Training Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6-132
Debug Metric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-134

Deep Learning in Parallel and the Cloud
7

Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud . . . . . . . . 7-2
Train Single Network in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Train Multiple Networks in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6

xii Contents



Batch Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Manage Cluster Profiles and Automatic Pool Creation . . . . . . . . . . . . . . . . 7-8
Deep Learning Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

Deep Learning in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Access MATLAB in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Work with Big Data in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12

Work with Deep Learning Data in the Cloud . . . . . . . . . . . . . . . . . . . . . . . 7-13

Deep Learning with MATLAB on Multiple GPUs . . . . . . . . . . . . . . . . . . . . 7-14
Use Multiple GPUs in Local Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
Use Multiple GPUs in Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15
Optimize Mini-Batch Size and Learning Rate . . . . . . . . . . . . . . . . . . . . . 7-15
Select Particular GPUs to Use for Training . . . . . . . . . . . . . . . . . . . . . . . 7-15
Train Multiple Networks on Multiple GPUs . . . . . . . . . . . . . . . . . . . . . . . 7-16
Advanced Support for Fast Multi-Node GPU Communication . . . . . . . . . . 7-17

Deep Learning with Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18
Work with Big Data in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18
Preprocess Data in Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18
Work with Big Data in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
Preprocess Data for Custom Training Loops . . . . . . . . . . . . . . . . . . . . . . 7-19

Run Custom Training Loops on a GPU and in Parallel . . . . . . . . . . . . . . . 7-21
Train Network on GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
Train Single Network in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22
Train Multiple Networks in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-28
Use Experiment Manager to Train in Parallel . . . . . . . . . . . . . . . . . . . . . 7-29

Cloud AI Workflow Using the Deep Learning Container . . . . . . . . . . . . . 7-30

Train Network in the Cloud Using Automatic Parallel Support . . . . . . . . 7-31

Use parfeval to Train Multiple Deep Learning Networks . . . . . . . . . . . . . 7-36

Send Deep Learning Batch Job to Cluster . . . . . . . . . . . . . . . . . . . . . . . . . 7-43

Train Network Using Automatic Multi-GPU Support . . . . . . . . . . . . . . . . 7-48

Use parfor to Train Multiple Deep Learning Networks . . . . . . . . . . . . . . 7-52

Work with Deep Learning Data in AWS . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-59

Work with Deep Learning Data in Azure Blob Storage . . . . . . . . . . . . . . 7-61

Train Network in Parallel with Custom Training Loop . . . . . . . . . . . . . . . 7-64

Train Network Using Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . 7-73

Train Network on Amazon Web Services Using MATLAB Deep Learning
Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-82

xiii



Use Amazon S3 Buckets with MATLAB Deep Learning Container . . . . . 7-86

Use Experiment Manager in the Cloud with MATLAB Deep Learning
Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-89

Computer Vision Examples
8

Gesture Recognition using Videos and Deep Learning . . . . . . . . . . . . . . . 8-2

Code Generation for Object Detection by Using Single Shot Multibox
Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23

Point Cloud Classification Using PointNet Deep Learning . . . . . . . . . . . 8-26

Activity Recognition from Video and Optical Flow Data Using Deep
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-49

Import Pretrained ONNX YOLO v2 Object Detector . . . . . . . . . . . . . . . . . 8-77

Export YOLO v2 Object Detector to ONNX . . . . . . . . . . . . . . . . . . . . . . . . 8-84

Object Detection Using SSD Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 8-90

Object Detection Using YOLO v3 Deep Learning . . . . . . . . . . . . . . . . . . 8-102

Object Detection Using YOLO v4 Deep Learning . . . . . . . . . . . . . . . . . . 8-117

Object Detection Using YOLO v2 Deep Learning . . . . . . . . . . . . . . . . . . 8-127

Semantic Segmentation Using Deep Learning . . . . . . . . . . . . . . . . . . . . 8-138

Semantic Segmentation Using Dilated Convolutions . . . . . . . . . . . . . . . 8-157

Train Simple Semantic Segmentation Network in Deep Network Designer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-162

Semantic Segmentation of Multispectral Images Using Deep Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-167

3-D Brain Tumor Segmentation Using Deep Learning . . . . . . . . . . . . . . 8-185

Define Custom Pixel Classification Layer with Tversky Loss . . . . . . . . . 8-195

Train Object Detector Using R-CNN Deep Learning . . . . . . . . . . . . . . . . 8-202

Object Detection Using Faster R-CNN Deep Learning . . . . . . . . . . . . . . 8-215

Perform Instance Segmentation Using Mask R-CNN . . . . . . . . . . . . . . . 8-225

Estimate Body Pose Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 8-230

xiv Contents



Generate Image from Segmentation Map Using Deep Learning . . . . . . 8-238

Classify Defects on Wafer Maps Using Deep Learning . . . . . . . . . . . . . . 8-253

Detect Defects on Printed Circuit Boards Using YOLO v4 Network . . . 8-269

Detect Image Anomalies Using Explainable FCDD Network . . . . . . . . . 8-275

Detect Image Anomalies Using Pretrained ResNet-18 Feature
Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-288

Image Processing Examples
9

Remove Noise from Color Image Using Pretrained Neural Network . . . . 9-2

Increase Image Resolution Using Deep Learning . . . . . . . . . . . . . . . . . . . . 9-8

JPEG Image Deblocking Using Deep Learning . . . . . . . . . . . . . . . . . . . . . 9-24

Image Processing Operator Approximation Using Deep Learning . . . . . 9-37

Develop Camera Processing Pipeline Using Deep Learning . . . . . . . . . . 9-51

Brighten Extremely Dark Images Using Deep Learning . . . . . . . . . . . . . 9-73

Classify Tumors in Multiresolution Blocked Images . . . . . . . . . . . . . . . . 9-84

Unsupervised Day-to-Dusk Image Translation Using UNIT . . . . . . . . . . . 9-96

Quantify Image Quality Using Neural Image Assessment . . . . . . . . . . . 9-107

Neural Style Transfer Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . 9-120

Unsupervised Medical Image Denoising Using CycleGAN . . . . . . . . . . . 9-129

Unsupervised Medical Image Denoising Using UNIT . . . . . . . . . . . . . . . 9-143

Segment Lungs from CT Scan Using Pretrained Neural Network . . . . . 9-156

Brain MRI Segmentation Using Pretrained 3-D U-Net Network . . . . . . 9-165

Breast Tumor Segmentation from Ultrasound Using Deep Learning . . 9-173

Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-181

xv



Automated Driving Examples
10

Train a Deep Learning Vehicle Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Create Occupancy Grid Using Monocular Camera and Semantic
Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12

Train Deep Learning Semantic Segmentation Network Using 3-D
Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-26

Navigation Examples
11

Train Deep Learning-Based Sampler for Motion Planning . . . . . . . . . . . 11-2

Accelerate Motion Planning with Deep-Learning-Based Sampler . . . . 11-12

Lidar Examples
12

Code Generation for Lidar Object Detection Using SqueezeSegV2
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

Lidar Object Detection Using Complex-YOLO v4 Network . . . . . . . . . . . . 12-8

Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-25

Code Generation For Aerial Lidar Semantic Segmentation Using PointNet
++ Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-35

Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-41

Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep
Learning Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-52

Code Generation for Lidar Point Cloud Segmentation Network . . . . . . 12-61

Lidar 3-D Object Detection Using PointPillars Deep Learning . . . . . . . 12-68

xvi Contents



Signal Processing Examples
13

Learn Pre-Emphasis Filter Using Deep Learning . . . . . . . . . . . . . . . . . . . 13-2

Hand Gesture Classification Using Radar Signals and Deep Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12

Waveform Segmentation Using Deep Learning . . . . . . . . . . . . . . . . . . . 13-24

Classify ECG Signals Using Long Short-Term Memory Networks . . . . . 13-44

Generate Synthetic Signals Using Conditional GAN . . . . . . . . . . . . . . . 13-62

Classify Time Series Using Wavelet Analysis and Deep Learning . . . . . 13-79

Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and
Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-96

Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry
Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-112

Deploy Signal Segmentation Deep Network on Raspberry Pi . . . . . . . 13-119

Anomaly Detection Using Autoencoder and Wavelets . . . . . . . . . . . . . 13-129

Fault Detection Using Wavelet Scattering and Recurrent Deep Networks
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-140

Parasite Classification Using Wavelet Scattering and Deep Learning 13-148

Detect Anomalies Using Wavelet Scattering with Autoencoders . . . . . 13-162

Denoise Signals with Adversarial Learning Denoiser Model . . . . . . . . 13-179

Human Health Monitoring Using Continuous Wave Radar and Deep
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-193

Classify ECG Signals Using DAG Network Deployed to FPGA . . . . . . . 13-206

Code Generation for a Deep Learning Simulink Model to Classify ECG
Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-217

Modulation Classification Using Wavelet Analysis on NVIDIA Jetson 13-224

Crack Identification from Accelerometer Data . . . . . . . . . . . . . . . . . . . 13-239

Time-Frequency Feature Embedding with Deep Metric Learning . . . . 13-256

Time-Frequency Convolutional Network for EEG Data Classification 13-271

Detect Anomalies In Signals Using deepSignalAnomalyDetector . . . . 13-285

xvii



Detect Anomalies in Machinery Using LSTM Autoencoder . . . . . . . . . 13-306

Wireless Comm Examples
14

OFDM Autoencoder for Wireless Communications . . . . . . . . . . . . . . . . . 14-2

Train DQN Agent for Beam Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14

CSI Feedback with Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-21

Modulation Classification by Using FPGA . . . . . . . . . . . . . . . . . . . . . . . . 14-49

Neural Network for Digital Predistortion Design - Online Training . . . 14-61

Neural Network for Digital Predistortion Design - Offline Training . . . 14-81

Neural Network for Beam Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-96

Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-119

Autoencoders for Wireless Communications . . . . . . . . . . . . . . . . . . . . 14-134

Modulation Classification with Deep Learning . . . . . . . . . . . . . . . . . . . 14-150

Training and Testing a Neural Network for LLR Estimation . . . . . . . . 14-166

Design a Deep Neural Network with Simulated Data to Detect WLAN
Router Impersonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-177

Test a Deep Neural Network with Captured Data to Detect WLAN Router
Impersonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-191

Audio Examples
15

Transfer Learning with Pretrained Audio Networks . . . . . . . . . . . . . . . . . 15-2

Speech Command Recognition in Simulink . . . . . . . . . . . . . . . . . . . . . . . 15-5

Speaker Identification Using Custom SincNet Layer and Deep Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8

Dereverberate Speech Using Deep Learning Networks . . . . . . . . . . . . . 15-22

Speaker Recognition Using x-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-46

xviii Contents



Speaker Diarization Using x-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-61

Train Spoken Digit Recognition Network Using Out-of-Memory Audio
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-75

Train Spoken Digit Recognition Network Using Out-of-Memory Features
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-82

Keyword Spotting in Noise Code Generation with Intel MKL-DNN . . . 15-89

Keyword Spotting in Noise Code Generation on Raspberry Pi . . . . . . . 15-95

Speech Command Recognition Code Generation on Raspberry Pi . . . 15-103

Speech Command Recognition Code Generation with Intel MKL-DNN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-113

Train Generative Adversarial Network (GAN) for Sound Synthesis . . 15-121

Sequential Feature Selection for Audio Features . . . . . . . . . . . . . . . . . 15-145

Acoustic Scene Recognition Using Late Fusion . . . . . . . . . . . . . . . . . . 15-158

Keyword Spotting in Noise Using MFCC and LSTM Networks . . . . . . 15-174

Speech Emotion Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-200

Spoken Digit Recognition with Wavelet Scattering and Deep Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-213

Cocktail Party Source Separation Using Deep Learning Networks . . . 15-229

Voice Activity Detection in Noise Using Deep Learning . . . . . . . . . . . . 15-252

Denoise Speech Using Deep Learning Networks . . . . . . . . . . . . . . . . . 15-262

Accelerate Audio Deep Learning Using GPU-Based Feature Extraction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-283

Acoustics-Based Machine Fault Recognition . . . . . . . . . . . . . . . . . . . . 15-294

Acoustics-Based Machine Fault Recognition Code Generation with Intel
MKL-DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-314

Acoustics-Based Machine Fault Recognition Code Generation on
Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-321

End-to-End Deep Speech Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-332

Train 3-D Sound Event Localization and Detection (SELD) Using Deep
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-347

3-D Sound Event Localization and Detection Using Trained Recurrent
Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-374

xix



Speech Command Recognition Code Generation with Intel MKL-DNN
Using Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-388

Speech Command Recognition on Raspberry Pi Using Simulink . . . . 15-398

Audio-Based Anomaly Detection for Machine Health Monitoring . . . 15-405

3-D Speech Enhancement Using Trained Filter and Sum Network . . . 15-418

Train 3-D Speech Enhancement Network Using Deep Learning . . . . . 15-428

Audio Transfer Learning Using Experiment Manager . . . . . . . . . . . . . 15-451

Audio Event Classification Using TensorFlow Lite on Raspberry Pi . . 15-457

Reinforcement Learning Examples
16

Reinforcement Learning Using Deep Neural Networks . . . . . . . . . . . . . . 16-2
Reinforcement Learning Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3
Reinforcement Learning Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3
Reinforcement Learning Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4
Create Deep Neural Network Policies and Value Functions . . . . . . . . . . . 16-5
Train Reinforcement Learning Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-6
Deploy Trained Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-6

Create Simulink Environment and Train Agent . . . . . . . . . . . . . . . . . . . . 16-8

Train DDPG Agent to Swing Up and Balance Pendulum with Image
Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-18

Create DQN Agent Using Deep Network Designer and Train Using Image
Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-28

Imitate MPC Controller for Lane Keeping Assist . . . . . . . . . . . . . . . . . . 16-41

Train DDPG Agent to Control Flying Robot . . . . . . . . . . . . . . . . . . . . . . . 16-49

Train Biped Robot to Walk Using Reinforcement Learning Agents . . . 16-56

Train Humanoid Walker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-68

Train DDPG Agent for Adaptive Cruise Control . . . . . . . . . . . . . . . . . . . 16-75

Train DQN Agent for Lane Keeping Assist Using Parallel Computing . 16-85

Train DDPG Agent for Path-Following Control . . . . . . . . . . . . . . . . . . . . 16-94

Train PPO Agent for Automatic Parking Valet . . . . . . . . . . . . . . . . . . . 16-104

xx Contents



Predictive Maintenance Examples
17

Chemical Process Fault Detection Using Deep Learning . . . . . . . . . . . . . 17-2

Rolling Element Bearing Fault Diagnosis Using Deep Learning . . . . . . 17-12

Remaining Useful Life Estimation Using Convolutional Neural Network
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-23

Anomaly Detection in Industrial Machinery Using Three-Axis Vibration
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-34

Battery Cycle Life Prediction Using Deep Learning . . . . . . . . . . . . . . . 17-49

Computational Finance Examples
18

Compare Deep Learning Networks for Credit Default Prediction . . . . . . 18-2

Interpret and Stress-Test Deep Learning Networks for Probability of
Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-15

Hedge Options Using Reinforcement Learning Toolbox™ . . . . . . . . . . . 18-33

Use Deep Learning to Approximate Barrier Option Prices with Heston
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-42

Backtest Strategies Using Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 18-51

Deep Reinforcement Learning for Optimal Trade Execution . . . . . . . . . 18-64

Import, Export, and Customization
19

Train Deep Learning Model in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . 19-3
Training Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-3
Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-5

Define Custom Deep Learning Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-9
Layer Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-10
Intermediate Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-13
Output Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-14
Check Validity of Custom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-15

Define Custom Deep Learning Intermediate Layers . . . . . . . . . . . . . . . . 19-16
Intermediate Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-16
Intermediate Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-17

xxi



Formatted Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-19
Custom Layer Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-19
Intermediate Layer Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-20
Forward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-23
Reset State Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-26
Backward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-26
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-29
Check Validity of Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-29

Define Custom Deep Learning Output Layers . . . . . . . . . . . . . . . . . . . . . 19-31
Output Layer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-31
Output Layer Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-31
Custom Layer Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-33
Output Layer Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-34
Forward Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-35
Backward Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-35
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-37
Check Validity of Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-37

Define Custom Deep Learning Layer with Learnable Parameters . . . . . 19-38
Intermediate Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-39
Name Layer and Specify Superclasses . . . . . . . . . . . . . . . . . . . . . . . . . 19-41
Declare Properties and Learnable Parameters . . . . . . . . . . . . . . . . . . . 19-42
Create Constructor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-44
Create Initialize Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-44
Create Forward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-45
Completed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-48
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-49
Check Validity of Custom Layer Using checkLayer . . . . . . . . . . . . . . . . 19-50
Include Custom Layer in Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-51

Define Custom Deep Learning Layer with Multiple Inputs . . . . . . . . . . 19-53
Intermediate Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-53
Name Layer and Specify Superclasses . . . . . . . . . . . . . . . . . . . . . . . . . 19-56
Declare Properties and Learnable Parameters . . . . . . . . . . . . . . . . . . . 19-56
Create Constructor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-58
Create Forward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-59
Completed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-62
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-63
Check Validity of Layer with Multiple Inputs . . . . . . . . . . . . . . . . . . . . . 19-64
Use Custom Weighted Addition Layer in Network . . . . . . . . . . . . . . . . . 19-64

Define Custom Deep Learning Layer with Formatted Inputs . . . . . . . . . 19-67
Intermediate Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-68
Name Layer and Specify Superclasses . . . . . . . . . . . . . . . . . . . . . . . . . 19-70
Declare Properties and Learnable Parameters . . . . . . . . . . . . . . . . . . . 19-71
Create Constructor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-72
Create Initialize Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-74
Create Forward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-75
Completed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-78
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-80
Include Custom Layer in Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-80

Define Custom Recurrent Deep Learning Layer . . . . . . . . . . . . . . . . . . . 19-83
Intermediate Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-84

xxii Contents



Name Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-86
Declare Properties, State, and Learnable Parameters . . . . . . . . . . . . . . 19-86
Create Constructor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-88
Create Initialize Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-90
Create Predict Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-92
Create Reset State Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-94
Completed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-95
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-98
Include Custom Layer in Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-98

Define Custom Classification Output Layer . . . . . . . . . . . . . . . . . . . . . . 19-101
Classification Output Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . 19-101
Name the Layer and Specify Superclasses . . . . . . . . . . . . . . . . . . . . . 19-102
Declare Layer Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-103
Create Constructor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-103
Create Forward Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-104
Completed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-105
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-106
Check Output Layer Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-106
Include Custom Classification Output Layer in Network . . . . . . . . . . . 19-106

Define Custom Regression Output Layer . . . . . . . . . . . . . . . . . . . . . . . . 19-109
Regression Output Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-109
Name the Layer and Specify Superclasses . . . . . . . . . . . . . . . . . . . . . 19-110
Declare Layer Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-110
Create Constructor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-111
Create Forward Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-112
Completed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-113
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-114
Check Output Layer Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-114
Include Custom Regression Output Layer in Network . . . . . . . . . . . . . 19-115

Specify Custom Layer Backward Function . . . . . . . . . . . . . . . . . . . . . . 19-117
Create Custom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-117
Create Backward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-119
Complete Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-121
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-122

Specify Custom Output Layer Backward Loss Function . . . . . . . . . . . . 19-124
Create Custom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-124
Create Backward Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-125
Complete Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-125
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-126

Custom Layer Function Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-128
Acceleration Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-128

Deep Learning Network Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 19-131
Automatically Initialize Learnable dlnetwork Objects for Training . . . . 19-131
Predict and Forward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-132
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-133

Define Nested Deep Learning Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-134
Intermediate Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-136
Name Layer and Specify Superclasses . . . . . . . . . . . . . . . . . . . . . . . . 19-138

xxiii



Declare Properties and Learnable Parameters . . . . . . . . . . . . . . . . . . 19-139
Create Constructor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-140
Create Forward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-143
Completed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-146
GPU Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-148

Train Deep Learning Network with Nested Layers . . . . . . . . . . . . . . . . 19-149

Define Custom Deep Learning Layer for Code Generation . . . . . . . . . 19-156
Intermediate Layer Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-157
Name Layer and Specify Superclasses . . . . . . . . . . . . . . . . . . . . . . . . 19-159
Specify Code Generation Pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-160
Declare Properties and Learnable Parameters . . . . . . . . . . . . . . . . . . 19-160
Create Constructor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-162
Create Forward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-163
Completed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-165
Check Custom Layer for Code Generation Compatibility . . . . . . . . . . . 19-166

Check Custom Layer Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-168
Check Custom Layer Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-168
List of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-169
Generated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-171
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-172

Specify Custom Weight Initialization Function . . . . . . . . . . . . . . . . . . 19-189

Compare Layer Weight Initializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-195

Assemble Network from Pretrained Keras Layers . . . . . . . . . . . . . . . . 19-201

Replace Unsupported Keras Layer with Function Layer . . . . . . . . . . . 19-206

Assemble Multiple-Output Network for Prediction . . . . . . . . . . . . . . . 19-210

Automatic Differentiation Background . . . . . . . . . . . . . . . . . . . . . . . . . 19-214
What Is Automatic Differentiation? . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-214
Forward Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-214
Reverse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-216

Use Automatic Differentiation In Deep Learning Toolbox . . . . . . . . . . 19-219
Custom Training and Calculations Using Automatic Differentiation . . . 19-219
Use dlgradient and dlfeval Together for Automatic Differentiation . . . 19-220
Derivative Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-220
Characteristics of Automatic Derivatives . . . . . . . . . . . . . . . . . . . . . . 19-221

Define Custom Training Loops, Loss Functions, and Networks . . . . . . 19-223
Define Deep Learning Network for Custom Training Loops . . . . . . . . . 19-223
Specify Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-227
Update Learnable Parameters Using Automatic Differentiation . . . . . . 19-228

Specify Training Options in Custom Training Loop . . . . . . . . . . . . . . . 19-230
Solver Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-231
Learn Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-231
Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-232
Verbose Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-233

xxiv Contents



Mini-Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-234
Number of Epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-234
Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-235
L2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-236
Gradient Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-236
Single CPU or GPU Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-237
Checkpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-238

Train Network Using Custom Training Loop . . . . . . . . . . . . . . . . . . . . . 19-239

Train Sequence Classification Network Using Custom Training Loop 19-247

Define Model Loss Function for Custom Training Loop . . . . . . . . . . . . 19-256
Create Model Loss Function for Model Defined as dlnetwork Object . . 19-256
Create Model Loss Function for Model Defined as Function . . . . . . . . 19-256
Evaluate Model Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-257
Update Learnable Parameters Using Gradients . . . . . . . . . . . . . . . . . . 19-257
Use Model Loss Function in Custom Training Loop . . . . . . . . . . . . . . . 19-258
Debug Model Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-258

Update Batch Normalization Statistics in Custom Training Loop . . . 19-261

Train Robust Deep Learning Network with Jacobian Regularization 19-267

Make Predictions Using dlnetwork Object . . . . . . . . . . . . . . . . . . . . . . 19-280

Train Network Using Model Function . . . . . . . . . . . . . . . . . . . . . . . . . . 19-284

Update Batch Normalization Statistics Using Model Function . . . . . . 19-298

Make Predictions Using Model Function . . . . . . . . . . . . . . . . . . . . . . . 19-312

Initialize Learnable Parameters for Model Function . . . . . . . . . . . . . . 19-318
Default Layer Initializations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-318
Learnable Parameter Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-319
Glorot Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-322
He Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-324
Gaussian Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-325
Uniform Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-326
Orthogonal Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-326
Unit Forget Gate Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-327
Ones Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-327
Zeros Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-328
Storing Learnable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-328

Deep Learning Function Acceleration for Custom Training Loops . . . 19-330
Accelerate Deep Learning Function Directly . . . . . . . . . . . . . . . . . . . . 19-331
Accelerate Parts of Deep Learning Function . . . . . . . . . . . . . . . . . . . . 19-331
Reusing Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-332
Storing and Clearing Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-333
Acceleration Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-333

Accelerate Custom Training Loop Functions . . . . . . . . . . . . . . . . . . . . 19-338

Evaluate Performance of Accelerated Deep Learning Function . . . . . 19-350

xxv



Check Accelerated Deep Learning Function Outputs . . . . . . . . . . . . . 19-365

Solve Partial Differential Equations Using Deep Learning . . . . . . . . . 19-368

Solve Partial Differential Equation with L-BFGS Method and Deep
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-378

Solve Ordinary Differential Equation Using Neural Network . . . . . . . 19-386

Dynamical System Modeling Using Neural ODE . . . . . . . . . . . . . . . . . . 19-394

Reduced Order Modeling Using Continuous-Time Echo State Network
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-403

Node Classification Using Graph Convolutional Network . . . . . . . . . . 19-413

Multilabel Graph Classification Using Graph Attention Networks . . . 19-428

Train Network Using Cyclical Learning Rate for Snapshot Ensembling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-453

Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch,
and ONNX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-464

Support Packages for Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . 19-464
Functions that Import Deep Learning Networks . . . . . . . . . . . . . . . . . 19-465
Visualize Imported Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-466
Predict with Imported Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-468
Transfer Learning with Imported Network . . . . . . . . . . . . . . . . . . . . . 19-470
Deploy Imported Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-471
Functions that Export Networks and Layer Graphs . . . . . . . . . . . . . . . 19-472

Tips on Importing Models from TensorFlow, PyTorch, and ONNX . . . 19-474
Import Functions of Deep Learning Toolbox . . . . . . . . . . . . . . . . . . . . 19-474
Recommended Functions to Import TensorFlow Models . . . . . . . . . . . 19-474
Autogenerated Custom Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-475
Placeholder Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-476
Input Dimension Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-477
Data Formats for Prediction with dlnetwork . . . . . . . . . . . . . . . . . . . . 19-477
Input Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-478

Deploy Imported TensorFlow Model with MATLAB Compiler . . . . . . . 19-480

Select Function to Import ONNX Pretrained Network . . . . . . . . . . . . . 19-485
Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-485
Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-487

Classify Images in Simulink with Imported TensorFlow Network . . . . 19-489

Inference Comparison Between TensorFlow and Imported Networks for
Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-496

Inference Comparison Between ONNX and Imported Networks for Image
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-500

xxvi Contents



List of Functions with dlarray Support . . . . . . . . . . . . . . . . . . . . . . . . . 19-504
Deep Learning Toolbox Functions with dlarray Support . . . . . . . . . . . 19-504
Domain-Specific Functions with dlarray Support . . . . . . . . . . . . . . . . 19-507
MATLAB Functions with dlarray Support . . . . . . . . . . . . . . . . . . . . . . 19-508
Notable dlarray Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-518

Monitor Custom Training Loop Progress . . . . . . . . . . . . . . . . . . . . . . . 19-521
Create Training Progress Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-521
Training Progress Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-521
Monitor Custom Training Loop Progress During Training . . . . . . . . . . 19-523

Train Bayesian Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-531

Deep Learning Data Preprocessing
20

Datastores for Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2
Select Datastore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2
Input Datastore for Training, Validation, and Inference . . . . . . . . . . . . . . 20-3
Specify Read Size and Mini-Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . 20-5
Transform and Combine Datastores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-6
Use Datastore for Parallel Training and Background Dispatching . . . . . . 20-8

Create and Explore Datastore for Image Classification . . . . . . . . . . . . 20-10

Preprocess Images for Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-16
Resize Images Using Rescaling and Cropping . . . . . . . . . . . . . . . . . . . . 20-16
Augment Images for Training with Random Geometric Transformations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-17
Perform Additional Image Processing Operations Using Built-In Datastores

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-18
Apply Custom Image Processing Pipelines Using Combine and Transform

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-18

Preprocess Volumes for Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 20-20
Read Volumetric Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-20
Pair Image and Label Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-21
Preprocess Volumetric Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-21
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-22

Preprocess Data for Domain-Specific Deep Learning Applications . . . . 20-27
Image Processing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-27
Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-29
Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-30
Lidar Processing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-31
Signal Processing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-33
Audio Processing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-35
Text Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-37

Develop Custom Mini-Batch Datastore . . . . . . . . . . . . . . . . . . . . . . . . . . 20-38
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-38
Implement MiniBatchable Datastore . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-38

xxvii



Add Support for Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-43
Validate Custom Mini-Batch Datastore . . . . . . . . . . . . . . . . . . . . . . . . . 20-43

Augment Images for Deep Learning Workflows . . . . . . . . . . . . . . . . . . . 20-45

Augment Pixel Labels for Semantic Segmentation . . . . . . . . . . . . . . . . 20-67

Augment Bounding Boxes for Object Detection . . . . . . . . . . . . . . . . . . . 20-77

Prepare Datastore for Image-to-Image Regression . . . . . . . . . . . . . . . . 20-90

Train Network Using Out-of-Memory Sequence Data . . . . . . . . . . . . . . . 20-97

Train Network Using Custom Mini-Batch Datastore for Sequence Data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-102

Classify Out-of-Memory Text Data Using Deep Learning . . . . . . . . . . . 20-106

Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-112

Data Sets for Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-116
Image Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-116
Time Series and Signal Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-138
Video Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-147
Text Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-148
Audio Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-154
Point Cloud Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-159

Choose an App to Label Ground Truth Data . . . . . . . . . . . . . . . . . . . . . 20-164

Deep Learning Code Generation
21

Code Generation for Deep Learning Networks . . . . . . . . . . . . . . . . . . . . . 21-3

Code Generation for Semantic Segmentation Network . . . . . . . . . . . . . 21-10

Lane Detection Optimized with GPU Coder . . . . . . . . . . . . . . . . . . . . . . . 21-14

Code Generation for a Sequence-to-Sequence LSTM Network . . . . . . . 21-21

Deep Learning Prediction on ARM Mali GPU . . . . . . . . . . . . . . . . . . . . . 21-27

Code Generation for Object Detection by Using YOLO v2 . . . . . . . . . . . 21-30

Code Generation for Object Detection Using YOLO v3 Deep Learning
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-34

Code Generation for Object Detection Using YOLO v4 Deep Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-38

xxviii Contents



Deep Learning Prediction with NVIDIA TensorRT Library . . . . . . . . . . . 21-43

Traffic Sign Detection and Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 21-49

Logo Recognition Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-57

Code Generation for Denoising Deep Neural Network . . . . . . . . . . . . . . 21-62

Train and Deploy Fully Convolutional Networks for Semantic
Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-66

Code Generation for Semantic Segmentation Network That Uses U-net
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-78

Code Generation for Deep Learning on ARM Targets . . . . . . . . . . . . . . 21-84

Deep Learning Prediction with ARM Compute Using codegen . . . . . . . 21-89

Deep Learning Code Generation on Intel Targets for Different Batch Sizes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-94

Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-
DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-103

Code Generation and Deployment of MobileNet-v2 Network to Raspberry
Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-106

Code Generation for Semantic Segmentation Application on Intel CPUs
That Uses U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-110

Code Generation for Semantic Segmentation Application on ARM Neon
Targets That Uses U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-119

Code Generation for LSTM Network on Raspberry Pi . . . . . . . . . . . . . 21-128

Code Generation for LSTM Network That Uses Intel MKL-DNN . . . . . 21-136

Cross Compile Deep Learning Code for ARM Neon Targets . . . . . . . . 21-140

Generate Generic C/C++ Code for Sequence-to-Sequence Regression That
Uses Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-146

Quantize Residual Network Trained for Image Classification and Generate
CUDA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-157

Quantize Layers in Object Detectors and Generate CUDA Code . . . . . 21-165

Explore Quantized Semantic Segmentation Network Using Grad-CAM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-176

Quantize Semantic Segmentation Network and Generate CUDA Code
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-189

xxix



Parameter Pruning and Quantization of Image Classification Network
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-206

Prune Image Classification Network Using Taylor Scores . . . . . . . . . . 21-223

Quantization Workflow Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . 21-237
Prerequisites for All Quantization Workflows . . . . . . . . . . . . . . . . . . . 21-237
Supported Networks and Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-237
Prerequisites for Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-237
Prerequisites for Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-238
Prerequisites for Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-238

Prepare Data for Quantizing Networks . . . . . . . . . . . . . . . . . . . . . . . . . 21-240
Datastores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-240
Choose a Built-In Datastore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-240
Calibration and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-240
Transform and Combine Datastores . . . . . . . . . . . . . . . . . . . . . . . . . . 21-241

Quantization of Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 21-243
Precision and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-243
Histograms of Dynamic Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-243

Prune Filters in a Detection Network Using Taylor Scores . . . . . . . . . 21-251

Compress Neural Network Using Projection . . . . . . . . . . . . . . . . . . . . . 21-279

Prerequisites for Deep Learning with TensorFlow Lite Models . . . . . . 21-295
MathWorks Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-295
Third-Party Hardware and Software . . . . . . . . . . . . . . . . . . . . . . . . . . 21-295
Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-296

Generate Code for TensorFlow Lite (TFLite) Model and Deploy on
Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-298

Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite)
Model on Host and Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-302

Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite)
Model on Host and Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-307

Deploy Semantic Segmentation Application Using TensorFlow Lite Model
on Host and Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-316

Deploy Classification Application Using Mobilenet-V3 TensorFlow Lite
Model on Host and Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-324

Compress Image Classification Network for Deployment to Resource-
Constrained Embedded Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-330

xxx Contents



Neural Network Objects, Data, and Training Styles
22

Workflow for Neural Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-2

Four Levels of Neural Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-3

Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-4
Simple Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-4
Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-5
Neuron with Vector Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-5

Neural Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-8
One Layer of Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-8
Multiple Layers of Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-10
Input and Output Processing Functions . . . . . . . . . . . . . . . . . . . . . . . . 22-11

Create Neural Network Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-13

Configure Shallow Neural Network Inputs and Outputs . . . . . . . . . . . . 22-16

Understanding Shallow Network Data Structures . . . . . . . . . . . . . . . . . 22-18
Simulation with Concurrent Inputs in a Static Network . . . . . . . . . . . . 22-18
Simulation with Sequential Inputs in a Dynamic Network . . . . . . . . . . . 22-19
Simulation with Concurrent Inputs in a Dynamic Network . . . . . . . . . . 22-20

Neural Network Training Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-22
Incremental Training with adapt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-22
Batch Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-24
Training Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-26

Multilayer Shallow Neural Networks and Backpropagation
Training

23
Multilayer Shallow Neural Networks and Backpropagation Training . . . 23-2

Multilayer Shallow Neural Network Architecture . . . . . . . . . . . . . . . . . . 23-3
Neuron Model (logsig, tansig, purelin) . . . . . . . . . . . . . . . . . . . . . . . . . . 23-3
Feedforward Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-4

Prepare Data for Multilayer Shallow Neural Networks . . . . . . . . . . . . . . 23-6

Choose Neural Network Input-Output Processing Functions . . . . . . . . . 23-7
Representing Unknown or Don't-Care Targets . . . . . . . . . . . . . . . . . . . . 23-8

Divide Data for Optimal Neural Network Training . . . . . . . . . . . . . . . . . . 23-9

xxxi



Create, Configure, and Initialize Multilayer Shallow Neural Networks
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-11

Other Related Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-11
Initializing Weights (init) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-12

Train and Apply Multilayer Shallow Neural Networks . . . . . . . . . . . . . . 23-13
Training Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-13
Training Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-15
Use the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-17

Analyze Shallow Neural Network Performance After Training . . . . . . . 23-19
Improving Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-22

Limitations and Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-23

Dynamic Neural Networks
24

Introduction to Dynamic Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 24-2

How Dynamic Neural Networks Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-3
Feedforward and Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 24-3
Applications of Dynamic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-9
Dynamic Network Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-10
Dynamic Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-11

Design Time Series Time-Delay Neural Networks . . . . . . . . . . . . . . . . . 24-12
Prepare Input and Layer Delay States . . . . . . . . . . . . . . . . . . . . . . . . . . 24-15

Design Time Series Distributed Delay Neural Networks . . . . . . . . . . . . 24-16

Design Time Series NARX Feedback Neural Networks . . . . . . . . . . . . . 24-18
Multiple External Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-24

Design Layer-Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 24-26

Create Reference Model Controller with MATLAB Script . . . . . . . . . . . 24-29

Multiple Sequences with Dynamic Neural Networks . . . . . . . . . . . . . . . 24-38

Neural Network Time-Series Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-39

Train Neural Networks with Error Weights . . . . . . . . . . . . . . . . . . . . . . . 24-41

Normalize Errors of Multiple Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-45

Multistep Neural Network Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-52
Set Up in Open-Loop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-52
Multistep Closed-Loop Prediction From Initial Conditions . . . . . . . . . . . 24-53
Multistep Closed-Loop Prediction Following Known Sequence . . . . . . . 24-54
Following Closed-Loop Simulation with Open-Loop Simulation . . . . . . . 24-55

xxxii Contents



Control Systems
25

Introduction to Neural Network Control Systems . . . . . . . . . . . . . . . . . . 25-2

Design Neural Network Predictive Controller in Simulink . . . . . . . . . . . 25-4
System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-4
Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-5
Use the Neural Network Predictive Controller Block . . . . . . . . . . . . . . . . 25-6

Design NARMA-L2 Neural Controller in Simulink . . . . . . . . . . . . . . . . . 25-13
Identification of the NARMA-L2 Model . . . . . . . . . . . . . . . . . . . . . . . . . 25-13
NARMA-L2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-14
Use the NARMA-L2 Controller Block . . . . . . . . . . . . . . . . . . . . . . . . . . 25-15

Design Model-Reference Neural Controller in Simulink . . . . . . . . . . . . 25-19
Use the Model Reference Controller Block . . . . . . . . . . . . . . . . . . . . . . 25-20

Import-Export Neural Network Simulink Control Systems . . . . . . . . . . 25-26
Import and Export Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-26
Import and Export Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-28

Radial Basis Neural Networks
26

Introduction to Radial Basis Neural Networks . . . . . . . . . . . . . . . . . . . . . 26-2
Important Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-2

Radial Basis Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-3
Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-3
Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-4
Exact Design (newrbe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-5
More Efficient Design (newrb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-6
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-6

Probabilistic Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-8
Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-8
Design (newpnn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-9

Generalized Regression Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 26-11
Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-11
Design (newgrnn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-12

Self-Organizing and Learning Vector Quantization Networks
27

Introduction to Self-Organizing and LVQ . . . . . . . . . . . . . . . . . . . . . . . . . 27-2
Important Self-Organizing and LVQ Functions . . . . . . . . . . . . . . . . . . . . . 27-2

xxxiii



Cluster with a Competitive Neural Network . . . . . . . . . . . . . . . . . . . . . . . 27-3
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-3
Create a Competitive Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 27-3
Kohonen Learning Rule (learnk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-4
Bias Learning Rule (learncon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-5
Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-5
Graphical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-6

Cluster with Self-Organizing Map Neural Network . . . . . . . . . . . . . . . . . 27-8
Topologies (gridtop, hextop, randtop) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-9
Distance Functions (dist, linkdist, mandist, boxdist) . . . . . . . . . . . . . . . 27-12
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-14
Create a Self-Organizing Map Neural Network (selforgmap) . . . . . . . . . 27-14
Training (learnsomb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-16
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-19

Learning Vector Quantization (LVQ) Neural Networks . . . . . . . . . . . . . 27-27
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-27
Creating an LVQ Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-28
LVQ1 Learning Rule (learnlv1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-30
Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-31
Supplemental LVQ2.1 Learning Rule (learnlv2) . . . . . . . . . . . . . . . . . . . 27-32

Adaptive Filters and Adaptive Training
28

Adaptive Neural Network Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-2
Adaptive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-2
Linear Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-2
Adaptive Linear Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 28-3
Least Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-5
LMS Algorithm (learnwh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-6
Adaptive Filtering (adapt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-6

Advanced Topics
29

Shallow Neural Networks with Parallel and GPU Computing . . . . . . . . . 29-2
Modes of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-2
Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-2
Single GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-4
Distributed GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-6
Parallel Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-8
Parallel Availability, Fallbacks, and Feedback . . . . . . . . . . . . . . . . . . . . . 29-8

Optimize Neural Network Training Speed and Memory . . . . . . . . . . . . . 29-10
Memory Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-10
Fast Elliot Sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-10

xxxiv Contents



Choose a Multilayer Neural Network Training Function . . . . . . . . . . . . 29-14
SIN Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-15
PARITY Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-16
ENGINE Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-18
CANCER Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-19
CHOLESTEROL Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-21
DIABETES Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-22
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-24

Improve Shallow Neural Network Generalization and Avoid Overfitting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-25

Retraining Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-26
Multiple Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-27
Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-28
Index Data Division (divideind) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-28
Random Data Division (dividerand) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-29
Block Data Division (divideblock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-29
Interleaved Data Division (divideint) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-29
Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-29
Summary and Discussion of Early Stopping and Regularization . . . . . . 29-31
Posttraining Analysis (regression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-33

Edit Shallow Neural Network Properties . . . . . . . . . . . . . . . . . . . . . . . . . 29-35
Custom Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-35
Network Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-36
Network Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-43

Custom Neural Network Helper Functions . . . . . . . . . . . . . . . . . . . . . . . 29-45

Automatically Save Checkpoints During Neural Network Training . . . 29-46

Deploy Shallow Neural Network Functions . . . . . . . . . . . . . . . . . . . . . . . 29-48
Deployment Functions and Tools for Trained Networks . . . . . . . . . . . . . 29-48
Generate Neural Network Functions for Application Deployment . . . . . 29-48
Generate Simulink Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-50

Deploy Training of Shallow Neural Networks . . . . . . . . . . . . . . . . . . . . . 29-51

Historical Neural Networks
30

Historical Neural Networks Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-2

Perceptron Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-3
Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-3
Perceptron Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-4
Create a Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-5
Perceptron Learning Rule (learnp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-6
Training (train) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-8
Limitations and Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-12

xxxv



Linear Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-14
Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-14
Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-15
Least Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-17
Linear System Design (newlind) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-18
Linear Networks with Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-18
LMS Algorithm (learnwh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-20
Linear Classification (train) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-21
Limitations and Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-23

Neural Network Object Reference
31

Neural Network Object Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-2
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-2
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-2
Subobject Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-5
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-6
Weight and Bias Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-9

Neural Network Subobject Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-11
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-11
Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-12
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-16
Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-18
Input Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-19
Layer Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-20

Function Approximation, Clustering, and Control Examples
32

Fit Data Using the Neural Net Fitting App . . . . . . . . . . . . . . . . . . . . . . . . 32-2

Pattern Recognition Using the Neural Net Pattern Recognition App . . 32-11

Cluster Data Using the Neural Net Clustering App . . . . . . . . . . . . . . . . 32-19

Fit Time Series Data Using the Neural Net Time Series App . . . . . . . . 32-26

Body Fat Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-36

Crab Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-43

Wine Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-51

Cancer Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-59

Character Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-68

xxxvi Contents



Train Stacked Autoencoders for Image Classification . . . . . . . . . . . . . . 32-74

Iris Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-89

Gene Expression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-97

Maglev Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-105

Competitive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-116

One-Dimensional Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . . . . 32-120

Two-Dimensional Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . . . . 32-123

Radial Basis Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-127

Radial Basis Underlapping Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-131

Radial Basis Overlapping Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-133

GRNN Function Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-135

PNN Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-139

Learning Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-143

Linear Prediction Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-147

Adaptive Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-151

Classification with a Two-Input Perceptron . . . . . . . . . . . . . . . . . . . . . 32-156

Outlier Input Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-161

Normalized Perceptron Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-167

Linearly Non-separable Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-173

Pattern Association Showing Error Surface . . . . . . . . . . . . . . . . . . . . . 32-176

Training a Linear Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-179

Linear Fit of Nonlinear Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-184

Underdetermined Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-189

Linearly Dependent Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-195

Too Large a Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-198

Adaptive Noise Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-203

xxxvii



Shallow Neural Networks Bibliography
33

Shallow Neural Networks Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-2

Mathematical Notation
A

Mathematics and Code Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Mathematics Notation to MATLAB Notation . . . . . . . . . . . . . . . . . . . . . . . A-2
Figure Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Neural Network Blocks for the Simulink Environment
B

Neural Network Simulink Block Library . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Transfer Function Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Net Input Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3
Weight Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3
Processing Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Deploy Shallow Neural Network Simulink Diagrams . . . . . . . . . . . . . . . . . B-5
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5
Suggested Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
Generate Functions and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7

Code Notes
C

Deep Learning Toolbox Data Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2

xxxviii Contents



Deep Networks

• “Deep Learning in MATLAB” on page 1-2
• “Pretrained Deep Neural Networks” on page 1-11
• “Learn About Convolutional Neural Networks” on page 1-21
• “Example Deep Learning Networks Architectures” on page 1-23
• “Multiple-Input and Multiple-Output Networks” on page 1-41
• “List of Deep Learning Layers” on page 1-43
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Train Network with Numeric Features” on page 1-68
• “Train Network on Image and Feature Data” on page 1-74
• “Compare Activation Layers” on page 1-81
• “Deep Learning Tips and Tricks” on page 1-87
• “Long Short-Term Memory Neural Networks” on page 1-97

1



Deep Learning in MATLAB
In this section...
“What Is Deep Learning?” on page 1-2
“Start Deep Learning Faster Using Transfer Learning” on page 1-2
“Deep Learning Workflows” on page 1-3
“Deep Learning Apps” on page 1-5
“Train Classifiers Using Features Extracted from Pretrained Networks” on page 1-7
“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud” on page 1-7
“Deep Learning Using Simulink” on page 1-7
“Deep Learning Interpretability” on page 1-8
“Deep Learning Customization” on page 1-8
“Deep Learning Import and Export” on page 1-9

What Is Deep Learning?
Deep learning is a branch of machine learning that teaches computers to do what comes naturally to
humans: learn from experience. Deep learning uses neural networks to learn useful representations
of features directly from data. Neural networks combine multiple nonlinear processing layers, using
simple elements operating in parallel and inspired by biological nervous systems. Deep learning
models can achieve state-of-the-art accuracy in object classification, sometimes exceeding human-
level performance.

Deep Learning Toolbox provides simple MATLAB commands for creating and interconnecting the
layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for
deep learning, even without knowledge of advanced computer vision algorithms or neural networks.

For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp. To
quickly get started deep learning, see “Try Deep Learning in 10 Lines of MATLAB Code”.

Start Deep Learning Faster Using Transfer Learning
Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
much faster and easier than training from scratch. You can quickly make the network learn a new
task using a smaller number of training images. The advantage of transfer learning is that the
pretrained network has already learned a rich set of features that can be applied to a wide range of
other similar tasks. For an interactive example, see “Transfer Learning with Deep Network Designer”
on page 2-2. For a programmatic example, see “Train Deep Learning Network to Classify New
Images” on page 3-6.

To choose whether to use a pretrained network or create a new deep network, consider the scenarios
in this table.

1 Deep Networks

1-2

https://www.mathworks.com/training-schedule/deep-learning-onramp.html?s_tid=doc_to_dlonramp


 Use a Pretrained Network for
Transfer Learning

Create a New Deep Network

Training Data Hundreds to thousands of
labeled data (small)

Thousands to millions of labeled
data

Computation Moderate computation (GPU
optional)

Compute intensive (requires
GPU for speed)

Training Time Seconds to minutes Days to weeks for real problems
Model Accuracy Good, depends on the

pretrained model
High, but can overfit to small
data sets

To explore a selection of pretrained networks, use Deep Network Designer.

Deep Learning Workflows
To learn more about deep learning application areas, see “Applications”.

Domain Example Workflow Learn More
Image
classificat
ion,
regressio
n, and
processin
g

Apply deep learning to image data
tasks.

For example, use deep learning for
image classification and regression.

“Get Started with Transfer
Learning”

“Pretrained Deep Neural Networks”
on page 1-11

“Create Simple Deep Learning
Neural Network for Classification”
on page 3-43

“Train Convolutional Neural
Network for Regression” on page 3-
49

“Preprocess Images for Deep
Learning” on page 20-16

Sequence
s and
time
series

Apply deep learning to sequence
and time series tasks.

For example, use deep learning for
sequence classification and time
series forecasting.

“Sequence Classification Using
Deep Learning” on page 4-3

“Time Series Forecasting Using
Deep Learning” on page 4-16

Computer
vision

Apply deep learning to computer
vision applications.

For example, use deep learning for
semantic segmentation and object
detection.

“Getting Started with Semantic
Segmentation Using Deep Learning”
(Computer Vision Toolbox)

“Recognition, Object Detection, and
Semantic Segmentation” (Computer
Vision Toolbox)

 Deep Learning in MATLAB

1-3



Domain Example Workflow Learn More
Audio
processin
g

Apply deep learning to audio and
speech processing applications.

For example, use deep learning for
speaker identification, speech
command recognition, and acoustic
scene recognition.

“Audio Processing”

“Deep Learning for Audio
Applications” (Audio Toolbox)

Automate
d driving

Apply deep learning to automated
driving applications.

For example, use deep learning for
vehicle detection and semantic
segmentation.

“Automated Driving”

“Train a Deep Learning Vehicle
Detector” on page 10-2

Signal
processin
g

Apply deep learning to signal
processing applications.

For example, use deep learning for
waveform segmentation, signal
classification, and denoising speech
signals.

“Signal Processing”

“Classify Time Series Using Wavelet
Analysis and Deep Learning” on
page 13-79

Wireless
communi
cations

Apply deep learning to wireless
communications systems.

For example, use deep learning for
positioning, spectrum sensing,
autoencoder design, and digital
predistortion (DPD).

“Wireless Communications”

“Spectrum Sensing with Deep
Learning to Identify 5G and LTE
Signals” on page 14-119

“Three-Dimensional Indoor
Positioning with 802.11az
Fingerprinting and Deep Learning”
(WLAN Toolbox)

Reinforce
ment
learning

Train deep neural network agents
by interacting with an unknown
dynamic environment.

For example, use reinforcement
learning to train policies to
implement controllers and decision-
making algorithms for complex
applications such as resource
allocation, robotics, and autonomous
systems.

“Reinforcement Learning”

Computat
ional
finance

Apply deep learning to financial
workflows.

For example, use deep learning for
applications including instrument
pricing, trading, and risk
management.

“Computational Finance”

“Compare Deep Learning Networks
for Credit Default Prediction” on
page 18-2

1 Deep Networks

1-4



Domain Example Workflow Learn More
Lidar
processin
g

Apply deep learning algorithms to
process lidar point cloud data.

For example, use deep learning for
semantic segmentation, object
detection on 3-D organized lidar
point cloud data.

“Lidar Processing”

“Aerial Lidar Semantic
Segmentation Using PointNet++
Deep Learning” on page 12-25

“Lidar 3-D Object Detection Using
PointPillars Deep Learning” on page
12-68

Text
analytics

Apply deep learning algorithms to
text analytics applications.

For example, use deep learning for
text classification, language
translation, and text generation.

“Text Analytics”

“Classify Text Data Using Deep
Learning” on page 4-195

Predictive
maintena
nce

Apply deep learning to predictive
maintenance applications.

For example, use deep learning for
fault detection and remaining useful
life estimation.

“Predictive Maintenance”

“Chemical Process Fault Detection
Using Deep Learning” on page 17-
2

Deep Learning Apps
Process data, visualize and train networks, track experiments, and quantize networks interactively
using apps.

You can process your data before training using apps to label ground truth data. For more
information on choosing a labeling app, see “Choose an App to Label Ground Truth Data” on page 20-
164.

Name Description Learn More
Deep Network Designer Build, visualize, edit, and

train deep learning
networks.

“Transfer Learning with
Deep Network Designer” on
page 2-2

“Train Network for Time
Series Forecasting Using
Deep Network Designer” on
page 2-60

Experiment Manager Create deep learning
experiments to train
networks under multiple
initial conditions and
compare the results.

“Create a Deep Learning
Experiment for
Classification” on page 6-
2

“Create a Deep Learning
Experiment for Regression”
on page 6-10

 Deep Learning in MATLAB

1-5



Name Description Learn More
Deep Network Quantizer Reduce the memory

requirement of a deep
neural network by
quantizing weights, biases,
and activations of
convolution layers to 8-bit
scaled integer data types.

“Quantization of Deep
Neural Networks” on page
21-243

Reinforcement Learning
Designer

Design, train, and simulate
reinforcement learning
agents.

“Design and Train Agent
Using Reinforcement
Learning Designer”
(Reinforcement Learning
Toolbox)

Image Labeler Label ground truth data in a
collection of images.

“Get Started with the Image
Labeler” (Computer Vision
Toolbox)

Video Labeler Label ground truth data in a
video, in an image
sequence, or from a custom
data source reader.

“Get Started with the Video
Labeler” (Computer Vision
Toolbox)

Ground Truth Labeler Label ground truth data in
multiple videos, image
sequences, or lidar point
clouds.

“Get Started with Ground
Truth Labelling”
(Automated Driving
Toolbox)

Lidar Labeler Label objects in a point
cloud or a point cloud
sequence. The app reads
point cloud data from PLY,
PCAP, LAS, LAZ, ROS and
PCD files.

“Get Started with the Lidar
Labeler” (Lidar Toolbox)

Signal Labeler Label signals for analysis or
for use in machine learning
and deep learning
applications.

“Using Signal Labeler App”
(Signal Processing Toolbox)

1 Deep Networks

1-6



Train Classifiers Using Features Extracted from Pretrained Networks
Feature extraction allows you to use the power of pretrained networks without investing time and
effort into training. Feature extraction can be the fastest way to use deep learning. You extract
learned features from a pretrained network, and use those features to train a classifier, for example, a
support vector machine (SVM — requires Statistics and Machine Learning Toolbox™). For example, if
an SVM trained using alexnet can achieve >90% accuracy on your training and validation set, then
fine-tuning with transfer learning might not be worth the effort to gain some extra accuracy. If you
perform fine-tuning on a small dataset, then you also risk overfitting. If the SVM cannot achieve good
enough accuracy for your application, then fine-tuning is worth the effort to seek higher accuracy.

For an example, see “Extract Image Features Using Pretrained Network” on page 3-24.

Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the
Cloud
Training deep networks is computationally intensive and can take many hours of computing time;
however, neural networks are inherently parallel algorithms. You can use Parallel Computing
Toolbox™ to take advantage of this parallelism by running in parallel using high-performance GPUs
and computer clusters. To learn more about deep learning in parallel, in the cloud, or using a GPU,
see “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2.

Datastores in MATLAB® are a convenient way of working with and representing collections of data
that are too large to fit in memory at one time. To learn more about deep learning with large data
sets, see “Deep Learning with Big Data” on page 7-18.

Deep Learning Using Simulink
Implement deep learning functionality in Simulink® models by using blocks from the Deep Neural
Networks block library, included in the Deep Learning Toolbox™, or by using the Deep Learning
Object Detector block from the Analysis & Enhancement block library included in the Computer
Vision Toolbox™.

For more information, see “Deep Learning with Simulink”.

 Deep Learning in MATLAB

1-7



Block Description
Image Classifier Classify data using a trained deep learning neural

network
Predict Predict responses using a trained deep learning

neural network
Stateful Classify Classify data using a trained deep learning

recurrent neural network
Stateful Predict Predict responses using a trained recurrent

neural network
Deep Learning Object Detector Detect objects using trained deep learning object

detector

Deep Learning Interpretability
Deep learning networks are often described as "black boxes" because the reason that a network
makes a certain decision is not always obvious. You can use interpretability techniques to translate
network behavior into output that a person can interpret. This interpretable output can then answer
questions about the predictions of a network.

The Deep Learning Toolbox provides several deep learning visualization methods to help you
investigate and understand network behaviour. For example, gradCAM, occlusionSensitivity,
and imageLIME. For more information, see “Deep Learning Visualization Methods” on page 5-283.

Deep Learning Customization
You can train and customize a deep learning model in various ways. For example, you can build a
network using built-in layers or define custom layers. You can then train your network using the built-
in training function trainNetwork or define a deep learning model as a function and use a custom
training loop. For help deciding which method to use, consult the following table.

Method Use Case Learn More
Built-in training and

layers
Suitable for most deep learning

tasks.
• “Create Simple Deep Learning

Neural Network for
Classification” on page 3-43

• “Time Series Forecasting Using
Deep Learning” on page 4-16

• “List of Deep Learning Layers”
on page 1-43

1 Deep Networks

1-8



Method Use Case Learn More
Custom layers If Deep Learning Toolbox does not

provide the layer you need for your
task, then you can create a custom

layer.

• “Define Custom Deep Learning
Layers” on page 19-9

• “Define Custom Deep Learning
Intermediate Layers” on page

19-16
• “Define Custom Deep Learning

Output Layers” on page 19-31
Custom training loop If you need additional

customization, you can build and
train your network using a custom

training loop.

• “Define Custom Training Loops,
Loss Functions, and Networks”

on page 19-223
• “Define Deep Learning Network

for Custom Training Loops” on
page 19-223

• “Train Generative Adversarial
Network (GAN)” on page 3-72

For more information, see “Train Deep Learning Model in MATLAB” on page 19-3.

Deep Learning Import and Export
You can import neural networks and layer graphs from TensorFlow™ 2, TensorFlow-Keras, PyTorch®,
and the ONNX™ (Open Neural Network Exchange) model format. You can also export Deep Learning
Toolbox neural networks and layer graphs to TensorFlow 2 and the ONNX model format.

Import Functions

External Deep Learning
Platform and Model Format

Import Model as Neural
Network

Import Model as Layer Graph

TensorFlow neural network in
SavedModel format

importTensorFlowNetwork importTensorFlowLayers

TensorFlow-Keras neural
network in HDF5 or JSON
format

importKerasNetwork importKerasLayers

traced PyTorch model in .pt file importNetworkFromPyTorch Not applicable
Neural network in ONNX model
format

importONNXNetwork importONNXLayers

The importTensorFlowNetwork and importTensorFlowLayers functions are recommended over
the importKerasNetwork and importKerasLayers functions. For more information, see
“Recommended Functions to Import TensorFlow Models” on page 19-474.

The importTensorFlowNetwork, importTensorFlowLayers, importNetworkFromPyTorch,
importONNXNetwork, and importONNXLayers functions create automatically generated custom
layers when you import a model with TensorFlow layers, PyTorch layers, or ONNX operators that the
functions cannot convert to built-in MATLAB layers. The functions save the automatically generated
custom layers to a package in the current folder. For more information, see “Autogenerated Custom
Layers” on page 19-475.

 Deep Learning in MATLAB

1-9



Export Functions

Export Neural Network or Layer Graph External Deep Learning Platform and Model
Format

exportNetworkToTensorFlow TensorFlow 2 model in Python® package
exportONNXNetwork ONNX model format

The exportNetworkToTensorFlow function saves a Deep Learning Toolbox neural network or layer
graph as a TensorFlow model in a Python package. For more information on how to load the exported
model and save it in a standard TensorFlow format, see “Load Exported TensorFlow Model” and
“Save Exported TensorFlow Model in Standard Format”.

By using ONNX as an intermediate format, you can interoperate with other deep learning frameworks
that support ONNX model export or import.

See Also

Related Examples
• “Classify Webcam Images Using Deep Learning” on page 3-2
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Pretrained Deep Neural Networks” on page 1-11
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Example Deep Learning Networks Architectures” on page 1-23
• “Deep Learning Tips and Tricks” on page 1-87

1 Deep Networks

1-10



Pretrained Deep Neural Networks

In this section...
“Compare Pretrained Neural Networks” on page 1-12
“Load Pretrained Neural Networks” on page 1-13
“Visualize Pretrained Neural Networks” on page 1-14
“Feature Extraction” on page 1-16
“Transfer Learning” on page 1-17
“Import and Export Neural Networks” on page 1-17
“Pretrained Neural Networks for Audio Applications” on page 1-19
“Pretrained Models on GitHub” on page 1-19

You can take a pretrained image classification neural network that has already learned to extract
powerful and informative features from natural images and use it as a starting point to learn a new
task. The majority of the pretrained neural networks are trained on a subset of the ImageNet
database [1], which is used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [2].
These neural networks have been trained on more than a million images and can classify images into
1000 object categories, such as keyboard, coffee mug, pencil, and many animals. Using a pretrained
neural network with transfer learning is typically much faster and easier than training a neural
network from scratch.

You can use previously trained neural networks for the following tasks:

Purpose Description
Classification Apply pretrained neural networks directly to

classification problems. To classify a new image,
use classify. For an example showing how to
use a pretrained neural network for classification,
see “Classify Image Using GoogLeNet” on page 3-
19.

Feature Extraction Use a pretrained neural network as a feature
extractor by using the layer activations as
features. You can use these activations as
features to train another machine learning model,
such as a support vector machine (SVM). For
more information, see “Feature Extraction” on
page 1-16. For an example, see “Extract Image
Features Using Pretrained Network” on page 3-
24.

 Pretrained Deep Neural Networks

1-11



Purpose Description
Transfer Learning Take layers from a neural network trained on a

large data set and fine-tune on a new data set.
For more information, see “Transfer Learning” on
page 1-17. For a simple example, see “Get
Started with Transfer Learning”. To try more
pretrained neural networks, see “Train Deep
Learning Network to Classify New Images” on
page 3-6.

Compare Pretrained Neural Networks
Pretrained neural networks have different characteristics that matter when choosing a neural
network to apply to your problem. The most important characteristics are neural network accuracy,
speed, and size. Choosing a neural network is generally a tradeoff between these characteristics. Use
the plot below to compare the ImageNet validation accuracy with the time required to make a
prediction using the neural network.

Tip To get started with transfer learning, try choosing one of the faster neural networks, such as
SqueezeNet or GoogLeNet. You can then iterate quickly and try out different settings such as data
preprocessing steps and training options. Once you have a feeling of which settings work well, try a
more accurate neural network such as Inception-v3 or a ResNet and see if that improves your results.

1 Deep Networks

1-12



Note The plot above only shows an indication of the relative speeds of the different neural networks.
The exact prediction and training iteration times depend on the hardware and mini-batch size that
you use.

A good neural network has a high accuracy and is fast. The plot displays the classification accuracy
versus the prediction time when using a modern GPU (an NVIDIA® Tesla® P100) and a mini-batch
size of 128. The prediction time is measured relative to the fastest neural network. The area of each
marker is proportional to the size of the neural network on disk.

The classification accuracy on the ImageNet validation set is the most common way to measure the
accuracy of neural networks trained on ImageNet. Neural networks that are accurate on ImageNet
are also often accurate when you apply them to other natural image data sets using transfer learning
or feature extraction. This generalization is possible because the neural networks have learned to
extract powerful and informative features from natural images that generalize to other similar data
sets. However, high accuracy on ImageNet does not always transfer directly to other tasks, so it is a
good idea to try multiple neural networks.

If you want to perform prediction using constrained hardware or distribute neural networks over the
Internet, then also consider the size of the neural network on disk and in memory.

Neural Network Accuracy

There are multiple ways to calculate the classification accuracy on the ImageNet validation set and
different sources use different methods. Sometimes an ensemble of multiple models is used and
sometimes each image is evaluated multiple times using multiple crops. Sometimes the top-5
accuracy instead of the standard (top-1) accuracy is quoted. Because of these differences, it is often
not possible to directly compare the accuracies from different sources. The accuracies of pretrained
neural networks in Deep Learning Toolbox are standard (top-1) accuracies using a single model and
single central image crop.

Load Pretrained Neural Networks
To load the SqueezeNet neural network, type squeezenet at the command line.

net = squeezenet;

For other neural networks, use functions such as googlenet to get links to download pretrained
neural networks from the Add-On Explorer.

The following table lists the available pretrained neural networks trained on ImageNet and some of
their properties. The neural network depth is defined as the largest number of sequential
convolutional or fully connected layers on a path from the input layer to the output layer. The inputs
to all neural networks are RGB images.

Neural Network Depth Size Parameters
(Millions)

Image Input Size

squeezenet 18 5.2 MB 1.24 227-by-227
googlenet 22 27 MB 7.0 224-by-224
inceptionv3 48 89 MB 23.9 299-by-299
densenet201 201 77 MB 20.0 224-by-224

 Pretrained Deep Neural Networks

1-13



Neural Network Depth Size Parameters
(Millions)

Image Input Size

mobilenetv2 53 13 MB 3.5 224-by-224
resnet18 18 44 MB 11.7 224-by-224
resnet50 50 96 MB 25.6 224-by-224
resnet101 101 167 MB 44.6 224-by-224
xception 71 85 MB 22.9 299-by-299
inceptionresne
tv2

164 209 MB 55.9 299-by-299

shufflenet 50 5.4 MB 1.4 224-by-224
nasnetmobile * 20 MB 5.3 224-by-224
nasnetlarge * 332 MB 88.9 331-by-331
darknet19 19 78 MB 20.8 256-by-256
darknet53 53 155 MB 41.6 256-by-256
efficientnetb0 82 20 MB 5.3 224-by-224
alexnet 8 227 MB 61.0 227-by-227
vgg16 16 515 MB 138 224-by-224
vgg19 19 535 MB 144 224-by-224

*The NASNet-Mobile and NASNet-Large neural networks do not consist of a linear sequence of
modules.

GoogLeNet Trained on Places365

The standard GoogLeNet neural network is trained on the ImageNet data set but you can also load a
neural network trained on the Places365 data set [3] [4]. The neural network trained on Places365
classifies images into 365 different place categories, such as field, park, runway, and lobby. To load a
pretrained GoogLeNet neural network trained on the Places365 data set, use
googlenet('Weights','places365'). When performing transfer learning to perform a new task,
the most common approach is to use neural networks pretrained on ImageNet. If the new task is
similar to classifying scenes, then using the neural network trained on Places365 could give higher
accuracies.

For information about pretrained neural networks suitable for audio tasks, see “Pretrained Neural
Networks for Audio Applications” on page 1-19.

Visualize Pretrained Neural Networks
You can load and visualize pretrained neural networks using Deep Network Designer.

deepNetworkDesigner(squeezenet)

1 Deep Networks

1-14



To view and edit layer properties, select a layer. Click the help icon next to the layer name for
information on the layer properties.

Explore other pretrained neural networks in Deep Network Designer by clicking New.

 Pretrained Deep Neural Networks

1-15



If you need to download a neural network, pause on the desired neural network and click Install to
open the Add-On Explorer.

Feature Extraction
Feature extraction is an easy and fast way to use the power of deep learning without investing time
and effort into training a full neural network. Because it only requires a single pass over the training
images, it is especially useful if you do not have a GPU. You extract learned image features using a
pretrained neural network, and then use those features to train a classifier, such as a support vector
machine using fitcsvm.

Try feature extraction when your new data set is very small. Since you only train a simple classifier
on the extracted features, training is fast. It is also unlikely that fine-tuning deeper layers of the
neural network improves the accuracy since there is little data to learn from.

• If your data is very similar to the original data, then the more specific features extracted deeper in
the neural network are likely to be useful for the new task.

• If your data is very different from the original data, then the features extracted deeper in the
neural network might be less useful for your task. Try training the final classifier on more general
features extracted from an earlier neural network layer. If the new data set is large, then you can
also try training a neural network from scratch.

ResNets are often good feature extractors. For an example showing how to use a pretrained neural
network for feature extraction, see “Extract Image Features Using Pretrained Network” on page 3-
24.

1 Deep Networks

1-16



Transfer Learning
You can fine-tune deeper layers in the neural network by training the neural network on your new
data set with the pretrained neural network as a starting point. Fine-tuning a neural network with
transfer learning is often faster and easier than constructing and training a new neural network. The
neural network has already learned a rich set of image features, but when you fine-tune the neural
network it can learn features specific to your new data set. If you have a very large data set, then
transfer learning might not be faster than training from scratch.

Tip Fine-tuning a neural network often gives the highest accuracy. For very small data sets (fewer
than about 20 images per class), try feature extraction instead.

Fine-tuning a neural network is slower and requires more effort than simple feature extraction, but
since the neural network can learn to extract a different set of features, the final neural network is
often more accurate. Fine-tuning usually works better than feature extraction as long as the new data
set is not very small, because then the neural network has data to learn new features from. For
examples showing how to perform transfer learning, see “Transfer Learning with Deep Network
Designer” on page 2-2 and “Train Deep Learning Network to Classify New Images” on page 3-6.

Import and Export Neural Networks
You can import neural networks and layer graphs from TensorFlow 2, TensorFlow-Keras, PyTorch, and
the ONNX (Open Neural Network Exchange) model format. You can also export Deep Learning
Toolbox neural networks and layer graphs to TensorFlow 2 and the ONNX model format.

 Pretrained Deep Neural Networks

1-17



Import Functions

External Deep Learning
Platform and Model Format

Import Model as Neural
Network

Import Model as Layer Graph

TensorFlow neural network in
SavedModel format

importTensorFlowNetwork importTensorFlowLayers

TensorFlow-Keras neural
network in HDF5 or JSON
format

importKerasNetwork importKerasLayers

traced PyTorch model in .pt file importNetworkFromPyTorch Not applicable
Neural network in ONNX model
format

importONNXNetwork importONNXLayers

The importTensorFlowNetwork and importTensorFlowLayers functions are recommended over
the importKerasNetwork and importKerasLayers functions. For more information, see
“Recommended Functions to Import TensorFlow Models” on page 19-474.

The importTensorFlowNetwork, importTensorFlowLayers, importNetworkFromPyTorch,
importONNXNetwork, and importONNXLayers functions create automatically generated custom
layers when you import a model with TensorFlow layers, PyTorch layers, or ONNX operators that the
functions cannot convert to built-in MATLAB layers. The functions save the automatically generated
custom layers to a package in the current folder. For more information, see “Autogenerated Custom
Layers” on page 19-475.

Export Functions

Export Neural Network or Layer Graph External Deep Learning Platform and Model
Format

exportNetworkToTensorFlow TensorFlow 2 model in Python package
exportONNXNetwork ONNX model format

The exportNetworkToTensorFlow function saves a Deep Learning Toolbox neural network or layer
graph as a TensorFlow model in a Python package. For more information on how to load the exported
model and save it in a standard TensorFlow format, see “Load Exported TensorFlow Model” and
“Save Exported TensorFlow Model in Standard Format”.

By using ONNX as an intermediate format, you can interoperate with other deep learning frameworks
that support ONNX model export or import.

1 Deep Networks

1-18



Pretrained Neural Networks for Audio Applications
Audio Toolbox™ provides the pretrained VGGish, YAMNet, OpenL3, and CREPE neural networks. Use
the vggish, yamnet, openl3, and crepe functions in MATLAB or the VGGish and YAMNet blocks in
Simulink® to interact directly with the pretrained neural networks. You can also import and visualize
audio pretrained neural networks using Deep Network Designer.

The following table lists the available pretrained audio neural networks and some of their properties.

Neural Network Depth Size Parameters
(Millions)

Input Size

crepe 7 89.1 MB 22.2 1024-by-1-by-1
openl3 8 18.8 MB 4.68 128-by-199-by-1
vggish 9 289 MB 72.1 96-by-64-by-1
yamnet 28 15.5 MB 3.75 96-by-64-by-1

Use VGGish and YAMNet to perform transfer learning and feature extraction. Extract VGGish or
OpenL3 feature embeddings to input to machine learning and deep learning systems. The
classifySound function and the Sound Classifier block use YAMNet to locate and classify sounds
into one of 521 categories. The pitchnn function uses CREPE to perform deep learning pitch
estimation.

For examples showing how to adapt pretrained audio neural networks for a new task, see “Transfer
Learning with Pretrained Audio Networks” (Audio Toolbox) and “Transfer Learning with Pretrained
Audio Networks in Deep Network Designer” on page 2-93.

For more information on using deep learning for audio applications, see “Deep Learning for Audio
Applications” (Audio Toolbox).

Pretrained Models on GitHub
To find the latest pretrained models, see MATLAB Deep Learning Model Hub.

 Pretrained Deep Neural Networks

1-19

https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub


For example:

• For transformer models, such as GPT-2, BERT, and FinBERT, see the Transformer Models for
MATLAB GitHub® repository.

• For a pretrained EfficientDet-D0 object detection model, see the Pretrained EfficientDet Network
For Object Detection GitHub repository.

References
[1] ImageNet. http://www.image-net.org

[2] Russakovsky, O., Deng, J., Su, H., et al. “ImageNet Large Scale Visual Recognition Challenge.”
International Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, pp. 211–252

[3] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Antonio Torralba, and Aude Oliva. "Places: An image
database for deep scene understanding." arXiv preprint arXiv:1610.02055 (2016).

[4] Places. http://places2.csail.mit.edu/

See Also
alexnet | googlenet | inceptionv3 | densenet201 | darknet19 | darknet53 | resnet18 |
resnet50 | resnet101 | vgg16 | vgg19 | shufflenet | nasnetmobile | nasnetlarge |
mobilenetv2 | xception | inceptionresnetv2 | squeezenet | importTensorFlowNetwork |
importTensorFlowLayers | importNetworkFromPyTorch | importONNXNetwork |
importONNXLayers | exportNetworkToTensorFlow | exportONNXNetwork | Deep Network
Designer

Related Examples
• “Deep Learning in MATLAB” on page 1-2
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Extract Image Features Using Pretrained Network” on page 3-24
• “Classify Image Using GoogLeNet” on page 3-19
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Visualize Features of a Convolutional Neural Network” on page 5-253
• “Visualize Activations of a Convolutional Neural Network” on page 5-238
• “Deep Dream Images Using GoogLeNet” on page 5-16

External Websites
• MATLAB Deep Learning Model Hub

1 Deep Networks

1-20

https://github.com/matlab-deep-learning/transformer-models
https://github.com/matlab-deep-learning/transformer-models
https://github.com/matlab-deep-learning/pretrained-efficientdet-d0
https://github.com/matlab-deep-learning/pretrained-efficientdet-d0
https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub


Learn About Convolutional Neural Networks
Convolutional neural networks (ConvNets) are widely used tools for deep learning. They are
specifically suitable for images as inputs, although they are also used for other applications such as
text, signals, and other continuous responses. They differ from other types of neural networks in a
few ways:

Convolutional neural networks are inspired from the biological structure of a visual cortex, which
contains arrangements of simple and complex cells [1]. These cells are found to activate based on the
subregions of a visual field. These subregions are called receptive fields. Inspired from the findings of
this study, the neurons in a convolutional layer connect to the subregions of the layers before that
layer instead of being fully-connected as in other types of neural networks. The neurons are
unresponsive to the areas outside of these subregions in the image.

These subregions might overlap, hence the neurons of a ConvNet produce spatially-correlated
outcomes, whereas in other types of neural networks, the neurons do not share any connections and
produce independent outcomes.

In addition, in a neural network with fully-connected neurons, the number of parameters (weights)
can increase quickly as the size of the input increases. A convolutional neural network reduces the
number of parameters with the reduced number of connections, shared weights, and downsampling.

A ConvNet consists of multiple layers, such as convolutional layers, max-pooling or average-pooling
layers, and fully-connected layers.

The neurons in each layer of a ConvNet are arranged in a 3-D manner, transforming a 3-D input to a
3-D output. For example, for an image input, the first layer (input layer) holds the images as 3-D
inputs, with the dimensions being height, width, and the color channels of the image. The neurons in
the first convolutional layer connect to the regions of these images and transform them into a 3-D
output. The hidden units (neurons) in each layer learn nonlinear combinations of the original inputs,
which is called feature extraction [2]. These learned features, also known as activations, from one
layer become the inputs for the next layer. Finally, the learned features become the inputs to the
classifier or the regression function at the end of the network.

 Learn About Convolutional Neural Networks

1-21



The architecture of a ConvNet can vary depending on the types and numbers of layers included. The
types and number of layers included depends on the particular application or data. For example, if
you have categorical responses, you must have a classification function and a classification layer,
whereas if your response is continuous, you must have a regression layer at the end of the network. A
smaller network with only one or two convolutional layers might be sufficient to learn a small number
of gray scale image data. On the other hand, for more complex data with millions of colored images,
you might need a more complicated network with multiple convolutional and fully connected layers.

You can concatenate the layers of a convolutional neural network in MATLAB in the following way:

layers = [imageInputLayer([28 28 1])
          convolution2dLayer(5,20)
          reluLayer
          maxPooling2dLayer(2,'Stride',2)
          fullyConnectedLayer(10)
          softmaxLayer
          classificationLayer];

After defining the layers of your network, you must specify the training options using the
trainingOptions function. For example,

options = trainingOptions('sgdm');

Then, you can train the network with your training data using the trainNetwork function. The data,
layers, and training options become the inputs to the training function. For example,

convnet = trainNetwork(data,layers,options);

For detailed discussion of layers of a ConvNet, see “Specify Layers of Convolutional Neural Network”
on page 1-53. For setting up training parameters, see “Set Up Parameters and Train Convolutional
Neural Network” on page 1-64.

References
[1] Hubel, H. D. and Wiesel, T. N. '' Receptive Fields of Single neurones in the Cat’s Striate Cortex.''

Journal of Physiology. Vol 148, pp. 574-591, 1959.

[2] Murphy, K. P. Machine Learning: A Probabilistic Perspective. Cambridge, Massachusetts: The MIT
Press, 2012.

See Also
trainNetwork | trainingOptions

More About
• “Deep Learning in MATLAB” on page 1-2
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Get Started with Transfer Learning”
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Pretrained Deep Neural Networks” on page 1-11

1 Deep Networks

1-22



Example Deep Learning Networks Architectures

This example shows how to define simple deep learning neural networks for classification and
regression tasks.

The networks in this example are basic networks that you can modify for your task. For example,
some networks have sections that you can replace with deeper sections of layers that can better learn
from and process the data for your task.

The descriptions of the networks specify the format of the data that flows through the network using
a string of characters representing the different dimensions of the data. The formats contain one or
more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, you can represent 2-D image data as a 4-D array, in which the first two dimensions
correspond to the spatial dimensions of the images, the third dimension corresponds to the channels
of the images, and the fourth dimension corresponds to the batch dimension. This representation is in
the format "SSCB" (spatial, spatial, channel, batch).

Image Data

Image data typically has two or three spatial dimensions.

• 2-D image data is typically represented in the format "SSCB" (spatial, spatial, channel, batch).
• 3-D image data is typically represented in the format "SSSCB" (spatial, spatial, spatial, channel,

batch).

2-D Image Classification Network

A 2-D image classification network maps "SSCB" (spatial, spatial, channel, batch) data to "CB"
(channel, batch) data and then passes the mapped data to a classification layer.

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of classes. The softmax layer converts its input data to vectors of
probabilities for classification.

inputSize = [224 224 3];
numClasses = 10;

filterSize = 3;
numFilters = 128;

layers = [
    imageInputLayer(inputSize)

    convolution2dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

 Example Deep Learning Networks Architectures

1-23



    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes 2-D image data. This block maps "SSCB" (spatial, spatial, channel, batch) data to "SSCB"
(spatial, spatial, channel, batch) data.

For an example that shows how to train a neural network for image classification, see “Create Simple
Deep Learning Neural Network for Classification” on page 3-43.

2-D Image Regression Network

A 2-D image regression network maps "SSCB" (spatial, spatial, channel, batch) data to "CB"
(channel, batch) data and then passes the mapped data to a regression layer.

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of responses.

inputSize = [224 224 3];
numResponses = 10;

filterSize = 3;
numFilters = 128;

layers = [
    imageInputLayer(inputSize)

    convolution2dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

    fullyConnectedLayer(numResponses)
    regressionLayer];

You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes 2-D image data. This block maps "SSCB" (spatial, spatial, channel, batch) data to "SSCB"
(spatial, spatial, channel, batch) data.

For an example that shows how to train a neural network for image regression, see “Train
Convolutional Neural Network for Regression” on page 3-49.

2-D Image-to-Image Regression Network

A 2-D image-to-image regression network maps "SSCB" (spatial, spatial, channel, batch) data to
"SSCB" (spatial, spatial, channel, batch) data and then passes the mapped data to a regression layer.

The network downsamples the data using a max pooling layer with a stride of two. The network
upsamples the downsampled data using a transposed convolution layer.

The final convolution layer processes the data so that the "C" (channel) dimension of the network
output matches the number of output channels. The clipped ReLU layer clips its input so that the
network outputs data in the range [0, 1].

inputSize = [224 224 3];
numOutputChannels = 3;

1 Deep Networks

1-24



filterSize = 3;
numFilters = 128;

layers = [
    imageInputLayer(inputSize)

    convolution2dLayer(filterSize,numFilters,Padding="same")
    reluLayer
    maxPooling2dLayer(2,Padding="same",Stride=2)

    transposedConv2dLayer(filterSize,numFilters,Stride=2)
    reluLayer

    convolution2dLayer(1,numOutputChannels,Padding="same")
    clippedReluLayer(1)
    regressionLayer];

You can replace the convolution, ReLU, max pooling layer block with a block of layers that
downsamples 2-D image data. This block maps "SSCB" (spatial, spatial, channel, batch) data to
"SSCB" (spatial, spatial, channel, batch) data.

You can replace the transposed convolution, ReLU layer block with a block of layers that upsamples 2-
D image data. This block maps "SSCB" (spatial, spatial, channel, batch) data to "SSCB" (spatial,
spatial, channel, batch) data.

For an example that shows how to train a neural network for image-to-image regression, see “Prepare
Datastore for Image-to-Image Regression” on page 20-90.

3-D Image Classification Network

A 3-D image classification network maps "SSSCB" (spatial, spatial, spatial, channel, batch) data to
"CB" (channel, batch) data and then passes the mapped data to a classification layer.

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of classes. The softmax layer converts its input data to vectors of
probabilities for classification.

inputSize = [224 224 224 3];
numClasses = 10;

filterSize = 3;
numFilters = 128;

layers = [
    image3dInputLayer(inputSize)

    convolution3dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes 3-D image data. This block maps "SSSCB" (spatial, spatial, spatial, channel, batch) data to
"SSSCB" (spatial, spatial, spatial, channel, batch) data.

 Example Deep Learning Networks Architectures

1-25



3-D Image Regression Network

A 3-D image regression network maps "SSSCB" (spatial, spatial, spatial, channel, batch) data to "CB"
(channel, batch) data and then passes the mapped data to a regression layer.

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of responses.

inputSize = [224 224 224 3];
numResponses = 10;

filterSize = 3;
numFilters = 128;

layers = [
    image3dInputLayer(inputSize)

    convolution3dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

    fullyConnectedLayer(numResponses)
    regressionLayer];

You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes 3-D image data. This block maps "SSSCB" (spatial, spatial, spatial, channel, batch) data to
"SSSCB" (spatial, spatial, spatial, channel, batch) data.

Sequence Data

Sequence data typically has a time dimension.

• Vector sequence data is typically represented in the format "CBT" (channel, batch, time).
• 2-D image sequence data is typically represented in the format "SSCBT" (spatial, spatial, channel,

batch, time).
• 3-D image sequence data is typically represented in the format "SSSCBT" (spatial, spatial, spatial,

channel, batch, time).

Vector Sequence-to-Label Classification Network

A vector sequence-to-label classification network maps "CBT" (channel, batch, time) data to "CB"
(channel, batch) data and then passes the mapped data to a classification layer.

LSTM Network

When the OutputMode option of the LSTM layer is "last", the layer outputs only the last time step
of the data in the format "CB" (channel, batch).

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of classes. The softmax layer converts its input data to vectors of
probabilities for classification.

numFeatures = 15;
numClasses = 10;

numHiddenUnits = 100;

1 Deep Networks

1-26



layers = [
    sequenceInputLayer(numFeatures)

    lstmLayer(numHiddenUnits,OutputMode="last")

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

You can replace the LSTM layer with a block of layers that process vector sequence data. This layer
maps "CBT" (channel, batch, time) data to "CB" (channel, batch) data.

For an example that shows how to train an LSTM network for classification, see “Sequence
Classification Using Deep Learning” on page 4-3.

Convolutional Network

The 1-D convolution layer convolves over the "T" (time) dimension of its input data. The 1-D global
max pooling layer maps "CBT" (channel, batch, time) data to "CB" (channel, batch) data.

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of classes. The softmax layer converts its input data to vectors of
probabilities for classification.

numFeatures = 15;
numClasses = 10;
minLength = 100;

filterSize = 3;
numFilters = 128;

layers = [
    sequenceInputLayer(numFeatures,MinLength=minLength)

    convolution1dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

    globalMaxPooling1dLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes sequence data. This block maps "CBT" (channel, batch, time) data to "CBT" (channel,
batch, time) data.

For an example that shows how to train a classification network using 1-D convolutions, see
“Sequence Classification Using 1-D Convolutions” on page 4-10.

Vector Sequence-to-One Regression Network 

A vector sequence-to-one regression network maps "CBT" (channel, batch, time) data to "CB"
(channel, batch) data and then passes the mapped data to a regression layer.

 Example Deep Learning Networks Architectures

1-27



When the OutputMode option of the LSTM layer is "last", the layer outputs only the last time step
of the data in the format "CB" (channel, batch).

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of responses.

numFeatures = 15;
numResponses = 10;

numHiddenUnits = 100;

layers = [
    sequenceInputLayer(numFeatures)

    lstmLayer(numHiddenUnits,OutputMode="last")

    fullyConnectedLayer(numResponses)
    regressionLayer];

You can replace the LSTM layer with a block of layers that processes vector sequence data. This layer
maps "CBT" (channel, batch, time) data to "CB" (channel, batch) data.

For an example that shows how to train an LSTM network for regression, see “Sequence-to-One
Regression Using Deep Learning” on page 4-53.

Vector Sequence-to-Sequence Classification Network

A vector sequence-to-sequence classification network maps "CBT" (channel, batch, time) data to
"CBT" (channel, batch, time) data and then passes the mapped data to a classification layer.

When the OutputMode option of the LSTM layer is "sequence", the layer outputs all the time steps
of the data in the format "CBT" (channel, batch, time).

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of classes. The softmax layer converts the time steps of its input data to
vectors of probabilities for classification.

numFeatures = 15;
numClasses = 10;

numHiddenUnits = 100;

layers = [
    sequenceInputLayer(numFeatures)

    lstmLayer(numHiddenUnits)

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

You can replace the LSTM layer with a block of layers that processes vector sequence data. This layer
maps "CBT" (channel, batch, time) data to "CBT" (channel, batch, time) data.

For an example that shows how to train an LSTM network for sequence-to-sequence classification,
see “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39.

1 Deep Networks

1-28



Vector Sequence-to-Sequence Regression Network 

A vector sequence-to-sequence regression network maps "CBT" (channel, batch, time) data to "CBT"
(channel, batch, time) data and then passes the mapped data to a regression layer.

When the OutputMode option of the LSTM layer is "sequence", the layer outputs all the time steps
of the data in the format "CBT" (channel, batch, time).

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of responses.

numFeatures = 15;
numResponses = 10;

numHiddenUnits = 100;

layers = [
    sequenceInputLayer(numFeatures)

    lstmLayer(numHiddenUnits)

    fullyConnectedLayer(numResponses)
    regressionLayer];

You can replace the LSTM layer with a block of layers that processes vector sequence data. This layer
maps "CBT" (channel, batch, time) data to "CBT" (channel, batch, time) data.

For an example that shows how to train a sequence-to-sequence regression network, see “Sequence-
to-Sequence Regression Using Deep Learning” on page 4-44.

Image Sequence-to-Label Classification Network

An image sequence-to-label classification network maps "SSCBT" (spatial, spatial, channel, batch,
time) data to "CB" data (channel, batch) and then passes the mapped data to a classification layer.

The convolution layer processes the frames independently. To map the processed frames to vector
sequence data, the network uses a flatten layer that maps "SSCBT" (spatial, spatial, channel, batch,
time) data to "CBT" (channel, batch, time) data.

When the OutputMode option of the LSTM layer is "last", the layer outputs only the last time step
of the data in the format "CB" (channel, batch).

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of classes. The softmax layer converts the time steps of its input data to
vectors of probabilities for classification.

inputSize = [224 224 3];
numClasses = 10;

numHiddenUnits = 100;
filterSize = 3;
numFilters = 224;

layers = [
    sequenceInputLayer(inputSize)

 Example Deep Learning Networks Architectures

1-29



    convolution2dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

    flattenLayer

    lstmLayer(numHiddenUnits,OutputMode="last")

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes sequences of 2-D images. This block maps "SSCBT" (spatial, spatial, channel, batch, time)
data to "SSCBT" (spatial, spatial, channel, batch, time) data.

You can replace the LSTM layer with a block of layers that processes vector sequence data. This layer
maps "CBT" (channel, batch, time) data to "CB" (channel, batch) data.

For image sequence-to-sequence classification, for example, per-frame video classification, set the
OutputMode option of the LSTM layer to "sequence".

For an example that shows how to train an image sequence-to-label classification network for video
classification, see “Classify Videos Using Deep Learning” on page 4-87.

Image Sequence-to-One Regression Network

An image sequence-to-one regression network maps "SSCBT" (spatial, spatial, channel, batch, time)
data to "CB" data (channel, batch) and then passes the mapped data to a regression layer.

The convolution layer processes the frames independently. To map the processed frames to vector
sequence data, the network uses a flatten layer that maps "SSCBT" (spatial, spatial, channel, batch,
time) data to "CBT" (channel, batch, time) data.

When the OutputMode option of the LSTM layer is "last", the layer outputs only the last time step
of the data in the format "CB" (channel, batch).

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of responses.

inputSize = [224 224 3];
numResponses = 10;

numHiddenUnits = 100;
filterSize = 3;
numFilters = 224;

layers = [
    sequenceInputLayer(inputSize)

    convolution2dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

    flattenLayer

1 Deep Networks

1-30



    lstmLayer(numHiddenUnits,OutputMode="last")

    fullyConnectedLayer(numResponses)
    regressionLayer];

You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes sequences of 2-D images. This block maps "SSCBT" (spatial, spatial, channel, batch, time)
data to "SSCBT" (spatial, spatial, channel, batch, time) data.

You can replace the LSTM layer with a block of layers that processes vector sequence data. This layer
maps "CBT" (channel, batch, time) data to "CB" (channel, batch) data.

For image sequence-to-sequence regression, for example, per-frame video regression, set the
OutputMode option of the LSTM layer to "sequence".

Feature Data

Feature data is typically represented in the format "CB" (channel, batch).

Feature Classification Network

A feature classification network maps "CB" (channel, batch) data to "CB" (channel, batch) data and
then passes the mapped data to a classification layer.

Multilayer Perceptron Classification Network

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of classes. The softmax layer converts its input data to vectors of
probabilities for classification.

numFeatures = 15;
numClasses = 10;

hiddenSize = 100;

layers = [
    featureInputLayer(numFeatures)

    fullyConnectedLayer(hiddenSize)
    reluLayer

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

You can replace the first fully connected layer and ReLU layer with a block of layers that processes
feature data. This block maps "CB" (channel, batch) data to "CB" (channel, batch) data.

For an example that shows how to train a feature classification network, see “Train Network with
Numeric Features” on page 1-68.

Feature Regression Network

A feature regression network maps "CB" (channel, batch) data to "CB" data (channel, batch) and
then passes the mapped data to a regression layer.

 Example Deep Learning Networks Architectures

1-31



Multilayer Perceptron Regression Network

The fully connected layer processes the data so that the "C" (channel) dimension of the network
output matches the number of responses.

numFeatures = 15;
numResponses = 10;

hiddenSize = 100;

layers = [
    featureInputLayer(numFeatures)

    fullyConnectedLayer(hiddenSize)
    reluLayer

    fullyConnectedLayer(numResponses)
    regressionLayer];

You can replace the first fully connected layer and ReLU layer with a block of layers that processes
feature data. This block maps "CB" (channel, batch) data to "CB" (channel, batch) data.

Multiple Input Networks

Neural networks can have multiple inputs. Networks with multiple inputs typically process data from
different sources and merge the processed data using a combination layer such as an addition layer
or a concatenation layer.

Multiple 2-D Image Input Classification Network

A multiple 2-D image input classification network maps "SSCB" (spatial, spatial, channel, batch) data
from multiple sources to "CB" (channel, batch) data and then passes the mapped data to a
classification layer.

The flatten layers map "SSCB" (spatial, spatial, channel, batch) data to "CB" (channel, batch) data.
The concatenation layer concatenates two inputs in the format "CB" (channel, batch) along the "C"
(channel) dimension. The fully connected layer processes the data so that the "C" (channel)
dimension of the network output matches the number of classes. The softmax layer converts its input
data to vectors of probabilities for classification.

inputSize1 = [224 224 3];
inputSize2 = [64 64 1];
numClasses = 10;

filterSize1 = 5;
numFilters1 = 128;

filterSize2 = 3;
numFilters2 = 64;

layers = [
    imageInputLayer(inputSize1)

    convolution2dLayer(filterSize1,numFilters1)
    batchNormalizationLayer
    reluLayer

1 Deep Networks

1-32



    flattenLayer
    concatenationLayer(1,2,Name="cat")

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

lgraph = layerGraph(layers);

layers = [
    imageInputLayer(inputSize2)

    convolution2dLayer(filterSize2,numFilters2)
    batchNormalizationLayer
    reluLayer

    flattenLayer(Name="flatten2")];

lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"flatten2","cat/in2");

figure
plot(lgraph)

You can replace the convolution, batch normalization, ReLU layer blocks with blocks of layers that
process 2-D image data. These blocks map "SSCB" (spatial, spatial, channel, batch) data to "SSCB"
(spatial, spatial, channel, batch) data.

 Example Deep Learning Networks Architectures

1-33



Multiple 2-D Image Input Regression Network

A multiple 2-D image input regression network maps "SSCB" (spatial, spatial, channel, batch) data
from multiple sources to "CB" (channel, batch) data and then passes the mapped data to a regression
layer.

The flatten layers map "SSCB" (spatial, spatial, channel, batch) data to "CB" (channel, batch) data.
The concatenation layer concatenates two inputs in the format "CB" (channel, batch) along the "C"
(channel) dimension. The fully connected layer processes the data so that the "C" (channel)
dimension of the network output matches the number of responses.

inputSize1 = [224 224 3];
inputSize2 = [64 64 1];
numResponses = 10;

filterSize1 = 5;
numFilters1 = 128;

filterSize2 = 3;
numFilters2 = 64;

layers = [
    imageInputLayer(inputSize1)

    convolution2dLayer(filterSize1,numFilters1)
    batchNormalizationLayer
    reluLayer

    flattenLayer
    concatenationLayer(1,2,Name="cat")

    fullyConnectedLayer(numResponses)
    regressionLayer];

lgraph = layerGraph(layers);

layers = [
    imageInputLayer(inputSize2)

    convolution2dLayer(filterSize2,numFilters2)
    batchNormalizationLayer
    reluLayer

    flattenLayer(Name="flatten2")];

lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"flatten2","cat/in2");

figure
plot(lgraph)

1 Deep Networks

1-34



You can replace the convolution, batch normalization, ReLU layer blocks with blocks of layers that
process 2-D image data. These blocks map "SSCB" (spatial, spatial, channel, batch) data to "SSCB"
(spatial, spatial, channel, batch) data.

2-D Image and Feature Classification Network

A 2-D image and feature classification network maps one input of "SSCB" (spatial, spatial, channel,
batch) data and one input of "CB" (channel, batch) data to "CB" (channel, batch) data and then
passes the mapped data to a classification layer.

The flatten layer maps "SSCB" (spatial, spatial, channel, batch) data to "CB" (channel, batch) data.
The concatenation layer concatenates two inputs in the format "CB" (channel, batch) along the "C"
(channel) dimension. The fully connected layer processes the data so that the "C" (channel)
dimension of the network output matches the number of classes. The softmax layer converts its input
data to vectors of probabilities for classification.

inputSize = [224 224 3];
numFeatures = 15;
numClasses = 10;

filterSize = 5;
numFilters = 128;

hiddenSize = 100;

layers = [
    imageInputLayer(inputSize)

 Example Deep Learning Networks Architectures

1-35



    convolution2dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

    flattenLayer
    concatenationLayer(1,2,Name="cat")

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

lgraph = layerGraph(layers);

layers = [
    featureInputLayer(numFeatures)

    fullyConnectedLayer(hiddenSize)
    reluLayer(Name="relu2")];

lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"relu2","cat/in2");

figure
plot(lgraph)

1 Deep Networks

1-36



You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes 2-D image data. This block maps "SSCB" (spatial, spatial, channel, batch) data to "SSCB"
(spatial, spatial, channel, batch) data.

You can replace the fully connected layer and ReLU layer in the feature branch with a block of layers
that processes feature data. This block maps "CB" (channel, batch) data to "CB" (channel, batch)
data.

For an example that shows how to train a network on image and feature data, see “Train Network on
Image and Feature Data” on page 1-74.

2-D Image and Vector-Sequence Classification Network

A 2-D image and vector-sequence classification network maps one input of "SSCB" (spatial, spatial,
channel, batch) data and one input of "CBT" (channel, batch, time) data to "CB" (channel, batch)
data and then passes the mapped data to a classification layer.

The flatten layer maps "SSCB" (spatial, spatial, channel, batch) data to "CB" (channel, batch) data.
When the OutputMode option of the LSTM layer is "last", the layer outputs only the last time step
of the data in the format "CB" (channel, batch). The concatenation layer concatenates two inputs in
the format "CB" (channel, batch) along the "C" (channel) dimension. The fully connected layer
processes the data so that the "C" (channel) dimension of the network output matches the number of
classes. The softmax layer converts its input data to vectors of probabilities for classification.

inputSize = [224 224 3];
numFeatures = 15;
numClasses = 10;

filterSize = 5;
numFilters = 128;

numHiddenUnits = 100;

layers = [
    imageInputLayer(inputSize)

    convolution2dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer

    flattenLayer
    concatenationLayer(1,2,Name="cat")

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

lgraph = layerGraph(layers);

layers = [
    sequenceInputLayer(numFeatures)

    lstmLayer(hiddenSize,OutputMode="last",Name="lstm")];

lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"lstm","cat/in2");

 Example Deep Learning Networks Architectures

1-37



figure
plot(lgraph)

You can replace the convolution, batch normalization, ReLU layer block with a block of layers that
processes 2-D image data. This block maps "SSCB" (spatial, spatial, channel, batch) data to "SSCB"
(spatial, spatial, channel, batch) data.

You can replace the LSTM layer with a block of layers that processes vector sequence data. This layer
maps "CBT" (channel, batch, time) data to "CB" (channel, batch) data.

Vector-Sequence and Feature Classification Network

A vector-sequence and feature classification network maps one input of "CBT" (channel, batch, time)
data and one input of "CB" (channel, batch) data to "CB" (channel, batch) data and then passes the
mapped data to a classification layer.

When the OutputMode option of the LSTM layer is "last", the layer outputs only the last time step
of the data in the format "CB" (channel, batch). The concatenation layer concatenates two inputs in
the format "CB" (channel, batch) along the "C" (channel) dimension. The fully connected layer
processes the data so that the "C" (channel) dimension of the network output matches the number of
classes. The softmax layer converts its input data to vectors of probabilities for classification.

numFeatures = 15;
numFeaturesSequence = 20;
numClasses = 10;

numHiddenUnits = 128;

1 Deep Networks

1-38



hiddenSize = 100;

layers = [
    sequenceInputLayer(numFeaturesSequence)

    lstmLayer(numHiddenUnits,OutputMode="last")

    concatenationLayer(1,2,Name="cat")

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

lgraph = layerGraph(layers);

layers = [
    featureInputLayer(numFeatures)

    fullyConnectedLayer(hiddenSize)
    reluLayer(Name="relu2")];

lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"relu2","cat/in2");

figure
plot(lgraph)

 Example Deep Learning Networks Architectures

1-39



You can replace the LSTM layer with a block of layers that processes vector sequence data. This layer
maps "CBT" (channel, batch, time) data to "CB" (channel, batch) data.

You can replace the fully connected layer and ReLU layer in the feature branch with a block of layers
that processes feature data. This block maps "CB" (channel, batch) data to "CB" (channel, batch)
data.

See Also
trainNetwork | analyzeNetwork | layerGraph | Deep Network Designer

Related Examples
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Build Networks with Deep Network Designer” on page 2-15
• “List of Deep Learning Layers” on page 1-43
• “Multiple-Input and Multiple-Output Networks” on page 1-41
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2
• “Convert Classification Network into Regression Network” on page 3-66
• “Deep Learning Tips and Tricks” on page 1-87

1 Deep Networks

1-40



Multiple-Input and Multiple-Output Networks
In Deep Learning Toolbox, you can define network architectures with multiple inputs (for example,
networks trained on multiple sources and types of data) or multiple outputs (for example, networks
that predicts both classification and regression responses).

Multiple-Input Networks
Define networks with multiple inputs when the network requires data from multiple sources or in
different formats. For example, networks that require image data captured from multiple sensors at
different resolutions.

Training

To define and train a deep learning network with multiple inputs, specify the network architecture
using a layerGraph object and train using the trainNetwork function with datastore input.

To use a datastore for networks with multiple input layers, use the combine and transform
functions to create a datastore that outputs a cell array with (numInputs + 1) columns, where
numInputs is the number of network inputs. In this case, the first numInputs columns specify the
predictors for each input and the last column specifies the responses. The order of inputs is given by
the InputNames property of the layer graph layers.

For an example showing how to train a network with both image and feature input, see “Train
Network on Image and Feature Data” on page 1-74.

Tip If the network also has multiple outputs, then you must use a custom training loop. for more
information, see “Multiple-Output Networks” on page 1-41.

Prediction

To make predictions on a trained deep learning network with multiple inputs, use either the predict
or classify function. Specify multiple inputs using one of the following:

• combinedDatastore object
• transformedDatastore object
• multiple numeric arrays

Multiple-Output Networks
Define networks with multiple outputs for tasks requiring multiple responses in different formats. For
example, tasks requiring both categorical and numeric output.

Training

To train a deep learning network with multiple outputs, use a custom training loop. For an example,
see “Train Network with Multiple Outputs” on page 3-57.

 Multiple-Input and Multiple-Output Networks

1-41



Prediction

To make predictions using a model function, use the model function directly with the trained
parameters. For an example, see “Make Predictions Using Model Function” on page 19-312.

Alternatively, convert the model function to a DAGNetwork object using the assembleNetwork
function. With the assembled network, you can:

• Make predictions with other data types such as datastores using the predict function for
DAGNetwork objects.

• Specify prediction options such as the mini-batch size using the predict function for
DAGNetwork objects.

• Save the network in a MAT file.

For an example, see “Assemble Multiple-Output Network for Prediction” on page 19-210.

See Also
assembleNetwork | predict

More About
• “Example Deep Learning Networks Architectures” on page 1-23
• “Train Network on Image and Feature Data” on page 1-74
• “Train Network with Multiple Outputs” on page 3-57
• “Assemble Multiple-Output Network for Prediction” on page 19-210
• “Make Predictions Using dlnetwork Object” on page 19-280
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “List of Deep Learning Layers” on page 1-43

1 Deep Networks

1-42



List of Deep Learning Layers
This page provides a list of deep learning layers in MATLAB.

To learn how to create networks from layers for different tasks, see the following examples.

Task Learn More
Create deep learning networks for image
classification or regression.

“Create Simple Deep Learning Neural Network
for Classification” on page 3-43

“Train Convolutional Neural Network for
Regression” on page 3-49

“Train Residual Network for Image
Classification” on page 3-13

Create deep learning networks for sequence and
time series data.

“Sequence Classification Using Deep Learning”
on page 4-3

“Time Series Forecasting Using Deep Learning”
on page 4-16

Create deep learning network for audio data. “Train Speech Command Recognition Model
Using Deep Learning” on page 4-27

Create deep learning network for text data. “Classify Text Data Using Deep Learning” on
page 4-195

“Generate Text Using Deep Learning” on page 4-
280

Deep Learning Layers
Use the following functions to create different layer types. Alternatively, use the Deep Network
Designer app to create networks interactively.

To learn how to define your own custom layers, see “Define Custom Deep Learning Layers” on page
19-9.

Input Layers

Layer Description

 imageInputLayer
An image input layer inputs 2-D images to a
neural network and applies data normalization.

 image3dInputLayer
A 3-D image input layer inputs 3-D images or
volumes to a neural network and applies data
normalization.

 pointCloudInputLayer
A point cloud input layer inputs 3-D point clouds
to a network and applies data normalization. You
can also input point cloud data such as 2-D lidar
scans.

 List of Deep Learning Layers

1-43



Layer Description

 sequenceInputLayer
A sequence input layer inputs sequence data to a
neural network.

 featureInputLayer
A feature input layer inputs feature data to a
neural network and applies data normalization.
Use this layer when you have a data set of
numeric scalars representing features (data
without spatial or time dimensions).

 roiInputLayer
An ROI input layer inputs images to a Fast R-CNN
object detection network.

Convolution and Fully Connected Layers

Layer Description

 convolution1dLayer
A 1-D convolutional layer applies sliding
convolutional filters to 1-D input.

 convolution2dLayer
A 2-D convolutional layer applies sliding
convolutional filters to 2-D input.

 convolution3dLayer
A 3-D convolutional layer applies sliding cuboidal
convolution filters to 3-D input.

 groupedConvolution2dLayer
A 2-D grouped convolutional layer separates the
input channels into groups and applies sliding
convolutional filters. Use grouped convolutional
layers for channel-wise separable (also known as
depth-wise separable) convolution.

 transposedConv2dLayer
A transposed 2-D convolution layer upsamples
two-dimensional feature maps.

 transposedConv3dLayer
A transposed 3-D convolution layer upsamples
three-dimensional feature maps.

 fullyConnectedLayer
A fully connected layer multiplies the input by a
weight matrix and then adds a bias vector.

Sequence Layers

Layer Description

 sequenceInputLayer
A sequence input layer inputs sequence data to a
neural network.

 lstmLayer
An LSTM layer is an RNN layer that learns long-
term dependencies between time steps in time
series and sequence data.

 lstmProjectedLayer
An LSTM projected layer is an RNN layer that
learns long-term dependencies between time
steps in time series and sequence data using
projected learnable weights.

1 Deep Networks

1-44



Layer Description

 bilstmLayer
A bidirectional LSTM (BiLSTM) layer is an RNN
layer that learns bidirectional long-term
dependencies between time steps of time series
or sequence data. These dependencies can be
useful when you want the RNN to learn from the
complete time series at each time step.

 gruLayer
A GRU layer is an RNN layer that learns
dependencies between time steps in time series
and sequence data.

 convolution1dLayer
A 1-D convolutional layer applies sliding
convolutional filters to 1-D input.

 transposedConv1dLayer
A transposed 1-D convolution layer upsamples
one-dimensional feature maps.

 maxPooling1dLayer
A 1-D max pooling layer performs downsampling
by dividing the input into 1-D pooling regions,
then computing the maximum of each region.

 averagePooling1dLayer
A 1-D average pooling layer performs
downsampling by dividing the input into 1-D
pooling regions, then computing the average of
each region.

 globalMaxPooling1dLayer
A 1-D global max pooling layer performs
downsampling by outputting the maximum of the
time or spatial dimensions of the input.

 sequenceFoldingLayer
A sequence folding layer converts a batch of
image sequences to a batch of images. Use a
sequence folding layer to perform convolution
operations on time steps of image sequences
independently.

 sequenceUnfoldingLayer
A sequence unfolding layer restores the sequence
structure of the input data after sequence folding.

 flattenLayer
A flatten layer collapses the spatial dimensions of
the input into the channel dimension.

 selfAttentionLayer
A self-attention layer computes single-head or
multihead self-attention of its input.

 wordEmbeddingLayer
A word embedding layer maps word indices to
vectors.

 peepholeLSTMLayer on page 19-83
(Custom layer example)

A peephole LSTM layer is a variant of an LSTM
layer, where the gate calculations use the layer
cell state.

 List of Deep Learning Layers

1-45



Activation Layers

Layer Description

 reluLayer
A ReLU layer performs a threshold operation to
each element of the input, where any value less
than zero is set to zero.

 leakyReluLayer
A leaky ReLU layer performs a threshold
operation, where any input value less than zero is
multiplied by a fixed scalar.

 clippedReluLayer
A clipped ReLU layer performs a threshold
operation, where any input value less than zero is
set to zero and any value above the clipping
ceiling is set to that clipping ceiling.

 eluLayer
An ELU activation layer performs the identity
operation on positive inputs and an exponential
nonlinearity on negative inputs.

 geluLayer
A Gaussian error linear unit (GELU) layer weights
the input by its probability under a Gaussian
distribution.

 tanhLayer
A hyperbolic tangent (tanh) activation layer
applies the tanh function on the layer inputs.

 swishLayer
A swish activation layer applies the swish
function on the layer inputs.

 softplusLayer
A softplus layer applies the softplus activation
function Y = log(1 + eX), which ensures that the
output is always positive. This activation function
is a smooth continuous version of reluLayer.
You can incorporate this layer into the deep
neural networks you define for actors in
reinforcement learning agents. This layer is
useful for creating continuous Gaussian policy
deep neural networks, for which the standard
deviation output must be positive.

 functionLayer
A function layer applies a specified function to
the layer input.

 preluLayer on page 19-38 (Custom layer
example)

A PReLU layer performs a threshold operation,
where for each channel, any input value less than
zero is multiplied by a scalar learned at training
time.

1 Deep Networks

1-46



Normalization Layers

Layer Description

 batchNormalizationLayer
A batch normalization layer normalizes a mini-
batch of data across all observations for each
channel independently. To speed up training of
the convolutional neural network and reduce the
sensitivity to network initialization, use batch
normalization layers between convolutional
layers and nonlinearities, such as ReLU layers.

 groupNormalizationLayer
A group normalization layer normalizes a mini-
batch of data across grouped subsets of channels
for each observation independently. To speed up
training of the convolutional neural network and
reduce the sensitivity to network initialization,
use group normalization layers between
convolutional layers and nonlinearities, such as
ReLU layers.

 instanceNormalizationLayer
An instance normalization layer normalizes a
mini-batch of data across each channel for each
observation independently. To improve the
convergence of training the convolutional neural
network and reduce the sensitivity to network
hyperparameters, use instance normalization
layers between convolutional layers and
nonlinearities, such as ReLU layers.

 layerNormalizationLayer
A layer normalization layer normalizes a mini-
batch of data across all channels for each
observation independently. To speed up training
of recurrent and multilayer perceptron neural
networks and reduce the sensitivity to network
initialization, use layer normalization layers after
the learnable layers, such as LSTM and fully
connected layers.

 crossChannelNormalizationLayer
A channel-wise local response (cross-channel)
normalization layer carries out channel-wise
normalization.

Utility Layers

Layer Description

 dropoutLayer
A dropout layer randomly sets input elements to
zero with a given probability.

 crop2dLayer
A 2-D crop layer applies 2-D cropping to the
input.

 crop3dLayer
A 3-D crop layer crops a 3-D volume to the size of
the input feature map.

 List of Deep Learning Layers

1-47



Layer Description

 scalingLayer
A scaling layer linearly scales and biases an input
array U, giving an output Y = Scale.*U +
Bias. You can incorporate this layer into the
deep neural networks you define for actors or
critics in reinforcement learning agents. This
layer is useful for scaling and shifting the outputs
of nonlinear layers, such as tanhLayer and
sigmoid.

 quadraticLayer
A quadratic layer takes an input vector and
outputs a vector of quadratic monomials
constructed from the input elements. This layer is
useful when you need a layer whose output is a
quadratic function of its inputs. For example, to
recreate the structure of quadratic value
functions such as those used in LQR controller
design.

 stftLayer
An STFT layer computes the short-time Fourier
transform of the input.

 cwtLayer
A CWT layer computes the CWT of the input.

 modwtLayer
A MODWT layer computes the MODWT and
MODWT multiresolution analysis (MRA) of the
input.

Resizing Layers

Layer Description

 resize2dLayer
A 2-D resize layer resizes 2-D input by a scale
factor, to a specified height and width, or to the
size of a reference input feature map.

 resize3dLayer
A 3-D resize layer resizes 3-D input by a scale
factor, to a specified height, width, and depth, or
to the size of a reference input feature map.

Pooling and Unpooling Layers

Layer Description

 averagePooling1dLayer
A 1-D average pooling layer performs
downsampling by dividing the input into 1-D
pooling regions, then computing the average of
each region.

 averagePooling2dLayer
A 2-D average pooling layer performs
downsampling by dividing the input into
rectangular pooling regions, then computing the
average of each region.

1 Deep Networks

1-48



Layer Description

 averagePooling3dLayer
A 3-D average pooling layer performs
downsampling by dividing three-dimensional
input into cuboidal pooling regions, then
computing the average values of each region.

 globalAveragePooling1dLayer
A 1-D global average pooling layer performs
downsampling by outputting the average of the
time or spatial dimensions of the input.

 globalAveragePooling2dLayer
A 2-D global average pooling layer performs
downsampling by computing the mean of the
height and width dimensions of the input.

 globalAveragePooling3dLayer
A 3-D global average pooling layer performs
downsampling by computing the mean of the
height, width, and depth dimensions of the input.

 maxPooling1dLayer
A 1-D max pooling layer performs downsampling
by dividing the input into 1-D pooling regions,
then computing the maximum of each region.

 maxPooling2dLayer
A 2-D max pooling layer performs downsampling
by dividing the input into rectangular pooling
regions, then computing the maximum of each
region.

 maxPooling3dLayer
A 3-D max pooling layer performs downsampling
by dividing three-dimensional input into cuboidal
pooling regions, then computing the maximum of
each region.

 globalMaxPooling1dLayer
A 1-D global max pooling layer performs
downsampling by outputting the maximum of the
time or spatial dimensions of the input.

 globalMaxPooling2dLayer
A 2-D global max pooling layer performs
downsampling by computing the maximum of the
height and width dimensions of the input.

 globalMaxPooling3dLayer
A 3-D global max pooling layer performs
downsampling by computing the maximum of the
height, width, and depth dimensions of the input.

 maxUnpooling2dLayer
A 2-D max unpooling layer unpools the output of
a 2-D max pooling layer.

Combination Layers

Layer Description

 additionLayer
An addition layer adds inputs from multiple
neural network layers element-wise.

 multiplicationLayer
A multiplication layer multiplies inputs from
multiple neural network layers element-wise.

 List of Deep Learning Layers

1-49



Layer Description

 depthConcatenationLayer
A depth concatenation layer takes inputs that
have the same height and width and concatenates
them along the channel dimension.

 concatenationLayer
A concatenation layer takes inputs and
concatenates them along a specified dimension.
The inputs must have the same size in all
dimensions except the concatenation dimension.

 weightedAdditionLayer on page 19-53
(Custom layer example)

A weighted addition layer scales and adds inputs
from multiple neural network layers element-
wise.

Object Detection Layers

Layer Description

 roiInputLayer
An ROI input layer inputs images to a Fast R-CNN
object detection network.

 roiMaxPooling2dLayer
An ROI max pooling layer outputs fixed size
feature maps for every rectangular ROI within
the input feature map. Use this layer to create a
Fast or Faster R-CNN object detection network.

 roiAlignLayer
An ROI align layer outputs fixed size feature
maps for every rectangular ROI within an input
feature map. Use this layer to create a Mask R-
CNN network.

 anchorBoxLayer
An anchor box layer stores anchor boxes for a
feature map used in object detection networks.

 regionProposalLayer
A region proposal layer outputs bounding boxes
around potential objects in an image as part of
the region proposal network (RPN) within Faster
R-CNN.

 ssdMergeLayer
An SSD merge layer merges the outputs of
feature maps for subsequent regression and
classification loss computation.

 yolov2TransformLayer
A transform layer of the you only look once
version 2 (YOLO v2) network transforms the
bounding box predictions of the last convolution
layer in the network to fall within the bounds of
the ground truth. Use the transform layer to
improve the stability of the YOLO v2 network.

 spaceToDepthLayer
A space to depth layer permutes the spatial
blocks of the input into the depth dimension. Use
this layer when you need to combine feature
maps of different size without discarding any
feature data.

1 Deep Networks

1-50



Layer Description

 depthToSpace2dLayer
A 2-D depth to space layer permutes data from
the depth dimension into blocks of 2-D spatial
data.

 rpnSoftmaxLayer
A region proposal network (RPN) softmax layer
applies a softmax activation function to the input.
Use this layer to create a Faster R-CNN object
detection network.

 focalLossLayer
A focal loss layer predicts object classes using
focal loss.

 rpnClassificationLayer
A region proposal network (RPN) classification
layer classifies image regions as either object or
background by using a cross entropy loss
function. Use this layer to create a Faster R-CNN
object detection network.

 rcnnBoxRegressionLayer
A box regression layer refines bounding box
locations by using a smooth L1 loss function. Use
this layer to create a Fast or Faster R-CNN object
detection network.

Output Layers

Layer Description

 softmaxLayer
A softmax layer applies a softmax function to the
input.

 sigmoidLayer
A sigmoid layer applies a sigmoid function to the
input such that the output is bounded in the
interval (0,1).

 classificationLayer
A classification layer computes the cross-entropy
loss for classification and weighted classification
tasks with mutually exclusive classes.

 regressionLayer
A regression layer computes the half-mean-
squared-error loss for regression tasks.

 pixelClassificationLayer
A pixel classification layer provides a categorical
label for each image pixel or voxel.

 dicePixelClassificationLayer
A Dice pixel classification layer provides a
categorical label for each image pixel or voxel
using generalized Dice loss.

 focalLossLayer
A focal loss layer predicts object classes using
focal loss.

 rpnSoftmaxLayer
A region proposal network (RPN) softmax layer
applies a softmax activation function to the input.
Use this layer to create a Faster R-CNN object
detection network.

 List of Deep Learning Layers

1-51



Layer Description

 rpnClassificationLayer
A region proposal network (RPN) classification
layer classifies image regions as either object or
background by using a cross entropy loss
function. Use this layer to create a Faster R-CNN
object detection network.

 rcnnBoxRegressionLayer
A box regression layer refines bounding box
locations by using a smooth L1 loss function. Use
this layer to create a Fast or Faster R-CNN object
detection network.

 yolov2OutputLayer
An output layer of the you only look once version
2 (YOLO v2) network refines the bounding box
locations by minimizing the mean squared error
loss between the predicted locations and ground
truth.

 tverskyPixelClassificationLayer on
page 8-195 (Custom layer example)

A Tversky pixel classification layer provides a
categorical label for each image pixel or voxel
using Tversky loss.

 sseClassificationLayer on page 19-
101 (Custom layer example)

A classification SSE layer computes the sum of
squares error loss for classification problems.

 maeRegressionLayer on page 19-109
(Custom layer example)

A regression MAE layer computes the mean
absolute error loss for regression problems.

See Also
trainingOptions | trainNetwork | Deep Network Designer

More About
• “Example Deep Learning Networks Architectures” on page 1-23
• “Build Networks with Deep Network Designer” on page 2-15
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Define Custom Deep Learning Layers” on page 19-9
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Sequence Classification Using Deep Learning” on page 4-3
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning Tips and Tricks” on page 1-87

1 Deep Networks

1-52



Specify Layers of Convolutional Neural Network
In this section...
“Image Input Layer” on page 1-54
“Convolutional Layer” on page 1-54
“Batch Normalization Layer” on page 1-58
“ReLU Layer” on page 1-58
“Cross Channel Normalization (Local Response Normalization) Layer” on page 1-59
“Max and Average Pooling Layers” on page 1-59
“Dropout Layer” on page 1-60
“Fully Connected Layer” on page 1-60
“Output Layers” on page 1-61

The first step of creating and training a new convolutional neural network (ConvNet) is to define the
network architecture. This topic explains the details of ConvNet layers, and the order they appear in
a ConvNet. For a complete list of deep learning layers and how to create them, see “List of Deep
Learning Layers” on page 1-43. To learn about LSTM networks for sequence classification and
regression, see “Long Short-Term Memory Neural Networks” on page 1-97. To learn how to create
your own custom layers, see “Define Custom Deep Learning Layers” on page 19-9.

The network architecture can vary depending on the types and numbers of layers included. The types
and number of layers included depends on the particular application or data. For example,
classification networks typically have a softmax layer and a classification layer, whereas regression
networks must have a regression layer at the end of the network. A smaller network with only one or
two convolutional layers might be sufficient to learn on a small number of grayscale image data. On
the other hand, for more complex data with millions of colored images, you might need a more
complicated network with multiple convolutional and fully connected layers.

To specify the architecture of a deep network with all layers connected sequentially, create an array
of layers directly. For example, to create a deep network which classifies 28-by-28 grayscale images
into 10 classes, specify the layer array

layers = [
    imageInputLayer([28 28 1])  
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer    
    maxPooling2dLayer(2,'Stride',2) 
    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer 
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

layers is an array of Layer objects. You can then use layers as an input to the training function
trainNetwork.

To specify the architecture of a neural network with all layers connected sequentially, create an array
of layers directly. To specify the architecture of a network where layers can have multiple inputs or
outputs, use a LayerGraph object.

 Specify Layers of Convolutional Neural Network

1-53



Image Input Layer
Create an image input layer using imageInputLayer.

An image input layer inputs images to a network and applies data normalization.

Specify the image size using the inputSize argument. The size of an image corresponds to the
height, width, and the number of color channels of that image. For example, for a grayscale image,
the number of channels is 1, and for a color image it is 3.

Convolutional Layer
A 2-D convolutional layer applies sliding convolutional filters to 2-D input. Create a 2-D convolutional
layer using convolution2dLayer.

The convolutional layer consists of various components.1

Filters and Stride

A convolutional layer consists of neurons that connect to subregions of the input images or the
outputs of the previous layer. The layer learns the features localized by these regions while scanning
through an image. When creating a layer using the convolution2dLayer function, you can specify
the size of these regions using the filterSize input argument.

For each region, the trainNetwork function computes a dot product of the weights and the input,
and then adds a bias term. A set of weights that is applied to a region in the image is called a filter.
The filter moves along the input image vertically and horizontally, repeating the same computation for
each region. In other words, the filter convolves the input.

This image shows a 3-by-3 filter scanning through the input. The lower map represents the input and
the upper map represents the output.

1 Image credit: Convolution arithmetic (License)

1 Deep Networks

1-54

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic/blob/master/LICENSE


The step size with which the filter moves is called a stride. You can specify the step size with the
Stride name-value pair argument. The local regions that the neurons connect to can overlap
depending on the filterSize and 'Stride' values.

This image shows a 3-by-3 filter scanning through the input with a stride of 2. The lower map
represents the input and the upper map represents the output.

The number of weights in a filter is h * w * c, where h is the height, and w is the width of the filter,
respectively, and c is the number of channels in the input. For example, if the input is a color image,
the number of color channels is 3. The number of filters determines the number of channels in the
output of a convolutional layer. Specify the number of filters using the numFilters argument with
the convolution2dLayer function.

Dilated Convolution

A dilated convolution is a convolution in which the filters are expanded by spaces inserted between
the elements of the filter. Specify the dilation factor using the 'DilationFactor' property.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3
filter with the dilation factor [2 2] is equivalent to a 5-by-5 filter with zeros between the elements.

This image shows a 3-by-3 filter dilated by a factor of two scanning through the input. The lower map
represents the input and the upper map represents the output.

 Specify Layers of Convolutional Neural Network

1-55



Feature Maps

As a filter moves along the input, it uses the same set of weights and the same bias for the
convolution, forming a feature map. Each feature map is the result of a convolution using a different
set of weights and a different bias. Hence, the number of feature maps is equal to the number of
filters. The total number of parameters in a convolutional layer is ((h*w*c + 1)*Number of Filters),
where 1 is the bias.

Padding

You can also apply padding to input image borders vertically and horizontally using the 'Padding'
name-value pair argument. Padding is values appended to the borders of a the input to increase its
size. By adjusting the padding, you can control the output size of the layer.

This image shows a 3-by-3 filter scanning through the input with padding of size 1. The lower map
represents the input and the upper map represents the output.

1 Deep Networks

1-56



Output Size

The output height and width of a convolutional layer is (Input Size – ((Filter Size – 1)*Dilation Factor
+ 1) + 2*Padding)/Stride + 1. This value must be an integer for the whole image to be fully covered.
If the combination of these options does not lead the image to be fully covered, the software by
default ignores the remaining part of the image along the right and bottom edges in the convolution.

Number of Neurons

The product of the output height and width gives the total number of neurons in a feature map, say
Map Size. The total number of neurons (output size) in a convolutional layer is Map Size*Number of
Filters.

For example, suppose that the input image is a 32-by-32-by-3 color image. For a convolutional layer
with eight filters and a filter size of 5-by-5, the number of weights per filter is 5 * 5 * 3 = 75, and the
total number of parameters in the layer is (75 + 1) * 8 = 608. If the stride is 2 in each direction and
padding of size 2 is specified, then each feature map is 16-by-16. This is because (32 – 5 + 2 * 2)/2 +
1 = 16.5, and some of the outermost padding to the right and bottom of the image is discarded.
Finally, the total number of neurons in the layer is 16 * 16 * 8 = 2048.

Usually, the results from these neurons pass through some form of nonlinearity, such as rectified
linear units (ReLU).

 Specify Layers of Convolutional Neural Network

1-57



Learning Parameters

You can adjust the learning rates and regularization options for the layer using name-value pair
arguments while defining the convolutional layer. If you choose not to specify these options, then
trainNetwork uses the global training options defined with the trainingOptions function. For
details on global and layer training options, see “Set Up Parameters and Train Convolutional Neural
Network” on page 1-64.

Number of Layers

A convolutional neural network can consist of one or multiple convolutional layers. The number of
convolutional layers depends on the amount and complexity of the data.

Batch Normalization Layer
Create a batch normalization layer using batchNormalizationLayer.

A batch normalization layer normalizes a mini-batch of data across all observations for each channel
independently. To speed up training of the convolutional neural network and reduce the sensitivity to
network initialization, use batch normalization layers between convolutional layers and
nonlinearities, such as ReLU layers.

The layer first normalizes the activations of each channel by subtracting the mini-batch mean and
dividing by the mini-batch standard deviation. Then, the layer shifts the input by a learnable offset β
and scales it by a learnable scale factor γ. β and γ are themselves learnable parameters that are
updated during network training.

Batch normalization layers normalize the activations and gradients propagating through a neural
network, making network training an easier optimization problem. To take full advantage of this fact,
you can try increasing the learning rate. Since the optimization problem is easier, the parameter
updates can be larger and the network can learn faster. You can also try reducing the L2 and dropout
regularization. With batch normalization layers, the activations of a specific image during training
depend on which images happen to appear in the same mini-batch. To take full advantage of this
regularizing effect, try shuffling the training data before every training epoch. To specify how often to
shuffle the data during training, use the 'Shuffle' name-value pair argument of
trainingOptions.

ReLU Layer
Create a ReLU layer using reluLayer.

A ReLU layer performs a threshold operation to each element of the input, where any value less than
zero is set to zero.

Convolutional and batch normalization layers are usually followed by a nonlinear activation function
such as a rectified linear unit (ReLU), specified by a ReLU layer. A ReLU layer performs a threshold
operation to each element, where any input value less than zero is set to zero, that is,

f x =
x, x ≥ 0
0, x < 0

.

The ReLU layer does not change the size of its input.

1 Deep Networks

1-58



There are other nonlinear activation layers that perform different operations and can improve the
network accuracy for some applications. For a list of activation layers, see “Activation Layers” on
page 1-46.

Cross Channel Normalization (Local Response Normalization) Layer
Create a cross channel normalization layer using crossChannelNormalizationLayer.

A channel-wise local response (cross-channel) normalization layer carries out channel-wise
normalization.

This layer performs a channel-wise local response normalization. It usually follows the ReLU
activation layer. This layer replaces each element with a normalized value it obtains using the
elements from a certain number of neighboring channels (elements in the normalization window).
That is, for each element x in the input, trainNetwork computes a normalized value x′ using

x′ = x
K + α * ss

windowChannelSize
β ,

where K, α, and β are the hyperparameters in the normalization, and ss is the sum of squares of the
elements in the normalization window [2]. You must specify the size of the normalization window
using the windowChannelSize argument of the crossChannelNormalizationLayer function.
You can also specify the hyperparameters using the Alpha, Beta, and K name-value pair arguments.

The previous normalization formula is slightly different than what is presented in [2]. You can obtain
the equivalent formula by multiplying the alpha value by the windowChannelSize.

Max and Average Pooling Layers
A 2-D max pooling layer performs downsampling by dividing the input into rectangular pooling
regions, then computing the maximum of each region. Create a max pooling layer using
maxPooling2dLayer.

A 2-D average pooling layer performs downsampling by dividing the input into rectangular pooling
regions, then computing the average of each region. Create an average pooling layer using
averagePooling2dLayer.

Pooling layers follow the convolutional layers for down-sampling, hence, reducing the number of
connections to the following layers. They do not perform any learning themselves, but reduce the
number of parameters to be learned in the following layers. They also help reduce overfitting.

A max pooling layer returns the maximum values of rectangular regions of its input. The size of the
rectangular regions is determined by the poolSize argument of maxPoolingLayer. For example, if
poolSize is [2 3], then the layer returns the maximum value in regions of height 2 and width 3.

An average pooling layer outputs the average values of rectangular regions of its input. The size of
the rectangular regions is determined by the poolSize argument of averagePoolingLayer. For
example, if poolSize is [2 3], then the layer returns the average value of regions of height 2 and
width 3.

Pooling layers scan through the input horizontally and vertically in step sizes you can specify using
the 'Stride' name-value pair argument. If the pool size is smaller than or equal to the stride, then
the pooling regions do not overlap.

 Specify Layers of Convolutional Neural Network

1-59



For nonoverlapping regions (Pool Size and Stride are equal), if the input to the pooling layer is n-by-n,
and the pooling region size is h-by-h, then the pooling layer down-samples the regions by h [6]. That
is, the output of a max or average pooling layer for one channel of a convolutional layer is n/h-by-n/h.
For overlapping regions, the output of a pooling layer is (Input Size – Pool Size + 2*Padding)/Stride +
1.

Dropout Layer
Create a dropout layer using dropoutLayer.

A dropout layer randomly sets input elements to zero with a given probability.

At training time, the layer randomly sets input elements to zero given by the dropout mask
rand(size(X))<Probability, where X is the layer input and then scales the remaining elements
by 1/(1-Probability). This operation effectively changes the underlying network architecture
between iterations and helps prevent the network from overfitting [7], [2]. A higher number results in
more elements being dropped during training. At prediction time, the output of the layer is equal to
its input.

Similar to max or average pooling layers, no learning takes place in this layer.

Fully Connected Layer
Create a fully connected layer using fullyConnectedLayer.

A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.

The convolutional (and down-sampling) layers are followed by one or more fully connected layers.

As the name suggests, all neurons in a fully connected layer connect to all the neurons in the previous
layer. This layer combines all of the features (local information) learned by the previous layers across
the image to identify the larger patterns. For classification problems, the last fully connected layer
combines the features to classify the images. This is the reason that the outputSize argument of the
last fully connected layer of the network is equal to the number of classes of the data set. For
regression problems, the output size must be equal to the number of response variables.

You can also adjust the learning rate and the regularization parameters for this layer using the
related name-value pair arguments when creating the fully connected layer. If you choose not to
adjust them, then trainNetwork uses the global training parameters defined by the
trainingOptions function. For details on global and layer training options, see “Set Up Parameters
and Train Convolutional Neural Network” on page 1-64.

A fully connected layer multiplies the input by a weight matrix W and then adds a bias vector b.

If the input to the layer is a sequence (for example, in an LSTM network), then the fully connected
layer acts independently on each time step. For example, if the layer before the fully connected layer
outputs an array X of size D-by-N-by-S, then the fully connected layer outputs an array Z of size
outputSize-by-N-by-S. At time step t, the corresponding entry of Z is WXt + b, where Xt denotes
time step t of X.

1 Deep Networks

1-60



Output Layers
Softmax and Classification Layers

A softmax layer applies a softmax function to the input. Create a softmax layer using softmaxLayer.

A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes. Create a classification layer using classificationLayer.

For classification problems, a softmax layer and then a classification layer usually follow the final fully
connected layer.

The output unit activation function is the softmax function:

yr x =
exp ar x

∑
j = 1

k
exp a j x

,

where 0 ≤ yr ≤ 1 and ∑
j = 1

k
y j = 1.

The softmax function is the output unit activation function after the last fully connected layer for
multi-class classification problems:

P cr x, θ =
P x, θ cr P cr

∑
j = 1

k
P x, θ c j P c j

=
exp ar x, θ

∑
j = 1

k
exp a j x, θ

,

where 0 ≤ P cr x, θ ≤ 1 and ∑
j = 1

k
P c j x, θ = 1. Moreover, ar = ln P x, θ cr P cr , P x, θ cr  is the

conditional probability of the sample given class r, and P cr  is the class prior probability.

The softmax function is also known as the normalized exponential and can be considered the multi-
class generalization of the logistic sigmoid function [8].

For typical classification networks, the classification layer usually follows a softmax layer. In the
classification layer, trainNetwork takes the values from the softmax function and assigns each input
to one of the K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme
[8]:

loss = − 1
N ∑

n = 1

N ∑
i = 1

K

witnilnyni,

where N is the number of samples, K is the number of classes, wi is the weight for class i, tni is the
indicator that the nth sample belongs to the ith class, and yni is the output for sample n for class i,
which in this case, is the value from the softmax function. In other words, yni is the probability that
the network associates the nth input with class i.

Regression Layer

Create a regression layer using regressionLayer.

 Specify Layers of Convolutional Neural Network

1-61



A regression layer computes the half-mean-squared-error loss for regression tasks. For typical
regression problems, a regression layer must follow the final fully connected layer.

For a single observation, the mean-squared-error is given by:

MSE =∑
i = 1

R
(ti− yi)

2

R ,

where R is the number of responses, ti is the target output, and yi is the network’s prediction for
response i.

For image and sequence-to-one regression networks, the loss function of the regression layer is the
half-mean-squared-error of the predicted responses, not normalized by R:

loss = 1
2∑

i = 1

R

(ti− yi)
2 .

For image-to-image regression networks, the loss function of the regression layer is the half-mean-
squared-error of the predicted responses for each pixel, not normalized by R:

loss = 1
2∑

p = 1

HWC

(tp− yp)2,

where H, W, and C denote the height, width, and number of channels of the output respectively, and p
indexes into each element (pixel) of t and y linearly.

For sequence-to-sequence regression networks, the loss function of the regression layer is the half-
mean-squared-error of the predicted responses for each time step, not normalized by R:

loss = 1
2S∑

i = 1

S

∑
j = 1

R

(ti j− yi j)2,

where S is the sequence length.

When training, the software calculates the mean loss over the observations in the mini-batch.

References
[1] Murphy, K. P. Machine Learning: A Probabilistic Perspective. Cambridge, Massachusetts: The MIT

Press, 2012.

[2] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional
Neural Networks." Advances in Neural Information Processing Systems. Vol 25, 2012.

[3] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., et al.
''Handwritten Digit Recognition with a Back-propagation Network.'' In Advances of Neural
Information Processing Systems, 1990.

1 Deep Networks

1-62



[4] LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. ''Gradient-based Learning Applied to Document
Recognition.'' Proceedings of the IEEE. Vol 86, pp. 2278–2324, 1998.

[5] Nair, V. and G. E. Hinton. "Rectified linear units improve restricted boltzmann machines." In Proc.
27th International Conference on Machine Learning, 2010.

[6] Nagi, J., F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M.
Gambardella. ''Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture
Recognition''. IEEE International Conference on Signal and Image Processing Applications
(ICSIPA2011), 2011.

[7] Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. "Dropout: A Simple Way to
Prevent Neural Networks from Overfitting." Journal of Machine Learning Research. Vol. 15,
pp. 1929-1958, 2014.

[8] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

[9] Ioffe, Sergey, and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift.” Preprint, submitted March 2, 2015. https://
arxiv.org/abs/1502.03167.

See Also
convolution2dLayer | batchNormalizationLayer | dropoutLayer |
averagePooling2dLayer | maxPooling2dLayer | classificationLayer | regressionLayer |
softmaxLayer | crossChannelNormalizationLayer | fullyConnectedLayer | reluLayer |
leakyReluLayer | clippedReluLayer | imageInputLayer | trainingOptions |
trainNetwork

More About
• “List of Deep Learning Layers” on page 1-43
• “Learn About Convolutional Neural Networks” on page 1-21
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Resume Training from Checkpoint Network” on page 5-172
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2

 Specify Layers of Convolutional Neural Network

1-63



Set Up Parameters and Train Convolutional Neural Network
In this section...
“Specify Solver and Maximum Number of Epochs” on page 1-64
“Specify and Modify Learning Rate” on page 1-64
“Specify Validation Data” on page 1-65
“Select Hardware Resource” on page 1-65
“Save Checkpoint Networks and Resume Training” on page 1-66
“Set Up Parameters in Convolutional and Fully Connected Layers” on page 1-66
“Train Your Network” on page 1-66

After you define the layers of your neural network as described in “Specify Layers of Convolutional
Neural Network” on page 1-53, the next step is to set up the training options for the network. Use the
trainingOptions function to define the global training parameters. To train a network, use the
object returned by trainingOptions as an input argument to the trainNetwork function. For
example:

options = trainingOptions('adam');
trainedNet = trainNetwork(data,layers,options);

Layers with learnable parameters also have options for adjusting the learning parameters. For more
information, see “Set Up Parameters in Convolutional and Fully Connected Layers” on page 1-66.

Specify Solver and Maximum Number of Epochs
trainNetwork can use different variants of stochastic gradient descent to train the network. Specify
the optimization algorithm by using the solverName argument of trainingOptions. To minimize
the loss, these algorithms update the network parameters by taking small steps in the direction of the
negative gradient of the loss function.

The 'adam' (derived from adaptive moment estimation) solver is often a good optimizer to try first.
You can also try the 'rmsprop' (root mean square propagation) and 'sgdm' (stochastic gradient
descent with momentum) optimizers and see if this improves training. Different solvers work better
for different problems. For more information about the different solvers, see “Stochastic Gradient
Descent”.

The solvers update the parameters using a subset of the data each step. This subset is called a mini-
batch. You can specify the size of the mini-batch by using the 'MiniBatchSize' name-value pair
argument of trainingOptions. Each parameter update is called an iteration. A full pass through
the entire data set is called an epoch. You can specify the maximum number of epochs to train for by
using the 'MaxEpochs' name-value pair argument of trainingOptions. The default value is 30,
but you can choose a smaller number of epochs for small networks or for fine-tuning and transfer
learning, where most of the learning is already done.

By default, the software shuffles the data once before training. You can change this setting by using
the 'Shuffle' name-value pair argument.

Specify and Modify Learning Rate
You can specify the global learning rate by using the 'InitialLearnRate' name-value pair
argument of trainingOptions. By default, trainNetwork uses this value throughout the entire

1 Deep Networks

1-64



training process. You can choose to modify the learning rate every certain number of epochs by
multiplying the learning rate with a factor. Instead of using a small, fixed learning rate throughout
the training process, you can choose a larger learning rate in the beginning of training and gradually
reduce this value during optimization. Doing so can shorten the training time, while enabling smaller
steps towards the minimum of the loss as training progresses.

Tip If the mini-batch loss during training ever becomes NaN, then the learning rate is likely too high.
Try reducing the learning rate, for example by a factor of 3, and restarting network training.

To gradually reduce the learning rate, use the 'LearnRateSchedule','piecewise' name-value
pair argument. Once you choose this option, trainNetwork multiplies the initial learning rate by a
factor of 0.1 every 10 epochs. You can specify the factor by which to reduce the initial learning rate
and the number of epochs by using the 'LearnRateDropFactor' and 'LearnRateDropPeriod'
name-value pair arguments, respectively.

Specify Validation Data
To perform network validation during training, specify validation data using the 'ValidationData'
name-value pair argument of trainingOptions. By default, trainNetwork validates the network
every 50 iterations by predicting the response of the validation data and calculating the validation
loss and accuracy (root mean squared error for regression networks). You can change the validation
frequency using the 'ValidationFrequency' name-value pair argument. If your network has
layers that behave differently during prediction than during training (for example, dropout layers),
then the validation accuracy can be higher than the training (mini-batch) accuracy. You can also use
the validation data to stop training automatically when the validation loss stops decreasing. To turn
on automatic validation stopping, use the 'ValidationPatience' name-value pair argument.

Performing validation at regular intervals during training helps you to determine if your network is
overfitting to the training data. A common problem is that the network simply "memorizes" the
training data, rather than learning general features that enable the network to make accurate
predictions for new data. To check if your network is overfitting, compare the training loss and
accuracy to the corresponding validation metrics. If the training loss is significantly lower than the
validation loss, or the training accuracy is significantly higher than the validation accuracy, then your
network is overfitting.

To reduce overfitting, you can try adding data augmentation. Use an augmentedImageDatastore to
perform random transformations on your input images. This helps to prevent the network from
memorizing the exact position and orientation of objects. You can also try increasing the L2
regularization using the 'L2Regularization' name-value pair argument, using batch
normalization layers after convolutional layers, and adding dropout layers.

Select Hardware Resource
If a GPU is available, then trainNetwork uses it for training, by default. Otherwise, trainNetwork
uses a CPU. Alternatively, you can specify the execution environment you want using the
'ExecutionEnvironment' name-value pair argument. You can specify a single CPU ('cpu'), a
single GPU ('gpu'), multiple GPUs ('multi-gpu'), or a local parallel pool or compute cluster
('parallel'). All options other than 'cpu' require Parallel Computing Toolbox. Training on a GPU
requires a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

 Set Up Parameters and Train Convolutional Neural Network

1-65



Save Checkpoint Networks and Resume Training
Deep Learning Toolbox enables you to save neural networks as .mat files during training. This
periodic saving is especially useful when you have a large neural network or a large data set, and
training takes a long time. If the training is interrupted for some reason, you can resume training
from the last saved checkpoint neural network. If you want trainNetwork to save checkpoint neural
networks, then you must specify the name of the path by using the CheckpointPath option of
trainingOptions. If the path that you specify does not exist, then trainingOptions returns an
error.

trainNetwork automatically assigns unique names to checkpoint neural network files. In the
example name, net_checkpoint__351__2018_04_12__18_09_52.mat, 351 is the iteration
number, 2018_04_12 is the date, and 18_09_52 is the time at which trainNetwork saves the
neural network. You can load a checkpoint neural network file by double-clicking it or using the load
command at the command line. For example:

load net_checkpoint__351__2018_04_12__18_09_52.mat

You can then resume training by using the layers of the neural network as an input argument to
trainNetwork. For example:

trainNetwork(XTrain,TTrain,net.Layers,options)

You must manually specify the training options and the input data, because the checkpoint neural
network does not contain this information. For an example, see “Resume Training from Checkpoint
Network” on page 5-172.

Set Up Parameters in Convolutional and Fully Connected Layers
You can set the learning parameters to be different from the global values specified by
trainingOptions in layers with learnable parameters, such as convolutional and fully connected
layers. For example, to adjust the learning rate for the biases or weights, you can specify a value for
the BiasLearnRateFactor or WeightLearnRateFactor properties of the layer, respectively. The
trainNetwork function multiplies the learning rate that you specify by using trainingOptions
with these factors. Similarly, you can also specify the L2 regularization factors for the weights and
biases in these layers by specifying the BiasL2Factor and WeightL2Factor properties,
respectively. trainNetwork then multiplies the L2 regularization factors that you specify by using
trainingOptions with these factors.

Initialize Weights in Convolutional and Fully Connected Layers

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

Train Your Network
After you specify the layers of your network and the training parameters, you can train the network
using the training data. The data, layers, and training options are all input arguments of the
trainNetwork function, as in this example.

1 Deep Networks

1-66



layers = [imageInputLayer([28 28 1])
          convolution2dLayer(5,20)
          reluLayer
          maxPooling2dLayer(2,'Stride',2)
          fullyConnectedLayer(10)
          softmaxLayer
          classificationLayer];
options = trainingOptions('adam');
convnet = trainNetwork(data,layers,options);

Training data can be an array, a table, or an ImageDatastore object. For more information, see the
trainNetwork function reference page.

See Also
trainingOptions | trainNetwork | Convolution2dLayer | FullyConnectedLayer

More About
• “Learn About Convolutional Neural Networks” on page 1-21
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Resume Training from Checkpoint Network” on page 5-172

 Set Up Parameters and Train Convolutional Neural Network

1-67



Train Network with Numeric Features

This example shows how to create and train a simple neural network for deep learning feature data
classification.

If you have a data set of numeric features (for example a collection of numeric data without spatial or
time dimensions), then you can train a deep learning network using a feature input layer. For an
example showing how to train a network for image classification, see “Create Simple Deep Learning
Neural Network for Classification” on page 3-43.

This example shows how to train a network to classify the gear tooth condition of a transmission
system given a mixture of numeric sensor readings, statistics, and categorical labels.

Load Data

Load the transmission casing dataset for training. The data set consists of 208 synthetic readings of a
transmission system consisting of 18 numeric readings and three categorical labels:

1 SigMean — Vibration signal mean
2 SigMedian — Vibration signal median
3 SigRMS — Vibration signal RMS
4 SigVar — Vibration signal variance
5 SigPeak — Vibration signal peak
6 SigPeak2Peak — Vibration signal peak to peak
7 SigSkewness — Vibration signal skewness
8 SigKurtosis — Vibration signal kurtosis
9 SigCrestFactor — Vibration signal crest factor
10 SigMAD — Vibration signal MAD
11 SigRangeCumSum — Vibration signal range cumulative sum
12 SigCorrDimension — Vibration signal correlation dimension
13 SigApproxEntropy — Vibration signal approximate entropy
14 SigLyapExponent — Vibration signal Lyap exponent
15 PeakFreq — Peak frequency.
16 HighFreqPower — High frequency power
17 EnvPower — Environment power
18 PeakSpecKurtosis — Peak frequency of spectral kurtosis
19 SensorCondition — Condition of sensor, specified as "Sensor Drift" or "No Sensor Drift"
20 ShaftCondition — Condition of shaft, specified as "Shaft Wear" or "No Shaft Wear"
21 GearToothCondition — Condition of gear teeth, specified as "Tooth Fault" or "No Tooth Fault"

Read the transmission casing data from the CSV file "transmissionCasingData.csv".

filename = "transmissionCasingData.csv";
tbl = readtable(filename,'TextType','String');

Convert the labels for prediction to categorical using the convertvars function.

1 Deep Networks

1-68



labelName = "GearToothCondition";
tbl = convertvars(tbl,labelName,'categorical');

View the first few rows of the table.

head(tbl)

    SigMean     SigMedian    SigRMS    SigVar     SigPeak    SigPeak2Peak    SigSkewness    SigKurtosis    SigCrestFactor    SigMAD     SigRangeCumSum    SigCorrDimension    SigApproxEntropy    SigLyapExponent    PeakFreq    HighFreqPower    EnvPower    PeakSpecKurtosis    SensorCondition    ShaftCondition     GearToothCondition
    ________    _________    ______    _______    _______    ____________    ___________    ___________    ______________    _______    ______________    ________________    ________________    _______________    ________    _____________    ________    ________________    _______________    _______________    __________________

    -0.94876     -0.9722     1.3726    0.98387    0.81571       3.6314        -0.041525       2.2666           2.0514         0.8081        28562              1.1429             0.031581            79.931            0          6.75e-06       3.23e-07         162.13         "Sensor Drift"     "No Shaft Wear"      No Tooth Fault  
    -0.97537    -0.98958     1.3937    0.99105    0.81571       3.6314        -0.023777       2.2598           2.0203        0.81017        29418              1.1362             0.037835            70.325            0          5.08e-08       9.16e-08         226.12         "Sensor Drift"     "No Shaft Wear"      No Tooth Fault  
      1.0502      1.0267     1.4449    0.98491     2.8157       3.6314         -0.04162       2.2658           1.9487        0.80853        31710              1.1479             0.031565            125.19            0          6.74e-06       2.85e-07         162.13         "Sensor Drift"     "Shaft Wear"         No Tooth Fault  
      1.0227      1.0045     1.4288    0.99553     2.8157       3.6314        -0.016356       2.2483           1.9707        0.81324        30984              1.1472             0.032088             112.5            0          4.99e-06        2.4e-07         162.13         "Sensor Drift"     "Shaft Wear"         No Tooth Fault  
      1.0123      1.0024     1.4202    0.99233     2.8157       3.6314        -0.014701       2.2542           1.9826        0.81156        30661              1.1469              0.03287            108.86            0          3.62e-06       2.28e-07         230.39         "Sensor Drift"     "Shaft Wear"         No Tooth Fault  
      1.0275      1.0102     1.4338     1.0001     2.8157       3.6314         -0.02659       2.2439           1.9638        0.81589        31102              1.0985             0.033427            64.576            0          2.55e-06       1.65e-07         230.39         "Sensor Drift"     "Shaft Wear"         No Tooth Fault  
      1.0464      1.0275     1.4477     1.0011     2.8157       3.6314        -0.042849       2.2455           1.9449        0.81595        31665              1.1417             0.034159            98.838            0          1.73e-06       1.55e-07         230.39         "Sensor Drift"     "Shaft Wear"         No Tooth Fault  
      1.0459      1.0257     1.4402    0.98047     2.8157       3.6314        -0.035405       2.2757            1.955        0.80583        31554              1.1345               0.0353            44.223            0          1.11e-06       1.39e-07         230.39         "Sensor Drift"     "Shaft Wear"         No Tooth Fault  

To train a network using categorical features, you must first convert the categorical features to
numeric. First, convert the categorical predictors to categorical using the convertvars function by
specifying a string array containing the names of all the categorical input variables. In this data set,
there are two categorical features with names "SensorCondition" and "ShaftCondition".

categoricalInputNames = ["SensorCondition" "ShaftCondition"];
tbl = convertvars(tbl,categoricalInputNames,'categorical');

Loop over the categorical input variables. For each variable:

• Convert the categorical values to one-hot encoded vectors using the onehotencode function.
• Add the one-hot vectors to the table using the addvars function. Specify to insert the vectors

after the column containing the corresponding categorical data.
• Remove the corresponding column containing the categorical data.

for i = 1:numel(categoricalInputNames)
    name = categoricalInputNames(i);
    oh = onehotencode(tbl(:,name));
    tbl = addvars(tbl,oh,'After',name);
    tbl(:,name) = [];
end

Split the vectors into separate columns using the splitvars function.

tbl = splitvars(tbl);

View the first few rows of the table. Notice that the categorical predictors have been split into
multiple columns with the categorical values as the variable names.

head(tbl)

    SigMean     SigMedian    SigRMS    SigVar     SigPeak    SigPeak2Peak    SigSkewness    SigKurtosis    SigCrestFactor    SigMAD     SigRangeCumSum    SigCorrDimension    SigApproxEntropy    SigLyapExponent    PeakFreq    HighFreqPower    EnvPower    PeakSpecKurtosis    No Sensor Drift    Sensor Drift    No Shaft Wear    Shaft Wear    GearToothCondition
    ________    _________    ______    _______    _______    ____________    ___________    ___________    ______________    _______    ______________    ________________    ________________    _______________    ________    _____________    ________    ________________    _______________    ____________    _____________    __________    __________________

    -0.94876     -0.9722     1.3726    0.98387    0.81571       3.6314        -0.041525       2.2666           2.0514         0.8081        28562              1.1429             0.031581            79.931            0          6.75e-06       3.23e-07         162.13                0                1                1              0           No Tooth Fault  
    -0.97537    -0.98958     1.3937    0.99105    0.81571       3.6314        -0.023777       2.2598           2.0203        0.81017        29418              1.1362             0.037835            70.325            0          5.08e-08       9.16e-08         226.12                0                1                1              0           No Tooth Fault  
      1.0502      1.0267     1.4449    0.98491     2.8157       3.6314         -0.04162       2.2658           1.9487        0.80853        31710              1.1479             0.031565            125.19            0          6.74e-06       2.85e-07         162.13                0                1                0              1           No Tooth Fault  
      1.0227      1.0045     1.4288    0.99553     2.8157       3.6314        -0.016356       2.2483           1.9707        0.81324        30984              1.1472             0.032088             112.5            0          4.99e-06        2.4e-07         162.13                0                1                0              1           No Tooth Fault  
      1.0123      1.0024     1.4202    0.99233     2.8157       3.6314        -0.014701       2.2542           1.9826        0.81156        30661              1.1469              0.03287            108.86            0          3.62e-06       2.28e-07         230.39                0                1                0              1           No Tooth Fault  

 Train Network with Numeric Features

1-69



      1.0275      1.0102     1.4338     1.0001     2.8157       3.6314         -0.02659       2.2439           1.9638        0.81589        31102              1.0985             0.033427            64.576            0          2.55e-06       1.65e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0464      1.0275     1.4477     1.0011     2.8157       3.6314        -0.042849       2.2455           1.9449        0.81595        31665              1.1417             0.034159            98.838            0          1.73e-06       1.55e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0459      1.0257     1.4402    0.98047     2.8157       3.6314        -0.035405       2.2757            1.955        0.80583        31554              1.1345               0.0353            44.223            0          1.11e-06       1.39e-07         230.39                0                1                0              1           No Tooth Fault  

View the class names of the data set.

classNames = categories(tbl{:,labelName})

classNames = 2x1 cell
    {'No Tooth Fault'}
    {'Tooth Fault'   }

Split Data Set into Training and Validation Sets

Partition the data set into training, validation, and test partitions. Set aside 15% of the data for
validation, and 15% for testing.

View the number of observations in the dataset.

numObservations = size(tbl,1)

numObservations = 208

Determine the number of observations for each partition.

numObservationsTrain = floor(0.7*numObservations)

numObservationsTrain = 145

numObservationsValidation = floor(0.15*numObservations)

numObservationsValidation = 31

numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation

numObservationsTest = 32

Create an array of random indices corresponding to the observations and partition it using the
partition sizes.

idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxValidation = idx(numObservationsTrain+1:numObservationsTrain+numObservationsValidation);
idxTest = idx(numObservationsTrain+numObservationsValidation+1:end);

Partition the table of data into training, validation, and testing partitions using the indices.

tblTrain = tbl(idxTrain,:);
tblValidation = tbl(idxValidation,:);
tblTest = tbl(idxTest,:);

Define Network Architecture

Define the network for classification.

Define a network with a feature input layer and specify the number of features. Also, configure the
input layer to normalize the data using Z-score normalization. Next, include a fully connected layer
with output size 50 followed by a batch normalization layer and a ReLU layer. For classification,

1 Deep Networks

1-70



specify another fully connected layer with output size corresponding to the number of classes,
followed by a softmax layer and a classification layer.

numFeatures = size(tbl,2) - 1;
numClasses = numel(classNames);
 
layers = [
    featureInputLayer(numFeatures,'Normalization', 'zscore')
    fullyConnectedLayer(50)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify Training Options

Specify the training options.

• Train the network using Adam.
• Train using mini-batches of size 16.
• Shuffle the data every epoch.
• Monitor the network accuracy during training by specifying validation data.
• Display the training progress in a plot and suppress the verbose command window output.

The software trains the network on the training data and calculates the accuracy on the validation
data at regular intervals during training. The validation data is not used to update the network
weights.

miniBatchSize = 16;

options = trainingOptions('adam', ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'ValidationData',tblValidation, ...
    'Plots','training-progress', ...
    'Verbose',false);

Train Network

Train the network using the architecture defined by layers, the training data, and the training
options. By default, trainNetwork uses a GPU if one is available, otherwise, it uses a CPU. Training
on a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). You can also
specify the execution environment by using the 'ExecutionEnvironment' name-value pair
argument of trainingOptions.

The training progress plot shows the mini-batch loss and accuracy and the validation loss and
accuracy. For more information on the training progress plot, see “Monitor Deep Learning Training
Progress” on page 5-192.

net = trainNetwork(tblTrain,labelName,layers,options);

 Train Network with Numeric Features

1-71



Test Network

Predict the labels of the test data using the trained network and calculate the accuracy. Specify the
same mini-batch size used for training.

YPred = classify(net,tblTest(:,1:end-1),'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy. The accuracy is the proportion of the labels that the network
predicts correctly.

YTest = tblTest{:,labelName};
accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9688

View the results in a confusion matrix.

figure
confusionchart(YTest,YPred)

1 Deep Networks

1-72



See Also
trainNetwork | trainingOptions | fullyConnectedLayer | Deep Network Designer |
featureInputLayer

Related Examples
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Train Convolutional Neural Network for Regression” on page 3-49

More About
• “Deep Learning in MATLAB” on page 1-2
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “List of Deep Learning Layers” on page 1-43

 Train Network with Numeric Features

1-73



Train Network on Image and Feature Data

This example shows how to train a network that classifies handwritten digits using both image and
feature input data.

Load Training Data

Load the digits images, labels, and clockwise rotation angles.

[X1Train,TTrain,X2Train] = digitTrain4DArrayData;

To train a network with multiple inputs using the trainNetwork function, create a single datastore
that contains the training predictors and responses. To convert numeric arrays to datastores, use
arrayDatastore. Then, use the combine function to combine them into a single datastore.

dsX1Train = arrayDatastore(X1Train,IterationDimension=4);
dsX2Train = arrayDatastore(X2Train);
dsTTrain = arrayDatastore(TTrain);
dsTrain = combine(dsX1Train,dsX2Train,dsTTrain);

Display 20 random training images.

numObservationsTrain = numel(TTrain);
idx = randperm(numObservationsTrain,20);

figure
tiledlayout("flow");
for i = 1:numel(idx)
    nexttile
    imshow(X1Train(:,:,:,idx(i)))
    title("Angle: " + X2Train(idx(i)))
end

1 Deep Networks

1-74



Define Network Architecture

Define the following network.

• For the image input, specify an image input layer with size matching the input data.
• For the feature input, specify a feature input layer with size matching the number of input

features.
• For the image input branch, specify a convolution, batch normalization, and ReLU layer block,

where the convolutional layer has 16 5-by-5 filters.
• To convert the output of the batch normalization layer to a feature vector, include a fully

connected layer of size 50.
• To concatenate the output of the first fully connected layer with the feature input, flatten the

"SSCB"(spatial, spatial, channel, batch) output of the fully connected layer so that it has format
"CB" using a flatten layer.

• Concatenate the output of the flatten layer with the feature input along the first dimension (the
channel dimension).

 Train Network on Image and Feature Data

1-75



• For classification output, include a fully connected layer with output size matching the number of
classes, followed by a softmax and classification output layer.

Create a layer array containing the main branch of the network and convert it to a layer graph.

[h,w,numChannels,numObservations] = size(X1Train);
numFeatures = 1;
numClasses = numel(categories(TTrain));

imageInputSize = [h w numChannels];
filterSize = 5;
numFilters = 16;

layers = [
    imageInputLayer(imageInputSize,Normalization="none")
    convolution2dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(50)
    flattenLayer
    concatenationLayer(1,2,Name="cat")
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

lgraph = layerGraph(layers);

Add a feature input layer to the layer graph and connect it to the second input of the concatenation
layer.

featInput = featureInputLayer(numFeatures,Name="features");
lgraph = addLayers(lgraph,featInput);
lgraph = connectLayers(lgraph,"features","cat/in2");

Visualize the network in a plot.

figure
plot(lgraph)

1 Deep Networks

1-76



Specify Training Options

Specify the training options.

• Train using the SGDM optimizer.
• Train for 15 epochs.
• Train with a learning rate of 0.01.
• Display the training progress in a plot.
• Suppress the verbose output.

options = trainingOptions("sgdm", ...
    MaxEpochs=15, ...
    InitialLearnRate=0.01, ...
    Plots="training-progress", ...
    Verbose=0);

Train Network

Train the network using the trainNetwork function.

net = trainNetwork(dsTrain,lgraph,options);

 Train Network on Image and Feature Data

1-77



Test Network

Test the classification accuracy of the network by comparing the predictions on a test set with the
true labels.

Load the test data and create a combined datastore containing the images and features.

[X1Test,TTest,X2Test] = digitTest4DArrayData;
dsX1Test = arrayDatastore(X1Test,IterationDimension=4);
dsX2Test = arrayDatastore(X2Test);
dsTest = combine(dsX1Test,dsX2Test);

Classify the test data using the classify function.

YTest = classify(net,dsTest);

Visualize the predictions in a confusion chart.

figure
confusionchart(TTest,YTest)

1 Deep Networks

1-78



Evaluate the classification accuracy.

accuracy = mean(YTest == TTest)

accuracy = 0.9834

View some of the images with their predictions.

idx = randperm(size(X1Test,4),9);
figure
tiledlayout(3,3)
for i = 1:9
    nexttile
    I = X1Test(:,:,:,idx(i));
    imshow(I)

    label = string(YTest(idx(i)));
    title("Predicted Label: " + label)
end

 Train Network on Image and Feature Data

1-79



See Also
dlnetwork | dlfeval | dlarray | fullyConnectedLayer | Deep Network Designer |
featureInputLayer | minibatchqueue | onehotencode | onehotdecode

Related Examples
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Train Convolutional Neural Network for Regression” on page 3-49

More About
• “Deep Learning in MATLAB” on page 1-2
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “List of Deep Learning Layers” on page 1-43

1 Deep Networks

1-80



Compare Activation Layers

This example shows how to compare the accuracy of training networks with ReLU, leaky ReLU, ELU,
and swish activation layers.

Training deep learning neural networks requires using nonlinear activation functions such as the
ReLU and swish operations. Some activation layers can yield better training performance at the cost
of extra computation time. When training a neural network, you can try using different activation
layers to see if training improves.

This example shows how to compare the validation accuracy of training a SqueezeNet neural network
when you use ReLU, leaky ReLU, ELU, or swish activation layers given a validation set of images.

Load Data

Download the Flowers data set.

url = 'http://download.tensorflow.org/example_images/flower_photos.tgz';
downloadFolder = tempdir;
filename = fullfile(downloadFolder,'flower_dataset.tgz');

dataFolder = fullfile(downloadFolder,'flower_photos');
if ~exist(dataFolder,'dir')
    fprintf("Downloading Flowers data set (218 MB)... ")
    websave(filename,url);
    untar(filename,downloadFolder)
    fprintf("Done.\n")
end

Prepare Data for Training

Load the data as an image datastore using the imageDatastore function and specify the folder
containing the image data.

imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

View the number of classes of the training data.

numClasses = numel(categories(imds.Labels))

numClasses = 5

Divide the datastore so that each category in the training set has 80% of the images and the
validation set has the remaining images from each label.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.80,'randomize');

Specify augmentation options and create an augmented image datastore containing the training
images.

• Randomly reflect the images on the horizontal axis.
• Randomly scale the images by up to 20%.

 Compare Activation Layers

1-81



• Randomly rotate the images by up to 45 degrees.
• Randomly translate the images by up to 3 pixels.
• Resize the images to the input size of the network (227-by-227).

imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandScale',[0.8 1.2], ...
    'RandRotation',[-45,45], ...
    'RandXTranslation',[-3 3], ...
    'RandYTranslation',[-3 3]);

augimdsTrain = augmentedImageDatastore([227 227],imdsTrain,'DataAugmentation',imageAugmenter);

Create an augmented image datastore for the validation data that resizes the images to the input size
of the network. Do not apply any other image transformations to the validation data.

augimdsValidation = augmentedImageDatastore([227 227],imdsValidation);

Create Custom Plotting Function

When training multiple networks, to monitor the validation accuracy for each network on the same
axis, you can use the OutputFcn training option and specify a function that updates a plot with the
provided training information.

Create a function that takes the information structure provided by the training process and updates
an animated line plot. The updatePlot function, listed in the Plotting Function on page 1-85
section of the example, takes the information structure as input and updates the specified animated
line.

Specify Training Options

Specify the training options:

• Train using a mini-batch size of 128 for 60 epochs.
• Shuffle the data each epoch.
• Validate the neural network once per epoch using the held-out validation set.

miniBatchSize = 128;
numObservationsTrain = numel(imdsTrain.Files);
numIterationsPerEpoch = floor(numObservationsTrain / miniBatchSize);

options = trainingOptions('adam', ...
    'MiniBatchSize',miniBatchSize, ...
    'MaxEpochs',60, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',numIterationsPerEpoch, ...
    'Verbose',false);

Train Neural Networks

For each of the activation layer types—ReLU, leaky ReLU, ELU, and swish—train a SqueezeNet
network.

Specify the types of activation layers.

1 Deep Networks

1-82



activationLayerTypes = ["relu" "leaky-relu" "elu" "swish"];

Initialize the customized training progress plot by creating animated lines with colors specified by
colororder function.

figure

colors = colororder;

for i = 1:numel(activationLayerTypes)
    line(i) = animatedline('Color',colors(i,:));
end

ylim([0 100])

legend(activationLayerTypes,'Location','southeast');

xlabel("Iteration")
ylabel("Accuracy")
title("Validation Accuracy")
grid on

Loop over each of the activation layer types and train the neural network. For each activation layer
type:

• Create a function handle activationLayer that creates the activation layer.
• Create a new SqueezeNet network without weights and replace the activation layers (the ReLU

layers) with layers of the activation layer type using the function handle activationLayer.
• Replace the final convolution layer of the neural network with one specifying the number of

classes of the input data.
• Update the validation accuracy plot by setting the OutputFcn property of the training options

object to a function handle representing the updatePlot function with the animated line
corresponding to the activation layer type.

• Train and time the network using the trainNetwork function.

for i = 1:numel(activationLayerTypes)
    activationLayerType = activationLayerTypes(i);
    
    % Determine activation layer type.
    switch activationLayerType
        case "relu"
            activationLayer = @reluLayer;
        case "leaky-relu"
            activationLayer = @leakyReluLayer;
        case "elu"
            activationLayer = @eluLayer;
        case "swish"
            activationLayer = @swishLayer;
    end
    
    % Create SqueezeNet layer graph.
    lgraph = squeezenet('Weights','none');
    
    % Replace activation layers.
    if activationLayerType ~= "relu"
        layers = lgraph.Layers;

 Compare Activation Layers

1-83



        for j = 1:numel(layers)
            if isa(layers(j),'nnet.cnn.layer.ReLULayer')
                layerName = layers(j).Name;
                layer = activationLayer('Name',activationLayerType+"_new_"+j);
                lgraph = replaceLayer(lgraph,layerName,layer);
            end
        end
    end
    
    % Specify number of classes in final convolution layer.
    layer = convolution2dLayer([1 1],numClasses,'Name','conv10');
    lgraph = replaceLayer(lgraph,'conv10',layer);
    
    % Specify custom plot function.
    options.OutputFcn = @(info) updatePlot(info,line(i));
    
    % Train the network.
    start = tic;
    [net{i},info{i}] = trainNetwork(augimdsTrain,lgraph,options);
    elapsed(i) = toc(start);
end

Visualize the training times in a bar chart.

figure
bar(categorical(activationLayerTypes),elapsed)
title("Training Time")
ylabel("Time (seconds)")

1 Deep Networks

1-84



In this case, using the different activation layers yields similar final validation accuracies, with the
leaky ReLU and swish layers having slightly higher values. Using swish activation layers enables
convergence in fewer iterations. When compared to the other activation layers, using ELU layers
makes the validation accuracy converge in more iterations and requires more computation time.

Plotting Function

The updatePlot function takes as input the information structure info and updates the validation
plot specified by the animated line line.

function updatePlot(info,line)

if ~isempty(info.ValidationAccuracy)
    addpoints(line,info.Iteration,info.ValidationAccuracy);
    drawnow limitrate
end

end

See Also
trainingOptions | trainNetwork | reluLayer | leakyReluLayer | swishLayer

More About
• “Deep Learning in MATLAB” on page 1-2

 Compare Activation Layers

1-85



• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

1 Deep Networks

1-86



Deep Learning Tips and Tricks
This page describes various training options and techniques for improving the accuracy of deep
learning networks.

Choose Network Architecture
The appropriate network architecture depends on the task and the data available. Consider these
suggestions when deciding which architecture to use and whether to use a pretrained network or to
train from scratch.

Data Description of Task Learn More
Images Classification of natural images Try different pretrained

networks. For a list of
pretrained deep learning
networks, see “Pretrained Deep
Neural Networks” on page 1-11.

To learn how to interactively
prepare a network for transfer
learning using Deep Network
Designer, see “Transfer
Learning with Deep Network
Designer” on page 2-2.

Regression of natural images Try different pretrained
networks. For an example
showing how to convert a
pretrained classification
network into a regression
network, see “Convert
Classification Network into
Regression Network” on page 3-
66.

Classification and regression of
non-natural images (for
example, tiny images and
spectrograms

For an example showing how to
classify tiny images, see “Train
Residual Network for Image
Classification” on page 3-13.

For an example showing how to
classify spectrograms, see
“Train Speech Command
Recognition Model Using Deep
Learning” on page 4-27.

 Deep Learning Tips and Tricks

1-87



Data Description of Task Learn More
Semantic segmentation Computer Vision Toolbox™

provides tools to create deep
learning networks for semantic
segmentation. For more
information, see “Getting
Started with Semantic
Segmentation Using Deep
Learning” (Computer Vision
Toolbox).

Sequences, time series, and
signals

Sequence-to-label classification For an example, see “Sequence
Classification Using Deep
Learning” on page 4-3.

Sequence-to-sequence
classification and regression

To learn more, see “Sequence-
to-Sequence Classification
Using Deep Learning” on page
4-39 and “Sequence-to-
Sequence Regression Using
Deep Learning” on page 4-44.

Sequence-to-one regression For an example, see “Sequence-
to-One Regression Using Deep
Learning” on page 4-53.

Time series forecasting For an example, see “Time
Series Forecasting Using Deep
Learning” on page 4-16.

Text Classification and regression Text Analytics Toolbox™
provides tools to create deep
learning networks for text data.
For an example, see “Classify
Text Data Using Deep Learning”
on page 4-195.

Text generation For an example, see “Generate
Text Using Deep Learning” on
page 4-280.

1 Deep Networks

1-88



Data Description of Task Learn More
Audio Audio classification and

regression
Try different pretrained
networks. For a list of
pretrained deep learning
networks, see “Pretrained
Models” (Audio Toolbox).

To learn how to
programmatically prepare a
network for transfer learning,
see “Transfer Learning with
Pretrained Audio Networks”
(Audio Toolbox). To learn how to
interactively prepare a network
for transfer learning using Deep
Network Designer, see
“Transfer Learning with
Pretrained Audio Networks in
Deep Network Designer” on
page 2-93.

For an example showing how to
classify sounds using deep
learning, see “Classify Sound
Using Deep Learning” (Audio
Toolbox).

Choose Training Options
The trainingOptions function provides a variety of options to train your deep learning network.

Tip More Information
Monitor training progress To turn on the training progress plot, set the

'Plots' option in trainingOptions to
'training-progress'.

Use validation data To specify validation data, use the
'ValidationData' option in
trainingOptions.

Note If your validation data set is too small and
does not sufficiently represent the data, then the
reported metrics might not help you. Using a too
large validation data set can result in slower
training.

 Deep Learning Tips and Tricks

1-89



Tip More Information
For transfer learning, speed up the learning of
new layers and slow down the learning in the
transferred layers

Specify higher learning rate factors for new
layers by using, for example, the
WeightLearnRateFactor property of
convolution2dLayer.

Decrease the initial learning rate using the
'InitialLearnRate' option of
trainingOptions.

When transfer learning, you do not need to train
for as many epochs. Decrease the number of
epochs using the 'MaxEpochs' option in
trainingOptions.

To learn how to interactively prepare a network
for transfer learning using Deep Network
Designer, see “Transfer Learning with Deep
Network Designer” on page 2-2.

Shuffle your data every epoch To shuffle your data every epoch (one full pass of
the data), set the 'Shuffle' option in
trainingOptions to 'every-epoch'.

Note For sequence data, shuffling can have a
negative impact on the accuracy as it can
increase the amount of padding or truncated
data. If you have sequence data, then sorting the
data by sequence length can help. To learn more,
see “Sequence Padding, Truncation, and
Splitting” on page 1-101.

Try different optimizers To specify different optimizers, use the
solverName argument in trainingOptions.

For more information, see “Set Up Parameters and Train Convolutional Neural Network” on page 1-
64.

Improve Training Accuracy
If you notice problems during training, then consider these possible solutions.

1 Deep Networks

1-90



Problem Possible Solution
NaNs or large spikes in the loss Decrease the initial learning rate using the

'InitialLearnRate' option of
trainingOptions.

If decreasing the learning rate does not help,
then try using gradient clipping. To set the
gradient threshold, use the
'GradientThreshold' option in
trainingOptions.

Loss is still decreasing at the end of training Train for longer by increasing the number of
epochs using the 'MaxEpochs' option in
trainingOptions.

Loss plateaus If the loss plateaus at an unexpectedly high value,
then drop the learning rate at the plateau. To
change the learning rate schedule, use the
'LearnRateSchedule' option in
trainingOptions.

If dropping the learning rate does not help, then
the model might be underfitting. Try increasing
the number of parameters or layers. You can
check if the model is underfitting by monitoring
the validation loss.

Validation loss is much higher than the training
loss

To prevent overfitting, try one or more of the
following:

• Use data augmentation. For more information,
see “Train Network with Augmented Images”.

• Use dropout layers. For more information, see
dropoutLayer.

• Increase the global L2 regularization factor
using the 'L2Regularization' option in
trainingOptions.

Loss decreases very slowly Increase the initial learning rate using the
'InitialLearnRate' option of
trainingOptions.

For image data, try including batch normalization
layers in your network. For more information, see
batchNormalizationLayer.

For more information, see “Set Up Parameters and Train Convolutional Neural Network” on page 1-
64.

Fix Errors in Training
If your network does not train at all, then consider the possible solutions.

 Deep Learning Tips and Tricks

1-91



Error Description Possible Solution
Out-of-memory error when
training

The available hardware is
unable to store the current mini-
batch, the network weights, and
the computed activations.

Try reducing the mini-batch size
using the 'MiniBatchSize'
option of trainingOptions.

If reducing the mini-batch size
does not work, then try using a
smaller network, reducing the
number of layers, or reducing
the number of parameters or
filters in the layers.

Custom layer errors There could be an issue with the
implementation of the custom
layer.

Check the validity of the custom
layer and find potential issues
using checkLayer.

If a test fails when you use
checkLayer, then the function
provides a test diagnostic and a
framework diagnostic. The test
diagnostic highlights any layer
issues, whereas the framework
diagnostic provides more
detailed information. To learn
more about the test diagnostics
and get suggestions for possible
solutions, see “Diagnostics” on
page 19-172.

Training throws the error
'CUDA_ERROR_UNKNOWN'

Sometimes, the GPU throws this
error when it is being used for
both compute and display
requests from the OS.

Try reducing the mini-batch size
using the 'MiniBatchSize'
option of trainingOptions.

If reducing the mini-batch size
does not work, then in
Windows®, try adjusting the
Timeout Detection and Recovery
(TDR) settings. For example,
change the TdrDelay from 2
seconds (default) to 4 seconds
(requires registry edit).

You can analyze your deep learning network using analyzeNetwork. The analyzeNetwork function
displays an interactive visualization of the network architecture, detects errors and issues with the
network, and provides detailed information about the network layers. Use the network analyzer to
visualize and understand the network architecture, check that you have defined the architecture
correctly, and detect problems before training. Problems that analyzeNetwork detects include
missing or disconnected layers, mismatched or incorrect sizes of layer inputs, an incorrect number of
layer inputs, and invalid graph structures.

Prepare and Preprocess Data
You can improve the accuracy by preprocessing your data.

1 Deep Networks

1-92



Weight or Balance Classes

Ideally, all classes have an equal number of observations. However, for some tasks, classes can be
imbalanced. For example, automotive datasets of street scenes tend to have more sky, building, and
road pixels than pedestrian and bicyclist pixels because the sky, buildings, and roads cover more
image area. If not handled correctly, this imbalance can be detrimental to the learning process
because the learning is biased in favor of the dominant classes.

For classification tasks, you can specify class weights using the 'ClassWeights' option of
classificationLayer. For an example, see “Train Sequence Classification Network Using Data
With Imbalanced Classes” on page 4-112. For semantic segmentation tasks, you can specify class
weights using the ClassWeights property of pixelClassificationLayer.

Alternatively, you can balance the classes by doing one or more of the following:

• Add new observations from the least frequent classes.
• Remove observations from the most frequent classes.
• Group similar classes. For example, group the classes "car" and "truck" into the single class

"vehicle".

Preprocess Image Data

For more information about preprocessing image data, see “Preprocess Images for Deep Learning”
on page 20-16.

Task More Information
Resize images To use a pretrained network, you must resize

images to the input size of the network. To resize
images, use augmentedImageDatastore. For
example, this syntax resizes images in the image
datastore imds:

auimds = augmentedImageDatastore(inputSize,imds);

Tip Use augmentedImageDatastore for
efficient preprocessing of images for deep
learning, including image resizing.

Do not use the readFcn option of the
imageDatastore function for preprocessing or
resizing, as this option is usually significantly
slower.

Image augmentation To avoid overfitting, use image transformation. To
learn more, see “Train Network with Augmented
Images”.

 Deep Learning Tips and Tricks

1-93



Task More Information
Normalize regression targets Normalize the predictors before you input them

to the network. If you normalize the responses
before training, then you must transform the
predictions of the trained network to obtain the
predictions of the original responses.

For more information, see “Train Convolutional
Neural Network for Regression” on page 3-49.

Preprocess Sequence Data

For more information about working with LSTM networks, see “Long Short-Term Memory Neural
Networks” on page 1-97.

Task More Information
Normalize sequence data To normalize sequence data, first calculate the

per-feature mean and standard deviation for all
the sequences. Then, for each training
observation, subtract the mean value and divide
by the standard deviation.

To learn more, see “Normalize Sequence Data”
on page 1-105.

Reduce sequence padding and truncation To reduce the amount of padding or discarded
data when padding or truncating sequences, try
sorting your data by sequence length.

To learn more, see “Sequence Padding,
Truncation, and Splitting” on page 1-101.

Specify mini-batch size and padding options for
prediction

When you make predictions with sequences of
different lengths, the mini-batch size can impact
the amount of padding added to the input data,
which can result in different predicted values. Try
using different values to see which works best
with your network.

To specify mini-batch size and padding options,
use the 'MiniBatchSize' and
'SequenceLength' options of the classify,
predict, classifyAndUpdateState, and
predictAndUpdateState functions.

Use Available Hardware
To specify the execution environment, use the 'ExecutionEnvironment' option in
trainingOptions.

1 Deep Networks

1-94



Problem More Information
Training on CPU is slow If training is too slow on a single CPU, try using a

pretrained deep learning network as a feature
extractor and train a machine learning model. For
an example, see “Extract Image Features Using
Pretrained Network” on page 3-24.

Training LSTM on GPU is slow The CPU is better suited for training an LSTM
network using mini-batches with short sequences.
To use the CPU, set the
'ExecutionEnvironment' option in
trainingOptions to 'cpu'.

Software does not use all available GPUs If you have access to a machine with multiple
GPUs, simply set the
'ExecutionEnvironment' option in
trainingOptions to 'multi-gpu'. For more
information, see “Deep Learning with MATLAB on
Multiple GPUs” on page 7-14.

For more information, see “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page
7-2.

Fix Errors With Loading from MAT-Files
If you are unable to load layers or a network from a MAT-file and get a warning of the form

Warning: Unable to load instances of class layerType into a 
heterogeneous array.  The definition of layerType could be
missing or contain an error.  Default objects will be
substituted. 
Warning: While loading an object of class 'SeriesNetwork':
Error using 'forward' in Layer nnet.cnn.layer.MissingLayer. The
function threw an error and could not be executed. 

then the network in the MAT-file may contain unavailable layers. This could be due to the following:

• The file contains a custom layer not on the path – To load networks containing custom layers, add
the custom layer files to the MATLAB path.

• The file contains a custom layer from a support package – To load networks using layers from
support packages, install the required support package at the command line by using the
corresponding function (for example, resnet18) or using the Add-On Explorer.

• The file contains a custom layer from a documentation example that is not on the path – To load
networks containing custom layers from documentation examples, open the example as a live
script and copy the layer from the example folder to your working directory.

• The file contains a layer from a toolbox that is not installed – To access layers from other
toolboxes, for example, Computer Vision Toolbox or Text Analytics Toolbox, install the
corresponding toolbox.

After trying the suggested solutions, reload the MAT-file.

See Also
trainingOptions | checkLayer | analyzeNetwork | Deep Network Designer

 Deep Learning Tips and Tricks

1-95



More About
• “Example Deep Learning Networks Architectures” on page 1-23
• “Pretrained Deep Neural Networks” on page 1-11
• “Preprocess Images for Deep Learning” on page 20-16
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Convert Classification Network into Regression Network” on page 3-66

1 Deep Networks

1-96



Long Short-Term Memory Neural Networks
This topic explains how to work with sequence and time series data for classification and regression
tasks using long short-term memory (LSTM) neural networks. For an example showing how to classify
sequence data using an LSTM neural network, see “Sequence Classification Using Deep Learning” on
page 4-3.

An LSTM neural network is a type of recurrent neural network (RNN) that can learn long-term
dependencies between time steps of sequence data.

LSTM Neural Network Architecture
The core components of an LSTM neural network are a sequence input layer and an LSTM layer. A
sequence input layer inputs sequence or time series data into the neural network. An LSTM layer
learns long-term dependencies between time steps of sequence data.

This diagram illustrates the architecture of a simple LSTM neural network for classification. The
neural network starts with a sequence input layer followed by an LSTM layer. To predict class labels,
the neural network ends with a fully connected layer, a softmax layer, and a classification output
layer.

This diagram illustrates the architecture of a simple LSTM neural network for regression. The neural
network starts with a sequence input layer followed by an LSTM layer. The neural network ends with
a fully connected layer and a regression output layer.

This diagram illustrates the architecture of a neural network for video classification. To input image
sequences to the neural network, use a sequence input layer. To use convolutional layers to extract
features, that is, to apply the convolutional operations to each frame of the videos independently, use
a sequence folding layer followed by the convolutional layers, and then a sequence unfolding layer. To
use the LSTM layers to learn from sequences of vectors, use a flatten layer followed by the LSTM and
output layers.

Classification LSTM Networks

To create an LSTM network for sequence-to-label classification, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, a softmax layer, and a classification
output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of classes. You do not need to specify the sequence length.

 Long Short-Term Memory Neural Networks

1-97



For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For an example showing how to train an LSTM network for sequence-to-label classification and
classify new data, see “Sequence Classification Using Deep Learning” on page 4-3.

To create an LSTM network for sequence-to-sequence classification, use the same architecture as for
sequence-to-label classification, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Regression LSTM Networks

To create an LSTM network for sequence-to-one regression, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, and a regression output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of responses. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numResponses)
    regressionLayer];

To create an LSTM network for sequence-to-sequence regression, use the same architecture as for
sequence-to-one regression, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...

1 Deep Networks

1-98



    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numResponses)
    regressionLayer];

For an example showing how to train an LSTM network for sequence-to-sequence regression and
predict on new data, see “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44.

Video Classification Network

To create a deep learning network for data containing sequences of images such as video data and
medical images, specify image sequence input using the sequence input layer.

To use convolutional layers to extract features, that is, to apply the convolutional operations to each
frame of the videos independently, use a sequence folding layer followed by the convolutional layers,
and then a sequence unfolding layer. To use the LSTM layers to learn from sequences of vectors, use
a flatten layer followed by the LSTM and output layers.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

For an example showing how to train a deep learning network for video classification, see “Classify
Videos Using Deep Learning” on page 4-87.

Deeper LSTM Networks

 Long Short-Term Memory Neural Networks

1-99



You can make LSTM networks deeper by inserting extra LSTM layers with the output mode
'sequence' before the LSTM layer. To prevent overfitting, you can insert dropout layers after the
LSTM layers.

For sequence-to-label classification networks, the output mode of the last LSTM layer must be
'last'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','last')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For sequence-to-sequence classification networks, the output mode of the last LSTM layer must be
'sequence'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','sequence')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Layers
Layer Description

 sequenceInputLayer
A sequence input layer inputs sequence data to a
neural network.

 lstmLayer
An LSTM layer is an RNN layer that learns long-
term dependencies between time steps in time
series and sequence data.

 bilstmLayer
A bidirectional LSTM (BiLSTM) layer is an RNN
layer that learns bidirectional long-term
dependencies between time steps of time series
or sequence data. These dependencies can be
useful when you want the RNN to learn from the
complete time series at each time step.

1 Deep Networks

1-100



Layer Description

 gruLayer
A GRU layer is an RNN layer that learns
dependencies between time steps in time series
and sequence data.

 convolution1dLayer
A 1-D convolutional layer applies sliding
convolutional filters to 1-D input.

 maxPooling1dLayer
A 1-D max pooling layer performs downsampling
by dividing the input into 1-D pooling regions,
then computing the maximum of each region.

 averagePooling1dLayer
A 1-D average pooling layer performs
downsampling by dividing the input into 1-D
pooling regions, then computing the average of
each region.

 globalMaxPooling1dLayer
A 1-D global max pooling layer performs
downsampling by outputting the maximum of the
time or spatial dimensions of the input.

 sequenceFoldingLayer
A sequence folding layer converts a batch of
image sequences to a batch of images. Use a
sequence folding layer to perform convolution
operations on time steps of image sequences
independently.

 sequenceUnfoldingLayer
A sequence unfolding layer restores the sequence
structure of the input data after sequence folding.

 flattenLayer
A flatten layer collapses the spatial dimensions of
the input into the channel dimension.

 wordEmbeddingLayer
A word embedding layer maps word indices to
vectors.

Classification, Prediction, and Forecasting
To classify or make predictions on new data, use classify and predict.

LSTM neural networks can remember the state of the neural network between predictions. The RNN
state is useful when you do not have the complete time series in advance, or if you want to make
multiple predictions on a long time series.

To predict and classify on parts of a time series and update the RNN state, use
predictAndUpdateState and classifyAndUpdateState. To reset the RNN state between
predictions, use resetState.

For an example showing how to forecast future time steps of a sequence, see “Time Series
Forecasting Using Deep Learning” on page 4-16.

Sequence Padding, Truncation, and Splitting
LSTM neural networks support input data with varying sequence lengths. When passing data through
the neural network, the software pads, truncates, or splits sequences so that all the sequences in

 Long Short-Term Memory Neural Networks

1-101



each mini-batch have the specified length. You can specify the sequence lengths and the value used to
pad the sequences using the SequenceLength and SequencePaddingValue name-value pair
arguments in trainingOptions.

After training the neural network, use the same mini-batch size and padding options when using the
classify, predict, classifyAndUpdateState, predictAndUpdateState, and activations
functions.

Sort Sequences by Length

To reduce the amount of padding or discarded data when padding or truncating sequences, try
sorting your data by sequence length. To sort the data by sequence length, first get the number of
columns of each sequence by applying size(X,2) to every sequence using cellfun. Then sort the
sequence lengths using sort, and use the second output to reorder the original sequences.

sequenceLengths = cellfun(@(X) size(X,2), XTrain);
[sequenceLengthsSorted,idx] = sort(sequenceLengths);
XTrain = XTrain(idx);

The following figures show the sequence lengths of the sorted and unsorted data in bar charts.

Pad Sequences

If you specify the sequence length 'longest', then the software pads the sequences so that all the
sequences in a mini-batch have the same length as the longest sequence in the mini-batch. This
option is the default.

The following figures illustrate the effect of padding sequence data to the length of the longest
sequence in each mini-batch.

1 Deep Networks

1-102



Truncate Sequences

If you specify the sequence length 'shortest', then the software truncates the sequences so that
all the sequences in a mini-batch have the same length as the shortest sequence in that mini-batch.
The remaining data in the sequences is discarded.

The following figures illustrate the effect of truncating sequence data to the length of the shortest
sequence in each mini-batch.

Split Sequences

If you set the sequence length to an integer value, then software pads all the sequences in a mini-
batch to the length of the longest sequence in the mini-batch. Then, the software splits each sequence
into smaller sequences of the specified length. If splitting occurs, then the software creates extra
mini-batches. If the specified sequence length does not evenly divide the sequence lengths of the
data, then the mini-batches that contain the final time steps of the sequences have length shorter
than the specified sequence length.

Use this option if the full sequences do not fit in memory. Alternatively, you can try reducing the
number of sequences per mini-batch by setting the MiniBatchSize training option to a lower value
using the trainingOptions function.

If you specify the sequence length as a positive integer, then the software processes the smaller
sequences in consecutive iterations. The neural network updates the RNN state between the split
sequences.

 Long Short-Term Memory Neural Networks

1-103



The following figures illustrate the effect of splitting a collection of sequences into mini-batches with
a sequence length of 5.

Specify Padding Direction

The location of the padding and truncation can impact training, classification, and prediction
accuracy. Try setting the 'SequencePaddingDirection' option in trainingOptions to 'left'
or 'right' and see which is best for your data.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence neural networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

The following figures illustrate padding sequence data on the left and on the right.

The following figures illustrate truncating sequence data on the left and on the right.

1 Deep Networks

1-104



Normalize Sequence Data
To recenter training data automatically at training time using zero-center normalization, set the
Normalization option of sequenceInputLayer to 'zerocenter'. Alternatively, you can
normalize sequence data by first calculating the per-feature mean and standard deviation of all the
sequences. Then, for each training observation, subtract the mean value and divide by the standard
deviation.

mu = mean([XTrain{:}],2);
sigma = std([XTrain{:}],0,2);
XTrain = cellfun(@(X) (X-mu)./sigma,XTrain,'UniformOutput',false);

Out-of-Memory Data
Use datastores for sequence, time series, and signal data when data is too large to fit in memory or to
perform specific operations when reading batches of data.

To learn more, see “Train Network Using Out-of-Memory Sequence Data” on page 20-97 and
“Classify Out-of-Memory Text Data Using Deep Learning” on page 20-106.

Visualization
Investigate and visualize the features learned by LSTM neural networks from sequence and time
series data by extracting the activations using the activations function. To learn more, see
“Visualize Activations of LSTM Network” on page 5-249.

LSTM Layer Architecture
This diagram illustrates the flow of a time series X with C features (channels) of length S through an
LSTM layer. In the diagram, ht and ct denote the output (also known as the hidden state) and the cell
state at time step t, respectively.

 Long Short-Term Memory Neural Networks

1-105



The first LSTM block uses the initial state of the RNN and the first time step of the sequence to
compute the first output and the updated cell state. At time step t, the block uses the current state of
the RNN (ct − 1, ht − 1) and the next time step of the sequence to compute the output and the updated
cell state ct.

The state of the layer consists of the hidden state (also known as the output state) and the cell state.
The hidden state at time step t contains the output of the LSTM layer for this time step. The cell state
contains information learned from the previous time steps. At each time step, the layer adds
information to or removes information from the cell state. The layer controls these updates using
gates.

These components control the cell state and hidden state of the layer.

Component Purpose
Input gate (i) Control level of cell state update
Forget gate (f) Control level of cell state reset (forget)
Cell candidate (g) Add information to cell state
Output gate (o) Control level of cell state added to hidden state

This diagram illustrates the flow of data at time step t. This diagram shows how the gates forget,
update, and output the cell and hidden states.

1 Deep Networks

1-106



The learnable weights of an LSTM layer are the input weights W (InputWeights), the recurrent
weights R (RecurrentWeights), and the bias b (Bias). The matrices W, R, and b are concatenations
of the input weights, the recurrent weights, and the bias of each component, respectively. The layer
concatenates the matrices according to these equations:

W =

Wi
Wf
Wg
Wo

, R =

Ri
Rf
Rg
Ro

, b =

bi
bf
bg
bo

,

where i, f, g, and o denote the input gate, forget gate, cell candidate, and output gate, respectively.

The cell state at time step t is given by

ct = f t ⊙ ct − 1 + it ⊙ gt,

where ⊙ denotes the Hadamard product (element-wise multiplication of vectors).

The hidden state at time step t is given by

ht = ot⊙ σc(ct),

where σc denotes the state activation function. By default, the lstmLayer function uses the
hyperbolic tangent function (tanh) to compute the state activation function.

These formulas describe the components at time step t.

 Long Short-Term Memory Neural Networks

1-107



Component Formula
Input gate it = σg(Wixt + Riht − 1 + bi)
Forget gate f t = σg(Wfxt + Rfht − 1 + bf )
Cell candidate gt = σc(Wgxt + Rght − 1 + bg)
Output gate ot = σg(Woxt + Roht − 1 + bo)

In these calculations, σg denotes the gate activation function. By default, the lstmLayer function,
uses the sigmoid function, given by σ(x) = (1 + e−x)−1, to compute the gate activation function.

References
[1] Hochreiter, S., and J. Schmidhuber. "Long short-term memory." Neural computation. Vol. 9,

Number 8, 1997, pp.1735–1780.

See Also
sequenceInputLayer | lstmLayer | bilstmLayer | gruLayer | classifyAndUpdateState |
predictAndUpdateState | resetState | sequenceFoldingLayer | sequenceUnfoldingLayer
| flattenLayer | wordEmbeddingLayer | activations

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Classify Videos Using Deep Learning” on page 4-87
• “Visualize Activations of LSTM Network” on page 5-249
• “Develop Custom Mini-Batch Datastore” on page 20-38
• “Example Deep Learning Networks Architectures” on page 1-23
• “Deep Learning in MATLAB” on page 1-2

1 Deep Networks

1-108



Deep Network Designer

• “Transfer Learning with Deep Network Designer” on page 2-2
• “Build Networks with Deep Network Designer” on page 2-15
• “Train Networks Using Deep Network Designer” on page 2-31
• “Import Custom Layer into Deep Network Designer” on page 2-35
• “Import Data into Deep Network Designer” on page 2-39
• “Create Simple Sequence Classification Network Using Deep Network Designer” on page 2-53
• “Train Network for Time Series Forecasting Using Deep Network Designer” on page 2-60
• “Generate MATLAB Code from Deep Network Designer” on page 2-73
• “View Autogenerated Custom Layers Using Deep Network Designer” on page 2-76
• “Image-to-Image Regression in Deep Network Designer” on page 2-79
• “Generate Experiment Using Deep Network Designer” on page 2-86
• “Transfer Learning with Pretrained Audio Networks in Deep Network Designer” on page 2-93
• “Export Image Classification Network from Deep Network Designer to Simulink” on page 2-102

2



Transfer Learning with Deep Network Designer

This example shows how to perform transfer learning interactively using the Deep Network Designer
app.

Transfer learning is the process of taking a pretrained deep learning network and fine-tuning it to
learn a new task. Using transfer learning is usually faster and easier than training a network from
scratch. You can quickly transfer learned features to a new task using a smaller amount of data.

Use Deep Network Designer to perform transfer learning for image classification by following these
steps:

1 Open the Deep Network Designer app and choose a pretrained network.
2 Import the new data set.
3 Replace the final layers with new layers adapted to the new data set.
4 Set learning rates so that learning is faster in the new layers than in the transferred layers.
5 Train the network using Deep Network Designer, or export the network for training at the

command line.

Extract Data

In the workspace, extract the MathWorks Merch data set. This is a small data set containing 75
images of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards,
screwdriver, and torch).

unzip("MerchData.zip");

Select a Pretrained Network

To open Deep Network Designer, on the Apps tab, under Machine Learning and Deep Learning,
click the app icon. Alternatively, you can open the app from the command line:

deepNetworkDesigner

Deep Network Designer provides a selection of pretrained image classification networks that have
learned rich feature representations suitable for a wide range of images. Transfer learning works
best if your images are similar to the images originally used to train the network. If your training
images are natural images like those in the ImageNet database, then any of the pretrained networks
is suitable. For a list of available networks and how to compare them, see “Pretrained Deep Neural
Networks” on page 1-11.

If your data is very different from the ImageNet data—for example, if you have tiny images,
spectrograms, or nonimage data—training a new network might be better. For examples showing how
to train a network from scratch, see “Create Simple Sequence Classification Network Using Deep
Network Designer” on page 2-53 and “Train Simple Semantic Segmentation Network in Deep
Network Designer” on page 8-162.

SqueezeNet does not require an additional support package. For other pretrained networks, if you do
not have the required support package installed, then the app provides the Install option.

Select SqueezeNet from the list of pretrained networks and click Open.

2 Deep Network Designer

2-2



Explore Network

Deep Network Designer displays a zoomed-out view of the whole network in the Designer pane.

 Transfer Learning with Deep Network Designer

2-3



Explore the network plot. To zoom in with the mouse, use Ctrl+scroll wheel. To pan, use the arrow
keys, or hold down the scroll wheel and drag the mouse. Select a layer to view its properties.
Deselect all layers to view the network summary in the Properties pane.

Import Data

To load the data into Deep Network Designer, on the Data tab, click Import Data > Import Image
Classification Data.

In the Data source list, select Folder. Click Browse and select the extracted MerchData folder.

2 Deep Network Designer

2-4



Image Augmentation

You can choose to apply image augmentation to your training data. The Deep Network Designer app
provides the following augmentation options:

• Random reflection in the x-axis
• Random reflection in the y-axis
• Random rotation
• Random rescaling
• Random horizontal translation
• Random vertical translation

You can effectively increase the amount of training data by applying randomized augmentation to
your data. Augmentation also enables you to train networks to be invariant to distortions in image
data. For example, you can add randomized rotations to input images so that a network is invariant to
the presence of rotation in input images.

For this example, apply a random reflection in the x-axis, a random rotation from the range [-90,90]
degrees, and a random rescaling from the range [1,2].

 Transfer Learning with Deep Network Designer

2-5



Validation Data

You can also choose validation data either by splitting it from the training data, known as holdout
validation, or by importing it from another source. Validation estimates model performance on new
data compared to the training data, and helps you to monitor performance and protect against
overfitting.

For this example, use 30% of the images for validation.

2 Deep Network Designer

2-6



Click Import to import the data into Deep Network Designer.

Visualize Data

Using Deep Network Designer, you can visually inspect the distribution of the training and validation
data in the Data tab. You can see that, in this example, there are five classes in the data set. You can
also see random observations from each class.

 Transfer Learning with Deep Network Designer

2-7



Prepare Network for Training

Edit the network in the Designer pane to specify a new number of classes in your data. To prepare
the network for transfer learning, replace the last learnable layer and the final classification layer.

Replace Last Learnable Layer

To use a pretrained network for transfer learning, you must change the number of classes to match
your new data set. First, find the last learnable layer in the network. For SqueezeNet, the last
learnable layer is the last convolutional layer, 'conv10'. In this case, replace the convolutional layer
with a new convolutional layer with the number of filters equal to the number of classes.

Drag a new convolution2dLayer onto the canvas. To match the original convolutional layer, set
FilterSize to 1,1.

The NumFilters property defines the number of classes for classification problems. Change
NumFilters to the number of classes in the new data, in this example, 5.

Change the learning rates so that learning is faster in the new layer than in the transferred layers by
setting WeightLearnRateFactor and BiasLearnRateFactor to 10.

Delete the last 2-D convolutional layer and connect your new layer instead.

2 Deep Network Designer

2-8



Replace Output Layer

For transfer learning, you need to replace the output layer. Scroll to the end of the Layer Library and
drag a new classificationLayer onto the canvas. Delete the original classification layer and
connect your new layer in its place.

For a new output layer, you do not need to set the OutputSize. At training time, Deep Network
Designer automatically sets the output classes of the layer from the data.

 Transfer Learning with Deep Network Designer

2-9



Check Network

To check that the network is ready for training, click Analyze. If the Deep Learning Network
Analyzer reports zero errors, then the edited network is ready for training.

2 Deep Network Designer

2-10



Train Network

In Deep Network Designer you can train networks imported or created in the app.

To train the network with the default settings, on the Training tab, click Train. The default training
options are better suited for large data sets, for small data sets reduce the mini-batch size and the
validation frequency.

If you want greater control over the training, click Training Options and choose the settings to train
with.

• Set the initial learn rate to a small value to slow down learning in the transferred layers.
• Specify validation frequency so that the accuracy on the validation data is calculated once every

epoch.
• Specify a small number of epochs. An epoch is a full training cycle on the entire training data set.

For transfer learning, you do not need to train for as many epochs.
• Specify the mini-batch size, that is, how many images to use in each iteration. To ensure the whole

data set is used during each epoch, set the mini-batch size to evenly divide the number of training
samples.

For this example, set InitialLearnRate to 0.0001, MaxEpochs to 8, and ValidationFrequency to
5. As there are 55 observations, set MiniBatchSize to 11 to divide the training data evenly and
ensure you use the whole training data set during each epoch. For more information on selecting
training options, see trainingOptions.

 Transfer Learning with Deep Network Designer

2-11



To train the network with the specified training options, click OK and then click Train.

Deep Network Designer allows you to visualize and monitor training progress. You can then edit the
training options and retrain the network, if required.

To save the training plot as an image, click Export Training Plot.

Export Results and Generate MATLAB Code

To export the network architecture with the trained weights, on the Training tab, select Export >
Export Trained Network and Results. Deep Network Designer exports the trained network as the
variable trainedNetwork_1 and the training info as the variable trainInfoStruct_1.

2 Deep Network Designer

2-12



trainInfoStruct_1

trainInfoStruct_1 = struct with fields:
               TrainingLoss: [3.1028 3.7235 3.5007 1.2493 1.5267 1.4770 1.2506 1.5767 1.0273 1.1279 0.6417 0.7218 0.7767 0.4651 0.7253 0.5403 0.5126 0.3012 0.6455 0.3326 0.2897 0.4604 0.3298 0.1844 0.2311 0.1436 0.1762 0.2212 0.0945 0.3570 0.1205 … ]
           TrainingAccuracy: [36.3636 27.2727 27.2727 45.4545 36.3636 36.3636 63.6364 36.3636 63.6364 63.6364 81.8182 81.8182 72.7273 90.9091 72.7273 90.9091 81.8182 100 81.8182 100 100 81.8182 81.8182 100 100 100 90.9091 100 100 81.8182 100 100 100 … ]
             ValidationLoss: [3.4224 NaN NaN NaN 1.6053 NaN NaN NaN NaN 0.8457 NaN NaN NaN NaN 0.4648 NaN NaN NaN NaN 0.4317 NaN NaN NaN NaN 0.3389 NaN NaN NaN NaN 0.3652 NaN NaN NaN NaN 0.4322 NaN NaN NaN NaN 0.4720]
         ValidationAccuracy: [30 NaN NaN NaN 30 NaN NaN NaN NaN 70 NaN NaN NaN NaN 85 NaN NaN NaN NaN 80 NaN NaN NaN NaN 85 NaN NaN NaN NaN 85 NaN NaN NaN NaN 85 NaN NaN NaN NaN 90]
              BaseLearnRate: [1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 1.0000e-04 … ]
        FinalValidationLoss: 0.4720
    FinalValidationAccuracy: 90
     OutputNetworkIteration: 40

You can also generate MATLAB code, which recreates the network and the training options used. On
the Training tab, select Export > Generate Code for Training. Examine the MATLAB code to learn
how to programmatically prepare the data for training, create the network architecture, and train the
network.

Classify New Image

Load a new image to classify using the trained network.

I = imread("MerchDataTest.jpg");

Deep Network Designer resizes the images during training to match the network input size. To view
the network input size, go to the Designer pane and select the imageInputLayer (first layer). This
network has an input size of 227-by-227.

Resize the test image to match the network input size.

I = imresize(I, [227 227]);

Classify the test image using the trained network.

[YPred,probs] = classify(trainedNetwork_1,I);
imshow(I)
label = YPred;
title(string(label) + ", " + num2str(100*max(probs),3) + "%");

 Transfer Learning with Deep Network Designer

2-13



See Also
Deep Network Designer

Related Examples
• “Build Networks with Deep Network Designer” on page 2-15
• “Transfer Learning with Pretrained Audio Networks in Deep Network Designer” on page 2-93
• “Import Data into Deep Network Designer” on page 2-39
• “Generate MATLAB Code from Deep Network Designer” on page 2-73
• “List of Deep Learning Layers” on page 1-43

2 Deep Network Designer

2-14



Build Networks with Deep Network Designer
Build and edit deep learning networks interactively using the Deep Network Designer app. Using
this app, you can import networks or build a network from scratch, view and edit layer properties,
combine networks, and generate code to create the network architecture. You can then train your
network using Deep Network Designer, or export the network for training at the command line.

You can use Deep Network Designer for a range of network construction tasks:

• “Transfer Learning” on page 2-16
• “Image Classification” on page 2-18
• “Sequence Classification” on page 2-20
• “Numeric Data Classification” on page 2-21
• “Convert Classification Network into Regression Network” on page 2-23
• “Multiple-Input and Multiple-Output Networks” on page 2-23
• “Deep Networks” on page 2-25
• “Advanced Deep Learning Applications” on page 2-26
• “dlnetwork for Custom Training Loops” on page 2-28

Assemble a network by dragging blocks from the Layer Library and connecting them. To quickly
search for layers, use the Filter layers search box in the Layer Library pane.

You can add layers from the workspace to the network in the Designer pane.

1 Click New.

 Build Networks with Deep Network Designer

2-15



2 Pause on From Workspace and click Import.
3 Choose the layers or network to import and click OK.
4 Click Add to add the layers or network to the Designer pane.

You can also load pretrained networks by clicking New and selecting them from the start page.

To view and edit layer properties, select a layer. Click the help icon next to the layer name for
information on the layer properties.

For information on all layer properties, click the layer name in the table on the “List of Deep Learning
Layers” on page 1-43 page.

Once you have constructed your network, you can analyze it to check for errors. For more
information, see “Check Network” on page 2-29.

Transfer Learning
Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

Deep Network Designer has a selection of pretrained networks suitable for transfer learning with
image data.

Load Pretrained Network

Open the app and select a pretrained network. You can also load a pretrained network by selecting
the Designer tab and clicking New. If you need to download the network, pause on the network and
click Install to open the Add-On Explorer.

Tip To get started, try choosing one of the faster networks, such as SqueezeNet or GoogLeNet. Once
you gain an understanding of which settings work well, try a more accurate network, such as
Inception-v3 or a ResNet, and see if that improves your results. For more information on selecting a
pretrained network, see “Pretrained Deep Neural Networks” on page 1-11.

2 Deep Network Designer

2-16



Adapt Pretrained Network

To prepare the network for transfer learning, replace the last learnable layer and the final
classification layer.

• If the last learnable layer is a 2-D convolutional layer (for example, the 'conv10' layer in
SqueezeNet):

• Drag a new convolution2dLayer onto the canvas. Set the NumFilters property to the new
number of classes and FilterSize to 1,1.

• Change the learning rates so that learning is faster in the new layer than in the transferred
layers by increasing the WeightLearnRateFactor and BiasLearnRateFactor values.

• Delete the last convolution2dLayer and connect your new layer instead.

• If the last learnable layer is a fully connected layer (most pretrained networks, for example,
GoogLeNet):

• Drag a new fullyConnectedLayer onto the canvas and set the OutputSize property to the
new number of classes.

 Build Networks with Deep Network Designer

2-17



• Change the learning rates so that learning is faster in the new layer than in the transferred
layers by increasing the WeightLearnRateFactor and BiasLearnRateFactor values.

• Delete the last fullyConnectedLayer and connect your new layer instead.

Next, delete the classification output layer. Then, drag a new classificationLayer onto the canvas
and connect it instead. The default settings for the output layer mean it will learn the number of
classes during training.

To check that the network is ready for training, on the Designer tab, click Analyze.

For an example showing how to retrain a pretrained network to classify new images, see “Transfer
Learning with Deep Network Designer” on page 2-2. If you have Audio Toolbox, you can also load
pretrained networks suitable for audio tasks. For an example showing how to retrain a pretrained
network to classify a new set of audio signals, see “Transfer Learning with Pretrained Audio
Networks in Deep Network Designer” on page 2-93.

You can also use pretrained networks and transfer learning for regression tasks. For more
information, see “Convert Classification Network into Regression Network” on page 2-23.

Image Classification
You can build an image classification network using Deep Network Designer by dragging layers from
the Layer Library and connecting them. You can also create the network at the command line and
then import the network into Deep Network Designer.

For example, create a network to train for image classification on a data set of 28-by-28 images
divided into 10 classes.

inputSize = [28 28 1];
numClasses = 10;

layers = [
    imageInputLayer(inputSize)

2 Deep Network Designer

2-18



    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

deepNetworkDesigner(layers)

To adapt this network to your own data, set the InputSize of the image input layer to match your
image input size and set the OutputSize of the fully connected layer to the number of classes in your

 Build Networks with Deep Network Designer

2-19



data. For more complex classification tasks, create a deeper network. For more information, see
“Deep Networks” on page 2-25.

For an example showing how to create and train an image classification network, see “Create Simple
Image Classification Network Using Deep Network Designer”.

Sequence Classification
You can use Deep Network Designer to build a sequence network from scratch, or you can use one of
the prebuilt untrained networks from the start page. Open the Deep Network Designer start page.
Pause on Sequence-to-Label and click Open. Doing so opens a prebuilt network suitable for
sequence classification problems.

You can adapt this sequence network for training with your data. Suppose you have data with 12
features and 9 classes. To adapt this network, select sequenceInputLayer and set the InputSize to
12.

2 Deep Network Designer

2-20



Then, select the fullyConnectedLayer and set the OutputSize to 9, the number of classes.

The network is now ready to train. To train the network in Deep Network Designer, create a
CombinedDatastore containing the predictors and responses. For more information, see “Import
Data into Deep Network Designer” on page 2-39. For an example showing how to create a combined
datastore and train a sequence-to-sequence regression network using Deep Network Designer, see
“Train Network for Time Series Forecasting Using Deep Network Designer” on page 2-60. For an
example showing how to export a network built in Deep Network Designer and train using command
line functions, see “Create Simple Sequence Classification Network Using Deep Network Designer”
on page 2-53.

Numeric Data Classification
If you have a data set of numeric features (for example, a collection of numeric data without spatial or
time dimensions), then you can train a deep learning network using a feature input layer. For more
information about the feature input layer, see featureInputLayer.

You can construct a suitable network using Deep Network Designer, or you can create the network at
the command line and import the network into Deep Network Designer.

For example, create a network for numeric data with 10 classes, where each observation consists of
20 features.

inputSize = 20;
numClasses = 10;

layers = [
featureInputLayer(inputSize,'Normalization','zscore')
fullyConnectedLayer(50)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

deepNetworkDesigner(layers)

 Build Networks with Deep Network Designer

2-21



To adapt this network to your own data, set the InputSize of the feature input layer to match the
number of features in your data and set the OutputSize of the fully connected layer to the number of
classes in your data. For more complex classification tasks, create a deeper network. For more
information, see “Deep Networks” on page 2-25.

To train a network in Deep Network Designer using data in a table, you must first convert your data
into a suitable datastore. For example, start by converting your table into arrays containing the
predictors and responses. Then, convert the arrays into arrayDatastore objects. Finally, combine
the predictor and response array datastores into a CombinedDatastore object. You can then use the
combined datastore to train in Deep Network Designer. For more information, see “Import Data into
Deep Network Designer” on page 2-39. You can also train with tabular data and the trainNetwork
function by exporting the network to the workspace.

2 Deep Network Designer

2-22



Convert Classification Network into Regression Network
You can convert a classification network into a regression network by replacing the final layers of the
network. Conversion is useful when you want to take a pretrained classification network and retrain
it for regression tasks.

For example, suppose you have a GoogLeNet pretrained network. To convert this network into a
regression network with a single response, replace the final fully connected layer, the softmax layer,
and the classification output layer with a fully connected layer with OutputSize set to 1 (the number
of responses) and a regression layer.

If your output has multiple responses, change the OutputSize value of the fully connected layer to
the number of responses.

Multiple-Input and Multiple-Output Networks
Multiple Inputs

You can define a network with multiple inputs if the network requires data from multiple sources or in
different formats. For example, some networks require image data captured from multiple sensors at
different resolutions.

 Build Networks with Deep Network Designer

2-23



Using Deep Network Designer, you can control the inputs and outputs of each layer. For example, to
create a network with multiple image inputs, create two branches, each starting with an image input
layer.

You can train a multi-input network with the same type of input, for example, images from two
difference sources, using Deep Network Designer and a datastore object. For networks with data in
multiple formats, for example, image and sequence data, train the network using a custom training
loop. For more information, see “dlnetwork for Custom Training Loops” on page 2-28.

Multiple Outputs

You can define networks with multiple outputs for tasks requiring multiple responses in different
formats, for example, tasks requiring both categorical and numeric output.

2 Deep Network Designer

2-24



Using Deep Network Designer, you can control the outputs of each layer.

To train a multi-output network, you must use a custom training loop. Custom training loops must use
a dlnetwork object that does not contain any output layers. For more information, see “dlnetwork
for Custom Training Loops” on page 2-28.

Deep Networks
Building large networks can be difficult, you can use Deep Network Designer to speed up
construction. You can work with blocks of layers at a time. Select multiple layers, then copy and paste
or delete. For example, you can use blocks of layers to create multiple copies of groups of
convolution, batch normalization, and ReLU layers.

 Build Networks with Deep Network Designer

2-25



For trained networks, copying layers also copies the weights and the biases.

You can also copy sub-networks from the workspace to connect up easily using the app. To import a
network or layers into the app, click New > Import from workspace. Click Add to add the layers to
the current network.

Advanced Deep Learning Applications
You can use Deep Network Designer to build and train networks for advanced applications, such as
computer vision or image processing tasks.

Create Semantic Segmentation Network

Semantic segmentation describes the process of associating each pixel of an image with a class label.
Applications for semantic segmentation include road segmentation for autonomous driving and
cancer cell segmentation for medical diagnosis.

Create a semantic segmentation network by dragging layers from the Layer Library to the Designer
pane or creating the network at the command-line and importing the network into Deep Network
Designer.

For example, create a simple semantic segmentation network based on a downsampling and
upsampling design.

2 Deep Network Designer

2-26



inputSize = [32 32 1];

layers = [
    imageInputLayer(inputSize)
    convolution2dLayer([3,3],64,'Padding',[1,1,1,1])
    reluLayer
    maxPooling2dLayer([2,2],'Stride',[2,2])
    convolution2dLayer([3,3],64,'Padding',[1,1,1,1])
    reluLayer
    transposedConv2dLayer([4,4],64,'Stride',[2,2],'Cropping',[1,1,1,1])
    convolution2dLayer([1,1],2)
    softmaxLayer
    pixelClassificationLayer
    ];

deepNetworkDesigner(layers) 

For more information on constructing and training a semantic segmentation network, see “Train
Simple Semantic Segmentation Network in Deep Network Designer” (Computer Vision Toolbox).

Create Image-to-Image Regression Network

Image-to-image regression involves taking an input image and producing an output image, often of
the same size. This type of network is useful for super-resolution, colorization, or image deblurring.

You can create image-to-image regression networks using Deep Network Designer. For example,
create a simple network architecture suitable for image-to-image regression using the unetLayers
function from Computer Vision Toolbox™. This function provides a network suitable for semantic
segmentation, that can be easily adapted for image-to-image regression.

Create a network with input size 28-by-28-by-1 pixels.

layers = unetLayers([28,28,1],2,'encoderDepth',2);
deepNetworkDesigner(layers);

In the Designer pane, replace the softmax and pixel classification layers with a regression layer from
the Layer Library.

 Build Networks with Deep Network Designer

2-27



Select the final convolutional layer and set the NumFilters property to 1.

For more information on constructing and training an image-to-image regression network, see
“Image-to-Image Regression in Deep Network Designer” on page 2-79.

dlnetwork for Custom Training Loops
You can build and analyze dlnetwork objects using Deep Network Designer. A dlnetwork object
enables support for custom training loops using automatic differentiation. Use custom training loops
when the built-in training options do not provide the training options that you need for your task.

To check that your network is ready for training using a custom training loop, click Analyze >
Analyze for dlnetwork. For more information, see “Check Network” on page 2-29.

2 Deep Network Designer

2-28



Training with a custom training loop is not supported in Deep Network Designer. To train your
network using a custom training loop, first export the network to the workspace and convert it to a
dlnetwork object. You can then train the network using the dlnetwork object and a custom
training loop. For more information, see “Train Network Using Custom Training Loop” on page 19-
239.

Check Network
To check your network and examine the layers in further detail, on the Designer tab, click Analyze.
Investigate problems and examine the layer properties to resolve size mismatches in the network.
Return to Deep Network Designer to edit layers, then check the results by clicking Analyze again. If
Deep Learning Network Analyzer reports zero errors, then the edited network is ready for training.

You can also analyze networks for custom training workflows. Click Analyze > Analyze for
dlnetwork to analyze the network for usage with dlnetwork objects. For example, the Network
Analyzer checks that the layer graph does not have any output layers.

See Also
Deep Network Designer

Related Examples
• “Import Data into Deep Network Designer” on page 2-39

 Build Networks with Deep Network Designer

2-29



• “Transfer Learning with Deep Network Designer” on page 2-2
• “Train Network for Time Series Forecasting Using Deep Network Designer” on page 2-60
• “View Autogenerated Custom Layers Using Deep Network Designer” on page 2-76
• “Example Deep Learning Networks Architectures” on page 1-23
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

2 Deep Network Designer

2-30



Train Networks Using Deep Network Designer
The Deep Network Designer app lets you build and train deep neural networks. Deep Network
Designer supports trainNetwork training using image data or datastore objects. You can also
export your untrained network for training at the command line, for example, to train your network
using custom training loops.

To train a network, follow these steps:

1 Create network
2 Import data
3 Select training options
4 Train network
5 Export network

You can build a network interactively using Deep Network Designer, or import a network from the
workspace. You can also select a pretrained network from the Deep Network Designer start page for
transfer learning. For more information, see “Build Networks with Deep Network Designer” on page
2-15.

To train a deep learning model, you must have a suitable network and training data. To import image
data from a folder containing a subfolder of images for each class, or from an imageDatastore
object, on the Data tab, click Import Data > Import Image Classification Data. To import any
datastore, on the Data tab, click Import Data > Import Custom Data. After import, Deep Network
Designer displays a preview of the imported data so that you can check that the data is as expected
prior to training. For more information, see “Import Data into Deep Network Designer” on page 2-
39.

Select Training Options
Once you have your network and data, the next step is to select the training options. On the Training
tab, click Training Options. If you do not know which training options to use, try training with the
default settings and then adjusting them to suit your network and data. For example, try adjusting the
initial learning rate, or train for longer by increasing the number of epochs. For information about
techniques for improving the accuracy of deep learning networks, see “Deep Learning Tips and
Tricks” on page 1-87. For more information about the training options, see trainingOptions.

 Train Networks Using Deep Network Designer

2-31



Train Network
After you select your training options, train the network by clicking Train. The Deep Network
Designer app displays an animated plot of the training progress. The plot shows mini-batch loss and
accuracy and additional information on the training progress. If you specified validation data, the plot
also shows the validation loss and accuracy. The plot has a stop button  in the top-right corner.
Click the button to stop training and return the current state of the network. For more information on
the training progress plot, see “Monitor Deep Learning Training Progress”.

2 Deep Network Designer

2-32



You can train a variety of networks using Deep Network Designer. For example, image classification
or regression networks, sequence networks, numeric data networks, semantic segmentation
networks, and image-to-image regression networks. In Deep Network Designer, you can train a
network using the trainNetwork function on any data that you can express as a datastore object.
The following examples show how to build and train a network using Deep Network Designer.

• “Transfer Learning with Deep Network Designer” on page 2-2
• “Train Network for Time Series Forecasting Using Deep Network Designer” on page 2-60
• “Train Simple Semantic Segmentation Network in Deep Network Designer” on page 8-162
• “Image-to-Image Regression in Deep Network Designer” on page 2-79

Once training is complete, on the Training tab, click Export to export your trained network and
results to the workspace. To save the training progress plot as an image, click Export Training Plot.
You can learn how to build and train your network using command line functions by clicking Export
> Generate Code for Training and examining the generated live script.

Deep Network Designer does not support training using custom training loops. To train your network
using a custom training loop, first export the network to the workspace and convert it to a
dlnetwork object. You can then train the network using the dlnetwork object and a custom
training loop. For more information, see “Train Network Using Custom Training Loop” on page 19-
239.

 Train Networks Using Deep Network Designer

2-33



Next Steps
Once training is complete, click Export > Create Experiment to create a deep learning experiment
in Experiment Manager. You can use Experiment Manager to sweep through a range of
hyperparameter values or use Bayesian optimization to find optimal training options. For an example
showing how to use Experiment Manager to tune the hyperparameters of a network trained in
Deep Network Designer, see “Generate Experiment Using Deep Network Designer” on page 2-86.

See Also
Deep Network Designer | Experiment Manager

Related Examples
• “Build Networks with Deep Network Designer” on page 2-15
• “Import Data into Deep Network Designer” on page 2-39
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Train Network for Time Series Forecasting Using Deep Network Designer” on page 2-60
• “Image-to-Image Regression in Deep Network Designer” on page 2-79
• “Generate MATLAB Code from Deep Network Designer” on page 2-73

2 Deep Network Designer

2-34



Import Custom Layer into Deep Network Designer

This example shows how to import a custom classification output layer with the sum of squares error
(SSE) loss and add it to a pretrained network in Deep Network Designer.

Define a custom classification output layer. To create this layer, save the file
sseClassificationLayer.m in the current folder. For more information on constructing this layer,
see “Define Custom Classification Output Layer” on page 19-101.

Create an instance of the layer.

sseClassificationLayer = sseClassificationLayer('sse');

Open Deep Network Designer with a pretrained GoogLeNet network.

deepNetworkDesigner(googlenet);

To adapt a pretrained network, replace the last learnable layer and the final classification layer with
new layers adapted to the new data set. In GoogLeNet, these layers have the names 'loss3-
classifier' and 'output', respectively.

 Import Custom Layer into Deep Network Designer

2-35



In the Designer pane, drag a new fullyConnectedLayer from the Layer Library onto the canvas.
Set OutputSize to the new number of classes, in this example, 2.

Edit learning rates to learn faster in the new layers than in the transferred layers. Set
WeightLearnRateFactor and BiasLearnRateFactor to 10. Delete the last fully connected layer
and connect your new layer instead.

Next, replace the output layer with your custom classification output layer. Click New in the
Designer pane. Pause on From Workspace and click Import. To import the custom classification
layer, select sseClassificationLayer and click OK.

Add the layer to the current GoogLeNet pretrained network by clicking Add. The app adds the
custom layer to the top of the Designer pane. To see the new layer, zoom-in using a mouse or click
Zoom in.

2 Deep Network Designer

2-36



Drag the custom layer to the bottom of the Designer pane. Replace the output layer with the new
classification output layer and connect the new layer.

To view or edit the custom layer, click Edit Layer Code.

Check your network by clicking Analyze. The network is ready for training if Deep Learning Network
Analyzer reports zero errors.

 Import Custom Layer into Deep Network Designer

2-37



After you construct your network, you are ready to import data and train. For more information on
importing data and training in Deep Network Designer, see “Transfer Learning with Deep Network
Designer” on page 2-2.

Copyright 2020—2022 The MathWorks, Inc.

See Also
Deep Network Designer

Related Examples
• “View Autogenerated Custom Layers Using Deep Network Designer” on page 2-76
• “Build Networks with Deep Network Designer” on page 2-15
• “Import Data into Deep Network Designer” on page 2-39
• “Create Simple Sequence Classification Network Using Deep Network Designer” on page 2-53
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Generate MATLAB Code from Deep Network Designer” on page 2-73

2 Deep Network Designer

2-38



Import Data into Deep Network Designer
You can import and visualize training and validation data in Deep Network Designer. Using this app
you can:

• Import datastore objects for training. After import, Deep Network Designer displays a preview of
the data. For more information, see “Import Data” on page 2-39.

• Import training data for image classification problems from an ImageDatastore object or a
folder containing subfolders of images per class. You can also select built-in options to augment
the training images during training. For more information, see “Image Augmentation” on page 2-
49.

• Import validation data from a datastore object. For image classification you can also select
validation data from a folder containing subfolders of images for each class, or choose to split the
validation data from the training data. For more information, see “Validation Data” on page 2-50.

For more information about data sets you can use to get started with deep learning, see “Data Sets
for Deep Learning” on page 20-116. For more information on constructing and using datastore
objects for deep learning applications, see “Datastores for Deep Learning” on page 20-2.

Import Data
In Deep Network Designer, you can import image classification data from an image datastore or a
folder containing subfolders of images from each class. You can also import and train any datastore
object that works with the trainNetwork function. Select an import method based on the type of
datastore you are using.

 Import Data into Deep Network Designer

2-39



Import ImageDatastore Object Import Any Other Datastore Object (Not
Recommended for ImageDatastore)

Select Import Data > Import Image
Classification Data.

Select Import Data > Import Custom Data.

After import, Deep Network Designer provides a preview of the imported data so that you can check
that the data is as expected, prior to training. For image classification data, Deep Network Designer
also displays a histogram of the class labels and a random selection of images from the imported
data. You can also choose to see random images belonging to a specific class.

2 Deep Network Designer

2-40



Import Data by Task

Task Data Type Data Import Method Example Visualization
Image
classific
ation

Folder with subfolders
containing images for
each class. The class
labels are sourced from
the subfolder names.

For an example, see
“Transfer Learning with
Deep Network Designer”
on page 2-2.

Select Import Data >
Import Image
Classification Data.

You can select
augmentation options
and specify the
validation data using
the Import Image Data
dialog box.

After import, Deep
Network Designer
displays a histogram of
the class labels. You can
also see random
observations from each
class.

ImageDatastore

For example, create an
image datastore
containing digits data.

dataFolder = fullfile(toolboxdir('nnet'),'nndemos', ... 
'nndatasets','DigitDataset');

imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

For more information, see
“Create Simple Image
Classification Network
Using Deep Network
Designer”.

 Import Data into Deep Network Designer

2-41



Task Data Type Data Import Method Example Visualization
AugmentedImageDatast
ore

For example, create an
augmented image
datastore containing
digits data.

dataFolder = fullfile(toolboxdir('nnet'),'nndemos', ... 
'nndatasets','DigitDataset');

imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

imageAugmenter = imageDataAugmenter( ...
    'RandRotation',[1,2]);
augimds = augmentedImageDatastore([28 28],imds, ...
'DataAugmentation',imageAugmenter);

augimds = shuffle(augimds);

For more information, see
“Transfer Learning Using
Pretrained Network” on
page 3-29.

Select Import Data >
Import Custom Data.

You can specify the
validation data in the
Import Datastore dialog
box.

After import, Deep
Network Designer
shows a preview of the
first five observations in
the datastore.

2 Deep Network Designer

2-42



Task Data Type Data Import Method Example Visualization
Semant
ic
segmen
tation

CombinedDatastore

For example, combine an
ImageDatastore and a
PixelLabelDatastore.

dataFolder  = fullfile(toolboxdir('vision'), ...
'visiondata','triangleImages');

imageDir = fullfile(dataFolder,'trainingImages');
labelDir = fullfile(dataFolder,'trainingLabels');

imds = imageDatastore(imageDir);
classNames = ["triangle","background"];
labelIDs   = [255 0];

pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);
cds = combine(imds,pxds);

You can also combine an
ImageDatastore and a
PixelLabelDatastore
in a
pixelLabelImageDatas
tore.

pximds = pixelLabelImageDatastore(imds,pxds);

For more information
about creating and
training a semantic
segmentation network,
see “Train Simple
Semantic Segmentation
Network in Deep Network
Designer” on page 8-162.

Select Import Data >
Import Custom Data.

You can specify the
validation data in the
Import Datastore dialog
box.

After import, Deep
Network Designer
shows a preview of the
first five observations in
the datastore.

 Import Data into Deep Network Designer

2-43



Task Data Type Data Import Method Example Visualization
Image-
to-
image
regressi
on

CombinedDatastore

For example, combine
noisy input images and
pristine output images to
create data suitable for
image-to-image
regression.

dataFolder = fullfile(toolboxdir('nnet'),'nndemos', ... 
'nndatasets','DigitDataset');

imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ....
    'LabelSource','foldernames');

imds = transform(imds,@(x) rescale(x));
imdsNoise = transform(imds,@(x) {imnoise(x,'Gaussian',0.2)});

cds = combine(imdsNoise,imds);
cds = shuffle(cds);

For more information
about training an image-
to-image regression
network, see “Image-to-
Image Regression in Deep
Network Designer” on
page 2-79.

Select Import Data >
Import Custom Data.

You can specify the
validation data in the
Import Datastore dialog
box.

After import, Deep
Network Designer
shows a preview of the
first five observations in
the datastore.

2 Deep Network Designer

2-44



Task Data Type Data Import Method Example Visualization
Regress
ion

CombinedDatastore

Create data suitable for
training regression
networks by combining
array datastore objects.

[XTrain,~,YTrain] = digitTrain4DArrayData;

ads = arrayDatastore(XTrain,'IterationDimension',4, ...
 'OutputType','cell');
adsAngles = arrayDatastore(YTrain,'OutputType','cell');

cds = combine(ads,adsAngles);

For more information
about training a
regression network, see
“Train Convolutional
Neural Network for
Regression” on page 3-
49.

Select Import Data >
Import Custom Data.

You can specify the
validation data in the
Import Datastore dialog
box.

After import, Deep
Network Designer
shows a preview of the
first five observations in
the datastore.

 Import Data into Deep Network Designer

2-45



Task Data Type Data Import Method Example Visualization
Sequen
ces and
time
series

CombinedDatastore

To input the sequence
data from the datastore of
predictors to a deep
learning network, the
mini-batches of the
sequences must have the
same length. You can use
the padsequences
function to pad or
truncate sequences to
have a specific length.

For example, pad the
sequences to all be the
same length as the
longest sequence.

[XTrain,YTrain] = japaneseVowelsTrainData;

XTrain = padsequences(XTrain,2);

adsXTrain = arrayDatastore(XTrain,'IterationDimension',3);
adsYTrain = arrayDatastore(YTrain);

cdsTrain = combine(adsXTrain,adsYTrain);

To reduce the amount of
padding, you can use a
transform datastore and a
helper function. For
example, pad the
sequences so that all the
sequences in a mini-batch
have the same length as
the longest sequence in
the mini-batch. You must
also use the same mini-
batch size in the training
options.

[XTrain,TTrain] = japaneseVowelsTrainData; 

miniBatchSize = 27;
adsXTrain = arrayDatastore(XTrain,'OutputType',"same",'ReadSize',miniBatchSize);
adsTTrain = arrayDatastore(TTrain,'ReadSize',miniBatchSize);

tdsXTrain = transform(adsXTrain,@padToLongest);
cdsTrain = combine(tdsXTrain,adsTTrain);

function data = padToLongest(data)
sequence = padsequences(data,2,Direction="left");
for n = 1:numel(data)

Select Import Data >
Import Custom Data.

You can specify the
validation data in the
Import Datastore dialog
box.

After import, Deep
Network Designer
shows a preview of the
first five observations in
the datastore.

2 Deep Network Designer

2-46



Task Data Type Data Import Method Example Visualization
    data{n} = sequence(:,:,n);
end
end

You can also reduce the
amount of padding by
sorting your data from
shortest to longest and
reduce the impact of
padding by specifying the
padding direction. For
more information about
padding sequence data,
see “Sequence Padding,
Truncation, and Splitting”
on page 1-101.

For information about
training a network on
time series data, see
“Train Network for Time
Series Forecasting Using
Deep Network Designer”
on page 2-60.

You can also import
sequence data using a
custom datastore object.
For an example showing
how to create a custom
sequence datastore, see
“Train Network Using
Custom Mini-Batch
Datastore for Sequence
Data” on page 20-102.

 Import Data into Deep Network Designer

2-47



Task Data Type Data Import Method Example Visualization
Other
extende
d
workflo
ws
(such
as
numeri
c
feature
input,
out-of-
memory
data,
image
process
ing, and
audio
and
speech
process
ing)

Datastore

For other extended
workflows, use a suitable
datastore object. For
example, custom
datastore,
randomPatchExtractio
nDatastore,
denoisingImageDatast
ore, or
audioDatastore. For
more information, see
“Datastores for Deep
Learning” on page 20-
2.

For example, create a
denoisingImageDatast
ore object using Image
Processing Toolbox™.

dataFolder = fullfile(toolboxdir('images'),'imdata');

imds = imageDatastore(dataFolder,'FileExtensions',{'.jpg'});

dnds = denoisingImageDatastore(imds,...
    'PatchesPerImage',512,...
    'PatchSize',50,...
    'GaussianNoiseLevel',[0.01 0.1]);

For an example showing
how to train a deep
learning network on audio
data, see “Transfer
Learning with Pretrained
Audio Networks in Deep
Network Designer” on
page 2-93.

For table array data, you
must convert your data
into a suitable datastore
to train using Deep
Network Designer. For
example, start by
converting your table into
arrays containing the
predictors and responses.
Then, convert the arrays
into arrayDatastore
objects. Finally, combine

Select Import Data >
Import Custom Data.

You can specify the
validation data in the
Import Datastore dialog
box.

After import, Deep
Network Designer
shows a preview of the
first five observations in
the datastore.

2 Deep Network Designer

2-48



Task Data Type Data Import Method Example Visualization
the predictor and
response array datastores
into a
CombinedDatastore
object. You can then use
the combined datastore to
train in Deep Network
Designer. For more
information on suitable
datastores, see
“Datastores for Deep
Learning” on page 20-
2.

Image Augmentation
For image classification problems, Deep Network Designer provides simple augmentation options to
apply to the training data. Open the Import Image Classification Data dialog box by selecting Import
Data > Import Image Classification Data. You can select options to apply a random combination
of reflection, rotation, rescaling, and translation operations to the training data.

You can effectively increase the amount of training data by applying randomized augmentation to
your data. Augmentation also enables you to train networks to be invariant to distortions in image
data. For example, you can add randomized rotations to input images so that a network is invariant to
the presence of rotation in input images. Data augmentation can also help prevent the network from
overfitting and memorizing the exact details of the training images. When you use data augmentation,
one randomly augmented version of each image is used during each epoch of training, where an
epoch is a full pass of the training algorithm over the entire training data set. Therefore, each epoch

 Import Data into Deep Network Designer

2-49



uses a slightly different data set, but the actual number of training images in each epoch does not
change. For more information, see “Create and Explore Datastore for Image Classification” on page
20-10.

To perform more general and complex image preprocessing operations than those offered by Deep
Network Designer, use TransformedDatastore and CombinedDatastore objects. To import
CombinedDatastore and TransformedDatastore objects, select Import Data > Import Custom
Data.

For more information on image augmentation, see “Preprocess Images for Deep Learning” on page
20-16.

Validation Data
In Deep Network Designer, you can import validation data to use during training. Validation data is
data that the network does not use to update the weights and biases during training. As the network
does not directly use this data, it is useful for assessing the true accuracy of the network during
training. You can monitor validation metrics, such as loss and accuracy, to assess if the network is
overfitting or underfitting and adjust the training options as required. For example, if the validation
loss is much higher than the training loss, then the network might be overfitting.

2 Deep Network Designer

2-50



For more information on improving the accuracy of deep learning networks, see “Deep Learning Tips
and Tricks” on page 1-87.

In Deep Network Designer, you can import validation data:

• From a datastore in the workspace.
• From a folder containing subfolders of images for each class (image classification data only).
• By splitting a portion of the training data to use as validation data (image classification data only).

The data is split into validation and training sets once, before training. This method is called
holdout validation.

Split Validation Data from Training Data

When splitting the holdout validation data from the training data, Deep Network Designer splits a
percentage of the training data from each class. For example, suppose you have a data set with two
classes, cat and dog, and choose to use 30% of the training data for validation. Deep Network
Designer uses the last 30% of images with the label "cat" and the last 30% with the label "dog" as the
validation set.

Rather than using the last 30% of the training data as validation data, you can choose to randomly
allocate the observations to the training and validation sets by selecting the Randomize check box in
the Import Image Data dialog box. Randomizing the images can improve the accuracy of networks
trained on data stored in a nonrandom order. For example, the digits data set consists of 10,000
synthetic grayscale images of handwritten digits. This data set has an underlying order in which
images with the same handwriting style appear next to each other within each class. An example of
the display follows.

Randomizing ensures that when you split the data, the images are shuffled so that the training and
validation sets contain random images from each class. Using training and validation data that
consists of a similar distribution of images can help prevent overfitting. Not randomizing the data
ensures that the training and validation data split is the same each time, and can help improve the
reproducibility of results. For more information, see splitEachLabel.

See Also
Deep Network Designer | TransformedDatastore | CombinedDatastore | imageDatastore |
augmentedImageDatastore | splitEachLabel

Related Examples
• “Data Sets for Deep Learning” on page 20-116
• “Build Networks with Deep Network Designer” on page 2-15
• “Create and Explore Datastore for Image Classification” on page 20-10
• “Image-to-Image Regression in Deep Network Designer” on page 2-79
• “Train Simple Semantic Segmentation Network in Deep Network Designer” on page 8-162
• “Transfer Learning with Deep Network Designer” on page 2-2

 Import Data into Deep Network Designer

2-51



• “Generate MATLAB Code from Deep Network Designer” on page 2-73
• “Transfer Learning with Pretrained Audio Networks in Deep Network Designer” on page 2-93

2 Deep Network Designer

2-52



Create Simple Sequence Classification Network Using Deep
Network Designer

This example shows how to create a simple long short-term memory (LSTM) classification network
using Deep Network Designer.

To train a deep neural network to classify sequence data, you can use an LSTM network. An LSTM
network is a type of recurrent neural network (RNN) that learns long-term dependencies between
time steps of sequence data.

The example demonstrates how to:

• Load sequence data.
• Construct the network architecture.
• Specify training options.
• Train the network.
• Predict the labels of new data and calculate the classification accuracy.

Load Data

Load the Japanese Vowels data set, as described in [1] on page 2-58 and [2] on page 2-58. The
predictors are cell arrays containing sequences of varying length with a feature dimension of 12. The
labels are categorical vectors of labels 1,2,...,9.

[XTrain,YTrain] = japaneseVowelsTrainData;
[XValidation,YValidation] = japaneseVowelsTestData;

View the sizes of the first few training sequences. The sequences are matrices with 12 rows (one row
for each feature) and a varying number of columns (one column for each time step).

XTrain(1:5)

ans=5×1 cell array
    {12×20 double}
    {12×26 double}
    {12×22 double}
    {12×20 double}
    {12×21 double}

Define Network Architecture

Open Deep Network Designer.

deepNetworkDesigner

Pause on Sequence-to-Label and click Open. This opens a prebuilt network suitable for sequence
classification problems.

 Create Simple Sequence Classification Network Using Deep Network Designer

2-53



Deep Network Designer displays the prebuilt network.

2 Deep Network Designer

2-54



You can easily adapt this sequence network for the Japanese Vowels data set.

Select sequenceInputLayer and check that InputSize is set to 12 to match the feature dimension.

 Create Simple Sequence Classification Network Using Deep Network Designer

2-55



Select lstmLayer and set NumHiddenUnits to 100.

Select fullyConnectedLayer and check that OutputSize is set to 9, the number of classes.

Check Network Architecture

To check the network and examine more details of the layers, click Analyze.

2 Deep Network Designer

2-56



Export Network Architecture

To export the network architecture to the workspace, on the Designer tab, click Export. Deep
Network Designer saves the network as the variable layers_1.

You can also generate code to construct the network architecture by selecting Export > Generate
Code.

Train Network

Specify the training options and train the network.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

miniBatchSize = 27;
options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',100, ...
    'MiniBatchSize',miniBatchSize, ...
    'ValidationData',{XValidation,YValidation}, ...
    'GradientThreshold',2, ...
    'Shuffle','every-epoch', ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network.

 Create Simple Sequence Classification Network Using Deep Network Designer

2-57



net = trainNetwork(XTrain,YTrain,layers_1,options);

You can also train this network using Deep Network Designer and datastore objects. For an example
showing how to train a sequence-to-sequence regression network in Deep Network Designer, see
“Train Network for Time Series Forecasting Using Deep Network Designer” on page 2-60.

Test Network

Classify the test data and calculate the classification accuracy. Specify the same mini-batch size as for
training.

YPred = classify(net,XValidation,'MiniBatchSize',miniBatchSize);
acc = mean(YPred == YValidation)

acc = 0.9405

For next steps, you can try improving the accuracy by using bidirectional LSTM (BiLSTM) layers or
by creating a deeper network. For more information, see “Long Short-Term Memory Neural
Networks” on page 1-97.

For an example showing how to use convolutional networks to classify sequence data, see “Train
Speech Command Recognition Model Using Deep Learning” on page 4-27.

References

[1] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using
Passing-through Regions.” Pattern Recognition Letters 20, no. 11–13 (November 1999): 1103–11.
https://doi.org/10.1016/S0167-8655(99)00077-X.

2 Deep Network Designer

2-58



[2] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. Japanese Vowels Data Set. Distributed by UCI
Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also
Deep Network Designer

Related Examples
• “List of Deep Learning Layers” on page 1-43
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Generate MATLAB Code from Deep Network Designer” on page 2-73
• “Deep Learning Tips and Tricks” on page 1-87

 Create Simple Sequence Classification Network Using Deep Network Designer

2-59

https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels


Train Network for Time Series Forecasting Using Deep Network
Designer

This example shows how to forecast time series data by training a long short-term memory (LSTM)
network in Deep Network Designer.

Deep Network Designer allows you to interactively create and train deep neural networks for
sequence classification and regression tasks.

To forecast the values of future time steps of a sequence, you can train a sequence-to-sequence
regression LSTM network, where the responses are the training sequences with values shifted by one
time step. That is, at each time step of the input sequence, the LSTM network learns to predict the
value of the next time step.

This example uses the data set chickenpox_dataset. The example creates and trains an LSTM
network to forecast the number of chickenpox cases given the number of cases in previous months.

Load Sequence Data

Load the example data. chickenpox_dataset contains a single time series, with time steps
corresponding to months and values corresponding to the number of cases. The output is a cell array,
where each element is a single time step. Reshape the data to be a row vector.

data = chickenpox_dataset;
data = [data{:}];

figure
plot(data)
xlabel("Month")
ylabel("Cases")
title("Monthly Cases of Chickenpox")

2 Deep Network Designer

2-60



Partition the training and test data. Train on the first 90% of the sequence and test on the last 10%.

numTimeStepsTrain = floor(0.9*numel(data))

numTimeStepsTrain = 448

dataTrain = data(1:numTimeStepsTrain+1);
dataTest = data(numTimeStepsTrain+1:end);

Standardize Data

For a better fit and to prevent the training from diverging, standardize the training data to have zero
mean and unit variance. For prediction, you must standardize the test data using the same
parameters as the training data.

mu = mean(dataTrain);
sig = std(dataTrain);

dataTrainStandardized = (dataTrain - mu) / sig;

Prepare Predictors and Responses

To forecast the values of future time steps of a sequence, specify the responses as the training
sequences with values shifted by one time step. That is, at each time step of the input sequence, the
LSTM network learns to predict the value of the next time step. The predictors are the training
sequences without the final time step.

 Train Network for Time Series Forecasting Using Deep Network Designer

2-61



XTrain = dataTrainStandardized(1:end-1);
YTrain = dataTrainStandardized(2:end);

To train the network using Deep Network Designer, convert the training data to a datastore object.
Use arrayDatastore to convert the training data predictors and responses into ArrayDatastore
objects. Use combine to combine the two datastores.

adsXTrain = arrayDatastore(XTrain);
adsYTrain = arrayDatastore(YTrain);

cdsTrain = combine(adsXTrain,adsYTrain);

Define LSTM Network Architecture

To create the LSTM network architecture, use Deep Network Designer. The Deep Network
Designer app lets you build, visualize, edit, and train deep learning networks.

deepNetworkDesigner

On the Deep Network Designer start page, pause on Sequence-to-Sequence and click Open.
Doing so opens a prebuilt network suitable for sequence-to-sequence classification tasks. You can
convert the classification network into a regression network by replacing the final layers.

Delete the softmax layer and the classification layer and replace them with a regression layer.

2 Deep Network Designer

2-62



Adjust the properties of the layers so that they are suitable for the chickenpox data set. This data has
a single input feature and a single output feature. Select sequenceInputLayer and set the
InputSize to 1. Select fullyConnectedLayer and set the OutputSize to 1.

 Train Network for Time Series Forecasting Using Deep Network Designer

2-63



Check your network by clicking Analyze. The network is ready for training if Deep Learning
Network Analyzer reports zero errors.

2 Deep Network Designer

2-64



Import Data

To import the training datastore, select the Data tab and click Import Data > Import Custom
Data. Select cdsTrain as the training data and None as the validation data. Click Import.

The data preview shows a single input time series and a single response time series, each with 448
time steps.

 Train Network for Time Series Forecasting Using Deep Network Designer

2-65



Specify Training Options

On the Training tab, click Training Options. Set Solver to adam, InitialLearnRate to 0.005, and
MaxEpochs to 500. To prevent the gradients from exploding, set the GradientThreshold to 1.

For more information about setting the training options, see trainingOptions.

Train Network

Click Train.

2 Deep Network Designer

2-66



Deep Network Designer displays an animated plot showing the training progress. The plot shows
mini-batch loss and accuracy, validation loss and accuracy, and additional information on the training
progress.

Once training is complete, export the trained network by clicking Export in the Training tab. The
trained network is saved as the trainedNetwork_1 variable.

Forecast Future Time Steps

Test the trained network by forecasting multiple time steps in the future. Use the
predictAndUpdateState function to predict time steps one at a time and update the network state
at each prediction. For each prediction, use the previous prediction as input to the function.

Standardize the test data using the same parameters as the training data.

dataTestStandardized = (dataTest - mu) / sig;

XTest = dataTestStandardized(1:end-1);
YTest = dataTest(2:end);

To initialize the network state, first predict on the training data XTrain. Next, make the first
prediction using the last time step of the training response YTrain(end). Loop over the remaining
predictions and input the previous prediction to predictAndUpdateState.

For large collections of data, long sequences, or large networks, predictions on the GPU are usually
faster to compute than predictions on the CPU. Otherwise, predictions on the CPU are usually faster
to compute. For single time step predictions, use the CPU. To use the CPU for prediction, set the
'ExecutionEnvironment' option of predictAndUpdateState to 'cpu'.

 Train Network for Time Series Forecasting Using Deep Network Designer

2-67



net = predictAndUpdateState(trainedNetwork_1,XTrain);

[net,YPred] = predictAndUpdateState(net,YTrain(end));

numTimeStepsTest = numel(XTest);
for i = 2:numTimeStepsTest
    [net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1),'ExecutionEnvironment','cpu');
end

Unstandardize the predictions using the parameters calculated earlier.

YPred = sig*YPred + mu;

The training progress plot reports the root-mean-square error (RMSE) calculated from the
standardized data. Calculate the RMSE from the unstandardized predictions.

rmse = sqrt(mean((YPred-YTest).^2))

rmse = single
    175.9693

Plot the training time series with the forecasted values.

figure
plot(dataTrain(1:end-1))
hold on
idx = numTimeStepsTrain:(numTimeStepsTrain+numTimeStepsTest);
plot(idx,[data(numTimeStepsTrain) YPred],'.-')
hold off
xlabel("Month")
ylabel("Cases")
title("Forecast")
legend(["Observed" "Forecast"])

2 Deep Network Designer

2-68



Compare the forecasted values with the test data.

figure
subplot(2,1,1)
plot(YTest)
hold on
plot(YPred,'.-')
hold off
legend(["Observed" "Forecast"])
ylabel("Cases")
title("Forecast")

subplot(2,1,2)
stem(YPred - YTest)
xlabel("Month")
ylabel("Error")
title("RMSE = " + rmse)

 Train Network for Time Series Forecasting Using Deep Network Designer

2-69



Update Network State with Observed Values

If you have access to the actual values of time steps between predictions, then you can update the
network state with the observed values instead of the predicted values.

First, initialize the network state. To make predictions on a new sequence, reset the network state
using resetState. Resetting the network state prevents previous predictions from affecting the
predictions on the new data. Reset the network state, and then initialize the network state by
predicting on the training data.

net = resetState(net);
net = predictAndUpdateState(net,XTrain);

Predict on each time step. For each prediction, predict the next time step using the observed value of
the previous time step. Set the 'ExecutionEnvironment' option of predictAndUpdateState to
'cpu'.

YPred = [];
numTimeStepsTest = numel(XTest);
for i = 1:numTimeStepsTest
    [net,YPred(:,i)] = predictAndUpdateState(net,XTest(:,i),'ExecutionEnvironment','cpu');
end

Unstandardize the predictions using the parameters calculated earlier.

YPred = sig*YPred + mu;

Calculate the root-mean-square error (RMSE).

2 Deep Network Designer

2-70



rmse = sqrt(mean((YPred-YTest).^2))

rmse = 119.5968

Compare the forecasted values with the test data.

figure
subplot(2,1,1)
plot(YTest)
hold on
plot(YPred,'.-')
hold off
legend(["Observed" "Predicted"])
ylabel("Cases")
title("Forecast with Updates")

subplot(2,1,2)
stem(YPred - YTest)
xlabel("Month")
ylabel("Error")
title("RMSE = " + rmse)

Here, the predictions are more accurate when updating the network state with the observed values
instead of the predicted values.

See Also
Deep Network Designer

 Train Network for Time Series Forecasting Using Deep Network Designer

2-71



Related Examples
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Build Networks with Deep Network Designer” on page 2-15
• “List of Deep Learning Layers” on page 1-43
• “Generate MATLAB Code from Deep Network Designer” on page 2-73
• “Deep Learning Tips and Tricks” on page 1-87

2 Deep Network Designer

2-72



Generate MATLAB Code from Deep Network Designer
The Deep Network Designer app enables you to generate MATLAB code that recreates the building,
editing, and training of a network in the app.

In the Designer tab, you can generate a live script to:

• Recreate the layers in your network. Select Export > Generate Code.

• Recreate the layers in your network, including any initial parameters. Select Export > Generate
Code with Initial Parameters.

In the Training tab, you can generate a live script to:

• Recreate the building and training of a network you construct in Deep Network Designer. Select
Export > Generate Code for Training.

Generate MATLAB Code to Recreate Network Layers
Generate MATLAB code for recreating the network constructed in Deep Network Designer. In the
Designer tab, choose one of these options:

• To recreate the layers in your network, select Export > Generate Code. This network does not
contain initial parameters, such as pretrained weights.

• To recreate the layers in your network, including any initial parameters, select Export >
Generate Code with Initial Parameters. The app creates a live script and a MAT-file containing
the initial parameters (weights and biases) from your network. Run the script to recreate the
network layers, including the learnable parameters from the MAT-file. Use this option to preserve
the weights if you want to perform transfer learning.

Running the generated script returns the network architecture as a variable in the workspace.
Depending on the network architecture, the variable is a layer graph named lgraph or a layer array
named layers. For an example of training a network exported from Deep Network Designer, see
“Create Simple Sequence Classification Network Using Deep Network Designer” on page 2-53.

Generate MATLAB Code to Train Network
To recreate the construction and training of a network in Deep Network Designer, generate MATLAB
code after training. For an example of using Deep Network Designer to train an image classification
network, see “Transfer Learning with Deep Network Designer” on page 2-2.

Once training is complete, on the Training tab, select Export > Generate Code for Training. The
app creates a live script and a MAT-file containing the initial parameters (weights and biases) from
your network. If you import data from the workspace into Deep Network Designer then this is also
contained in the generated MAT-file.

This image shows an example of a live script generated using Deep Network Designer.

 Generate MATLAB Code from Deep Network Designer

2-73



Running the generated script builds the network (including the learnable parameters from the MAT-
file), imports the data, sets the training options, and trains the network. Examine the generated script
to learn how to construct and train a network at the command line.

Note If you change the network, training and validation data, or training options, click Train before
generating the live script.

2 Deep Network Designer

2-74



Use Network for Prediction

Suppose that the trained network is contained in the variable net. To use the trained network for
prediction, use the predict function. For example, suppose you have a trained image classification
network. Use the exported network to predict the class of peppers.png.

img = imread("peppers.png");
img = imresize(img, net.Layers(1).InputSize(1:2));
label = predict(net, img);
imshow(img);
title(label);

References
[1] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using

Passing-through Regions.” Pattern Recognition Letters 20, no. 11–13 (November 1999): 1103–
11. https://doi.org/10.1016/S0167-8655(99)00077-X.

[2] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. Japanese Vowels Data Set. Distributed by UCI
Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels.

See Also
Deep Network Designer | trainingOptions | trainNetwork

Related Examples
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Build Networks with Deep Network Designer” on page 2-15
• “Import Data into Deep Network Designer” on page 2-39
• “Train Networks Using Deep Network Designer” on page 2-31
• “Generate Experiment Using Deep Network Designer” on page 2-86
• “Export Image Classification Network from Deep Network Designer to Simulink” on page 2-102

 Generate MATLAB Code from Deep Network Designer

2-75



View Autogenerated Custom Layers Using Deep Network
Designer

This example shows how to import a pretrained TensorFlow™ network and view the autogenerated
layers in Deep Network Designer.

Import a pretrained TensorFlow network in the saved model format as a DAGNetwork object. The
imported network contains layers that are not supported for conversion into built-in MATLAB®
layers. The software automatically generates custom layers when you import these layers.

Specify the model folder.

if ~exist("digitsDAGnetwithnoise","dir")
    unzip("digitsDAGnetwithnoise.zip")
end
modelFolder = "./digitsDAGnetwithnoise";

Specify the class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import a TensorFlow™ network in the saved model format. By default, importTensorFlowNetwork
imports the network as a DAGNetwork object. Specify the output layer type for an image
classification problem.

net = importTensorFlowNetwork(modelFolder, ...
    OutputLayerType="classification", ...
    Classes=classNames);

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation. Assembling network...
Import finished.

View the network in Deep Network Designer.

deepNetworkDesigner(net)

2 Deep Network Designer

2-76



If the imported network contains layers not supported for conversion into built-in MATLAB layers,
then the importTensorFlowNetwork function can automatically generate custom layers in place of
these layers. importTensorFlowNetwork saves each generated custom layer to a separate .m file
in the package +digitsDAGnetwithnoise in the current folder.

The autogenerated layers appear in the Deep Network Designer canvas as gray icons with names
starting with "k". Select a layer to see more information about its properties.

 View Autogenerated Custom Layers Using Deep Network Designer

2-77



You can view and edit the layer code by clicking Edit Layer Code. The class file opens in the
MATLAB® Editor.

See Also
Deep Network Designer | trainingOptions | trainNetwork | importTensorFlowNetwork

Related Examples
• “Generate MATLAB Code from Deep Network Designer” on page 2-73
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Build Networks with Deep Network Designer” on page 2-15
• “Import Data into Deep Network Designer” on page 2-39
• “Generate Experiment Using Deep Network Designer” on page 2-86
• “Export Image Classification Network from Deep Network Designer to Simulink” on page 2-102

2 Deep Network Designer

2-78



Image-to-Image Regression in Deep Network Designer

This example shows how to use Deep Network Designer to construct and train an image-to-image
regression network for super resolution.

Spatial resolution is the number of pixels used to construct a digital image. An image with a high
spatial resolution is composed of a greater number of pixels and as a result the image contains
greater detail. Super resolution is the process of taking as input a low resolution image and upscaling
it into a higher resolution image. When you work with image data, you might reduce the spatial
resolution to decrease the size of the data, at the cost of losing information. To recover this lost
information, you can train a deep learning network to predict the missing details of an image. In this
example, you recover 28-by-28 pixel images from images that were compressed to 7-by-7 pixels.

Load Data

This example uses the digits data set, which consists of 10,000 synthetic grayscale images of
handwritten digits. Each image is 28-by-28-by-1 pixels.

Load the data and create an image datastore.

dataFolder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');

imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ....
    'LabelSource','foldernames');

Use the shuffle function to shuffle the data prior to training.

imds = shuffle(imds);

Use the splitEachLabel function to divide the image datastore into three image datastores
containing images for training, validation, and testing.

[imdsTrain,imdsVal,imdsTest] = splitEachLabel(imds,0.7,0.15,0.15,'randomized');

Normalize the data in each image to the range [0,1]. Normalization helps stabilize and speed up
network training using gradient descent. If your data is poorly scaled, then the loss can become NaN
and the network parameters can diverge during training.

 Image-to-Image Regression in Deep Network Designer

2-79



imdsTrain = transform(imdsTrain,@(x) rescale(x));
imdsVal = transform(imdsVal,@(x) rescale(x));
imdsTest = transform(imdsTest,@(x) rescale(x));

Generate Training Data

Create a training data set by generating pairs of images consisting of upsampled low resolution
images and the corresponding high resolution images.

To train a network to perform image-to-image regression, the images need to be pairs consisting of an
input and a response where both images are the same size. Generate the training data by
downsampling each image to 7-by-7 pixels and then upsampling to 28-by-28 pixels. Using the pairs of
transformed and original images, the network can learn how to map between the two different
resolutions.

Generate the input data using the helper function upsampLowRes, which uses imresize to produce
lower resolution images.

imdsInputTrain = transform(imdsTrain,@upsampLowRes);
imdsInputVal= transform(imdsVal,@upsampLowRes);
imdsInputTest = transform(imdsTest,@upsampLowRes);

Use the combine function to combine the low and high resolution images into a single datastore. The
output of the combine function is a CombinedDatastore object.

dsTrain = combine(imdsInputTrain,imdsTrain);
dsVal = combine(imdsInputVal,imdsVal);
dsTest = combine(imdsInputTest,imdsTest);

Create Network Architecture

Create the network architecture using the unetLayers function from Computer Vision Toolbox™.
This function provides a network suitable for semantic segmentation that can be easily adapted for
image-to-image regression.

Create a network with input size 28-by-28-by-1 pixels.

layers = unetLayers([28,28,1],2,'encoderDepth',2);

Edit the network for image-to-image regression using Deep Network Designer.

deepNetworkDesigner(layers);

In the Designer pane, replace the softmax and pixel classification layers with a regression layer from
the Layer Library.

2 Deep Network Designer

2-80



Select the final convolutional layer and set the NumFilters property to 1.

The network is now ready for training.

Import Data

Import the training and validation data into Deep Network Designer.

 Image-to-Image Regression in Deep Network Designer

2-81



In the Data tab, click Import Data > Import Custom Data and select dsTrain as the training data
and dsVal as the validation data. Import both datastores by clicking Import.

Deep Network Designer displays the pairs of images in the combined datastore. The upscaled low
resolution input images are on the left, and the original high resolution response images are on the
right. The network learns how to map between the input and the response images.

Train Network

Select the training options and train the network.

In the Training tab, select Training Options. From the Solver list, select adam. Set MaxEpochs to
10. Confirm the training options by clicking OK.

2 Deep Network Designer

2-82



Train the network on the combined datastore by clicking Train.

As the network learns how to map between the two images the validation root mean squared error
(RMSE) decreases.

Once training is complete, click Export to export the trained network to the workspace. The trained
network is stored in the variable trainedNetwork_1.

Test Network

Evaluate the performance of the network using the test data.

 Image-to-Image Regression in Deep Network Designer

2-83



Using predict, you can test if the network can produce a high resolution image from a low
resolution input image that was not included in the training set.

ypred = predict(trainedNetwork_1,dsTest);

for i = 1:8
    I(1:2,i) = read(dsTest);
    I(3,i) = {ypred(:,:,:,i)};
end

Compare the input, predicted, and response images.

subplot(1,3,1)
imshow(imtile(I(1,:),'GridSize',[8,1]))
title('Input')
subplot(1,3,2)
imshow(imtile(I(3,:),'GridSize',[8,1]))
title('Predict')
subplot(1,3,3)
imshow(imtile(I(2,:),'GridSize',[8,1]))
title('Response')

The network successfully produces high resolution images from low resolution inputs.

The network in this example is very simple and highly tailored to the digits data set. For an example
showing how to create a more complex image-to-image regression network for everyday images, see
“Increase Image Resolution Using Deep Learning” on page 9-8.

2 Deep Network Designer

2-84



Supporting Functions

function dataOut = upsampLowRes(dataIn)
        temp = dataIn;
        temp = imresize(temp,[7,7],'method','bilinear');
        dataOut = {imresize(temp,[28,28],'method','bilinear')};
end

See Also
Deep Network Designer | trainingOptions

Related Examples
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Build Networks with Deep Network Designer” on page 2-15
• “Import Data into Deep Network Designer” on page 2-39
• “Prepare Datastore for Image-to-Image Regression” on page 20-90
• “Increase Image Resolution Using Deep Learning” on page 9-8

 Image-to-Image Regression in Deep Network Designer

2-85



Generate Experiment Using Deep Network Designer

This example shows how to use Experiment Manager to tune the hyperparameters of a regression
network trained in Deep Network Designer.

You can use Deep Network Designer to create a network, import data, and train the network. You can
then use Experiment Manager to sweep through a range of hyperparameter values and find the
optimal training options.

Load Data

Load the digit sample data as an image datastore. The digits data set consists of 10,000 synthetic
grayscale images of handwritten digits. Each image is 28-by-28-by-1 pixels and has been rotated by a
certain angle. You can use deep learning to train a regression model to predict the angle of the
image.

Load the digit images and their corresponding angle of rotation.

[XTrain,~,anglesTrain] = digitTrain4DArrayData;
[XValidation,~,anglesValidation] = digitTest4DArrayData;

To train a regression network using Deep Network Designer, the data must be in a datastore. Convert
the images and angles to arrayDatastore objects.

adsXTrain = arrayDatastore(XTrain,IterationDimension=4);
adsAnglesTrain = arrayDatastore(anglesTrain);

To input both the images and angles from both datastores into a deep learning network, combine
them using the combine function. The input and target datastores are combined by horizontally
concatenating the data returned by the read function.

cdsTrain = combine(adsXTrain,adsAnglesTrain);

Repeat the data processing steps on the validation data.

adsXValidation = arrayDatastore(XValidation,IterationDimension=4);
adsAnglesValidation = arrayDatastore(anglesValidation);
cdsValidation = combine(adsXValidation,adsAnglesValidation);

Define Network Architecture

Define the network architecture. You can build this network interactively by dragging layers in Deep
Network Designer. Alternatively, you can create this network at the command line and import it into
Deep Network Designer.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,Padding="same")
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,Stride=2)
    convolution2dLayer(3,16,Padding="same")
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,Stride=2)
    convolution2dLayer(3,32,Padding="same")

2 Deep Network Designer

2-86



    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,Padding="same")
    batchNormalizationLayer
    reluLayer
    dropoutLayer(0.2)
    fullyConnectedLayer(1)
    regressionLayer];

deepNetworkDesigner(layers)

Import Data

Import the digits data into Deep Network Designer. Select the Data tab and click Import Data >
Import Custom Data. Select cdsTrain as the training data and cdsValidation as the validation
data.

 Generate Experiment Using Deep Network Designer

2-87



Import the data by clicking Import.

Train Network

Specify the training options and train the network. On the Training tab, click Training Options. For
this example, set the solver to adam and keep the other default settings. Set the training options by
clicking OK.

Train the network using the imported data and the specified training options by clicking Train. The
training progress plot shows the mini-batch loss and root mean squared error (RMSE) as well as the
validation loss and error.

2 Deep Network Designer

2-88



Generate Experiment

Once training is complete, you can generate an experiment to sweep through a range of
hyperparameter values to find the optimal training options.

To generate an experiment, on the Training tab, click Export > Create Experiment.

Deep Network Designer generates an experiment template using your network and imported data.
The app then opens Experiment Manager. In Experiment Manager, you can choose to add the new
experiment to a new project, an existing project, or the current project.

 Generate Experiment Using Deep Network Designer

2-89



Experiments consist of a description, a table of hyperparameters, a setup function, and a collection of
metric functions to evaluate the results of the experiment.

The Hyperparameters section specifies the strategy (Exhaustive Sweep) and hyperparameter
values to use for the experiment. When you run the experiment, Experiment Manager trains the
network using every combination of hyperparameter values specified in the hyperparameter table. By
default, Deep Network Designer generates an experiment to sweep over a range of learning rates
centered on the learning rate you used to train.

2 Deep Network Designer

2-90



The Setup Function configures the training data, network architecture, and training options for the
experiment. Deep Network Designer automatically configures the setup function to use your network
and data. The input to the setup function is a structure params with fields from the hyperparameter
table. To inspect or edit the setup function, under Setup Function, click Edit.

If your network contains custom layers or the training options contain a relative checkpoint path,
Deep Network Designer generates supporting functions in the experiment setup script. You must
check and edit these supporting functions before running the experiment.

Run Experiment

In Experiment Manager, run the experiment by clicking Run. When you run the experiment,
Experiment Manager trains the network defined by the setup function. Each trial uses one of the
learning rates specified in the hyperparameter table.

A table of results displays the RMSE and loss for each trial. When the experiment finishes, you can
sort the trials by the RMSE or loss metrics to see which trial performs the best. In this example, trial
3, with an initial learning rate of 0.01, performs the best.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.

Add Hyperparameter

To add another hyperparameter to sweep over, you must add it to the Hyperparameters table and
update the setup function.

Add another hyperparameter to the Hyperparameters table by clicking Add. For this example, add a
new hyperparameter called mySolver with the values ["adam" "sgdm" "rmsprop"].

Next, edit the setup function to sweep over the new hyperparameter. To edit the setup function,
under Setup Function, click Edit. In the Training Options section of the live script, change the
first argument of the trainingOptions function from "adam" to params.mySolver. Click Save
and close the setup function.

 Generate Experiment Using Deep Network Designer

2-91



Run the updated experiment by clicking Run. Experiment Manager tries every combination of the
learning rate and solver hyperparameters. In this example, trial 5, with an initial learning rate of
0.001 and a SGDM solver, performs the best.

See Also
Deep Network Designer | Experiment Manager | trainingOptions | trainNetwork

Related Examples
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Build Networks with Deep Network Designer” on page 2-15
• “Create a Deep Learning Experiment for Classification” on page 6-2
• “Try Multiple Pretrained Networks for Transfer Learning” on page 6-33
• “Import Data into Deep Network Designer” on page 2-39

2 Deep Network Designer

2-92



Transfer Learning with Pretrained Audio Networks in Deep
Network Designer

This example shows how to interactively fine-tune a pretrained network to classify new audio signals
using Deep Network Designer.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
signals.

This example retrains YAMNet, a pretrained convolutional neural network, to classify a new set of
audio signals.

Load Data

Download and unzip the air compressor data set [1] on page 2-101. This data set consists of
recordings from air compressors in a healthy state or one of seven faulty states.

zipFile = matlab.internal.examples.downloadSupportFile('audio','AirCompressorDataset/AirCompressorDataset.zip');
dataFolder = fileparts(zipFile);
unzip(zipFile,dataFolder);

Create an audioDatastore object to manage the data.

ads = audioDatastore(dataFolder,IncludeSubfolders=true,LabelSource="foldernames");

Split the data into training, validation, and test sets using the splitEachLabel function.

[adsTrain,adsValidation,adsTest] = splitEachLabel(ads,0.7,0.2,0.1);

Use the transform function to preprocess the data using the function audioPreprocess, found at
the end of this example. For each signal:

• Use yamnetPreprocess (Audio Toolbox) to generate mel spectrograms suitable for training
using YAMNet. Each audio signal produces multiple spectrograms.

• Duplicate the class label for each of the spectrograms.

tdsTrain = transform(adsTrain,@audioPreprocess,IncludeInfo=true);
tdsValidation = transform(adsValidation,@audioPreprocess,IncludeInfo=true);
tdsTest = transform(adsTest,@audioPreprocess,IncludeInfo=true);

Select Pretrained Network

Prepare and train the network interactively using Deep Network Designer. To open Deep Network
Designer, on the Apps tab, under Machine Learning and Deep Learning, click the app icon.
Alternatively, you can open the app from the command line.

deepNetworkDesigner

Deep Network Designer provides a selection of pretrained audio classification networks. These
models require both Audio Toolbox™ and Deep Learning Toolbox™.

 Transfer Learning with Pretrained Audio Networks in Deep Network Designer

2-93



Under Audio Networks, select YAMNet from the list of pretrained networks and click Open. If the
Audio Toolbox model for YAMNet is not installed, click Install instead. Deep Network Designer
provides a link to the location of the network weights. Unzip the file to a location on the MATLAB
path. Now close the Deep Network Designer Start Page and reopen it. When the network is correctly
installed and on the path, you can click the Open button on YAMNet. The YAMNet model can classify
audio into one of 521 sound categories. For more information, see yamnet (Audio Toolbox).

Deep Network Designer displays a zoomed-out view of the whole network in the Designer pane. To
zoom in with the mouse, use Ctrl+scroll wheel. To pan, use the arrow keys, or hold down the scroll
wheel and drag the mouse. Select a layer to view its properties. Clear all layers to view the network
summary in the Properties pane.

2 Deep Network Designer

2-94



Prepare Network for Transfer Learning

To prepare the network for transfer learning, in the Designer pane, replace the last learnable layer
and the final classification layer.

Replace Last Learnable Layer

To use a pretrained network for transfer learning, you must change the number of classes to match
your new data set. First, find the last learnable layer in the network. For YAMNet, the last learnable
layer is the last fully connected layer, dense.

Drag a new fullyConnectedLayer onto the canvas. The OutputSize property defines the number
of classes for classification problems. Change OutputSize to the number of classes in the new data,
in this example, 8.

Change the learning rates so that learning is faster in the new layer than in the transferred layers by
setting WeightLearnRateFactor and BiasLearnRateFactor to 10.

Delete the last fully connected layer and connect your new layer instead.

 Transfer Learning with Pretrained Audio Networks in Deep Network Designer

2-95



Replace Output Layer

For transfer learning, you need to replace the output layer. Scroll to the end of the Layer Library and
drag a new classificationLayer onto the canvas. Delete the original classification layer and
connect your new layer in its place.

For a new output layer, you do not need to set OutputSize. At training time, Deep Network Designer
automatically sets the output classes of the layer from the data.

2 Deep Network Designer

2-96



Check Network

To check that the network is ready for training, click Analyze. If the Deep Learning Network
Analyzer reports zero errors, then the edited network is ready for training.

 Transfer Learning with Pretrained Audio Networks in Deep Network Designer

2-97



Import Data

To load the data into Deep Network Designer, on the Data tab, click Import Data > Import Custom
Data. Select tdsTrain as the training data and tdsValidation as the validation data.

Using Deep Network Designer, you can inspect the training and validation data in the Data tab. You
can see that the data is as expected prior to training.

2 Deep Network Designer

2-98



Select Training Options

To specify the training options, select the Training tab and click Training Options. Set the initial
learning rate to a small value to slow down learning in the transferred layers. In combination with the
increased learning rate factors for the fully connected layer, learning is now fast only in the new
layers and slower in the other layers.

For this example, set Solver to adam, InitialLearnRate to 0.0001, and MaxEpochs to 2.

Train Network

To train the network with the specified training options, click OK and then click Train.

Deep Network Designer allows you to visualize and monitor the training progress. You can then edit
the training options and retrain the network, if required. To find the optimal training options, create a
deep learning experiment using Experiment Manager. You can create a deep learning experiment in
Deep Network Designer by clicking Export > Create Experiment.

 Transfer Learning with Pretrained Audio Networks in Deep Network Designer

2-99



To export the results from training, on the Training tab, select Export > Export Trained Network
and Results. Deep Network Designer exports the trained network as the variable
trainedNetwork_1 and the training info as the variable trainInfoStruct_1.

You can also generate MATLAB code, which recreates the network and the training options used. On
the Training tab, select Export > Generate Code for Training. Examine the MATLAB code to learn
how to programmatically prepare the data for training, create the network architecture, and train the
network.

Test Network

Classify the test data using the exported network and the classify function.

data = readall(tdsTest);
YTest = [data{:,2}];
YPred = classify(trainedNetwork_1,tdsTest);

accuracy = sum(YPred == YTest')/numel(YTest)

accuracy = 0.9830

Supporting Function

The function audioPreprocess uses yamnetPreprocess (Audio Toolbox) to generate mel
spectrograms from audioIn that you can feed to the YAMNet pretrained network. Each input signal
generates multiple spectrograms, so the labels must be duplicated to create a one-to-one
correspondence with the spectrograms.

2 Deep Network Designer

2-100



function [data,info] = audioPreprocess(audioIn,info)
class = info.Label;
fs = info.SampleRate;
features = yamnetPreprocess(audioIn,fs);

numSpectrograms = size(features,4);

data = cell(numSpectrograms,2);
for index = 1:numSpectrograms
    data{index,1} = features(:,:,:,index);
    data{index,2} = class;
end
end

References

[1] Verma, Nishchal K., Rahul Kumar Sevakula, Sonal Dixit, and Al Salour. “Intelligent Condition
Based Monitoring Using Acoustic Signals for Air Compressors.” IEEE Transactions on Reliability 65,
no. 1 (March 2016): 291–309. https://doi.org/10.1109/TR.2015.2459684.

See Also
Deep Network Designer | yamnet

Related Examples
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Build Networks with Deep Network Designer” on page 2-15
• “Import Data into Deep Network Designer” on page 2-39
• “Transfer Learning with Pretrained Audio Networks” on page 15-2
• “List of Deep Learning Layers” on page 1-43

 Transfer Learning with Pretrained Audio Networks in Deep Network Designer

2-101



Export Image Classification Network from Deep Network
Designer to Simulink

This example shows how to export an image classifier trained using Deep Network Designer to
Simulink®.

Load Data

Load the digit sample data. The digits data set consists of 10,000 synthetic grayscale images of
handwritten digits. Each image is 28-by-28 pixels and has an associated label denoting which digit
the image represents (0–9).

digitDatasetPath = fullfile(matlabroot,"toolbox","nnet","nndemos", ...
    "nndatasets","DigitDataset");

Create an image datastore. The imageDatastore function automatically labels the images based on
folder names.

imds = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

Divide the data into training and test sets using splitEachLabel.

[imdsTrain,imdsTest] = splitEachLabel(imds,0.9,"randomize");

Define Network Architecture

Define the convolutional neural network architecture. You can create this network at the command
line or interactively using Deep Network Designer.

Specify the size of the images in the input layer of the network and the number of classes in the fully
connected layer before the classification layer.

inputSize = [28 28 1];
numClasses = 10;
layers = [
    imageInputLayer(inputSize)

2 Deep Network Designer

2-102



    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

View the network in Deep Network Designer.

deepNetworkDesigner(layers)

Import Data

To import the image datastore, select the Data tab and click Import Data > Import Image
Classification Data. Select imdsTrain as the data source. Set aside 30% of the training data to use
as validation data. To randomly allocate observations to the training and validation sets, select
Randomize.

 Export Image Classification Network from Deep Network Designer to Simulink

2-103



Import the data by clicking Import.

Train Network

Specify the training options and train the network.

On the Training tab, click Training Options. For this example, set the maximum number of epochs
to 5 and keep the other default settings. Set the training options by clicking OK.

Train the network by clicking Train.

The accuracy is the fraction of labels that the network predicts correctly. In this case, more than 98%
of the predicted labels match the true labels of the validation set.

2 Deep Network Designer

2-104



Export Network to Simulink

To export the trained network to Simulink®, on the Training tab, click Export > Export to
Simulink.

Save the network in your chosen location.

Deep Network Designer creates Simulink® blocks that are suitable for the trained network. In this
example, the app creates a Predict block and an Image Classifier block.

 Export Image Classification Network from Deep Network Designer to Simulink

2-105



Create Simulink Model

You can use the generated blocks to create a Simulink model for image classification and prediction.
For this example, use the Image Classifier block to classify a selection of test images.

This example provides the Simulink model digitsClassifier.slx which uses a pretrained digits
classification network attached to this example as a supporting file. You can open the Simulink model
(provided in this example) or create a model using the blocks generated by Deep Network Designer.

Open digitsClassifier.slx to see the prebuilt model.

model = "digitsClassifier";
open_system(model);

To create this model using the blocks you generated using Deep Network Designer, use the following
steps.

1. Delete the Predict block.

2. Select the Image Classifier block. Under Outputs, select Classification and Predictions.
The software automatically populates the File path with the path to the network trained in Deep
Network Designer.

2 Deep Network Designer

2-106



3. Insert a From Workspace block. Connect this block to the input of the Image Classifier block.
Select the From Workspace block and set Sample time to 1, clear the Interpolate data check box,
and set From output after final data value by to Holding final value.

 Export Image Classification Network from Deep Network Designer to Simulink

2-107



4. Insert two Outport blocks and connect them to the scores and labels output of the Image
Classifier block.

5. (Optional) Insert a Display block and connect it to the ypred output of the Image Classifier
block.

6. Save the model as digitsClassifier.slx.

Deep learning functionality in Simulink® uses MATLAB® Function block that requires a supported
compiler. For most platforms, a default C compiler is supplied with the MATLAB installation. When
using C++ language, you must install a compatible C++ compiler. To see a list of supported
compilers, see Supported and Compatible Compilers.

Load Test Images

Load test images to classify using the model.

I = [];
numImages = 6;

for i = 1:numImages
    idx = randi(length(imdsTest.Labels));
    I(:,:,1,i) = readimage(imdsTest,idx);
    trueLabel(i) = imdsTest.Labels(idx);
end

To import this data into the Simulink model, specify a structure variable containing the input image
data and an empty time vector.

simin.time = [];
simin.signals.values = I;
simin.signals.dimensions = size(I);

Predict Using Simulink Model

Simulate the model and save the simulation output to out.

set_param(model,SimulationMode="Normal");
out = sim(model);

2 Deep Network Designer

2-108

https://www.mathworks.com/support/requirements/supported-compilers.html


The network classifies the six images.

You can improve the simulation speed of your Simulink deep learning models by using the accelerator
modes of the Simulink product. For more information, see “Acceleration for Simulink Deep Learning
Models” on page 3-203.

Display Top Predictions

Extract the scores for each of the test images and sort them from highest probability to lowest.

scores = out.yout{1}.Values(:,:,1);
scores = scores.Data(:,:,1);
labels = out.yout{2}.Values(:,:,1);
labels = labels.Data(:,:,1);

[~,idx] = sort(scores,2,"descend");
idx = idx(:,5:-1:1);
scoresTop = rand([numImages,5]);
for i = 1:numImages
    scoresTop(i,:) = scores(i,idx(i,:));
end

labelsTop = split(string(labels(idx)),{'x','_'});
labelsTop = labelsTop(:,:,2);

Display the top five predicted labels and their associated probabilities as a histogram for each of the
test images.

figure
tiledlayout(3,4,TileSpacing="compact")
for i = 1:numImages
    nexttile
    imshow(uint8(I(:,:,:,i)))
    predSubtitle = "Pred: "+labelsTop(i,5)+ ...
    " ("+string(round(100*scoresTop(i,5),2)+"%)");
    trueSubtitle = "True: "+string(trueLabel(i));
    title({trueSubtitle,predSubtitle});

    nexttile
    barh(scoresTop(i,:))
    xlim([0 1])

 Export Image Classification Network from Deep Network Designer to Simulink

2-109



    title("Top 5 Predictions")
    xlabel("Probability")
    yticklabels(labelsTop(i,:))
end

See Also
Deep Network Designer | Image Classifier | Predict

Related Examples
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Build Networks with Deep Network Designer” on page 2-15
• “Import Data into Deep Network Designer” on page 2-39
• “Generate Experiment Using Deep Network Designer” on page 2-86

2 Deep Network Designer

2-110



Deep Learning with Images

• “Classify Webcam Images Using Deep Learning” on page 3-2
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Train Residual Network for Image Classification” on page 3-13
• “Classify Image Using GoogLeNet” on page 3-19
• “Extract Image Features Using Pretrained Network” on page 3-24
• “Transfer Learning Using Pretrained Network” on page 3-29
• “Transfer Learning Using AlexNet” on page 3-36
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Train Convolutional Neural Network for Regression” on page 3-49
• “Train Network with Multiple Outputs” on page 3-57
• “Convert Classification Network into Regression Network” on page 3-66
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Train Conditional Generative Adversarial Network (CGAN)” on page 3-86
• “Train Wasserstein GAN with Gradient Penalty (WGAN-GP)” on page 3-100
• “Train Fast Style Transfer Network” on page 3-112
• “Train a Siamese Network to Compare Images” on page 3-126
• “Train a Siamese Network for Dimensionality Reduction” on page 3-140
• “Train Neural ODE Network” on page 3-152
• “Train Variational Autoencoder (VAE) to Generate Images” on page 3-163
• “Lane and Vehicle Detection in Simulink Using Deep Learning” on page 3-173
• “Classify ECG Signals in Simulink Using Deep Learning” on page 3-179
• “Classify Images in Simulink Using GoogLeNet” on page 3-183
• “Multilabel Image Classification Using Deep Learning” on page 3-188
• “Acceleration for Simulink Deep Learning Models” on page 3-203

3



Classify Webcam Images Using Deep Learning

This example shows how to classify images from a webcam in real time using the pretrained deep
convolutional neural network GoogLeNet.

Use MATLAB®, a simple webcam, and a deep neural network to identify objects in your
surroundings. This example uses GoogLeNet, a pretrained deep convolutional neural network (CNN
or ConvNet) that has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). You can download GoogLeNet
and use MATLAB to continuously process the camera images in real time.

GoogLeNet has learned rich feature representations for a wide range of images. It takes the image as
input and provides a label for the object in the image and the probabilities for each of the object
categories. You can experiment with objects in your surroundings to see how accurately GoogLeNet
classifies images. To learn more about the network's object classification, you can show the scores for
the top five classes in real time, instead of just the final class decision.

Load Camera and Pretrained Network

Connect to the camera and load a pretrained GoogLeNet network. You can use any pretrained
network at this step. The example requires MATLAB Support Package for USB Webcams, and Deep
Learning Toolbox™ Model for GoogLeNet Network. If you do not have the required support packages
installed, then the software provides a download link.

camera = webcam;
net = googlenet;

If you want to run the example again, first run the command clear camera where camera is the
connection to the webcam. Otherwise, you see an error because you cannot create another
connection to the same webcam.

Classify Snapshot from Camera

To classify an image, you must resize it to the input size of the network. Get the first two elements of
the InputSize property of the image input layer of the network. The image input layer is the first
layer of the network.

inputSize = net.Layers(1).InputSize(1:2)

inputSize =

   224   224

Display the image from the camera with the predicted label and its probability. You must resize the
image to the input size of the network before calling classify.

figure
im = snapshot(camera);
image(im)
im = imresize(im,inputSize);
[label,score] = classify(net,im);
title({char(label),num2str(max(score),2)});

3 Deep Learning with Images

3-2



Continuously Classify Images from Camera

To classify images from the camera continuously, include the previous steps inside a loop. Run the
loop while the figure is open. To stop the live prediction, simply close the figure. Use drawnow at the
end of each iteration to update the figure.

h = figure;

while ishandle(h)
    im = snapshot(camera);
    image(im)
    im = imresize(im,inputSize);
    [label,score] = classify(net,im);
    title({char(label), num2str(max(score),2)});
    drawnow
end

Display Top Predictions

The predicted classes can change rapidly. Therefore, it can be helpful to display the top predictions
together. You can display the top five predictions and their probabilities by plotting the classes with
the highest prediction scores.

Classify a snapshot from the camera. Display the image from the camera with the predicted label and
its probability. Display a histogram of the probabilities of the top five predictions by using the score
output of the classify function.

 Classify Webcam Images Using Deep Learning

3-3



Create the figure window. First, resize the window to have twice the width, and create two subplots.

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

In the left subplot, display the image and classification together.

im = snapshot(camera);
image(ax1,im)
im = imresize(im,inputSize);
[label,score] = classify(net,im);
title(ax1,{char(label),num2str(max(score),2)});

Select the top five predictions by selecting the classes with the highest scores.

[~,idx] = sort(score,'descend');
idx = idx(5:-1:1);
classes = net.Layers(end).Classes;
classNamesTop = string(classes(idx));
scoreTop = score(idx);

Display the top five predictions as a histogram.

barh(ax2,scoreTop)
xlim(ax2,[0 1])
title(ax2,'Top 5')
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop)
ax2.YAxisLocation = 'right';

Continuously Classify Images and Display Top Predictions

To classify images from the camera continuously and display the top predictions, include the previous
steps inside a loop. Run the loop while the figure is open. To stop the live prediction, simply close the
figure. Use drawnow at the end of each iteration to update the figure.

Create the figure window. First resize the window, to have twice the width, and create two subplots.
To prevent the axes from resizing, set PositionConstraint property to 'innerposition'.

3 Deep Learning with Images

3-4



h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);
ax2.PositionConstraint = 'innerposition';

Continuously display and classify images together with a histogram of the top five predictions.

while ishandle(h)
    % Display and classify the image
    im = snapshot(camera);
    image(ax1,im)
    im = imresize(im,inputSize);
    [label,score] = classify(net,im);
    title(ax1,{char(label),num2str(max(score),2)});

    % Select the top five predictions
    [~,idx] = sort(score,'descend');
    idx = idx(5:-1:1);
    scoreTop = score(idx);
    classNamesTop = string(classes(idx));

    % Plot the histogram
    barh(ax2,scoreTop)
    title(ax2,'Top 5')
    xlabel(ax2,'Probability')
    xlim(ax2,[0 1])
    yticklabels(ax2,classNamesTop)
    ax2.YAxisLocation = 'right';

    drawnow
end

See Also
googlenet | vgg19 | classify

Related Examples
• “Transfer Learning Using Pretrained Network” on page 3-29
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2

 Classify Webcam Images Using Deep Learning

3-5



Train Deep Learning Network to Classify New Images

This example shows how to use transfer learning to retrain a convolutional neural network to classify
a new set of images.

Pretrained image classification networks have been trained on over a million images and can classify
images into 1000 object categories, such as keyboard, coffee mug, pencil, and many animals. The
networks have learned rich feature representations for a wide range of images. The network takes an
image as input, and then outputs a label for the object in the image together with the probabilities for
each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network from scratch with randomly initialized
weights. You can quickly transfer learned features to a new task using a smaller number of training
images.

Load Data

Unzip and load the new images as an image datastore. This very small data set contains only 75
images. Divide the data into training and validation data sets. Use 70% of the images for training and
30% for validation.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames'); 
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7);

Load Pretrained Network

Load a pretrained GoogLeNet network. If the Deep Learning Toolbox™ Model for GoogLeNet
Network support package is not installed, then the software provides a download link.

To try a different pretrained network, open this example in MATLAB® and select a different network.
For example, you can try squeezenet, a network that is even faster than googlenet. You can run
this example with other pretrained networks. For a list of all available networks, see “Load Pretrained
Neural Networks” on page 1-13.

3 Deep Learning with Images

3-6



net = 

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(net)

The first element of the Layers property of the network is the image input layer. For a GoogLeNet
network, this layer requires input images of size 224-by-224-by-3, where 3 is the number of color
channels. Other networks can require input images with different sizes. For example, the Xception
network requires images of size 299-by-299-by-3.

net.Layers(1)

ans = 
  ImageInputLayer with properties:

                      Name: 'data'
                 InputSize: [224 224 3]

   Hyperparameters
          DataAugmentation: 'none'
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
                      Mean: [224×224×3 single]

inputSize = net.Layers(1).InputSize;

 Train Deep Learning Network to Classify New Images

3-7



Replace Final Layers

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'loss3-classifier' and
'output' in GoogLeNet, contain information on how to combine the features that the network
extracts into class probabilities, a loss value, and predicted labels. To retrain a pretrained network to
classify new images, replace these two layers with new layers adapted to the new data set.

Convert the trained network to a layer graph.

lgraph = layerGraph(net);

Find the names of the two layers to replace. You can do this manually or you can use the supporting
function findLayersToReplace to find these layers automatically.

[learnableLayer,classLayer] = findLayersToReplace(lgraph);
[learnableLayer,classLayer] 

ans = 
  1×2 Layer array with layers:

     1   'loss3-classifier'   Fully Connected         1000 fully connected layer
     2   'output'             Classification Output   crossentropyex with 'tench' and 999 other classes

In most networks, the last layer with learnable weights is a fully connected layer. Replace this fully
connected layer with a new fully connected layer with the number of outputs equal to the number of
classes in the new data set (5, in this example). In some networks, such as SqueezeNet, the last
learnable layer is a 1-by-1 convolutional layer instead. In this case, replace the convolutional layer
with a new convolutional layer with the number of filters equal to the number of classes. To learn
faster in the new layer than in the transferred layers, increase the learning rate factors of the layer.

numClasses = numel(categories(imdsTrain.Labels));

if isa(learnableLayer,'nnet.cnn.layer.FullyConnectedLayer')
    newLearnableLayer = fullyConnectedLayer(numClasses, ...
        'Name','new_fc', ...
        'WeightLearnRateFactor',10, ...
        'BiasLearnRateFactor',10);
    
elseif isa(learnableLayer,'nnet.cnn.layer.Convolution2DLayer')
    newLearnableLayer = convolution2dLayer(1,numClasses, ...
        'Name','new_conv', ...
        'WeightLearnRateFactor',10, ...
        'BiasLearnRateFactor',10);
end

lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);

To check that the new layers are connected correctly, plot the new layer graph and zoom in on the
last layers of the network.

3 Deep Learning with Images

3-8



figure('Units','normalized','Position',[0.3 0.3 0.4 0.4]);
plot(lgraph)
ylim([0,10])

Freeze Initial Layers

The network is now ready to be retrained on the new set of images. Optionally, you can "freeze" the
weights of earlier layers in the network by setting the learning rates in those layers to zero. During
training, trainNetwork does not update the parameters of the frozen layers. Because the gradients
of the frozen layers do not need to be computed, freezing the weights of many initial layers can
significantly speed up network training. If the new data set is small, then freezing earlier network
layers can also prevent those layers from overfitting to the new data set.

Extract the layers and connections of the layer graph and select which layers to freeze. In
GoogLeNet, the first 10 layers make out the initial 'stem' of the network. Use the supporting function
freezeWeights to set the learning rates to zero in the first 10 layers. Use the supporting function
createLgraphUsingConnections to reconnect all the layers in the original order. The new layer
graph contains the same layers, but with the learning rates of the earlier layers set to zero.

layers = lgraph.Layers;
connections = lgraph.Connections;

layers(1:10) = freezeWeights(layers(1:10));
lgraph = createLgraphUsingConnections(layers,connections);

Train Network

The network requires input images of size 224-by-224-by-3, but the images in the image datastore
have different sizes. Use an augmented image datastore to automatically resize the training images.

 Train Deep Learning Network to Classify New Images

3-9



Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis and randomly translate them up to 30 pixels and scale them up
to 10% horizontally and vertically. Data augmentation helps prevent the network from overfitting and
memorizing the exact details of the training images.

pixelRange = [-30 30];
scaleRange = [0.9 1.1];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange, ...
    'RandXScale',scaleRange, ...
    'RandYScale',scaleRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. Set InitialLearnRate to a small value to slow down learning in the
transferred layers that are not already frozen. In the previous step, you increased the learning rate
factors for the last learnable layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning in the new layers, slower learning in the middle layers,
and no learning in the earlier, frozen layers.

Specify the number of epochs to train for. When performing transfer learning, you do not need to
train for as many epochs. An epoch is a full training cycle on the entire training data set. Specify the
mini-batch size and validation data. Compute the validation accuracy once per epoch.

miniBatchSize = 10;
valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize);
options = trainingOptions('sgdm', ...
    'MiniBatchSize',miniBatchSize, ...
    'MaxEpochs',6, ...
    'InitialLearnRate',3e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',valFrequency, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network using the training data. By default, trainNetwork uses a GPU if one is available.
This requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Otherwise,
trainNetwork uses a CPU. You can also specify the execution environment by using the
'ExecutionEnvironment' name-value pair argument of trainingOptions. Because the data set
is so small, training is fast.

net = trainNetwork(augimdsTrain,lgraph,options);

3 Deep Learning with Images

3-10



Classify Validation Images

Classify the validation images using the fine-tuned network, and calculate the classification accuracy.

[YPred,probs] = classify(net,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels)

accuracy = 0.9000

Display four sample validation images with predicted labels and the predicted probabilities of the
images having those labels.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label) + ", " + num2str(100*max(probs(idx(i),:)),3) + "%");
end

 Train Deep Learning Network to Classify New Images

3-11



References
[1] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with
convolutions." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-9. 2015.

[2] BVLC GoogLeNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

See Also
vgg16 | vgg19 | alexnet | importCaffeNetwork | importCaffeLayers | trainNetwork |
layerGraph | DAGNetwork | googlenet | analyzeNetwork

Related Examples
• “Convert Classification Network into Regression Network” on page 3-66
• “Deep Learning in MATLAB” on page 1-2
• “Pretrained Deep Neural Networks” on page 1-11
• “Transfer Learning Using Pretrained Network” on page 3-29
• “Train Residual Network for Image Classification” on page 3-13
• “Create a Deep Learning Experiment for Classification” on page 6-2

3 Deep Learning with Images

3-12

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet


Train Residual Network for Image Classification

This example shows how to create a deep learning neural network with residual connections and
train it on CIFAR-10 data. Residual connections are a popular element in convolutional neural
network architectures. Using residual connections improves gradient flow through the network and
enables training of deeper networks.

For many applications, using a network that consists of a simple sequence of layers is sufficient.
However, some applications require networks with a more complex graph structure in which layers
can have inputs from multiple layers and outputs to multiple layers. These types of networks are
often called directed acyclic graph (DAG) networks. A residual network (ResNet) is a type of DAG
network that has residual (or shortcut) connections that bypass the main network layers. Residual
connections enable the parameter gradients to propagate more easily from the output layer to the
earlier layers of the network, which makes it possible to train deeper networks. This increased
network depth can result in higher accuracies on more difficult tasks.

A ResNet architecture is comprised of initial layers, followed by stacks containing residual blocks,
and then the final layers. There are three types of residual blocks:

• Initial residual block — This block appears at the start of the first stack. This example uses
bottleneck components; therefore, this block contains the same layers as the downsampling block,
only with a stride of [1,1] in the first convolutional layer. For more information, see
resnetLayers.

• Standard residual block — This block appears in each stack, after the first downsampling residual
block. This block appears multiple times in each stack and preserves the activation sizes.

• Downsampling residual block — This block appears at the start of each stack (except the first) and
only appears once in each stack. The first convolutional unit in the downsampling block
downsamples the spatial dimensions by a factor of two.

The depth of each stack can vary, this example trains a residual network with three stacks of
decreasing depth. The first stack has depth four, the second stack has depth three, and the final stack
has depth two.

Each residual block contains deep learning layers. For more information on the layers in each block,
see resnetLayers.

To create and train a residual network suitable for image classification, follow these steps:

• Create a residual network using the resnetLayers function.
• Train the network using the trainNetwork function. The trained network is a DAGNetwork

object.
• Perform classification and prediction on new data using the classify and predict functions.

You can also load pretrained residual networks for image classification. For more information, see
“Pretrained Deep Neural Networks” on page 1-11.

 Train Residual Network for Image Classification

3-13



Prepare Data

Download the CIFAR-10 data set [1]. The data set contains 60,000 images. Each image is 32-by-32
pixels in size and has three color channels (RGB). The size of the data set is 175 MB. Depending on
your internet connection, the download process can take time.

datadir = tempdir; 
downloadCIFARData(datadir);

Load the CIFAR-10 training and test images as 4-D arrays. The training set contains 50,000 images
and the test set contains 10,000 images. Use the CIFAR-10 test images for network validation.

[XTrain,TTrain,XValidation,TValidation] = loadCIFARData(datadir);

You can display a random sample of the training images using the following code.

figure;
idx = randperm(size(XTrain,4),20);
im = imtile(XTrain(:,:,:,idx),ThumbnailSize=[96,96]);
imshow(im)

Create an augmentedImageDatastore object to use for network training. During training, the
datastore randomly flips the training images along the vertical axis and randomly translates them up
to four pixels horizontally and vertically. Data augmentation helps prevent the network from
overfitting and memorizing the exact details of the training images.

imageSize = [32 32 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);
augimdsTrain = augmentedImageDatastore(imageSize,XTrain,TTrain, ...
    DataAugmentation=imageAugmenter, ...
    OutputSizeMode="randcrop");

Define Network Architecture

Use the resnetLayers function to create a residual network suitable for this data set.

• The CIFAR-10 images are 32-by-32 pixels, therefore, use a small initial filter size of 3 and an initial
stride of 1. Set the number of initial filters to 16.

• The first stack in the network begins with an initial residual block. Each subsequent stack begins
with a downsampling residual block. The first convolutional units in the downsampling blocks
downsample the spatial dimensions by a factor of two. To keep the amount of computation
required in each convolutional layer roughly the same throughout the network, increase the
number of filters by a factor of two each time you perform spatial downsampling. Set the stack
depth to [4 3 2] and the number of filters to [16 32 64].

initialFilterSize = 3;
numInitialFilters = 16;
initialStride = 1;

numFilters = [16 32 64];
stackDepth = [4 3 2];

lgraph = resnetLayers(imageSize,10, ...

3 Deep Learning with Images

3-14



    InitialFilterSize=initialFilterSize, ...
    InitialNumFilters=numInitialFilters, ...
    InitialStride=initialStride, ...
    InitialPoolingLayer="none", ...
    StackDepth=[4 3 2], ... 
    NumFilters=[16 32 64]);

Visualize the network.

plot(lgraph);

Training Options

Specify training options. Train the network for 80 epochs. Select a learning rate that is proportional
to the mini-batch size and reduce the learning rate by a factor of 10 after 60 epochs. Validate the
network once per epoch using the validation data.

miniBatchSize = 128;
learnRate = 0.1*miniBatchSize/128;
valFrequency = floor(size(XTrain,4)/miniBatchSize);
options = trainingOptions("sgdm", ...
    InitialLearnRate=learnRate, ...
    MaxEpochs=80, ...
    MiniBatchSize=miniBatchSize, ...
    VerboseFrequency=valFrequency, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...

 Train Residual Network for Image Classification

3-15



    ValidationData={XValidation,TValidation}, ...
    ValidationFrequency=valFrequency, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=60);

Train Network

To train the network using trainNetwork, set the doTraining flag to true. Otherwise, load a
pretrained network. Training the network on a good GPU takes over two hours. If you do not have a
GPU, then training takes much longer.

doTraining = false;
if doTraining
    net = trainNetwork(augimdsTrain,lgraph,options);
else
    load("trainedResidualNetwork.mat","net");
end

Evaluate Trained Network

Calculate the final accuracy of the network on the training set (without data augmentation) and
validation set.

[YValPred,probs] = classify(net,XValidation);
validationError = mean(YValPred ~= TValidation);
YTrainPred = classify(net,XTrain);
trainError = mean(YTrainPred ~= TTrain);
disp("Training error: " + trainError*100 + "%")

3 Deep Learning with Images

3-16



Training error: 3.462%

disp("Validation error: " + validationError*100 + "%")

Validation error: 9.27%

Plot the confusion matrix. Display the precision and recall for each class by using column and row
summaries. The network most commonly confuses cats with dogs.

figure(Units="normalized",Position=[0.2 0.2 0.4 0.4]);
cm = confusionchart(TValidation,YValPred);
cm.Title = "Confusion Matrix for Validation Data";
cm.ColumnSummary = "column-normalized";
cm.RowSummary = "row-normalized";

You can display a random sample of nine test images together with their predicted classes and the
probabilities of those classes using the following code.

figure
idx = randperm(size(XValidation,4),9);
for i = 1:numel(idx)
    subplot(3,3,i)
    imshow(XValidation(:,:,:,idx(i)));
    prob = num2str(100*max(probs(idx(i),:)),3);
    predClass = char(YValPred(idx(i)));

 Train Residual Network for Image Classification

3-17



    title([predClass + ", " + prob + "%"])
end

References
[1] Krizhevsky, Alex. "Learning multiple layers of features from tiny images." (2009). https://

www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778. 2016.

See Also
resnetLayers | resnet3dLayers | trainNetwork | trainingOptions | layerGraph |
analyzeNetwork

Related Examples
• “Deep Learning Using Bayesian Optimization” on page 5-177
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2

3 Deep Learning with Images

3-18



Classify Image Using GoogLeNet

This example shows how to classify an image using the pretrained deep convolutional neural network
GoogLeNet.

GoogLeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input, and then
outputs a label for the object in the image together with the probabilities for each of the object
categories.

Load Pretrained Network

Load the pretrained GoogLeNet network. This step requires the Deep Learning Toolbox™ Model for
GoogLeNet Network support package. If you do not have the required support packages installed,
then the software provides a download link.

You can also choose to load a different pretrained network for image classification. To try a different
pretrained network, open this example in MATLAB® and select a different network. For example, you
can try squeezenet, a network that is even faster than googlenet. You can run this example with
other pretrained networks. For a list of all available networks, see “Load Pretrained Neural
Networks” on page 1-13.

net = 

The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the first element of the Layers property of the network is the image input layer. The
network input size is the InputSize property of the image input layer.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   224   224     3

The final element of the Layers property is the classification output layer. The ClassNames property
of this layer contains the names of the classes learned by the network. View 10 random class names
out of the total of 1000.

classNames = net.Layers(end).ClassNames;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

    'papillon'
    'eggnog'
    'jackfruit'
    'castle'
    'sleeping bag'
    'redshank'
    'Band Aid'
    'wok'
    'seat belt'
    'orange'

 Classify Image Using GoogLeNet

3-19



Read and Resize Image

Read and show the image that you want to classify.

I = imread('peppers.png');
figure
imshow(I)

Display the size of the image. The image is 384-by-512 pixels and has three color channels (RGB).

size(I)

ans = 1×3

   384   512     3

Resize the image to the input size of the network by using imresize. This resizing slightly changes
the aspect ratio of the image.

I = imresize(I,inputSize(1:2));
figure
imshow(I)

3 Deep Learning with Images

3-20



Depending on your application, you might want to resize the image in a different way. For example,
you can crop the top left corner of the image by using I(1:inputSize(1),1:inputSize(2),:). If
you have Image Processing Toolbox™, then you can use the imcrop function.

Classify Image

Classify the image and calculate the class probabilities using classify. The network correctly
classifies the image as a bell pepper. A network for classification is trained to output a single label for
each input image, even when the image contains multiple objects.

[label,scores] = classify(net,I);
label

label = categorical
     bell pepper 

Display the image with the predicted label and the predicted probability of the image having that
label.

figure
imshow(I)
title(string(label) + ", " + num2str(100*scores(classNames == label),3) + "%");

 Classify Image Using GoogLeNet

3-21



Display Top Predictions

Display the top five predicted labels and their associated probabilities as a histogram. Because the
network classifies images into so many object categories, and many categories are similar, it is
common to consider the top-five accuracy when evaluating networks. The network classifies the
image as a bell pepper with a high probability.

[~,idx] = sort(scores,'descend');
idx = idx(5:-1:1);
classNamesTop = net.Layers(end).ClassNames(idx);
scoresTop = scores(idx);

figure
barh(scoresTop)
xlim([0 1])
title('Top 5 Predictions')
xlabel('Probability')
yticklabels(classNamesTop)

3 Deep Learning with Images

3-22



References
[1] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with
convolutions." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-9. 2015.

[2] BVLC GoogLeNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

See Also
DAGNetwork | googlenet | classify | predict | squeezenet

Related Examples
• “Deep Learning in MATLAB” on page 1-2
• “Pretrained Deep Neural Networks” on page 1-11
• “Train Deep Learning Network to Classify New Images” on page 3-6

 Classify Image Using GoogLeNet

3-23

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet


Extract Image Features Using Pretrained Network

This example shows how to extract learned image features from a pretrained convolutional neural
network and use those features to train an image classifier. Feature extraction is the easiest and
fastest way to use the representational power of pretrained deep networks. For example, you can
train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™)
on the extracted features. Because feature extraction only requires a single pass through the data, it
is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip('MerchData.zip');
imds = imageDatastore('MerchData','IncludeSubfolders',true,'LabelSource','foldernames');
[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');

There are now 55 training images and 20 validation images in this very small data set. Display some
sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end

3 Deep Learning with Images

3-24



Load Pretrained Network

Load a pretrained ResNet-18 network. If the Deep Learning Toolbox Model for ResNet-18 Network
support package is not installed, then the software provides a download link. ResNet-18 is trained on
more than a million images and can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals. As a result, the model has learned rich feature representations for
a wide range of images.

net = resnet18

net = 
  DAGNetwork with properties:

         Layers: [71x1 nnet.cnn.layer.Layer]
    Connections: [78x2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

Analyze the network architecture. The first layer, the image input layer, requires input images of size
224-by-224-by-3, where 3 is the number of color channels.

inputSize = net.Layers(1).InputSize;
analyzeNetwork(net)

 Extract Image Features Using Pretrained Network

3-25



Extract Image Features

The network requires input images of size 224-by-224-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before they are input to the
network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);

The network constructs a hierarchical representation of input images. Deeper layers contain higher-
level features, constructed using the lower-level features of earlier layers. To get the feature
representations of the training and test images, use activations on the global pooling layer,
'pool5', at the end of the network. The global pooling layer pools the input features over all
spatial locations, giving 512 features in total.

layer = 'pool5';
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');

whos featuresTrain

  Name                Size              Bytes  Class     Attributes

  featuresTrain      55x512            112640  single              

Extract the class labels from the training and test data.

YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

3 Deep Learning with Images

3-26



Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

classifier = fitcecoc(featuresTrain,YTrain);

Classify Test Images

Classify the test images using the trained SVM model using the features extracted from the test
images.

YPred = predict(classifier,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(imdsTest,idx(i));
    label = YPred(idx(i));
    imshow(I)
    title(char(label))
end

Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

 Extract Image Features Using Pretrained Network

3-27



accuracy = mean(YPred == YTest)

accuracy = 1

Train Classifier on Shallower Features

You can also extract features from an earlier layer in the network and train a classifier on those
features. Earlier layers typically extract fewer, shallower features, have higher spatial resolution, and
a larger total number of activations. Extract the features from the 'res3b_relu' layer. This is the
final layer that outputs 128 features and the activations have a spatial size of 28-by-28.

layer = 'res3b_relu';
featuresTrain = activations(net,augimdsTrain,layer);
featuresTest = activations(net,augimdsTest,layer);
whos featuresTrain

  Name                Size                      Bytes  Class     Attributes

  featuresTrain      28x28x128x55            22077440  single              

The extracted features used in the first part of this example were pooled over all spatial locations by
the global pooling layer. To achieve the same result when extracting features in earlier layers,
manually average the activations over all spatial locations. To get the features on the form N-by-C,
where N is the number of observations and C is the number of features, remove the singleton
dimensions and transpose.

featuresTrain = squeeze(mean(featuresTrain,[1 2]))';
featuresTest = squeeze(mean(featuresTest,[1 2]))';
whos featuresTrain

  Name                Size             Bytes  Class     Attributes

  featuresTrain      55x128            28160  single              

Train an SVM classifier on the shallower features. Calculate the test accuracy.

classifier = fitcecoc(featuresTrain,YTrain);
YPred = predict(classifier,featuresTest);
accuracy = mean(YPred == YTest)

accuracy = 0.9500

Both trained SVMs have high accuracies. If the accuracy is not high enough using feature extraction,
then try transfer learning instead. For an example, see “Train Deep Learning Network to Classify
New Images” on page 3-6. For a list and comparison of the pretrained networks, see “Pretrained
Deep Neural Networks” on page 1-11.

See Also
fitcecoc | resnet50

Related Examples
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2

3 Deep Learning with Images

3-28



Transfer Learning Using Pretrained Network

This example shows how to fine-tune a pretrained GoogLeNet convolutional neural network to
perform classification on a new collection of images.

GoogLeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

Load Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the image datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

This very small data set now contains 55 training images and 20 validation images. Display some
sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure

 Transfer Learning Using Pretrained Network

3-29



for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end

Load Pretrained Network

Load the pretrained GoogLeNet neural network. If Deep Learning Toolbox™ Model for GoogLeNet
Network is not installed, then the software provides a download link.

net = googlenet;

Use deepNetworkDesigner to display an interactive visualization of the network architecture and
detailed information about the network layers.

deepNetworkDesigner(net)

3 Deep Learning with Images

3-30



The first layer, which is the image input layer, requires input images of size 224-by-224-by-3, where 3
is the number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   224   224     3

Replace Final Layers

The fully connected layer and classification layer of the pretrained network net are configured for
1000 classes. These two layers, loss3-classifier and output in GoogLeNet, contain information
on how to combine the features that the network extracts into class probabilities, a loss value, and
predicted labels. To retrain a pretrained network to classify new images, replace these two layers
with new layers adapted to the new data set.

Extract the layer graph from the trained network.

lgraph = layerGraph(net); 

 Transfer Learning Using Pretrained Network

3-31



Replace the fully connected layer with a new fully connected layer that has number of outputs equal
to the number of classes. To make learning faster in the new layers than in the transferred layers,
increase the WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected
layer.

numClasses = numel(categories(imdsTrain.Labels))

numClasses = 5

newLearnableLayer = fullyConnectedLayer(numClasses, ...
    'Name','new_fc', ...
    'WeightLearnRateFactor',10, ...
    'BiasLearnRateFactor',10);
    
lgraph = replaceLayer(lgraph,'loss3-classifier',newLearnableLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'output',newClassLayer);

Train Network

The network requires input images of size 224-by-224-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the fully connected layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',10, ...
    'MaxEpochs',6, ...

3 Deep Learning with Images

3-32



    'InitialLearnRate',1e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network consisting of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available. This requires Parallel Computing Toolbox™ and a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
Otherwise, it uses a CPU. You can also specify the execution environment by using the
'ExecutionEnvironment' name-value pair argument of trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);

Classify Validation Images

Classify the validation images using the fine-tuned network.

[YPred,scores] = classify(netTransfer,augimdsValidation);

Display four sample validation images with their predicted labels.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end

 Transfer Learning Using Pretrained Network

3-33



Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the
network predicts correctly.

YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 1

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks” on page 1-87.

References
[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep

Convolutional Neural Networks." Advances in neural information processing systems 25
(2012).

[2] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with
convolutions." Proceedings of the IEEE conference on computer vision and pattern
recognition (2015): 1–9.

[3] "BVLC GoogLeNet Model." https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet.

See Also
trainNetwork | trainingOptions | squeezenet | googlenet | analyzeNetwork | Deep
Network Designer

3 Deep Learning with Images

3-34

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet


Related Examples
• “Learn About Convolutional Neural Networks” on page 1-21
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Create and Explore Datastore for Image Classification” on page 20-10
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2

 Transfer Learning Using Pretrained Network

3-35



Transfer Learning Using AlexNet

This example shows how to fine-tune a pretrained AlexNet convolutional neural network to perform
classification on a new collection of images.

AlexNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

Load Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

This very small data set now contains 55 training images and 20 validation images. Display some
sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure

3 Deep Learning with Images

3-36



for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end

Load Pretrained Network

Load the pretrained AlexNet neural network. If Deep Learning Toolbox™ Model for AlexNet Network
is not installed, then the software provides a download link. AlexNet is trained on more than one
million images and can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the model has learned rich feature representations for a wide range of
images.

net = alexnet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(net)

 Transfer Learning Using AlexNet

3-37



The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Replace Final Layers

The last three layers of the pretrained network net are configured for 1000 classes. These three
layers must be fine-tuned for the new classification problem. Extract all layers, except the last three,
from the pretrained network.

layersTransfer = net.Layers(1:end-3);

Transfer the layers to the new classification task by replacing the last three layers with a fully
connected layer, a softmax layer, and a classification output layer. Specify the options of the new fully
connected layer according to the new data. Set the fully connected layer to have the same size as the
number of classes in the new data. To learn faster in the new layers than in the transferred layers,
increase the WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected
layer.

numClasses = numel(categories(imdsTrain.Labels))

3 Deep Learning with Images

3-38



numClasses = 5

layers = [
    layersTransfer
    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)
    softmaxLayer
    classificationLayer];

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the fully connected layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',10, ...
    'MaxEpochs',6, ...
    'InitialLearnRate',1e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available, otherwise, it uses a CPU. Training on a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). You can also specify the execution environment by
using the 'ExecutionEnvironment' name-value pair argument of trainingOptions.

netTransfer = trainNetwork(augimdsTrain,layers,options);

 Transfer Learning Using AlexNet

3-39



Classify Validation Images

Classify the validation images using the fine-tuned network.

[YPred,scores] = classify(netTransfer,augimdsValidation);

Display four sample validation images with their predicted labels.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end

3 Deep Learning with Images

3-40



Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the
network predicts correctly.

YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 1

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks” on page 1-87.

References
[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep

Convolutional Neural Networks." Advances in neural information processing systems. 2012.

[2] BVLC AlexNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

See Also
trainNetwork | trainingOptions | alexnet | analyzeNetwork

Related Examples
• “Learn About Convolutional Neural Networks” on page 1-21
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64

 Transfer Learning Using AlexNet

3-41



• “Extract Image Features Using Pretrained Network” on page 3-24
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2

3 Deep Learning with Images

3-42



Create Simple Deep Learning Neural Network for Classification

This example shows how to create and train a simple convolutional neural network for deep learning
classification. Convolutional neural networks are essential tools for deep learning, and are especially
suited for image recognition.

The example demonstrates how to:

• Load and explore image data.
• Define the neural network architecture.
• Specify training options.
• Train the neural network.
• Predict the labels of new data and calculate the classification accuracy.

For an example showing how to interactively create and train a simple image classification neural
network, see “Create Simple Image Classification Network Using Deep Network Designer”.

Load and Explore Image Data

Load the digit sample data as an image datastore. imageDatastore automatically labels the images
based on folder names and stores the data as an ImageDatastore object. An image datastore
enables you to store large image data, including data that does not fit in memory, and efficiently read
batches of images during training of a convolutional neural network.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true,'LabelSource','foldernames');

Display some of the images in the datastore.

figure;
perm = randperm(10000,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
end

 Create Simple Deep Learning Neural Network for Classification

3-43



Calculate the number of images in each category. labelCount is a table that contains the labels and
the number of images having each label. The datastore contains 1000 images for each of the digits
0-9, for a total of 10000 images. You can specify the number of classes in the last fully connected
layer of your neural network as the OutputSize argument.

labelCount = countEachLabel(imds)

labelCount=10×2 table
    Label    Count
    _____    _____

      0      1000 
      1      1000 
      2      1000 
      3      1000 
      4      1000 
      5      1000 
      6      1000 
      7      1000 
      8      1000 
      9      1000 

You must specify the size of the images in the input layer of the neural network. Check the size of the
first image in digitData. Each image is 28-by-28-by-1 pixels.

img = readimage(imds,1);
size(img)

3 Deep Learning with Images

3-44



ans = 1×2

    28    28

Specify Training and Validation Sets

Divide the data into training and validation data sets, so that each category in the training set
contains 750 images, and the validation set contains the remaining images from each label.
splitEachLabel splits the datastore digitData into two new datastores, trainDigitData and
valDigitData.

numTrainFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');

Define Neural Network Architecture

Define the convolutional neural network architecture.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Image Input Layer An imageInputLayer is where you specify the image size, which, in this case,
is 28-by-28-by-1. These numbers correspond to the height, width, and the channel size. The digit data
consists of grayscale images, so the channel size (color channel) is 1. For a color image, the channel
size is 3, corresponding to the RGB values. You do not need to shuffle the data because
trainNetwork, by default, shuffles the data at the beginning of training. trainNetwork can also
automatically shuffle the data at the beginning of every epoch during training.

Convolutional Layer In the convolutional layer, the first argument is filterSize, which is the
height and width of the filters the training function uses while scanning along the images. In this
example, the number 3 indicates that the filter size is 3-by-3. You can specify different sizes for the
height and width of the filter. The second argument is the number of filters, numFilters, which is
the number of neurons that connect to the same region of the input. This parameter determines the
number of feature maps. Use the 'Padding' name-value pair to add padding to the input feature
map. For a convolutional layer with a default stride of 1, 'same' padding ensures that the spatial

 Create Simple Deep Learning Neural Network for Classification

3-45



output size is the same as the input size. You can also define the stride and learning rates for this
layer using name-value pair arguments of convolution2dLayer.

Batch Normalization Layer Batch normalization layers normalize the activations and gradients
propagating through a neural network, making neural network training an easier optimization
problem. Use batch normalization layers between convolutional layers and nonlinearities, such as
ReLU layers, to speed up neural network training and reduce the sensitivity to neural network
initialization. Use batchNormalizationLayer to create a batch normalization layer.

ReLU Layer The batch normalization layer is followed by a nonlinear activation function. The most
common activation function is the rectified linear unit (ReLU). Use reluLayer to create a ReLU
layer.

Max Pooling Layer Convolutional layers (with activation functions) are sometimes followed by a
down-sampling operation that reduces the spatial size of the feature map and removes redundant
spatial information. Down-sampling makes it possible to increase the number of filters in deeper
convolutional layers without increasing the required amount of computation per layer. One way of
down-sampling is using a max pooling, which you create using maxPooling2dLayer. The max
pooling layer returns the maximum values of rectangular regions of inputs, specified by the first
argument, poolSize. In this example, the size of the rectangular region is [2,2]. The 'Stride'
name-value pair argument specifies the step size that the training function takes as it scans along the
input.

Fully Connected Layer The convolutional and down-sampling layers are followed by one or more
fully connected layers. As its name suggests, a fully connected layer is a layer in which the neurons
connect to all the neurons in the preceding layer. This layer combines all the features learned by the
previous layers across the image to identify the larger patterns. The last fully connected layer
combines the features to classify the images. Therefore, the OutputSize parameter in the last fully
connected layer is equal to the number of classes in the target data. In this example, the output size
is 10, corresponding to the 10 classes. Use fullyConnectedLayer to create a fully connected layer.

Softmax Layer The softmax activation function normalizes the output of the fully connected layer.
The output of the softmax layer consists of positive numbers that sum to one, which can then be used
as classification probabilities by the classification layer. Create a softmax layer using the
softmaxLayer function after the last fully connected layer.

Classification Layer The final layer is the classification layer. This layer uses the probabilities
returned by the softmax activation function for each input to assign the input to one of the mutually
exclusive classes and compute the loss. To create a classification layer, use classificationLayer.

Specify Training Options

After defining the neural network structure, specify the training options. Train the neural network
using stochastic gradient descent with momentum (SGDM) with an initial learning rate of 0.01. Set
the maximum number of epochs to 4. An epoch is a full training cycle on the entire training data set.
Monitor the neural network accuracy during training by specifying validation data and validation
frequency. Shuffle the data every epoch. The software trains the neural network on the training data
and calculates the accuracy on the validation data at regular intervals during training. The validation
data is not used to update the neural network weights. Turn on the training progress plot, and turn
off the command window output.

options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',4, ...

3 Deep Learning with Images

3-46



    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train Neural Network Using Training Data

Train the neural network using the architecture defined by layers, the training data, and the
training options. By default, trainNetwork uses a GPU if one is available, otherwise, it uses a CPU.
Training on a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
You can also specify the execution environment by using the 'ExecutionEnvironment' name-value
pair argument of trainingOptions.

The training progress plot shows the mini-batch loss and accuracy and the validation loss and
accuracy. For more information on the training progress plot, see “Monitor Deep Learning Training
Progress” on page 5-192. The loss is the cross-entropy loss. The accuracy is the percentage of images
that the neural network classifies correctly.

net = trainNetwork(imdsTrain,layers,options);

Classify Validation Images and Compute Accuracy

Predict the labels of the validation data using the trained neural network, and calculate the final
validation accuracy. Accuracy is the fraction of labels that the neural network predicts correctly. In
this case, more than 99% of the predicted labels match the true labels of the validation set.

 Create Simple Deep Learning Neural Network for Classification

3-47



YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;

accuracy = sum(YPred == YValidation)/numel(YValidation)

accuracy = 0.9988

See Also
trainNetwork | trainingOptions | analyzeNetwork | Deep Network Designer

Related Examples
• “Example Deep Learning Networks Architectures” on page 1-23
• “Learn About Convolutional Neural Networks” on page 1-21
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2
• Deep Learning Onramp

3 Deep Learning with Images

3-48

https://www.mathworks.com/learn/tutorials/deep-learning-onramp.html?s_tid=doc_to_dlonramp


Train Convolutional Neural Network for Regression

This example shows how to fit a regression model using convolutional neural networks to predict the
angles of rotation of handwritten digits.

Convolutional neural networks (CNNs, or ConvNets) are essential tools for deep learning, and are
especially suited for analyzing image data. For example, you can use CNNs to classify images. To
predict continuous data, such as angles and distances, you can include a regression layer at the end
of the network.

The example constructs a convolutional neural network architecture, trains a network, and uses the
trained network to predict angles of rotated handwritten digits. These predictions are useful for
optical character recognition.

Optionally, you can use imrotate (Image Processing Toolbox™) to rotate the images, and boxplot
(Statistics and Machine Learning Toolbox™) to create a residual box plot.

Load Data

The data set contains synthetic images of handwritten digits together with the corresponding angles
(in degrees) by which each image is rotated.

Load the training and validation images as 4-D arrays using digitTrain4DArrayData and
digitTest4DArrayData. The outputs YTrain and YValidation are the rotation angles in
degrees. The training and validation data sets each contain 5000 images.

[XTrain,~,YTrain] = digitTrain4DArrayData;
[XValidation,~,YValidation] = digitTest4DArrayData;

Display 20 random training images using imshow.

numTrainImages = numel(YTrain);
figure
idx = randperm(numTrainImages,20);
for i = 1:numel(idx)
    subplot(4,5,i)    
    imshow(XTrain(:,:,:,idx(i)))
end

 Train Convolutional Neural Network for Regression

3-49



Check Data Normalization

When training neural networks, it often helps to make sure that your data is normalized in all stages
of the network. Normalization helps stabilize and speed up network training using gradient descent.
If your data is poorly scaled, then the loss can become NaN and the network parameters can diverge
during training. Common ways of normalizing data include rescaling the data so that its range
becomes [0,1] or so that it has a mean of zero and standard deviation of one. You can normalize the
following data:

• Input data. Normalize the predictors before you input them to the network. In this example, the
input images are already normalized to the range [0,1].

• Layer outputs. You can normalize the outputs of each convolutional and fully connected layer by
using a batch normalization layer.

• Responses. If you use batch normalization layers to normalize the layer outputs in the end of the
network, then the predictions of the network are normalized when training starts. If the response
has a very different scale from these predictions, then network training can fail to converge. If
your response is poorly scaled, then try normalizing it and see if network training improves. If you
normalize the response before training, then you must transform the predictions of the trained
network to obtain the predictions of the original response.

Plot the distribution of the response. The response (the rotation angle in degrees) is approximately
uniformly distributed between -45 and 45, which works well without needing normalization. In
classification problems, the outputs are class probabilities, which are always normalized.

figure
histogram(YTrain)

3 Deep Learning with Images

3-50



axis tight
ylabel('Counts')
xlabel('Rotation Angle')

In general, the data does not have to be exactly normalized. However, if you train the network in this
example to predict 100*YTrain or YTrain+500 instead of YTrain, then the loss becomes NaN and
the network parameters diverge when training starts. These results occur even though the only
difference between a network predicting aY + b and a network predicting Y is a simple rescaling of
the weights and biases of the final fully connected layer.

If the distribution of the input or response is very uneven or skewed, you can also perform nonlinear
transformations (for example, taking logarithms) to the data before training the network.

Create Network Layers

To solve the regression problem, create the layers of the network and include a regression layer at
the end of the network.

The first layer defines the size and type of the input data. The input images are 28-by-28-by-1. Create
an image input layer of the same size as the training images.

The middle layers of the network define the core architecture of the network, where most of the
computation and learning take place.

The final layers define the size and type of output data. For regression problems, a fully connected
layer must precede the regression layer at the end of the network. Create a fully connected output
layer of size 1 and a regression layer.

 Train Convolutional Neural Network for Regression

3-51



Combine all the layers together in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    dropoutLayer(0.2)
    fullyConnectedLayer(1)
    regressionLayer];

Train Network

Create the network training options. Train for 30 epochs. Set the initial learn rate to 0.001 and lower
the learning rate after 20 epochs. Monitor the network accuracy during training by specifying
validation data and validation frequency. The software trains the network on the training data and
calculates the accuracy on the validation data at regular intervals during training. The validation data
is not used to update the network weights. Turn on the training progress plot, and turn off the
command window output.

miniBatchSize  = 128;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions('sgdm', ...
    'MiniBatchSize',miniBatchSize, ...
    'MaxEpochs',30, ...
    'InitialLearnRate',1e-3, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor',0.1, ...
    'LearnRateDropPeriod',20, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',validationFrequency, ...
    'Plots','training-progress', ...
    'Verbose',false);

Create the network using trainNetwork. This command uses a compatible GPU if available. Using a
GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Otherwise,
trainNetwork uses the CPU.

net = trainNetwork(XTrain,YTrain,layers,options);

3 Deep Learning with Images

3-52



Examine the details of the network architecture contained in the Layers property of net.

net.Layers

ans = 
  18x1 Layer array with layers:

     1   'imageinput'         Image Input           28x28x1 images with 'zerocenter' normalization
     2   'conv_1'             2-D Convolution       8 3x3x1 convolutions with stride [1  1] and padding 'same'
     3   'batchnorm_1'        Batch Normalization   Batch normalization with 8 channels
     4   'relu_1'             ReLU                  ReLU
     5   'avgpool2d_1'        2-D Average Pooling   2x2 average pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv_2'             2-D Convolution       16 3x3x8 convolutions with stride [1  1] and padding 'same'
     7   'batchnorm_2'        Batch Normalization   Batch normalization with 16 channels
     8   'relu_2'             ReLU                  ReLU
     9   'avgpool2d_2'        2-D Average Pooling   2x2 average pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv_3'             2-D Convolution       32 3x3x16 convolutions with stride [1  1] and padding 'same'
    11   'batchnorm_3'        Batch Normalization   Batch normalization with 32 channels
    12   'relu_3'             ReLU                  ReLU
    13   'conv_4'             2-D Convolution       32 3x3x32 convolutions with stride [1  1] and padding 'same'

 Train Convolutional Neural Network for Regression

3-53



    14   'batchnorm_4'        Batch Normalization   Batch normalization with 32 channels
    15   'relu_4'             ReLU                  ReLU
    16   'dropout'            Dropout               20% dropout
    17   'fc'                 Fully Connected       1 fully connected layer
    18   'regressionoutput'   Regression Output     mean-squared-error with response 'Response'

Test Network

Test the performance of the network by evaluating the accuracy on the validation data.

Use predict to predict the angles of rotation of the validation images.

YPredicted = predict(net,XValidation);

Evaluate Performance

Evaluate the performance of the model by calculating:

1 The percentage of predictions within an acceptable error margin
2 The root-mean-square error (RMSE) of the predicted and actual angles of rotation

Calculate the prediction error between the predicted and actual angles of rotation.

predictionError = YValidation - YPredicted;

Calculate the number of predictions within an acceptable error margin from the true angles. Set the
threshold to be 10 degrees. Calculate the percentage of predictions within this threshold.

thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numValidationImages = numel(YValidation);

accuracy = numCorrect/numValidationImages

accuracy = 0.9692

Use the root-mean-square error (RMSE) to measure the differences between the predicted and actual
angles of rotation.

squares = predictionError.^2;
rmse = sqrt(mean(squares))

rmse = single
    4.6088

Visualize Predictions

Visualize the predictions in a scatter plot. Plot the predicted values against the true values.

figure
scatter(YPredicted,YValidation,'+')
xlabel("Predicted Value")
ylabel("True Value")

hold on
plot([-60 60], [-60 60],'r--')

3 Deep Learning with Images

3-54



Correct Digit Rotations

You can use functions from Image Processing Toolbox to straighten the digits and display them
together. Rotate 49 sample digits according to their predicted angles of rotation using imrotate
(Image Processing Toolbox).

idx = randperm(numValidationImages,49);
for i = 1:numel(idx)
    image = XValidation(:,:,:,idx(i));
    predictedAngle = YPredicted(idx(i));  
    imagesRotated(:,:,:,i) = imrotate(image,predictedAngle,'bicubic','crop');
end

Display the original digits with their corrected rotations. You can use montage (Image Processing
Toolbox) to display the digits together in a single image.

figure
subplot(1,2,1)
montage(XValidation(:,:,:,idx))
title('Original')

subplot(1,2,2)
montage(imagesRotated)
title('Corrected')

 Train Convolutional Neural Network for Regression

3-55



See Also
regressionLayer | classificationLayer

Related Examples
• “Deep Learning in MATLAB” on page 1-2
• “Convert Classification Network into Regression Network” on page 3-66
• “Create a Deep Learning Experiment for Regression” on page 6-10

3 Deep Learning with Images

3-56



Train Network with Multiple Outputs

This example shows how to train a deep learning network with multiple outputs that predict both
labels and angles of rotations of handwritten digits.

To train a network with multiple outputs, you must train the network using a custom training loop.

Load Training Data

The digitTrain4DArrayData function loads the images, their digit labels, and their angles of
rotation from the vertical. Create an arrayDatastore object for the images, labels, and the angles,
and then use the combine function to make a single datastore that contains all of the training data.
Extract the class names and number of nondiscrete responses.

[XTrain,T1Train,T2Train] = digitTrain4DArrayData;

dsXTrain = arrayDatastore(XTrain,IterationDimension=4);
dsT1Train = arrayDatastore(T1Train);
dsT2Train = arrayDatastore(T2Train);

dsTrain = combine(dsXTrain,dsT1Train,dsT2Train);

classNames = categories(T1Train);
numClasses = numel(classNames);
numObservations = numel(T1Train);

View some images from the training data.

idx = randperm(numObservations,64);
I = imtile(XTrain(:,:,:,idx));
figure
imshow(I)

 Train Network with Multiple Outputs

3-57



Define Deep Learning Model

Define the following network that predicts both labels and angles of rotation.

• A convolution-batchnorm-ReLU block with 16 5-by-5 filters.
• Two convolution-batchnorm-ReLU blocks each with 32 3-by-3 filters.
• A skip connection around the previous two blocks containing a convolution-batchnorm-ReLU block

with 32 1-by-1 convolutions.
• Merge the skip connection using addition.
• For classification output, a branch with a fully connected operation of size 10 (the number of

classes) and a softmax operation.
• For the regression output, a branch with a fully connected operation of size 1 (the number of

responses).

Define the main block of layers as a layer graph.

layers = [
    imageInputLayer([28 28 1],Normalization="none")

    convolution2dLayer(5,16,Padding="same")
    batchNormalizationLayer
    reluLayer(Name="relu_1")

    convolution2dLayer(3,32,Padding="same",Stride=2)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,Padding="same")
    batchNormalizationLayer
    reluLayer

    additionLayer(2,Name="add")

    fullyConnectedLayer(numClasses)
    softmaxLayer(Name="softmax")];

lgraph = layerGraph(layers);

Add the skip connection.

layers = [
    convolution2dLayer(1,32,Stride=2,Name="conv_skip")
    batchNormalizationLayer
    reluLayer(Name="relu_skip")];

lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"relu_1","conv_skip");
lgraph = connectLayers(lgraph,"relu_skip","add/in2");

Add the fully connected layer for regression.

layers = fullyConnectedLayer(1,Name="fc_2");
lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"add","fc_2");

View the layer graph in a plot.

3 Deep Learning with Images

3-58



figure
plot(lgraph)

Create a dlnetwork object from the layer graph.

net = dlnetwork(lgraph)

net = 
  dlnetwork with properties:

         Layers: [17×1 nnet.cnn.layer.Layer]
    Connections: [17×2 table]
     Learnables: [20×3 table]
          State: [8×3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'  'fc_2'}
    Initialized: 1

  View summary with summary.

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, that takes as input, the dlnetwork
object, a mini-batch of input data with corresponding targets containing the labels and angles, and
returns the loss, the gradients of the loss with respect to the learnable parameters, and the updated
network state.

 Train Network with Multiple Outputs

3-59



Specify Training Options

Specify the training options. Train for 30 epochs using a mini-batch size of 128.

numEpochs = 30;
miniBatchSize = 128;

Train Model

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to one-hot encode the class labels.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels or angles.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessData,...
    MiniBatchFormat=["SSCB" "" ""]);

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. At the end of each iteration, display the training progress. For each mini-batch:

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.

Initialize parameters for Adam.

trailingAvg = [];
trailingAvgSq = [];

Calculate the total number of iterations for the training progress monitor

numIterationsPerEpoch = ceil(numObservations / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics="Loss", ...
    Info="Epoch", ...
    XLabel="Iteration");

Train the model.

epoch = 0;
iteration = 0;

while epoch < numEpochs && ~monitor.Stop

3 Deep Learning with Images

3-60



    epoch = epoch + 1;
   
    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        [X,T1,T2] = next(mbq);

        % Evaluate the model loss, gradients, and state using 
        % the dlfeval and modelLoss functions.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T1,T2);
        net.State = state;

        % Update the network parameters using the Adam optimizer.
        [net,trailingAvg,trailingAvgSq] = adamupdate(net,gradients, ...
            trailingAvg,trailingAvgSq,iteration);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
        monitor.Progress = 100*iteration/numIterations;
    end
end

Test Model

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels and angles. Manage the test data set using a minibatchqueue object with the same setting as
the training data.

 Train Network with Multiple Outputs

3-61



[XTest,T1Test,T2Test] = digitTest4DArrayData;

dsXTest = arrayDatastore(XTest,IterationDimension=4);
dsT1Test = arrayDatastore(T1Test);
dsT2Test = arrayDatastore(T2Test);

dsTest = combine(dsXTest,dsT1Test,dsT2Test);

mbqTest = minibatchqueue(dsTest,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessData,...
    MiniBatchFormat=["SSCB" "" ""]);

To predict the labels and angles of the validation data, loop over the mini-batches and use the
predict function. Store the predicted classes and angles. Compare the predicted and true classes
and angles and store the results.

classesPredictions = [];
anglesPredictions = [];
classCorr = [];
angleDiff = [];

% Loop over mini-batches.
while hasdata(mbqTest)

    % Read mini-batch of data.
    [X,T1,T2] = next(mbqTest);

    % Make predictions using the predict function.
    [Y1,Y2] = predict(net,X,Outputs=["softmax" "fc_2"]);

    % Determine predicted classes.
    Y1 = onehotdecode(Y1,classNames,1);
    classesPredictions = [classesPredictions Y1];

    % Dermine predicted angles
    Y2 = extractdata(Y2);
    anglesPredictions = [anglesPredictions Y2];

    % Compare predicted and true classes
    T1 = onehotdecode(T1,classNames,1);
    classCorr = [classCorr Y1 == T1];

    % Compare predicted and true angles
    angleDiffBatch = Y2 - T2;
    angleDiffBatch = extractdata(gather(angleDiffBatch));
    angleDiff = [angleDiff angleDiffBatch];
end

Evaluate the classification accuracy.

accuracy = mean(classCorr)

accuracy = 0.9882

Evaluate the regression accuracy.

angleRMSE = sqrt(mean(angleDiff.^2))

3 Deep Learning with Images

3-62



angleRMSE = single
    6.3569

View some of the images with their predictions. Display the predicted angles in red and the correct
labels in green.

idx = randperm(size(XTest,4),9);
figure
for i = 1:9
    subplot(3,3,i)
    I = XTest(:,:,:,idx(i));
    imshow(I)
    hold on

    sz = size(I,1);
    offset = sz/2;

    thetaPred = anglesPredictions(idx(i));
    plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],"r--")

    thetaValidation = T2Test(idx(i));
    plot(offset*[1-tand(thetaValidation) 1+tand(thetaValidation)],[sz 0],"g--")

    hold off
    label = string(classesPredictions(idx(i)));
    title("Label: " + label)
end

 Train Network with Multiple Outputs

3-63



Model Loss Function

The modelLoss function, takes as input, the dlnetwork object net, a mini-batch of input data X
with corresponding targets T1 and T2 containing the labels and angles, respectively, and returns the
loss, the gradients of the loss with respect to the learnable parameters, and the updated network
state.

function [loss,gradients,state] = modelLoss(net,X,T1,T2)

[Y1,Y2,state] = forward(net,X,Outputs=["softmax" "fc_2"]);

lossLabels = crossentropy(Y1,T1);
lossAngles = mse(Y2,T2);

loss = lossLabels + 0.1*lossAngles;
gradients = dlgradient(loss,net.Learnables);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
to be used as a singleton channel dimension.

2 Extract the label and angle data from the incoming cell arrays and concatenate along the second
dimension into a categorical array and a numeric array, respectively.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,T1,T2] = preprocessData(dataX,dataT1,dataT2)

% Extract image data from cell and concatenate
X = cat(4,dataX{:});

% Extract label data from cell and concatenate
T1 = cat(2,dataT1{:});

% Extract angle data from cell and concatenate
T2 = cat(2,dataT2{:});

% One-hot encode labels
T1 = onehotencode(T1,1);

end

See Also
dlarray | dlgradient | dlfeval | sgdmupdate | batchNormalizationLayer |
convolution2dLayer | reluLayer | fullyConnectedLayer | softmaxLayer |
minibatchqueue | onehotencode | onehotdecode

3 Deep Learning with Images

3-64



More About
• “Multiple-Input and Multiple-Output Networks” on page 1-41
• “Make Predictions Using dlnetwork Object” on page 19-280
• “Assemble Multiple-Output Network for Prediction” on page 19-210
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “List of Deep Learning Layers” on page 1-43

 Train Network with Multiple Outputs

3-65



Convert Classification Network into Regression Network

This example shows how to convert a trained classification network into a regression network.

Pretrained image classification networks have been trained on over a million images and can classify
images into 1000 object categories, such as keyboard, coffee mug, pencil, and many animals. The
networks have learned rich feature representations for a wide range of images. The network takes an
image as input, and then outputs a label for the object in the image together with the probabilities for
each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. This example shows how to take a pretrained
classification network and retrain it for regression tasks.

The example loads a pretrained convolutional neural network architecture for classification, replaces
the layers for classification and retrains the network to predict angles of rotated handwritten digits.
Optionally, you can use imrotate (Image Processing Toolbox™) to correct the image rotations using
the predicted values.

Load Pretrained Network

Load the pretrained network from the supporting file digitsNet.mat. This file contains a
classification network that classifies handwritten digits.

load digitsNet
layers = net.Layers

layers = 
  15x1 Layer array with layers:

     1   'imageinput'    Image Input             28x28x1 images with 'zerocenter' normalization
     2   'conv_1'        2-D Convolution         8 3x3x1 convolutions with stride [1  1] and padding 'same'
     3   'batchnorm_1'   Batch Normalization     Batch normalization with 8 channels
     4   'relu_1'        ReLU                    ReLU
     5   'maxpool_1'     2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv_2'        2-D Convolution         16 3x3x8 convolutions with stride [1  1] and padding 'same'
     7   'batchnorm_2'   Batch Normalization     Batch normalization with 16 channels
     8   'relu_2'        ReLU                    ReLU
     9   'maxpool_2'     2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv_3'        2-D Convolution         32 3x3x16 convolutions with stride [1  1] and padding 'same'
    11   'batchnorm_3'   Batch Normalization     Batch normalization with 32 channels
    12   'relu_3'        ReLU                    ReLU
    13   'fc'            Fully Connected         10 fully connected layer
    14   'softmax'       Softmax                 softmax
    15   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes

Load Data

The data set contains synthetic images of handwritten digits together with the corresponding angles
(in degrees) by which each image is rotated.

Load the training and validation images as 4-D arrays using digitTrain4DArrayData and
digitTest4DArrayData. The outputs YTrain and YValidation are the rotation angles in
degrees. The training and validation data sets each contain 5000 images.

3 Deep Learning with Images

3-66



[XTrain,~,YTrain] = digitTrain4DArrayData;
[XValidation,~,YValidation] = digitTest4DArrayData;

Display 20 random training images using imshow.

numTrainImages = numel(YTrain);
figure
idx = randperm(numTrainImages,20);
for i = 1:numel(idx)
    subplot(4,5,i)    
    imshow(XTrain(:,:,:,idx(i)))
end

Replace Final Layers

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'fc' and 'classoutput'
in digitsNet, contain information on how to combine the features that the network extracts into
class probabilities, a loss value, and predicted labels. To retrain a pretrained network for regression,
replace these two layers with new layers adapted to the task.

Replace the final fully connected layer, the softmax layer, and the classification output layer with a
fully connected layer of size 1 (the number of responses) and a regression layer.

numResponses = 1;
layers = [
    layers(1:12)

 Convert Classification Network into Regression Network

3-67



    fullyConnectedLayer(numResponses)
    regressionLayer];

Freeze Initial Layers

The network is now ready to be retrained on the new data. Optionally, you can "freeze" the weights of
earlier layers in the network by setting the learning rates in those layers to zero. During training,
trainNetwork does not update the parameters of the frozen layers. Because the gradients of the
frozen layers do not need to be computed, freezing the weights of many initial layers can significantly
speed up network training. If the new data set is small, then freezing earlier network layers can also
prevent those layers from overfitting to the new data set.

Use the supporting function freezeWeights to set the learning rates to zero in the first 12 layers.

layers(1:12) = freezeWeights(layers(1:12));

Train Network

Create the network training options. Set the initial learn rate to 0.001. Monitor the network accuracy
during training by specifying validation data. Turn on the training progress plot, and turn off the
command window output.

options = trainingOptions('sgdm',...
    'InitialLearnRate',0.001, ...
    'ValidationData',{XValidation,YValidation},...
    'Plots','training-progress',...
    'Verbose',false);

Create the network using trainNetwork. This command uses a compatible GPU if available. Using a
GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Otherwise,
trainNetwork uses the CPU.

net = trainNetwork(XTrain,YTrain,layers,options);

3 Deep Learning with Images

3-68



Test Network

Test the performance of the network by evaluating the accuracy on the validation data.

Use predict to predict the angles of rotation of the validation images.

YPred = predict(net,XValidation);

Evaluate the performance of the model by calculating:

1 The percentage of predictions within an acceptable error margin
2 The root-mean-square error (RMSE) of the predicted and actual angles of rotation

Calculate the prediction error between the predicted and actual angles of rotation.

predictionError = YValidation - YPred;

Calculate the number of predictions within an acceptable error margin from the true angles. Set the
threshold to be 10 degrees. Calculate the percentage of predictions within this threshold.

 Convert Classification Network into Regression Network

3-69



thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numImagesValidation = numel(YValidation);

accuracy = numCorrect/numImagesValidation

accuracy = 0.7532

Use the root-mean-square error (RMSE) to measure the differences between the predicted and actual
angles of rotation.

 rmse = sqrt(mean(predictionError.^2))

rmse = single
    9.0270

Correct Digit Rotations

You can use functions from Image Processing Toolbox to straighten the digits and display them
together. Rotate 49 sample digits according to their predicted angles of rotation using imrotate
(Image Processing Toolbox).

idx = randperm(numImagesValidation,49);
for i = 1:numel(idx)
    I = XValidation(:,:,:,idx(i));
    Y = YPred(idx(i));  
    XValidationCorrected(:,:,:,i) = imrotate(I,Y,'bicubic','crop');
end

Display the original digits with their corrected rotations. Use montage (Image Processing Toolbox) to
display the digits together in a single image.

figure
subplot(1,2,1)
montage(XValidation(:,:,:,idx))
title('Original')

subplot(1,2,2)
montage(XValidationCorrected)
title('Corrected')

3 Deep Learning with Images

3-70



See Also
regressionLayer | classificationLayer

Related Examples
• “Deep Learning in MATLAB” on page 1-2
• “Example Deep Learning Networks Architectures” on page 1-23

 Convert Classification Network into Regression Network

3-71



Train Generative Adversarial Network (GAN)

This example shows how to train a generative adversarial network to generate images.

A generative adversarial network (GAN) is a type of deep learning network that can generate data
with similar characteristics as the input real data.

The trainNetwork function does not support training GANs, so you must implement a custom
training loop. To train the GAN using a custom training loop, you can use dlarray and dlnetwork
objects for automatic differentiation.

A GAN consists of two networks that train together:

1 Generator — Given a vector of random values (latent inputs) as input, this network generates
data with the same structure as the training data.

2 Discriminator — Given batches of data containing observations from both the training data, and
generated data from the generator, this network attempts to classify the observations as "real"
or "generated".

This diagram illustrates the generator network of a GAN generating images from vectors of random
inputs.

This diagram illustrates the structure of a GAN.

3 Deep Learning with Images

3-72



To train a GAN, train both networks simultaneously to maximize the performance of both:

• Train the generator to generate data that "fools" the discriminator.
• Train the discriminator to distinguish between real and generated data.

To optimize the performance of the generator, maximize the loss of the discriminator when given
generated data. That is, the objective of the generator is to generate data that the discriminator
classifies as "real".

To optimize the performance of the discriminator, minimize the loss of the discriminator when given
batches of both real and generated data. That is, the objective of the discriminator is to not be
"fooled" by the generator.

Ideally, these strategies result in a generator that generates convincingly realistic data and a
discriminator that has learned strong feature representations that are characteristic of the training
data.

This example trains a GAN to generate images using the Flowers data set [1], which contains images
of flowers.

Load Training Data

Download and extract the Flowers data set [1].

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~datasetExists(imageFolder)
    disp("Downloading Flowers data set (218 MB)...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

Create an image datastore containing the photos of the flowers.

imds = imageDatastore(imageFolder,IncludeSubfolders=true);

Augment the data to include random horizontal flipping and resize the images to have size 64-by-64.

augmenter = imageDataAugmenter(RandXReflection=true);
augimds = augmentedImageDatastore([64 64],imds,DataAugmentation=augmenter);

Define Generative Adversarial Network

A GAN consists of two networks that train together:

 Train Generative Adversarial Network (GAN)

3-73

https://www.tensorflow.org/datasets/catalog/tf_flowers
https://www.tensorflow.org/datasets/catalog/tf_flowers


1 Generator — Given a vector of random values (latent inputs) as input, this network generates
data with the same structure as the training data.

2 Discriminator — Given batches of data containing observations from both the training data, and
generated data from the generator, this network attempts to classify the observations as "real"
or "generated".

This diagram illustrates the structure of a GAN.

Define Generator Network

Define the following network architecture, which generates images from random vectors.

This network:

• Converts the random vectors of size 100 to 4-by-4-by-512 arrays using a project and reshape
operation.

• Upscales the resulting arrays to 64-by-64-by-3 arrays using a series of transposed convolution
layers with batch normalization and ReLU layers.

Define this network architecture as a layer graph and specify the following network properties.

• For the transposed convolution layers, specify 5-by-5 filters with a decreasing number of filters for
each layer, a stride of 2, and cropping of the output on each edge.

• For the final transposed convolution layer, specify three 5-by-5 filters corresponding to the three
RGB channels of the generated images, and the output size of the previous layer.

• At the end of the network, include a tanh layer.

To project and reshape the noise input, use the custom layer projectAndReshapeLayer, attached
to this example as a supporting file. To access this layer, open the example as a live script.

filterSize = 5;
numFilters = 64;

3 Deep Learning with Images

3-74



numLatentInputs = 100;

projectionSize = [4 4 512];

layersGenerator = [
    featureInputLayer(numLatentInputs)
    projectAndReshapeLayer(projectionSize)
    transposedConv2dLayer(filterSize,4*numFilters)
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,2*numFilters,Stride=2,Cropping="same")
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,numFilters,Stride=2,Cropping="same")
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,3,Stride=2,Cropping="same")
    tanhLayer];

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

netG = dlnetwork(layersGenerator);

Define Discriminator Network

Define the following network, which classifies real and generated 64-by-64 images.

Create a network that takes 64-by-64-by-3 images and returns a scalar prediction score using a series
of convolution layers with batch normalization and leaky ReLU layers. Add noise to the input images
using dropout.

• For the dropout layer, specify a dropout probability of 0.5.
• For the convolution layers, specify 5-by-5 filters with an increasing number of filters for each layer.

Also specify a stride of 2 and padding of the output.
• For the leaky ReLU layers, specify a scale of 0.2.
• To output the probabilities in the range [0,1], specify a convolutional layer with one 4-by-4 filter

followed by a sigmoid layer.

dropoutProb = 0.5;
numFilters = 64;
scale = 0.2;

inputSize = [64 64 3];

 Train Generative Adversarial Network (GAN)

3-75



filterSize = 5;

layersDiscriminator = [
    imageInputLayer(inputSize,Normalization="none")
    dropoutLayer(dropoutProb)
    convolution2dLayer(filterSize,numFilters,Stride=2,Padding="same")
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,2*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,4*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,8*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(4,1)
    sigmoidLayer];

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

netD = dlnetwork(layersDiscriminator);

Define Model Loss Functions

Create the function modelLoss, listed in the Model Loss Function on page 3-82 section of the
example, which takes as input the generator and discriminator networks, a mini-batch of input data,
an array of random values, and the flip factor, and returns the loss values, the gradients of the loss
values with respect to the learnable parameters in the networks, the generator state, and the scores
of the two networks.

Specify Training Options

Train with a mini-batch size of 128 for 500 epochs. For larger data sets, you might not need to train
for as many epochs.

numEpochs = 500;
miniBatchSize = 128;

Specify the options for Adam optimization. For both networks, specify:

• A learning rate of 0.0002
• A gradient decay factor of 0.5
• A squared gradient decay factor of 0.999

learnRate = 0.0002;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;

If the discriminator learns to discriminate between real and generated images too quickly, then the
generator can fail to train. To better balance the learning of the discriminator and the generator, add
noise to the real data by randomly flipping the labels assigned to the real images.

Specify to flip the real labels with probability 0.35. Note that this does not impair the generator as all
the generated images are still labeled correctly.

3 Deep Learning with Images

3-76



flipProb = 0.35;

Display the generated validation images every 100 iterations.

validationFrequency = 100;

Train Model

To train a GAN, train both networks simultaneously to maximize the performance of both:

• Train the generator to generate data that "fools" the discriminator.
• Train the discriminator to distinguish between real and generated data.

To optimize the performance of the generator, maximize the loss of the discriminator when given
generated data. That is, the objective of the generator is to generate data that the discriminator
classifies as "real".

To optimize the performance of the discriminator, minimize the loss of the discriminator when given
batches of both real and generated data. That is, the objective of the discriminator is to not be
"fooled" by the generator.

Ideally, these strategies result in a generator that generates convincingly realistic data and a
discriminator that has learned strong feature representations that are characteristic of the training
data.

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to rescale the images in the range [-1,1].

• Discard any partial mini-batches with fewer observations than the specified mini-batch size.
• Format the image data with the format "SSCB" (spatial, spatial, channel, batch). By default, the

minibatchqueue object converts the data to dlarray objects with underlying type single.
• Train on a GPU if one is available. By default, the minibatchqueue object converts each output

to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

augimds.MiniBatchSize = miniBatchSize;

mbq = minibatchqueue(augimds, ...
    MiniBatchSize=miniBatchSize, ...
    PartialMiniBatch="discard", ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat="SSCB");

Train the model using a custom training loop. Loop over the training data and update the network
parameters at each iteration. To monitor the training progress, display a batch of generated images
using a held-out array of random values to input to the generator as well as a plot of the scores.

Initialize the parameters for Adam optimization.

trailingAvgG = [];
trailingAvgSqG = [];
trailingAvg = [];
trailingAvgSqD = [];

 Train Generative Adversarial Network (GAN)

3-77



To monitor the training progress, display a batch of generated images using a held-out batch of fixed
random vectors fed into the generator and plot the network scores.

Create an array of held-out random values.

numValidationImages = 25;
ZValidation = randn(numLatentInputs,numValidationImages,"single");

Convert the data to dlarray objects and specify the format "CB" (channel, batch).

ZValidation = dlarray(ZValidation,"CB");

For GPU training, convert the data to gpuArray objects.

if canUseGPU
    ZValidation = gpuArray(ZValidation);
end

To track the scores for the generator and discriminator, use a trainingProgressMonitor object.
Calculate the total number of iterations for the monitor.

numObservationsTrain = numel(imds.Files);
numIterationsPerEpoch = floor(numObservationsTrain/miniBatchSize);
numIterations = numEpochs*numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics=["GeneratorScore","DiscriminatorScore"], ...
    Info=["Epoch","Iteration"], ...
    XLabel="Iteration");

groupSubPlot(monitor,Score=["GeneratorScore","DiscriminatorScore"])

Train the GAN. For each epoch, shuffle the datastore and loop over mini-batches of data.

For each mini-batch:

• Stop if the Stop property of the TrainingProgressMonitor object is true. The Stop property
changes to true when you click the Stop button.

• Evaluate the gradients of the loss with respect to the learnable parameters, the generator state,
and the network scores using dlfeval and the modelLoss function.

• Update the network parameters using the adamupdate function.
• Plot the scores of the two networks.
• After every validationFrequency iterations, display a batch of generated images for a fixed

held-out generator input.

Training can take some time to run.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

3 Deep Learning with Images

3-78



    % Reset and shuffle datastore.
    shuffle(mbq);

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Read mini-batch of data.
        X = next(mbq);

        % Generate latent inputs for the generator network. Convert to
        % dlarray and specify the format "CB" (channel, batch). If a GPU is
        % available, then convert latent inputs to gpuArray.
        Z = randn(numLatentInputs,miniBatchSize,"single");
        Z = dlarray(Z,"CB");

        if canUseGPU
            Z = gpuArray(Z);
        end

        % Evaluate the gradients of the loss with respect to the learnable
        % parameters, the generator state, and the network scores using
        % dlfeval and the modelLoss function.
        [~,~,gradientsG,gradientsD,stateG,scoreG,scoreD] = ...
            dlfeval(@modelLoss,netG,netD,X,Z,flipProb);
        netG.State = stateG;

        % Update the discriminator network parameters.
        [netD,trailingAvg,trailingAvgSqD] = adamupdate(netD, gradientsD, ...
            trailingAvg, trailingAvgSqD, iteration, ...
            learnRate, gradientDecayFactor, squaredGradientDecayFactor);

        % Update the generator network parameters.
        [netG,trailingAvgG,trailingAvgSqG] = adamupdate(netG, gradientsG, ...
            trailingAvgG, trailingAvgSqG, iteration, ...
            learnRate, gradientDecayFactor, squaredGradientDecayFactor);

        % Every validationFrequency iterations, display batch of generated
        % images using the held-out generator input.
        if mod(iteration,validationFrequency) == 0 || iteration == 1
            % Generate images using the held-out generator input.
            XGeneratedValidation = predict(netG,ZValidation);

            % Tile and rescale the images in the range [0 1].
            I = imtile(extractdata(XGeneratedValidation));
            I = rescale(I);

            % Display the images.
            image(I)
            xticklabels([]);
            yticklabels([]);
            title("Generated Images");
        end

        % Update the training progress monitor.
        recordMetrics(monitor,iteration, ...
            GeneratorScore=scoreG, ...

 Train Generative Adversarial Network (GAN)

3-79



            DiscriminatorScore=scoreD);

        updateInfo(monitor,Epoch=epoch,Iteration=iteration);
        monitor.Progress = 100*iteration/numIterations;
    end
end

3 Deep Learning with Images

3-80



Here, the discriminator has learned a strong feature representation that identifies real images among
generated images. In turn, the generator has learned a similarly strong feature representation that
allows it to generate images similar to the training data.

The training plot shows the scores of the generator and discriminator networks. To learn more about
how to interpret the network scores, see “Monitor GAN Training Progress and Identify Common
Failure Modes” on page 5-279.

Generate New Images

To generate new images, use the predict function on the generator with a dlarray object
containing a batch of random vectors. To display the images together, use the imtile function and
rescale the images using the rescale function.

Create a dlarray object containing a batch of 25 random vectors to input to the generator network.

numObservations = 25;
ZNew = randn(numLatentInputs,numObservations,"single");
ZNew = dlarray(ZNew,"CB");

If a GPU is available, then convert the latent vectors to gpuArray.

if canUseGPU
    ZNew = gpuArray(ZNew);
end

Generate new images using the predict function with the generator and the input data.

 Train Generative Adversarial Network (GAN)

3-81



XGeneratedNew = predict(netG,ZNew);

Display the images.

I = imtile(extractdata(XGeneratedNew));
I = rescale(I);
figure
image(I)
axis off
title("Generated Images")

Model Loss Function

The function modelLoss takes as input the generator and discriminator dlnetwork objects netG
and netD, a mini-batch of input data X, an array of random values Z, and the probability to flip the
real labels flipProb, and returns the loss values, the gradients of the loss values with respect to the
learnable parameters in the networks, the generator state, and the scores of the two networks.

function [lossG,lossD,gradientsG,gradientsD,stateG,scoreG,scoreD] = ...
    modelLoss(netG,netD,X,Z,flipProb)

% Calculate the predictions for real data with the discriminator network.
YReal = forward(netD,X);

% Calculate the predictions for generated data with the discriminator
% network.
[XGenerated,stateG] = forward(netG,Z);
YGenerated = forward(netD,XGenerated);

3 Deep Learning with Images

3-82



% Calculate the score of the discriminator.
scoreD = (mean(YReal) + mean(1-YGenerated)) / 2;

% Calculate the score of the generator.
scoreG = mean(YGenerated);

% Randomly flip the labels of the real images.
numObservations = size(YReal,4);
idx = rand(1,numObservations) < flipProb;
YReal(:,:,:,idx) = 1 - YReal(:,:,:,idx);

% Calculate the GAN loss.
[lossG, lossD] = ganLoss(YReal,YGenerated);

% For each network, calculate the gradients with respect to the loss.
gradientsG = dlgradient(lossG,netG.Learnables,RetainData=true);
gradientsD = dlgradient(lossD,netD.Learnables);

end

GAN Loss Function and Scores

The objective of the generator is to generate data that the discriminator classifies as "real". To
maximize the probability that images from the generator are classified as real by the discriminator,
minimize the negative log likelihood function.

Given the output Y of the discriminator:

• Y is the probability that the input image belongs to the class "real".
• 1− Y is the probability that the input image belongs to the class "generated".

The loss function for the generator is given by

lossGenerator = −mean log YGenerated ,

where YGenerated contains the discriminator output probabilities for the generated images.

The objective of the discriminator is to not be "fooled" by the generator. To maximize the probability
that the discriminator successfully discriminates between the real and generated images, minimize
the sum of the corresponding negative log likelihood functions.

The loss function for the discriminator is given by

lossDiscriminator = −mean log YReal −mean log 1− YGenerated ,

where YReal contains the discriminator output probabilities for the real images.

To measure on a scale from 0 to 1 how well the generator and discriminator achieve their respective
goals, you can use the concept of score.

The generator score is the average of the probabilities corresponding to the discriminator output for
the generated images:

scoreGenerator = mean YGenerated .

 Train Generative Adversarial Network (GAN)

3-83



The discriminator score is the average of the probabilities corresponding to the discriminator output
for both the real and generated images:

scoreDiscriminator = 1
2mean YReal + 1

2mean 1− YGenerated .

The score is inversely proportional to the loss but effectively contains the same information.

function [lossG,lossD] = ganLoss(YReal,YGenerated)

% Calculate the loss for the discriminator network.
lossD = -mean(log(YReal)) - mean(log(1-YGenerated));

% Calculate the loss for the generator network.
lossG = -mean(log(YGenerated));

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate into a numeric array.
2 Rescale the images to be in the range [-1,1].

function X = preprocessMiniBatch(data)

% Concatenate mini-batch
X = cat(4,data{:});

% Rescale the images in the range [-1 1].
X = rescale(X,-1,1,InputMin=0,InputMax=255);

end

References

1 The TensorFlow Team. Flowers http://download.tensorflow.org/example_images/flower_photos.tgz
2 Radford, Alec, Luke Metz, and Soumith Chintala. “Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial Networks.” Preprint, submitted November 19, 2015.
http://arxiv.org/abs/1511.06434.

See Also
dlnetwork | forward | predict | dlarray | dlgradient | dlfeval | adamupdate |
minibatchqueue

More About
• “Train Conditional Generative Adversarial Network (CGAN)” on page 3-86
• “Monitor GAN Training Progress and Identify Common Failure Modes” on page 5-279
• “Train Fast Style Transfer Network” on page 3-112
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239

3 Deep Learning with Images

3-84

http://download.tensorflow.org/example_images/flower_photos.tgz


• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Train Generative Adversarial Network (GAN)

3-85



Train Conditional Generative Adversarial Network (CGAN)

This example shows how to train a conditional generative adversarial network to generate images.

A generative adversarial network (GAN) is a type of deep learning network that can generate data
with similar characteristics as the input training data.

A GAN consists of two networks that train together:

1 Generator — Given a vector of random values as input, this network generates data with the
same structure as the training data.

2 Discriminator — Given batches of data containing observations from both the training data, and
generated data from the generator, this network attempts to classify the observations as "real"
or "generated".

A conditional generative adversarial network (CGAN) is a type of GAN that also takes advantage of
labels during the training process.

1 Generator — Given a label and random array as input, this network generates data with the same
structure as the training data observations corresponding to the same label.

2 Discriminator — Given batches of labeled data containing observations from both the training
data and generated data from the generator, this network attempts to classify the observations as
"real" or "generated".

To train a conditional GAN, train both networks simultaneously to maximize the performance of both:

• Train the generator to generate data that "fools" the discriminator.
• Train the discriminator to distinguish between real and generated data.

To maximize the performance of the generator, maximize the loss of the discriminator when given
generated labeled data. That is, the objective of the generator is to generate labeled data that the
discriminator classifies as "real".

3 Deep Learning with Images

3-86



To maximize the performance of the discriminator, minimize the loss of the discriminator when given
batches of both real and generated labeled data. That is, the objective of the discriminator is to not
be "fooled" by the generator.

Ideally, these strategies result in a generator that generates convincingly realistic data that
corresponds to the input labels and a discriminator that has learned strong feature representations
that are characteristic of the training data for each label.

Load Training Data

Download and extract the Flowers data set [1].

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~exist(imageFolder,"dir")
    disp("Downloading Flowers data set (218 MB)...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

Create an image datastore containing the photos of the flowers.

datasetFolder = fullfile(imageFolder);

imds = imageDatastore(datasetFolder,IncludeSubfolders=true,LabelSource="foldernames");

View the number of classes.

classes = categories(imds.Labels);
numClasses = numel(classes)

numClasses = 5

Augment the data to include random horizontal flipping and resize the images to have size 64-by-64.

augmenter = imageDataAugmenter(RandXReflection=true);
augimds = augmentedImageDatastore([64 64],imds,DataAugmentation=augmenter);

Define Generator Network

Define the following two-input network, which generates images given random vectors of size 100
and corresponding labels.

 Train Conditional Generative Adversarial Network (CGAN)

3-87

https://www.tensorflow.org/datasets/catalog/tf_flowers


This network:

• Converts the random vectors of size 100 to 4-by-4-by-1024 arrays using a fully connected layer
followed by a reshape operation.

• Converts the categorical labels to embedding vectors and reshapes them to a 4-by-4 array.
• Concatenates the resulting images from the two inputs along the channel dimension. The output is

a 4-by-4-by-1025 array.
• Upscales the resulting arrays to 64-by-64-by-3 arrays using a series of transposed convolution

layers with batch normalization and ReLU layers.

Define this network architecture as a layer graph and specify the following network properties.

• For the categorical inputs, use an embedding dimension of 50.
• For the transposed convolution layers, specify 5-by-5 filters with a decreasing number of filters for

each layer, a stride of 2, and "same" cropping of the output.
• For the final transposed convolution layer, specify a three 5-by-5 filter corresponding to the three

RGB channels of the generated images.
• At the end of the network, include a tanh layer.

To project and reshape the noise input, use a fully connected layer followed by a reshape operation
specified as a function layer with function given by the feature2image function, attached to this
example as a supporting file. To embed the categorical labels, use the custom layer embeddingLayer
attached to this example as a supporting file. To access these supporting files, open the example as a
live script.

numLatentInputs = 100;
embeddingDimension = 50;
numFilters = 64;

filterSize = 5;
projectionSize = [4 4 1024];

layersGenerator = [
    featureInputLayer(numLatentInputs)
    fullyConnectedLayer(prod(projectionSize))
    functionLayer(@(X) feature2image(X,projectionSize),Formattable=true)
    concatenationLayer(3,2,Name="cat");
    transposedConv2dLayer(filterSize,4*numFilters)
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,2*numFilters,Stride=2,Cropping="same")
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,numFilters,Stride=2,Cropping="same")
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,3,Stride=2,Cropping="same")
    tanhLayer];

lgraphGenerator = layerGraph(layersGenerator);

layers = [
    featureInputLayer(1)
    embeddingLayer(embeddingDimension,numClasses)

3 Deep Learning with Images

3-88



    fullyConnectedLayer(prod(projectionSize(1:2)))
    functionLayer(@(X) feature2image(X,[projectionSize(1:2) 1]),Formattable=true,Name="emb_reshape")];

lgraphGenerator = addLayers(lgraphGenerator,layers);
lgraphGenerator = connectLayers(lgraphGenerator,"emb_reshape","cat/in2");

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

netG = dlnetwork(lgraphGenerator)

netG = 
  dlnetwork with properties:

         Layers: [19×1 nnet.cnn.layer.Layer]
    Connections: [18×2 table]
     Learnables: [19×3 table]
          State: [6×3 table]
     InputNames: {'input'  'input_1'}
    OutputNames: {'layer_2'}
    Initialized: 1

  View summary with summary.

Define Discriminator Network

Define the following two-input network, which classifies real and generated 64-by-64 images given a
set of images and the corresponding labels.

Create a network that takes as input 64-by-64-by-1 images and the corresponding labels and outputs
a scalar prediction score using a series of convolution layers with batch normalization and leaky
ReLU layers. Add noise to the input images using dropout.

• For the dropout layer, specify a dropout probability of 0.75.
• For the convolution layers, specify 5-by-5 filters with an increasing number of filters for each layer.

Also specify a stride of 2 and padding of the output on each edge.
• For the leaky ReLU layers, specify a scale of 0.2.
• For the final layer, specify a convolution layer with one 4-by-4 filter.

dropoutProb = 0.75;
numFilters = 64;

 Train Conditional Generative Adversarial Network (CGAN)

3-89



scale = 0.2;

inputSize = [64 64 3];
filterSize = 5;

layersDiscriminator = [
    imageInputLayer(inputSize,Normalization="none")
    dropoutLayer(dropoutProb)
    concatenationLayer(3,2,Name="cat")
    convolution2dLayer(filterSize,numFilters,Stride=2,Padding="same")
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,2*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,4*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,8*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(4,1)];

lgraphDiscriminator = layerGraph(layersDiscriminator);

layers = [
    featureInputLayer(1)
    embeddingLayer(embeddingDimension,numClasses)
    fullyConnectedLayer(prod(inputSize(1:2)))
    functionLayer(@(X) feature2image(X,[inputSize(1:2) 1]),Formattable=true,Name="emb_reshape")];

lgraphDiscriminator = addLayers(lgraphDiscriminator,layers);
lgraphDiscriminator = connectLayers(lgraphDiscriminator,"emb_reshape","cat/in2");

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

netD = dlnetwork(lgraphDiscriminator)

netD = 
  dlnetwork with properties:

         Layers: [19×1 nnet.cnn.layer.Layer]
    Connections: [18×2 table]
     Learnables: [19×3 table]
          State: [6×3 table]
     InputNames: {'imageinput'  'input'}
    OutputNames: {'conv_5'}
    Initialized: 1

  View summary with summary.

Define Model Loss Functions

Create the function modelLoss, listed in the Model Loss Function on page 3-97 section of the
example, which takes as input the generator and discriminator networks, a mini-batch of input data,
and an array of random values, and returns the gradients of the loss with respect to the learnable
parameters in the networks and an array of generated images.

3 Deep Learning with Images

3-90



Specify Training Options

Train with a mini-batch size of 128 for 500 epochs.

numEpochs = 500;
miniBatchSize = 128;

Specify the options for Adam optimization. For both networks, use:

• A learning rate of 0.0002
• A gradient decay factor of 0.5
• A squared gradient decay factor of 0.999

learnRate = 0.0002;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;

Update the training progress plots every 100 iterations.

validationFrequency = 100;

If the discriminator learns to discriminate between real and generated images too quickly, then the
generator can fail to train. To better balance the learning of the discriminator and the generator,
randomly flip the labels of a proportion of the real images. Specify a flip factor of 0.5.

flipFactor = 0.5;

Train Model

Train the model using a custom training loop. Loop over the training data and update the network
parameters at each iteration. To monitor the training progress, display a batch of generated images
using a held-out array of random values to input into the generator and the network scores.

Use minibatchqueue to process and manage the mini-batches of images during training. For each
mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to rescale the images in the range [-1,1].

• Discard any partial mini-batches with less than 128 observations.
• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch).
• Format the label data with the dimension labels "BC" (batch, channel).
• Train on a GPU if one is available. When the OutputEnvironment option of minibatchqueue is

"auto", minibatchqueue converts each output to a gpuArray if a GPU is available. Using a
GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

The minibatchqueue object, by default, converts the data to dlarray objects with underlying type
single.

augimds.MiniBatchSize = miniBatchSize;
executionEnvironment = "auto";

mbq = minibatchqueue(augimds, ...
    MiniBatchSize=miniBatchSize, ...
    PartialMiniBatch="discard", ...

 Train Conditional Generative Adversarial Network (CGAN)

3-91



    MiniBatchFcn=@preprocessData, ...
    MiniBatchFormat=["SSCB" "BC"], ...
    OutputEnvironment=executionEnvironment);    

Initialize the parameters for the Adam optimizer.

velocityD = [];
trailingAvgG = [];
trailingAvgSqG = [];
trailingAvgD = [];
trailingAvgSqD = [];

To monitor training progress, create a held-out batch of 25 random vectors and a corresponding set
of labels 1 through 5 (corresponding to the classes) repeated five times.

numValidationImagesPerClass = 5;
ZValidation = randn(numLatentInputs,numValidationImagesPerClass*numClasses,"single");

TValidation = single(repmat(1:numClasses,[1 numValidationImagesPerClass]));

Convert the data to dlarray objects and specify the dimension labels "CB" (channel, batch).

ZValidation = dlarray(ZValidation,"CB");
TValidation = dlarray(TValidation,"CB");

For GPU training, convert the data to gpuArray objects.

if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    ZValidation = gpuArray(ZValidation);
    TValidation = gpuArray(TValidation);
end

To track the scores for the generator and discriminator, use a trainingProgressMonitor object.
Calculate the total number of iterations for the monitor.

numObservationsTrain = numel(imds.Files);
numIterationsPerEpoch = floor(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics=["GeneratorScore","DiscriminatorScore"], ...
    Info=["Epoch","Iteration"], ...
    XLabel="Iteration");

groupSubPlot(monitor,Score=["GeneratorScore","DiscriminatorScore"])

Train the conditional GAN. For each epoch, shuffle the data and loop over mini-batches of data.

For each mini-batch:

• Stop if the Stop property of the TrainingProgressMonitor object is true. The Stop property
changes to true when you click the Stop button.

• Evaluate the gradients of the loss with respect to the learnable parameters, the generator state,
and the network scores using dlfeval and the modelLoss function.

3 Deep Learning with Images

3-92



• Update the network parameters using the adamupdate function.
• Plot the scores of the two networks.
• After every validationFrequency iterations, display a batch of generated images for a fixed

held-out generator input.

Training can take some time to run.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Reset and shuffle data.
    shuffle(mbq);

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(mbq);

        % Generate latent inputs for the generator network. Convert to
        % dlarray and specify the dimension labels "CB" (channel, batch).
        % If training on a GPU, then convert latent inputs to gpuArray.
        Z = randn(numLatentInputs,miniBatchSize,"single");
        Z = dlarray(Z,"CB");
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            Z = gpuArray(Z);
        end

        % Evaluate the gradients of the loss with respect to the learnable
        % parameters, the generator state, and the network scores using
        % dlfeval and the modelLoss function.
        [~,~,gradientsG,gradientsD,stateG,scoreG,scoreD] = ...
            dlfeval(@modelLoss,netG,netD,X,T,Z,flipFactor);
        netG.State = stateG;

        % Update the discriminator network parameters.
        [netD,trailingAvgD,trailingAvgSqD] = adamupdate(netD, gradientsD, ...
            trailingAvgD, trailingAvgSqD, iteration, ...
            learnRate, gradientDecayFactor, squaredGradientDecayFactor);
        
        % Update the generator network parameters.
        [netG,trailingAvgG,trailingAvgSqG] = ...
            adamupdate(netG, gradientsG, ...
            trailingAvgG, trailingAvgSqG, iteration, ...
            learnRate, gradientDecayFactor, squaredGradientDecayFactor);
        
        % Every validationFrequency iterations, display batch of generated images using the
        % held-out generator input.
        if mod(iteration,validationFrequency) == 0 || iteration == 1
            
            % Generate images using the held-out generator input.
            XGeneratedValidation = predict(netG,ZValidation,TValidation);

 Train Conditional Generative Adversarial Network (CGAN)

3-93



            
            % Tile and rescale the images in the range [0 1].
            I = imtile(extractdata(XGeneratedValidation), ...
                GridSize=[numValidationImagesPerClass numClasses]);
            I = rescale(I);
            
            % Display the images.
            image(I)
            xticklabels([]);
            yticklabels([]);
            title("Generated Images");
        end

        % Update the training progress monitor.
        recordMetrics(monitor,iteration, ...
            GeneratorScore=scoreG, ...
            DiscriminatorScore=scoreD);

        updateInfo(monitor,Epoch=epoch,Iteration=iteration);
        monitor.Progress = 100*iteration/numIterations;
    end
end

3 Deep Learning with Images

3-94



Here, the discriminator has learned a strong feature representation that identifies real images among
generated images. In turn, the generator has learned a similarly strong feature representation that
allows it to generate images similar to the training data. Each column corresponds to a single class.

The training plot shows the scores of the generator and discriminator networks. To learn more about
how to interpret the network scores, see “Monitor GAN Training Progress and Identify Common
Failure Modes” on page 5-279.

Generate New Images

To generate new images of a particular class, use the predict function on the generator with a
dlarray object containing a batch of random vectors and an array of labels corresponding to the
desired classes. Convert the data to dlarray objects and specify the dimension labels "CB"
(channel, batch). For GPU prediction, convert the data to gpuArray objects. To display the images
together, use the imtile function and rescale the images using the rescale function.

Create an array of 36 vectors of random values corresponding to the first class.

numObservationsNew = 36;
idxClass = 1;
ZNew = randn(numLatentInputs,numObservationsNew,"single");
TNew = repmat(single(idxClass),[1 numObservationsNew]);

Convert the data to dlarray objects with the dimension labels "SSCB" (spatial, spatial, channels,
batch).

 Train Conditional Generative Adversarial Network (CGAN)

3-95



ZNew = dlarray(ZNew,"CB");
TNew = dlarray(TNew,"CB");

To generate images using the GPU, also convert the data to gpuArray objects.

if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    ZNew = gpuArray(ZNew);
    TNew = gpuArray(TNew);
end

Generate images using the predict function with the generator network.

XGeneratedNew = predict(netG,ZNew,TNew);

Display the generated images in a plot.

figure
I = imtile(extractdata(XGeneratedNew));
I = rescale(I);
imshow(I)
title("Class: " + classes(idxClass))

Here, the generator network generates images conditioned on the specified class.

3 Deep Learning with Images

3-96



Model Loss Function

The function modelLoss takes as input the generator and discriminator dlnetwork objects netG
and netD, a mini-batch of input data X, the corresponding labels T, and an array of random values Z,
and returns the gradients of the loss with respect to the learnable parameters in the networks, the
generator state, and the network scores.

If the discriminator learns to discriminate between real and generated images too quickly, then the
generator can fail to train. To better balance the learning of the discriminator and the generator,
randomly flip the labels of a proportion of the real images.

function [lossG,lossD,gradientsG,gradientsD,stateG,scoreG,scoreD] = ...
    modelLoss(netG,netD,X,T,Z,flipFactor)

% Calculate the predictions for real data with the discriminator network.
YReal = forward(netD,X,T);

% Calculate the predictions for generated data with the discriminator network.
[XGenerated,stateG] = forward(netG,Z,T);
YGenerated = forward(netD,XGenerated,T);

% Calculate probabilities.
probGenerated = sigmoid(YGenerated);
probReal = sigmoid(YReal);

% Calculate the generator and discriminator scores.
scoreG = mean(probGenerated);
scoreD = (mean(probReal) + mean(1-probGenerated)) / 2;

% Flip labels.
numObservations = size(YReal,4);
idx = randperm(numObservations,floor(flipFactor * numObservations));
probReal(:,:,:,idx) = 1 - probReal(:,:,:,idx);

% Calculate the GAN loss.
[lossG, lossD] = ganLoss(probReal,probGenerated);

% For each network, calculate the gradients with respect to the loss.
gradientsG = dlgradient(lossG,netG.Learnables,RetainData=true);
gradientsD = dlgradient(lossD,netD.Learnables);

end

GAN Loss Function

The objective of the generator is to generate data that the discriminator classifies as "real". To
maximize the probability that images from the generator are classified as real by the discriminator,
minimize the negative log likelihood function.

Given the output Y of the discriminator:

• Y = σ Y  is the probability that the input image belongs to the class "real".
• 1− Y is the probability that the input image belongs to the class "generated".

Note the sigmoid operation σ happens in the modelLoss function. The loss function for the generator
is given by

 Train Conditional Generative Adversarial Network (CGAN)

3-97



lossGenerator = −mean log YGenerated ,

where YGenerated contains the discriminator output probabilities for the generated images.

The objective of the discriminator is to not be "fooled" by the generator. To maximize the probability
that the discriminator successfully discriminates between the real and generated images, minimize
the sum of the corresponding negative log likelihood functions. The loss function for the discriminator
is given by

lossDiscriminator = −mean log YReal −mean log 1− YGenerated ,

where YReal contains the discriminator output probabilities for the real images.

function [lossG, lossD] = ganLoss(scoresReal,scoresGenerated)

% Calculate losses for the discriminator network.
lossGenerated = -mean(log(1 - scoresGenerated));
lossReal = -mean(log(scoresReal));

% Combine the losses for the discriminator network.
lossD = lossReal + lossGenerated;

% Calculate the loss for the generator network.
lossG = -mean(log(scoresGenerated));

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image and label data from the input cell arrays and concatenate them into numeric
arrays.

2 Rescale the images to be in the range [-1,1].

function [X,T] = preprocessData(XCell,TCell)

% Extract image data from cell and concatenate
X = cat(4,XCell{:});

% Extract label data from cell and concatenate
T = cat(1,TCell{:});

% Rescale the images in the range [-1 1].
X = rescale(X,-1,1,InputMin=0,InputMax=255);

end

References

1 The TensorFlow Team. Flowers http://download.tensorflow.org/example_images/flower_photos.tgz

See Also
dlnetwork | forward | predict | dlarray | dlgradient | dlfeval | adamupdate

3 Deep Learning with Images

3-98

http://download.tensorflow.org/example_images/flower_photos.tgz


More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Monitor GAN Training Progress and Identify Common Failure Modes” on page 5-279
• “Train Fast Style Transfer Network” on page 3-112
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Train Conditional Generative Adversarial Network (CGAN)

3-99



Train Wasserstein GAN with Gradient Penalty (WGAN-GP)

This example shows how to train a Wasserstein generative adversarial network with a gradient
penalty (WGAN-GP) to generate images.

A generative adversarial network (GAN) is a type of deep learning network that can generate data
with similar characteristics as the input real data.

A GAN consists of two networks that train together:

1 Generator — Given a vector of random values (latent inputs) as input, this network generates
data with the same structure as the training data.

2 Discriminator — Given batches of data containing observations from both the training data, and
generated data from the generator, this network attempts to classify the observations as "real" or
"generated".

To train a GAN, train both networks simultaneously to maximize the performance of both:

• Train the generator to generate data that "fools" the discriminator.
• Train the discriminator to distinguish between real and generated data.

To optimize the performance of the generator, maximize the loss of the discriminator when given
generated data. That is, the objective of the generator is to generate data that the discriminator
classifies as "real". To optimize the performance of the discriminator, minimize the loss of the
discriminator when given batches of both real and generated data. That is, the objective of the
discriminator is to not be "fooled" by the generator.

Ideally, these strategies result in a generator that generates convincingly realistic data and a
discriminator that has learned strong feature representations that are characteristic of the training
data. However, [2] argues that the divergences which GANs typically minimize are potentially not
continuous with respect to the generator’s parameters, leading to training difficulty and introduces
the Wasserstein GAN (WGAN) model that uses the Wasserstein loss to help stabilize training. A
WGAN model can still produce poor samples or fail to converge because interactions between the
weight constraint and the cost function can result in vanishing or exploding gradients. To address
these issues, [3] introduces a gradient penalty which improves stability by penalizing gradients with
large norm values at the cost of longer computational time. This type of model is known as a WGAN-
GP model.

This example shows how to train a WGAN-GP model that can generate images with similar
characteristics to a training set of images.

3 Deep Learning with Images

3-100



Load Training Data

Download and extract the Flowers data set [1].

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~datasetExists(imageFolder,"dir")
    disp("Downloading Flowers data set (218 MB)...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

Create an image datastore containing the photos of the flowers.

datasetFolder = fullfile(imageFolder);

imds = imageDatastore(datasetFolder, ...
    IncludeSubfolders=true);

Augment the data to include random horizontal flipping and resize the images to have size 64-by-64.

augmenter = imageDataAugmenter(RandXReflection=true);
augimds = augmentedImageDatastore([64 64],imds,DataAugmentation=augmenter);

Define Discriminator Network

Define the following network, which classifies real and generated 64-by-64 images.

Create a network that takes 64-by-64-by-3 images and returns a scalar prediction score using a series
of convolution layers with batch normalization and leaky ReLU layers. To output the probabilities in
the range [0,1], use a sigmoid layer.

• For the convolution layers, specify 5-by-5 filters with an increasing number of filters for each layer.
Also specify a stride of 2 and padding of the output.

• For the leaky ReLU layers, specify a scale of 0.2.
• For the final convolution layer, specify one 4-by-4 filter.

numFilters = 64;
scale = 0.2;

inputSize = [64 64 3];

 Train Wasserstein GAN with Gradient Penalty (WGAN-GP)

3-101

https://www.tensorflow.org/datasets/catalog/tf_flowers


filterSize = 5;

layersD = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(filterSize,numFilters,Stride=2,Padding="same")
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,2*numFilters,Stride=2,Padding="same")
    layerNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,4*numFilters,Stride=2,Padding="same")
    layerNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,8*numFilters,Stride=2,Padding="same")
    layerNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(4,1)
    sigmoidLayer];

lgraphD = layerGraph(layersD);

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

netD = dlnetwork(lgraphD);

Define Generator Network

Define the following network architecture, which generates images from 1-by-1-by-100 arrays of
random values:

This network:

• Converts the random vectors of size 100 to 4-by-4-by-512 arrays using a project and reshape layer.
• Upscales the resulting arrays to 64-by-64-by-3 arrays using a series of transposed convolution

layers and ReLU layers.

Define this network architecture as a layer graph and specify the following network properties.

• For the transposed convolution layers, specify 5-by-5 filters with a decreasing number of filters for
each layer, a stride of 2, and cropping of the output on each edge.

• For the final transposed convolution layer, specify three 5-by-5 filters corresponding to the three
RGB channels of the generated images, and the output size of the previous layer.

• At the end of the network, include a tanh layer.

To project and reshape the noise input, use the custom layer projectAndReshapeLayer, attached
to this example as a supporting file. The projectAndReshape layer upscales the input using a fully
connected operation and reshapes the output to the specified size.

3 Deep Learning with Images

3-102



filterSize = 5;
numFilters = 64;
numLatentInputs = 100;

projectionSize = [4 4 512];

layersG = [
    featureInputLayer(numLatentInputs,Normalization="none")
    projectAndReshapeLayer(projectionSize);
    transposedConv2dLayer(filterSize,4*numFilters)
    reluLayer
    transposedConv2dLayer(filterSize,2*numFilters,Stride=2,Cropping="same")
    reluLayer
    transposedConv2dLayer(filterSize,numFilters,Stride=2,Cropping="same")
    reluLayer
    transposedConv2dLayer(filterSize,3,Stride=2,Cropping="same")
    tanhLayer];

lgraphG = layerGraph(layersG);

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

netG = dlnetwork(lgraphG);

Define Model Loss Functions

Create the functions modelLossD and modelLossG listed in the Model Loss Functions on page 3-108
section of the example, that calculate the gradients of the discriminator and generator loss with
respect to the learnable parameters of the discriminator and generator networks, respectively.

The function modelLossD takes as input the generator and discriminator networks, a mini-batch of
input data, an array of random values, and the lambda value used for the gradient penalty, and
returns the loss and the gradients of the loss with respect to the learnable parameters in the
discriminator.

The function modelLossG takes as input the generator and discriminator networks and an array of
random values, and returns the loss and the gradients of the loss with respect to the learnable
parameters in the generator.

Specify Training Options

To train a WGAN-GP model, you must train the discriminator for more iterations than the generator.
In other words, for each generator iteration, you must train the discriminator for multiple iterations.

Train with a mini-batch size of 64 for 10,000 generator iterations. For larger datasets, you might need
to train for more iterations.

miniBatchSize = 64;
numIterationsG = 10000;

For each generator iteration, train the discriminator for 5 iterations.

numIterationsDPerG = 5;

For the WGAN-GP loss, specify a lambda value of 10. The lambda value controls the magnitude of the
gradient penalty added to the discriminator loss.

 Train Wasserstein GAN with Gradient Penalty (WGAN-GP)

3-103



lambda = 10;

Specify the options for Adam optimization:

• For the discriminator network, specify a learning rate of 0.0002.
• For the generator network, specify a learning rate of 0.001.
• For both networks, specify a gradient decay factor of 0 and a squared gradient decay factor of 0.9.

learnRateD = 2e-4;
learnRateG = 1e-3;
gradientDecayFactor = 0;
squaredGradientDecayFactor = 0.9;

Display the generated validation images every 20 generator iterations.

validationFrequency = 20;

Train Model

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to rescale the images in the range [-1,1].

• Discard any partial mini-batches.
• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch).
• Train on a GPU if one is available. When the OutputEnvironment option of minibatchqueue is

"auto", minibatchqueue converts each output to a gpuArray if a GPU is available. Using a
GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox) (Parallel
Computing Toolbox).

The minibatchqueue object, by default, converts the data to dlarray objects with underlying type
single.

augimds.MiniBatchSize = miniBatchSize;

mbq = minibatchqueue(augimds,...
    MiniBatchSize=miniBatchSize,...
    PartialMiniBatch="discard",...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat="SSCB");

Train the model using a custom training loop. Loop over the training data and update the network
parameters at each iteration. To monitor the training progress, display a batch of generated images
using a held-out array of random values to input into the generator as well as a plot of the scores.

Initialize the parameters for Adam.

trailingAvgD = [];
trailingAvgSqD = [];
trailingAvgG = [];
trailingAvgSqG = [];

To monitor training progress, display a batch of generated images using a held-out batch of fixed
arrays of random values fed into the generator and plot the network scores.

3 Deep Learning with Images

3-104



Create an array of held-out random values.

numValidationImages = 25;
ZValidation = randn(numLatentInputs,numValidationImages,"single");

Convert the data to dlarray objects and specify the dimension labels "SSCB" (spatial, spatial,
channel, batch).

ZValidation = dlarray(ZValidation,"CB");

For GPU training, convert the data to gpuArray objects.

if canUseGPU
    ZValidation = gpuArray(ZValidation);
end

Initialize the training progress plots. Create a figure and resize it to have twice the width.

f = figure;
f.Position(3) = 2*f.Position(3);

Create a subplot for the generated images and the network scores.

imageAxes = subplot(1,2,1);
scoreAxes = subplot(1,2,2);

Initialize the animated lines for the loss plot.

C = colororder;
lineLossD = animatedline(scoreAxes,Color=C(1,:));
lineLossDUnregularized = animatedline(scoreAxes,Color=C(2,:));
legend("With Gradient Penalty","Unregularized")
xlabel("Generator Iteration")
ylabel("Discriminator Loss")
grid on

Train the WGAN-GP model by looping over mini-batches of data.

For numIterationsDPerG iterations, train the discriminator only. For each mini-batch:

• Evaluate the discriminator model loss and gradients using dlfeval and the modelLossD
function.

• Update the discriminator network parameters using the adamupdate function.

After training the discriminator for numIterationsDPerG iterations, train the generator on a single
mini-batch.

• Evaluate the generator model loss and gradients using dlfeval and the modelLossG function.
• Update the generator network parameters using the adamupdate function.

After updating the generator network:

• Plot the losses of the two networks.
• After every validationFrequency generator iterations, display a batch of generated images for

a fixed held-out generator input.

After passing through the data set, shuffle the mini-batch queue.

 Train Wasserstein GAN with Gradient Penalty (WGAN-GP)

3-105



Training can take some time to run and may require many iterations to output good images.

iterationG = 0;
iterationD = 0;
start = tic;

% Loop over mini-batches
while iterationG < numIterationsG
    iterationG = iterationG + 1;

    % Train discriminator only
    for n = 1:numIterationsDPerG
        iterationD = iterationD + 1;

        % Reset and shuffle mini-batch queue when there is no more data.
        if ~hasdata(mbq)
            shuffle(mbq);
        end

        % Read mini-batch of data.
        X = next(mbq);

        % Generate latent inputs for the generator network. Convert to
        % dlarray and specify the dimension labels "CB" (channel, batch).
        Z = randn([numLatentInputs size(X,4)],like=X);
        Z = dlarray(Z,"CB");

        % Evaluate the discriminator model loss and gradients using dlfeval and the
        % modelLossD function listed at the end of the example.
        [lossD, gradientsD, lossDUnregularized] = dlfeval(@modelLossD, netD, netG, X, Z, lambda);

        % Update the discriminator network parameters.
        [netD,trailingAvgD,trailingAvgSqD] = adamupdate(netD, gradientsD, ...
            trailingAvgD, trailingAvgSqD, iterationD, ...
            learnRateD, gradientDecayFactor, squaredGradientDecayFactor);
    end

    % Generate latent inputs for the generator network. Convert to dlarray
    % and specify the dimension labels "CB" (channel, batch).
    Z = randn([numLatentInputs size(X,4)],like=X);
    Z = dlarray(Z,"CB");

    % Evaluate the generator model loss and gradients using dlfeval and the
    % modelLoss function listed at the end of the example.
    [~,gradientsG] = dlfeval(@modelLossG, netG, netD, Z);

    % Update the generator network parameters.
    [netG,trailingAvgG,trailingAvgSqG] = adamupdate(netG, gradientsG, ...
        trailingAvgG, trailingAvgSqG, iterationG, ...
        learnRateG, gradientDecayFactor, squaredGradientDecayFactor);

    % Every validationFrequency generator iterations, display batch of
    % generated images using the held-out generator input
    if mod(iterationG,validationFrequency) == 0 || iterationG == 1
        % Generate images using the held-out generator input.
        XGeneratedValidation = predict(netG,ZValidation);

        % Tile and rescale the images in the range [0 1].

3 Deep Learning with Images

3-106



        I = imtile(extractdata(XGeneratedValidation));
        I = rescale(I);

        % Display the images.
        subplot(1,2,1);
        image(imageAxes,I)
        xticklabels([]);
        yticklabels([]);
        title("Generated Images");
    end

    % Update the scores plot
    subplot(1,2,2)

    lossD = double(lossD);
    lossDUnregularized = double(lossDUnregularized);
    addpoints(lineLossD,iterationG,lossD);
    addpoints(lineLossDUnregularized,iterationG,lossDUnregularized);

    D = duration(0,0,toc(start),Format="hh:mm:ss");
    title( ...
        "Iteration: " + iterationG + ", " + ...
        "Elapsed: " + string(D))
    drawnow
end

Here, the discriminator has learned a strong feature representation that identifies real images among
generated images. In turn, the generator has learned a similarly strong feature representation that
allows it to generate images similar to the training data.

Generate New Images

To generate new images, use the predict function on the generator with a dlarray object
containing a batch of random vectors. To display the images together, use the imtile function and
rescale the images using the rescale function.

Create a dlarray object containing a batch of 25 random vectors to input to the generator network.

 Train Wasserstein GAN with Gradient Penalty (WGAN-GP)

3-107



ZNew = randn(numLatentInputs,25,"single");
ZNew = dlarray(ZNew,"CB");

To generate images using the GPU, also convert the data to gpuArray objects.

if canUseGPU
    ZNew = gpuArray(ZNew);
end

Generate new images using the predict function with the generator and the input data.

XGeneratedNew = predict(netG,ZNew);

Display the images.

I = imtile(extractdata(XGeneratedNew));
I = rescale(I);
figure
image(I)
axis off
title("Generated Images")

Model Loss Functions

Discriminator Model Loss Function

The function modelLossD takes as input the generator and discriminator dlnetwork objects netG
and netD, a mini-batch of input data X, an array of random values Z, and the lambda value used for

3 Deep Learning with Images

3-108



the gradient penalty, and returns the loss and the gradients of the loss with respect to the learnable
parameters in the discriminator.

Given an image X, a generated image X∼, define X = ϵX + (1− ϵ)X∼ for some random ϵ ∈ U(0, 1).

For the WGAN-GP model, given the lambda value λ, the discriminator loss is given by

lossD = Y∼− Y + λ ∇XY 2− 1 2,

where Y, Y∼, and Y denote the output of the discriminator for the inputs X, X∼, and X, respectively, and
∇XY denotes the gradients of the output Y with respect to X. For a mini-batch of data, use a different
value of ϵ for each observation and calculate the mean loss.

The gradient penalty λ ∇XY 2− 1 2 improves stability by penalizing gradients with large norm
values. The lambda value controls the magnitude of the gradient penalty added to the discriminator
loss.

function [lossD, gradientsD, lossDUnregularized] = modelLossD(netD, netG, X, Z, lambda)

% Calculate the predictions for real data with the discriminator network.
dlYPred = forward(netD, X);

% Calculate the predictions for generated data with the discriminator
% network.
XGenerated = forward(netG,Z);
YPredGenerated = forward(netD, XGenerated);

% Calculate the loss.
lossDUnregularized = mean(YPredGenerated - dlYPred);

% Calculate and add the gradient penalty. 
epsilon = rand([1 1 1 size(X,4)],like=X);
XHat = epsilon.*X + (1-epsilon).*XGenerated;
YHat = forward(netD, XHat);

% Calculate gradients. To enable computing higher-order derivatives, set
% EnableHigherDerivatives to true.
gradientsHat = dlgradient(sum(YHat),XHat,EnableHigherDerivatives=true);
gradientsHatNorm = sqrt(sum(gradientsHat.^2,1:3) + 1e-10);
gradientPenalty = lambda.*mean((gradientsHatNorm - 1).^2);

% Penalize loss.
lossD = lossDUnregularized + gradientPenalty;

% Calculate the gradients of the penalized loss with respect to the
% learnable parameters.
gradientsD = dlgradient(lossD, netD.Learnables);

end

Generator Model Loss Function

The function modelLossG takes as input the generator and discriminator dlnetwork objects netG
and netD, and an array of random values Z, and returns the loss and the gradients of the loss with
respect to the learnable parameters in the generator.

 Train Wasserstein GAN with Gradient Penalty (WGAN-GP)

3-109



Given a generated image X∼, the loss for the generator network is given by

lossG = − Y∼,

where Y∼ denotes the output of the discriminator for the generated image X∼. For a mini-batch of
generated images, calculate the mean loss.

function [lossG,gradientsG] =  modelLossG(netG, netD, Z)

% Calculate the predictions for generated data with the discriminator
% network.
XGenerated = forward(netG,Z);
YPredGenerated = forward(netD, XGenerated);

% Calculate the loss.
lossG = -mean(YPredGenerated);

% Calculate the gradients of the loss with respect to the learnable
% parameters.
gradientsG = dlgradient(lossG, netG.Learnables);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the input cell array and concatenate into a numeric array.
2 Rescale the images to be in the range [-1,1].

function X = preprocessMiniBatch(data)

% Concatenate mini-batch
X = cat(4,data{:});

% Rescale the images in the range [-1 1].
X = rescale(X,-1,1,InputMin=0,InputMax=255);

end

References

1 The TensorFlow Team. Flowers http://download.tensorflow.org/example_images/flower_photos.tgz
2 Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein GAN." arXiv preprint

arXiv:1701.07875 (2017).
3 Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville.

"Improved training of Wasserstein GANs." In Advances in neural information processing systems,
pp. 5767-5777. 2017.

See Also
dlnetwork | forward | predict | dlarray | dlgradient | dlfeval | adamupdate

3 Deep Learning with Images

3-110

http://download.tensorflow.org/example_images/flower_photos.tgz


More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Monitor GAN Training Progress and Identify Common Failure Modes” on page 5-279
• “Train Fast Style Transfer Network” on page 3-112
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Train Wasserstein GAN with Gradient Penalty (WGAN-GP)

3-111



Train Fast Style Transfer Network

This example shows how to train a network to transfer the style of an image to a second image. It is
based on the architecture defined in [1].

This example is similar to “Neural Style Transfer Using Deep Learning” on page 9-120, but it works
faster once you have trained the network on a style image S. This is because, to obtain the stylized
image Y you only need to do a forward pass of the input image X to the network.

Find a high-level diagram of the training algorithm below. This uses three images to calculate the
loss: the input image X, the transformed image Y and the style image S.

3 Deep Learning with Images

3-112



Note that the loss function uses the pretrained network VGG-16 to extract features from the images.
You can find its implementation and mathematical definition in the Style Transfer Loss on page 3-122
section of this example.

Load Training Data

Download and extract the COCO 2014 train images and captions from https://cocodataset.org/
#download by clicking the "2014 Train images". Save the data in the folder specified by
imageFolder. Extract the images into imageFolder. The COCO 2014 was collected by the Coco
Consortium.

Create directories to store the COCO data set.

imageFolder = fullfile(tempdir,"coco");
if ~exist(imageFolder,'dir')
    mkdir(imageFolder);
end

Create an image datastore containing the COCO images.

imds = imageDatastore(imageFolder,'IncludeSubfolders',true);

Training can take a long time to run. If you want to decrease the training time at the cost of accuracy
of the resulting network, then select a subset of the image datastore by setting fraction to a
smaller value.

fraction = 1;
numObservations = numel(imds.Files);
imds = subset(imds,1:floor(numObservations*fraction));

To resize the images and convert them all to RGB, create an augmented image datastore.

augimds = augmentedImageDatastore([256 256],imds,'ColorPreprocessing',"gray2rgb");

Read the style image.

styleImage = imread('starryNight.jpg');
styleImage = imresize(styleImage,[256 256]);

Display the chosen style image.

figure
imshow(styleImage)
title("Style Image")

 Train Fast Style Transfer Network

3-113

https://cocodataset.org/#download
https://cocodataset.org/#download
https://cocodataset.org
https://cocodataset.org


Define Image Transformer Network

Define the image transformer network. This is an image-to-image network. The network consists of 3
parts:

1 The first part of the network takes as input an RGB image of size [256x256x3] and downsamples
it to a feature map of size [64x64x128].

2 The second part of the network consists of five identical residual blocks defined in the supporting
function residualBlock.

3 The third and final part of the network upsamples the feature map to the original size of the
image and returns the transformed image. This last part uses the upsampleLayer, which is a
custom layer attached to this example as a supporting file.

layers = [
    
    % First part.
    imageInputLayer([256 256 3],Normalization="none")
    
    convolution2dLayer([9 9],32,Padding="same")
    groupNormalizationLayer("channel-wise")
    reluLayer
    
    convolution2dLayer([3 3],64,Stride=2,Padding="same")
    groupNormalizationLayer("channel-wise")
    reluLayer
    
    convolution2dLayer([3 3],128,Stride=2,Padding="same")
    groupNormalizationLayer("channel-wise")
    reluLayer(Name="relu_3")
    

3 Deep Learning with Images

3-114



    % Second part. 
    residualBlock("1")
    residualBlock("2")
    residualBlock("3")
    residualBlock("4")
    residualBlock("5")
    
    % Third part.
    upsampleLayer
    convolution2dLayer([3 3],64,Padding="same")
    groupNormalizationLayer("channel-wise")
    reluLayer
    
    upsampleLayer
    convolution2dLayer([3 3],32,Padding="same")
    groupNormalizationLayer("channel-wise")
    reluLayer
    
    convolution2dLayer(9,3,Padding="same")];

lgraph = layerGraph(layers);

Add missing connections in residual blocks.

lgraph = connectLayers(lgraph,"relu_3","add_1/in2");
lgraph = connectLayers(lgraph,"add_1","add_2/in2");
lgraph = connectLayers(lgraph,"add_2","add_3/in2");
lgraph = connectLayers(lgraph,"add_3","add_4/in2");
lgraph = connectLayers(lgraph,"add_4","add_5/in2");

Visualize the image transformer network in a plot.

figure
plot(lgraph)
title("Transform Network")

 Train Fast Style Transfer Network

3-115



Create a dlnetwork object from the layer graph.

netTransform = dlnetwork(lgraph);

Style Loss Network

This example uses a pretrained VGG-16 deep neural network to extract the features of the content
and style images at different layers. These multilayer features are used to compute respective content
and style losses.

To get a pretrained VGG-16 network, use the vgg16 function. If you do not have the required support
packages installed, then the software provides a download link.

netLoss = vgg16;

To extract the feature necessary to calculate the loss you need the first 24 layers only. Extract and
convert to a layer graph.

lossLayers = netLoss.Layers(1:24);
lgraph = layerGraph(lossLayers);

Convert to a dlnetwork.

netLoss = dlnetwork(lgraph);

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 3-121 section of the
example. This function takes as input the loss network, the image transformer network, a mini-batch

3 Deep Learning with Images

3-116



of input images, an array containing the Gram matrices of the style image, the weight associated with
the content loss and the weight associated with the style loss. The function returns the total loss, the
loss associated with the content and the loss associated with the style, the gradients of the total loss
with respect to the learnable parameters of the image transformer, the state of the image transformer
network, and the transformed images.

Specify Training Options

Train with a mini-batch size of 4 for 2 epochs as in [1].

numEpochs = 2;
miniBatchSize = 4;

Set the read size of the augmented image datastore to the mini-batch size.

augimds.MiniBatchSize = miniBatchSize;

Specify the options for ADAM optimization. Specify a learn rate of 0.001 with a gradient decay factor
of 0.01, and a squared gradient decay factor of 0.999.

learnRate = 0.001;
gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Specify the weight given to the style loss and the one given to the content loss in the calculation of
the total loss.

Note that, in order to find a good balance between content and style loss, you might need to
experiment with different combinations of weights.

weightContent = 1e-4;
weightStyle = 3e-8; 

Choose the plot frequency of the training progress. This specifies how many iterations there are
between each plot update.

plotFrequency = 10;

Train Model

In order to be able to compute the loss during training, calculate the Gram matrices for the style
image.

Convert the style image to dlarray.

S = dlarray(single(styleImage),"SSC");

In order to calculate the Gram matrix, feed the style image to the VGG-16 network and extract the
activations at four different layers.

[SActivations1,SActivations2,SActivations3,SActivations4] = forward(netLoss,S, ...
    Outputs=["relu1_2" "relu2_2" "relu3_3" "relu4_3"]);

Calculate the Gram matrix for each set of activations using the supporting function
createGramMatrix.

SGram{1} = createGramMatrix(SActivations1);
SGram{2} = createGramMatrix(SActivations2);

 Train Fast Style Transfer Network

3-117



SGram{3} = createGramMatrix(SActivations3);
SGram{4} = createGramMatrix(SActivations4);

The training plots consists of two figures:

1 A figure showing a plot of the losses during training
2 A figure containing an input and an output image of the image transformer network

Initialize the training plots. You can check the details of the initialization in the supporting function
initializeFigures. This function returns: the axis ax1 where you plot the loss, the axis ax2
where you plot the validation images, the animated line lineLossContent which contains the
content loss, the animated line lineLossStyle which contains the style loss and the animated line
lineLossTotal which contains the total loss.

[ax1,ax2,lineLossContent,lineLossStyle,lineLossTotal] = initializeStyleTransferPlots;

Initialize the average gradient and average squared gradient hyperparameters for the ADAM
optimizer.

averageGrad = [];
averageSqGrad = [];

Calculate total number of training iterations.

numIterations = floor(augimds.NumObservations*numEpochs/miniBatchSize);

Initialize iteration number and timer before training.

iteration = 0;
start = tic;

Train the model. Train on a GPU if one is available. Using a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). This could take a long time to run.

% Loop over epochs.
for i = 1:numEpochs
    
    % Reset and shuffle datastore.
    reset(augimds);
    augimds = shuffle(augimds);
    
    % Loop over mini-batches.
    while hasdata(augimds)
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        data = read(augimds);
        
        % Ignore last partial mini-batch of epoch.
        if size(data,1) < miniBatchSize
            continue
        end
        
        % Extract the images from data store into a cell array.
        images = data{:,1};
        

3 Deep Learning with Images

3-118



        % Concatenate the images along the 4th dimension.
        X = cat(4,images{:});
        X = single(X);
        
        % Convert mini-batch of data to dlarray and specify the dimension labels
        % "SSCB" (spatial, spatial, channel, batch).
        X = dlarray(X,"SSCB");
        
        % If training on a GPU, then convert data to gpuArray.
        if canUseGPU
            X = gpuArray(X);
        end
        
        % Evaluate the model loss, gradients, and the network state using
        % dlfeval and the modelLoss function listed at the end of the
        % example.
        [loss,lossContent,lossStyle,gradients,state,Y] = dlfeval(@modelLoss, ...
            netLoss,netTransform,X,SGram,weightContent,weightStyle);
        
        netTransform.State = state;
        
        % Update the network parameters.
        [netTransform,averageGrad,averageSqGrad] = ...
            adamupdate(netTransform,gradients,averageGrad,averageSqGrad,iteration,...
            learnRate, gradientDecayFactor, squaredGradientDecayFactor);
              
        % Every plotFequency iterations, plot the training progress.
        if mod(iteration,plotFrequency) == 0
            addpoints(lineLossTotal,iteration,double(loss))
            addpoints(lineLossContent,iteration,double(lossContent))
            addpoints(lineLossStyle,iteration,double(lossStyle))
            
            % Use the first image of the mini-batch as a validation image.
            XV = X(:,:,:,1);
            % Use the transformed validation image computed previously.
            YV = Y(:,:,:,1);
            
            % To use the function imshow, convert to uint8.
            validationImage = uint8(gather(extractdata(XV)));
            transformedValidationImage = uint8(gather(extractdata(YV)));
            
            % Plot the input image and the output image and increase size
            imshow(imtile({validationImage,transformedValidationImage}),Parent=ax2);
        end
        
        % Display time elapsed since start of training and training completion percentage.
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        completionPercentage = round(iteration/numIterations*100,2);
        title(ax1,"Epoch: " + i + ", Iteration: " + iteration +" of "+ numIterations + "(" + completionPercentage + "%)" +", Elapsed: " + string(D))
        drawnow
        
    end
end

 Train Fast Style Transfer Network

3-119



Stylize an Image

Once training has finished, you can use the image transformer on any image of your choice.

Load the image you would like to transform.

imFilename = "peppers.png";
im = imread(imFilename);

Resize the input image to the input dimensions of the image transformer.

im = imresize(im,[256,256]);

Convert it to dlarray.

X = dlarray(single(im),"SSCB");

To use the GPU convert to gpuArray if one is available.

if canUseGPU
    X = gpuArray(X);
end

3 Deep Learning with Images

3-120



To apply the style to the image, forward pass it to the image transformer using the function
predict.

Y = predict(netTransform,X);

Rescale the image into the range [0 255]. First, use the function tanh to rescale Y to the range [-1 1].
Then, shift and scale the output to rescale into the [0 255] range.

Y = 255*(tanh(Y)+1)/2;

Prepare Y for plotting. Use the function extractdata to extract the data from dlarray.Use the
function gather to transfer Y from the GPU to the local workspace.

Y = uint8(gather(extractdata(Y)));

Show the input image (left) next to the stylized image (right).

figure
m = imtile({im,Y});
imshow(m)

Model Loss Function

The function modelLoss takes as input the loss network netLoss, the image transformer network
netTransform, a mini-batch of input images X, an array containing the Gram matrices of the style
image SGram, the weight associated with the content loss contentWeight and the weight associated
with the style loss styleWeight. The function returns the total loss, the loss associated with the
content lossContent and the loss associated with the style lossStyle, the gradients of the total
loss with respect to the learnable parameters of the image transformer gradients, the state of the
image transformer network state, and the transformed images Y.

 Train Fast Style Transfer Network

3-121



function [loss,lossContent,lossStyle,gradients,state,Y] = ...
    modelLoss(netLoss,netTransform,X,SGram,contentWeight,styleWeight)

[Y,state] = forward(netTransform,X);

Y = 255*(tanh(Y)+1)/2;

[loss,lossContent,lossStyle] = styleTransferLoss(netLoss,Y,X,SGram,contentWeight,styleWeight);

gradients = dlgradient(loss,netTransform.Learnables);

end

Style Transfer Loss

The function styleTransferLoss takes as input the loss network netLoss, a mini-batch of input
images X, a mini-batch of transformed images Y, an array containing the Gram matrices of the style
image SGram, the weights associated with the content and style contentWeight and
styleWeight, respectively. It returns the total loss loss and the individual components: the
content loss lossContent and the style loss lossStyle.

The content loss is a measure of how much difference in spatial structure there is between the input
image X and the output images Y.

On the other hand, the style loss tells you how much difference in the stylistic appearance there is
between the style image S and the output image Y.

The graph below explains the algorithm that styleTransferLoss implements to calculate the total
loss.

First, the function passes the input images X, the transformed images Y and the style image S to the
pretrained network VGG-16. This pretrained network extracts several features from these images.
The algorithm then calculates the content loss by using the spatial features of the input image X and
of the output image Y. Moreover, it calculates the style loss by using the stylistic features of the
output image Y and of the style image S. Finally, it obtains the total loss by adding the content and
style losses.

3 Deep Learning with Images

3-122



Content Loss

For each image in the mini-batch, the content loss function compares the features of the original
image and of the transformed image output by the layer relu3_3. In particular, it calculates the
mean square error between the activations and returns the average loss for the mini-batch:

lossContent = 1
N ∑

n = 1

N
mean([ϕ(Xn)− ϕ(Yn)]2),

where X contains the input images, Y contains the transformed images, N is the mini-batch size, and
ϕ() represents the activations extracted at layer relu3_3.

Style Loss

To calculate the style loss, for each single image in the mini-batch:

1 Extract the activations at the layers relu1_2, relu2_2, relu3_3 and relu4_3.
2 For each of the four activations ϕ j compute the Gram matrix G(ϕ j).
3 Calculate the squared difference between the corresponding Gram matrices.
4 Add up the four outputs for each layer j from the previous step.

To obtain the style loss for the whole mini-batch, compute the average of the style loss for each image
n in the mini-batch:

lossStyle = 1
N ∑

n = 1

N
∑

j = 1

4
[G(ϕ j(Xn))− G(ϕ j(S))]2,

where j is the index of the layer, and G() is the Gram Matrix.

Total Loss
function [loss,lossContent,lossStyle] = styleTransferLoss(netLoss,Y,X, ...
    SGram,weightContent,weightStyle)

 Train Fast Style Transfer Network

3-123



% Extract activations.
YActivations = cell(1,4);
[YActivations{1},YActivations{2},YActivations{3},YActivations{4}] = ...
    forward(netLoss,Y,'Outputs',["relu1_2" "relu2_2" "relu3_3" "relu4_3"]);

XActivations = forward(netLoss,X,'Outputs','relu3_3');

% Calculate the mean square error between activations.
lossContent = mean((YActivations{3} - XActivations).^2,'all');

% Add up the losses for all the four activations.
lossStyle = 0;
for j = 1:4
    G = createGramMatrix(YActivations{j});
    lossStyle = lossStyle + sum((G - SGram{j}).^2,'all');
end

% Average the loss over the mini-batch.
miniBatchSize = size(X,4);
lossStyle = lossStyle/miniBatchSize;

% Apply weights.
lossContent = weightContent * lossContent;
lossStyle = weightStyle * lossStyle;

% Calculate the total loss.
loss = lossContent + lossStyle;

end

Residual Block

The residualBlock function returns an array of six layers. It consists of convolution layers,
instance normalization layers, a ReLu layer and an addition layer. Note that
groupNormalizationLayer('channel-wise') is simply an instance normalization layer.

function layers = residualBlock(name)

layers = [    
    convolution2dLayer([3 3], 128,Padding="same",Name="convRes_"+name+"_1")
    groupNormalizationLayer("channel-wise",Name="normRes_"+name+"_1")
    reluLayer(Name="reluRes_"+name+"_1")
    convolution2dLayer([3 3],128,Padding="same",Name="convRes_"+name+"_2")
    groupNormalizationLayer("channel-wise",Name="normRes_"+name+"_2")
    additionLayer(2,Name="add_"+name)];

end

Gram Matrix

The function createGramMatrix takes as an input the activations of a single layer and returns a
stylistic representation for each image in a mini-batch. The input is a feature map of size [H, W, C,
N], where H is the height, W is the width, C is the number of channels and N is the mini-batch size.
The function outputs an array G of size [C,C,N]. Each subarray G(:,:,k) is the Gram matrix
corresponding to the kth image in the mini-batch. Each entry G(i, j, k) of the Gram matrix represents

3 Deep Learning with Images

3-124



the correlation between channels ci and c j, because each entry in channel ci multiplies the entry in
the corresponding position in channel c j:

G(i, j, k) = 1
C × H × W ∑

h = 1

H
∑

w = 1

W
ϕk(h, w, ci)ϕk(h, w, c j),

where ϕk are the activations for the kth image in the mini-batch.

The Gram matrix contains information about which features activate together but has no information
about where the features occur in the image. This is because the summation over height and width
loses the information about the spatial structure. The loss function uses this matrix as a stylistic
representation of the image.

function G = createGramMatrix(activations)

[h,w,numChannels] = size(activations,1:3);

features = reshape(activations,h*w,numChannels,[]);
featuresT = permute(features,[2 1 3]);

G = dlmtimes(featuresT,features) / (h*w*numChannels);

end

References

1 Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. "Perceptual losses for real-time style transfer and
super-resolution." European conference on computer vision. Springer, Cham, 2016.

See Also
dlnetwork | forward | predict | dlarray | dlgradient | dlfeval | adamupdate

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Train Fast Style Transfer Network

3-125



Train a Siamese Network to Compare Images

This example shows how to train a Siamese network to identify similar images of handwritten
characters.

A Siamese network is a type of deep learning network that uses two or more identical subnetworks
that have the same architecture and share the same parameters and weights. Siamese networks are
typically used in tasks that involve finding the relationship between two comparable things. Some
common applications for Siamese networks include facial recognition, signature verification [1], or
paraphrase identification [2]. Siamese networks perform well in these tasks because their shared
weights mean there are fewer parameters to learn during training and they can produce good results
with a relatively small amount of training data.

Siamese networks are particularly useful in cases where there are large numbers of classes with
small numbers of observations of each. In such cases, there is not enough data to train a deep
convolutional neural network to classify images into these classes. Instead, the Siamese network can
determine if two images are in the same class.

This example use the Omniglot dataset [3] to train a Siamese network to compare images of
handwritten characters [4]. The Omniglot dataset contains character sets for 50 alphabets, divided
into 30 used for training and 20 for testing. Each alphabet contains a number of characters from 14
for Ojibwe (Canadia Aboriginal Sullabics) to 55 for Tifinagh. Finally, each character has 20
handwritten observations. This example trains a network to identify whether two handwritten
observations are different instances of the same character.

You can also use Siamese networks to identify similar images using dimensionality reduction. For an
example, see “Train a Siamese Network for Dimensionality Reduction” on page 3-140.

Load and Preprocess Training Data

Download and extract the Omniglot training dataset.

url = "https://github.com/brendenlake/omniglot/raw/master/python/images_background.zip";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"images_background.zip");

dataFolderTrain = fullfile(downloadFolder,"images_background");
if ~exist(dataFolderTrain,"dir")
    disp("Downloading Omniglot training data (4.5 MB)...")
    websave(filename,url);
    unzip(filename,downloadFolder);
end
disp("Training data downloaded.")

Training data downloaded.

Load the training data as a image datastore using the imageDatastore function. Specify the labels
manually by extracting the labels from the file names and setting the Labels property.

imdsTrain = imageDatastore(dataFolderTrain, ...
    IncludeSubfolders=true, ...
    LabelSource="none");

files = imdsTrain.Files;
parts = split(files,filesep);

3 Deep Learning with Images

3-126

https://github.com/brendenlake/omniglot


labels = join(parts(:,(end-2):(end-1)),"-");
imdsTrain.Labels = categorical(labels);

The Omniglot training dataset consists of black and white handwritten characters from 30 alphabets,
with 20 observations of each character. The images are of size 105-by-105-by-1, and the values of
each pixel are between 0 and 1.

Display a random selection of the images.

idx = randperm(numel(imdsTrain.Files),8);

for i = 1:numel(idx)
    subplot(4,2,i)
    imshow(readimage(imdsTrain,idx(i)))
    title(imdsTrain.Labels(idx(i)),Interpreter="none");
end

Create Pairs of Similar and Dissimilar Images

To train the network, the data must be grouped into pairs of images that are either similar or
dissimilar. Here, similar images are different handwritten instances of the same character, which
have the same label, while dissimilar images of different characters have different labels. The
function getSiameseBatch (defined in the Supporting Functions on page 3-137 section of this
example) creates randomized pairs of similar or dissimilar images, pairImage1 and pairImage2.
The function also returns the label pairLabel, which identifies if the pair of images is similar or
dissimilar to each other. Similar pairs of images have pairLabel = 1, while dissimilar pairs have
pairLabel = 0.

 Train a Siamese Network to Compare Images

3-127



As an example, create a small representative set of five pairs of images

batchSize = 10;
[pairImage1,pairImage2,pairLabel] = getSiameseBatch(imdsTrain,batchSize);

Display the generated pairs of images.

for i = 1:batchSize
    if pairLabel(i) == 1
        s = "similar";
    else
        s = "dissimilar";
    end
    subplot(2,5,i)
    imshow([pairImage1(:,:,:,i) pairImage2(:,:,:,i)]);
    title(s)
end

In this example, a new batch of 180 paired images is created for each iteration of the training loop.
This ensures that the network is trained on a large number of random pairs of images with
approximately equal proportions of similar and dissimilar pairs.

Define Network Architecture

The Siamese network architecture is illustrated in the following diagram.

3 Deep Learning with Images

3-128



To compare two images, each image is passed through one of two identical subnetworks that share
weights. The subnetworks convert each 105-by-105-by-1 image to a 4096-dimensional feature vector.
Images of the same class have similar 4096-dimensional representations. The output feature vectors
from each subnetwork are combined through subtraction and the result is passed through a
fullyconnect operation with a single output. A sigmoid operation converts this value to a
probability between 0 and 1, indicating the network prediction of whether the images are similar or
dissimilar. The binary cross-entropy loss between the network prediction and the true label is used to
update the network during training.

In this example, the two identical subnetworks are defined as a dlnetwork object. The final
fullyconnect and sigmoid operations are performed as functional operations on the subnetwork
outputs.

Create the subnetwork as a series of layers that accepts 105-by-105-by-1 images and outputs a
feature vector of size 4096.

For the convolution2dLayer objects, use the narrow normal distribution to initialize the weights
and bias.

For the maxPooling2dLayer objects, set the stride to 2.

For the final fullyConnectedLayer object, specify an output size of 4096 and use the narrow
normal distribution to initialize the weights and bias.

layers = [
    imageInputLayer([105 105 1],Normalization="none")
    convolution2dLayer(10,64,WeightsInitializer="narrow-normal",BiasInitializer="narrow-normal")
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(7,128,WeightsInitializer="narrow-normal",BiasInitializer="narrow-normal")
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(4,128,WeightsInitializer="narrow-normal",BiasInitializer="narrow-normal")
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(5,256,WeightsInitializer="narrow-normal",BiasInitializer="narrow-normal")
    reluLayer
    fullyConnectedLayer(4096,WeightsInitializer="narrow-normal",BiasInitializer="narrow-normal")];

lgraph = layerGraph(layers);

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

net = dlnetwork(lgraph);

 Train a Siamese Network to Compare Images

3-129



Create the weights for the final fullyconnect operation. Initialize the weights by sampling a
random selection from a narrow normal distribution with standard deviation of 0.01.

fcWeights = dlarray(0.01*randn(1,4096));
fcBias = dlarray(0.01*randn(1,1));

fcParams = struct(...
    "FcWeights",fcWeights,...
    "FcBias",fcBias);

To use the network, create the function forwardSiamese (defined in the Supporting Functions on
page 3-135 section of this example) that defines how the two subnetworks and the subtraction,
fullyconnect, and sigmoid operations are combined. The function forwardSiamese accepts the
network, the structure containing the parameters for the fullyconnect operation, and two training
images. The forwardSiamese function outputs a prediction about the similarity of the two images.

Define Model Loss Function

Create the function modelLoss (defined in the Supporting Functions on page 3-136 section of this
example). The modelLoss function takes the Siamese subnetwork net, the parameter structure for
the fullyconnect operation, and a mini-batch of input data X1 and X2 with their labels
pairLabels. The function returns the loss values and the gradients of the loss with respect to the
learnable parameters of the network.

The objective of the Siamese network is to discriminate between the two inputs X1 and X2. The
output of the network is a probability between 0 and 1, where a value closer to 0 indicates a
prediction that the images are dissimilar, and a value closer to 1 that the images are similar. The loss
is given by the binary cross-entropy between the predicted score and the true label value:

loss = − tlog y − 1− t log 1− y ,

where the true label t can be 0 or 1 and y is the predicted label.

Specify Training Options

Specify the options to use during training. Train for 10000 iterations.

numIterations = 10000;
miniBatchSize = 180;

Specify the options for ADAM optimization:

• Set the learning rate to 0.00006.
• Set the gradient decay factor to 0.9 and the squared gradient decay factor to 0.99.

learningRate = 6e-5;
gradDecay = 0.9;
gradDecaySq = 0.99;

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). To automatically detect if you have a GPU available and place the
relevant data on the GPU, set the value of executionEnvironment to "auto". If you do not have a
GPU, or do not want to use one for training, set the value of executionEnvironment to "cpu". To
ensure you use a GPU for training, set the value of executionEnvironment to "gpu".

executionEnvironment = "auto";

3 Deep Learning with Images

3-130



Train Model

Initialize the training progress plot.

figure
C = colororder;
lineLossTrain = animatedline(Color=C(2,:));
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

Initialize the parameters for the ADAM solver.

trailingAvgSubnet = [];
trailingAvgSqSubnet = [];
trailingAvgParams = [];
trailingAvgSqParams = [];

Train the model using a custom training loop. Loop over the training data and update the network
parameters at each iteration.

For each iteration:

• Extract a batch of image pairs and labels using the getSiameseBatch function defined in the
section Create Batches of Image Pairs on page 3-137.

• Convert the data to dlarray objects specify the dimension labels "SSCB" (spatial, spatial,
channel, batch) for the image data and "CB" (channel, batch) for the labels.

• For GPU training, convert the data to gpuArray objects.
• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.

start = tic;

% Loop over mini-batches.
for iteration = 1:numIterations

    % Extract mini-batch of image pairs and pair labels
    [X1,X2,pairLabels] = getSiameseBatch(imdsTrain,miniBatchSize);

    % Convert mini-batch of data to dlarray. Specify the dimension labels
    % "SSCB" (spatial, spatial, channel, batch) for image data
    X1 = dlarray(X1,"SSCB");
    X2 = dlarray(X2,"SSCB");

    % If training on a GPU, then convert data to gpuArray.
    if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
        X1 = gpuArray(X1);
        X2 = gpuArray(X2);
    end

    % Evaluate the model loss and gradients using dlfeval and the modelLoss
    % function listed at the end of the example.
    [loss,gradientsSubnet,gradientsParams] = dlfeval(@modelLoss,net,fcParams,X1,X2,pairLabels);

    % Update the Siamese subnetwork parameters.

 Train a Siamese Network to Compare Images

3-131



    [net,trailingAvgSubnet,trailingAvgSqSubnet] = adamupdate(net,gradientsSubnet, ...
        trailingAvgSubnet,trailingAvgSqSubnet,iteration,learningRate,gradDecay,gradDecaySq);

    % Update the fullyconnect parameters.
    [fcParams,trailingAvgParams,trailingAvgSqParams] = adamupdate(fcParams,gradientsParams, ...
        trailingAvgParams,trailingAvgSqParams,iteration,learningRate,gradDecay,gradDecaySq);

    % Update the training loss progress plot.
    D = duration(0,0,toc(start),Format="hh:mm:ss");
    lossValue = double(loss);
    addpoints(lineLossTrain,iteration,lossValue);
    title("Elapsed: " + string(D))
    drawnow
end

Evaluate the Accuracy of the Network

Download and extract the Omniglot test dataset.

url = "https://github.com/brendenlake/omniglot/raw/master/python/images_evaluation.zip";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"images_evaluation.zip");

dataFolderTest = fullfile(downloadFolder,"images_evaluation");
if ~exist(dataFolderTest,"dir")
    disp("Downloading Omniglot test data (3.2 MB)...")
    websave(filename,url);
    unzip(filename,downloadFolder);

3 Deep Learning with Images

3-132

https://github.com/brendenlake/omniglot


end
disp("Test data downloaded.")

Test data downloaded.

Load the test data as a image datastore using the imageDatastore function. Specify the labels
manually by extracting the labels from the file names and setting the Labels property.

imdsTest = imageDatastore(dataFolderTest, ...
    IncludeSubfolders=true, ...
    LabelSource="none");

files = imdsTest.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),"_");
imdsTest.Labels = categorical(labels);

The test dataset contains 20 alphabets that are different to those that the network was trained on. In
total, there 659 different classes in the test dataset.

numClasses = numel(unique(imdsTest.Labels))

numClasses = 659

To calculate the accuracy of the network, create a set of five random mini-batches of test pairs. Use
the predictSiamese function (defined in the Supporting Functions on page 3-135 section of this
example) to evaluate the network predictions and calculate the average accuracy over the mini-
batches.

accuracy = zeros(1,5);
accuracyBatchSize = 150;

for i = 1:5
    % Extract mini-batch of image pairs and pair labels
    [X1,X2,pairLabelsAcc] = getSiameseBatch(imdsTest,accuracyBatchSize);

    % Convert mini-batch of data to dlarray. Specify the dimension labels
    % "SSCB" (spatial, spatial, channel, batch) for image data.
    X1 = dlarray(X1,"SSCB");
    X2 = dlarray(X2,"SSCB");

    % If using a GPU, then convert data to gpuArray.
    if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
        X1 = gpuArray(X1);
        X2 = gpuArray(X2);
    end

    % Evaluate predictions using trained network
    Y = predictSiamese(net,fcParams,X1,X2);

    % Convert predictions to binary 0 or 1
    Y = gather(extractdata(Y));
    Y = round(Y);

    % Compute average accuracy for the minibatch
    accuracy(i) = sum(Y == pairLabelsAcc)/accuracyBatchSize;
end

Compute accuracy over all minibatches

 Train a Siamese Network to Compare Images

3-133



averageAccuracy = mean(accuracy)*100

averageAccuracy = 89.0667

Display a Test Set of Images with Predictions

To visually check if the network correctly identifies similar and dissimilar pairs, create a small batch
of image pairs to test. Use the predictSiamese function to get the prediction for each test pair.
Display the pair of images with the prediction, the probability score, and a label indicating whether
the prediction was correct or incorrect.

testBatchSize = 10;

[XTest1,XTest2,pairLabelsTest] = getSiameseBatch(imdsTest,testBatchSize);

Convert the test batch of data to dlarray. Specify the dimension labels "SSCB" (spatial, spatial,
channel, batch) for image data.

XTest1 = dlarray(XTest1,"SSCB");
XTest2 = dlarray(XTest2,"SSCB");

If using a GPU, then convert the data to gpuArray.

if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    XTest1 = gpuArray(XTest1);
    XTest2 = gpuArray(XTest2);
end

Calculate the predicted probability.

YScore = predictSiamese(net,fcParams,XTest1,XTest2);
YScore = gather(extractdata(YScore));

Convert the predictions to binary 0 or 1.

YPred = round(YScore);

Extract the data for plotting.

XTest1 = extractdata(XTest1);
XTest2 = extractdata(XTest2);

Plot images with predicted label and predicted score.

f = figure;
tiledlayout(2,5);
f.Position(3) = 2*f.Position(3);

predLabels = categorical(YPred,[0 1],["dissimilar" "similar"]);
targetLabels = categorical(pairLabelsTest,[0 1],["dissimilar","similar"]);

for i = 1:numel(pairLabelsTest)
    nexttile
    imshow([XTest1(:,:,:,i) XTest2(:,:,:,i)]);

    title( ...
        "Target: " + string(targetLabels(i)) + newline + ...
        "Predicted: " + string(predLabels(i)) + newline + ...

3 Deep Learning with Images

3-134



        "Score: " + YScore(i))
end

The network is able to compare the test images to determine their similarity, even though none of
these images were in the training dataset.

Supporting Functions

Model Functions for Training and Prediction

The function forwardSiamese is used during network training. The function defines how the
subnetworks and the fullyconnect and sigmoid operations combine to form the complete
Siamese network. forwardSiamese accepts the network structure and two training images and
outputs a prediction about the similarity of the two images. Within this example, the function
forwardSiamese is introduced in the section Define Network Architecture on page 3-128.

function Y = forwardSiamese(net,fcParams,X1,X2)
% forwardSiamese accepts the network and pair of training images, and
% returns a prediction of the probability of the pair being similar (closer
% to 1) or dissimilar (closer to 0). Use forwardSiamese during training.

% Pass the first image through the twin subnetwork
Y1 = forward(net,X1);
Y1 = sigmoid(Y1);

% Pass the second image through the twin subnetwork
Y2 = forward(net,X2);
Y2 = sigmoid(Y2);

% Subtract the feature vectors
Y = abs(Y1 - Y2);

 Train a Siamese Network to Compare Images

3-135



% Pass the result through a fullyconnect operation
Y = fullyconnect(Y,fcParams.FcWeights,fcParams.FcBias);

% Convert to probability between 0 and 1.
Y = sigmoid(Y);

end

The function predictSiamese uses the trained network to make predictions about the similarity of
two images. The function is similar to the function forwardSiamese, defined previously. However,
predictSiamese uses the predict function with the network instead of the forward function,
because some deep learning layers behave differently during training and prediction. Within this
example, the function predictSiamese is introduced in the section Evaluate the Accuracy of the
Network on page 3-132.

function Y = predictSiamese(net,fcParams,X1,X2)
% predictSiamese accepts the network and pair of images, and returns a
% prediction of the probability of the pair being similar (closer to 1) or
% dissimilar (closer to 0). Use predictSiamese during prediction.

% Pass the first image through the twin subnetwork.
Y1 = predict(net,X1);
Y1 = sigmoid(Y1);

% Pass the second image through the twin subnetwork.
Y2 = predict(net,X2);
Y2 = sigmoid(Y2);

% Subtract the feature vectors.
Y = abs(Y1 - Y2);

% Pass result through a fullyconnect operation.
Y = fullyconnect(Y,fcParams.FcWeights,fcParams.FcBias);

% Convert to probability between 0 and 1.
Y = sigmoid(Y);

end

Model Loss Function

The function modelLoss takes the Siamese dlnetwork object net, a pair of mini-batch input data
X1 and X2, and the label indicating whether they are similar or dissimilar. The function returns the
binary cross-entropy loss between the prediction and the ground truth and the gradients of the loss
with respect to the learnable parameters in the network. Within this example, the function
modelLoss is introduced in the section Define Model Loss Function on page 3-130.

function [loss,gradientsSubnet,gradientsParams] = modelLoss(net,fcParams,X1,X2,pairLabels)

% Pass the image pair through the network.
Y = forwardSiamese(net,fcParams,X1,X2);

% Calculate binary cross-entropy loss.
loss = binarycrossentropy(Y,pairLabels);

% Calculate gradients of the loss with respect to the network learnable

3 Deep Learning with Images

3-136



% parameters.
[gradientsSubnet,gradientsParams] = dlgradient(loss,net.Learnables,fcParams);

end

Binary Cross-Entropy Loss Function

The binarycrossentropy function accepts the network prediction and the pair labels, and returns
the binary cross-entropy loss value.

function loss = binarycrossentropy(Y,pairLabels)

% Get precision of prediction to prevent errors due to floating point
% precision.
precision = underlyingType(Y);

% Convert values less than floating point precision to eps.
Y(Y < eps(precision)) = eps(precision);

% Convert values between 1-eps and 1 to 1-eps.
Y(Y > 1 - eps(precision)) = 1 - eps(precision);

% Calculate binary cross-entropy loss for each pair
loss = -pairLabels.*log(Y) - (1 - pairLabels).*log(1 - Y);

% Sum over all pairs in minibatch and normalize.
loss = sum(loss)/numel(pairLabels);

end

Create Batches of Image Pairs

The following functions create randomized pairs of images that are similar or dissimilar, based on
their labels. Within this example, the function getSiameseBatch is introduced in the section Create
Pairs of Similar and Dissimilar Images. on page 3-127

Get Siamese Batch Function

The getSiameseBatch returns a randomly selected batch or paired images. On average, this
function produces a balanced set of similar and dissimilar pairs.

function [X1,X2,pairLabels] = getSiameseBatch(imds,miniBatchSize)

pairLabels = zeros(1,miniBatchSize);
imgSize = size(readimage(imds,1));
X1 = zeros([imgSize 1 miniBatchSize],"single");
X2 = zeros([imgSize 1 miniBatchSize],"single");

for i = 1:miniBatchSize
    choice = rand(1);

    if choice < 0.5
        [pairIdx1,pairIdx2,pairLabels(i)] = getSimilarPair(imds.Labels);
    else
        [pairIdx1,pairIdx2,pairLabels(i)] = getDissimilarPair(imds.Labels);
    end

    X1(:,:,:,i) = imds.readimage(pairIdx1);

 Train a Siamese Network to Compare Images

3-137



    X2(:,:,:,i) = imds.readimage(pairIdx2);
end

end

Get Similar Pair Function

The getSimilarPair function returns a random pair of indices for images that are in the same class
and the similar pair label equals 1.

function [pairIdx1,pairIdx2,pairLabel] = getSimilarPair(classLabel)

% Find all unique classes.
classes = unique(classLabel);

% Choose a class randomly which will be used to get a similar pair.
classChoice = randi(numel(classes));

% Find the indices of all the observations from the chosen class.
idxs = find(classLabel==classes(classChoice));

% Randomly choose two different images from the chosen class.
pairIdxChoice = randperm(numel(idxs),2);
pairIdx1 = idxs(pairIdxChoice(1));
pairIdx2 = idxs(pairIdxChoice(2));
pairLabel = 1;

end

Get Disimilar Pair Function

The getDissimilarPair function returns a random pair of indices for images that are in different
classes and the dissimilar pair label equals 0.

function  [pairIdx1,pairIdx2,label] = getDissimilarPair(classLabel)

% Find all unique classes.
classes = unique(classLabel);

% Choose two different classes randomly which will be used to get a
% dissimilar pair.
classesChoice = randperm(numel(classes),2);

% Find the indices of all the observations from the first and second
% classes.
idxs1 = find(classLabel==classes(classesChoice(1)));
idxs2 = find(classLabel==classes(classesChoice(2)));

% Randomly choose one image from each class.
pairIdx1Choice = randi(numel(idxs1));
pairIdx2Choice = randi(numel(idxs2));
pairIdx1 = idxs1(pairIdx1Choice);
pairIdx2 = idxs2(pairIdx2Choice);
label = 0;

end

3 Deep Learning with Images

3-138



References

[1] Bromley, J., I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. "Signature Verification using a
"Siamese" Time Delay Neural Network." In Proceedings of the 6th International Conference on
Neural Information Processing Systems (NIPS 1993), 1994, pp737-744. Available at Signature
Verification using a "Siamese" Time Delay Neural Network on the NIPS Proceedings website.

[2] Wenpeg, Y., and H Schütze. "Convolutional Neural Network for Paraphrase Identification." In
Proceedings of 2015 Conference of the North American Chapter of the ACL, 2015, pp901-911.
Available at Convolutional Neural Network for Paraphrase Identification on the ACL Anthology
website

[3] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. "Human-level concept learning through
probabilistic program induction." Science, 350(6266), (2015) pp1332-1338.

[4] Koch, G., Zemel, R., and Salakhutdinov, R. (2015). "Siamese neural networks for one-shot image
recognition". In Proceedings of the 32nd International Conference on Machine Learning, 37 (2015).
Available at Siamese Neural Networks for One-shot Image Recognition on the ICML'15 website.

See Also
dlarray | dlgradient | dlfeval | dlnetwork | adamupdate

More About
• “Train a Siamese Network for Dimensionality Reduction” on page 3-140
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “List of Functions with dlarray Support” on page 19-504
• “Run a Custom Training Experiment for Image Comparison” on page 6-73

 Train a Siamese Network to Compare Images

3-139

https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf
https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf
https://aclanthology.org/N15-1091/
https://8109f4a4-a-62cb3a1a-s-sites.googlegroups.com/site/deeplearning2015/37.pdf?attachauth=ANoY7crZQv10TQnwz42cHSNBlNvtZChn-84xsEc-ChrL4sdYDOlfLFLexHRNnvrjm6B-HeXsanRvuVT6a1pmVD7ujxLF65e30KuT3drP8azPUuCOwxVEITyVKW9dyP5UqqPRvDde3RIbVAuGiYIiC5K4BEKfmEYMkPVxD2yj_U-QmoLliupUVmx65b_hwexNKxi5fVricrVNHgNxrEIv5n6RrKDn2uWuxg%3D%3D&attredirects=0


Train a Siamese Network for Dimensionality Reduction

This example shows how to train a Siamese network to compare handwritten digits using
dimensionality reduction.

A Siamese network is a type of deep learning network that uses two or more identical subnetworks
that have the same architecture and share the same parameters and weights. Siamese networks are
typically used in tasks that involve finding the relationship between two comparable things. Some
common applications for Siamese networks include facial recognition, signature verification [1], or
paraphrase identification [2]. Siamese networks perform well in these tasks because their shared
weights mean there are fewer parameters to learn during training and they can produce good results
with a relatively small amount of training data.

Siamese networks are particularly useful in cases where there are large numbers of classes with
small numbers of observations of each. In such cases, there is not enough data to train a deep
convolutional neural network to classify images into these classes. Instead, the Siamese network can
determine if two images are in the same class. The network does this by reducing the dimensionality
of the training data and using a distance-based cost function to differentiate between the classes.

This example uses a Siamese network for dimensionality reduction of a collection of images of
handwritten digits. The Siamese architecture reduces the dimensionality by mapping images with the
same class to nearby points in a low-dimensional space. The reduced-feature representation is then
used to extract images from the dataset that are most similar to a test image. The training data in this
example are images of size 28-by-28-by-1, giving an initial feature dimensionality of 784. The Siamese
network reduces the dimensionality of the input images to two features and is trained to output
similar reduced features for images with the same label.

You can also use Siamese networks to identify similar images by directly comparing them. For an
example, see “Train a Siamese Network to Compare Images” on page 3-126.

Load and Preprocess Training Data

Load the training data, which consists of images of handwritten digits. The function
digitTrain4DArrayData loads the digit images and their labels.

[XTrain,TTrain] = digitTrain4DArrayData;

XTrain is a 28-by-28-by-1-by-5000 array containing 5000 single-channel images, each of size 28-
by-28. The values of each pixel are between 0 and 1. TTrain is a categorical vector containing the
labels for each observation, which are the numbers from 0 to 9 corresponding to the value of the
written digit.

Display a random selection of the images.

perm = randperm(numel(TTrain),9);
imshow(imtile(XTrain(:,:,:,perm),ThumbnailSize=[100 100]));

3 Deep Learning with Images

3-140



Create Pairs of Similar and Dissimilar Images

To train the network, the data must be grouped into pairs of images that are either similar or
dissimilar. Here, similar images are defined as having the same label, while dissimilar images have
different labels. The function getSiameseBatch (defined in the Supporting Functions on page 3-149
section of this example) creates randomized pairs of similar or dissimilar images, pairImage1 and
pairImage2. The function also returns the label pairLabel, which identifies if the pair of images is
similar or dissimilar to each other. Similar pairs of images have pairLabel = 1, while dissimilar
pairs have pairLabel = 0.

As an example, create a small representative set of five pairs of images

batchSize = 10;
[pairImage1,pairImage2,pairLabel] = getSiameseBatch(XTrain,TTrain,batchSize);

Display the generated pairs of images.

figure
tiledlayout("flow")
for i = 1:batchSize
    nexttile
    imshow([pairImage1(:,:,:,i) pairImage2(:,:,:,i)]);
    if pairLabel(i) == 1
        s = "similar";
    else
        s = "dissimilar";
    end
    title(s)
end

 Train a Siamese Network for Dimensionality Reduction

3-141



In this example, a new batch of 180 paired images is created for each iteration of the training loop.
This ensures that the network is trained on a large number of random pairs of images with
approximately equal proportions of similar and dissimilar pairs.

Define Network Architecture

The Siamese network architecture is illustrated in the following diagram.

In this example, the two identical subnetworks are defined as a series of fully connected layers with
ReLU layers. Create a network that accepts 28-by-28-by-1 images and outputs the two feature vectors
used for the reduced feature representation. The network reduces the dimensionality of the input
images to two, a value that is easier to plot and visualize than the initial dimensionality of 784.

3 Deep Learning with Images

3-142



For the first two fully connected layers, specify an output size of 1024 and use the He weight
initializer.

For the final fully connected layer, specify an output size of two and use the He weights initializer.

layers = [
    imageInputLayer([28 28],Normalization="none")
    fullyConnectedLayer(1024,WeightsInitializer="he")
    reluLayer
    fullyConnectedLayer(1024,WeightsInitializer="he")
    reluLayer
    fullyConnectedLayer(2,WeightsInitializer="he")];

To train the network with a custom training loop and enable automatic differentiation, convert the
layer array to a dlnetwork object.

net = dlnetwork(layers);

Define Model Loss Function

Create the function modelLoss (defined in the Supporting Functions on page 3-148 section of this
example). The modelLoss function takes the Siamese dlnetwork object net and a mini-batch of
input data X1 and X2 with their labels pairLabels. The function returns the loss values and the
gradients of the loss with respect to the learnable parameters of the network.

The objective of the Siamese network is to output a feature vector for each image such that the
feature vectors are similar for similar images, and notably different for dissimilar images. In this way,
the network can discriminate between the two inputs.

Find the contrastive loss between the outputs from the last fully connected layer, the feature vectors
features1 and features1 from pairImage1 and pairImage2, respectively. The contrastive loss
for a pair is given by [3]

loss = 1
2 yd2 + 1

2 1− y max margin− d, 0 2,

where y is the value of the pair label (y = 1 for similar images;y = 0 for dissimilar images), and d is
the Euclidean distance between two features vectors f 1 and f 2: d = f 1− f 2 2.

The margin parameter is used for constraint: if two images in a pair are dissimilar, then their
distance should be at least margin, or a loss will be incurred.

The contrastive loss has two terms, but only one is ever non-zero for a given image pair. In the case of
similar images, the first term can be non-zero and is minimized by reducing the distance between the
image features f 1 and f 2. In the case of dissimilar images, the second term can be non-zero, and is
minimized by increasing the distance between the image features, to at least a distance of margin.
The smaller the value of margin, the less constraining it is over how close a dissimilar pair can be
before a loss is incurred.

Specify Training Options

Specify the value of margin to use during training.

margin = 0.3;

Specify the options to use during training. Train for 3000 iterations.

 Train a Siamese Network for Dimensionality Reduction

3-143



numIterations = 3000;
miniBatchSize = 180;

Specify the options for Adam optimization:

• Set the learning rate to 0.0001.
• Initialize the trailing average gradient and trailing average gradient-square decay rates with [].
• Set the gradient decay factor to 0.9 and the squared gradient decay factor to 0.99.

learningRate = 1e-4;
trailingAvg = [];
trailingAvgSq = [];
gradDecay = 0.9;
gradDecaySq = 0.99;

Train Model

Train the model using a custom training loop.

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",XLabel="Iteration");

Loop over the training data and update the network parameters at each iteration. For each iteration:

• Extract a batch of image pairs and labels using the getSiameseBatch function defined in the
section Create Batches of Image Pairs on page 3-149.

• Convert the image data to dlarray objects with underlying type single and specify the
dimension labels "SSCB" (spatial, spatial, channel, batch).

• Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.
• Record the training loss in the training progress monitor.

iteration = 0;
% Loop over mini-batches.
while iteration < numIterations && ~monitor.Stop
    iteration = iteration + 1;

    % Extract mini-batch of image pairs and pair labels
    [X1,X2,pairLabels] = getSiameseBatch(XTrain,TTrain,miniBatchSize);

    % Convert mini-batch of data to dlarray. Specify the dimension labels
    % "SSCB" (spatial, spatial, channel, batch) for image data
    X1 = dlarray(single(X1),"SSCB");
    X2 = dlarray(single(X2),"SSCB");

    % If training on a GPU, then convert data to gpuArray.
    if canUseGPU
        X1 = gpuArray(X1);
        X2 = gpuArray(X2);
    end

3 Deep Learning with Images

3-144



    % Evaluate the model loss and gradients using dlfeval and the modelLoss
    % function listed at the end of the example.
    [loss,gradients] = dlfeval(@modelLoss,net,X1,X2,pairLabels,margin);

    % Update the Siamese network parameters.
    [net,trailingAvg,trailingAvgSq] = adamupdate(net,gradients, ...
        trailingAvg,trailingAvgSq,iteration,learningRate,gradDecay,gradDecaySq);

    % Update the training progress monitor.
    recordMetrics(monitor,iteration,Loss=loss);
    monitor.Progress = 100 * iteration/numIterations;
end

Visualize Image Similarities

To evaluate how well the network is doing at dimensionality reduction, compute and plot the reduced
features of a set of test data. Load the test data, which consists of images of handwritten digits
similar to the training data. Convert the test data to dlarray and specify the dimension labels
"SSCB" (spatial, spatial, channel, batch). If you are using a GPU, convert the test data to gpuArray.

[XTest,TTest] = digitTest4DArrayData;
XTest = dlarray(single(XTest),"SSCB");

if canUseGPU
    XTest = gpuArray(XTest);
end

Compute the reduced features of the test data.

FTest = predict(net,XTest);

For each group, plot the first two reduced features of the test data.

 Train a Siamese Network for Dimensionality Reduction

3-145



uniqueGroups = unique(TTest);
colors = hsv(length(uniqueGroups));

figure
hold on
for k = 1:length(uniqueGroups)
    ind = TTest==uniqueGroups(k);

    plot(FTest(1,ind),FTest(2,ind),".",Color=colors(k,:));
end
hold off

xlabel("Feature 1")
ylabel("Feature 2")
title("2-D Feature Representation of Digits Images.");

legend(uniqueGroups,Location="eastoutside");

Use the Trained Network to Find Similar Images

You can use the trained network to find a selection of images that are similar to each other out of a
group. Extract a single test image from the test data and display it.

testIdx = randi(5000);
testImg = XTest(:,:,:,testIdx);

trialImgDisp = extractdata(testImg);

3 Deep Learning with Images

3-146



figure
imshow(trialImgDisp,InitialMagnification=500);

Create a group of images containing the test data but does not include the extracted test image.

groupX = XTest;
groupX(:,:,:,testIdx) = [];

Find the reduced features of the test image using predict.

trialF = predict(net,testImg);

Find the 2-D reduced feature representation of each of the images in the group using the trained
network.

FGroupX = predict(net,groupX);

Use the reduced feature representation to find the nine images in the group that are closest to the
test image, using the Euclidean distance metric. Display the images.

distances = vecnorm(extractdata(trialF - FGroupX));
[~,idx] = sort(distances);
sortedImages = groupX(:,:,:,idx);
sortedImages = extractdata(sortedImages);

figure
imshow(imtile(sortedImages(:,:,:,1:9)),InitialMagnification=500);

 Train a Siamese Network for Dimensionality Reduction

3-147



By reducing the images to a lower dimensionality, the network is able to identify images that are
similar to the trial image. The reduced feature representation allows the network to discriminate
between images that are similar and dissimilar. Siamese networks are often used in the context of
facial or signature recognition. For example, you can train a Siamese network to accept an image of a
face as an input, and return a set of the most similar faces from a database.

Supporting Functions

Model Loss Function

The function modelLoss takes the Siamese dlnetwork object net, a pair of mini-batch input data
X1 and X2, and the label pairLabels. The function returns the contrastive loss between the reduced
dimensionality features of the paired images and the gradients of the loss with respect to the
learnable parameters in the network. Within this example, the function modelLoss is introduced in
the section Define Model Loss Function on page 3-143.

function [loss,gradients] = modelLoss(net,X1,X2,pairLabel,margin)
% The modelLoss function calculates the contrastive loss between the
% paired images and returns the loss and the gradients of the loss with
% respect to the network learnable parameters

3 Deep Learning with Images

3-148



% Pass first half of image pairs forward through the network
F1 = forward(net,X1);
% Pass second set of image pairs forward through the network
F2 = forward(net,X2);

% Calculate contrastive loss
loss = contrastiveLoss(F1,F2,pairLabel,margin);

% Calculate gradients of the loss with respect to the network learnable
% parameters
gradients = dlgradient(loss,net.Learnables);

end

function loss = contrastiveLoss(F1,F2,pairLabel,margin)
% The contrastiveLoss function calculates the contrastive loss between
% the reduced features of the paired images

% Define small value to prevent taking square root of 0
delta = 1e-6;

% Find Euclidean distance metric
distances = sqrt(sum((F1 - F2).^2,1) + delta);

% label(i) = 1 if features1(:,i) and features2(:,i) are features
% for similar images, and 0 otherwise
lossSimilar = pairLabel.*(distances.^2);

lossDissimilar = (1 - pairLabel).*(max(margin - distances, 0).^2);

loss = 0.5*sum(lossSimilar + lossDissimilar,"all");

end

Create Batches of Image Pairs

The following functions create randomized pairs of images that are similar or dissimilar, based on
their labels. Within this example, the function getSiameseBatch is introduced in the section Create
Pairs of Similar and Dissimilar Images on page 3-141.

function [X1,X2,pairLabels] = getSiameseBatch(X,Y,miniBatchSize)
% getSiameseBatch returns a randomly selected batch of paired images.
% On average, this function produces a balanced set of similar and
% dissimilar pairs.
pairLabels = zeros(1, miniBatchSize);
imgSize = size(X(:,:,:,1));
X1 = zeros([imgSize 1 miniBatchSize]);
X2 = zeros([imgSize 1 miniBatchSize]);

for i = 1:miniBatchSize
    choice = rand(1);
    if choice < 0.5
        [pairIdx1, pairIdx2, pairLabels(i)] = getSimilarPair(Y);
    else
        [pairIdx1, pairIdx2, pairLabels(i)] = getDissimilarPair(Y);
    end
    X1(:,:,:,i) = X(:,:,:,pairIdx1);
    X2(:,:,:,i) = X(:,:,:,pairIdx2);

 Train a Siamese Network for Dimensionality Reduction

3-149



end

end

function [pairIdx1,pairIdx2,pairLabel] = getSimilarPair(classLabel)
% getSimilarPair returns a random pair of indices for images
% that are in the same class and the similar pair label = 1.

% Find all unique classes.
classes = unique(classLabel);

% Choose a class randomly which will be used to get a similar pair.
classChoice = randi(numel(classes));

% Find the indices of all the observations from the chosen class.
idxs = find(classLabel==classes(classChoice));

% Randomly choose two different images from the chosen class.
pairIdxChoice = randperm(numel(idxs),2);
pairIdx1 = idxs(pairIdxChoice(1));
pairIdx2 = idxs(pairIdxChoice(2));
pairLabel = 1;
end

function  [pairIdx1,pairIdx2,pairLabel] = getDissimilarPair(classLabel)
% getDissimilarPair returns a random pair of indices for images
% that are in different classes and the dissimilar pair label = 0.

% Find all unique classes.
classes = unique(classLabel);

% Choose two different classes randomly which will be used to get a dissimilar pair.
classesChoice = randperm(numel(classes), 2);

% Find the indices of all the observations from the first and second classes.
idxs1 = find(classLabel==classes(classesChoice(1)));
idxs2 = find(classLabel==classes(classesChoice(2)));

% Randomly choose one image from each class.
pairIdx1Choice = randi(numel(idxs1));
pairIdx2Choice = randi(numel(idxs2));
pairIdx1 = idxs1(pairIdx1Choice);
pairIdx2 = idxs2(pairIdx2Choice);
pairLabel = 0;
end

References

1 Bromley, J., I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. "Signature Verification using a
"Siamese" Time Delay Neural Network." In Proceedings of the 6th International Conference on
Neural Information Processing Systems (NIPS 1993), 1994, pp737-744. Available at Signature
Verification using a "Siamese" Time Delay Neural Network on the NIPS Proceedings website.

2 Wenpeg, Y., and H Schütze. "Convolutional Neural Network for Paraphrase Identification." In
Proceedings of 2015 Conference of the North American Cahapter of the ACL, 2015, pp901-911.
Available at Convolutional Neural Network for Paraphrase Identification on the ACL Anthology
website.

3 Deep Learning with Images

3-150

https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf
https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf
https://aclanthology.org/N15-1091/


3 Hadsell, R., S. Chopra, and Y. LeCun. "Dimensionality Reduction by Learning an Invariant
Mapping." In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2006), 2006, pp1735-1742.

See Also
dlarray | dlgradient | dlfeval | dlnetwork | adamupdate

More About
• “Train a Siamese Network to Compare Images” on page 3-126
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “List of Functions with dlarray Support” on page 19-504

 Train a Siamese Network for Dimensionality Reduction

3-151



Train Neural ODE Network

This example shows how to train an augmented neural ordinary differential equation (ODE) network.

A neural ODE [1 on page 3-162] is a deep learning operation that returns the solution of an ODE. In
particular, given an input, a neural ODE operation outputs the numerical solution of the ODE
y′ = f t, y, θ  for the time horizon (t0, t1) and the initial condition y(t0) = y0, where t and y denote the
ODE function inputs and θ is a set of learnable parameters. Typically, the initial condition y0 is either
the network input or, as in the case of this example, the output of another deep learning operation.

An augmented neural ODE [2 on page 3-162] operation improves upon a standard neural ODE by
augmenting the input data with extra channels and then discarding the augmentation after the neural
ODE operation. Empirically, augmented neural ODEs are more stable, generalize better, and have a
lower computational cost than neural ODEs.

This example trains a simple convolutional neural network with an augmented neural ODE operation.

The ODE function can be a collection of deep learning operations. In this example, the model uses a
convolution-tanh block as the ODE function:

The example shows how to train a neural network to classify images of digits using an augmented
neural ODE operation.

Load Training Data

Load the training images and labels using the digitTrain4DArrayData function.

[XTrain,TTrain] = digitTrain4DArrayData;

View the number of classes of the training data.

classNames = categories(TTrain);
numClasses = numel(classNames)

numClasses = 10

View some images from the training data.

numObservations = size(XTrain,4);
idx = randperm(numObservations,64);
I = imtile(XTrain(:,:,:,idx));
figure
imshow(I)

3 Deep Learning with Images

3-152



Define Deep Learning Model

Define the following network, which classifies images.

• A convolution-ReLU block with 8 3-by-3 filters with a stride of 2
• An augmentation step that concatenates an array of zeros to the input such that the number of

channels is doubled
• A neural ODE operation with ODE function containing a convolution-tanh block with 16 3-by-3
filters

• For classification output, a fully connect operation of size 10 (the number of classes) and a
softmax operation

A neural ODE operation outputs the solution of a specified ODE function. For this example, specify a
convolution-tanh block as the ODE function.

That is, specify the ODE function given by y′ = f t, y, θ , where f  denotes the convolution-tanh
operation, y is the input data, and θ contains the learnable parameters for the convolution operation.
In this case, the variable t is unused.

 Train Neural ODE Network

3-153



Define and Initialize Model Parameters

Define the learnable parameters for each of the operations and include them in a structure. Use the
format parameters.OperationName.ParameterName, where parameters is the structure,
OperationName is the name of the operation (for example, "conv1"), and ParameterName is the
name of the parameter (for example, "Weights"). Initialize the learnable layer weights and biases
using the initializeGlorot and initializeZeros example functions, respectively. The
initialization example functions are attached to this example as supporting files. To access these
functions, open this example as a live script. For more information about initializing learnable
parameters for model functions, see “Initialize Learnable Parameters for Model Function” on page
19-318.

Initialize the parameters structure.

parameters = struct;

Initialize the parameters for the first convolutional layer. Specify 8 3-by-3 filters. If you change these
dimensions, then you must manually calculate the input size of the fully connect operation for its
Glorot weights initialization.

filterSize = [3 3];
numFilters = 8;

numChannels = size(XTrain,3);
sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv1.Bias = initializeZeros([numFilters 1]);

Initialize the parameters for the convolution operation used in the neural ODE function. Because the
augmentation step augments the input data with an array of zeros, the number of input channels is
given by numFilters + numExtraChannels, where numExtraChannels is the number of
channels in the augmentation. Similarly, because the model discards channels of the output of the
neural ODE operation corresponding to the augmentation, the convolution operation in the neural
ODE must have (numChannels + numExtraChannels) filters, where numChannels is the desired
number of output channels.

Specify the same number of filters as the first convolution layer and a matching augmentation size.

numChannels = numFilters;
numExtraChannels = numFilters;

numFiltersAugmented = numChannels + numExtraChannels;
sz = [filterSize numFiltersAugmented numFiltersAugmented];

numOut = prod(filterSize) * numFiltersAugmented;
numIn = prod(filterSize) * numFiltersAugmented;

parameters.neuralode.Weights = initializeGlorot(sz,numOut,numIn);
parameters.neuralode.Bias = initializeZeros([numFiltersAugmented 1]);

Initialize the parameters for the fully connect operation. To initialize the weights of the fully connect
operation using the Glorot initializer, first calculate the number of input elements to the operation.

3 Deep Learning with Images

3-154



For each operation in the model that changes the size of the data flowing through, consider the
output sizes when you pass 28-by-28 images through the model:

• The first convolution has 8 filters with "same" padding and a stride of 2. This operation outputs
14-by-14 images with 8 channels.

• The model then augments the data with an 8-channel array of zeros. This operation outputs 14-
by-14 images with 16 channels.

• The neural ODE operation has a convolution operation with 16 filters and "same" padding. This
operation outputs 14-by-14 images with 16 channels.

• The model then discards the channels corresponding to the augmentation. This operation outputs
14-by-14 images with 8 channels.

This means that the number of input elements to the fully connect operation is 14 * 14 * 8 = 1568.

sz =  [14 14];
inputSize = prod(sz)*numChannels;
outputSize = numClasses;

sz = [outputSize inputSize];
numOut = outputSize;
numIn = inputSize;

parameters.fc1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc1.Bias = initializeZeros([outputSize 1]);

View the structure of parameters.

parameters

parameters = struct with fields:
        conv1: [1×1 struct]
    neuralode: [1×1 struct]
          fc1: [1×1 struct]

View the parameters for the neural ODE operation.

parameters.neuralode

ans = struct with fields:
    Weights: [3×3×16×16 dlarray]
       Bias: [16×1 dlarray]

Define Model Hyper Parameters

Define the hyperparameters for the operations and include them in a structure. Use the format
hyperparameters.OperationName.ParameterName where hyperparameters is the structure,
OperationName is the name of the operation (for example "neuralode") and ParameterName is the
name of the hyperparameter (for example, "tspan").

Initialize the hyperparameters structure.

hyperparameters = struct;

For the neural ODE, specify an interval of integration of [0 0.1].

 Train Neural ODE Network

3-155



hyperparameters.neuralode.tspan = [0 0.1];

Define Neural ODE Function

Create the function odeModel, listed in the ODE Function on page 3-160 section of the example,
which takes as input the time input (unused), the initial conditions, and the ODE function parameters.
The function applies a convolution operation followed by a tanh operation to the input data using the
weights and biases given by the parameters.

Define Model Function

Create the function model, listed in the Model Function on page 3-159 section of the example, which
computes the outputs of the deep learning model. The function model takes as input the model
parameters and the input data. The function outputs the predictions for the labels.

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 3-161 section of the
example, which takes as input the model parameters and a mini-batch of input data with
corresponding targets containing the labels, and returns the loss and the gradients of the loss with
respect to the learnable parameters.

Specify Training Options

Specify the training options. Train with a mini-batch size of 64 for 30 epochs.

miniBatchSize = 64;
numEpochs = 30;

Train Model

Train the model using a custom training loop.

Create a minibatchqueue object that processes and manages mini-batches of images during
training. To create a minibatchqueue object, first create a datastore that returns the images and
labels by creating array datastores and then combining them.

dsXTrain = arrayDatastore(XTrain,IterationDimension=4);
dsTTrain = arrayDatastore(TTrain);
dsTrain = combine(dsXTrain,dsTTrain);

Create the mini-batch queue. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch, defined in the Mini-
Batch Preprocessing Function on page 3-161 section of the example, to convert the labels to one-
hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single.

• Discard partial mini-batches.
• Train on a GPU if one is available. By default, the minibatchqueue object converts each output

to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

3 Deep Learning with Images

3-156



mbq = minibatchqueue(dsTrain, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["SSCB" "CB"]);

Initialize the moving average of the parameter gradients and the element-wise squares of the
gradients used by the Adam optimizer.

trailingAvg = [];
trailingAvgSq = [];

To update the progress bar of the training progress monitor, calculate the total number of training
iterations.

numIterationsPerEpoch = ceil(numObservations / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the model using a custom training loop. For each epoch, shuffle the data. For each mini-batch:

• Evaluate the model loss and gradients using the dlfeval and modelLoss functions.
• Update the network parameters using the adamupdate function.
• Update the training progress plot.

iteration = 0;
epoch = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        [X,T] = next(mbq);

        % Evaluate the model loss and gradients using dlfeval and the
        % modelLoss function.
        [loss,gradients] = dlfeval(@modelLoss,parameters,X,T,hyperparameters);

        % Update the network parameters using the Adam optimizer.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=(epoch+" of "+numEpochs));
        monitor.Progress = 100*(iteration/numIterations);
    end
end

 Train Neural ODE Network

3-157



Test Model

Test the classification accuracy of the model by comparing the predictions on a held-out test set with
the true labels.

Load the test data.

[XTest,TTest] = digitTest4DArrayData;

After training, making predictions on new data does not require the labels. Create a
minibatchqueue object containing only the predictors of the test data:

• Set the number of outputs of the mini-batch queue to 1.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessPredictors function, listed in the Mini-Batch

Predictors Preprocessing Function on page 3-162 section of the example.
• For the single output of the datastore, specify the mini-batch format "SSCB" (spatial, spatial,

channel, batch).

dsTest = arrayDatastore(XTest,IterationDimension=4);

mbqTest = minibatchqueue(dsTest,1, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat="SSCB", ...
    MiniBatchFcn=@preprocessPredictors);

Loop over the mini-batches and classify the sequences using modelPredictions function, listed in
the Model Predictions Function on page 3-161 section of the example.

YPred = modelPredictions(parameters,hyperparameters,mbqTest,classNames);

Visualize the predictions in a confusion matrix.

3 Deep Learning with Images

3-158



figure
confusionchart(TTest,YPred)

Model Function

The function model takes as input the model parameters, the input data X, the model
hyperparameters, and outputs the predictions for the labels.

This diagram outlines the model structure.

For the neural ODE operation, use the dlode45 function and specify the odeModel function, listed in
the ODE Function on page 3-160 section of the example. Increase the absolute and relative tolerance
using the AbsoluteTolerance and RelativeTolerance name-value arguments, respectively. To
calculate the gradients by solving the associated adjoint ODE system, set the GradientMode option
to "adjoint".

function Y = model(parameters,X,hyperparameters)

% Convolution, ReLU.
weights = parameters.conv1.Weights;

 Train Neural ODE Network

3-159



bias = parameters.conv1.Bias;
Y = dlconv(X,weights,bias,Padding="same",Stride=2);

Y = relu(Y);

% Augment.
weights = parameters.neuralode.Weights;

numChannels = size(Y,3);
szAugmented = size(Y);
szAugmented(3) = size(weights,3) - numChannels;

Y0 = cat(3, Y, zeros(szAugmented,"like",Y));

% Neural ODE.
tspan = hyperparameters.neuralode.tspan;
Y = dlode45(@odeModel,tspan,Y0,parameters.neuralode, ...
    GradientMode="adjoint", ...
    AbsoluteTolerance=1e-3, ...
    RelativeTolerance=1e-4);

% Discard augmentation.
Y(:,:,numChannels+1:end,:) = [];

% Fully connect, softmax.
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
Y = fullyconnect(Y,weights,bias);

Y = softmax(Y);

end

ODE Function

The neural ODE operation consists of a convolution operation followed by a tanh operation.

The ODE function odeModel takes as input the function inputs t (unused) and y and the ODE
function parameters p containing the convolution weights and biases, and returns the output of the
convolution-tanh block operation.

function z = odeModel(t,y,p)

weights = p.Weights;
bias = p.Bias;

z = dlconv(y,weights,bias,Padding="same");
z = tanh(z);

end

3 Deep Learning with Images

3-160



Model Loss Function

The modelLoss function takes as input the model parameters, a mini-batch of input data X with
corresponding targets T, and model hyperparameters, and returns the gradients of the loss with
respect to the learnable parameters and the corresponding loss. To compute the gradients using
automatic differentiation, use the dlgradient function.

function [loss,gradients] = modelLoss(parameters,X,T,hyperparameters)

Y = model(parameters,X,hyperparameters);

loss = crossentropy(Y,T);

gradients = dlgradient(loss,parameters);

end

Model Predictions Function

The modelPredictions function takes as input the model parameters, model hyperparameters, a
minibatchqueue of input data mbq, and the network classes, and computes the model predictions
by iterating over all data in the minibatchqueue object. The function uses the onehotdecode
function to find the predicted classes with the highest score.

function predictions = modelPredictions(parameters,hyperparameters,mbq,classNames)

predictions = [];

while hasdata(mbq)
    X = next(mbq);
    Y = model(parameters,X,hyperparameters);
    Y = onehotdecode(Y,classNames,1)';
    predictions = [predictions; Y];
end

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{:});

 Train Neural ODE Network

3-161



% One-hot encode labels.
T = onehotencode(T,1);

end

Predictors Preprocessing Function

The preprocessPredictors function preprocesses a mini-batch of predictors by extracting the
image data from the input cell array and concatenating the data into a numeric array. For grayscale
input, concatenating over the fourth dimension adds a third dimension to each image to use as a
singleton channel dimension.

function X = preprocessPredictors(dataX)

X = cat(4,dataX{:});

end

Bibliography

1 Chen, Ricky T. Q., Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. “Neural Ordinary
Differential Equations.” Preprint, submitted June 19, 2018. https://arxiv.org/abs/1806.07366.

2 Dupont, Emilien, Arnaud Doucet, and Yee Whye Teh. “Augmented Neural ODEs.” Preprint,
submitted October 26, 2019. https://arxiv.org/abs/1904.01681.

See Also
dlode45 | dlarray | dlgradient | dlfeval | adamupdate

More About
• “Dynamical System Modeling Using Neural ODE” on page 19-394
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “List of Functions with dlarray Support” on page 19-504

3 Deep Learning with Images

3-162



Train Variational Autoencoder (VAE) to Generate Images

This example shows how to train a deep learning variational autoencoder (VAE) to generate images.

To generate data that strongly represents observations in a collection of data, you can use a
variational autoencoder. An autoencoder is a type of model that is trained to replicate its input by
transforming the input to a lower dimensional space (the encoding step) and reconstructing the input
from the lower dimensional representation (the decoding step).

This diagram illustrates the basic structure of an autoencoder that reconstructs images of digits.

To generate new images using a variational autoencoder, input random vectors to the decoder.

A variational autoencoder differs from a regular autoencoder in that it imposes a probability
distribution on the latent space, and learns the distribution so that the distribution of outputs from
the decoder matches that of the observed data. In particular, the latent outputs are randomly sampled
from the distribution learned by the encoder.

 Train Variational Autoencoder (VAE) to Generate Images

3-163



This example uses the MNIST dataset [1] which contains 60,000 grayscale images of handwritten
digits for training and 10,000 images for testing.

Load Data

Download the training and test MNIST files from http://yann.lecun.com/exdb/mnist/ and extract the
images using the processImagesMNIST function attached to this example as a supporting file. To
access this function, open this example as a live script. VAEs do not require labeled data.

trainImagesFile = "train-images-idx3-ubyte.gz";
testImagesFile = "t10k-images-idx3-ubyte.gz";

XTrain = processImagesMNIST(trainImagesFile);

Read MNIST image data...
Number of images in the dataset:  60000 ...

XTest = processImagesMNIST(testImagesFile);

Read MNIST image data...
Number of images in the dataset:  10000 ...

Define Network Architecture

Autoencoders have two parts: the encoder and the decoder. The encoder takes an image input and
outputs a latent vector representation (the encoding) using a series of downsampling operations such
as convolutions. Similarly, the decoder takes as input the latent vector representation, and
reconstructs the input using a series of upsampling operations such as transposed convolutions.

To sample the input, the example uses the custom layer samplingLayer. To access this layer, open
this example as a live script. The layer takes as input the mean vector μ concatenated with the log-
variance vector log(σ2) and samples elements from N(μi, σi

2). The layer uses the log-variance to make
the training process more numerically stable.

Define Encoder Network Architecture

Define the following encoder network that downsamples 28-by-28-by-1 images to 16-by-1 latent
vectors.

• For image input, specify an image input layer with input size matching the training data. Do not
normalize the data.

• To downsample the input, specify two blocks of 2-D convolution and ReLU layers.

3 Deep Learning with Images

3-164

http://yann.lecun.com/exdb/mnist/


• To output a concatenated vector of means and log-variances, specify a fully connected layer with
twice the number of output channels as the number of latent channels.

• To sample an encoding specified by the statistics, include a sampling layer using the custom layer
samplingLayer. To access this layer, open this example as a live script.

numLatentChannels = 16;
imageSize = [28 28 1];

layersE = [
    imageInputLayer(imageSize,Normalization="none")
    convolution2dLayer(3,32,Padding="same",Stride=2)
    reluLayer
    convolution2dLayer(3,64,Padding="same",Stride=2)
    reluLayer
    fullyConnectedLayer(2*numLatentChannels)
    samplingLayer];

Define Decoder Network Architecture

Define the following decoder network that reconstructs 28-by-28-by-1 images from 16-by-1 latent
vectors.

• For feature vector input, specify a feature input layer with input size matching the number of
latent channels.

• Project and reshape the latent input to 7-by-7-by-64 arrays using the custom layer
projectAndReshapeLayer, attached to this example as a supporting file. To access this layer,
open the example as a live script. Specify a projection size of [7 7 64].

• To upsample the input, specify two blocks of transposed convolution and ReLU layers.
• To output an image of size 28-by-28-by-1, include a transposed convolution layer with one 3-by-3
filter.

• To map the output to values in the range [0,1], include a sigmoid activation layer.

projectionSize = [7 7 64];
numInputChannels = size(imageSize,1);

layersD = [
    featureInputLayer(numLatentChannels)
    projectAndReshapeLayer(projectionSize)
    transposedConv2dLayer(3,64,Cropping="same",Stride=2)
    reluLayer
    transposedConv2dLayer(3,32,Cropping="same",Stride=2)
    reluLayer
    transposedConv2dLayer(3,numInputChannels,Cropping="same")
    sigmoidLayer];

 Train Variational Autoencoder (VAE) to Generate Images

3-165



To train both networks with a custom training loop and enable automatic differentiation, convert the
layer arrays to dlnetwork objects.

netE = dlnetwork(layersE);
netD = dlnetwork(layersD);

Define Model Loss Function

Define a function that returns the model loss and the gradients of the loss with respect to the
learnable parameters.

The modelLoss function, defined in the Model Loss Function on page 3-170 section of the example,
takes as input the encoder and decoder networks and a mini-batch of input data, and returns the loss
and the gradients of the loss with respect to the learnable parameters in the networks. To compute
the loss, the function uses the ELBOloss function, defined in the ELBO Loss Function on page 3-170
section of the example, takes as input the mean and log-variances output by the encoder and uses
them to compute the evidence lower bound (ELBO) loss.

Specify Training Options

Train for 30 epochs with a mini-batch size of 128 and a learning rate of 0.001.

numEpochs = 30;
miniBatchSize = 128;
learnRate = 1e-3;

Train Model

Train the model using a custom training loop.

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Convert the training data to an array datastore. Specify to iterate over the 4th dimension.
• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of

this example) to concatenate multiple observations into a single mini-batch.
• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By

default, the minibatchqueue object converts the data to dlarray objects with underlying type
single.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

• To ensure all mini-batches are the same size, discard any partial mini-batches.

dsTrain = arrayDatastore(XTrain,IterationDimension=4);
numOutputs = 1;

mbq = minibatchqueue(dsTrain,numOutputs, ...
    MiniBatchSize = miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat="SSCB", ...
    PartialMiniBatch="discard");

Initialize the parameters for the Adam solver.

3 Deep Learning with Images

3-166



trailingAvgE = [];
trailingAvgSqE = [];
trailingAvgD = [];
trailingAvgSqD = [];

Calculate the total number of iterations for the training progress monitor

numObservationsTrain = size(XTrain,4);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the training progress monitor. Because the timer starts when you create the monitor object,
make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics="Loss", ...
    Info="Epoch", ...
    XLabel="Iteration");

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model loss and gradients using the dlfeval and modelLoss functions.
• Update the encoder and decoder network parameters using the adamupdate function.
• Display the training progress.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Read mini-batch of data.
        X = next(mbq);

        % Evaluate loss and gradients.
        [loss,gradientsE,gradientsD] = dlfeval(@modelLoss,netE,netD,X);

        % Update learnable parameters.
        [netE,trailingAvgE,trailingAvgSqE] = adamupdate(netE, ...
            gradientsE,trailingAvgE,trailingAvgSqE,iteration,learnRate);

        [netD, trailingAvgD, trailingAvgSqD] = adamupdate(netD, ...
            gradientsD,trailingAvgD,trailingAvgSqD,iteration,learnRate);

        % Update the training progress monitor. 
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
        monitor.Progress = 100*iteration/numIterations;

 Train Variational Autoencoder (VAE) to Generate Images

3-167



    end
end

Test Network

Test the trained autoencoder with a the held-out test set. Create a mini-batch queue of the data using
the same steps as for the training data, except do not discard any partial mini-batches of data.

dsTest = arrayDatastore(XTest,IterationDimension=4);
numOutputs = 1;

mbqTest = minibatchqueue(dsTest,numOutputs, ...
    MiniBatchSize = miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat="SSCB");

Make predictions using the trained autoencoder using the modelPredictions function.

YTest = modelPredictions(netE,netD,mbqTest);

Visualize the reconstruction errors by taking the mean-squared-error of the test images and the
reconstructed images and visualizing them in a histogram.

err = mean((XTest-YTest).^2,[1 2 3]);
figure
histogram(err)
xlabel("Error")
ylabel("Frequency")
title("Test Data")

3 Deep Learning with Images

3-168



Generate New Images

Generate a batch of new images by passing randomly sampled image encodings through the decoder.

numImages = 64;

ZNew = randn(numLatentChannels,numImages);
ZNew = dlarray(ZNew,"CB");

YNew = predict(netD,ZNew);
YNew = extractdata(YNew);

Display the generated images in a figure.

figure
I = imtile(YNew);
imshow(I)
title("Generated Images")

 Train Variational Autoencoder (VAE) to Generate Images

3-169



Here, the VAE has learned a strong feature representation that allows it to generate images that are
similar to the training data.

Helper Functions

Model Loss Function

The modelLoss function takes as input the encoder and decoder networks and a mini-batch of input
data, and returns the loss and the gradients of the loss with respect to the learnable parameters in
the networks. The function passes the training images through the encoder and passes the resulting
image encodings through the decoder. To calculate the loss, the function uses the elboLoss function
with the mean and log-variance statistics output by the sampling layer of the encoder.

function [loss,gradientsE,gradientsD] = modelLoss(netE,netD,X)

% Forward through encoder.
[Z,mu,logSigmaSq] = forward(netE,X);

% Forward through decoder.
Y = forward(netD,Z);

% Calculate loss and gradients.
loss = elboLoss(Y,X,mu,logSigmaSq);
[gradientsE,gradientsD] = dlgradient(loss,netE.Learnables,netD.Learnables);

end

ELBO Loss Function

The ELBOloss function takes the mean and log-variances output by the encoder and uses them to
compute the evidence lower bound (ELBO) loss. The ELBO loss is given by the sum of two separate
loss terms:

ELBO loss = reconstruction loss + KL loss.

3 Deep Learning with Images

3-170



The reconstruction loss measures how close the decoder output is to the original input by using the
mean-squared error (MSE):

reconstruction loss = MSE reconstructed image, input image .

The KL loss, or Kullback–Leibler divergence, measures the difference between two probability
distributions. Minimizing the KL loss in this case means ensuring that the learned means and
variances are as close as possible to those of the target (normal) distribution. For a latent dimension
of size K, the KL loss is obtained as

KL loss = − 0 . 5 ⋅ ∑i = 1
K 1 + log σi

2 − μi
2− σi

2 .

The practical effect of including a KL loss term is to pack the clusters learned due to the
reconstruction loss tightly around the center of the latent space, forming a continuous space to
sample from.

function loss = elboLoss(Y,T,mu,logSigmaSq)

% Reconstruction loss.
reconstructionLoss = mse(Y,T);

% KL divergence.
KL = -0.5 * sum(1 + logSigmaSq - mu.^2 - exp(logSigmaSq),1);
KL = mean(KL);

% Combined loss.
loss = reconstructionLoss + KL;

end

Model Predictions Function

The modelPredictions function takes as input the encoder and decoder network objects and
minibatchqueue of input data mbq and computes the model predictions by iterating over all data in
the minibatchqueue object.

function Y = modelPredictions(netE,netD,mbq)

Y = [];

% Loop over mini-batches.
while hasdata(mbq)
    X = next(mbq);

    % Forward through encoder.
    Z = predict(netE,X);

    % Forward through dencoder.
    XGenerated = predict(netD,Z);

    % Extract and concatenate predictions.
    Y = cat(4,Y,extractdata(XGenerated));
end

end

 Train Variational Autoencoder (VAE) to Generate Images

3-171



Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors by concatenating the
input along the fourth dimension.

function X = preprocessMiniBatch(dataX)

% Concatenate.
X = cat(4,dataX{:});

end

Bibliography

1 LeCun, Y., C. Cortes, and C. J. C. Burges. "The MNIST Database of Handwritten Digits." http://
yann.lecun.com/exdb/mnist/.

See Also
dlnetwork | layerGraph | dlarray | adamupdate | dlfeval | dlgradient | sigmoid

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Automatic Differentiation Background” on page 19-214

3 Deep Learning with Images

3-172

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Lane and Vehicle Detection in Simulink Using Deep Learning

This example shows how to use deep convolutional neural networks inside a Simulink® model to
perform lane and vehicle detection. This example takes the frames from a traffic video as an input,
outputs two lane boundaries that correspond to the left and right lanes of the ego vehicle, and detects
vehicles in the frame.

This example uses the pretrained lane detection network from the Lane Detection Optimized with
GPU Coder example of the GPU Coder Toolbox™. For more information, see “Lane Detection
Optimized with GPU Coder” (GPU Coder).

This example also uses the pretrained vehicle detection network from the Object Detection Using
YOLO v2 Deep Learning example of the Computer Vision toolbox™. For more information, see “Object
Detection Using YOLO v2 Deep Learning” (Computer Vision Toolbox).

Deep learning functionality in Simulink uses the MATLAB Function block that requires a supported
compiler. For most platforms, a default C compiler is supplied with the MATLAB® installation. When
using C++ language, you must install a compatible C++ compiler. To see a list of supported
compilers, open Supported and Compatible Compilers, click the tab that corresponds to your
operating system, find the Simulink Product Family table, and go to the For Model Referencing,
Accelerator mode, Rapid Accelerator mode, and MATLAB Function blocks column. If you have
multiple supported compilers installed on your system, you can change the default compiler using the
mex -setup command. See “Change Default Compiler”.

Algorithmic Workflow

The block diagram for the algorithmic workflow of the Simulink model is shown.

Get Pretrained Lane and Vehicle Detection Networks

This example uses the trainedLaneNet and yolov2ResNet50VehicleExample MAT-files
containing the pretrained networks. The files are approximately 143 MB and 98 MB in size,
respectively. Download the files from the MathWorks website.

lanenetFile = matlab.internal.examples.downloadSupportFile('gpucoder/cnn_models/lane_detection','trainedLaneNet.mat');
vehiclenetFile = matlab.internal.examples.downloadSupportFile('vision/data','yolov2ResNet50VehicleExample.mat');

 Lane and Vehicle Detection in Simulink Using Deep Learning

3-173

https://www.mathworks.com/support/requirements/supported-compilers.html


Download Test Traffic Video

To test the model, the example uses the Caltech lanes dataset. The file is approximately 16 MB in
size. Download the files from the MathWorks website.

mediaFile = matlab.internal.examples.downloadSupportFile('gpucoder/media','caltech_washington1.avi');

Lane and Vehicle Detection Simulink Model

The Simulink model for performing lane and vehicle detection on the traffic video is shown. When the
model runs, the Video Viewer block displays the traffic video with lane and vehicle annotations.

open_system('laneAndVehicleDetectionMDL');

Set the file paths of the dowloaded network model in the predict and detector blocks of the Simulink
model. Set the location of the test video to be loaded by the Simulink model.

set_param('laneAndVehicleDetectionMDL/Lane Detection','NetworkFilePath',lanenetFile)
set_param('laneAndVehicleDetectionMDL/Vehicle Detector','DetectorFilePath',vehiclenetFile)
set_param('laneAndVehicleDetectionMDL/Traffic Video','inputFileName',mediaFile)

Lane Detection

For lane detection, the traffic video is preprocessed by resizing each frame of the video to 227-
by-227-by-3 and then scaled by a factor of 255. The preprocessed frames are then input to the
trainedLaneNet.mat network loaded in the Predict block from the Deep Learning Toolbox™.
This network takes an image as an input and outputs two lane boundaries that correspond to the left
and right lanes of the ego vehicle. Each lane boundary is represented by the parabolic equation:

Here y is the lateral offset and x is the longitudinal distance from the vehicle. The network outputs
the three parameters a, b, and c per lane. The network architecture is similar to AlexNet except that
the last few layers are replaced by a smaller fully connected layer and regression output layer. The
Lane Detection Coordinates MATLAB function block defines a function
lane_detection_coordinates that takes the output from the predict block and outputs three
parameters; laneFound, ltPts, and rtPts. Thresholding is used to determine if both left and right
lane boundaries are both found. If both are found, laneFound is set to be true and the trajectories of
the boundaries are calculated and stored in ltPts and rtPts respectively.

type lane_detection_coordinates

3 Deep Learning with Images

3-174



function [laneFound,ltPts,rtPts] = lane_detection_coordinates(laneNetOut)

% Copyright 2020-2021 The MathWorks, Inc.

persistent laneCoeffMeans;
if isempty(laneCoeffMeans)
    laneCoeffMeans = [-0.0002,0.0002,1.4740,-0.0002,0.0045,-1.3787];
end

persistent laneCoeffStds;
if isempty(laneCoeffStds)
    laneCoeffStds = [0.0030,0.0766,0.6313,0.0026,0.0736,0.9846];
end

params = laneNetOut .* laneCoeffStds + laneCoeffMeans;

% 'c' should be more than 0.5 for it to be a right lane
isRightLaneFound = abs(params(6)) > 0.5;
isLeftLaneFound =  abs(params(3)) > 0.5;

persistent vehicleXPoints;
if isempty(vehicleXPoints)
    vehicleXPoints = 3:30; %meters, ahead of the sensor
end

ltPts = coder.nullcopy(zeros(28,2,'single'));
rtPts = coder.nullcopy(zeros(28,2,'single'));

if isRightLaneFound && isLeftLaneFound
    rtBoundary = params(4:6);
    rt_y = computeBoundaryModel(rtBoundary, vehicleXPoints);
    ltBoundary = params(1:3);
    lt_y = computeBoundaryModel(ltBoundary, vehicleXPoints);
    
    % Visualize lane boundaries of the ego vehicle
    tform = get_tformToImage;
    % Map vehicle to image coordinates
    ltPts =  tform.transformPointsInverse([vehicleXPoints', lt_y']);
    rtPts =  tform.transformPointsInverse([vehicleXPoints', rt_y']);
    laneFound = true;
else
    laneFound = false;
end

end

Vehicle Detection

This example uses a YOLO v2 based network for vehicle detection. A YOLO v2 object detection
network is composed of two subnetworks: a feature extraction network followed by a detection
network. This pretrained network uses a ResNet-50 for feature extraction. The detection sub-
network is a small CNN compared to the feature extraction network and is composed of a few
convolutional layers and layers specific to YOLO v2.

 Lane and Vehicle Detection in Simulink Using Deep Learning

3-175



The Simulink model performs vehicle detection using the Object Detector block from the
Computer Vision Toolbox. This block takes an image as input and outputs the bounding box
coordinates along with the confidence scores for vehicles in the image.

Annotation of Vehicle Bounding Boxes and Lane Trajectory in Traffic Video

The Lane and Vehicle Annotation MATLAB function block defines a function
lane_vehicle_annotation which annotates the vehicle bounding boxes along with the confidence
scores. If laneFound is true, then the left and right lane boundaries stored in ltPts and rtPts are
overlayed on the traffic video.

type lane_vehicle_annotation

function In = lane_vehicle_annotation(laneFound,ltPts,rtPts,bboxes,scores,In)

% Copyright 2020-2021 The MathWorks, Inc.

if ~isempty(bboxes)
    In = insertObjectAnnotation(In, 'rectangle',bboxes,scores);
end

pts = coder.nullcopy(zeros(28, 4, 'single'));
if laneFound
    prevpt =  [ltPts(1,1) ltPts(1,2)];
    for k = 2:1:28
        pts(k,1:4) = [prevpt ltPts(k,1) ltPts(k,2)];
        prevpt = [ltPts(k,1) ltPts(k,2)];
    end
    In = insertShape(In, 'Line', pts, 'LineWidth', 2);
    prevpt =  [rtPts(1,1) rtPts(1,2)];
    for k = 2:1:28
        pts(k,1:4) = [prevpt rtPts(k,1) rtPts(k,2)];
        prevpt = [rtPts(k,1) rtPts(k,2)];
    end
    In = insertShape(In, 'Line', pts, 'LineWidth', 2);
    In = insertMarker(In, ltPts);
    In = insertMarker(In, rtPts);
end

end

Run the Simulation

To verify the lane and vehicle detection algorithms and display the lane trajectories, vehicle bounding
boxes and scores for the traffic video loaded in the Simulink model, run the simulation.

set_param('laneAndVehicleDetectionMDL', 'SimulationMode', 'Normal');
sim('laneAndVehicleDetectionMDL');

3 Deep Learning with Images

3-176



On Windows®, the maximum path length of 260 characters can cause "File not found" errors
when running the simulation. In such cases, move the example folder to a different location or enable
long paths in Windows. For more information, see Maximum Path Length Limitation (Microsoft).

Use Deep Learning Accelerator Libraries

If you have an Intel® CPU that supports AVX2 instructions, you can use the MATLAB Coder Interface
for Deep Learning Libraries to accelerate the simulation using Intel MKL-DNN libraries. In the Model
Configuration Parameters window, on the Simulation Target pane, set the Language to C++ and the
Target library to MKL-DNN.

 Lane and Vehicle Detection in Simulink Using Deep Learning

3-177

https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation


Code Generation

With GPU Coder, you can accelerate the execution of model on NVIDIA® GPUs and generate CUDA®
code for model. For more information, see “Code Generation for a Deep Learning Simulink Model
that Performs Lane and Vehicle Detection” (GPU Coder).

3 Deep Learning with Images

3-178



Classify ECG Signals in Simulink Using Deep Learning

This example shows how to use wavelet transforms and a deep learning network within a Simulink
(R) model to classify ECG signals. This example uses the pretrained convolutional neural network
from the Classify Time Series Using Wavelet Analysis and Deep Learning example of the Wavelet
Toolbox™ to classify ECG signals based on images from the CWT of the time series data. For
information on training, see “Classify Time Series Using Wavelet Analysis and Deep Learning”
(Wavelet Toolbox).

ECG Data Description

This example uses ECG data from PhysioNet database. It contains data from three groups of people:

1 Persons with cardiac arrhythmia (ARR)
2 Persons with congestive heart failure (CHF)
3 Persons with normal sinus rhythms (NSR)

It includes 96 recordings from persons with ARR, 30 recordings from persons with CHF, and 36
recordings from persons with NSR. The ecg_signals MAT-file contains the test ECG data in time
series format. The image classifier in this example distinguishes between ARR, CHF, and NSR.

Algorithmic Workflow

The block diagram for the algorithmic workflow of the Simulink model is shown.

ECG Deep Learning Simulink Model

The Simulink model for classifying the ECG signals is shown. When the model runs, the Video
Viewer block displays the classified ECG signal.

open_system('ecg_dl_cwtMDL');

 Classify ECG Signals in Simulink Using Deep Learning

3-179

https://physionet.org/


ECG Preprocessing Subsystem

The ECG Preprocessing subsystem contains a MATLAB Function block that performs CWT to
obtain scalogram of the ECG signal and then processes the scalogram to obtain an image. It also
contains an Image Classifier block from the Deep Learning Toolbox™ that loads the pretrained
network from trainedNet.mat and performs prediction for image classification based on
SqueezeNet deep learning CNN.

open_system('ecg_dl_cwtMDL/ECG Preprocessing');

The ScalogramFromECG function block defines a function called ecg_to_scalogram that:

• Uses 65536 samples of double-precision ECG data as input.
• Create time frequency representation from the ECG data by applying Wavelet transform.
• Obtain scalogram from the wavelet coefficients.
• Convert the scalogram to image of size (227-by-227-by-3).

The function signature of ecg_to_scalogram is shown.

type ecg_to_scalogram

function ecg_image  = ecg_to_scalogram(ecg_signal)

% Copyright 2020 The MathWorks, Inc.

persistent jetdata;
if(isempty(jetdata))

3 Deep Learning with Images

3-180



    jetdata = ecgColorMap(128,'single');
end
% Obtain wavelet coefficients from ECG signal
cfs = cwt_ecg(ecg_signal);  
% Obtain scalogram from wavelet coefficients
image = ind2rgb(im2uint8(rescale(cfs)),jetdata);
ecg_image = im2uint8(imresize(image,[227,227]));

end

ECG Postprocessing

The ECG Postprocessing MATLAB function block defines the label_prob_image function that
finds the label for the scalogram image based on the highest score from the scores outputed by the
image classifier. It outputs the scalogram image with the label and confidence overlayed.

type label_prob_image

function final_image = label_prob_image(ecg_image, scores, labels)

% Copyright 2020-2021 The MathWorks, Inc.

scores = double(scores);
% Obtain maximum confidence 
[prob,index] = max(scores);
confidence = prob*100;
% Obtain label corresponding to maximum confidence
label = erase(char(labels(index)),'_label');
text = cell(2,1);
text{1} = ['Classification: ' label];
text{2} = ['Confidence: ' sprintf('%0.2f',confidence) '%'];
position = [135 20 0 0; 130 40 0 0];
final_image = insertObjectAnnotation(ecg_image,'rectangle',position,...
    text,'TextBoxOpacity',0.9,'FontSize',9);

end

Run the Simulation

To verify the algorithm and display the labels and confidence score of the test ECG signal loaded in
the workspace, run the simulation.

set_param('ecg_dl_cwtMDL', 'SimulationMode', 'Normal');
sim('ecg_dl_cwtMDL');

 Classify ECG Signals in Simulink Using Deep Learning

3-181



Code Generation

With GPU Coder™, you can accelerate the execution of model on NVIDIA® GPUs and generate
CUDA® code for model. See the “Code Generation for a Deep Learning Simulink Model to Classify
ECG Signals” (GPU Coder) for more details.

Cleanup

Close the Simulink model.

close_system('ecg_dl_cwtMDL/ECG Preprocessing');
close_system('ecg_dl_cwtMDL');

3 Deep Learning with Images

3-182



Classify Images in Simulink Using GoogLeNet

This example shows how to classify an image in Simulink® using the Image Classifier block. The
example uses the pretrained deep convolutional neural network GoogLeNet to perform the
classification.

Pretrained GoogLeNet Network

GoogLeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input, and then
outputs a label for the object in the image together with the probabilities for each of the object
categories.

net = googlenet;
inputSize = net.Layers(1).InputSize;
classNames = net.Layers(end).ClassNames;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

    {'speedboat'    }
    {'window screen'}
    {'isopod'       }
    {'wooden spoon' }
    {'lipstick'     }
    {'drake'        }
    {'hyena'        }
    {'dumbbell'     }
    {'strawberry'   }
    {'custard apple'}

Read and Resize Image

Read and show the image that you want to classify.

I = imread('peppers.png');
figure
imshow(I)

 Classify Images in Simulink Using GoogLeNet

3-183



To import this data into the Simulink model, specify a structure variable containing the input image
data and an empty time vector.

simin.time = [];
simin.signals.values = I;
simin.signals.dimensions = size(I);

Simulink Model for Prediction

The Simulink model for classifying images is shown. The model uses a From Workspace block to
load the input image, an Image Classifier block from the Deep Neural Networks library that
classifies the input, and Display block to show the predicted output.

model = 'googlenet_classifier';
open_system(model);

3 Deep Learning with Images

3-184



Run the Simulation

To validate the Simulink model, run the simulation.

set_param(model,'SimulationMode','Normal');
sim(model);

The network classifies the image as a bell pepper.

Display Top Predictions

Display the top five predicted labels and their associated probabilities as a histogram. Because the
network classifies images into so many object categories, and many categories are similar, it is
common to consider the top-five accuracy when evaluating networks. The network classifies the
image as a bell pepper with a high probability.

 Classify Images in Simulink Using GoogLeNet

3-185



scores = yout.signals(1).values(:,:,1);
labels = yout.signals(2).values(:,:,1);
[~,idx] = sort(scores,'descend');
idx = idx(5:-1:1);
scoresTop = scores(idx);
labelsTop = split(string(labels(idx)),'_');
labelsTop = labelsTop(:,:,1);

figure
imshow(I)
title(labelsTop(5) + ", " + num2str(100*scoresTop(5) + "%"));

figure
barh(scoresTop)
xlim([0 1])
title('Top 5 Predictions')
xlabel('Probability')
yticklabels(labelsTop)

3 Deep Learning with Images

3-186



 Classify Images in Simulink Using GoogLeNet

3-187



Multilabel Image Classification Using Deep Learning

This example shows how to use transfer learning to train a deep learning model for multilabel image
classification.

In binary or multiclass classification, a deep learning model classifies images as belonging to one of
two or more classes. The data used to train the network often contains clear and focused images,
with a single item in frame and without background noise or clutter. This data is often not an
accurate representation of the type of data the network will receive during deployment. Additionally,
binary and multiclass classification can apply only a single label to each image, leading to incorrect or
misleading labeling.

In this example, you train a deep learning model for multilabel image classification by using the
COCO data set, which is a realistic data set containing objects in their natural environments. The
COCO images have multiple labels, so an image depicting a dog and a cat has two labels.

In multilabel classification, in contrast to binary and multiclass classification, the deep learning model
predicts the probability of each class. The model has multiple independent binary classifiers, one for
each class—for example, "Cat" and "Not Cat" and "Dog" and "Not Dog."

Load Pretrained Network

Load a pretrained ResNet-50 network. If the Deep Learning Toolbox Model for ResNet-50 Network
support package is not installed, then the software provides a download link. ResNet-50 is trained on
more than a million images and can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals. This example uses transfer learning to retrain a ResNet-50
pretrained network for multilabel classification.

Load the pretrained network and extract the image input size.

net = resnet50;
inputSize = net.Layers(1).InputSize;

Prepare Data

Download and extract the COCO 2017 training and validation images and their labels from https://
cocodataset.org/#download by clicking the "2017 Train images", "2017 Val images", and "2017

3 Deep Learning with Images

3-188

https://cocodataset.org/#download
https://cocodataset.org/#download


Train/Val annotations" links. Save the data in a folder named "COCO". The COCO 2017 data set was
collected by Coco Consortium. Depending on your internet connection, the download process can
take time.

Train the network on a subset of the COCO data set. For this example, train the network to recognize
12 different categories: dog, cat, bird, horse, sheep, cow, bear, giraffe, zebra, elephant, potted plant,
and couch.

categoriesTrain = ["dog" "cat" "bird" "horse" "sheep" "cow" "bear" "giraffe" "zebra" "elephant" "potted plant" "couch"];
numClasses = length(categoriesTrain);

Specify the location of the training data.

dataFolder = fullfile(tempdir,"COCO");
labelLocationTrain = fullfile(dataFolder,"annotations_trainval2017","annotations","instances_train2017.json");
imageLocationTrain = fullfile(dataFolder,"train2017");

Use the supporting function prepareData, defined at the end of this example, to prepare the data
for training.

1 Extract the labels from the file labelLocationTrain using the jsondecode function.
2 Find the images that belong to the classes of interest.
3 Find the number of unique images. Many images have more than one of the class labels and,

therefore, appear in the image lists for multiple categories.
4 Create the one-hot encoded category labels by comparing the image ID with the lists of image

IDs for each category.
5 Create an augmented image datastore containing the images and an image augmentation

scheme.

[dataTrain,encodedLabelTrain] = prepareData(labelLocationTrain,imageLocationTrain,categoriesTrain,inputSize,true);
numObservations = dataTrain.NumObservations

numObservations = 30492

The training data contains 30,492 images from 12 classes. Each image has a binary label that
indicates whether it belongs to each of the 12 classes.

Prepare the validation data in the same way as the training data.

labelLocationVal = fullfile(dataFolder,"annotations_trainval2017","annotations","instances_val2017.json");
imageLocationVal = fullfile(dataFolder,"val2017");

[dataVal,encodedLabelVal] = prepareData(labelLocationVal,imageLocationVal,categoriesTrain,inputSize,false);

Inspect Data

View the number of labels for each class.

numObservationsPerClass = sum(encodedLabelTrain,1);

figure
bar(numObservationsPerClass)
ylabel("Number of Observations")
xticklabels(categoriesTrain)

 Multilabel Image Classification Using Deep Learning

3-189

https://cocodataset.org/#home


View the average number of labels per image.

numLabelsPerObservation = sum(encodedLabelTrain,2);
mean(numLabelsPerObservation)

ans = 1.1352

figure
histogram(numLabelsPerObservation)
hold on
ylabel("Number of Observations")
xlabel("Number of Labels")
hold off

3 Deep Learning with Images

3-190



Adapt Pretrained Network for Transfer Learning

The final layers of the network contain information on how to combine the features that the network
extracts into probabilities, a loss value, and predicted labels. These layers are currently defined for a
single label classification task with 1000 classes. You can easily adapt this network to a multilabel
classification task by replacing the last learnable layer, the softmax layer, and the classification layer.
You can adapt this network programmatically or interactively using Deep Network Designer.

lgraph = layerGraph(net);

Replace Last Learnable Layer

The final fully connected layer of the network is configured for 1000 classes. To adapt the network to
classify images into 12 classes, replace the final fully connected layer with a new layer adapted to the
new data set. Set the output size to match the number of classes in the new data. To make learning
faster in the new layers than in the transferred layers, increase the WeightLearnRateFactor and
the BiasLearnRateFactor values of the new layer.

newLearnableLayer = fullyConnectedLayer(numClasses, ...
        Name="new_fc", ...
        WeightLearnRateFactor=10, ...
        BiasLearnRateFactor=10);
    
lgraph = replaceLayer(lgraph,"fc1000",newLearnableLayer);

 Multilabel Image Classification Using Deep Learning

3-191



Replace Softmax Layer

For single label classification, the network has a softmax layer followed by a classification output
layer. The softmax layer computes the scores for each label, where the scores sum to 1. The highest
score is the predicted class for that input. To adapt this network for multilabel classification, you
must replace the softmax layer with a sigmoid layer. The sigmoid layer produces independent
probabilities for each class. You can use these probabilities to predict multiple labels for a single
input image.

newActivationLayer = sigmoidLayer(Name="sigmoid");
lgraph = replaceLayer(lgraph,"fc1000_softmax",newActivationLayer);

Replace Output Layer

Finally, replace the output layer with a custom binary cross-entropy loss output layer. The binary
cross-entropy loss layer computes the loss between the target labels and the predicted labels. This
layer is attached as the supporting file CustomBinaryCrossEntropyLossLayer.m. To access this
file, open this example as a live script.

newOutputLayer = CustomBinaryCrossEntropyLossLayer("new_classoutput");
lgraph = replaceLayer(lgraph,"ClassificationLayer_fc1000",newOutputLayer);

The network is now ready to train.

Training Options

Specify the options to use for training. Train using an SGDM solver with an initial learning rate of
0.0005. Set the mini-batch size to 32 and train for a maximum of 10 epochs. Specify the validation
data and set training to stop once the validation loss fails to decrease for five consecutive evaluations.

options = trainingOptions("sgdm", ...
    InitialLearnRate=0.0005, ...
    MiniBatchSize=32, ...
    MaxEpochs=10, ...
    Verbose= false, ...
    ValidationData=dataVal, ...
    ValidationFrequency=100, ...
    ValidationPatience=5, ...
    Plots="training-progress");

Train Network

To save time while running this example, load a trained network by setting doTraining to false. To
train the network yourself, set doTraining to true.

The custom binary cross-entropy loss layer inherits from the nnet.layer.RegressionLayer class.
Therefore, the training plot displays the RMSE and the loss. For this example, the loss is a more
useful measure of network performance.

doTraining = false;

if doTraining
    trainedNet = trainNetwork(dataTrain,lgraph,options);
else
    filename = matlab.internal.examples.downloadSupportFile('nnet', ...
        'data/multilabelImageClassificationNetwork.zip');

3 Deep Learning with Images

3-192



    filepath = fileparts(filename);
    dataFolder = fullfile(filepath,'multilabelImageClassificationNetwork');
    unzip(filename,dataFolder);
    load(fullfile(dataFolder,'multilabelImageClassificationNetwork.mat'));
end

Assess Model Performance

Assess the model performance on the validation data.

The model predicts the probability of each class being present in the input image. To use these
probabilities to predict the classes of the image, you must define a threshold value. The model
predicts that the image contains the classes with probabilities that exceed the threshold.

The threshold value controls the rate of false positives versus false negatives. Increasing the
threshold reduces the number of false positives, whereas decreasing the threshold reduces the
number of false negatives. Different applications will require different threshold values. For this
example, set a threshold value of 0.5.

thresholdValue = 0.5;

Use the predict function to compute the class scores for the validation data.

scores = predict(trainedNet,dataVal);

Convert the scores to a set of predicted classes using the threshold value.

YPred = double(scores >= thresholdValue);

F1-score

Two common metrics for accessing model performance are precision (also known as the positive
predictive value) and recall (also known as sensitivity).

 Multilabel Image Classification Using Deep Learning

3-193



Precision = True Positive
True Positive + False Postive

Recall = True Positive
True Positive + False Negative

For multilabel tasks, you can calculate the precision and recall for each class independently and then
take the average (known as macro-averaging) or you can calculate the global number of true
positives, false positives, and false negatives and use those values to calculate the overall precision
and recall (known as micro-averaging). Throughout this example, use the micro-precision and the
micro-recall values.

To combine the precision and recall into a single metric, compute the F1-score [1]. The F1-score is
commonly used for evaluating model accuracy.

F1 = 2 precision * recall
precision + recall

A value of 1 indicates that the model performs well. Use the supporting function F1Score to compute
the micro-average F1-score for the validation data.

FScore = F1Score(encodedLabelVal,YPred)

FScore = 0.8158

Jaccard Index

Another useful metric for assessing performance is the Jaccard index, also known as intersection over
union. This metric compares the proportion of correct labels to the total number of labels. Use the
supporting function jaccardIndex to compute the Jaccard index for the validation data.

jaccardScore = jaccardIndex(encodedLabelVal,YPred)

jaccardScore = 0.7092

Confusion Matrix

To investigate performance at the class level, for each class, compute the confusion chart using the
predicted and true binary labels.

figure
tiledlayout("flow")
for i = 1:numClasses
    nexttile
    confusionchart(encodedLabelVal(:,i),YPred(:,i));
    title(categoriesTrain(i))
end

3 Deep Learning with Images

3-194



Investigate Threshold Value

Investigate how the threshold value impacts the model assessment metrics. Calculate the F1-score
and the Jaccard index for different threshold values. Additionally, use the supporting function
performanceMetrics to calculate the precision and recall for different threshold values.

thresholdRange = 0.1:0.1:0.9;

metricsName = ["F1-score","Jaccard Index","Precision","Recall"];
metrics = zeros(4,length(thresholdRange));

for i = 1:length(thresholdRange)
  
    YPred = double(scores >= thresholdRange(i));

    metrics(1,i) = F1Score(encodedLabelVal,YPred);
    metrics(2,i) = jaccardIndex(encodedLabelVal,YPred);

    [precision, recall] = performanceMetrics(encodedLabelVal,YPred);
    metrics(3,i) = precision;
    metrics(4,i) = recall;
end

Plot the results.

figure
tiledlayout("flow")
for i = 1:4

 Multilabel Image Classification Using Deep Learning

3-195



nexttile
plot(thresholdRange,metrics(i,:),"-*")
title(metricsName(i))
xlabel("Threshold")
ylabel("Score")
end

Predict Using New Data

Test the network performance on new images that are not from the COCO data set. The results
indicate whether the model can generalize to images from a different underlying distribution.

imageNames = ["testMultilabelImage1.png" "testMultilabelImage2.png"];

Predict the labels for each image and view the results.

figure
tiledlayout(1,2)
images = [];
labels = [];
scores =[];

for i = 1:2
    img = imread(imageNames(i));
    img = imresize(img,inputSize(1:2));
    images{i} = img;

    scoresImg = predict(trainedNet,img)';

3 Deep Learning with Images

3-196



    YPred =  categoriesTrain(scoresImg >= thresholdValue);

    nexttile
    imshow(img)
    title(YPred)

    labels{i} = YPred;
    scores{i} = scoresImg;
end

Investigate Network Predictions

To further explore the network predictions, you can use visualization methods to highlight which area
of an image the network is using when making the class predictions. Grad-CAM is a visualization
method that uses the gradient of the class scores with respect to the convolutional features
determined by the network to understand which parts of the image are most important for each class
label. The places where this gradient is large are exactly the places where the final score depends
most on the data.

Investigate the first image. The network correctly identifies the cat and couch in this image. However,
the network fails to identify the dog.

imageIdx = 1;
testImage = images{imageIdx};

Generate a table containing the scores for each class.

 Multilabel Image Classification Using Deep Learning

3-197



tbl = table(categoriesTrain',scores{imageIdx},VariableNames=["Class", "Score"]);
disp(tbl)

        Class           Score   
    ______________    __________

    "dog"                0.18477
    "cat"                0.88647
    "bird"            6.2184e-05
    "horse"            0.0020663
    "sheep"           0.00015361
    "cow"             0.00077924
    "bear"             0.0016855
    "giraffe"         2.5157e-06
    "zebra"            8.097e-05
    "elephant"        9.5033e-05
    "potted plant"     0.0051868
    "couch"              0.80556

The network is confident that this image contains a cat and a couch but less confident that the image
contains a dog. Use Grad-CAM to see which parts of the image the network is using for each of the
true classes.

targetClasses = ["dog","cat","couch"];
targetClassesIdx = find(ismember(categoriesTrain,targetClasses));

Generate the Grad-CAM map for each class label.

reductionLayer = "sigmoid";
map = gradCAM(trainedNet,testImage,targetClassesIdx,ReductionLayer=reductionLayer);

Plot the Grad-CAM results as an overlay on the image.

figure
tiledlayout("flow")

nexttile
imshow(testImage)
for i = 1:length(targetClasses)
    nexttile
    imshow(testImage)
    hold on
    title(targetClasses(i))
    imagesc(map(:,:,i),AlphaData=0.5)
    hold off
end
colormap jet

3 Deep Learning with Images

3-198



The Grad-CAM maps show that the network is correctly identifying the objects in the image.

Supporting Functions

Prepare Data

The supporting function prepareData prepares the COCO data for multilabel classification training
and prediction.

1 Extract the labels from the file labelLocation using the jsondecode function.
2 Find the images that belong to the classes of interest.
3 Find the number of unique images. Many images have more than one of the given labels and

appear in the image lists for multiple categories.
4 Create the one-hot encoded category labels by comparing the image ID with the lists of image

IDs for each category.
5 Combine the data and one-hot encoded labels into a table.
6 Create an augmented image datastore containing the image. Turn grayscale images into RGB

images.

The prepareData function uses the COCOImageID function (attached as a supporting file). To access
this function, open this example as a live script.

function [data, encodedLabel] = prepareData(labelLocation,imageLocation,categoriesTrain,inputSize,doAugmentation)

miniBatchSize = 32;

 Multilabel Image Classification Using Deep Learning

3-199



% Extract labels.
strData = fileread(labelLocation);
dataStruct = jsondecode(strData);

numClasses = length(categoriesTrain);

% Find images that belong to the subset categoriesTrain using
% the COCOImageID function, attached as a supporting file.
images = cell(numClasses,1);
for i=1:numClasses
    images{i} = COCOImageID(categoriesTrain(i),dataStruct);
end

% Find the unique images.
imageList = [images{:}];
imageList = unique(imageList);
numUniqueImages = numel(imageList);

% Encode the labels.
encodedLabel = zeros(numUniqueImages,numClasses);
imgFiles = strings(numUniqueImages,1);
for i = 1:numUniqueImages
    imgID = imageList(i);
    imgFiles(i) = fullfile(imageLocation + "\" + pad(string(imgID),12,"left","0") + ".jpg");

    for j = 1:numClasses
        if ismember(imgID,images{j})
            encodedLabel(i,j) = 1;
        end
    end
end

% Define the image augmentation scheme.
imageAugmenter = imageDataAugmenter( ...
    RandRotation=[-45,45], ...
    RandXReflection=true);

% Store the data in a table.
dataTable = table(Size=[numUniqueImages 2], ...
    VariableTypes=["string" "double"], ...
    VariableNames=["File_Location" "Labels"]);

dataTable.File_Location = imgFiles;
dataTable.Labels = encodedLabel;

% Create a datastore. Transform grayscale images into RGB.
if doAugmentation
    data = augmentedImageDatastore(inputSize(1:2),dataTable, ...
        ColorPreprocessing="gray2rgb", ...
        DataAugmentation=imageAugmenter);
else
    data = augmentedImageDatastore(inputSize(1:2),dataTable, ...
        ColorPreprocessing="gray2rgb");
end
data.MiniBatchSize = miniBatchSize;
end

3 Deep Learning with Images

3-200



F1-score

The supporting function F1Score computes the micro-averaging F1-score [1].

F1 = 2 * precision * recall
precision + recall = True Positive

True Positive+ 1
2 (False Positive + False Negative)

function score = F1Score(T,Y)
% TP: True Positive
% FP: False Positive
% TN: True Negative
% FN: False Negative

TP = sum(T .* Y,"all");
FP = sum(Y,"all")-TP;

TN = sum(~T .* ~Y,"all");
FN = sum(~Y,"all")-TN;

score = TP/(TP + 0.5*(FP+FN));
end

Jaccard Index

The supporting function jaccardIndex computes the Jaccard index, also called intersection over
union, as given by

|T ∩ Y|
|T ∪ Y| ,

where T and Y correspond to the targets and predictions. The Jaccard index describes the proportion
of correct labels compared to the total number of labels.

function score = jaccardIndex(T,Y)

intersection = sum((T.*Y));

union = T+Y;
union(union < 0) = 0;
union(union > 1) = 1;
union = sum(union);

% Ensure the accuracy is 1 for instances where a sample does not belong to any class
% and the prediction is correct. For example, T = [0 0 0 0] and Y = [0 0 0 0].
noClassIdx = union == 0;
intersection(noClassIdx) = 1;
union(noClassIdx) = 1;

score = mean(intersection./union);
end

Precision and Recall

Two common metrics for model assessment are precision (also known as the positive predictive
value) and recall (also known as sensitivity).

Precision = True Positive
True Positive + False Postive

 Multilabel Image Classification Using Deep Learning

3-201



Recall = True Positive
True Positive + False Negative

The supporting function performanceMetrics calculates the micro-average precision and recall
values.

function [precision, recall] = performanceMetrics(T,Y)
% TP: True Positive
% FP: False Positive
% TN: True Negative
% FN: False Negative

TP = sum(T .* Y,"all");
FP = sum(Y,"all")-TP;

TN = sum(~T .* ~Y,"all");
FN = sum(~Y,"all")-TN;

precision = TP/(TP+FP);
recall = TP/(TP+FN);
end

References

[1] Sokolova, Marina, and Guy Lapalme. "A Systematic Analysis of Performance Measures for
Classification Tasks." Information Processing & Management 45, no. 4 (2009): 427–437.

See Also
gradCAM | trainNetwork | resnet50 | trainingOptions

Related Examples
• “Transfer Learning Using Pretrained Network” on page 3-29
• “Multilabel Text Classification Using Deep Learning” on page 4-210
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22

3 Deep Learning with Images

3-202



Acceleration for Simulink Deep Learning Models
You can improve the simulation speed of your Simulink deep learning models by using the accelerator
modes of the Simulink product. Both the accelerator and the rapid accelerator modes are supported.
These modes replace the normal interpreted code with compiled target code. Using compiled code
speeds up simulation of many models, especially those where run time is long compared to the time
associated with compilation and checking to see if the target is up to date. For more information, see
“What Is Acceleration?” (Simulink).

For deep learning, the models are compiled in C++ language taking advantage of the Intel® MKL-
DNN library. The accelerator and rapid accelerator modes are supported for Simulink deep learning
models implemented by using MATLAB Function blocks or by using blocks from the Deep Neural
Networks library. The accelerator mode works with any model, but performance decreases if a model
contains blocks that do not support acceleration. The rapid accelerator mode works with only those
models containing blocks that support code generation of a standalone executable. To learn about
modeling techniques for acceleration, see “Design Your Model for Effective Acceleration” (Simulink).

Note Accelerator modes require a compatible C++ compiler. To see a list of supported compilers,
open Supported and Compatible Compilers, click the tab that corresponds to your operating system,
find the Simulink Product Family table, and go to the For Model Referencing, Accelerator
mode, Rapid Accelerator mode, and MATLAB Function blocks column. If you have multiple
MATLAB-supported compilers installed on your system, you can change the default compiler using
the mex -setup command. See “Change Default Compiler”.

Run Acceleration Mode from the User Interface
To accelerate a model, first open it, and then on the Simulation tab, in the Simulate section, select
Accelerator or Rapid Accelerator from the drop-down menu. Then start the simulation.

The following example shows how to accelerate the already opened googlenet_classifier model
from the “Classify Images in Simulink Using GoogLeNet” on page 3-183 example using the
Accelerator mode:

1 In the Model Configuration Parameters, on the Simulation Target pane, set the Language
to C++ and the Target library to MKL-DNN.

2 On the Simulation tab, in the Simulate section, select Accelerator from the drop-down
menu.

 Acceleration for Simulink Deep Learning Models

3-203

https://www.mathworks.com/support/requirements/supported-compilers.html


3 On the Simulation tab, click Run.

The Accelerator and Rapid Accelerator modes first check to see if code was previously compiled
for your model. If code was created previously, the Accelerator or Rapid Accelerator mode runs
the model. If code was not previously built, they first generate and compile the C code, and then
run the model.

The Accelerator mode places the generated code in a subfolder of the working folder called slprj/
accel/modelname (for example, slprj/accel/googlenet_classifier). If you want to change
this path, see “Changing the Location of Generated Code” (Simulink).

The Rapid Accelerator mode places the generated code in a subfolder of the working folder called
slprj/raccel/modelname (for example, slprj/raccel/googlenet_classifier).

Run Acceleration Mode Programmatically
You can set configuration parameters, build an accelerated model, select the simulation mode, and
run the simulation from the command prompt or from MATLAB script.

Use set_param to configure the model parameter programmatically in the MATLAB Command
Window.

set_param('modelname','SimTargetLang','language')

For example, to specify C++ code generation for simulation targets, you would use:

set_param('googlenet_classifier','SimTargetLang','C++');

3 Deep Learning with Images

3-204



You can also control the simulation mode from the command line prompt by using the set_param
command:

set_param('modelname','SimulationMode','mode')

The simulation mode can be normal, accelerator, rapid, or external.

For example, to simulate your model with the Accelerator mode, you would use:

set_param('googlenet_classifier','SimulationMode','accelerator')

Then, use the sim command to start the simulation:

sim(googlenet_classifier);

However, a preferable method is to specify the simulation mode within the sim command:

simOut = sim('googlenet_classifier', 'SimulationMode', 'accelerator');

See Also
Functions
set_param | sim | googlenet

Blocks
Image Classifier

Related Examples
• “Classify Images in Simulink Using GoogLeNet” on page 3-183
• “Lane and Vehicle Detection in Simulink Using Deep Learning” on page 3-173

 Acceleration for Simulink Deep Learning Models

3-205





Deep Learning with Time Series,
Sequences, and Text

• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence Classification Using 1-D Convolutions” on page 4-10
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Train Speech Command Recognition Model Using Deep Learning” on page 4-27
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning ” on page 4-53
• “Train Network with Complex-Valued Data” on page 4-60
• “Train Network with LSTM Projected Layer” on page 4-68
• “Predict Battery State of Charge Using Deep Learning” on page 4-78
• “Classify Videos Using Deep Learning” on page 4-87
• “Classify Videos Using Deep Learning with Custom Training Loop” on page 4-97
• “Train Sequence Classification Network Using Data With Imbalanced Classes” on page 4-112
• “Sequence-to-Sequence Classification Using 1-D Convolutions” on page 4-122
• “Time Series Anomaly Detection Using Deep Learning” on page 4-132
• “Sequence Classification Using CNN-LSTM Network” on page 4-144
• “Train Latent ODE Network with Irregularly Sampled Time-Series Data” on page 4-157
• “Multivariate Time Series Anomaly Detection Using Graph Neural Network” on page 4-177
• “Classify Text Data Using Deep Learning” on page 4-195
• “Classify Text Data Using Convolutional Neural Network” on page 4-203
• “Multilabel Text Classification Using Deep Learning” on page 4-210
• “Classify Text Data Using Custom Training Loop” on page 4-229
• “Generate Text Using Autoencoders” on page 4-240
• “Define Text Encoder Model Function” on page 4-252
• “Define Text Decoder Model Function” on page 4-259
• “Sequence-to-Sequence Translation Using Attention” on page 4-266
• “Generate Text Using Deep Learning” on page 4-280
• “Pride and Prejudice and MATLAB” on page 4-286
• “Word-By-Word Text Generation Using Deep Learning” on page 4-292
• “Image Captioning Using Attention” on page 4-299
• “Language Translation Using Deep Learning” on page 4-323
• “Predict and Update Network State in Simulink” on page 4-345
• “Classify and Update Network State in Simulink” on page 4-349

4



• “Time Series Prediction in Simulink Using Deep Learning Network” on page 4-353
• “Battery State of Charge Estimation in Simulink Using Deep Learning Network” on page 4-358
• “Improve Performance of Deep Learning Simulations in Simulink” on page 4-361
• “Physical System Modeling Using LSTM Network in Simulink” on page 4-365

4 Deep Learning with Time Series, Sequences, and Text

4-2



Sequence Classification Using Deep Learning

This example shows how to classify sequence data using a long short-term memory (LSTM) network.

To train a deep neural network to classify sequence data, you can use an LSTM network. An LSTM
network enables you to input sequence data into a network, and make predictions based on the
individual time steps of the sequence data.

This example uses the Japanese Vowels data set as described in [1] and [2]. This example trains an
LSTM network to recognize the speaker given time series data representing two Japanese vowels
spoken in succession. The training data contains time series data for nine speakers. Each sequence
has 12 features and varies in length. The data set contains 270 training observations and 370 test
observations.

Load Sequence Data

Load the Japanese Vowels training data. XTrain is a cell array containing 270 sequences of
dimension 12 of varying length. Y is a categorical vector of labels "1","2",...,"9", which correspond to
the nine speakers. The entries in XTrain are matrices with 12 rows (one row for each feature) and
varying number of columns (one column for each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;
XTrain(1:5)

ans=5×1 cell array
    {12x20 double}
    {12x26 double}
    {12x22 double}
    {12x20 double}
    {12x21 double}

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
xlabel("Time Step")
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),Location="northeastoutside")

 Sequence Classification Using Deep Learning

4-3



Prepare Data for Padding

During training, by default, the software splits the training data into mini-batches and pads the
sequences so that they have the same length. Too much padding can have a negative impact on the
network performance.

To prevent the training process from adding too much padding, you can sort the training data by
sequence length, and choose a mini-batch size so that sequences in a mini-batch have a similar
length. The following figure shows the effect of padding sequences before and after sorting data.

Get the sequence lengths for each observation.

4 Deep Learning with Time Series, Sequences, and Text

4-4



numObservations = numel(XTrain);
for i=1:numObservations
    sequence = XTrain{i};
    sequenceLengths(i) = size(sequence,2);
end

Sort the data by sequence length.

[sequenceLengths,idx] = sort(sequenceLengths);
XTrain = XTrain(idx);
YTrain = YTrain(idx);

View the sorted sequence lengths in a bar chart.

figure
bar(sequenceLengths)
ylim([0 30])
xlabel("Sequence")
ylabel("Length")
title("Sorted Data")

Choose a mini-batch size of 27 to divide the training data evenly and reduce the amount of padding in
the mini-batches. The following figure illustrates the padding added to the sequences.

miniBatchSize = 27;

 Sequence Classification Using Deep Learning

4-5



Define LSTM Network Architecture

Define the LSTM network architecture. Specify the input size to be sequences of size 12 (the
dimension of the input data). Specify an bidirectional LSTM layer with 100 hidden units, and output
the last element of the sequence. Finally, specify nine classes by including a fully connected layer of
size 9, followed by a softmax layer and a classification layer.

If you have access to full sequences at prediction time, then you can use a bidirectional LSTM layer in
your network. A bidirectional LSTM layer learns from the full sequence at each time step. If you do
not have access to the full sequence at prediction time, for example, if you are forecasting values or
predicting one time step at a time, then use an LSTM layer instead.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    bilstmLayer(numHiddenUnits,OutputMode="last")
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions

4 Deep Learning with Time Series, Sequences, and Text

4-6



     2   ''   BiLSTM                  BiLSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Now, specify the training options. Specify the solver to be "adam", the gradient threshold to be 1,
and the maximum number of epochs to be 50. To pad the data to have the same length as the longest
sequences, specify the sequence length to be "longest". To ensure that the data remains sorted by
sequence length, specify to never shuffle the data.

Since the mini-batches are small with short sequences, training is better suited for the CPU. Set the
ExecutionEnvironment option to "cpu". To train on a GPU, if available, set the
ExecutionEnvironment option to "auto" (this is the default value).

options = trainingOptions("adam", ...
    ExecutionEnvironment="cpu", ...
    GradientThreshold=1, ...
    MaxEpochs=50, ...
    MiniBatchSize=miniBatchSize, ...
    SequenceLength="longest", ...
    Shuffle="never", ...
    Verbose=0, ...
    Plots="training-progress");

Train LSTM Network

Train the LSTM network with the specified training options by using trainNetwork.

net = trainNetwork(XTrain,YTrain,layers,options);

 Sequence Classification Using Deep Learning

4-7



Test LSTM Network

Load the test set and classify the sequences into speakers.

Load the Japanese Vowels test data. XTest is a cell array containing 370 sequences of dimension 12
of varying length. YTest is a categorical vector of labels "1","2",..."9", which correspond to the nine
speakers.

[XTest,YTest] = japaneseVowelsTestData;
XTest(1:3)

ans=3×1 cell array
    {12x19 double}
    {12x17 double}
    {12x19 double}

The LSTM network net was trained using mini-batches of sequences of similar length. Ensure that
the test data is organized in the same way. Sort the test data by sequence length.

4 Deep Learning with Time Series, Sequences, and Text

4-8



numObservationsTest = numel(XTest);
for i=1:numObservationsTest
    sequence = XTest{i};
    sequenceLengthsTest(i) = size(sequence,2);
end

[sequenceLengthsTest,idx] = sort(sequenceLengthsTest);
XTest = XTest(idx);
YTest = YTest(idx);

Classify the test data. To reduce the amount of padding introduced by the classification process,
specify the same mini-batch size used for training. To apply the same padding as the training data,
specify the sequence length to be "longest".

YPred = classify(net,XTest, ...
    MiniBatchSize=miniBatchSize, ...
    SequenceLength="longest");

Calculate the classification accuracy of the predictions.

acc = sum(YPred == YTest)./numel(YTest)

acc = 0.9649

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

See Also
trainNetwork | trainingOptions | lstmLayer | bilstmLayer | sequenceInputLayer

Related Examples
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Train Sequence Classification Network Using Data With Imbalanced Classes” on page 4-112
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

 Sequence Classification Using Deep Learning

4-9



Sequence Classification Using 1-D Convolutions

This example shows how to classify sequence data using a 1-D convolutional neural network.

To train a deep neural network to classify sequence data, you can use a 1-D convolutional neural
network. A 1-D convolutional layer learns features by applying sliding convolutional filters to 1-D
input. Using 1-D convolutional layers can be faster than using recurrent layers because convolutional
layers can process the input with a single operation. By contrast, recurrent layers must iterate over
the time steps of the input. However, depending on the network architecture and filter sizes, 1-D
convolutional layers might not perform as well as recurrent layers, which can learn long-term
dependencies between time steps.

This example uses the Japanese Vowels data set described in [1] and [2]. This example trains a 1-D
convolutional neural network to recognize the speaker given time series data representing two
Japanese vowels spoken in succession. The training data contains time series data for nine speakers.
Each sequence has 12 features and varies in length. The data set contains 270 training observations
and 370 test observations.

Load Sequence Data

Load the Japanese Vowels training data. The predictor data is a cell array containing sequences of
varying length with 12 features. The target data is a categorical vector of labels "1","2",...,"9", which
correspond to the nine speakers. The predictor sequences are matrices with 12 rows (one row for
each feature) and a varying number of columns (one column for each time step).

[XTrain,TTrain] = japaneseVowelsTrainData;
[XValidation,TValidation] = japaneseVowelsTestData;

View the first few training sequences.

XTrain(1:5)

ans=5×1 cell array
    {12x20 double}
    {12x26 double}
    {12x22 double}
    {12x20 double}
    {12x21 double}

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
xlabel("Time Step")
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),Location="northeastoutside")

4 Deep Learning with Time Series, Sequences, and Text

4-10



View the number of classes in the training data.

classes = categories(TTrain);
numClasses = numel(classes)

numClasses = 9

Define 1-D Convolutional Network Architecture

Define the 1-D convolutional neural network architecture.

• Specify the input size as the number of features of the input data.
• Specify two blocks of 1-D convolution, ReLU, and layer normalization layers, where the

convolutional layer has a filter size of 3. Specify 32 and 64 filters for the first and second
convolutional layers, respectively. For both convolutional layers, left-pad the inputs such that the
outputs have the same length (causal padding).

• To reduce the output of the convolutional layers to a single vector, use a 1-D global average
pooling layer.

• To map the output to a vector of probabilities, specify a fully connected layer with an output size
matching the number of classes, followed by a softmax layer and a classification layer.

filterSize = 3;
numFilters = 32;

layers = [ ...
    sequenceInputLayer(numFeatures)

 Sequence Classification Using 1-D Convolutions

4-11



    convolution1dLayer(filterSize,numFilters,Padding="causal")
    reluLayer
    layerNormalizationLayer
    convolution1dLayer(filterSize,2*numFilters,Padding="causal")
    reluLayer
    layerNormalizationLayer
    globalAveragePooling1dLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify Training Options

Specify the training options:

• Train using the Adam optimizer.
• Train with a mini-batch size of 27 for 15 epochs.
• Left-pad the sequences.
• Validate the network using the validation data.
• Monitor the training progress in a plot and suppress the verbose output.

miniBatchSize = 27;

options = trainingOptions("adam", ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=15, ...
    SequencePaddingDirection="left", ...
    ValidationData={XValidation,TValidation}, ...
    Plots="training-progress", ...
    Verbose=0);

Train Network

Train the network with the specified training options using the trainNetwork function.

net = trainNetwork(XTrain,TTrain,layers,options);

4 Deep Learning with Time Series, Sequences, and Text

4-12



Test Network

Classify the validation data using the same mini-batch size and sequence padding options used for
training.

YPred = classify(net,XValidation, ...
    MiniBatchSize=miniBatchSize, ...
    SequencePaddingDirection="left");

Calculate the classification accuracy of the predictions.

acc = mean(YPred == TValidation)

acc = 0.9514

Visualize the predictions in a confusion matrix.

confusionchart(TValidation,YPred)

 Sequence Classification Using 1-D Convolutions

4-13



References

[1] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using
Passing-through Regions.” Pattern Recognition Letters 20, no. 11–13 (November 1999): 1103–11.
https://doi.org/10.1016/S0167-8655(99)00077-X

[2] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. "Japanese Vowels Data Set." Distributed by UCI
Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also
convolution1dLayer | trainingOptions | trainNetwork | sequenceInputLayer |
maxPooling1dLayer | averagePooling1dLayer | globalMaxPooling1dLayer |
globalAveragePooling1dLayer

Related Examples
• “Sequence-to-Sequence Classification Using 1-D Convolutions” on page 4-122
• “Sequence Classification Using Deep Learning” on page 4-3
• “Train Sequence Classification Network Using Data With Imbalanced Classes” on page 4-112
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53

4 Deep Learning with Time Series, Sequences, and Text

4-14

https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels


• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Interpret Deep Learning Time-Series Classifications Using Grad-CAM” on page 5-25
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43

 Sequence Classification Using 1-D Convolutions

4-15



Time Series Forecasting Using Deep Learning

This example shows how to forecast time series data using a long short-term memory (LSTM)
network.

An LSTM network is a recurrent neural network (RNN) that processes input data by looping over
time steps and updating the RNN state. The RNN state contains information remembered over all
previous time steps. You can use an LSTM neural network to forecast subsequent values of a time
series or sequence using previous time steps as input. To train an LSTM neural network for time
series forecasting, train a regression LSTM neural network with sequence output, where the
responses (targets) are the training sequences with values shifted by one time step. In other words,
at each time step of the input sequence, the LSTM neural network learns to predict the value of the
next time step.

There are two methods of forecasting: open loop and closed loop forecasting.

• Open loop forecasting predicts the next time step in a sequence using only the input data. When
making predictions for subsequent time steps, you collect the true values from your data source
and use those as input. For example, say you want to predict the value for time step t of a
sequence using data collected in time steps 1 through t − 1. To make predictions for time step
t + 1, wait until you record the true value for time step t and use that as input to make the next
prediction. Use open loop forecasting when you have true values to provide to the RNN before
making the next prediction.

• Closed loop forecasting predicts subsequent time steps in a sequence by using the previous
predictions as input. In this case, the model does not require the true values to make the
prediction. For example, say you want to predict the values for time steps t through t + k of the
sequence using data collected in time steps 1 through t − 1 only. To make predictions for time step
i, use the predicted value for time step i− 1 as input. Use closed loop forecasting to forecast
multiple subsequent time steps or when you do not have the true values to provide to the RNN
before making the next prediction.

This figure shows an example sequence with forecasted values using closed loop prediction.

4 Deep Learning with Time Series, Sequences, and Text

4-16



This example uses the Waveform data set, which contains 2000 synthetically generated waveforms of
varying lengths with three channels. The example trains an LSTM neural network to forecast future
values of the waveforms given the values from previous time steps using both closed loop and open
loop forecasting.

Load Data

Load the example data from WaveformData.mat. The data is a numObservations-by-1 cell array of
sequences, where numObservations is the number of sequences. Each sequence is a
numChannels-by-numTimeSteps numeric array, where numChannels is the number of channels of
the sequence and numTimeSteps is the number of time steps of the sequence.

load WaveformData

View the sizes of the first few sequences.

data(1:5)

ans=5×1 cell array
    {3×103 double}
    {3×136 double}
    {3×140 double}
    {3×124 double}
    {3×127 double}

View the number of channels. To train the LSTM neural network, each sequence must have the same
number of channels.

 Time Series Forecasting Using Deep Learning

4-17



numChannels = size(data{1},1)

numChannels = 3

Visualize the first few sequences in a plot.

figure
tiledlayout(2,2)
for i = 1:4
    nexttile
    stackedplot(data{i}')

    xlabel("Time Step")
end

Partition the data into training and test sets. Use 90% of the observations for training and the
remainder for testing.

numObservations = numel(data);
idxTrain = 1:floor(0.9*numObservations);
idxTest = floor(0.9*numObservations)+1:numObservations;
dataTrain = data(idxTrain);
dataTest = data(idxTest);

Prepare Data for Training

To forecast the values of future time steps of a sequence, specify the targets as the training
sequences with values shifted by one time step. In other words, at each time step of the input

4 Deep Learning with Time Series, Sequences, and Text

4-18



sequence, the LSTM neural network learns to predict the value of the next time step. The predictors
are the training sequences without the final time step.

for n = 1:numel(dataTrain)
    X = dataTrain{n};
    XTrain{n} = X(:,1:end-1);
    TTrain{n} = X(:,2:end);
end

For a better fit and to prevent the training from diverging, normalize the predictors and targets to
have zero mean and unit variance. When you make predictions, you must also normalize the test data
using the same statistics as the training data. To easily calculate the mean and standard deviation
over all sequences, concatenate the sequences in the time dimension.

muX = mean(cat(2,XTrain{:}),2);
sigmaX = std(cat(2,XTrain{:}),0,2);

muT = mean(cat(2,TTrain{:}),2);
sigmaT = std(cat(2,TTrain{:}),0,2);

for n = 1:numel(XTrain)
    XTrain{n} = (XTrain{n} - muX) ./ sigmaX;
    TTrain{n} = (TTrain{n} - muT) ./ sigmaT;
end

Define LSTM Neural Network Architecture

Create an LSTM regression neural network.

• Use a sequence input layer with an input size that matches the number of channels of the input
data.

• Use an LSTM layer with 128 hidden units. The number of hidden units determines how much
information is learned by the layer. Using more hidden units can yield more accurate results but
can be more likely to lead to overfitting to the training data.

• To output sequences with the same number of channels as the input data, include a fully
connected layer with an output size that matches the number of channels of the input data.

• Finally, include a regression layer.

layers = [
    sequenceInputLayer(numChannels)
    lstmLayer(128)
    fullyConnectedLayer(numChannels)
    regressionLayer];

Specify Training Options

Specify the training options.

• Train using Adam optimization.
• Train for 200 epochs. For larger data sets, you might not need to train for as many epochs for a

good fit.
• In each mini-batch, left-pad the sequences so they have the same length. Left-padding prevents

the RNN from predicting padding values at the ends of sequences.
• Shuffle the data every epoch.

 Time Series Forecasting Using Deep Learning

4-19



• Display the training progress in a plot.
• Disable the verbose output.

options = trainingOptions("adam", ...
    MaxEpochs=200, ...
    SequencePaddingDirection="left", ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=0);

Train Recurrent Neural Network

Train the LSTM neural network with the specified training options using the trainNetwork
function.

net = trainNetwork(XTrain,TTrain,layers,options);

Test Recurrent Neural Network

Prepare the test data for prediction using the same steps as for the training data.

4 Deep Learning with Time Series, Sequences, and Text

4-20



Normalize the test data using the statistics calculated from the training data. Specify the targets as
the test sequences with values shifted by one time step and the predictors as the test sequences
without the final time step.

for n = 1:size(dataTest,1)
    X = dataTest{n};
    XTest{n} = (X(:,1:end-1) - muX) ./ sigmaX;
    TTest{n} = (X(:,2:end) - muT) ./ sigmaT;
end

Make predictions using the test data. Specify the same padding options as for training.

YTest = predict(net,XTest,SequencePaddingDirection="left");

To evaluate the accuracy, for each test sequence, calculate the root mean squared error (RMSE)
between the predictions and the target.

for i = 1:size(YTest,1)
    rmse(i) = sqrt(mean((YTest{i} - TTest{i}).^2,"all"));
end

Visualize the errors in a histogram. Lower values indicate greater accuracy.

figure
histogram(rmse)
xlabel("RMSE")
ylabel("Frequency")

 Time Series Forecasting Using Deep Learning

4-21



Calculate the mean RMSE over all test observations.

mean(rmse)

ans = single
    0.5080

Forecast Future Time Steps

Given an input time series or sequence, to forecast the values of multiple future time steps, use the
predictAndUpdateState function to predict time steps one at a time and update the RNN state at
each prediction. For each prediction, use the previous prediction as the input to the function.

Visualize one of the test sequences in a plot.

idx = 2;
X = XTest{idx};
T = TTest{idx};

figure
stackedplot(X',DisplayLabels="Channel " + (1:numChannels))
xlabel("Time Step")
title("Test Observation " + idx)

Open Loop Forecasting

Open loop forecasting predicts the next time step in a sequence using only the input data. When
making predictions for subsequent time steps, you collect the true values from your data source and

4 Deep Learning with Time Series, Sequences, and Text

4-22



use those as input. For example, say you want to predict the value for time step t of a sequence using
data collected in time steps 1 through t − 1. To make predictions for time step t + 1, wait until you
record the true value for time step t and use that as input to make the next prediction. Use open loop
forecasting when you have true values to provide to the RNN before making the next prediction.

Initialize the RNN state by first resetting the state using the resetState function, then make an
initial prediction using the first few time steps of the input data. Update the RNN state using the first
75 time steps of the input data.

net = resetState(net);
offset = 75;
[net,~] = predictAndUpdateState(net,X(:,1:offset));

To forecast further predictions, loop over time steps and update the RNN state using the
predictAndUpdateState function. Forecast values for the remaining time steps of the test
observation by looping over the time steps of the input data and using them as input to the RNN. The
first prediction is the value corresponding to the time step offset + 1.

numTimeSteps = size(X,2);
numPredictionTimeSteps = numTimeSteps - offset;
Y = zeros(numChannels,numPredictionTimeSteps);

for t = 1:numPredictionTimeSteps
    Xt = X(:,offset+t);
    [net,Y(:,t)] = predictAndUpdateState(net,Xt);
end

Compare the predictions with the target values.

figure
t = tiledlayout(numChannels,1);
title(t,"Open Loop Forecasting")

for i = 1:numChannels
    nexttile
    plot(T(i,:))
    hold on
    plot(offset:numTimeSteps,[T(i,offset) Y(i,:)],'--')
    ylabel("Channel " + i)
end

xlabel("Time Step")
nexttile(1)
legend(["Input" "Forecasted"])

 Time Series Forecasting Using Deep Learning

4-23



Closed Loop Forecasting

Closed loop forecasting predicts subsequent time steps in a sequence by using the previous
predictions as input. In this case, the model does not require the true values to make the prediction.
For example, say you want to predict the value for time steps t through t + k of the sequence using
data collected in time steps 1 through t − 1 only. To make predictions for time step i, use the
predicted value for time step i− 1 as input. Use closed loop forecasting to forecast multiple
subsequent time steps or when you do not have true values to provide to the RNN before making the
next prediction.

Initialize the RNN state by first resetting the state using the resetState function, then make an
initial prediction Z using the first few time steps of the input data. Update the RNN state using all
time steps of the input data.

net = resetState(net);
offset = size(X,2);
[net,Z] = predictAndUpdateState(net,X);

To forecast further predictions, loop over time steps and update the RNN state using the
predictAndUpdateState function. Forecast the next 200 time steps by iteratively passing the
previous predicted value to the RNN. Because the RNN does not require the input data to make any
further predictions, you can specify any number of time steps to forecast.

numPredictionTimeSteps = 200;
Xt = Z(:,end);
Y = zeros(numChannels,numPredictionTimeSteps);

4 Deep Learning with Time Series, Sequences, and Text

4-24



for t = 1:numPredictionTimeSteps
    [net,Y(:,t)] = predictAndUpdateState(net,Xt);
    Xt = Y(:,t);
end

Visualize the forecasted values in a plot.

numTimeSteps = offset + numPredictionTimeSteps;

figure
t = tiledlayout(numChannels,1);
title(t,"Closed Loop Forecasting")

for i = 1:numChannels
    nexttile
    plot(T(i,1:offset))
    hold on
    plot(offset:numTimeSteps,[T(i,offset) Y(i,:)],'--')
    ylabel("Channel " + i)
end

xlabel("Time Step")
nexttile(1)
legend(["Input" "Forecasted"])

 Time Series Forecasting Using Deep Learning

4-25



Closed loop forecasting allows you to forecast an arbitrary number of time steps, but can be less
accurate when compared to open loop forecasting because the RNN does not have access to the true
values during the forecasting process.

See Also
trainNetwork | trainingOptions | lstmLayer | sequenceInputLayer

Related Examples
• “Generate Text Using Deep Learning” on page 4-280
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-26



Train Speech Command Recognition Model Using Deep
Learning

This example shows how to train a deep learning model that detects the presence of speech
commands in audio. The example uses the Speech Commands Dataset [1] on page 4-38 to train a
convolutional neural network to recognize a set of commands.

To use a pretrained speech command recognition system, see “Speech Command Recognition Using
Deep Learning” (Audio Toolbox).

To run the example quickly, set speedupExample to true. To run the full example as published, set
speedupExample to false.

speedupExample = ;

Set the random seed for reproducibility.

rng default

Load Data

This example uses the Google Speech Commands Dataset [1] on page 4-38. Download and unzip the
data set.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","google_speech.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"google_speech");

Augment Data

The network should be able to not only recognize different spoken words but also to detect if the
audio input is silence or background noise.

The supporting function, augmentDataset on page 4-37, uses the long audio files in the
background folder of the Google Speech Commands Dataset to create one-second segments of
background noise. The function creates an equal number of background segments from each
background noise file and then splits the segments between the train and validation folders.

augmentDataset(dataset)

 Train Speech Command Recognition Model Using Deep Learning

4-27



Progress = 17 (%)
Progress = 33 (%)
Progress = 50 (%)
Progress = 67 (%)
Progress = 83 (%)
Progress = 100 (%)

Create Training Datastore

Create an audioDatastore (Audio Toolbox) that points to the training data set.

ads = audioDatastore(fullfile(dataset,"train"), ...
    IncludeSubfolders=true, ...
    FileExtensions=".wav", ...
    LabelSource="foldernames");

Specify the words that you want your model to recognize as commands. Label all files that are not
commands or background noise as unknown. Labeling words that are not commands as unknown
creates a group of words that approximates the distribution of all words other than the commands.
The network uses this group to learn the difference between commands and all other words.

To reduce the class imbalance between the known and unknown words and speed up processing, only
include a fraction of the unknown words in the training set.

Use subset (Audio Toolbox) to create a datastore that contains only the commands, the background
noise, and the subset of unknown words. Count the number of examples belonging to each category.

commands = categorical(["yes","no","up","down","left","right","on","off","stop","go"]);
background = categorical("background");

isCommand = ismember(ads.Labels,commands);
isBackground = ismember(ads.Labels,background);
isUnknown = ~(isCommand|isBackground);

includeFraction = 0.2; % Fraction of unknowns to include.
idx = find(isUnknown);
idx = idx(randperm(numel(idx),round((1-includeFraction)*sum(isUnknown))));
isUnknown(idx) = false;

ads.Labels(isUnknown) = categorical("unknown");

adsTrain = subset(ads,isCommand|isUnknown|isBackground);
adsTrain.Labels = removecats(adsTrain.Labels);

Create Validation Datastore

Create an audioDatastore (Audio Toolbox) that points to the validation data set. Follow the same
steps used to create the training datastore.

ads = audioDatastore(fullfile(dataset,"validation"), ...
    IncludeSubfolders=true, ...
    FileExtensions=".wav", ...
    LabelSource="foldernames");

isCommand = ismember(ads.Labels,commands);
isBackground = ismember(ads.Labels,background);
isUnknown = ~(isCommand|isBackground);

4 Deep Learning with Time Series, Sequences, and Text

4-28



includeFraction = 0.2; % Fraction of unknowns to include.
idx = find(isUnknown);
idx = idx(randperm(numel(idx),round((1-includeFraction)*sum(isUnknown))));
isUnknown(idx) = false;

ads.Labels(isUnknown) = categorical("unknown");

adsValidation = subset(ads,isCommand|isUnknown|isBackground);
adsValidation.Labels = removecats(adsValidation.Labels);

Visualize the training and validation label distributions.

figure(Units="normalized",Position=[0.2,0.2,0.5,0.5])

tiledlayout(2,1)

nexttile
histogram(adsTrain.Labels)
title("Training Label Distribution")
ylabel("Number of Observations")
grid on

nexttile
histogram(adsValidation.Labels)
title("Validation Label Distribution")
ylabel("Number of Observations")
grid on

Speed up the example by reducing the data set, if requested.

 Train Speech Command Recognition Model Using Deep Learning

4-29



if speedupExample
    numUniqueLabels = numel(unique(adsTrain.Labels)); %#ok<UNRCH> 
    % Reduce the dataset by a factor of 20
    adsTrain = splitEachLabel(adsTrain,round(numel(adsTrain.Files) / numUniqueLabels / 20));
    adsValidation = splitEachLabel(adsValidation,round(numel(adsValidation.Files) / numUniqueLabels / 20));
end

Prepare Data for Training

To prepare the data for efficient training of a convolutional neural network, convert the speech
waveforms to auditory-based spectrograms.

To speed up processing, you can distribute the feature extraction across multiple workers. Start a
parallel pool if you have access to Parallel Computing Toolbox™.

if canUseParallelPool && ~speedupExample
    useParallel = true;
    gcp;
else
    useParallel = false;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Extract Features

Define the parameters to extract auditory spectrograms from the audio input. segmentDuration is
the duration of each speech clip in seconds. frameDuration is the duration of each frame for
spectrum calculation. hopDuration is the time step between each spectrum. numBands is the
number of filters in the auditory spectrogram.

fs = 16e3; % Known sample rate of the data set.

segmentDuration = 1;
frameDuration = 0.025;
hopDuration = 0.010;

FFTLength = 512;
numBands = 50;

segmentSamples = round(segmentDuration*fs);
frameSamples = round(frameDuration*fs);
hopSamples = round(hopDuration*fs);
overlapSamples = frameSamples - hopSamples;

Create an audioFeatureExtractor (Audio Toolbox) object to perform the feature extraction.

afe = audioFeatureExtractor( ...
    SampleRate=fs, ...
    FFTLength=FFTLength, ...
    Window=hann(frameSamples,"periodic"), ...
    OverlapLength=overlapSamples, ...
    barkSpectrum=true);
setExtractorParameters(afe,"barkSpectrum",NumBands=numBands,WindowNormalization=false);

Define a series of transform (Audio Toolbox) on the audioDatastore (Audio Toolbox) to pad the
audio to a consistent length, extract the features, and then apply a logarithm.

4 Deep Learning with Time Series, Sequences, and Text

4-30



transform1 = transform(adsTrain,@(x)[zeros(floor((segmentSamples-size(x,1))/2),1);x;zeros(ceil((segmentSamples-size(x,1))/2),1)]);
transform2 = transform(transform1,@(x)extract(afe,x));
transform3 = transform(transform2,@(x){log10(x+1e-6)});

Use the readall (Audio Toolbox) function to read all data from the datastore. As each file is read, it
is passed through the transforms before the data is returned.

XTrain = readall(transform3,UseParallel=useParallel);

The output is a numFiles-by-1 cell array. Each element of the cell array corresponds to the auditory
spectrogram extracted from a file.

numFiles = numel(XTrain)

numFiles = 28463

[numHops,numBands,numChannels] = size(XTrain{1})

numHops = 98

numBands = 50

numChannels = 1

 Train Speech Command Recognition Model Using Deep Learning

4-31



Convert the cell array to a 4-dimensional array with auditory spectrograms along the fourth
dimension.

XTrain = cat(4,XTrain{:});

[numHops,numBands,numChannels,numFiles] = size(XTrain)

numHops = 98

numBands = 50

numChannels = 1

numFiles = 28463

Perform the feature extraction steps described above on the validation set.

transform1 = transform(adsValidation,@(x)[zeros(floor((segmentSamples-size(x,1))/2),1);x;zeros(ceil((segmentSamples-size(x,1))/2),1)]);
transform2 = transform(transform1,@(x)extract(afe,x));
transform3 = transform(transform2,@(x){log10(x+1e-6)});
XValidation = readall(transform3,UseParallel=useParallel);
XValidation = cat(4,XValidation{:});

For convenience, isolate the train and validation target labels.

TTrain = adsTrain.Labels;
TValidation = adsValidation.Labels;

Visualize Data

Plot the waveforms and auditory spectrograms of a few training samples. Play the corresponding
audio clips.

specMin = min(XTrain,[],"all");
specMax = max(XTrain,[],"all");
idx = randperm(numel(adsTrain.Files),3);
figure(Units="normalized",Position=[0.2,0.2,0.6,0.6]);

tiledlayout(2,3)
for ii = 1:3
    [x,fs] = audioread(adsTrain.Files{idx(ii)});

    nexttile(ii)
    plot(x)
    axis tight
    title(string(adsTrain.Labels(idx(ii))))
    
    nexttile(ii+3)
    spect = XTrain(:,:,1,idx(ii))';
    pcolor(spect)
    clim([specMin specMax])
    shading flat
    
    sound(x,fs)
    pause(2)
end

4 Deep Learning with Time Series, Sequences, and Text

4-32



Define Network Architecture

Create a simple network architecture as an array of layers. Use convolutional and batch
normalization layers, and downsample the feature maps "spatially" (that is, in time and frequency)
using max pooling layers. Add a final max pooling layer that pools the input feature map globally over
time. This enforces (approximate) time-translation invariance in the input spectrograms, allowing the
network to perform the same classification independent of the exact position of the speech in time.
Global pooling also significantly reduces the number of parameters in the final fully connected layer.
To reduce the possibility of the network memorizing specific features of the training data, add a small
amount of dropout to the input to the last fully connected layer.

The network is small, as it has only five convolutional layers with few filters. numF controls the
number of filters in the convolutional layers. To increase the accuracy of the network, try increasing
the network depth by adding identical blocks of convolutional, batch normalization, and ReLU layers.
You can also try increasing the number of convolutional filters by increasing numF.

To give each class equal total weight in the loss, use class weights that are inversely proportional to
the number of training examples in each class. When using the Adam optimizer to train the network,
the training algorithm is independent of the overall normalization of the class weights.

 Train Speech Command Recognition Model Using Deep Learning

4-33



classes = categories(TTrain);
classWeights = 1./countcats(TTrain);
classWeights = classWeights'/mean(classWeights);
numClasses = numel(classes);

timePoolSize = ceil(numHops/8);

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer([numHops,afe.FeatureVectorLength])
    
    convolution2dLayer(3,numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer([timePoolSize,1])
    dropoutLayer(dropoutProb)

    fullyConnectedLayer(numClasses)

4 Deep Learning with Time Series, Sequences, and Text

4-34



    softmaxLayer
    classificationLayer(Classes=classes,ClassWeights=classWeights)];

Specify Training Options

To define parameters for training, use trainingOptions. Use the Adam optimizer with a mini-batch
size of 128.

miniBatchSize = 128;
validationFrequency = floor(numel(TTrain)/miniBatchSize);
options = trainingOptions("adam", ...
    InitialLearnRate=3e-4, ...
    MaxEpochs=15, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData={XValidation,TValidation}, ...
    ValidationFrequency=validationFrequency);

Train Network

To train the network, use trainNetwork. If you do not have a GPU, then training the network can
take time.

trainedNet = trainNetwork(XTrain,TTrain,layers,options);

Evaluate Trained Network

To calculate the final accuracy of the network on the training and validation sets, use classify. The
network is very accurate on this data set. However, the training, validation, and test data all have
similar distributions that do not necessarily reflect real-world environments. This limitation

 Train Speech Command Recognition Model Using Deep Learning

4-35



particularly applies to the unknown category, which contains utterances of only a small number of
words.

YValidation = classify(trainedNet,XValidation);
validationError = mean(YValidation ~= TValidation);
YTrain = classify(trainedNet,XTrain);
trainError = mean(YTrain ~= TTrain);

disp(["Training error: " + trainError*100 + "%";"Validation error: " + validationError*100 + "%"])

    "Training error: 2.7263%"
    "Validation error: 6.3968%"

To plot the confusion matrix for the validation set, use confusionchart. Display the precision and
recall for each class by using column and row summaries.

figure(Units="normalized",Position=[0.2,0.2,0.5,0.5]);
cm = confusionchart(TValidation,YValidation, ...
    Title="Confusion Matrix for Validation Data", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
sortClasses(cm,[commands,"unknown","background"])

When working on applications with constrained hardware resources, such as mobile applications, it is
important to consider the limitations on available memory and computational resources. Compute the
total size of the network in kilobytes and test its prediction speed when using a CPU. The prediction
time is the time for classifying a single input image. If you input multiple images to the network,
these can be classified simultaneously, leading to shorter prediction times per image. When
classifying streaming audio, however, the single-image prediction time is the most relevant.

4 Deep Learning with Time Series, Sequences, and Text

4-36



for ii = 1:100
    x = randn([numHops,numBands]);
    predictionTimer = tic;
    [y,probs] = classify(trainedNet,x,ExecutionEnvironment="cpu");
    time(ii) = toc(predictionTimer);
end

disp(["Network size: " + whos("trainedNet").bytes/1024 + " kB"; ...
"Single-image prediction time on CPU: " + mean(time(11:end))*1000 + " ms"])

    "Network size: 292.2842 kB"
    "Single-image prediction time on CPU: 3.7237 ms"

Supporting Functions

Augment Dataset With Background Noise

function augmentDataset(datasetloc)
adsBkg = audioDatastore(fullfile(datasetloc,"background"));
fs = 16e3; % Known sample rate of the data set
segmentDuration = 1;
segmentSamples = round(segmentDuration*fs);

volumeRange = log10([1e-4,1]);

numBkgSegments = 4000;
numBkgFiles = numel(adsBkg.Files);
numSegmentsPerFile = floor(numBkgSegments/numBkgFiles);

fpTrain = fullfile(datasetloc,"train","background");
fpValidation = fullfile(datasetloc,"validation","background");

if ~datasetExists(fpTrain)

    % Create directories
    mkdir(fpTrain)
    mkdir(fpValidation)

    for backgroundFileIndex = 1:numel(adsBkg.Files)
        [bkgFile,fileInfo] = read(adsBkg);
        [~,fn] = fileparts(fileInfo.FileName);

        % Determine starting index of each segment
        segmentStart = randi(size(bkgFile,1)-segmentSamples,numSegmentsPerFile,1);

        % Determine gain of each clip
        gain = 10.^((volumeRange(2)-volumeRange(1))*rand(numSegmentsPerFile,1) + volumeRange(1));

        for segmentIdx = 1:numSegmentsPerFile

            % Isolate the randomly chosen segment of data.
            bkgSegment = bkgFile(segmentStart(segmentIdx):segmentStart(segmentIdx)+segmentSamples-1);

            % Scale the segment by the specified gain.
            bkgSegment = bkgSegment*gain(segmentIdx);

            % Clip the audio between -1 and 1.

 Train Speech Command Recognition Model Using Deep Learning

4-37



            bkgSegment = max(min(bkgSegment,1),-1);

            % Create a file name.
            afn = fn + "_segment" + segmentIdx + ".wav";

            % Randomly assign background segment to either the train or
            % validation set.
            if rand > 0.85 % Assign 15% to validation
                dirToWriteTo = fpValidation;
            else % Assign 85% to train set.
                dirToWriteTo = fpTrain;
            end

            % Write the audio to the file location.
            ffn = fullfile(dirToWriteTo,afn);
            audiowrite(ffn,bkgSegment,fs)

        end

        % Print progress
        fprintf('Progress = %d (%%)\n',round(100*progress(adsBkg)))

    end
end
end

References

[1] Warden P. "Speech Commands: A public dataset for single-word speech recognition", 2017.
Available from https://storage.googleapis.com/download.tensorflow.org/data/
speech_commands_v0.01.tar.gz. Copyright Google 2017. The Speech Commands Dataset is licensed
under the Creative Commons Attribution 4.0 license, available here: https://creativecommons.org/
licenses/by/4.0/legalcode.

References
[1] Warden P. "Speech Commands: A public dataset for single-word speech recognition", 2017.

Available from http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz. Copyright
Google 2017. The Speech Commands Dataset is licensed under the Creative Commons
Attribution 4.0 license, available here: https://creativecommons.org/licenses/by/4.0/legalcode.

See Also
trainNetwork | classify | analyzeNetwork

More About
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-38

https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://creativecommons.org/licenses/by/4.0/legalcode


Sequence-to-Sequence Classification Using Deep Learning

This example shows how to classify each time step of sequence data using a long short-term memory
(LSTM) network.

To train a deep neural network to classify each time step of sequence data, you can use a sequence-
to-sequence LSTM network. A sequence-to-sequence LSTM network enables you to make different
predictions for each individual time step of the sequence data.

This example uses sensor data obtained from a smartphone worn on the body. The example trains an
LSTM network to recognize the activity of the wearer given time series data representing
accelerometer readings in three different directions. The training data contains time series data for
seven people. Each sequence has three features and varies in length. The data set contains six
training observations and one test observation.

Load Sequence Data

Load the human activity recognition data. The training data contains six sequences of sensor data
obtained from a smartphone worn on the body. Each sequence has three features and varies in
length. The three features correspond to the accelerometer readings in three different directions.

load HumanActivityTrain
XTrain

XTrain=6×1 cell array
    {3×64480 double}
    {3×53696 double}
    {3×56416 double}
    {3×50688 double}
    {3×51888 double}
    {3×54256 double}

Visualize one training sequence in a plot. Plot the first feature of the first training sequence and color
the plot according to the corresponding activity.

X = XTrain{1}(1,:);
classes = categories(YTrain{1});

figure
for j = 1:numel(classes)
    label = classes(j);
    idx = find(YTrain{1} == label);
    hold on
    plot(idx,X(idx))
end
hold off

xlabel("Time Step")
ylabel("Acceleration")
title("Training Sequence 1, Feature 1")
legend(classes,'Location','northwest')

 Sequence-to-Sequence Classification Using Deep Learning

4-39



Define LSTM Network Architecture

Define the LSTM network architecture. Specify the input to be sequences of size 3 (the number of
features of the input data). Specify an LSTM layer with 200 hidden units, and output the full
sequence. Finally, specify five classes by including a fully connected layer of size 5, followed by a
softmax layer and a classification layer.

numFeatures = 3;
numHiddenUnits = 200;
numClasses = 5;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Set the solver to 'adam'. Train for 60 epochs. To prevent the gradients
from exploding, set the gradient threshold to 2.

options = trainingOptions('adam', ...
    'MaxEpochs',60, ...
    'GradientThreshold',2, ...
    'Verbose',0, ...
    'Plots','training-progress');

4 Deep Learning with Time Series, Sequences, and Text

4-40



Train the LSTM network with the specified training options using trainNetwork. Each mini-batch
contains the whole training set, so the plot is updated once per epoch. The sequences are very long,
so it might take some time to process each mini-batch and update the plot.

net = trainNetwork(XTrain,YTrain,layers,options);

Test LSTM Network

Load the test data and classify the activity at each time step.

Load the human activity test data. XTest contains a single sequence of dimension 3. YTest contains
sequence of categorical labels corresponding to the activity at each time step.

load HumanActivityTest
figure
plot(XTest{1}')
xlabel("Time Step")
legend("Feature " + (1:numFeatures))
title("Test Data")

 Sequence-to-Sequence Classification Using Deep Learning

4-41



Classify the test data using classify.

YPred = classify(net,XTest{1});

Alternatively, you can make predictions one time step at a time by using classifyAndUpdateState.
This is useful when you have the values of the time steps arriving in a stream. Usually, it is faster to
make predictions on full sequences when compared to making predictions one time step at a time.
For an example showing how to forecast future time steps by updating the network between single
time step predictions, see “Time Series Forecasting Using Deep Learning” on page 4-16.

Calculate the accuracy of the predictions.

acc = sum(YPred == YTest{1})./numel(YTest{1})

acc = 0.9998

Compare the predictions with the test data by using a plot.

figure
plot(YPred,'.-')
hold on
plot(YTest{1})
hold off

xlabel("Time Step")
ylabel("Activity")
title("Predicted Activities")
legend(["Predicted" "Test Data"])

4 Deep Learning with Time Series, Sequences, and Text

4-42



See Also
trainNetwork | trainingOptions | lstmLayer | sequenceInputLayer

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Train Sequence Classification Network Using Data With Imbalanced Classes” on page 4-112
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

 Sequence-to-Sequence Classification Using Deep Learning

4-43



Sequence-to-Sequence Regression Using Deep Learning

This example shows how to predict the remaining useful life (RUL) of engines by using deep learning.

To train a deep neural network to predict numeric values from time series or sequence data, you can
use a long short-term memory (LSTM) network.

This example uses the Turbofan Engine Degradation Simulation Data Set as described in [1]. The
example trains an LSTM network to predict the remaining useful life of an engine (predictive
maintenance), measured in cycles, given time series data representing various sensors in the engine.
The training data contains simulated time series data for 100 engines. Each sequence varies in length
and corresponds to a full run to failure (RTF) instance. The test data contains 100 partial sequences
and corresponding values of the remaining useful life at the end of each sequence.

The data set contains 100 training observations and 100 test observations.

Download Data

Download and unzip the Turbofan Engine Degradation Simulation data set.

Each time series of the Turbofan Engine Degradation Simulation data set represents a different
engine. Each engine starts with unknown degrees of initial wear and manufacturing variation. The
engine is operating normally at the start of each time series, and develops a fault at some point
during the series. In the training set, the fault grows in magnitude until system failure.

The data contains a ZIP-compressed text files with 26 columns of numbers, separated by spaces. Each
row is a snapshot of data taken during a single operational cycle, and each column is a different
variable. The columns correspond to the following:

• Column 1 – Unit number
• Column 2 – Time in cycles
• Columns 3–5 – Operational settings
• Columns 6–26 – Sensor measurements 1–21

Create a directory to store the Turbofan Engine Degradation Simulation data set.

dataFolder = fullfile(tempdir,"turbofan");
if ~exist(dataFolder,'dir')
    mkdir(dataFolder);
end

Download and extract the Turbofan Engine Degradation Simulation data set.

filename = matlab.internal.examples.downloadSupportFile("nnet","data/TurbofanEngineDegradationSimulationData.zip");
unzip(filename,dataFolder)

Prepare Training Data

Load the data using the function processTurboFanDataTrain attached to this example. The
function processTurboFanDataTrain extracts the data from filenamePredictors and returns
the cell arrays XTrain and YTrain, which contain the training predictor and response sequences.

filenamePredictors = fullfile(dataFolder,"train_FD001.txt");
[XTrain,YTrain] = processTurboFanDataTrain(filenamePredictors);

4 Deep Learning with Time Series, Sequences, and Text

4-44



Remove Features with Constant Values

Features that remain constant for all time steps can negatively impact the training. Find the rows of
data that have the same minimum and maximum values, and remove the rows.

m = min([XTrain{:}],[],2);
M = max([XTrain{:}],[],2);
idxConstant = M == m;

for i = 1:numel(XTrain)
    XTrain{i}(idxConstant,:) = [];
end

View the number of remaining features in the sequences.

numFeatures = size(XTrain{1},1)

numFeatures = 17

Normalize Training Predictors

Normalize the training predictors to have zero mean and unit variance. To calculate the mean and
standard deviation over all observations, concatenate the sequence data horizontally.

mu = mean([XTrain{:}],2);
sig = std([XTrain{:}],0,2);

for i = 1:numel(XTrain)
    XTrain{i} = (XTrain{i} - mu) ./ sig;
end

Clip Responses

To learn more from the sequence data when the engines are close to failing, clip the responses at the
threshold 150. This makes the network treat instances with higher RUL values as equal.

thr = 150;
for i = 1:numel(YTrain)
    YTrain{i}(YTrain{i} > thr) = thr;
end

This figure shows the first observation and the corresponding clipped response.

 Sequence-to-Sequence Regression Using Deep Learning

4-45



Prepare Data for Padding

To minimize the amount of padding added to the mini-batches, sort the training data by sequence
length. Then, choose a mini-batch size which divides the training data evenly and reduces the amount
of padding in the mini-batches.

Sort the training data by sequence length.

for i=1:numel(XTrain)
    sequence = XTrain{i};
    sequenceLengths(i) = size(sequence,2);
end

[sequenceLengths,idx] = sort(sequenceLengths,'descend');
XTrain = XTrain(idx);
YTrain = YTrain(idx);

View the sorted sequence lengths in a bar chart.

figure
bar(sequenceLengths)
xlabel("Sequence")
ylabel("Length")
title("Sorted Data")

4 Deep Learning with Time Series, Sequences, and Text

4-46



Choose a mini-batch size which divides the training data evenly and reduces the amount of padding in
the mini-batches. Specify a mini-batch size of 20. This figure illustrates the padding added to the
unsorted and sorted sequences.

miniBatchSize = 20;

 Sequence-to-Sequence Regression Using Deep Learning

4-47



Define Network Architecture

Define the network architecture. Create an LSTM network that consists of an LSTM layer with 200
hidden units, followed by a fully connected layer of size 50 and a dropout layer with dropout
probability 0.5.

numResponses = size(YTrain{1},1);
numHiddenUnits = 200;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(50)
    dropoutLayer(0.5)
    fullyConnectedLayer(numResponses)
    regressionLayer];

Specify the training options. Train for 60 epochs with mini-batches of size 20 using the solver
'adam'. Specify the learning rate 0.01. To prevent the gradients from exploding, set the gradient
threshold to 1. To keep the sequences sorted by length, set 'Shuffle' to 'never'.

maxEpochs = 60;
miniBatchSize = 20;

options = trainingOptions('adam', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'InitialLearnRate',0.01, ...
    'GradientThreshold',1, ...
    'Shuffle','never', ...
    'Plots','training-progress',...
    'Verbose',0);

Train the Network

Train the network using trainNetwork.

net = trainNetwork(XTrain,YTrain,layers,options);

4 Deep Learning with Time Series, Sequences, and Text

4-48



Test the Network

Prepare the test data using the function processTurboFanDataTest attached to this example. The
function processTurboFanDataTest extracts the data from filenamePredictors and
filenameResponses and returns the cell arrays XTest and YTest, which contain the test predictor
and response sequences, respectively.

filenamePredictors = fullfile(dataFolder,"test_FD001.txt");
filenameResponses = fullfile(dataFolder,"RUL_FD001.txt");
[XTest,YTest] = processTurboFanDataTest(filenamePredictors,filenameResponses);

Remove features with constant values using idxConstant calculated from the training data.
Normalize the test predictors using the same parameters as in the training data. Clip the test
responses at the same threshold used for the training data.

for i = 1:numel(XTest)
    XTest{i}(idxConstant,:) = [];
    XTest{i} = (XTest{i} - mu) ./ sig;
    YTest{i}(YTest{i} > thr) = thr;
end

Make predictions on the test data using predict. To prevent the function from adding padding to the
data, specify the mini-batch size 1.

YPred = predict(net,XTest,'MiniBatchSize',1);

The LSTM network makes predictions on the partial sequence one time step at a time. At each time
step, the network predicts using the value at this time step, and the network state calculated from the

 Sequence-to-Sequence Regression Using Deep Learning

4-49



previous time steps only. The network updates its state between each prediction. The predict
function returns a sequence of these predictions. The last element of the prediction corresponds to
the predicted RUL for the partial sequence.

Alternatively, you can make predictions one time step at a time by using predictAndUpdateState.
This is useful when you have the values of the time steps arriving in a stream. Usually, it is faster to
make predictions on full sequences when compared to making predictions one time step at a time.
For an example showing how to forecast future time steps by updating the network between single
time step predictions, see “Time Series Forecasting Using Deep Learning” on page 4-16.

Visualize some of the predictions in a plot.

idx = randperm(numel(YPred),4);
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    
    plot(YTest{idx(i)},'--')
    hold on
    plot(YPred{idx(i)},'.-')
    hold off
    
    ylim([0 thr + 25])
    title("Test Observation " + idx(i))
    xlabel("Time Step")
    ylabel("RUL")
end
legend(["Test Data" "Predicted"],'Location','southeast')

4 Deep Learning with Time Series, Sequences, and Text

4-50



For a given partial sequence, the predicted current RUL is the last element of the predicted
sequences. Calculate the root-mean-square error (RMSE) of the predictions, and visualize the
prediction error in a histogram.

for i = 1:numel(YTest)
    YTestLast(i) = YTest{i}(end);
    YPredLast(i) = YPred{i}(end);
end
figure
rmse = sqrt(mean((YPredLast - YTestLast).^2))

rmse = single
    20.7202

histogram(YPredLast - YTestLast)
title("RMSE = " + rmse)
ylabel("Frequency")
xlabel("Error")

 Sequence-to-Sequence Regression Using Deep Learning

4-51



References

1 Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. "Damage propagation modeling for
aircraft engine run-to-failure simulation." In Prognostics and Health Management, 2008. PHM
2008. International Conference on, pp. 1-9. IEEE, 2008.

See Also
trainNetwork | trainingOptions | lstmLayer | sequenceInputLayer |
predictAndUpdateState

See Also

Related Examples
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Sequence Classification Using Deep Learning” on page 4-3
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2
• “Choose Training Configurations for LSTM Using Bayesian Optimization” on page 6-60

4 Deep Learning with Time Series, Sequences, and Text

4-52



Sequence-to-One Regression Using Deep Learning

This example shows how to predict the frequency of a waveform using a long short-term memory
(LSTM) neural network.

You can use an LSTM neural network to predict a numeric response of a sequence using a training
set of sequences and target values. An LSTM network is a recurrent neural network (RNN) that
processes input data by looping over time steps and updating the network state. The network state
contains information remembered over previous time steps. Examples of numeric responses of a
sequence include:

• Properties of the sequence, such as its frequency, maximum value, and mean.
• Values of past or future time steps of the sequence.

This example trains a sequence-to-one regression LSTM network using the Waveform data set, which
contains 1000 synthetically generated waveforms of varying lengths with three channels. To
determine the frequency of a waveform using conventional methods, see fft.

Load Sequence Data

Load the example data from WaveformData.mat. The data is a numObservations-by-1 cell array of
sequences, where numObservations is the number of sequences. Each sequence is a
numChannels-by-numTimeSteps numeric array, where numChannels is the number of channels of
the sequence and numTimeSteps is the number of time steps in the sequence. The corresponding
targets are in a numObservations-by-numResponses numeric array of the frequencies of the
waveforms, where numResponses is the number of channels of the targets.

load WaveformData

View the number of observations.

numObservations = numel(data)

numObservations = 1000

View the sizes of the first few sequences and the corresponding frequencies.

data(1:4)

ans=4×1 cell array
    {3×103 double}
    {3×136 double}
    {3×140 double}
    {3×124 double}

freq(1:4,:)

ans = 4×1

    5.8922
    2.2557
    4.5250
    4.4418

 Sequence-to-One Regression Using Deep Learning 

4-53



View the number of channels of the sequences. For network training, each sequence must have the
same number of channels.

numChannels = size(data{1},1)

numChannels = 3

View the number of responses (the number of channels of the targets).

numResponses = size(freq,2)

numResponses = 1

Visualize the first few sequences in plots.

figure
tiledlayout(2,2)
for i = 1:4
    nexttile
    stackedplot(data{i}', DisplayLabels="Channel " + (1:numChannels))

    xlabel("Time Step")
    title("Frequency: " + freq(i))
end

Prepare Data for Training

Set aside data for validation and testing. Partition the data into a training set containing 80% of the
data, a validation set containing 10% of the data, and a test set containing the remaining 10% of the
data.

4 Deep Learning with Time Series, Sequences, and Text

4-54



[idxTrain,idxValidation,idxTest] = trainingPartitions(numObservations, [0.8 0.1 0.1]);

XTrain = data(idxTrain);
XValidation = data(idxValidation);
XTest = data(idxTest);

TTrain = freq(idxTrain);
TValidation = freq(idxValidation);
TTest = freq(idxTest);

Define LSTM Network Architecture

Create an LSTM regression network.

• Use a sequence input layer with an input size that matches the number of channels of the input
data.

• For a better fit and to prevent the training from diverging, set the Normalization option of the
sequence input layer to "zscore". This normalizes the sequence data to have zero mean and unit
variance.

• Use an LSTM layer with 100 hidden units. The number of hidden units determines how much
information is learned by the layer. Larger values can yield more accurate results but can be more
susceptible to overfitting to the training data.

• To output a single time step for each sequence, set the OutputMode option of the LSTM layer to
"last".

• To specify the number of values to predict, include a fully connected layer with a size matching
the number of predictors, followed by a regression layer.

numHiddenUnits = 100;

layers = [ ...
    sequenceInputLayer(numChannels, Normalization="zscore")
    lstmLayer(numHiddenUnits, OutputMode="last")
    fullyConnectedLayer(numResponses)
    regressionLayer]

layers = 
  4×1 Layer array with layers:

     1   ''   Sequence Input      Sequence input with 3 dimensions
     2   ''   LSTM                LSTM with 100 hidden units
     3   ''   Fully Connected     1 fully connected layer
     4   ''   Regression Output   mean-squared-error

Specify Training Options

Specify the training options.

• Train using the Adam optimizer.
• Train for 250 epochs. For larger data sets, you might not need to train for as many epochs for a

good fit.
• Specify the sequences and responses used for validation.
• Output the network that gives the best, i.e. lowest, validation loss.
• Set the learning rate to 0.005.

 Sequence-to-One Regression Using Deep Learning 

4-55



• Truncate the sequences in each mini-batch to have the same length as the shortest sequence.
Truncating the sequences ensures that no padding is added, at the cost of discarding data. For
sequences where all of the time steps in the sequence are likely to contain important information,
truncation can prevent the network from achieving a good fit.

• Display the training process in a plot.
• Disable the verbose output.

options = trainingOptions("adam", ...
    MaxEpochs=250, ...
    ValidationData={XValidation TValidation}, ...
    OutputNetwork="best-validation-loss", ...
    InitialLearnRate=0.005, ...
    SequenceLength="shortest", ...
    Plots="training-progress", ...
    Verbose= false);

Train LSTM Network

Train the LSTM network with the specified training options using the trainNetwork function.

net = trainNetwork(XTrain, TTrain, layers, options);

Test LSTM Network

Make predictions using the test data.

YTest = predict(net,XTest, SequenceLength="shortest");

Visualize the first few predictions in a plot.

figure
tiledlayout(2,2)

4 Deep Learning with Time Series, Sequences, and Text

4-56



for i = 1:4
    nexttile
    stackedplot(XTest{i}',DisplayLabels="Channel " + (1:numChannels))

    xlabel("Time Step")
    title("Predicted Frequency: " + string(YTest(i)))
end

Visualize the mean squared errors in a histogram.

figure
histogram(mean((TTest - YTest).^2,2))
xlabel("Error")
ylabel("Frequency")

 Sequence-to-One Regression Using Deep Learning 

4-57



Calculate the overall root mean squared error.

rmse = sqrt(mean((YTest-TTest).^2))

rmse = single
    0.6865

Plot the predicted frequencies against the actual frequencies.

figure
scatter(YTest,TTest, "b+");
xlabel("Predicted Frequency")
ylabel("Actual Frequency")
hold on

m = min(freq);
M=max(freq);
xlim([m M])
ylim([m M])
plot([m M], [m M], "r--")

4 Deep Learning with Time Series, Sequences, and Text

4-58



See Also
trainNetwork | trainingOptions | lstmLayer | sequenceInputLayer | predict

See Also

Related Examples
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence Classification Using Deep Learning” on page 4-3
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2
• “Choose Training Configurations for LSTM Using Bayesian Optimization” on page 6-60

 Sequence-to-One Regression Using Deep Learning 

4-59



Train Network with Complex-Valued Data

This example shows how to predict the frequency of a complex-valued waveform using a 1-D
convolutional neural network.

To pass complex-valued data to a neural network, you can use the input layer to split the complex
values into their real and imaginary parts before it passes the data to the subsequent layers in the
network. When the input layer splits the input data in this way, the layer outputs the split data as
extra channels. This diagram shows how complex-valued data flows through a convolutional neural
network.

To split the complex-valued data into its real and imaginary parts as its input to a network, set the
SplitComplexInputs option of the network input layer to 1 (true).

This example trains a sequence-to-one regression network using the Complex Waveform data set,
which contains 500 synthetically generated complex-valued waveforms of varying lengths with two
channels. The network trained in this example predicts the frequency of the waveforms.

Load Sequence Data

Load the example data from ComplexWaveformData.mat. The data is a numObservations-by-1
cell array of sequences, where numObservations is the number of sequences. Each sequence is a
numChannels-by-numTimeSteps complex-valued array, where numChannels is the number of
channels of the sequence and numTimeSteps is the number of time steps in the sequence. The
corresponding targets are in a numObservations-by-numResponses numeric array of the
frequencies of the waveforms, where numResponses is the number of channels of the targets.

load ComplexWaveformData

View the number of observations.

numObservations = numel(data)

numObservations = 500

View the sizes of the first few sequences and the corresponding frequencies.

data(1:4)

ans=4×1 cell array
    {2×157 double}
    {2×112 double}
    {2×102 double}

4 Deep Learning with Time Series, Sequences, and Text

4-60



    {2×146 double}

freq(1:4,:)

ans = 4×1

    5.6232
    2.1981
    4.6921
    4.5805

View the number of channels of the sequences. For network training, each sequence must have the
same number of channels.

numChannels = size(data{1},1)

numChannels = 2

View the number of responses (the number of channels of the targets).

numResponses = size(freq,2)

numResponses = 1

Visualize the first few sequences in plots.

displayLabels = [ ...
    "Real Part" + newline + "Channel " + string(1:numChannels), ...
    "Imaginary Part" + newline + "Channel " + string(1:numChannels)];

figure
tiledlayout(2,2)
for i = 1:4
    nexttile

    stackedplot([real(data{i}') imag(data{i}')],DisplayLabels=displayLabels)
    
    xlabel("Time Step")
    title("Frequency: " + freq(i))
end

 Train Network with Complex-Valued Data

4-61



Prepare Data for Training

Set aside data for validation and testing. Partition the data into a training set containing 80% of the
data, a validation set containing 10% of the data, and a test set containing the remaining 10% of the
data. To partition the data, use the trainingPartitions function, attached to this example as a
supporting file. To access this file, open the example as a live script.

[idxTrain,idxValidation,idxTest] = trainingPartitions(numObservations, [0.8 0.1 0.1]);

XTrain = data(idxTrain);
XValidation = data(idxValidation);
XTest = data(idxTest);

TTrain = freq(idxTrain);
TValidation = freq(idxValidation);
TTest = freq(idxTest);

To help check the network is valid for the shorter training sequences, you can pass the length of the
shortest sequence to the sequence input layer of the network. Calculate the length of the shortest
training sequence.

for n = 1:numel(XTrain)
    sequenceLengths(n) = size(XTrain{n},2);
end
minLength = min(sequenceLengths)

minLength = 76

4 Deep Learning with Time Series, Sequences, and Text

4-62



Define 1-D Convolutional Network Architecture

Define the 1-D convolutional neural network architecture.

• Specify a sequence input layer with input size matching the number of features of the input data.
• To split the input data into its real and imaginary parts, set the SplitComplexInputs option of

the input layer to 1 (true).
• To help check the network is valid for the shorter training sequences, set the MinLength option to

the length of the shortest training sequence.
• Specify two blocks of 1-D convolution, ReLU, and layer normalization layers, where the

convolutional layer has a filter size of 5. Specify 32 and 64 filters for the first and second
convolutional layers, respectively. For both convolutional layers, left-pad the inputs such that the
outputs have the same length (causal padding).

• To reduce the output of the convolutional layers to a single vector, use a 1-D global average
pooling layer.

• To specify the number of values to predict, include a fully connected layer with a size matching
the number of responses, followed by a regression layer.

filterSize = 5;
numFilters = 32;

layers = [ ...
    sequenceInputLayer(numChannels,SplitComplexInputs=true,MinLength=minLength)
    convolution1dLayer(filterSize,numFilters,Padding="causal")
    reluLayer
    layerNormalizationLayer
    convolution1dLayer(filterSize,2*numFilters,Padding="causal")
    reluLayer
    layerNormalizationLayer
    globalAveragePooling1dLayer
    fullyConnectedLayer(numResponses)
    regressionLayer];

Specify Training Options

Specify the training options.

• Train using the Adam optimizer.
• Train for 250 epochs. For larger data sets, you might not need to train for as many epochs for a

good fit.
• Specify the sequences and responses used for validation.
• Output the network that gives the lowest validation loss.
• Display the training process in a plot.
• Disable the verbose output.

options = trainingOptions("adam", ...
    MaxEpochs=250, ...
    ValidationData={XValidation, TValidation}, ...
    OutputNetwork="best-validation-loss", ...
    Plots="training-progress", ...
    Verbose=false);

 Train Network with Complex-Valued Data

4-63



Train Network

Train the network with the specified training options using the trainNetwork function.

net = trainNetwork(XTrain,TTrain,layers,options);

Test Network

Make predictions using the test data.

YTest = predict(net,XTest,SequencePaddingDirection="left");

Visualize the first few predictions in a plot.

displayLabels = [ ...
    "Real Part" + newline + "Channel " + string(1:numChannels), ...
    "Imaginary Part" + newline + "Channel " + string(1:numChannels)];

figure
tiledlayout(2,2)
for i = 1:4
    nexttile

4 Deep Learning with Time Series, Sequences, and Text

4-64



    s(i) = stackedplot([real(XTest{i}') imag(XTest{i}')], DisplayLabels=displayLabels)
    
    xlabel("Time Step")
    title("Frequency: " + freq(i))
end

Visualize the mean squared errors in a histogram.

figure
histogram(mean((TTest - YTest).^2,2))
xlabel("Error")
ylabel("Number of Predictions")

 Train Network with Complex-Valued Data

4-65



Calculate the overall root mean squared error.

rmse = sqrt(mean((YTest-TTest).^2))

rmse = single
    0.6642

Plot the predicted frequencies against the target frequencies.

figure
scatter(YTest,TTest,"+");
xlabel("Predicted Frequency")
ylabel("Target Frequency")
hold on

m = min(freq);
M = max(freq);
xlim([m M])
ylim([m M])
plot([m M], [m M], "--")

4 Deep Learning with Time Series, Sequences, and Text

4-66



See Also
convolution1dLayer | trainingOptions | trainNetwork | sequenceInputLayer |
regressionLayer | predict

Related Examples
• “Sequence Classification Using 1-D Convolutions” on page 4-10
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53

 Train Network with Complex-Valued Data

4-67



Train Network with LSTM Projected Layer

Train a deep learning network with an LSTM projected layer for sequence-to-label classification.

To compress a deep learning network, you can use projected layers. The layer introduces learnable
projector matrices Q, replaces multiplications of the form Wx, where W is a learnable matrix, with
the multiplication WQQ⊤x, and stores Q and W ′ = WQ instead of storing W. Projecting x into a lower
dimensional space using Q typically requires less memory to store the learnable parameters and can
have similarly strong prediction accuracy.

Reducing the number of learnable parameters by projecting an LSTM layer rather than reducing the
number of hidden units of the LSTM layer maintains the output size of the layer and, in turn, the sizes
of the downstream layers, which can result in better prediction accuracy.

These charts compare the test accuracy and the number of learnable parameters of the LSTM
network and the projected LSTM network that you train in this example.

In this example, you train an LSTM network for sequence classification, then train an equivalent
network with an LSTM projected layer. You then compare the test accuracy and the number of
learnable parameters for each of the networks.

Load Training Data

Load the Japanese Vowels data set described in [1 on page 4-76] and [2 on page 4-76]. XTrain is a
cell array containing 270 sequences of varying length with 12 features corresponding to LPC

4 Deep Learning with Time Series, Sequences, and Text

4-68



cepstrum coefficients. TTrain is a categorical vector of labels 1, 2, ..., 9. The entries in XTrain are
matrices with 12 rows (one row for each feature) and a varying number of columns (one column for
each time step).

[XTrain,TTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),Location="northeastoutside")

Define Network Architecture

Define the LSTM network architecture.

• Specify a sequence input layer with an input size matching the number of features of the input
data.

• Specify an LSTM layer with 100 hidden units that outputs the last element of the sequence.
• Specify a fully connected layer of a size equal to the number of classes, followed by a softmax

layer and a classification layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

 Train Network with LSTM Projected Layer

4-69



layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,OutputMode="last")
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify Training Options

Specify the training options.

• Train using the Adam solver.
• Train with a mini-batch size of 27 for 50 epochs.
• Because the mini-batches are small with short sequences, the CPU is better suited for training.

Train using the CPU.
• Display the training progress in a plot and suppress the verbose output.

maxEpochs = 50;
miniBatchSize = 27;

options = trainingOptions("adam", ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=maxEpochs, ...
    ExecutionEnvironment="cpu", ...
    Plots="training-progress", ...
    Verbose=false);

Train Network

Train the LSTM network with the specified training options.

net = trainNetwork(XTrain,TTrain,layers,options);

4 Deep Learning with Time Series, Sequences, and Text

4-70



Test Network

Calculate the classification accuracy of the predictions on the test data.

[XTest,TTest] = japaneseVowelsTestData;
YTest = classify(net,XTest,MiniBatchSize=miniBatchSize);
acc = sum(YTest == TTest)./numel(TTest)

acc = 0.9297

View the number of learnables of the network using the analyzeNetwork function.

analyzeNetwork(net)

 Train Network with LSTM Projected Layer

4-71



In order to compare the total number of learnable parameters of each network, store the total
number of learnable parameters in a variable.

totalLearnables = 46100;

Train Projected LSTM Network

Create an identical network with an LSTM projected layer in place of the LSTM layer.

For the LSTM projected layer:

• Specify the same number of hidden units as the LSTM layer
• Specify an output projector size of 25% of the number of hidden units.
• Specify an input projector size of 75% of the input size.
• Ensure that the output and input projector sizes are positive by taking the maximum of the sizes

and 1.

outputProjectorSize = max(1,floor(0.25*numHiddenUnits));
inputProjectorSize = max(1,floor(0.75*inputSize));

layersProjected = [ ...
    sequenceInputLayer(inputSize)
    lstmProjectedLayer(numHiddenUnits,outputProjectorSize,inputProjectorSize,OutputMode="last")
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Train the projected LSTM network with the same data and training options.

netProjected = trainNetwork(XTrain,TTrain,layersProjected,options);

4 Deep Learning with Time Series, Sequences, and Text

4-72



Test Projected Network

Calculate the classification accuracy of the predictions on the test data.

[XTest,TTest] = japaneseVowelsTestData;
YTest = classify(netProjected,XTest,MiniBatchSize=miniBatchSize);
accProjected = sum(YTest == TTest)./numel(TTest)

accProjected = 0.8784

View the number of learnables of the network using the analyzeNetwork function.

analyzeNetwork(netProjected)

 Train Network with LSTM Projected Layer

4-73



In order to compare the total number of learnable parameters of each network, store the total
number of learnable parameters in a variable.

totalLearnablesProjected = 17500;

Compare Networks

Compare the test accuracy and number of learnables in each network. Depending on the projection
sizes, the projected network can have significantly fewer learnable parameters and still maintain
strong prediction accuracy.

Create a bar chart showing the test accuracy of each network.

figure
bar([acc accProjected])
xticklabels(["Unprojected","Projected"])
xlabel("Network")
ylabel("Test Accuracy")
title("Test Accuracy")

4 Deep Learning with Time Series, Sequences, and Text

4-74



Create a bar chart showing the test accuracy the number of learnables of each network.

figure
bar([totalLearnables totalLearnablesProjected])
xticklabels(["Unprojected","Projected"])
xlabel("Network")
ylabel("Number of Learnables")
title("Number of Learnables")

 Train Network with LSTM Projected Layer

4-75



Bibliography

1 M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-
Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

2 UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

See Also
lstmProjectedLayer | trainingOptions | trainNetwork | sequenceInputLayer |
lstmLayer | bilstmLayer | gruLayer | convolution1dLayer

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence Classification Using 1-D Convolutions” on page 4-10
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Classify Videos Using Deep Learning” on page 4-87

4 Deep Learning with Time Series, Sequences, and Text

4-76



• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Train Network with LSTM Projected Layer

4-77



Predict Battery State of Charge Using Deep Learning

This example shows how to train a neural network to predict the state of charge of a battery by using
deep learning.

Battery state of charge (SOC) is the level of charge of an electric battery relative to its capacity
measured as a percentage. SOC is critical information for the vehicle energy management system and
must be accurately estimated to ensure reliable and affordable electrified vehicles (xEV). However,
due to the nonlinear temperature, health, and SOC dependent behavior of Li-ion batteries, SOC
estimation is still a significant automotive engineering challenge. Traditional approaches to this
problem, such as electrochemical models, usually require precise parameters and knowledge of the
battery composition as well as its physical response. In contrast, using neural networks is a data-
driven approach that requires minimal knowledge of the battery or its nonlinear behavior. [1]

This example is based on the MATLAB script from [1]. The example trains a neural network to predict
the state of charge of a Li-ion battery, given time series data representing various features of the
battery such as voltage, current, temperature, and average voltage and current (over the last 500
seconds).

The training data contains a single sequence of experimental data collected while the battery
powered an electric vehicle during a driving cycle with an external temperature of 25 degrees
Celsius. The test data contains four sequences of experimental data collected during driving cycles at
four different temperatures. This example uses the preprocessed data set
LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020 from [1]. For an example showing
how use a trained neural network inside a Simulink® model to predict the SOC of a battery, see
“Battery State of Charge Estimation in Simulink Using Deep Learning Network” on page 4-358.

Download Data

Each file in the LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020 data set contains a
time series X of five predictors (voltage, current, temperature, average voltage, and average current)
and a time series Y of one target (SOC). Each file represents data collected at a different ambient
temperature.

Specify the URL from where to download the data set. Alternatively, you can download this data set
manually from https://data.mendeley.com/datasets/cp3473x7xv/3.

url = "https://data.mendeley.com/public-files/datasets/cp3473x7xv/files/ad7ac5c9-2b9e-458a-a91f-6f3da449bdfb/file_downloaded";

4 Deep Learning with Time Series, Sequences, and Text

4-78

https://data.mendeley.com/datasets/cp3473x7xv/3


Set downloadFolder to where you want to download the ZIP file and the outputFolder to where
you want to extract the ZIP file.

downloadFolder = tempdir;
outputFolder = fullfile(downloadFolder, "LGHG2@n10C_to_25degC");

Download and extract the LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020 data
set.

if ~exist(outputFolder,"dir")
    fprintf("Downloading LGHG2@n10C_to_25degC.zip (56 MB) ... ")
    filename = fullfile(downloadFolder,"LGHG2@n10C_to_25degC.zip");
    websave(filename,url);
    unzip(filename,outputFolder)
end

Prepare Training Data

For the training data, create a file datastore and specify the read function as the load function. The
load function loads the data from the MAT file into a structure array.

folderTrain = fullfile(outputFolder,"Train");
fdsTrain = fileDatastore(folderTrain, ReadFcn=@load); 

Each file in this datastore contains both the predictors X and the targets Y.

To create a transformed datastore tdsPredictorsTrain that returns only the predictor data X from
each file, transform the file datastore fdsTrain.

tdsPredictorsTrain = transform(fdsTrain, @(data) {data.X});

Preview the transformed datastore. The output corresponds to a single sequence of predictors X from
the first file.

preview(tdsPredictorsTrain)

ans = 1×1 cell array
    {5×669956 double}

To create a transformed datastore tdsTargetsTrain that returns only the target data Y from each
file, transform the file datastore fdsTrain.

tdsTargetsTrain = transform(fdsTrain, @(data) {data.Y});

Preview the transformed datastore. The output corresponds to a single sequence of targets Y from
the first file.

preview(tdsTargetsTrain)

ans = 1×1 cell array
    {[0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 0.2064 … ]}

To input both the predictors and targets from both datastores into a deep learning network, combine
them using the combine function.

cdsTrain = combine(tdsPredictorsTrain,tdsTargetsTrain);

 Predict Battery State of Charge Using Deep Learning

4-79



Note that to input the sequence data from datastores to a deep learning network, the mini-batches of
the sequences must have the same length, which usually requires padding the sequences in the
datastore. In this example, padding is not necessary because the training data consists of a single
sequence. For more information, see “Train Network Using Out-of-Memory Sequence Data” on page
20-97.

Prepare Test and Validation Data

For the testing data, create a file datastore and specify the read function as the load function. The
load function loads the data from the MAT file into a structure array.

folderTest = fullfile(outputFolder,"Test");
fdsTest = fileDatastore(folderTest, ReadFcn=@load);

Each file in this datastore contains both the predictors X and the targets Y.

To create a transformed datastore tdsPredictorsTest that returns only the predictor data X from
each file, transform the file datastore fdsTest.

tdsPredictorsTest = transform(fdsTest, @(data) {data.X});

Preview the transformed datastore. The output corresponds to a single sequence of predictors X from
the first file.

preview(tdsPredictorsTest)

ans = 1×1 cell array
    {5×39293 double}

To create a transformed datastore tdsTargetsTest that returns only the target data Y from each
file, transform the file datastore fdsTest.

tdsTargetsTest = transform(fdsTest,@(data) {data.Y});

Preview the transformed datastore. The output corresponds to a single sequence of targets Y from
the first file.

preview(tdsTargetsTest)

ans = 1×1 cell array
    {[1 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9997 0.9996 0.9994 0.9991 0.9989 0.9988 0.9987 0.9983 0.9982 0.9980 0.9980 0.9980 0.9980 0.9981 0.9981 0.9981 0.9981 0.9981 0.9981 0.9980 0.9980 0.9979 0.9978 0.9975 0.9972 0.9970 0.9969 0.9969 0.9969 0.9970 0.9970 0.9970 0.9970 0.9970 0.9968 0.9965 0.9962 0.9960 0.9958 0.9957 0.9956 0.9956 0.9956 0.9955 0.9954 0.9954 0.9954 0.9953 0.9953 0.9952 0.9950 0.9950 0.9950 0.9950 0.9949 0.9948 0.9947 0.9946 0.9946 0.9945 0.9944 0.9942 0.9939 0.9938 0.9936 0.9935 0.9934 0.9933 0.9932 0.9932 0.9931 0.9931 0.9930 0.9929 0.9929 0.9929 0.9929 0.9928 0.9926 0.9925 0.9924 0.9923 0.9923 0.9923 0.9923 0.9923 0.9921 0.9920 0.9918 0.9917 0.9915 0.9914 0.9914 0.9914 0.9915 0.9915 0.9916 0.9916 0.9916 0.9917 0.9917 0.9918 0.9918 0.9918 0.9918 0.9918 0.9918 0.9918 0.9918 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915 0.9914 0.9913 0.9911 0.9909 0.9905 0.9901 0.9898 0.9894 0.9891 0.9890 0.9891 0.9891 0.9891 0.9890 0.9889 0.9889 0.9887 0.9885 0.9886 0.9886 0.9887 0.9887 0.9888 0.9888 0.9887 0.9886 0.9884 0.9880 0.9876 0.9871 0.9864 0.9856 0.9849 0.9846 0.9840 0.9835 0.9830 0.9824 0.9818 0.9814 0.9811 0.9807 0.9806 0.9805 0.9804 0.9803 0.9801 0.9800 0.9799 0.9797 0.9795 0.9793 0.9790 0.9787 0.9783 0.9780 0.9777 0.9774 0.9770 0.9767 0.9763 0.9757 0.9752 0.9748 0.9745 0.9743 0.9741 0.9740 0.9738 0.9735 0.9732 0.9729 0.9726 0.9722 0.9720 0.9716 0.9714 0.9712 0.9710 0.9708 0.9706 0.9704 0.9702 0.9700 0.9698 0.9697 0.9696 0.9696 0.9696 0.9695 0.9694 0.9693 0.9691 0.9688 0.9686 0.9684 0.9682 0.9681 0.9681 0.9680 0.9680 0.9679 0.9677 0.9676 0.9675 0.9674 0.9672 0.9670 0.9668 0.9665 0.9662 0.9658 0.9655 0.9651 0.9646 0.9642 0.9639 0.9636 0.9634 0.9633 0.9633 0.9633 0.9634 0.9635 0.9636 0.9634 0.9633 0.9632 0.9633 0.9632 0.9630 0.9629 0.9628 0.9627 0.9625 0.9624 0.9623 0.9623 0.9623 0.9624 0.9626 0.9627 0.9628 0.9630 0.9631 0.9633 0.9634 0.9635 0.9637 0.9638 0.9639 0.9640 0.9641 0.9641 0.9641 0.9642 0.9643 0.9644 0.9646 0.9647 0.9647 0.9647 0.9648 0.9649 0.9650 0.9651 0.9652 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9652 0.9652 0.9652 0.9652 0.9651 0.9650 0.9648 0.9645 0.9642 0.9639 0.9635 0.9633 0.9630 0.9627 0.9624 0.9620 0.9618 0.9616 0.9614 0.9612 0.9610 0.9608 0.9607 0.9605 0.9605 0.9604 0.9603 0.9601 0.9599 0.9598 0.9597 0.9596 0.9595 0.9594 0.9593 0.9592 0.9591 0.9590 0.9590 0.9591 0.9592 0.9593 0.9594 0.9596 0.9597 0.9599 0.9600 0.9601 0.9602 0.9604 0.9605 0.9606 0.9606 0.9606 0.9606 0.9606 0.9606 0.9606 0.9606 0.9605 0.9604 0.9603 0.9600 0.9597 0.9593 0.9589 0.9585 0.9583 0.9579 0.9576 0.9574 0.9573 0.9573 0.9573 0.9573 0.9573 0.9574 0.9575 0.9577 0.9578 0.9580 0.9581 0.9582 0.9583 0.9584 0.9584 0.9584 0.9583 0.9583 0.9583 0.9583 0.9583 0.9583 0.9583 0.9583 0.9583 0.9583 0.9583 0.9582 0.9582 0.9582 0.9582 0.9582 0.9582 0.9581 0.9580 0.9579 0.9576 0.9573 0.9568 0.9563 0.9558 0.9555 0.9552 0.9547 0.9543 0.9541 0.9538 0.9537 0.9535 0.9533 0.9532 0.9531 0.9530 0.9530 0.9529 0.9528 0.9527 0.9527 0.9527 0.9526 0.9525 0.9525 0.9524 0.9523 0.9522 0.9522 0.9521 0.9520 0.9519 0.9518 0.9518 0.9517 0.9516 0.9516 0.9515 0.9515 0.9514 0.9516 0.9517 0.9519 0.9520 0.9522 0.9523 0.9525 0.9526 0.9527 0.9529 0.9530 0.9531 0.9531 0.9531 0.9531 0.9531 0.9530 0.9530 0.9530 0.9530 0.9530 0.9529 0.9528 0.9527 0.9527 0.9526 0.9525 0.9523 0.9521 0.9519 0.9517 0.9516 0.9514 0.9512 0.9511 0.9509 0.9508 0.9507 0.9506 0.9506 0.9505 0.9505 0.9504 0.9504 0.9502 0.9501 0.9501 0.9501 0.9501 0.9501 0.9500 0.9500 0.9500 0.9501 0.9503 0.9504 0.9506 0.9507 0.9508 0.9509 0.9509 0.9509 0.9509 0.9509 0.9509 0.9508 0.9508 0.9508 0.9508 0.9508 0.9508 0.9508 0.9508 0.9508 0.9508 0.9508 0.9507 0.9507 0.9506 0.9504 0.9502 0.9500 0.9499 0.9498 0.9497 0.9497 0.9496 0.9496 0.9495 0.9495 0.9495 0.9495 0.9495 0.9494 0.9494 0.9494 0.9494 0.9494 0.9493 0.9493 0.9492 0.9491 0.9490 0.9489 0.9487 0.9486 0.9486 0.9485 0.9484 0.9483 0.9482 0.9482 0.9482 0.9481 0.9480 0.9478 0.9476 0.9474 0.9473 0.9472 0.9473 0.9475 0.9476 0.9477 0.9479 0.9480 0.9481 0.9482 0.9482 0.9482 0.9482 0.9482 0.9481 0.9481 0.9481 0.9481 0.9481 0.9481 0.9481 0.9481 0.9481 0.9481 0.9481 0.9480 0.9480 0.9480 0.9480 0.9480 0.9480 0.9480 0.9480 0.9480 0.9480 0.9479 0.9479 0.9479 0.9477 0.9476 0.9474 0.9473 0.9471 0.9469 0.9466 0.9464 0.9462 0.9460 0.9458 0.9456 0.9455 0.9454 0.9454 0.9453 0.9452 0.9452 0.9451 0.9451 0.9451 0.9451 0.9453 0.9454 0.9456 0.9457 0.9458 0.9460 0.9461 0.9462 0.9462 0.9462 0.9462 0.9462 0.9462 0.9462 0.9462 0.9462 0.9462 0.9462 0.9461 0.9461 0.9461 0.9461 0.9461 0.9461 0.9461 0.9460 0.9460 0.9459 0.9458 0.9456 0.9454 0.9453 0.9452 0.9451 0.9451 0.9450 0.9448 0.9447 0.9445 0.9443 0.9442 0.9441 0.9441 0.9440 0.9439 0.9438 0.9439 0.9440 0.9441 0.9442 0.9444 0.9445 0.9446 0.9447 0.9447 0.9447 0.9447 0.9447 0.9447 0.9447 0.9446 0.9444 0.9442 0.9440 0.9438 0.9436 0.9434 0.9431 0.9428 0.9426 0.9424 0.9422 0.9421 0.9419 0.9418 0.9417 0.9416 0.9415 0.9415 0.9415 0.9415 0.9415 0.9416 0.9417 0.9418 0.9420 0.9421 0.9423 0.9424 0.9425 0.9426 0.9427 0.9428 0.9428 0.9428 0.9428 0.9427 0.9427 0.9426 0.9424 0.9422 0.9419 0.9417 0.9416 0.9414 0.9412 0.9410 0.9408 0.9405 0.9402 0.9400 0.9399 0.9398 0.9396 0.9395 0.9395 0.9395 0.9394 0.9394 0.9394 0.9393 0.9393 0.9393 0.9393 0.9392 0.9392 0.9391 0.9390 0.9390 0.9389 0.9388 0.9386 0.9383 0.9380 0.9378 0.9375 0.9374 0.9373 0.9371 0.9370 0.9369 0.9369 0.9368 0.9368 0.9367 0.9368 0.9367 0.9367 0.9367 0.9367 0.9367 0.9367 0.9367 0.9367 0.9367 0.9366 0.9366 0.9365 0.9365 0.9365 0.9364 0.9364 0.9364 0.9364 0.9365 0.9365 0.9367 0.9368 0.9370 0.9371 0.9372 0.9371 0.9370 0.9368 0.9367 0.9366 0.9365 0.9364 0.9362 0.9360 0.9358 0.9357 0.9356 0.9356 0.9355 0.9354 0.9352 0.9351 0.9350 0.9349 0.9348 0.9347 0.9347 0.9348 0.9348 0.9348 0.9349 0.9350 0.9350 0.9349 0.9348 0.9347 0.9346 0.9345 0.9343 0.9342 0.9341 0.9339 0.9338 0.9337 0.9336 0.9336 0.9336 0.9336 0.9336 0.9335 0.9335 0.9335 0.9335 0.9335 0.9334 0.9333 0.9332 0.9331 0.9331 0.9330 0.9329 0.9329 0.9329 0.9329 0.9329 0.9329 0.9328 0.9328 0.9327 0.9327 0.9327 0.9326 0.9326 0.9326 0.9326 0.9325 0.9324 0.9324 0.9325 0.9326 0.9327 0.9327 0.9327 0.9326 0.9324 0.9323 0.9322 0.9321 0.9320 0.9319 0.9318 0.9318 0.9317 0.9316 0.9316 0.9316 0.9316 0.9315 0.9315 0.9315 0.9315 0.9314 0.9313 0.9312 0.9312 0.9312 0.9312 0.9312 0.9311 0.9309 0.9308 0.9309 0.9310 0.9311 0.9313 0.9315 0.9316 0.9317 0.9319 0.9319 0.9319 0.9319 0.9319 0.9319 0.9319 0.9318 0.9316 0.9314 0.9311 0.9309 0.9307 0.9305 0.9303 0.9302 0.9300 0.9297 0.9294 0.9292 0.9290 0.9289 0.9288 0.9288 0.9288 0.9288 0.9288 0.9288 0.9288 0.9288 0.9288 0.9288 0.9288 0.9289 0.9291 0.9291 0.9290 0.9290 0.9288 0.9287 0.9287 0.9287 0.9286 0.9286 0.9286 0.9285 0.9283 0.9282 0.9281 0.9280 0.9279 0.9278 0.9278 0.9278 0.9278 0.9278 0.9278 0.9279 0.9279 0.9279 0.9279 0.9279 0.9280 0.9282 0.9283 0.9285 0.9286 0.9287 0.9287 0.9287 0.9287 0.9287 0.9287 0.9287 0.9287 0.9286 0.9286 0.9286 0.9286 0.9286 0.9286 0.9286 0.9286 0.9286 0.9286 0.9286 0.9285 0.9285 0.9285 0.9285 0.9285 0.9285 0.9285 0.9285 0.9285 0.9285 0.9285 0.9284 0.9284 0.9284 0.9284 0.9282 0.9280 0.9277 0.9274 0.9272 0.9270 0.9268 0.9266 0.9264 0.9262 0.9261 0.9259 0.9258 0.9256 0.9255 0.9254 0.9254 0.9254 0.9254 0.9254 0.9255 0.9256 0.9258 0.9258 0.9259 0.9261 0.9263 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9264 0.9265 0.9265 0.9265 0.9264 0.9264 0.9264 0.9264 0.9262 0.9261 0.9259 0.9258 0.9257 0.9255 0.9252 0.9250 0.9249 0.9248 0.9248 0.9247 0.9246 0.9245 0.9244 0.9242 0.9241 0.9240 0.9239 0.9239 0.9238 0.9237 0.9236 0.9235 0.9234 0.9233 0.9232 0.9232 0.9231 0.9231 0.9230 0.9230 0.9230 0.9229 0.9229 0.9229 0.9230 0.9230 0.9231 0.9233 0.9234 0.9236 0.9237 0.9238 0.9239 0.9241 0.9241 0.9242 0.9241 0.9241 0.9241 0.9241 0.9241 0.9241 0.9241 0.9241 0.9241 0.9241 0.9241 0.9240 0.9240 0.9240 0.9240 0.9240 0.9240 0.9239 0.9237 0.9235 0.9232 0.9228 0.9224 0.9222 0.9221 0.9221 0.9222 0.9224 0.9226 0.9227 0.9229 0.9230 0.9231 0.9231 0.9231 0.9231 0.9230 0.9230 0.9230 0.9230 0.9230 0.9230 0.9230 0.9230 0.9230 0.9230 0.9229 0.9228 0.9226 0.9225 0.9224 0.9224 0.9224 0.9223 0.9223 0.9222 0.9221 0.9220 0.9218 0.9216 0.9214 0.9213 0.9212 0.9211 0.9211 0.9211 0.9210 0.9210 0.9209 0.9208 0.9208 0.9208 0.9208 0.9207 0.9207 0.9208 0.9208 0.9208 0.9207 0.9207 0.9207 0.9207 0.9209 0.9210 0.9211 0.9213 0.9213 0.9214 0.9214 0.9214 0.9214 0.9214 0.9214 0.9214 0.9214 0.9214 0.9214 0.9214 0.9214 0.9213 0.9213 0.9213 0.9213 0.9213 0.9213 0.9213 0.9212 0.9212 0.9211 0.9210 0.9209 0.9209 0.9209 0.9209 0.9209 0.9208 0.9207 0.9204 0.9201 0.9198 0.9196 0.9195 0.9194 0.9192 0.9191 0.9190 0.9189 0.9189 0.9189 0.9189 0.9189 0.9188 0.9188 0.9187 0.9187 0.9186 0.9185 0.9184 0.9183 0.9182 0.9181 0.9181 0.9180 0.9179 0.9178 0.9176 0.9174 0.9173 0.9171 0.9171 0.9170 0.9172 0.9174 0.9176 0.9177 0.9179 0.9181 0.9182 0.9183 0.9183 0.9183 0.9183 0.9183 0.9183 0.9183 0.9182 0.9182 0.9182 0.9182 0.9182 0.9182 0.9182 0.9182 0.9182 0.9182 0.9182 0.9181 0.9181 0.9181 0.9181 0.9181 0.9181 0.9181 0.9181 0.9181 0.9180 0.9180 0.9178 0.9176 0.9174 0.9173 0.9171 0.9169 0.9167 0.9166 0.9164 0.9163 0.9163 0.9162 0.9162 0.9162 0.9162 0.9163 0.9163 0.9163 0.9164 0.9164 0.9165 0.9165 0.9166 0.9168 0.9169 0.9170 0.9170 0.9170 0.9170 0.9170 0.9170 0.9170 0.9170 0.9170 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9169 0.9168 0.9168 0.9168 0.9168 0.9168 0.9168 0.9167 0.9166 0.9165 0.9163 0.9160 0.9158 0.9158 0.9156 0.9153 0.9151 0.9150 0.9150 0.9150 0.9150 0.9150 0.9151 0.9152 0.9153 0.9154 0.9154 0.9153 0.9153 0.9152 0.9150 0.9147 0.9145 0.9143 0.9142 0.9142 0.9142 0.9143 0.9145 0.9146 0.9147 0.9146 … ]}

Specify the validation data as a subset of the testing data containing only the first file. To input the
predictors and targets from both validation datastores into the trainingOptions function, combine
them using the combine function.

indices = 1;
vdsPredictors = subset(tdsPredictorsTest,indices);
vdsTargets = subset(tdsTargetsTest,indices);
cdsVal = combine(vdsPredictors,vdsTargets);

Define Network Architecture

Define the network architecture. Set the number of inputs features to five (voltage, current,
temperature, average voltage, and average current).

4 Deep Learning with Time Series, Sequences, and Text

4-80



numFeatures = 5; 

Set the number of output features to one (SOC).

numResponses = 1;

Specify the number of hidden neurons.

numHiddenNeurons = 55; 

Define the layers of the network.

layers = [
    sequenceInputLayer(numFeatures,Normalization="zerocenter")
    fullyConnectedLayer(numHiddenNeurons)
    tanhLayer                            
    fullyConnectedLayer(numHiddenNeurons)
    leakyReluLayer(0.3)                  
    fullyConnectedLayer(numResponses)
    clippedReluLayer(1)                 
    regressionLayer];

Specify the training options. Train for 1200 epochs with mini-batches of size 1 using the "adam"
solver. To prevent the gradients from exploding, set the gradient threshold to 1. Specify an initial
learning rate of 0.01, a learning rate drop period of 400 and a learning rate drop factor of 0.1. Specify
a validation frequency of 30. Experiments in Experiment Manager showed that the initial learning
rate of 0.01 and the learning rate drop factor of 0.1 together minimize the validation error. For more
information on how to optimize hyperparameters using Experiment Manager, see “Choose Training
Configurations for LSTM Using Bayesian Optimization” on page 6-60.

Epochs = 1200;
miniBatchSize = 1;
LRDropPeriod = 400; 
InitialLR = 0.01;
LRDropFactor = 0.1; 
valFrequency = 30; 

options = trainingOptions("adam", ...                 
    MaxEpochs=Epochs, ...
    GradientThreshold=1, ...
    InitialLearnRate=InitialLR, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=LRDropPeriod, ...
    LearnRateDropFactor=LRDropFactor, ...
    ValidationData=cdsVal, ...
    ValidationFrequency=valFrequency, ...
    MiniBatchSize=miniBatchSize, ...
    Verbose=0, ...
    Plots="training-progress");

Train Network

Train the network using trainNetwork with the specified training options.

net = trainNetwork(cdsTrain,layers,options);

 Predict Battery State of Charge Using Deep Learning

4-81



Test Network

Make predictions on the test data using predict. To avoid having to pad the sequences to ensure
that all sequences in a mini-batch have the same length, set the mini-batch size to 1.

YPred = predict(net,tdsPredictorsTest,MiniBatchSize=1);

Compare the SOC predicted by the network to the target SOC from the test data for different
temperatures.

YTarget = readall(tdsTargetsTest);

Plot the predicted and the target SOC for different ambient temperatures.

figure

nexttile
plot(YPred{1})
hold on
plot(YTarget{1})
legend(["Predicted" "Target"], Location="Best")
ylabel("SOC")
xlabel("Time(s)")
title("n10degC")

nexttile
plot(YPred{2})
hold on
plot(YTarget{2})
legend(["Predicted" "Target"], Location="Best")

4 Deep Learning with Time Series, Sequences, and Text

4-82



ylabel("SOC")
xlabel("Time(s)")
title("0degC")

nexttile
plot(YPred{3})
hold on
plot(YTarget{3})
legend(["Predicted" "Target"], Location="Best")
ylabel("SOC")
xlabel("Time(s)")
title("10degC")

nexttile
plot(YPred{4})
hold on
plot(YTarget{4})
legend(["Predicted" "Target"], Location="Best")
ylabel("SOC")
xlabel("Time(s)")
title("25degC")

 Predict Battery State of Charge Using Deep Learning

4-83



Calculate the error between the predicted SOC and the target SOC for each ambient temperature.

Err_n10degC = YPred{1} - YTarget{1};
Err_0degC = YPred{2} - YTarget{2};
Err_10degC = YPred{3} - YTarget{3};
Err_25degC = YPred{4} - YTarget{4};

Calculate the root mean squared error (RMSE) as a percentage.

RMSE_n10degC = sqrt(mean(Err_n10degC.^2))*100;
RMSE_0degC = sqrt(mean(Err_0degC.^2))*100;
RMSE_10degC = sqrt(mean(Err_10degC.^2))*100;
RMSE_25degC = sqrt(mean(Err_25degC.^2))*100;

Calculate the maximum error as a percentage.

MAX_n10degC = max(abs(Err_n10degC))*100;
MAX_0degC = max(abs(Err_0degC))*100;
MAX_10degC = max(abs(Err_10degC))*100;
MAX_25degC = max(abs(Err_25degC))*100;

Plot the RMSE for the different ambient temperatures.

temp = [-10,0,10,25];
figure
nexttile
bar(temp,[RMSE_n10degC,RMSE_0degC,RMSE_10degC,RMSE_25degC])
ylabel("RMSE (%)")
xlabel("Temperature (C)")

Plot the maximum absolute error for the different ambient temperatures.

nexttile
bar(temp,[MAX_n10degC,MAX_0degC,MAX_10degC,MAX_25degC])
ylabel("MAX (%)")
xlabel("Temperature (C)")

4 Deep Learning with Time Series, Sequences, and Text

4-84



Lower values in the RMSE and MAX plots indicate more accurate predictions for the corresponding
temperatures. Larger values in the same plots indicate less accurate predictions for the
corresponding temperatures.

References

[1] Kollmeyer, Phillip, Carlos Vidal, Mina Naguib, and Michael Skells. “LG 18650HG2 Li-Ion Battery
Data and Example Deep Neural Network XEV SOC Estimator Script.” Mendeley, March 5, 2020.
https://doi.org/10.17632/CP3473X7XV.3.

See Also
trainNetwork | trainingOptions | sequenceInputLayer

See Also

Related Examples
• “Battery State of Charge Estimation in Simulink Using Deep Learning Network” on page 4-358

 Predict Battery State of Charge Using Deep Learning

4-85



• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-86



Classify Videos Using Deep Learning

This example shows how to create a network for video classification by combining a pretrained image
classification model and an LSTM network.

To create a deep learning network for video classification:

1 Convert videos to sequences of feature vectors using a pretrained convolutional neural network,
such as GoogLeNet, to extract features from each frame.

2 Train an LSTM network on the sequences to predict the video labels.
3 Assemble a network that classifies videos directly by combining layers from both networks.

The following diagram illustrates the network architecture.

• To input image sequences to the network, use a sequence input layer.
• To use convolutional layers to extract features, that is, to apply the convolutional operations to

each frame of the videos independently, use a sequence folding layer followed by the convolutional
layers.

• To restore the sequence structure and reshape the output to vector sequences, use a sequence
unfolding layer and a flatten layer.

• To classify the resulting vector sequences, include the LSTM layers followed by the output layers.

Load Pretrained Convolutional Network

To convert frames of videos to feature vectors, use the activations of a pretrained network.

Load a pretrained GoogLeNet model using the googlenet function. This function requires the Deep
Learning Toolbox™ Model for GoogLeNet Network support package. If this support package is not
installed, then the function provides a download link.

netCNN = googlenet;

Load Data

Download the HMBD51 data set from HMDB: a large human motion database and extract the RAR
file into a folder named "hmdb51_org". The data set contains about 2 GB of video data for 7000 clips
over 51 classes, such as "drink", "run", and "shake_hands".

After extracting the RAR files, use the supporting function hmdb51Files to get the file names and
the labels of the videos.

dataFolder = "hmdb51_org";
[files,labels] = hmdb51Files(dataFolder);

Read the first video using the readVideo helper function, defined at the end of this example, and
view the size of the video. The video is a H-by-W-by-C-by-S array, where H, W, C, and S are the
height, width, number of channels, and number of frames of the video, respectively.

 Classify Videos Using Deep Learning

4-87

http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/


idx = 1;
filename = files(idx);
video = readVideo(filename);
size(video)

ans = 1×4

   240   320     3   409

View the corresponding label.

labels(idx)

ans = categorical
     brush_hair 

To view the video, use the implay function (requires Image Processing Toolbox™). This function
expects data in the range [0,1], so you must first divide the data by 255. Alternatively, you can loop
over the individual frames and use the imshow function.

numFrames = size(video,4);
figure
for i = 1:numFrames
    frame = video(:,:,:,i);
    imshow(frame/255);
    drawnow
end

Convert Frames to Feature Vectors

Use the convolutional network as a feature extractor by getting the activations when inputting the
video frames to the network. Convert the videos to sequences of feature vectors, where the feature
vectors are the output of the activations function on the last pooling layer of the GoogLeNet
network ("pool5-7x7_s1").

This diagram illustrates the data flow through the network.

To read the video data and resize it to match the input size of the GoogLeNet network, use the
readVideo and centerCrop helper functions, defined at the end of this example. This step can take
a long time to run. After converting the videos to sequences, save the sequences in a MAT-file in the
tempdir folder. If the MAT file already exists, then load the sequences from the MAT-file without
reconverting them.

inputSize = netCNN.Layers(1).InputSize(1:2);
layerName = "pool5-7x7_s1";

tempFile = fullfile(tempdir,"hmdb51_org.mat");

if exist(tempFile,'file')
    load(tempFile,"sequences")

4 Deep Learning with Time Series, Sequences, and Text

4-88



else
    numFiles = numel(files);
    sequences = cell(numFiles,1);
    
    for i = 1:numFiles
        fprintf("Reading file %d of %d...\n", i, numFiles)
        
        video = readVideo(files(i));
        video = centerCrop(video,inputSize);
        
        sequences{i,1} = activations(netCNN,video,layerName,'OutputAs','columns');
    end
    
    save(tempFile,"sequences","-v7.3");
end

View the sizes of the first few sequences. Each sequence is a D-by-S array, where D is the number of
features (the output size of the pooling layer) and S is the number of frames of the video.

sequences(1:10)

ans = 10×1 cell array
    {1024×409 single}
    {1024×395 single}
    {1024×323 single}
    {1024×246 single}
    {1024×159 single}
    {1024×137 single}
    {1024×359 single}
    {1024×191 single}
    {1024×439 single}
    {1024×528 single}

Prepare Training Data

Prepare the data for training by partitioning the data into training and validation partitions and
removing any long sequences.

Create Training and Validation Partitions

Partition the data. Assign 90% of the data to the training partition and 10% to the validation partition.

numObservations = numel(sequences);
idx = randperm(numObservations);
N = floor(0.9 * numObservations);

idxTrain = idx(1:N);
sequencesTrain = sequences(idxTrain);
labelsTrain = labels(idxTrain);

idxValidation = idx(N+1:end);
sequencesValidation = sequences(idxValidation);
labelsValidation = labels(idxValidation);

Remove Long Sequences

Sequences that are much longer than typical sequences in the networks can introduce lots of padding
into the training process. Having too much padding can negatively impact the classification accuracy.

 Classify Videos Using Deep Learning

4-89



Get the sequence lengths of the training data and visualize them in a histogram of the training data.

numObservationsTrain = numel(sequencesTrain);
sequenceLengths = zeros(1,numObservationsTrain);

for i = 1:numObservationsTrain
    sequence = sequencesTrain{i};
    sequenceLengths(i) = size(sequence,2);
end

figure
histogram(sequenceLengths)
title("Sequence Lengths")
xlabel("Sequence Length")
ylabel("Frequency")

Only a few sequences have more than 400 time steps. To improve the classification accuracy, remove
the training sequences that have more than 400 time steps along with their corresponding labels.

maxLength = 400;
idx = sequenceLengths > maxLength;
sequencesTrain(idx) = [];
labelsTrain(idx) = [];

Create LSTM Network

Next, create an LSTM network that can classify the sequences of feature vectors representing the
videos.

4 Deep Learning with Time Series, Sequences, and Text

4-90



Define the LSTM network architecture. Specify the following network layers.

• A sequence input layer with an input size corresponding to the feature dimension of the feature
vectors

• A BiLSTM layer with 2000 hidden units with a dropout layer afterwards. To output only one label
for each sequence by setting the 'OutputMode' option of the BiLSTM layer to 'last'

• A fully connected layer with an output size corresponding to the number of classes, a softmax
layer, and a classification layer.

numFeatures = size(sequencesTrain{1},1);
numClasses = numel(categories(labelsTrain));

layers = [
    sequenceInputLayer(numFeatures,'Name','sequence')
    bilstmLayer(2000,'OutputMode','last','Name','bilstm')
    dropoutLayer(0.5,'Name','drop')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Specify Training Options

Specify the training options using the trainingOptions function.

• Set a mini-batch size 16, an initial learning rate of 0.0001, and a gradient threshold of 2 (to
prevent the gradients from exploding).

• Shuffle the data every epoch.
• Validate the network once per epoch.
• Display the training progress in a plot and suppress verbose output.

miniBatchSize = 16;
numObservations = numel(sequencesTrain);
numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('adam', ...
    'MiniBatchSize',miniBatchSize, ...
    'InitialLearnRate',1e-4, ...
    'GradientThreshold',2, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{sequencesValidation,labelsValidation}, ...
    'ValidationFrequency',numIterationsPerEpoch, ...
    'Plots','training-progress', ...
    'Verbose',false);

Train LSTM Network

Train the network using the trainNetwork function. This can take a long time to run.

[netLSTM,info] = trainNetwork(sequencesTrain,labelsTrain,layers,options);

 Classify Videos Using Deep Learning

4-91



Calculate the classification accuracy of the network on the validation set. Use the same mini-batch
size as for the training options.

YPred = classify(netLSTM,sequencesValidation,'MiniBatchSize',miniBatchSize);
YValidation = labelsValidation;
accuracy = mean(YPred == YValidation)

accuracy = 0.6647

Assemble Video Classification Network

To create a network that classifies videos directly, assemble a network using layers from both of the
created networks. Use the layers from the convolutional network to transform the videos into vector
sequences and the layers from the LSTM network to classify the vector sequences.

The following diagram illustrates the network architecture.

• To input image sequences to the network, use a sequence input layer.
• To use convolutional layers to extract features, that is, to apply the convolutional operations to

each frame of the videos independently, use a sequence folding layer followed by the convolutional
layers.

• To restore the sequence structure and reshape the output to vector sequences, use a sequence
unfolding layer and a flatten layer.

• To classify the resulting vector sequences, include the LSTM layers followed by the output layers.

4 Deep Learning with Time Series, Sequences, and Text

4-92



Add Convolutional Layers

First, create a layer graph of the GoogLeNet network.

cnnLayers = layerGraph(netCNN);

Remove the input layer ("data") and the layers after the pooling layer used for the activations
("pool5-drop_7x7_s1", "loss3-classifier", "prob", and "output").

layerNames = ["data" "pool5-drop_7x7_s1" "loss3-classifier" "prob" "output"];
cnnLayers = removeLayers(cnnLayers,layerNames);

Add Sequence Input Layer

Create a sequence input layer that accepts image sequences containing images of the same input size
as the GoogLeNet network. To normalize the images using the same average image as the GoogLeNet
network, set the 'Normalization' option of the sequence input layer to 'zerocenter' and the
'Mean' option to the average image of the input layer of GoogLeNet.

inputSize = netCNN.Layers(1).InputSize(1:2);
averageImage = netCNN.Layers(1).Mean;

inputLayer = sequenceInputLayer([inputSize 3], ...
    'Normalization','zerocenter', ...
    'Mean',averageImage, ...
    'Name','input');

Add the sequence input layer to the layer graph. To apply the convolutional layers to the images of
the sequences independently, remove the sequence structure of the image sequences by including a
sequence folding layer between the sequence input layer and the convolutional layers. Connect the
output of the sequence folding layer to the input of the first convolutional layer ("conv1-7x7_s2").

layers = [
    inputLayer
    sequenceFoldingLayer('Name','fold')];

lgraph = addLayers(cnnLayers,layers);
lgraph = connectLayers(lgraph,"fold/out","conv1-7x7_s2");

Add LSTM Layers

Add the LSTM layers to the layer graph by removing the sequence input layer of the LSTM network.
To restore the sequence structure removed by the sequence folding layer, include a sequence
unfolding layer after the convolution layers. The LSTM layers expect sequences of vectors. To
reshape the output of the sequence unfolding layer to vector sequences, include a flatten layer after
the sequence unfolding layer.

Take the layers from the LSTM network and remove the sequence input layer.

lstmLayers = netLSTM.Layers;
lstmLayers(1) = [];

 Classify Videos Using Deep Learning

4-93



Add the sequence unfolding layer, the flatten layer, and the LSTM layers to the layer graph. Connect
the last convolutional layer ("pool5-7x7_s1") to the input of the sequence unfolding layer
("unfold/in").

layers = [
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    lstmLayers];

lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"pool5-7x7_s1","unfold/in");

To enable the unfolding layer to restore the sequence structure, connect the "miniBatchSize"
output of the sequence folding layer to the corresponding input of the sequence unfolding layer.

lgraph = connectLayers(lgraph,"fold/miniBatchSize","unfold/miniBatchSize");

Assemble Network

Check that the network is valid using the analyzeNetwork function.

analyzeNetwork(lgraph)

Assemble the network so that it is ready for prediction using the assembleNetwork function.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [148×1 nnet.cnn.layer.Layer]
    Connections: [175×2 table]

Classify Using New Data

Read and center-crop the video "pushup.mp4" using the same steps as before.

filename = "pushup.mp4";
video = readVideo(filename);

To view the video, use the implay function (requires Image Processing Toolbox). This function
expects data in the range [0,1], so you must first divide the data by 255. Alternatively, you can loop
over the individual frames and use the imshow function.

numFrames = size(video,4);
figure
for i = 1:numFrames
    frame = video(:,:,:,i);
    imshow(frame/255);
    drawnow
end

4 Deep Learning with Time Series, Sequences, and Text

4-94



Classify the video using the assembled network. The classify function expects a cell array
containing the input videos, so you must input a 1-by-1 cell array containing the video.

video = centerCrop(video,inputSize);
YPred = classify(net,{video})

YPred = categorical
     pushup 

Helper Functions

The readVideo function reads the video in filename and returns an H-by-W-by-C-by-S array, where
H, W, C, and S are the height, width, number of channels, and number of frames of the video,
respectively.

function video = readVideo(filename)

vr = VideoReader(filename);
H = vr.Height;
W = vr.Width;
C = 3;

% Preallocate video array
numFrames = floor(vr.Duration * vr.FrameRate);
video = zeros(H,W,C,numFrames);

% Read frames
i = 0;
while hasFrame(vr)

 Classify Videos Using Deep Learning

4-95



    i = i + 1;
    video(:,:,:,i) = readFrame(vr);
end

% Remove unallocated frames
if size(video,4) > i
    video(:,:,:,i+1:end) = [];
end

end

The centerCrop function crops the longest edges of a video and resizes it have size inputSize.

function videoResized = centerCrop(video,inputSize)

sz = size(video);

if sz(1) < sz(2)
    % Video is landscape
    idx = floor((sz(2) - sz(1))/2);
    video(:,1:(idx-1),:,:) = [];
    video(:,(sz(1)+1):end,:,:) = [];
    
elseif sz(2) < sz(1)
    % Video is portrait
    idx = floor((sz(1) - sz(2))/2);
    video(1:(idx-1),:,:,:) = [];
    video((sz(2)+1):end,:,:,:) = [];
end

videoResized = imresize(video,inputSize(1:2));

end

See Also
trainNetwork | trainingOptions | lstmLayer | sequenceInputLayer |
sequenceFoldingLayer | sequenceUnfoldingLayer | flattenLayer

Related Examples
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Classify Videos Using Deep Learning with Custom Training Loop” on page 4-97
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-96



Classify Videos Using Deep Learning with Custom Training
Loop

This example shows how to create a network for video classification by combining a pretrained image
classification model and a sequence classification network.

You can perform video classification without using a custom training loop by using the
trainNetwork function. For an example, see “Classify Videos Using Deep Learning” on page 4-87.
However, If trainingOptions does not provide the options you need (for example, a custom
learning rate schedule), then you can define your own custom training loop as shown in this example.

To create a deep learning network for video classification:

1 Convert videos to sequences of feature vectors using a pretrained convolutional neural network,
such as GoogLeNet, to extract features from each frame.

2 Train a sequence classification network on the sequences to predict the video labels.
3 Assemble a network that classifies videos directly by combining layers from both networks.

The following diagram illustrates the network architecture:

• To input image sequences to the network, use a sequence input layer.
• To extract features from the image sequences, use convolutional layers from the pretrained

GoogLeNet network.
• To classify the resulting vector sequences, include the sequence classification layers.

When training this type of network with the trainNetwork function (not done in this example), you
must use sequence folding and unfolding layers to process the video frames independently. When you
train this type of network with a dlnetwork object and a custom training loop (as in this example),
sequence folding and unfolding layers are not required because the network uses dimension
information given by the dlarray dimension labels.

Load Pretrained Convolutional Network

To convert frames of videos to feature vectors, use the activations of a pretrained network.

Load a pretrained GoogLeNet model using the googlenet function. This function requires the Deep
Learning Toolbox™ Model for GoogLeNet Network support package. If this support package is not
installed, then the function provides a download link.

netCNN = googlenet;

Load Data

Download the HMBD51 data set from HMDB: a large human motion database and extract the RAR
file into a folder named "hmdb51_org". The data set contains about 2 GB of video data for 7000 clips
over 51 classes, such as "drink", "run", and "shake_hands".

 Classify Videos Using Deep Learning with Custom Training Loop

4-97

http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/


After extracting the RAR file, make sure that the folder hmdb51_org contains subfolders named after
the body motions. If it contains RAR files, you need to extract them as well. Use the supporting
function hmdb51Files to get the file names and the labels of the videos. To speed up training at the
cost of accuracy, specify a fraction in the range [0 1] to read only a random subset of files from the
database. If the fraction input argument is not specified, the function hmdb51Files reads the full
dataset without changing the order of the files.

dataFolder = "hmdb51_org";
fraction = 1;
[files,labels] = hmdb51Files(dataFolder,fraction);

Read the first video using the readVideo helper function, defined at the end of this example, and
view the size of the video. The video is an H-by-W-by-C-by-T array, where H, W, C, and T are the
height, width, number of channels, and number of frames of the video, respectively.

idx = 1;
filename = files(idx);
video = readVideo(filename);
size(video)

ans = 1×4

   240   352     3   115

View the corresponding label.

labels(idx)

ans = categorical
     shoot_ball 

To view the video, loop over the individual frames and use the image function. Alternatively, you can
use the implay function (requires Image Processing Toolbox).

numFrames = size(video,4);
figure
for i = 1:numFrames
    frame = video(:,:,:,i);
    image(frame);
    xticklabels([]);
    yticklabels([]);
    drawnow
end

Convert Frames to Feature Vectors

Use the convolutional network as a feature extractor: input video frames to the network and extract
the activations. Convert the videos to sequences of feature vectors, where the feature vectors are the
output of the activations function on the last pooling layer of the GoogLeNet network
("pool5-7x7_s1").

This diagram illustrates the data flow through the network.

4 Deep Learning with Time Series, Sequences, and Text

4-98



Read the video data using the readVideo function, defined at the end of this example, and resize it
to match the input size of the GoogLeNet network. Note that this step can take a long time to run.
After converting the videos to sequences, save the sequences and corresponding labels in a MAT file
in the tempdir folder. If the MAT file already exists, then load the sequences and labels from the
MAT file directly. In case a MAT file already exists but you want to overwrite it, set the variable
overwriteSequences to true.

inputSize = netCNN.Layers(1).InputSize(1:2);
layerName = "pool5-7x7_s1";

tempFile = fullfile(tempdir,"hmdb51_org.mat");

overwriteSequences = false;

if exist(tempFile,'file') && ~overwriteSequences
    load(tempFile)
else
    numFiles = numel(files);
    sequences = cell(numFiles,1);
    
    for i = 1:numFiles
        fprintf("Reading file %d of %d...\n", i, numFiles)
        
        video = readVideo(files(i));
        video = imresize(video,inputSize);
        sequences{i,1} = activations(netCNN,video,layerName,'OutputAs','columns');
        
    end
    % Save the sequences and the labels associated with them.
    save(tempFile,"sequences","labels","-v7.3");
end

View the sizes of the first few sequences. Each sequence is a D-by-T array, where D is the number of
features (the output size of the pooling layer) and T is the number of frames of the video.

sequences(1:10)

ans=10×1 cell array
    {1024×115 single}
    {1024×227 single}
    {1024×180 single}
    {1024×40  single}
    {1024×60  single}
    {1024×156 single}
    {1024×83  single}
    {1024×42  single}
    {1024×82  single}

 Classify Videos Using Deep Learning with Custom Training Loop

4-99



    {1024×110 single}

Prepare Training Data

Prepare the data for training by partitioning the data into training and validation partitions and
removing any long sequences.

Create Training and Validation Partitions

Partition the data. Assign 90% of the data to the training partition and 10% to the validation partition.

numObservations = numel(sequences);
idx = randperm(numObservations);
N = floor(0.9 * numObservations);

idxTrain = idx(1:N);
sequencesTrain = sequences(idxTrain);
labelsTrain = labels(idxTrain);

idxValidation = idx(N+1:end);
sequencesValidation = sequences(idxValidation);
labelsValidation = labels(idxValidation);

Remove Long Sequences

Sequences that are much longer than typical sequences in the networks can introduce lots of padding
into the training process. Having too much padding can negatively impact the classification accuracy.

Get the sequence lengths of the training data and visualize them in a histogram of the training data.

numObservationsTrain = numel(sequencesTrain);
sequenceLengths = zeros(1,numObservationsTrain);

for i = 1:numObservationsTrain
    sequence = sequencesTrain{i};
    sequenceLengths(i) = size(sequence,2);
end

figure
histogram(sequenceLengths)
title("Sequence Lengths")
xlabel("Sequence Length")
ylabel("Frequency")

4 Deep Learning with Time Series, Sequences, and Text

4-100



Only a few sequences have more than 400 time steps. To improve the classification accuracy, remove
the training sequences that have more than 400 time steps along with their corresponding labels.

maxLength = 400;
idx = sequenceLengths > maxLength;
sequencesTrain(idx) = [];
labelsTrain(idx) = [];

Create Datastore for Data

Create an arrayDatastore object for the sequences and the labels, and then combine them into a
single datastore.

dsXTrain = arrayDatastore(sequencesTrain,'OutputType','same');
dsYTrain = arrayDatastore(labelsTrain,'OutputType','cell');

dsTrain = combine(dsXTrain,dsYTrain);

Determine the classes in the training data.

classes = categories(labelsTrain);

 Classify Videos Using Deep Learning with Custom Training Loop

4-101



Create Sequence Classification Network

Next, create a sequence classification network that can classify the sequences of feature vectors
representing the videos.

Define the sequence classification network architecture. Specify the following network layers:

• A sequence input layer with an input size corresponding to the feature dimension of the feature
vectors.

• A BiLSTM layer with 2000 hidden units with a dropout layer afterwards. To output only one label
for each sequence, set the 'OutputMode' option of the BiLSTM layer to 'last'.

• A dropout layer with a probability of 0.5.
• A fully connected layer with an output size corresponding to the number of classes and a softmax

layer.

numFeatures = size(sequencesTrain{1},1);
numClasses = numel(categories(labelsTrain));

layers = [
    sequenceInputLayer(numFeatures,'Name','sequence')
    bilstmLayer(2000,'OutputMode','last','Name','bilstm')
    dropoutLayer(0.5,'Name','drop')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')
    ];

Convert the layers to a layerGraph object.

lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph);

Specify Training Options

Train for 15 epochs and specify a mini-batch size of 16.

numEpochs = 15;
miniBatchSize = 16;

Specify the options for Adam optimization. Specify an initial learning rate of 1e-4 with a decay of
0.001, a gradient decay of 0.9, and a squared gradient decay of 0.999.

initialLearnRate = 1e-4;
decay = 0.001;
gradDecay = 0.9;
sqGradDecay = 0.999;

Visualize the training progress in a plot.

plots = "training-progress";

Train Sequence Classification Network

Create a minibatchqueue object that processes and manages mini-batches of sequences during
training. For each mini-batch:

4 Deep Learning with Time Series, Sequences, and Text

4-102



• Use the custom mini-batch preprocessing function preprocessLabeledSequences (defined at
the end of this example) to convert the labels to dummy variables.

• Format the vector sequence data with the dimension labels 'CTB' (channel, time, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray object if a GPU is available. Using a GPU requires Parallel Computing Toolbox™
and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFcn', @preprocessLabeledSequences,...
    'MiniBatchFormat',{'CTB',''});

Initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

Initialize the average gradient and average squared gradient parameters for the Adam solver.

averageGrad = [];
averageSqGrad = [];

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model gradients, state, and loss using dlfeval and the modelGradients function
and update the network state.

• Determine the learning rate for the time-based decay learning rate schedule: for each iteration,
the solver uses the learning rate given by ρt =

ρ0
1 + k t , where t is the iteration number, ρ0 is the

initial learning rate, and k is the decay.
• Update the network parameters using the adamupdate function.
• Display the training progress.

Note that training can take a long time to run.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq)

 Classify Videos Using Deep Learning with Custom Training Loop

4-103



        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [dlX, dlY] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelGradients function.
        [gradients,state,loss] = dlfeval(@modelGradients,dlnet,dlX,dlY);
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the Adam optimizer.
        [dlnet,averageGrad,averageSqGrad] = adamupdate(dlnet,gradients,averageGrad,averageSqGrad, ...
            iteration,learnRate,gradDecay,sqGradDecay);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + " of " + numEpochs + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

4 Deep Learning with Time Series, Sequences, and Text

4-104



Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

After training is complete, making predictions on new data does not require the labels.

To create a minibatchqueue object for testing:

• Create an array datastore containing only the predictors of the test data.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessUnlabeledSequences helper function, listed at

the end of the example.
• For the single output of the datastore, specify the mini-batch format 'CTB' (channel, time, batch).

dsXValidation = arrayDatastore(sequencesValidation,'OutputType','same');
mbqTest = minibatchqueue(dsXValidation, ...
    'MiniBatchSize',miniBatchSize, ...
    'MiniBatchFcn',@preprocessUnlabeledSequences, ...
    'MiniBatchFormat','CTB');

 Classify Videos Using Deep Learning with Custom Training Loop

4-105



Loop over the mini-batches and classify the images using the modelPredictions helper function,
listed at the end of the example.

predictions = modelPredictions(dlnet,mbqTest,classes);

Evaluate the classification accuracy by comparing the predicted labels to the true validation labels.

accuracy = mean(predictions == labelsValidation)

accuracy = 0.6721

Assemble Video Classification Network

To create a network that classifies videos directly, assemble a network using layers from both of the
created networks. Use the layers from the convolutional network to transform the videos into vector
sequences and the layers from the sequence classification network to classify the vector sequences.

The following diagram illustrates the network architecture:

• To input image sequences to the network, use a sequence input layer.
• To use convolutional layers to extract features, that is, to apply the convolutional operations to

each frame of the videos independently, use the GoogLeNet convolutional layers.
• To classify the resulting vector sequences, include the sequence classification layers.

When training this type of network with the trainNetwork function (not done in this example), you
have to use sequence folding and unfolding layers to process the video frames independently. When
training this type of network with a dlnetwork object and a custom training loop (as in this
example), sequence folding and unfolding layers are not required because the network uses
dimension information given by the dlarray dimension labels.

Add Convolutional Layers

First, create a layer graph of the GoogLeNet network.

cnnLayers = layerGraph(netCNN);

Remove the input layer ("data") and the layers after the pooling layer used for the activations
("pool5-drop_7x7_s1", "loss3-classifier", "prob", and "output").

layerNames = ["data" "pool5-drop_7x7_s1" "loss3-classifier" "prob" "output"];
cnnLayers = removeLayers(cnnLayers,layerNames);

Add Sequence Input Layer

Create a sequence input layer that accepts image sequences containing images of the same input size
as the GoogLeNet network. To normalize the images using the same average image as the GoogLeNet
network, set the 'Normalization' option of the sequence input layer to 'zerocenter' and the
'Mean' option to the average image of the input layer of GoogLeNet.

inputSize = netCNN.Layers(1).InputSize(1:2);
averageImage = netCNN.Layers(1).Mean;

4 Deep Learning with Time Series, Sequences, and Text

4-106



inputLayer = sequenceInputLayer([inputSize 3], ...
    'Normalization','zerocenter', ...
    'Mean',averageImage, ...
    'Name','input');

Add the sequence input layer to the layer graph. Connect the output of the input layer to the input of
the first convolutional layer ("conv1-7x7_s2").

lgraph = addLayers(cnnLayers,inputLayer);
lgraph = connectLayers(lgraph,"input","conv1-7x7_s2");

Add Sequence Classification Layers

Add the previously trained sequence classification network layers to the layer graph and connect
them.

Take the layers from the sequence classification network and remove the sequence input layer.

lstmLayers = dlnet.Layers;
lstmLayers(1) = [];

Add the sequence classification layers to the layer graph. Connect the last convolutional layer
pool5-7x7_s1 to the bilstm layer.

lgraph = addLayers(lgraph,lstmLayers);
lgraph = connectLayers(lgraph,"pool5-7x7_s1","bilstm");

Convert to dlnetwork

To be able to do predictions, convert the layer graph to a dlnetwork object.

dlnetAssembled = dlnetwork(lgraph)

dlnetAssembled = 
  dlnetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]
     Learnables: [119×3 table]
          State: [2×3 table]
     InputNames: {'input'}
    OutputNames: {'softmax'}
    Initialized: 1

Classify Using New Data

Unzip the file pushup_mathworker.zip.

unzip("pushup_mathworker.zip")

The extracted pushup_mathworker folder contains a video of a push-up. Create a file datastore for
this folder. Use a custom read function to read the videos.

ds = fileDatastore("pushup_mathworker", ...
    'ReadFcn',@readVideo);

Read the first video from the datastore. To be able to read the video again, reset the datastore.

 Classify Videos Using Deep Learning with Custom Training Loop

4-107



video = read(ds);
reset(ds);

To view the video, loop over the individual frames and use the image function. Alternatively, you can
use the implay function (requires Image Processing Toolbox).

numFrames = size(video,4);
figure
for i = 1:numFrames
    frame = video(:,:,:,i);
    image(frame);
    xticklabels([]);
    yticklabels([]);
    drawnow
end

To preprocess the videos to have the input size expected by the network, use the transform function
and apply the imresize function to each image in the datastore.

dsXTest = transform(ds,@(x) imresize(x,inputSize));

4 Deep Learning with Time Series, Sequences, and Text

4-108



To manage and process the unlabeled videos, create a minibatchqueue:

• Specify a mini-batch size of 1.
• Preprocess the videos using the preprocessUnlabeledVideos helper function, listed at the end

of the example.
• For the single output of the datastore, specify the mini-batch format 'SSCTB' (spatial, spatial,

channel, time, batch).

mbqTest = minibatchqueue(dsXTest,...
    'MiniBatchSize',1,...
    'MiniBatchFcn', @preprocessUnlabeledVideos,...
    'MiniBatchFormat',{'SSCTB'});

Classify the videos using the modelPredictions helper function, defined at the end of this example.
The function expects three inputs: a dlnetwork object, a minibatchqueue object, and a cell array
containing the network classes.

[predictions] = modelPredictions(dlnetAssembled,mbqTest,classes)

predictions = categorical
     pushup 

Helper Functions

Video Reading Function

The readVideo function reads the video in filename and returns an H-by-W-by-C-by-T array, where
H, W, C, and T are the height, width, number of channels, and number of frames of the video,
respectively.

function video = readVideo(filename)

vr = VideoReader(filename);
H = vr.Height;
W = vr.Width;
C = 3;

% Preallocate video array
numFrames = floor(vr.Duration * vr.FrameRate);
video = zeros(H,W,C,numFrames,'uint8');

% Read frames
i = 0;
while hasFrame(vr)
    i = i + 1;
    video(:,:,:,i) = readFrame(vr);
end

% Remove unallocated frames
if size(video,4) > i
    video(:,:,:,i+1:end) = [];
end

end

 Classify Videos Using Deep Learning with Custom Training Loop

4-109



Model Gradients Function

The modelGradients function takes as input a dlnetwork object dlnet and a mini-batch of input
data dlX with corresponding labels Y, and returns the gradients of the loss with respect to the
learnable parameters in dlnet, the network state, and the loss. To compute the gradients
automatically, use the dlgradient function.

function [gradients,state,loss] = modelGradients(dlnet,dlX,Y)

    [dlYPred,state] = forward(dlnet,dlX);
    
    loss = crossentropy(dlYPred,Y);
    gradients = dlgradient(loss,dlnet.Learnables);

end

Model Predictions Function

The modelPredictions function takes as input a dlnetwork object dlnet, a minibatchqueue
object of input data mbq, and the network classes, and computes the model predictions by iterating
over all data in the mini-batch queue. The function uses the onehotdecode function to find the
predicted class with the highest score. The function returns the predicted labels.

function [predictions] = modelPredictions(dlnet,mbq,classes)
    predictions = [];
    
    while hasdata(mbq)
        
        % Extract a mini-batch from the minibatchqueue and pass it to the
        % network for predictions
        [dlXTest] = next(mbq);
        dlYPred = predict(dlnet,dlXTest);
        
        % To obtain categorical labels, one-hot decode the predictions 
        YPred = onehotdecode(dlYPred,classes,1)';
        predictions = [predictions; YPred];
    end
end

Labeled Sequence Data Preprocessing Function

The preprocessLabeledSequences function preprocesses the sequence data using the following
steps:

1 Use the padsequences function to pad the sequences in the time dimension and concatenate
them in the batch dimension.

2 Extract the label data from the incoming cell array and concatenate into a categorical array.
3 One-hot encode the categorical labels into numeric arrays.
4 Transpose the array of one-hot encoded labels to match the shape of the network output.

function [X, Y] = preprocessLabeledSequences(XCell,YCell)
    % Pad the sequences with zeros in the second dimension (time) and concatenate along the third
    % dimension (batch)
    X = padsequences(XCell,2);
    
    % Extract label data from cell and concatenate

4 Deep Learning with Time Series, Sequences, and Text

4-110



    Y = cat(1,YCell{1:end});
    
    % One-hot encode labels
    Y = onehotencode(Y,2);
    
    % Transpose the encoded labels to match the network output
    Y = Y';
end

Unlabeled Sequence Data Preprocessing Function

The preprocessUnlabeledSequences function preprocesses the sequence data using the
padsequences function. This function pads the sequences with zeros in the time dimension and
concatenates the result in the batch dimension.

function [X] = preprocessUnlabeledSequences(XCell)
    % Pad the sequences with zeros in the second dimension (time) and concatenate along the third
    % dimension (batch)
    X = padsequences(XCell,2);
end

Unlabeled Video Data Preprocessing Function

The preprocessUnlabeledVideos function preprocesses unlabeled video data using the
padsequences function. This function pads the videos with zero in the time dimension and
concatenates the result in the batch dimension.

function [X] = preprocessUnlabeledVideos(XCell)
    % Pad the sequences with zeros in the fourth dimension (time) and
    % concatenate along the fifth dimension (batch)
    X = padsequences(XCell,4);
end

See Also
lstmLayer | sequenceInputLayer | dlfeval | dlgradient | dlarray

Related Examples
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Classify Videos Using Deep Learning” on page 4-87
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

 Classify Videos Using Deep Learning with Custom Training Loop

4-111



Train Sequence Classification Network Using Data With
Imbalanced Classes

This example shows how to classify sequences with a 1-D convolutional neural network using class
weights to modify the training to account for imbalanced classes.

Class weights define the relative importance of each class to the training process. Class weights that
are inversely proportional to the frequency of the respective classes therefore increase the
importance of less prevalent classes to the training process.

This example trains a sequence classification convolutional neural network using a data set
containing synthetically generated waveforms with different numbers of sawtooth waves, sine waves,
square waves, and triangular waves.

Load Sequence Data

Load the example data from WaveformData.mat. The data is a numObservations-by-1 cell array of
sequences, where numObservations is the number of sequences. Each sequence is a
numChannels-by-numTimeSteps numeric array, where numChannels is the number of channels of
the sequence and numTimeSteps is the number of time steps in the sequence. The corresponding
targets are in a numObservations-by-1 categorical array.

load WaveformData

View the number of observations.

numObservations = numel(data)

numObservations = 1000

View the number of channels of the sequences. For network training, each sequence must have the
same number of channels.

numChannels = size(data{1},1)

numChannels = 3

View the number of classes of the waveforms.

numClasses = numel(unique(labels))

numClasses = 4

Visualize the first few sequences in plots.

figure
tiledlayout(2,2)
for i = 1:4
    nexttile
    stackedplot(data{i}')

    xlabel("Time Step")
    title(labels(i))
end

4 Deep Learning with Time Series, Sequences, and Text

4-112



Prepare Data for Training

For class weights to affect training of a classification network, one or more classes must be more
prevalent than others, in other words, the classes must be imbalanced. To demonstrate the effect of
imbalanced classes for this example, retain all sine waves and remove approximately 30% of the
sawtooth waves, 50% of the square waves, and 70% of the triangular waves.

idxImbalanced = (labels == "Sawtooth" & rand(numObservations,1) < 0.7)...
    | (labels == "Sine")...
    | (labels == "Square"  & rand(numObservations,1) < 0.5)...
    | (labels == "Triangle" & rand(numObservations,1) < 0.3);
   
dataImbalanced = data(idxImbalanced);
labelsImbalanced = labels(idxImbalanced);

View the balance of classes.

figure
histogram(labelsImbalanced)
ylabel("Class Frequency")

 Train Sequence Classification Network Using Data With Imbalanced Classes

4-113



Set aside data for validation and testing. Using trainingPartitions, attached to this example as a
supporting file, partition the data into a training set containing 70% of the data, a validation set
containing 15% of the data, and a test set containing the remaining 15% of the data.

numObservations = numel(dataImbalanced);

[idxTrain, idxValidation, idxTest] = trainingPartitions(numObservations, [0.7 0.15 0.15]);

XTrain = dataImbalanced(idxTrain);
XValidation = dataImbalanced(idxValidation);
XTest = dataImbalanced(idxTest);

TTrain = labelsImbalanced(idxTrain);
TValidation = labelsImbalanced(idxValidation);
TTest = labelsImbalanced(idxTest);

Determine Inverse-Frequency Class Weights

For typical classification networks, a classification layer usually follows a softmax layer. During
training, the classification layer calculates the cross-entropy loss by receiving values from the
softmax layer and assigning each input value to one of K mutually exclusive classes using the cross-
entropy function for a 1-of-K coding scheme [1]:

loss = 1
N∑n = 1

N ∑i = 1
K witniln yni

4 Deep Learning with Time Series, Sequences, and Text

4-114



N is the number of samples, K is the number of classes, wi is the weight for the class i, tni is the
indicator that the nth sample belongs to the ith class, and yni is the value received from the softmax
layer for sample n for class i. Classes with higher weights therefore contribute more to the loss.

To prevent the network being biased towards more prevalent classes, calculate class weights that are
inversely proportional to the frequency of the classes:

wi = N
K∑n = 1

N tni

classes = unique(labelsImbalanced)';
for i=1:numClasses
    classFrequency(i) = sum(TTrain(:) == classes(i));
    classWeights(i) = numel(XTrain)/(numClasses*classFrequency(i));
end

classes

classes = 1×4 categorical
     Sawtooth      Sine      Square      Triangle 

classWeights

classWeights = 1×4

    0.9888    0.5456    1.3343    2.4611

Define Network Architectures

Create a convolutional classification network.

• Use a sequence input layer with an input size that matches the number of channels of the input
data.

• For a better fit and to prevent the training from diverging, set the Normalization option of the
sequence input layer to "zscore". Doing so normalizes the sequence data to have zero mean and
unit variance.

• Use a 1-D convolution layer, a ReLU layer, and a batch normalization layer, where the convolution
layer has 10 filters of width 10.

• As the 1-D convolution layer requires that the input has at least as many time steps as the filter
size, set the minimum length accepted by the sequence input layer equal to the filter size.

• To help prevent the network from overfitting, specify a dropout layer.
• To reduce the output of the convolution layer to a single vector, use a 1-D global max pooling layer.
• To map the output to a vector of probabilities, specify a fully connected layer with an output size

matching the number of classes.
• Specify a softmax layer and a classification layer, setting the classes and the corresponding class

weights for the classification layer.

filterSize = 10;
numFilters = 10;

layersWeighted = [ ...

 Train Sequence Classification Network Using Data With Imbalanced Classes

4-115



    sequenceInputLayer(numChannels,Normalization="zscore",MinLength=filterSize)
    convolution1dLayer(filterSize,numFilters)
    batchNormalizationLayer
    reluLayer
    dropoutLayer
    globalMaxPooling1dLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer(Classes=classes,ClassWeights=classWeights)];

For comparison, create a second convolutional classification network that does not use class weights.

layers = layersWeighted;
layers(end).ClassWeights = "none";

Specify Training Options

Specify the training options

• Train using the Adam optimizer.
• Train for 500 epochs. For larger data sets, you might not need to train for as many epochs for a

good fit.
• Specify the sequences and classes used for validation.
• Set the learning rate to 0.01.
• Truncate the sequences in each mini-batch to have the same length as the shortest sequence.

Truncating the sequences ensures that no padding is added, at the cost of discarding data. For
sequences where all of the time steps in the sequence are likely to contain important information,
truncation can prevent the network from achieving a good fit.

• Output the network with the lowest validation loss.
• Display the training process in a plot.
• Disable the verbose output.

options = trainingOptions("adam", ...
    MaxEpochs=500, ...
    ValidationData={XValidation, TValidation}, ...
    InitialLearnRate=0.01, ...
    SequenceLength="shortest", ...
    OutputNetwork="best-validation-loss", ...
    Verbose=false, ...
    Plots="training-progress");

Train Networks

Train the convolutional networks with the specified options using the trainNetwork function.

netWeighted = trainNetwork(XTrain,TTrain,layersWeighted,options);

4 Deep Learning with Time Series, Sequences, and Text

4-116



net = trainNetwork(XTrain,TTrain,layers,options);

 Train Sequence Classification Network Using Data With Imbalanced Classes

4-117



Compare Performance of Networks

Make predictions using the test data.

YWeighted = classify(netWeighted, XTest);
Y = classify(net, XTest);

Visualize the predictions in confusion charts.

figure
tiledlayout(2,1)
nexttile
CWeighted = confusionchart(TTest,YWeighted, Title="With Class Weighting",RowSummary="row-normalized");
nexttile
C = confusionchart(TTest,Y, Title="Without Class Weighting",RowSummary="row-normalized");

4 Deep Learning with Time Series, Sequences, and Text

4-118



Calculate the classification accuracy of the predictions.

AccuracyWeighted = mean(YWeighted == TTest)

AccuracyWeighted = 0.8438

Accuracy = mean(Y == TTest)

Accuracy = 0.8333

In classification applications with imbalanced classes, accuracy can be a poor indicator of model
performance. For example, a model can often achieve high accuracy by classifying every sample as
the majority class.

Two other metrics for accessing model performance are precision (also known as the positive
predictive value) and recall (also known as sensitivity).

Precision = True Positive
True Positive + False Positive

Recall = True Positive
True Positive + False Negative

To combine the precision and recall into a single metric, compute the F1 score [2]. The F1 score is
commonly used for evaluating model performance.

F1 = 2 precision * recall
precision + recall

 Train Sequence Classification Network Using Data With Imbalanced Classes

4-119



A value close to 1 indicates that the model performs well.

Calculate the precision, recall, and F1 score for each class for both networks.

for i = 1:numClasses
    PrecisionWeighted(i) = CWeighted.NormalizedValues(i,i) / sum(CWeighted.NormalizedValues(i,:));
    RecallWeighted(i) = CWeighted.NormalizedValues(i,i) / sum(CWeighted.NormalizedValues(:,i));
    f1Weighted(i) = max(0,(2*PrecisionWeighted(i)*RecallWeighted(i)) / (PrecisionWeighted(i)+RecallWeighted(i)));
end

for i = 1:numClasses
    Precision(i) = C.NormalizedValues(i,i) / sum(C.NormalizedValues(i,:));
    Recall(i) = C.NormalizedValues(i,i) / sum(C.NormalizedValues(:,i));
    f1(i) = max(0,(2*Precision(i)*Recall(i)) / (Precision(i)+Recall(i)));
end

Calculate the average F1 score over all classes (macro-average) for both networks and visualize the
F1 scores in a bar chart.

classesCombined = [classes "Macro-average"];
f1Combined = [f1 mean(f1); f1Weighted mean(f1Weighted)];

figure
bar(classesCombined,f1Combined)
ylim([0 1])
ylabel("F1 score")
legend("Without Class Weighting","With Class Weighting")

4 Deep Learning with Time Series, Sequences, and Text

4-120



While weighting classes depending on frequency can decrease the overall accuracy of the
predictions, doing so can improve the model's ability to classify less prevalent classes.

References

[1] Bishop, Christopher M. Pattern Recognition and Machine Learning. New York: Springer, 2006.

[2] Sokolova, Marina, and Guy Lapalme. "A Systematic Analysis of Performance Measures for
Classification Tasks." Information Processing & Management 45, no. 4 (2009): 427–437.

See Also
classificationLayer | classify | convolution1dLayer | trainingOptions |
trainNetwork | sequenceInputLayer

Related Examples
• “Sequence Classification Using 1-D Convolutions” on page 4-10
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53

 Train Sequence Classification Network Using Data With Imbalanced Classes

4-121



Sequence-to-Sequence Classification Using 1-D Convolutions

This example shows how to classify each time step of sequence data using a generic temporal
convolutional network (TCN).

While sequence-to-sequence tasks are commonly solved with recurrent neural network architectures,
Bai et al. [1] show that convolutional neural networks can match the performance of recurrent
networks on typical sequence modeling tasks or even outperform them. Potential benefits of using
convolutional networks are better parallelism, better control over the receptive field size, better
control of the memory footprint of the network during training, and more stable gradients. Just like
recurrent networks, convolutional networks can operate on variable length input sequences and can
be used to model sequence-to-sequence or sequence-to-one tasks.

In this example, you train a TCN to recognize the activity of person wearing a smartphone on the
body. You train the network using time series data representing accelerometer readings in three
directions.

Load Training Data

Load the Human Activity Recognition data. The data contains seven time series of sensor data
obtained from a smartphone worn on the body. Each sequence has three features and varies in
length. The three features correspond to accelerometer readings in three directions.

s = load("HumanActivityTrain.mat");
XTrain = s.XTrain;
TTrain = s.YTrain;

View the number of observations in the training data.

numObservations = numel(XTrain)

numObservations = 6

View the number of classes in the training data.

classes = categories(TTrain{1});
numClasses = numel(classes)

numClasses = 5

View the number of features of the training data.

numFeatures = size(s.XTrain{1},1)

numFeatures = 3

Visualize one of the training sequences in a plot. Plot the features of the first training sequence and
the corresponding activity.

figure
for i = 1:3
    X = s.XTrain{1}(i,:);

    subplot(4,1,i)
    plot(X)
    ylabel("Feature " + i + newline + "Acceleration")

4 Deep Learning with Time Series, Sequences, and Text

4-122



end

subplot(4,1,4)

hold on
plot(s.YTrain{1})
hold off

xlabel("Time Step")
ylabel("Activity")

subplot(4,1,1)
title("Training Sequence 1")

Define Deep Learning Model

The main building block of a TCN is a dilated causal convolution layer, which operates over the time
steps of each sequence. In this context, "causal" means that the activations computed for a particular
time step cannot depend on activations from future time steps.

To build up context from previous time steps, multiple convolutional layers are typically stacked on
top of each other. To achieve large receptive field sizes, the dilation factor of subsequent convolution
layers is increased exponentially, as shown in the following image. Assuming that the dilation factor
of the k-th convolutional layer is 2 k− 1  and the stride is 1, then the receptive field size of such a
network can be computed as R = f − 1 2K − 1 + 1, where f  is the filter size and K is the number of

 Sequence-to-Sequence Classification Using 1-D Convolutions

4-123



convolutional layers. Change the filter size and number of layers to easily adjust the receptive field
size and the number of learnable parameters as necessary for the data and task at hand.

One of the disadvantages of TCNs compared to recurrent networks is that they have a larger memory
footprint during inference. The entire raw sequence is required to compute the next time step. To
reduce inference time and memory consumption, especially for step-ahead predictions, train with the
smallest sensible receptive field size R and perform prediction only with the last R time steps of the
input sequence.

The general TCN architecture (as described in [1]) consists of multiple residual blocks, each
containing two sets of dilated causal convolution layers with the same dilation factor, followed by
normalization, ReLU activation, and spatial dropout layers. The network adds the input of each block
to the output of the block (including a 1-by-1 convolution on the input when the number of channels
between the input and output do not match) and applies a final activation function.

4 Deep Learning with Time Series, Sequences, and Text

4-124



Define a network containing four of these residual blocks in series, each with double the dilation
factor of the previous layer, starting with a dilation factor of 1. For the residual blocks, specify 64
filters for the 1-D convolutional layers with a filter size of 5 and a dropout factor of 0.005 for the
spatial dropout layers. For spatial dropout, use the custom layer spatialDropoutLayer, attached
to this example as a supporting file. To access this layer, open this example as a live script.

numFilters = 64;
filterSize = 5;
dropoutFactor = 0.005;
numBlocks = 4;

layer = sequenceInputLayer(numFeatures,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);

outputName = layer.Name;

 Sequence-to-Sequence Classification Using 1-D Convolutions

4-125



for i = 1:numBlocks
    dilationFactor = 2^(i-1);
    
    layers = [
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)
        layerNormalizationLayer
        spatialDropoutLayer(dropoutFactor)
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        spatialDropoutLayer(dropoutFactor)
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end

layers = [
    fullyConnectedLayer(numClasses,Name="fc")
    softmaxLayer
    classificationLayer];
lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,outputName,"fc");

View the network in a plot.

figure
plot(lgraph)
title("Temporal Convolutional Network")

4 Deep Learning with Time Series, Sequences, and Text

4-126



Specify Training Options

Specify a set of options used for training.

• Train for 60 epochs with a mini-batch size of 1.
• Train with a learning rate of 0.001.
• Display the training progress in a plot and suppress the verbose output.

options = trainingOptions("adam", ...
    MaxEpochs=60, ...
    miniBatchSize=1, ...
    Plots="training-progress", ...
    Verbose=0);

Train Model

net = trainNetwork(XTrain,TTrain,lgraph,options);

 Sequence-to-Sequence Classification Using 1-D Convolutions

4-127



Test Model

Test the classification accuracy of the model by comparing the predictions on a held-out test set with
the true labels for each time step.

Load the test data.

s = load("HumanActivityTest.mat");
XTest = s.XTest;
TTest = s.YTest;

Use the trained network to make predictions by using the classify function.

YPred = classify(net,XTest);

Compare the predictions with the corresponding test data in a plot.

figure
plot(YPred{1},".-")
hold on
plot(TTest{1})
hold off

xlabel("Time Step")
ylabel("Activity")

4 Deep Learning with Time Series, Sequences, and Text

4-128



legend(["Predicted" "Test Data"],Location="northeast")
title("Test Sequence Predictions")

Visualize the predictions in a confusion matrix.

figure
confusionchart(TTest{1},YPred{1})

 Sequence-to-Sequence Classification Using 1-D Convolutions

4-129



Evaluate the classification accuracy by comparing the predictions to the test labels.

accuracy = mean(YPred{1} == TTest{1})

accuracy = 0.9919

References

[1] Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. “An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling.” Preprint, submitted April 19, 2018. https://
arxiv.org/abs/1803.01271.

[2] Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. “WaveNet: A Generative Model for Raw
Audio.” Preprint, submitted September 12, 2016. https://arxiv.org/abs/1609.03499.

[3] Tompson, Jonathan, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. “Efficient
Object Localization Using Convolutional Networks.” 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 648–56. https://doi.org/10.1109/CVPR.2015.7298664.

See Also
convolution1dLayer | trainingOptions | trainNetwork | sequenceInputLayer |
maxPooling1dLayer | averagePooling1dLayer | globalMaxPooling1dLayer |
globalAveragePooling1dLayer

4 Deep Learning with Time Series, Sequences, and Text

4-130



Related Examples
• “Sequence Classification Using 1-D Convolutions” on page 4-10
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Sequence-to-Sequence Classification Using 1-D Convolutions

4-131



Time Series Anomaly Detection Using Deep Learning

This example shows how to detect anomalies in sequence or time series data.

To detect anomalies or anomalous regions in a collection of sequences or time series data, you can
use an autoencoder. An autoencoder is a type of model that is trained to replicate its input by
transforming the input to a lower dimensional space (the encoding step) and reconstructing the input
from the lower dimensional representation (the decoding step). Training an autoencoder does not
require labeled data.

An autoencoder itself does not detect anomalies. Training an autoencoder using only representative
data yields a model that can reconstruct its input data by using features learned from the
representative data only. To check if an observation is anomalous using an autoencoder, input the
observation into the network and measure the error between the original observation and the
reconstructed observation. A large error between the original and reconstructed observations
indicates that the original observation contains features unrepresentative of the data used to train
the autoencoder and is anomalous. By observing the element-wise error between the original and
reconstructed sequences, you can identify localized regions of anomalies.

This image shows an example sequence with anomalous regions highlighted.

This example uses the Waveform data set which contains 2000 synthetically generated waveforms of
varying length with three channels.

4 Deep Learning with Time Series, Sequences, and Text

4-132



Load Training Data

Load the Waveform data set from WaveformData.mat. The observations are numChannels-by-
numTimeSteps arrays, where numChannels and numTimeSteps are the number of channels and
time steps of the sequence, respectively.

load WaveformData

View the sizes of the first few sequences.

data(1:5)

ans=5×1 cell array
    {3×103 double}
    {3×136 double}
    {3×140 double}
    {3×124 double}
    {3×127 double}

View the number of channels. To train the network, each sequence must have the same number of
channels.

numChannels = size(data{1},1)

numChannels = 3

Visualize the first few sequences in a plot.

figure
tiledlayout(2,2)
for i = 1:4
    nexttile
    stackedplot(data{i}',DisplayLabels="Channel " + (1:numChannels));
    title("Observation " + i)
    xlabel("Time Step")
end

 Time Series Anomaly Detection Using Deep Learning

4-133



Partition the data into training and validation partitions. Train the network using the 90% of the data
and set aside 10% for validation.

numObservations = numel(data);
XTrain = data(1:floor(0.9*numObservations));
XValidation = data(floor(0.9*numObservations)+1:end);

Prepare Data for Training

The network created in this example repeatedly downsamples the time dimension of the data by a
factor of two, then upsamples the output by a factor of two the same number of times. To ensure that
the network can unambiguously reconstruct the sequences to have the same length as the input,
truncate the sequences to have a length of the nearest multiple of 2K, where K is the number of
downsampling operations.

Downsample the input data twice.

numDownsamples = 2;

Truncate the sequences to the nearest multiple of 2^numDownsamples. So that you can calculate the
minimum sequence length for the network input layer, also create a vector containing the sequence
lengths.

sequenceLengths = zeros(1,numel(XTrain));

for n = 1:numel(XTrain)
    X = XTrain{n};

4 Deep Learning with Time Series, Sequences, and Text

4-134



    cropping = mod(size(X,2), 2^numDownsamples);
    X(:,end-cropping+1:end) = [];
    XTrain{n} = X;
    sequenceLengths(n) = size(X,2);
end

Truncate the validation data using the same steps.

for n = 1:numel(XValidation)
    X = XValidation{n};
    cropping = mod(size(X,2),2^numDownsamples);
    X(:,end-cropping+1:end) = [];
    XValidation{n} = X;
end

Define Network Architecture

Define the following network architecture, which reconstructs the input by downsampling and
upsampling the data.

• For sequence input, specify a sequence input layer with an input size matching the number of
input channels. Normalize the data using Z-score normalization. To ensure that the network
supports the training data, set the MinLength option to the length of the shortest sequence in the
training data.

• To downsample the input, specify repeating blocks of 1-D convolution, ReLU, and dropout layers.
To upsample the encoded input, include the same number of blocks of 1-D transposed convolution,
ReLU, and dropout layers.

• For the convolution layers, specify decreasing numbers of filters with size 7. To ensure that the
outputs are downsampled evenly by a factor of 2, specify a stride of 2, and set the Padding option
to "same".

• For the transposed convolution layers, specify increasing numbers of filters with size 7. To ensure
that the outputs are upsampled evenly be a factor of 2, specify a stride of 2, and set the Cropping
option to "same".

• For the dropout layers, specify a dropout probability of 0.2.
• To output sequences with the same number of channels as the input, specify a 1-D transposed

convolution layer with a number of filters matching the number of channels of the input. To ensure
output sequences are the same length as the layer input, set the Cropping option to "same".

• Finally, include a regression layer.

To increase or decrease the number of downsampling and upsampling layers, adjust the value of the
numDownsamples variable defined in the Prepare Data for Training on page 4-134 section.

 Time Series Anomaly Detection Using Deep Learning

4-135



minLength = min(sequenceLengths);
filterSize = 7;
numFilters = 16;
dropoutProb = 0.2;

layers = sequenceInputLayer(numChannels,Normalization="zscore",MinLength=minLength);

for i = 1:numDownsamples
    layers = [
        layers
        convolution1dLayer(filterSize,(numDownsamples+1-i)*numFilters,Padding="same",Stride=2)
        reluLayer
        dropoutLayer(dropoutProb)];
end

for i = 1:numDownsamples
    layers = [
        layers
        transposedConv1dLayer(filterSize,i*numFilters,Cropping="same",Stride=2)
        reluLayer
        dropoutLayer(dropoutProb)];
end

layers = [
    layers
    transposedConv1dLayer(filterSize,numChannels,Cropping="same")
    regressionLayer];

To interactively view or edit the network, you can use Deep Network Designer.

deepNetworkDesigner(layers)

Specify Training Options

Specify the training options:

• Train using the Adam solver.
• Train for 120 epochs.
• Shuffle the data every epoch.
• Validate the network using the validation data. Specify the sequences as both the inputs and the

targets.
• Display the training progress in a plot.
• Suppress the verbose output.

options = trainingOptions("adam", ...
    MaxEpochs=120, ...
    Shuffle="every-epoch", ...
    ValidationData={XValidation,XValidation}, ...
    Verbose=0, ...
    Plots="training-progress");

Train Network

Train the network using the trainNetwork function. When you train an autoencoder, the inputs and
targets are the same. Specify the training data as both the inputs and the targets.

4 Deep Learning with Time Series, Sequences, and Text

4-136



net = trainNetwork(XTrain,XTrain,layers,options);

Test Network

Test the network using the validation data. For each validation sequence, calculate the mean absolute
error (MAE) between the sequence and the reconstructed sequence.

YValidation = predict(net,XValidation);

MAEValidation = zeros(numel(XValidation),1);
for n = 1:numel(XValidation)
    X = XValidation{n};
    Y = YValidation{n};
    MAEValidation(n) = mean(abs(Y - X),"all");
end

Visualize the MAE values in a histogram.

figure
histogram(MAEValidation)
xlabel("Mean Absolute Error (MAE)")
ylabel("Frequency")
title("Representative Samples")

 Time Series Anomaly Detection Using Deep Learning

4-137



You can use the maximum MAE as a baseline for anomaly detection. Determine the maximum MAE
from the validation data.

MAEbaseline = max(MAEValidation)

MAEbaseline = 0.5003

Identify Anomalous Sequences

Create a new set of data by manually editing some of the validation sequences to have anomalous
regions.

Create a copy of the validation data.

XNew = XValidation;

Randomly select 20 of the sequences to modify.

numAnomalousSequences = 20;
idx = randperm(numel(XValidation),numAnomalousSequences);

For each of the selected sequences, set a patch of the data XPatch to 4*abs(Xpatch).

for i = 1:numAnomalousSequences
    X = XNew{idx(i)};

    idxPatch = 50:60;
    XPatch = X(:,idxPatch);

4 Deep Learning with Time Series, Sequences, and Text

4-138



    X(:,idxPatch) = 4*abs(XPatch);

    XNew{idx(i)} = X;
end

Make predictions on the new data.

YNew = predict(net,XNew);

For each prediction, calculate the MAE between the input sequence and the reconstructed sequence.

MAENew = zeros(numel(XNew),1);
for n = 1:numel(XNew)
    X = XNew{n};
    Y = YNew{n};
    MAENew(n) = mean(abs(Y - X),"all");
end

Visualize the MAE values in a plot.

figure
histogram(MAENew)
xlabel("Mean Absolute Error (MAE)")
ylabel("Frequency")
title("New Samples")
hold on
xline(MAEbaseline,"r--")
legend(["Data" "Baseline MAE"])

 Time Series Anomaly Detection Using Deep Learning

4-139



Identify the top 10 sequences with the largest MAE values.

[~,idxTop] = sort(MAENew,"descend");
idxTop(1:10)

ans = 10×1

    41
    99
    11
     2
    16
    53
    23
    82
    93
    84

Visualize the sequence with the largest MAE value and its reconstruction in a plot.

X = XNew{idxTop(1)};
Y = YNew{idxTop(1)};

figure
t = tiledlayout(numChannels,1);
title(t,"Sequence " + idxTop(1))

for i = 1:numChannels
    nexttile

    plot(X(i,:))
    box off
    ylabel("Channel " + i)

    hold on
    plot(Y(i,:),"--")
end

nexttile(1)
legend(["Original" "Reconstructed"])

4 Deep Learning with Time Series, Sequences, and Text

4-140



Identify Anomalous Regions

To detect anomalous regions in a sequence, find the MAE between the input sequence and the
reconstructed sequence and highlight the regions with the error above a threshold value.

Calculate the error between the input sequence and the reconstructed sequence.

MAE = mean(abs(Y - X),1);

Set the time step window size to 7. Identify windows that have time steps with MAE values of at least
10% above the maximum error value identified using the validation data.

windowSize = 7;
thr = 1.1*MAEbaseline;

idxAnomaly = false(1,size(X,2));
for t = 1:(size(X,2) - windowSize + 1)
    idxWindow = t:(t + windowSize - 1);

    if all(MAE(idxWindow) > thr)
        idxAnomaly(idxWindow) = true;
    end
end

Display the sequence in a plot and highlight the anomalous regions.

figure
t = tiledlayout(numChannels,1);

 Time Series Anomaly Detection Using Deep Learning

4-141



title(t,"Anomaly Detection ")

for i = 1:numChannels
    nexttile
    plot(X(i,:));
    ylabel("Channel " + i)
    box off
    hold on

    XAnomalous = nan(1,size(X,2));
    XAnomalous(idxAnomaly) = X(i,idxAnomaly);
    plot(XAnomalous,"r",LineWidth=3)
    hold off
end

xlabel("Time Step")

nexttile(1)
legend(["Input" "Anomalous"])

The highlighted regions indicate the windows of time steps where the error values are at least 10%
higher than the maximum error value.

See Also
trainingOptions | trainNetwork | sequenceInputLayer | convolution1dLayer |
transposedConv1dLayer

4 Deep Learning with Time Series, Sequences, and Text

4-142



Related Examples
• “Multivariate Time Series Anomaly Detection Using Graph Neural Network” on page 4-177
• “Sequence Classification Using 1-D Convolutions” on page 4-10
• “Sequence-to-Sequence Classification Using 1-D Convolutions” on page 4-122
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Time Series Anomaly Detection Using Deep Learning

4-143



Sequence Classification Using CNN-LSTM Network

This example shows how to create a 2-D CNN-LSTM network for speech classification tasks by
combining a 2-D convolutional neural network (CNN) with a long short-term memory (LSTM) layer.

A CNN processes sequence data by applying sliding convolutional filters to the input. A CNN can
learn features from both spatial and time dimensions. An LSTM network processes sequence data by
looping over time steps and learning long-term dependencies between time steps. A CNN-LSTM
network use convolutional and LSTM layers to learn from the training data.

To train a CNN-LSTM network with audio data, you extract auditory-based spectrograms from the
raw audio data and then train the network using the spectrograms. This diagram illustrates the
network application.

The example trains a 2-D CNN-LSTM network to recognize the emotion of spoken text by using the
Berlin Database of Emotional Speech (Emo-DB) [1] on page 4-155. The emotions are text-
independent, which means that the data contains no textual clues that indicate the emotion.

Download Data Set

Download the Emo-DB [1] on page 4-155 data set. This dataset contains 535 utterances spoken by 10
actors labeled with one of these emotions: anger, boredom, disgust, anxiety/fear, happiness, sadness,
or neutral.

dataFolder = fullfile(tempdir,"Emo-DB");
if ~datasetExists(dataFolder)
    url = "http://emodb.bilderbar.info/download/download.zip";
    disp("Downloading Emo-DB (40.5 MB) ...")
    unzip(url,dataFolder)
end

Create an audioDatastore (Audio Toolbox) object for the data.

location = fullfile(dataFolder,"wav");
ads = audioDatastore(location);

The file names encode the speaker ID, text spoken, emotion, and version. The emotion labels are
encoded as:

• W — Anger
• L — Boredom
• E — Disgust
• A — Anxiety/Fear

4 Deep Learning with Time Series, Sequences, and Text

4-144



• F — Happiness
• T — Sadness
• N — Neutral

Extract the emotion labels from the file names. The sixth character of the file name encodes the
emotion labels.

filepaths = ads.Files;
[~,filenames] = fileparts(filepaths);
emotionLabels = extractBetween(filenames,6,6);

Replace the single-letter codes with the descriptive labels.

emotionCodeNames = ["W" "L" "E" "A" "F" "T" "N"];
emotionNames = ["Anger" "Boredom" "Disgust" "Anxiety/Fear" "Happiness" "Sadness" "Neutral"];
emotionLabels = replace(emotionLabels,emotionCodeNames,emotionNames);

Convert the labels to a categorical array.

emotionLabels = categorical(emotionLabels);

Set the Labels property of the audioDatastore object to emotionLabels.

ads.Labels = emotionLabels;

View the distribution of classes in a histogram.

figure
histogram(emotionLabels)
title("Class Distribution")
ylabel("Number of Observations")

 Sequence Classification Using CNN-LSTM Network

4-145



Read a sample from the datastore, view the waveform in a plot, and listen to the sample.

[audio,info] = read(ads);
fs = info.SampleRate;
sound(audio,fs)

figure
plot((1:length(audio))/fs,audio)
title("Class: " + string(emotionLabels(1)))
xlabel("Time (s)")
ylabel("Amplitude")

4 Deep Learning with Time Series, Sequences, and Text

4-146



Prepare Data for Training

Split the data into training, validation, and testing data. Use 70% of the data for training, 15% of the
data for validation, and 15% of the data for testing.

[adsTrain,adsValidation,adsTest] = splitEachLabel(ads,0.70,0.15,0.15);

View the number of training observations.

numObservationsTrain = numel(adsTrain.Files)

numObservationsTrain = 371

Training a deep learning model usually requires many training observations to achieve a good fit.
When you do not have much training data available, you can try to improve the fit of the network by
artificially increasing the size of the training data using augmentations.

Create an audioDataAugmenter (Audio Toolbox) object:

• Specify 75 augmentations for each file. You can experiment with the number of augmentations for
each file and compare the tradeoff between processing time and accuracy improvement.

• Set the probability of applying pitch shifting to 0.5.
• Set the probability of applying time shifting to 1 and set the range to [-0.3 0.3] seconds.
• Set the probability of adding noise to 1 and set the SNR range to [-20 40] dB.

numAugmentations = ;

 Sequence Classification Using CNN-LSTM Network

4-147



augmenter = audioDataAugmenter(NumAugmentations=numAugmentations, ...
    TimeStretchProbability=0, ...
    VolumeControlProbability=0, ...
    PitchShiftProbability=0.5, ...
    TimeShiftProbability=1, ...
    TimeShiftRange=[-0.3 0.3], ...
    AddNoiseProbability=1, ...
    SNRRange=[-20 40]);

Create a new folder to hold the augmented data.

agumentedDataFolder = fullfile(pwd,"augmentedData");
mkdir(agumentedDataFolder)

You can augment data as you input it to the network or augment the training data before training and
save the augmented files to disk. In most cases, saving the results to disk reduces the overall training
time and is useful when you want to experiment with different network architectures and training
options.

Augment the training data by looping over the datastore and using the audio data augmenter. For
each augmentation:

• Normalize the augmentation to have a maximum value of 1.
• Save the augmentation in a WAV file and append "_augK" to the file name, where K is the

augmentation number.

To speed up the augmentation process, process the audio files in parallel using a parfor (Parallel
Computing Toolbox) loop by splitting the audio datastore into smaller partitions and looping over the
partitions in parallel. Using parfor requires a Parallel Computing Toolbox™ license. If you do not
have a Parallel Computing Toolbox license, then the parfor loop runs in serial.

reset(ads)

numPartitions = 50;

augmentationTimer = tic;
parfor i = 1:numPartitions
    adsPart = partition(adsTrain,numPartitions,i);

    while hasdata(adsPart)
        [X,info] = read(adsPart);
        data = augment(augmenter,X,fs);

        [~,name] = fileparts(info.FileName);

        for n = 1:numAugmentations
            XAug = data.Audio{n};
            XAug = XAug/max(abs(XAug),[],"all");

            nameAug = name + "_aug" + string(n);

            filename = fullfile(agumentedDataFolder,nameAug + ".wav");
            audiowrite(filename,XAug,fs);
        end
    end
end
toc(augmentationTimer)

4 Deep Learning with Time Series, Sequences, and Text

4-148



Elapsed time is 346.073556 seconds.

Create an audio datastore of the augmented data set.

augadsTrain = audioDatastore(agumentedDataFolder);

Because the file names of the augmented data and the original data differ only by a suffix, the labels
of the augmented data are repeated elements of the original labels. Replicate the rows of the labels of
the original datastore NumAugmentations times and assign them to the Labels property of the new
datastore.

augadsTrain.Labels = repelem(adsTrain.Labels,augmenter.NumAugmentations,1);

Extract the features from the audio data using an audioFeatureExtractor (Audio Toolbox) object.
Specify:

• A window length of 2048 samples
• A hop length of 512 samples
• A periodic Hamming window
• To extract the one-sided mel spectrum

windowLength = 2048;
hopLength = 512;

afe = audioFeatureExtractor( ...
    Window=hamming(windowLength,"periodic"), ...
    OverlapLength=(windowLength - hopLength), ...
    SampleRate=fs, ...
    melSpectrum=true);

Set the extractor parameters of the feature extractor. Set the number of mel bands to 128 and disable
window normalization.

numBands = 128;
setExtractorParameters(afe,"melSpectrum", ...
    NumBands=numBands, ...
    WindowNormalization=false)

Extract the features and labels from the train, validation, and test datastores using the
preprocessAudioData function, which is listed in the Preprocess Audio Data Function on page 4-
154 section of the example.

[featuresTrain,labelsTrain] = preprocessAudioData(augadsTrain,afe);
[featuresValidation,labelsValidation] = preprocessAudioData(adsValidation,afe);
[featuresTest,labelsTest] = preprocessAudioData(adsTest,afe);

Plot the waveforms and auditory spectrograms of a few training samples.

numPlots = 3;
idx = randperm(numel(augadsTrain.Files),numPlots);
f = figure;
f.Position(3) = 2*f.Position(3);

tiledlayout(2,numPlots,TileIndexing="columnmajor")

for ii = 1:numPlots
    [X,fs] = audioread(augadsTrain.Files{idx(ii)});

 Sequence Classification Using CNN-LSTM Network

4-149



    nexttile
    plot(X)
    axis tight

    title(augadsTrain.Labels(idx(ii)))
    xlabel("Time")
    ylabel("Amplitude")

    nexttile
    spect = permute(featuresTrain{idx(ii)}(:,1,:), [1 3 2]);
    pcolor(spect)
    shading flat

    xlabel("Time")
    ylabel("Frequency")
end

View the sizes of the first few observations. The observations are sequences of samples with one
spatial dimension. The observations have size numBands-by-1-by-numTimeSteps, where numBands
corresponds to the spatial dimension of the data and numTimeSteps corresponds to the time
dimension of the data.

featuresTrain(1:10)

ans=10×1 cell array
    {128×1×56 double}
    {128×1×56 double}
    {128×1×56 double}
    {128×1×56 double}
    {128×1×56 double}
    {128×1×56 double}
    {128×1×56 double}
    {128×1×56 double}
    {128×1×56 double}
    {128×1×56 double}

4 Deep Learning with Time Series, Sequences, and Text

4-150



To ensure that the network supports the training data, you can use the MinLength option of the
sequence input layer to check that sequences can flow through the network. Calculate the length of
the shortest sequence to pass to the input layer.

sequenceLengths = zeros(1,numObservationsTrain);
for n = 1:numObservationsTrain
    sequenceLengths(n) = size(featuresTrain{n},3);
end
minLength = min(sequenceLengths)

minLength = 41

Define 2-D CNN LSTM Architecture

Define the 2-D CNN LSTM network based on [2] on page 4-155 that predicts class labels of
sequences.

• For sequence input, specify a sequence input layer with an input size matching the input data. To
ensure that the network supports the training data, set the MinLength option to the length of the
shortest sequence in the training data.

• To learn spatial relations in the 1-D image sequences, use a 2-D CNN architecture with four
repeating blocks of convolutional, batch normalization, ReLU, and max pooling layers. Specify an
increasing number of filters for the third and fourth convolutional layers.

• To learn long-term dependencies in the 1-D image sequences, include an LSTM layer with 256
hidden units. To map the sequences to a single value for prediction, output only the last time step
by setting the OutputMode option to "last".

• For classification, include a fully connected layer with a size equal to the number of classes. To
convert the output to vectors of probabilities, include a softmax layer.

• Include a classification layer.

filterSize = 3;
numFilters = 64;
numHiddenUnits = 256;

inputSize = [numBands 1];
numClasses = numel(categories(emotionLabels));

layers = [

 Sequence Classification Using CNN-LSTM Network

4-151



    sequenceInputLayer(inputSize,MinLength=minLength)

    convolution2dLayer(filterSize,numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,Stride=2)

    convolution2dLayer(filterSize,numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer([4 2],Stride=[4 2])

    convolution2dLayer(filterSize,2*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer([4 2],Stride=[4 2])

    convolution2dLayer(filterSize,2*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer([4 2],Stride=[4 2])

    flattenLayer
    lstmLayer(numHiddenUnits,OutputMode="last")

    fullyConnectedLayer(numClasses)

    softmaxLayer
    classificationLayer];

Specify Training Options

Specify the training options using the trainingOptions function:

• Train a network using the Adam solver with a mini-batch size of 32 for three epochs.
• Train with an initial learning rate of 0.005 and reduce the learning rate in a piecewise manner

after two epochs.
• To avoid overfitting the training data, specify an L2 regularization term with a value of 0.0005.
• To prevent padding values affecting the last time steps of the sequences that the LSTM layer

outputs, left-pad the training sequences.
• Shuffle the data every epoch.
• Validate the training progress using the validation data once per epoch.
• Display the training progress in a plot and suppress verbose output.
• Train on a GPU if one is available. Using a GPU requires a Parallel Computing Toolbox license and

a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

miniBatchSize = 32;

options = trainingOptions("adam", ...
    MaxEpochs=3, ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate=0.005, ...
    LearnRateDropPeriod=2, ...

4 Deep Learning with Time Series, Sequences, and Text

4-152



    LearnRateSchedule="piecewise", ...
    L2Regularization=5e-4, ...
    SequencePaddingDirection="left", ...
    Shuffle="every-epoch", ...
    ValidationFrequency=floor(numel(featuresTrain)/miniBatchSize), ...
    ValidationData={featuresValidation,labelsValidation}, ...
    Verbose=false, ...
    Plots="training-progress");

Train Network

Train the network using the trainNetwork function. If you do not have a GPU, then training the
network can take a long time to run.

net = trainNetwork(featuresTrain,labelsTrain,layers,options);

Test Network

Test the classification accuracy of the model by comparing the predictions on the held-out test set
with the true labels for each test observation.

Classify the test data using the trained network.

labelsPred = classify(net,featuresTest, ...
    MiniBatchSize=miniBatchSize, ...
    SequencePaddingDirection="left");

Visualize the predictions in a confusion matrix.

 Sequence Classification Using CNN-LSTM Network

4-153



figure
confusionchart(labelsTest,labelsPred)

Evaluate the classification accuracy by comparing the predictions to the test labels.

accuracy = mean(labelsPred == labelsTest)

accuracy = 0.6329

Supporting Functions

Preprocess Audio Data Function

The preprocessAudioData function extracts the features and labels from the audio datastore ads
using the audio feature extractor afe. The function transforms the data using the extractFeatures
function, listed in the Extract Features Function on page 4-155 section of the example, as a datastore
transform function. To process the data, the function creates the transformed datastore and reads all
the data using using the readall function. To read the data in parallel, the function sets the
UseParallel option of the readall function. Reading in parallel requires a Parallel Computing
Toolbox license. To check if you can use a parallel pool for reading the data, the function uses the
canUseParallelPool function.

function [features,labels] = preprocessAudioData(ads,afe)

% Transform datastore.
tds = transform(ads,@(X) extractFeatures(X,afe));

4 Deep Learning with Time Series, Sequences, and Text

4-154



% Read all data.
tf = canUseParallelPool;
features = readall(tds,UseParallel=tf);

% Extract labels.
labels = ads.Labels;

end

Extract Features Function

The extractFeatures function extracts features from the audio data X using the audio feature
extractor afe. The function computes the logarithm of the extracted features and permutes the data
to have size numBands-by-1-by-numTimeSteps for training.

function features = extractFeatures(X,afe)

features = log(extract(afe,X) + eps);
features = permute(features, [2 3 1]);
features = {features};

end

References

[1] Burkhardt, Felix, A. Paeschke, M. Rolfes, Walter F. Sendlmeier, and Benjamin Weiss. “A Database
of German Emotional Speech.” In Interspeech 2005, 1517–20. ISCA, 2005. https://doi.org/10.21437/
Interspeech.2005-446.

[2] Zhao, Jianfeng, Xia Mao, and Lijiang Chen. “Speech Emotion Recognition Using Deep 1D & 2D
CNN LSTM Networks.” Biomedical Signal Processing and Control 47 (January 2019): 312–23. https://
doi.org/10.1016/j.bspc.2018.08.035.

See Also
trainingOptions | trainNetwork | sequenceInputLayer | convolution2dLayer |
lstmLayer

Related Examples
• “Sequence Classification Using 1-D Convolutions” on page 4-10
• “Sequence-to-Sequence Classification Using 1-D Convolutions” on page 4-122
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43

 Sequence Classification Using CNN-LSTM Network

4-155



• “Deep Learning Tips and Tricks” on page 1-87

4 Deep Learning with Time Series, Sequences, and Text

4-156



Train Latent ODE Network with Irregularly Sampled Time-
Series Data

This example shows how to train a latent ordinary differential equation (ODE) autoencoder with time-
series data that is sampled at irregular time intervals.

Most deep learning models for time-series data (for example, recurrent neural networks) require the
time-series data to be regularly sampled in order to train. That is, the elements of the sequences must
correspond to fixed-width time intervals.

To learn the dynamics of irregularly sampled time-series data, you can use a latent ODE model [1, 2].
A latent ODE model is a variational autoencoder (VAE) [3] that learns the dynamics of time-series
data. An autoencoder is a type of model that is trained to replicate its input by transforming the input
to a latent space (the encoding step) and reconstructing the input from the latent representation (the
decoding step). Training an autoencoder does not require labeled data.

Unlike most autoencoders, a latent ODE model is not trained to replicate its input exactly. Instead,
the model learns the dynamics of the input data and you can specify a set of target time stamps, for
which the model predicts the corresponding values.

This diagram shows the structure of the model.

Training a latent ODE model takes a long time to run. This example, by default, skips training and
loads a pretrained model. To train the model instead, set the doTraining flag to true.

doTraining = false;

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-157



Load Data

Load the Irregular Sine Waves data set. This data set contains 1000 synthetically generated sine
waves with varying frequencies, offsets, and noise. Each sequence uses the same irregularly sampled
set of time stamps.

load irregularSineWaves

Visualize the first sequence in a plot by looping over the channels. Plot vertical lines that highlight
the time stamps. Because the Irregular Sine Waves data set contains only one channel, this code
displays a single plot only.

numChannels = size(values,1);

idx = 1;

figure

t = tiledlayout(numChannels,1);
title(t,"Observation " + idx)

for i = 1:numChannels
    nexttile
    plot(tspan,squeeze(values(i,idx,:)),Marker=".");
    xlabel("t")
    ylabel("Value")

    xline(tspan,":")
end

4 Deep Learning with Time Series, Sequences, and Text

4-158



Prepare Data for Training

Split the training and test data using the trainingPartitions function, attached to the example as
a supporting file. To access this function, open the example as a live script. Use 80% of the data for
training and the remaining 20% for testing.

numObservations = size(values,2);
[idxTrain,idxTest] = trainingPartitions(numObservations,[0.8 0.2]);
sequencesTrain = values(:,idxTrain,:);
sequencesTest = values(:,idxTest,:);

Create datastores that output the training and test data.

dsTrain = arrayDatastore(sequencesTrain,IterationDimension=2);
dsTest = arrayDatastore(sequencesTest,IterationDimension=2);

Initialize Model Learnable Parameters

This example trains a VAE, where the encoder uses a recurrent neural network (RNN), known as an
ODE-RNN [2] and the decoder is a neural ODE. The encoder maps the sequences to a fixed-length
latent representation. This latent representation parameterizes a Gaussian distribution. The model
samples from the Gaussian distribution using these encoded parameters and passes the sampled data
to the decoder.

This diagram shows the structure of the model.

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-159



The encoder is an ODE-RNN. It reverses the input sequence so that the last input to the encoder is
the first output of the decoder. The ODE-RNN updates the latent representation as it reads each time
step of the reversed data using a masked gated recurrent unit (GRU) and an ODE solver. The ODE-
RNN concatenates the input data and the hidden state of the GRU operation and advances this output
of the GRU operation in time according to the neural ODE. The GRU operation uses the updated state
only for time steps specified by the mask.

This diagram shows the structure of the encoder.

This diagram shows the structure of the ODE-RNN when it processes a time step of the data. In this
diagram, xt denotes the value of the time step, mt denotes the mask value, and ht is the hidden state
output of the GRU operation.

4 Deep Learning with Time Series, Sequences, and Text

4-160



The decoder takes the latent representation and reconstructs the input sequence for the specified
target time stamps. The decoder passes the latent representation and the target time stamps to a
neural ODE, concatenates the neural ODE output with the latent representation, passes the
concatenated data to a fully connect operation, and reshapes the output to match the input
sequences.

This diagram shows the structure of the decoder.

To train the model, create a structure that contains the learnable parameters for the latent ODE.
Initialize the model learnable parameters using the latentODEParameters function, attached to
this example as a supporting file. To access this function, open the example as a live script. The
function initializes the learnable parameters for the fully connect and GRU operations by sampling
from a narrow-normal distribution (Gaussian distribution with a mean of zero and a standard
deviation of 0.01).

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-161



Specify the model hyperparameters:

• An encoder ODE size of 105
• An encoder RNN size of 40
• A decoder ODE size of 110
• A latent size of 32

encoderODEHiddenSize = 100;
encoderRNNHiddenSize = 40;
decoderODEHiddenSize = 100;
latentSize = 10;

inputSize = numChannels;
parameters = latentODEParameters(inputSize,encoderODEHiddenSize,encoderRNNHiddenSize,latentSize,decoderODEHiddenSize);

Define Model Functions

Define the model functions to use for the deep learning model.

Model Function

The model function, defined in the Model Function on page 4-168 section of the example, takes as
input the model learnable parameters, the source time stamps and the corresponding sequence
values and mask, and the target time stamps. The function returns the predicted values that
correspond to the target time stamps.

Encoder Function

The encoder function, defined in the Encoder Function on page 4-169 section of the example, takes
as input the encoder learnable parameters, the source time stamps, and the corresponding sequence
values and mask. The function returns the latent representation.

Decoder Function

The decoder function, defined in the Decoder Function on page 4-172 section of the example, takes
as input the decoder learnable parameters, the target time stamps, and the latent representation. The
function returns the predicted values that correspond to the target time stamps.

Define Model Loss Function

The modelLoss function, defined in the Model Loss Function on page 4-172 section of the example,
takes as input the model learnable parameters, the time stamps, and the corresponding sequence
values and mask. The function returns the model loss and the gradients of the loss with respect to the
learnable parameters. The model loss function uses the L2 loss normalized over the number of input
observations and samples.

Specify Training Options

Specify these options for training:

• Train for 200 epochs with a mini-batch size of 50.
• Train with an initial learning rate of 0.0025.
• Decay the learn rate exponentially each iteration with a rate of 0.999 until it reaches 0.00025.

4 Deep Learning with Time Series, Sequences, and Text

4-162



• Train using the CPU. Neural ODE models can sometimes train faster on the CPU than on a GPU.

numEpochs = 200;
miniBatchSize = 50;

initialLearnRate = 2.5e-3;
minLearnRate = 2.5e-4;
decayRate = 0.999;

executionEnvironment = "cpu";

Train Model

Train the model in a custom training loop using the loss function modelLoss.

Configure a minibatchqueue object to read out the data.

• Preprocess the mini-batches using the preprocessMiniBatch function, listed in the Mini-Batch
Preprocessing Function on page 4-174 section of the example. This function outputs a mini-batch
of sequences with time steps randomly removed and the corresponding mask and target
sequence.

• Specify the mini-batch output formats as "CBT" (channel, batch, time).
• Specify the hardware environments of the mini-batch outputs.

numOutputs = 3;
mbqTrain = minibatchqueue(dsTrain,numOutputs,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["CBT" "CBT" "CBT"], ...
    OutputEnvironment=[executionEnvironment executionEnvironment executionEnvironment]);

Initialize the learning rate.

learnRate = initialLearnRate;

Initialize the parameters for the Adam solver.

trailingAvg = [];
trailingAvgSq = [];

To update the progress bar of the training progress monitor, calculate the total number of training
iterations.

numObservationsTrain = size(sequencesTrain,2);
numIterationsPerEpoch = ceil(numObservationsTrain/miniBatchSize);
numIterations = numIterationsPerEpoch * numEpochs;

Train the model in a custom training loop. For each epoch, shuffle the training data.

Loop over the mini-batches of training data. For each iteration:

• Update the learning rate using exponential decay.
• Compute the model loss and gradients using the dlfeval function and the modelLoss function.
• Update the learnable parameters using the adamupdate function.
• Record the training loss in the training progress monitor.

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-163



if doTraining

    % Initialize the training progress monitor.
    monitor = trainingProgressMonitor( ...
        Metrics="TrainingLoss", ...
        Info=["LearnRate" "Epoch"]);

    monitor.XLabel = "Iteration";

    % Loop over the epochs.
    epoch = 0;
    iteration = 0;
    while epoch < numEpochs && ~monitor.Stop
        epoch = epoch + 1;

        % Shuffle the training data.
        shuffle(mbqTrain);

        % Loop over the training data.
        while hasdata(mbqTrain) && ~monitor.Stop
            iteration = iteration + 1;

            % Update the learning rate.
            learnRate = max(decayRate*learnRate,minLearnRate);

            % Read a mini-batch of data.
            [X,mask,T] = next(mbqTrain);

            % Calculate the model loss and gradients.
            [loss,gradients] = dlfeval(@modelLoss,parameters,tspan,X,mask,T);

            % Update the learnable parameters.
            [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
                trailingAvg,trailingAvgSq,iteration,learnRate);

            % Update the training progress monitor.
            recordMetrics(monitor,iteration,TrainingLoss=loss);
            updateInfo(monitor,LearnRate=learnRate,Epoch=(epoch+" of "+numEpochs));
            monitor.Progress = 100*(iteration/numIterations);
        end
    end

    % Save the model.
    save("irregularSineWavesParameters.mat","parameters","tspan");
else
    s = load("irregularSineWavesParameters.mat");
    parameters = s.parameters;
    miniBatchSize = s.miniBatchSize;
end

4 Deep Learning with Time Series, Sequences, and Text

4-164



Test Model

Test the model using the test data by creating a mini-batch queue that randomly removes time steps
from the sequences and use the trained latent ODE model to predict the removed values.

Create a mini-batch queue that preprocesses the test data using the same steps as the training data.

numOutputs = 2;
mbqTest = minibatchqueue(dsTest,numOutputs,...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["CBT" "CBT"], ...
    OutputEnvironment=[executionEnvironment executionEnvironment]);

Specify target time stamps to match the original input time stamps.

tspanTarget = tspan;

Make predictions by looping over the mini-batch queue and passing the data through the model.

YTest = [];
while hasdata(mbqTest)
    [X,mask] = next(mbqTest);
    Y = model(parameters,tspan,X,tspanTarget,Mask=mask);
    YTest = cat(2,YTest,Y);
end

Calculate the the root-mean-square-error.

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-165



rmse = sqrt(mean((sequencesTest - YTest).^2,"all"))

rmse = 
  1(C) × 1(B) × 1(T) single dlarray

    0.1589

Visualize the errors in a histogram.

err = sequencesTest - YTest;
figure
err = extractdata(err);
histogram(err)
xlabel("Error")
ylabel("Frequency")
title("Test RMSE = " + string(rmse))

Predict Using New Data

Reconstruct the test sequences with 1000 equally spaced time stamps between 0 and 5.

Create a mini-batch queue containing the test data.

Preprocess the data using the preprocessMiniBatchPrtedictors function, which creates mini-
batches of the sequence data without removing any time steps.

numOutputs = 1;
mbqNew = minibatchqueue(dsTest,numOutputs,...

4 Deep Learning with Time Series, Sequences, and Text

4-166



    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="CBT", ...
    OutputEnvironment=executionEnvironment);

Specify 1000 equally spaced time stamps between 0 and 5 as the target time stamps.

tspanTarget = linspace(0,5,1000);

Make predictions by looping over the mini-batch queue.

YNew = modelPredictions(parameters,tspan,mbqNew,tspanTarget);

View the size of the array of predictions.

size(YNew)

ans = 1×3

           1         200        1000

Visualize the first prediction by plotting the inputs in a scatter plot, then plotting the predicted
sequences.

Plot the input data.

idx = 1;
X = sequencesTest(:,idx,:);

figure
t = tiledlayout(numChannels,1);
title(t,"Input Sequence")

for i = 1:numChannels
    nexttile
    scatter(tspan,squeeze(X))
    xlabel("t")
    ylabel("Value")
end

Plot the predicted values.

for i = 1:numChannels
    nexttile(i)
    hold on
    plot(tspanTarget,squeeze(YNew(i,idx,:)));
end

title(t,"Predicted Sequence")

legend(["Input Data" "Prediction"],Location="southeast");

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-167



Supporting Functions

Model Function

The model function, introduced in the Define Model Functions on page 4-162 section of the example,
takes as input the model learnable parameters, the source time stamps tspan and the corresponding
sequence values and mask, and the target time stamps tspanTarget. The function returns the
predicted values Y that correspond to the target time stamps.

This diagram shows the structure of the model function.

4 Deep Learning with Time Series, Sequences, and Text

4-168



The neural ODE decoder reconstructs the input sequence by sampling from a Gaussian distribution
with mean and variance values encoded by its latent representation.

function Y = model(parameters,tspan,X,tspanTarget,args)

arguments
    parameters
    tspan
    X
    tspanTarget
    args.Mask = dlarray(true(size(X)),"CBT")
end

mask = args.Mask;

Z = encoder(parameters.Encoder,tspan,X,Mask=mask);

% Split the latent representation into mean and variance.
latentSize = size(Z,1)/2;
mu = Z(1:latentSize,:);
sigma = abs(Z(latentSize+(1:latentSize),:));

% Take samples of the latent distribution.
epsilon = randn(size(mu),like=X);
Z = epsilon.*sigma + mu;
Z = dlarray(Z,"CB");

% Decode the latent representation.
Y = decoder(parameters.Decoder,tspanTarget,Z);

end

Encoder Function

The encoder function, introduced in the Define Model Functions on page 4-162 section of the
example, takes as input the encoder learnable parameters, the source time stamps tspan, and the
corresponding sequence values and mask. The function outputs the latent representation.

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-169



This diagram shows the structure of the encoder.

The encoder reverses the input sequence so that the last input to the encoder is the first output of the
decoder. The ODE-RNN updates the latent representation as it reads each time step of the reversed
data using a masked gated recurrent unit (GRU) and an ODE solver. The ODE-RNN concatenates the
input data and the hidden state of the GRU operation and advances this output of the GRU operation
in time according to the neural ODE. The GRU operation uses the updated state only for time steps
specified by the mask.

This diagram illustrates the structure of the neural ODE-RNN when it processes a time step of the
data. In this diagram, xt denotes the value of the time step, mt denotes the mask value, and ht is the
hidden state output of the GRU operation. The ODE solver step is a simple fixed-step Euler method
for performance.

function Z = encoder(parameters,tspan,X,args)

4 Deep Learning with Time Series, Sequences, and Text

4-170



arguments
    parameters
    tspan
    X
    args.Mask = dlarray(true(size(X)),"CBT")
end

mask = args.Mask;

% Reverse time.
tspan = flip(tspan,2);
X = flip(X,3);
mask = flip(mask,3);

% Initialize the hidden state for the RNN.
hiddenSize = size(parameters.gru.RecurrentWeights,2);
[~,batchSize, sequenceLength] = size(X);
h = zeros(hiddenSize,batchSize,like=X);
h = dlarray(h,"CB");

latentSize = size(parameters.ODE.fc1.Weights,2);

% Solve the ODE-RNN in a loop.
for t = 1:sequenceLength-1
    ZPrev = h(1:latentSize,:);

    % Solve the ODE.
    Zt = euler(@odeModel,[tspan(t) tspan(t+1)],ZPrev,parameters.ODE);

    % Concatenate the input data with the RNN input over the chanel dimension.
    Zt = dlarray(Zt,"CBT");
    Xt = X(:,:,t);
    Zt = cat(1,Zt,Xt);

    % RNN step.
    inputWeights = parameters.gru.InputWeights;
    recurrentWeights = parameters.gru.RecurrentWeights;
    bias = parameters.gru.Bias;
    [Z,hnew] = gru(Zt,h,inputWeights,recurrentWeights,bias);

    % Update the RNN state where the data is not missing.
    h = hnew.*mask(:,:,t) + h.*(1-mask(:,:,t));
end

% Apply output transformation.
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
Z = fullyconnect(Z,weights,bias);
Z = tanh(Z);

weights = parameters.fc2.Weights;
bias = parameters.fc2.Bias;
Z = fullyconnect(Z,weights,bias);

end

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-171



Decoder Function

The decoder function, introduced in the Define Model Functions on page 4-162 section of the
example, takes as input the decoder learnable parameters, the target time stamps tspanTarget, and
the latent representation Z. The function returns the predicted values that correspond to the target
time stamps.

This diagram shows the structure of the decoder.

function Y = decoder(parameters,tspanTarget,Z)

% Apply the neural ODE operation.
Y = dlode45(@odeModel,tspanTarget,Z,parameters.ODE, ...
    RelativeTolerance=1e-3, ...
    AbsoluteTolerance=1e-4);

% Concatenate over the time dimension.
Z = dlarray(Z,"CBT");
Y = cat(3,Z,Y);

% Apply the fully connect operation.
weights = parameters.fc.Weights;
bias = parameters.fc.Bias;
Y = fullyconnect(Y,weights,bias);

end

Model Loss Function

The modelLoss function, takes as input the model learnable parameters, the source time stamps
tspan, and the corresponding sequence values and mask. The function returns the model loss and
the gradients of the loss with respect to the learnable parameters.

The model loss function uses the L2 loss normalized over the number of input observations and
samples.

function [loss,gradients] = modelLoss(parameters,tspan,X,mask,T)

% Model forward pass.
tspanDecoder = tspan;
Y = model(parameters,tspan,X,tspanDecoder,Mask=mask);

% Reconstruction loss.
loss = l2loss(Y,T,Reduction="none");

4 Deep Learning with Time Series, Sequences, and Text

4-172



% Normalize by the number of non-missing elements.
loss = sum(loss,[1 3]) ./ sum(mask,[1 3]);
loss = mean(loss);

% Gradients.
gradients = dlgradient(loss,parameters);

end

Model Predictions Function

The modelPredictions function, takes as input the model learnable parameters, the source time
stamps tspan, a mini-batch queue of data, and the target time stamps tspanTarget. The function
returns the model predictions Y.

function Y = modelPredictions(parameters,tspan,mbq,tspanTarget)

Y = [];
while hasdata(mbq)
    % Read mini-batch of validation data.
    X = next(mbq);

    % Model forward pass.
    YBatch = model(parameters,tspan,X,tspanTarget);
    Y = cat(2,Y,YBatch);
end

end

ODE Model Function

The function odeModel takes as input the function inputs t (unused) and y, and the ODE function
parameters containing the convolution weights and biases. The function returns the output of a
neural network with three fully connected layers with tanh operations between them.

The encoder and decoder use a neural ODE. A neural ODE is an ODE problem of the form
dy
dt = f (t, y, p) where f  is a neural network with input y and learnable parameters p. In this case, the
encoder and decoder neural ODE use the same neural network f  that consists of three fully connect
operations with tanh activations between them.

This diagram shows the structure of the neural network.

function z = odeModel(~,y,parameters)

weights = parameters.fc1.Weights;

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-173



bias = parameters.fc1.Bias;
z = fullyconnect(y,weights,bias);
z = tanh(z);

weights = parameters.fc2.Weights;
bias = parameters.fc2.Bias;
z = fullyconnect(z,weights,bias);
z = tanh(z);

weights = parameters.fc3.Weights;
bias = parameters.fc3.Bias;
z = fullyconnect(z,weights,bias);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using these steps:

1 Preprocess the predictors by using the preprocessMiniBatchPredictors function.
2 Create a mini-batch of targets that matches the input data.
3 Randomly set 50 time steps of the sequence data to zero and create a mask indicating the

missing values.

function [X,mask,T] = preprocessMiniBatch(XCell)

X = preprocessMiniBatchPredictors(XCell);
mask = true(size(X));
T = X;

% Remove time steps at random.
[~,numObservations,numTimestamps] = size(X);

for n = 1:numObservations
    idx = randsample(numTimestamps,50);
    idx = sort(idx);

    X(:,n,idx) = 0;
    mask(:,n,idx) = false;
end

end

Mini Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses the mini-batch predictors by
extracting the sequence data from the input cell array and coverts it into a numeric array by
concatenating the contents along the second dimension.

function X = preprocessMiniBatchPredictors(XCell)

X = cat(2,XCell{:});

end

4 Deep Learning with Time Series, Sequences, and Text

4-174



Forward Euler Solver

The euler function takes as input the ODE function f, time internal t, input values y, ODE
parameters, and the optional name-value argument MaxStepSize that specifies the step size to
iterate over the interval. The function returns the forward Euler output. The forward Euler function is
a fast ODE solver but is typically less accurate and less flexible than adaptive ODE solvers such as
dlode45.

function y = euler(f,t,y,parameters,args)

arguments
    f
    t
    y
    parameters
    args.StepSize = 0.1;
end

stepSize = args.StepSize;

t1 = t(1);
t2 = t(2);
t2 = min(t2,t1 - stepSize);
tspan = t1:stepSize:t2;

y = y;

for i = 1:numel(tspan)-1
    y = y + (t(i+1)-t(i))*f(t,y,parameters);
end

end

Bibliography

[1] Chen, Ricky T. Q., Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. “Neural Ordinary
Differential Equations.” Preprint, submitted December 13, 2019. https://arxiv.org/abs/1806.07366

[2] Yulia Rubanova, Ricky T. Q. Chen, David Duvenaud. "Latent ODEs for Irregularly-Sampled Time
Series" Preprint, submitted July 8, 2019. https://arxiv.org/abs/1907.03907

[3] Diederik P Kingma, Max Welling. "Auto-Encoding Variational Bayes." Preprint, submitted,
submitted December 20, 2013. https://arxiv.org/abs/1312.6114

See Also
dlode45 | dlarray | dlfeval | dlgradient | fullyconnect | minibatchqueue | l2loss | gru

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Initialize Learnable Parameters for Model Function” on page 19-318

 Train Latent ODE Network with Irregularly Sampled Time-Series Data

4-175



• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Functions with dlarray Support” on page 19-504

4 Deep Learning with Time Series, Sequences, and Text

4-176



Multivariate Time Series Anomaly Detection Using Graph
Neural Network

This example shows how to detect anomalies in multivariate time series data using a graph neural
network (GNN).

To detect anomalies or anomalous variables/channels in a multivariate time series data, you can use
Graph Deviation Network (GDN) [1]. GDN is a type of GNN that learns a graph structure
representing relationship between channels in a time series and detects anomalous channels and
times by identifying deviations from the learned structure. GDN consists of four main components:

1 Node embedding: Generate learned embedding vectors to represent unique characteristics of
each node/variable/channel.

2 Graph structure learning: Compute similarities between node embedding and use it to generate
adjacency matrix representing learned graph structure.

3 Graph attention-based forcasting: Predict future values using graph attention.
4 Graph deviation scoring: Compute anomalous scores and identify anomalous nodes and time.

The components are illustrated in the figure below.

This example uses the human activity data, which consists of 24,075 time steps with 60 channels, for
anomaly detection. The data set is not labelled with anomalies. Hence, the workflow described in this
example is unsupervised anomaly detection.

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-177



Note: Training a GDN is a computationally intensive task. To make the example run quicker, this
example skips the training step and loads a pretrained model. To instead train the model, set the
doTraining variable to true.

doTraining = false;

Load Data

Load the human activity data. The data contains the variable feat, which is a numTimeSteps-by-
numChannels array containing the time series data.

load humanactivity

View the number of time steps and number of channels in feat.

[numTimeSteps,numChannels] = size(feat)

numTimeSteps = 24075

numChannels = 60

Randomly select and visualize four channels.

idx = randperm(numChannels,4);
figure
stackedplot(feat(:,idx),DisplayLabels="Channel " + idx);
xlabel("Time Step")

4 Deep Learning with Time Series, Sequences, and Text

4-178



Prepare Data for Training

Partition the data using the first 40% time steps for training.

numTimeStepsTrain = floor(0.4*numTimeSteps);
numTimeStepsValidation = floor(0.2*numTimeSteps);

featuresTrain = feat(1:numTimeStepsTrain,:);

Normalize the training data.

[featuresTrain,muData,sigmaData] = normalize(featuresTrain);

To predict future values, input observations to the graph attention-based forcasting model are
historical time series data based on a sliding window. Specify a sliding window size of 10.

windowSize = 10;

Obtain predictors and targets for the training data using the processData function defined in the
Process Data on page 4-190 section of the example. The function processes the data such that each
time step is an observation and the predictors for each observation are the historical time series data

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-179



of size windowSize-by-numChannels, and the targets are the numChannels-by-1 data of that
time step.

[XTrain,TTrain] = processData(featuresTrain,windowSize);

View the size of the predictors.

size(XTrain)

ans = 1×3

          10          60        9620

View the size of the targets.

size(TTrain)

ans = 1×2

          60        9620

To train using minibatches of data, create an array datastore for the predictors and targets and
combine them.

dsXTrain = arrayDatastore(XTrain,IterationDimension=3);
dsTTrain = arrayDatastore(TTrain,IterationDimension=2);
dsTrain = combine(dsXTrain,dsTTrain);

Define Model

Define the model. The model takes as input the predictor X and outputs predictions of the future
values Y.

• The model generates an embedding for each channel in the predictor X.
• The model uses the embedding as input to a graph structure operation to generate adjacency

matrix representing relations between channels.
• Using the predictors, generated embedding, and adjacency matrix as input to a graph attention

operation, the model computes graph embedding.
• Finally, the model uses ReLU activation, multiply operation, and two fully connected operations

with a ReLU activation in between to compute predictions for each channel in the predictors.

Initialize Model Parameters

Define the parameters for the each of the operations and include them in a structure. Use the format
parameters.OperationName.ParameterName, where parameters is the struct,
OperationName is the name of the operation (for example "fc"), and ParameterName is the name
of the parameter (for example, "weights").

4 Deep Learning with Time Series, Sequences, and Text

4-180



Create a structure to contain the learnable parameters for the model.

parameters = struct;

Set the hyperparameters. These include the top k number, which the graph structure operation uses
to select the top k number of channels with highest similarity scores when computing channel
relations. Set the top k number to 15.

topKNum = 15;
embeddingDimension = 96;
numHiddenUnits = 1024;
inputSize = numChannels+1;

Initialize the learnable parameters for the embed operation using the initializeGaussian
function attached to the example as a supporting file. To access the function, open the example as a
live script.

sz = [embeddingDimension inputSize];
mu = 0;
sigma = 0.01;
parameters.embed.weights = initializeGaussian(sz,mu,sigma);

Initialize the learnable parameters for the graph attention operation using the initializeGlorot
and initializeZeros functions attached to the example as supporting files. To access these
functions, open the example as a live script.

sz = [embeddingDimension windowSize];
numOut = embeddingDimension;
numIn = windowSize;

parameters.graphattn.weights.linear = initializeGlorot(sz,numOut,numIn);
attentionValueWeights = initializeGlorot([2 numOut],1,2*numOut);
attentionEmbedWeights = initializeZeros([2 numOut]);
parameters.graphattn.weights.attention = cat(2,attentionEmbedWeights,attentionValueWeights);

Initialize the weights for the fully connect operations using the initializeGlorot function, and the
biases using the initializeZeros function.

sz = [numHiddenUnits embeddingDimension*numChannels];
numOut = numHiddenUnits;
numIn = embeddingDimension*numChannels;
parameters.fc1.weights = initializeGlorot(sz,numOut,numIn);
parameters.fc1.bias = initializeZeros([numOut,1]);

sz = [numChannels,numHiddenUnits];
numOut = numChannels;
numIn = numHiddenUnits;
parameters.fc2.weights = initializeGlorot(sz,numOut,numIn);
parameters.fc2.bias = initializeZeros([numOut,1]);

Define Model Function

Create the function model, defined in the Model Function on page 4-191 section of the example,
which takes as input the model parameters, the predictors for each time step, and the top k number,
and returns predictions of future values.

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-181



Define Model Loss Function

Create the function modelLoss, defined in the Model Loss Function on page 4-191 section of the
example, which takes the model parameters, predictors, targets, and top k number, and returns the
loss, the gradients of the loss with respect to the learnable parameters, and the model predictions.

Specify Training Options

Train for 80 epochs with a mini-batch size of 200 and set the learning rate for the Adam solver to
0.001.

numEpochs = 80;
miniBatchSize = 200;
learnRate = 0.001;

Train Model

Train the model using a custom training loop.

Use minibatchqueue to process and manage mini-batches of training data. For each iteration and
mini-batch:

• Convert only the predictors to a dlarray object. By default, the minibatchqueue object
converts all output data to dlarray objects.

• Train on a GPU if one is available by specifying the output environment of the first output as
"auto" and the remaining outputs as "cpu". By default, the minibatchqueue object converts
each output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    MiniBatchSize=miniBatchSize,...
    OutputAsDlarray=[1 0],...
    OutputEnvironment = ["auto" "cpu"]);

Initialize parameters for the Adam optimizer.

trailingAvg = [];
trailingAvgSq = [];

Train the model.

For each epoch, shuffle the data and loop over the mini-batches.

For each mini-batch:

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.
• Update the training progress monitor.

Note: Training a GDN is a computationally intensive task. To make the example run quicker, this
example skips the training step and downloads a pretrained model from the MathWorks website. To
train the model instead, set the doTraining variable to true.

if doTraining
    numObservationsTrain = size(XTrain,3);

4 Deep Learning with Time Series, Sequences, and Text

4-182



    numIterationsPerEpoch = ceil(numObservationsTrain/miniBatchSize);
    numIterations = numIterationsPerEpoch*numEpochs;
    
    % Create a training progress monitor
    monitor = trainingProgressMonitor(...
        Metrics="Loss",...
        Info="Epoch",...
        XLabel="Iteration");
    
    epoch = 0;
    iteration = 0;

    % Loop over epochs
    while epoch < numEpochs && ~monitor.Stop
        epoch = epoch+1;

        % Shuffle data
        shuffle(mbq)
            
        % Loop over mini-batches
        while hasdata(mbq) && ~monitor.Stop

            iteration = iteration+1;
    
            % Read mini-batches of data
            [X,T] = next(mbq);
        
            % Evaluate the model loss and gradients using dlfeval and the
            % modelLoss function.
            [loss,gradients] = dlfeval(@modelLoss,parameters,X,T,topKNum);
        
            % Update the network parameters using the Adam optimizer
            [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
                trailingAvg,trailingAvgSq,iteration,learnRate);

            % Update training progress monitor
            recordMetrics(monitor,iteration,Loss=loss);
            updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
            monitor.Progress = 100*(iteration/numIterations);
        end
    end
else
    % Download and unzip the folder containing the pretrained parameters
    zipFile = matlab.internal.examples.downloadSupportFile("nnet","data/parametersHumanActivity_GDN.zip");
    dataFolder = fileparts(zipFile);
    unzip(zipFile,dataFolder);

    % Load the pretrained parameters
    load(fullfile(dataFolder,"parametersHumanActivity_GDN","parameters.mat"))
end

Test Model

Obtain the deviation scores for the training data.

• Use the modelPredictions function, defined in the Model Predictions Function on page 4-192
section of the example, to obtain predictions for the training data. The function makes predictions
by iterating over mini-batches of data using the read size property of the datastore object.

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-183



• Use the deviationScore function, defined in the Deviation Score Function on page 4-193
section of the example, to calculate the deviation scores.

YTrain = modelPredictions(parameters,dsXTrain,topKNum);
scoreTrain = deviationScore(YTrain,TTrain,windowSize);

Obtain the validation data by partitioning the data feat using the next 20% time steps from the last
time step in the training data as validation data.

featuresValidation = feat(numTimeStepsTrain+(1:numTimeStepsValidation),:);

The validation data is used specifically to set a threshold for anomaly detection. Obtain the anomaly
threshold using deviation scores of the validation data.

• Normalize the validation data using statistics obtained from the training data.
• Use the processData function to obtain predictors and targets for the validation data.
• Create an array datastore for the validation predictors.
• Make predictions using the modelPredictions function.
• Calculate the deviation scores using the deviationScore function.
• Set the anomaly threshold as the maximum of the deviation scores of the validation data.

featuresValidation = normalize(featuresValidation,center=muData,scale=sigmaData);
[XValidation,TValidation] = processData(featuresValidation,windowSize);
dsXValidation = arrayDatastore(XValidation,IterationDimension=3);
YValidation = modelPredictions(parameters,dsXValidation,topKNum);
scoreValidation = deviationScore(YValidation,TValidation,windowSize);
threshold = max(scoreValidation);

Obtain the test data by using the remaining 40% time steps in the data feat as test data.

featuresTest = feat(numTimeStepsTrain+numTimeStepsValidation+1:end,:);

Follow the same steps as with the validation data to obtain the deviation scores for the test data.

featuresTest = normalize(featuresTest,center=muData,scale=sigmaData);
[XTest,TTest] = processData(featuresTest,windowSize);
dsXTest = arrayDatastore(XTest,IterationDimension=3);
YTest = modelPredictions(parameters,dsXTest,topKNum);
scoreTest = deviationScore(YTest,TTest,windowSize);

To see the anomaly score for each time step across the entire data set, plot the anomaly scores for the
training, validation, and test data against time step. To visualize anomalous time steps, plot a line
representing the computed threshold on the same plot. Time steps with anomaly score above the
threshold plot correspond to anomalous time steps, whereas time steps with anomaly score below the
threshold plot correspond to normal time steps.

numObservationsTrain = numel(scoreTrain);
numObservationsValidation = numel(scoreValidation);
numObservationsTest = numel(scoreTest);
trainTimeIdx = windowSize+(1:numObservationsTrain);
validationTimeIdx = windowSize+trainTimeIdx(end)+(1:numObservationsValidation);
testTimeIdx = windowSize+validationTimeIdx(end)+(1:numObservationsTest);

figure
plot(...
    trainTimeIdx,scoreTrain,'b',...

4 Deep Learning with Time Series, Sequences, and Text

4-184



    validationTimeIdx,scoreValidation,'g',...
    testTimeIdx,scoreTest,'r',...
    'linewidth',1.5)
hold on
yline(threshold,"k-",join(["Threshold = " threshold]),...
    LabelHorizontalAlignment="left");
hold off
xlabel("Time Step")
ylabel("Anomaly Score")
legend("Training","Validation","Test",Location="northwest")
grid on

Detect Anomalies in New Data

featuresNew = feat(numTimeStepsTrain+numTimeStepsValidation+1:end,:);

Obtain the anomaly scores and the channels with the highest anomaly scores in each time step for the
data.

featuresNewNormalized = normalize(featuresNew,center=muData,scale=sigmaData);
[XNew,TNew] = processData(featuresNewNormalized,windowSize);

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-185



dsXNew = arrayDatastore(XNew,IterationDimension=3);
YNew = modelPredictions(parameters,dsXNew,topKNum);
[scoreNew,channelMaxScores] = deviationScore(YNew,TNew,windowSize);

Obtain the anomaly fraction using the anomaly score and validation threshold.

numObservationsNew = numel(scoreNew);
anomalyFraction = sum(scoreNew>threshold)/numObservationsNew;

Using the channels with the highest anomaly scores in each time step channelMaxScores, compute
frequency of anomaly for each channel and visualize the frequency using a bar graph.

anomalousChannels = channelMaxScores(scoreNew>threshold);
for i = 1:numChannels
    frequency(i) = sum(anomalousChannels==i);
end

figure
bar(frequency)
xlabel("Channel")
ylabel("Frequency")
title("Anomalous Node Count")

4 Deep Learning with Time Series, Sequences, and Text

4-186



View the channel with the highest anomaly frequency.

[~, channelHighestFrequency] = max(frequency)

channelHighestFrequency = 54

To visualize the time series data corresponding to the channel with the highest anomaly frequency,
plot the data values corresponding to the channel against time steps.

figure
plot(featuresNew(:,channelHighestFrequency),'r')
xlabel("Time Step")
ylabel("Value")
title("Test Time Series Data - Channel " + num2str(channelHighestFrequency))

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-187



To visualize detected anomalous points in the data corresponding to the channel with highest
anomaly frequency

• Plot the model predictions and targets corresponding to the channel against time steps to see how
the model predictions compare with the targets.

• Plot the targets corresponding to the channel at detected anomalous time steps only against
detected anomalous time steps to see the anomalous points and compare with how the model
predictions compare with the targets.

anomalousTimeSteps = find(scoreNew>threshold);
channelHighestFrequencyTimeSteps = anomalousTimeSteps(anomalousChannels==channelHighestFrequency);

figure
tiledlayout(2,1);
nexttile
plot(1:numObservationsNew,TNew(channelHighestFrequency,:),'r',...
    1:numObservationsNew,YNew(channelHighestFrequency,:),'g')
xlim([1 numObservationsNew])
legend("Targets","Predictions",Location="northwest")
xlabel("Time Step")

4 Deep Learning with Time Series, Sequences, and Text

4-188



ylabel("Normalized Value")
title("Test Data: Channel " + num2str(channelHighestFrequency))
nexttile
plot(channelHighestFrequencyTimeSteps,TNew(channelHighestFrequency,channelHighestFrequencyTimeSteps),'xk')
xlim([1 numObservationsNew])
legend("Anomalous points",Location="northwest")
xlabel("Time Step")
ylabel("Normalized Value")

View the channel with the highest anomaly score.

[~,idxMaxScore] = max(scoreNew);
channelHighestAnomalyScore = channelMaxScores(idxMaxScore)

channelHighestAnomalyScore = 60

To visualize the time series data corresponding to the channel with the highest anomaly score, plot
the data values corresponding to the channel against time steps and indicate the time step
corresponding to the highest anomaly score in the plot.

timeHighestAnomalyScore = idxMaxScore;

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-189



figure
plot(featuresNew(:,channelHighestAnomalyScore),'r')
hold on
plot(timeHighestAnomalyScore,0,'s',MarkerSize=10,MarkerEdgeColor='g',MarkerFaceColor='g')
hold off
legend("","Highest anomaly point")
xlabel("Time Step")
ylabel("Value")
title("Time Series Data: Channel " + num2str(channelHighestAnomalyScore))

Process Data Function

The processData function takes as input the features features and the window size windowSize
and returns the predictors XData and targets TData for time steps windowSize + 1 to the last time
step in features.

function [XData,TData] = processData(features, windowSize)
numObs = size(features,1) - windowSize;
XData = zeros(windowSize,size(features,2),numObs);
for startIndex = 1:numObs
    endIndex = (startIndex-1)+windowSize;

4 Deep Learning with Time Series, Sequences, and Text

4-190



    XData(:,:,startIndex) = features(startIndex:endIndex,:);
end
TData = features(windowSize+1:end,:);
TData = permute(TData,[2 1]);
end

Model Function

The model function, described in the Define Model Function on page 4-181 section of the example,
takes as input the model parameters parameters, the predictors X, and the top k number topKNum,
and returns the predictions and the attention scores obtained from the graphAttention function
defined in Graph Attention Function on page 4-193 section of the example. The attention scores
represent the local weighted adjacency matrix of predicted future values.

function [Y,attentionScores] = model(parameters,X,topKNum)
% Embedding
weights = parameters.embed.weights;
numNodes = size(weights,2) - 1;
embeddingOutput = embed(1:numNodes,weights,DataFormat="CU");

% Graph Structure
adjacency = graphStructure(embeddingOutput,topKNum,numNodes);

% Add self-loop to graph structure
adjacency = adjacency + eye(size(adjacency));

% Graph Attention
embeddingOutput = repmat(embeddingOutput,1,1,size(X,3));
weights = parameters.graphattn.weights;
[outputFeatures,attentionScores] = graphAttention(X,embeddingOutput,adjacency,weights);

% Relu
outputFeatures = relu(outputFeatures);

% Multiply
outputFeatures = embeddingOutput .* outputFeatures;

% Fully Connect
weights = parameters.fc1.weights;
bias = parameters.fc1.bias;
Y = fullyconnect(outputFeatures,weights,bias,DataFormat="UCB");

% Relu
Y = relu(Y);

% Fully Connect
weights = parameters.fc2.weights;
bias = parameters.fc2.bias;
Y = fullyconnect(Y,weights,bias,DataFormat="CB");
end

Model Loss Function

The modelLoss function, described in the Define Model Loss Function on page 4-182 of the example,
takes as input the model parameters parameters, the predictors X, the targets T, and the top k
number topKNum, and returns the loss and the gradients of the loss with respect to the learnable
parameters.

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-191



function [loss,gradients] = modelLoss(parameters,X,T,topKNum)
Y = model(parameters,X,topKNum);
loss = l2loss(Y,T,DataFormat="CB");
gradients = dlgradient(loss,parameters);
end

Model Predictions Function

The modelPredictions function takes as input the model parameters parameters, the datastore
object ds containing the predictors, the top k number topKNum, and optionally the mini-batch size for
iterating over mini-batches of read size in the datastore object and returns the model predictions. The
function uses a default mini-batch size of 500. However, you can use any value within your hardware
memory allowance.

function Y = modelPredictions(parameters,ds,topKNum,minibatchSize)
arguments
    parameters
    ds
    topKNum
    minibatchSize = 500
end

ds.ReadSize = minibatchSize;
Y = [];

reset(ds)
while hasdata(ds)
    data = read(ds);
    data= cat(3,data{:});
    if canUseGPU
        X = gpuArray(dlarray(data));
    else
        X = dlarray(data);
    end
    miniBatchPred = model(parameters,X,topKNum);
    Y = cat(2,Y,miniBatchPred);
end
end

Graph Structure Function

The graphStructure function takes as input channel embedding embedding, top k number
topKNum, and the number of channels numChannels, and returns an adjacency matrix representing
relations between channels.

The function

• Computes a similarity score between channels using cosine similarity.
• For each channel, determine related channels from the entire channel set, excluding the channel

in consideration, by selecting the topKNum number of channels with the highest similarity score.

function adjacency = graphStructure(embedding,topKNum,numChannels)
% Similarity score
normY = sqrt(sum(embedding.*embedding));
normalizedY = embedding./normY;
score = embedding.' * normalizedY;

4 Deep Learning with Time Series, Sequences, and Text

4-192



% Channel relations
adjacency = zeros(numChannels,numChannels);
for i = 1:numChannels
    topkInd = zeros(1,topKNum);
    scoreNodeI = score(i,:);
    % Make sure that channel i is not in its own candidate set
    scoreNodeI(i) = NaN;
    for j = 1:topKNum
        [~, ind] = max(scoreNodeI);
        topkInd(j) = ind;
        scoreNodeI(ind) = NaN;
    end
    adjacency(i,topkInd) = 1;
end
end

Graph Attention Function

The graphAttention function takes as input the features inputFeatures, channel embedding
embedding, learned adjacency matrix adjacency, the learnable parameters weights, and returns
learned graph embedding and attention scores.

function [outputFeatures,attentionScore] = graphAttention(inputFeatures,embedding,adjacency,weights)
linearWeights = weights.linear;
attentionWeights = weights.attention;

% Compute linear transformation of input features
value = pagemtimes(linearWeights, inputFeatures);

% Concatenate linear transformation with channel embedding
gate = cat(1,embedding,value);

% Compute attention coefficients
query = pagemtimes(attentionWeights(1, :), gate);
key = pagemtimes(attentionWeights(2, :), gate);

attentionCoefficients = query + permute(key,[2, 1, 3]);
attentionCoefficients = leakyrelu(attentionCoefficients,0.2);

% Compute masked attention coefficients
mask = -10e9 * (1 - adjacency);
attentionCoefficients = (attentionCoefficients .* adjacency) + mask;

% Compute normalized masked attention coefficients
attentionScore = softmax(attentionCoefficients,DataFormat = "UCB");

% Normalize features using normalized masked attention coefficients
outputFeatures = pagemtimes(value, attentionScore);
end

Deviation Score Function

The deviationScore function takes as input the model predictions predictions, the target data
targets, the window size windowSize, and returns the deviation score at each time step and the
channel that is associated with the deviation score.

The function

 Multivariate Time Series Anomaly Detection Using Graph Neural Network

4-193



• Computes an error value between the predictions and targets using l1loss.
• Normalizes the error values for each channel by subtracting the median values across time steps

from the error values and dividing by the inter-quartile range across time steps.
• Obtains the deviation score for each time step as the largest normalized error value across

channels.
• Finally, computes smoothed deviation score using the moving mean function movmean with a

sliding window length of windowSize.

function [smoothedScore,channel] = deviationScore(prediction,target,windowSize)
error = l1loss(prediction,target,DataFormat="CB",Reduction="none");
error = gather(double(extractdata(error)));

epsilon=0.01;
normalizedError = (error - median(error,2))./(abs(iqr(error,2)) + epsilon);
[scorePerTime,channel] = max(normalizedError);
smoothedScore = movmean(scorePerTime,windowSize);
end

References
[1] A. Deng and B. Hooi, “Graph neural network-based anomaly detection in multivariate time series,”

in Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021.

See Also
dlarray | dlfeval | dlgradient

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Functions with dlarray Support” on page 19-504

4 Deep Learning with Time Series, Sequences, and Text

4-194



Classify Text Data Using Deep Learning

This example shows how to classify text data using a deep learning long short-term memory (LSTM)
network.

Text data is naturally sequential. A piece of text is a sequence of words, which might have
dependencies between them. To learn and use long-term dependencies to classify sequence data, use
an LSTM neural network. An LSTM network is a type of recurrent neural network (RNN) that can
learn long-term dependencies between time steps of sequence data.

To input text to an LSTM network, first convert the text data into numeric sequences. You can achieve
this using a word encoding which maps documents to sequences of numeric indices. For better
results, also include a word embedding layer in the network. Word embeddings map words in a
vocabulary to numeric vectors rather than scalar indices. These embeddings capture semantic details
of the words, so that words with similar meanings have similar vectors. They also model relationships
between words through vector arithmetic. For example, the relationship "Rome is to Italy as Paris is
to France" is described by the equation Italy – Rome + Paris = France.

There are four steps in training and using the LSTM network in this example:

• Import and preprocess the data.
• Convert the words to numeric sequences using a word encoding.
• Create and train an LSTM network with a word embedding layer.
• Classify new text data using the trained LSTM network.

Import Data

Import the factory reports data. This data contains labeled textual descriptions of factory events. To
import the text data as strings, specify the text type to be 'string'.

filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');
head(data)

ans=8×5 table
                                 Description                                       Category          Urgency          Resolution         Cost 
    _____________________________________________________________________    ____________________    ________    ____________________    _____

    "Items are occasionally getting stuck in the scanner spools."            "Mechanical Failure"    "Medium"    "Readjust Machine"         45
    "Loud rattling and banging sounds are coming from assembler pistons."    "Mechanical Failure"    "Medium"    "Readjust Machine"         35
    "There are cuts to the power when starting the plant."                   "Electronic Failure"    "High"      "Full Replacement"      16200
    "Fried capacitors in the assembler."                                     "Electronic Failure"    "High"      "Replace Components"      352
    "Mixer tripped the fuses."                                               "Electronic Failure"    "Low"       "Add to Watch List"        55
    "Burst pipe in the constructing agent is spraying coolant."              "Leak"                  "High"      "Replace Components"      371
    "A fuse is blown in the mixer."                                          "Electronic Failure"    "Low"       "Replace Components"      441
    "Things continue to tumble off of the belt."                             "Mechanical Failure"    "Low"       "Readjust Machine"         38

The goal of this example is to classify events by the label in the Category column. To divide the data
into classes, convert these labels to categorical.

data.Category = categorical(data.Category);

View the distribution of the classes in the data using a histogram.

 Classify Text Data Using Deep Learning

4-195



figure
histogram(data.Category);
xlabel("Class")
ylabel("Frequency")
title("Class Distribution")

The next step is to partition it into sets for training and validation. Partition the data into a training
partition and a held-out partition for validation and testing. Specify the holdout percentage to be
20%.

cvp = cvpartition(data.Category,'Holdout',0.2);
dataTrain = data(training(cvp),:);
dataValidation = data(test(cvp),:);

Extract the text data and labels from the partitioned tables.

textDataTrain = dataTrain.Description;
textDataValidation = dataValidation.Description;
YTrain = dataTrain.Category;
YValidation = dataValidation.Category;

To check that you have imported the data correctly, visualize the training text data using a word
cloud.

figure
wordcloud(textDataTrain);
title("Training Data")

4 Deep Learning with Time Series, Sequences, and Text

4-196



Preprocess Text Data

Create a function that tokenizes and preprocesses the text data. The function preprocessText,
listed at the end of the example, performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

Preprocess the training data and the validation data using the preprocessText function.

documentsTrain = preprocessText(textDataTrain);
documentsValidation = preprocessText(textDataValidation);

View the first few preprocessed training documents.

documentsTrain(1:5)

ans = 
  5×1 tokenizedDocument:

     9 tokens: items are occasionally getting stuck in the scanner spools
    10 tokens: loud rattling and banging sounds are coming from assembler pistons
    10 tokens: there are cuts to the power when starting the plant
     5 tokens: fried capacitors in the assembler
     4 tokens: mixer tripped the fuses

 Classify Text Data Using Deep Learning

4-197



Convert Document to Sequences

To input the documents into an LSTM network, use a word encoding to convert the documents into
sequences of numeric indices.

To create a word encoding, use the wordEncoding function.

enc = wordEncoding(documentsTrain);

The next conversion step is to pad and truncate documents so they are all the same length. The
trainingOptions function provides options to pad and truncate input sequences automatically.
However, these options are not well suited for sequences of word vectors. Instead, pad and truncate
the sequences manually. If you left-pad and truncate the sequences of word vectors, then the training
might improve.

To pad and truncate the documents, first choose a target length, and then truncate documents that
are longer than it and left-pad documents that are shorter than it. For best results, the target length
should be short without discarding large amounts of data. To find a suitable target length, view a
histogram of the training document lengths.

documentLengths = doclength(documentsTrain);
figure
histogram(documentLengths)
title("Document Lengths")
xlabel("Length")
ylabel("Number of Documents")

4 Deep Learning with Time Series, Sequences, and Text

4-198



Most of the training documents have fewer than 10 tokens. Use this as your target length for
truncation and padding.

Convert the documents to sequences of numeric indices using doc2sequence. To truncate or left-pad
the sequences to have length 10, set the 'Length' option to 10.

sequenceLength = 10;
XTrain = doc2sequence(enc,documentsTrain,'Length',sequenceLength);
XTrain(1:5)

ans=5×1 cell array
    {1×10 double}
    {1×10 double}
    {1×10 double}
    {1×10 double}
    {1×10 double}

Convert the validation documents to sequences using the same options.

XValidation = doc2sequence(enc,documentsValidation,'Length',sequenceLength);

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include a sequence
input layer and set the input size to 1. Next, include a word embedding layer of dimension 50 and the
same number of words as the word encoding. Next, include an LSTM layer and set the number of
hidden units to 80. To use the LSTM layer for a sequence-to-label classification problem, set the
output mode to 'last'. Finally, add a fully connected layer with the same size as the number of
classes, a softmax layer, and a classification layer.

inputSize = 1;
embeddingDimension = 50;
numHiddenUnits = 80;

numWords = enc.NumWords;
numClasses = numel(categories(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize)
    wordEmbeddingLayer(embeddingDimension,numWords)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  6x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 1 dimensions
     2   ''   Word Embedding Layer    Word embedding layer with 50 dimensions and 423 unique words
     3   ''   LSTM                    LSTM with 80 hidden units
     4   ''   Fully Connected         4 fully connected layer
     5   ''   Softmax                 softmax
     6   ''   Classification Output   crossentropyex

Specify Training Options

Specify the training options:

 Classify Text Data Using Deep Learning

4-199



• Train using the Adam solver.
• Specify a mini-batch size of 16.
• Shuffle the data every epoch.
• Monitor the training progress by setting the 'Plots' option to 'training-progress'.
• Specify the validation data using the 'ValidationData' option.
• Suppress verbose output by setting the 'Verbose' option to false.

By default, trainNetwork uses a GPU if one is available. Otherwise, it uses the CPU. To specify the
execution environment manually, use the 'ExecutionEnvironment' name-value pair argument of
trainingOptions. Training on a CPU can take significantly longer than training on a GPU. Training
with a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

options = trainingOptions('adam', ...
    'MiniBatchSize',16, ...
    'GradientThreshold',2, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'Plots','training-progress', ...
    'Verbose',false);

Train the LSTM network using the trainNetwork function.

net = trainNetwork(XTrain,YTrain,layers,options);

4 Deep Learning with Time Series, Sequences, and Text

4-200



Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.

reportsNew = [ ...
    "Coolant is pooling underneath sorter."
    "Sorter blows fuses at start up."
    "There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the training documents.

documentsNew = preprocessText(reportsNew);

Convert the text data to sequences using doc2sequence with the same options as when creating the
training sequences.

XNew = doc2sequence(enc,documentsNew,'Length',sequenceLength);

Classify the new sequences using the trained LSTM network.

labelsNew = classify(net,XNew)

labelsNew = 3×1 categorical
     Leak 
     Electronic Failure 
     Mechanical Failure 

Preprocessing Function

The function preprocessText performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Convert to lowercase.
documents = lower(documents);

% Erase punctuation.
documents = erasePunctuation(documents);

end

See Also
fastTextWordEmbedding | wordEmbeddingLayer | tokenizedDocument | lstmLayer |
trainNetwork | trainingOptions | doc2sequence | sequenceInputLayer | wordcloud

Related Examples
• “Generate Text Using Deep Learning” on page 4-280

 Classify Text Data Using Deep Learning

4-201



• “Word-By-Word Text Generation Using Deep Learning” (Text Analytics Toolbox)
• “Create Simple Text Model for Classification” (Text Analytics Toolbox)
• “Analyze Text Data Using Topic Models” (Text Analytics Toolbox)
• “Analyze Text Data Using Multiword Phrases” (Text Analytics Toolbox)
• “Train a Sentiment Classifier” (Text Analytics Toolbox)
• “Sequence Classification Using Deep Learning” on page 4-3
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-202



Classify Text Data Using Convolutional Neural Network

This example shows how to classify text data using a convolutional neural network.

To classify text data using convolutions, use 1-D convolutional layers that convolve over the time
dimension of the input.

This example trains a network with 1-D convolutional filters of varying widths. The width of each
filter corresponds the number of words the filter can see (the n-gram length). The network has
multiple branches of convolutional layers, so it can use different n-gram lengths.

Load Data

Create a tabular text datastore from the data in factoryReports.csv and view the first few
reports.

data = readtable("factoryReports.csv");
head(data)

ans=8×5 table
                                  Description                                         Category            Urgency            Resolution          Cost 
    _______________________________________________________________________    ______________________    __________    ______________________    _____

    {'Items are occasionally getting stuck in the scanner spools.'        }    {'Mechanical Failure'}    {'Medium'}    {'Readjust Machine'  }       45
    {'Loud rattling and banging sounds are coming from assembler pistons.'}    {'Mechanical Failure'}    {'Medium'}    {'Readjust Machine'  }       35
    {'There are cuts to the power when starting the plant.'               }    {'Electronic Failure'}    {'High'  }    {'Full Replacement'  }    16200
    {'Fried capacitors in the assembler.'                                 }    {'Electronic Failure'}    {'High'  }    {'Replace Components'}      352
    {'Mixer tripped the fuses.'                                           }    {'Electronic Failure'}    {'Low'   }    {'Add to Watch List' }       55
    {'Burst pipe in the constructing agent is spraying coolant.'          }    {'Leak'              }    {'High'  }    {'Replace Components'}      371
    {'A fuse is blown in the mixer.'                                      }    {'Electronic Failure'}    {'Low'   }    {'Replace Components'}      441
    {'Things continue to tumble off of the belt.'                         }    {'Mechanical Failure'}    {'Low'   }    {'Readjust Machine'  }       38

Partition the data into training and validation partitions. Use 80% of the data for training and the
remaining data for validation.

cvp = cvpartition(data.Category,Holdout=0.2);
dataTrain = data(training(cvp),:);
dataValidation = data(test(cvp),:);

Preprocess Text Data

Extract the text data from the "Description" column of the table and preprocess it using the
preprocessText function, listed in the section Preprocess Text Function on page 4-209 of the
example.

documentsTrain = preprocessText(dataTrain.Description);

Extract the labels from the "Category" column and convert them to categorical.

TTrain = categorical(dataTrain.Category);

View the class names and the number of observations.

classNames = unique(TTrain)

 Classify Text Data Using Convolutional Neural Network

4-203



classNames = 4×1 categorical
     Electronic Failure 
     Leak 
     Mechanical Failure 
     Software Failure 

numObservations = numel(TTrain)

numObservations = 384

Extract and preprocess the validation data using the same steps.

documentsValidation = preprocessText(dataValidation.Description);
TValidation = categorical(dataValidation.Category);

Convert Documents to Sequences

To input the documents into a neural network, use a word encoding to convert the documents into
sequences of numeric indices.

Create a word encoding from the documents.

enc = wordEncoding(documentsTrain);

View the vocabulary size of the word encoding. The vocabulary size is the number of unique words of
the word encoding.

numWords = enc.NumWords

numWords = 436

Convert the documents to sequences of integers using the doc2sequence function.

XTrain = doc2sequence(enc,documentsTrain);

Convert the validation documents to sequences using the word encoding created from the training
data.

XValidation = doc2sequence(enc,documentsValidation);

Define Network Architecture

Define the network architecture for the classification task.

The following steps describe the network architecture.

• Specify an input size of 1, which corresponds to the channel dimension of the integer sequence
input.

• Embed the input using a word embedding of dimension 100.
• For the n-gram lengths 2, 3, 4, and 5, create blocks of layers containing a convolutional layer, a

batch normalization layer, a ReLU layer, a dropout layer, and a max pooling layer.
• For each block, specify 200 convolutional filters of size 1-by-N and a global max pooling layer.
• Connect the input layer to each block and concatenate the outputs of the blocks using a

concatenation layer.
• To classify the outputs, include a fully connected layer with output size K, a softmax layer, and a
classification layer, where K is the number of classes.

4 Deep Learning with Time Series, Sequences, and Text

4-204



Specify the network hyperparameters.

embeddingDimension = 100;
ngramLengths = [2 3 4 5];
numFilters = 200;

First, create a layer graph containing the input layer and a word embedding layer of dimension 100.
To help connect the word embedding layer to the convolution layers, set the word embedding layer
name to "emb". To check that the convolution layers do not convolve the sequences to have a length
of zero during training, set the MinLength option to the length of the shortest sequence in the
training data.

minLength = min(doclength(documentsTrain));
layers = [ 
    sequenceInputLayer(1,MinLength=minLength)
    wordEmbeddingLayer(embeddingDimension,numWords,Name="emb")];
lgraph = layerGraph(layers);

For each of the n-gram lengths, create a block of 1-D convolution, batch normalization, ReLU,
dropout, and 1-D global max pooling layers. Connect each block to the word embedding layer.

numBlocks = numel(ngramLengths);
for j = 1:numBlocks
    N = ngramLengths(j);
    
    block = [
        convolution1dLayer(N,numFilters,Name="conv"+N,Padding="same")
        batchNormalizationLayer(Name="bn"+N)
        reluLayer(Name="relu"+N)
        dropoutLayer(0.2,Name="drop"+N)
        globalMaxPooling1dLayer(Name="max"+N)];
    
    lgraph = addLayers(lgraph,block);
    lgraph = connectLayers(lgraph,"emb","conv"+N);
end

Add the concatenation layer, the fully connected layer, the softmax layer, and the classification layer.

numClasses = numel(classNames);

layers = [
    concatenationLayer(1,numBlocks,Name="cat")
    fullyConnectedLayer(numClasses,Name="fc")
    softmaxLayer(Name="soft")
    classificationLayer(Name="classification")];

lgraph = addLayers(lgraph,layers);

Connect the global max pooling layers to the concatenation layer and view the network architecture
in a plot.

for j = 1:numBlocks
    N = ngramLengths(j);
    lgraph = connectLayers(lgraph,"max"+N,"cat/in"+j);
end

figure

 Classify Text Data Using Convolutional Neural Network

4-205



plot(lgraph)
title("Network Architecture")

Train Network

Specify the training options:

• Train with a mini-batch size of 128.
• Validate the network using the validation data.
• Return the network with the lowest validation loss.
• Display the training progress plot and suppress the verbose output.

options = trainingOptions("adam", ...
    MiniBatchSize=128, ...
    ValidationData={XValidation,TValidation}, ...
    OutputNetwork="best-validation-loss", ...
    Plots="training-progress", ...
    Verbose=false);

Train the network using the trainNetwork function.

net = trainNetwork(XTrain,TTrain,lgraph,options);

4 Deep Learning with Time Series, Sequences, and Text

4-206



Test Network

Classify the validation data using the trained network.

YValidation = classify(net,XValidation);

Visualize the predictions in a confusion chart.

figure
confusionchart(TValidation,YValidation)

 Classify Text Data Using Convolutional Neural Network

4-207



Calculate the classification accuracy. The accuracy is the proportion of labels predicted correctly.

accuracy = mean(TValidation == YValidation)

accuracy = 0.9375

Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.

reportsNew = [ 
    "Coolant is pooling underneath sorter."
    "Sorter blows fuses at start up."
    "There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the training and validation documents.

documentsNew = preprocessText(reportsNew);
XNew = doc2sequence(enc,documentsNew);

Classify the new sequences using the trained network.

YNew = classify(net,XNew)

YNew = 3×1 categorical
     Leak 
     Electronic Failure 
     Mechanical Failure 

4 Deep Learning with Time Series, Sequences, and Text

4-208



Preprocess Text Function

The preprocessTextData function takes text data as input and performs these steps:

1 Tokenize the text.
2 Convert the text to lowercase.

function documents = preprocessText(textData)

documents = tokenizedDocument(textData);
documents = lower(documents);

end

See Also
fastTextWordEmbedding | wordcloud | wordEmbedding | layerGraph | convolution2dLayer
| batchNormalizationLayer | trainingOptions | trainNetwork | doc2sequence |
tokenizedDocument | transform

Related Examples
• “Classify Text Data Using Deep Learning” (Text Analytics Toolbox)
• “Create Simple Text Model for Classification” (Text Analytics Toolbox)
• “Analyze Text Data Using Topic Models” (Text Analytics Toolbox)
• “Analyze Text Data Using Multiword Phrases” (Text Analytics Toolbox)
• “Train a Sentiment Classifier” (Text Analytics Toolbox)
• “Sequence Classification Using Deep Learning” on page 4-3
• “Datastores for Deep Learning” on page 20-2
• “Deep Learning in MATLAB” on page 1-2

 Classify Text Data Using Convolutional Neural Network

4-209



Multilabel Text Classification Using Deep Learning

This example shows how to classify text data that has multiple independent labels.

For classification tasks where there can be multiple independent labels for each observation—for
example, tags on an scientific article—you can train a deep learning model to predict probabilities for
each independent class. To enable a network to learn multilabel classification targets, you can
optimize the loss of each class independently using binary cross-entropy loss.

This example defines a deep learning model that classifies subject areas given the abstracts of
mathematical papers collected using the arXiv API [1]. The model consists of a word embedding and
GRU, max pooling operation, fully connected, and sigmoid operations.

To measure the performance of multilabel classification, you can use the labeling F-score [2]. The
labeling F-score evaluates multilabel classification by focusing on per-text classification with partial
matches. The measure is the normalized proportion of matching labels against the total number of
true and predicted labels.

This example defines the following model:

• A word embedding that maps a sequence of words to a sequence of numeric vectors.
• A GRU operation that learns dependencies between the embedding vectors.
• A max pooling operation that reduces a sequence of feature vectors to a single feature vector.
• A fully connected layer that maps the features to the binary outputs.
• A sigmoid operation for learning the binary cross entropy loss between the outputs and the target

labels.

This diagram shows a piece of text propagating through the model architecture and outputting a
vector of probabilities. The probabilities are independent, so they need not sum to one.

4 Deep Learning with Time Series, Sequences, and Text

4-210



Import Text Data

Import a set of abstracts and category labels from math papers using the arXiv API. Specify the
number of records to import using the importSize variable.

importSize = 50000;

Create a URL that queries records with set "math" and metadata prefix "arXiv".

url = "https://export.arxiv.org/oai2?verb=ListRecords" + ...
    "&set=math" + ...
    "&metadataPrefix=arXiv";

Extract the abstract text, category labels, and the resumption token returned by the query URL using
the parseArXivRecords function which is attached to this example as a supporting file. To access
this file, open this example as a live script. Note that the arXiv API is rate limited and requires
waiting between multiple requests.

[textData,labelsAll,resumptionToken] = parseArXivRecords(url);

Iteratively import more chunks of records until the required amount is reached, or there are no more
records. To continue importing records from where you left off, use the resumption token from the
previous result in the query URL. To adhere to the rate limits imposed by the arXiv API, add a delay
of 20 seconds before each query using the pause function.

while numel(textData) < importSize
    
    if resumptionToken == ""
        break
    end
    

 Multilabel Text Classification Using Deep Learning

4-211



    url = "https://export.arxiv.org/oai2?verb=ListRecords" + ...
        "&resumptionToken=" + resumptionToken;
    
    pause(20)
    [textDataNew,labelsNew,resumptionToken] = parseArXivRecords(url);
    
    textData = [textData; textDataNew];
    labelsAll = [labelsAll; labelsNew];
end

Preprocess Text Data

Tokenize and preprocess the text data using the preprocessText function, listed at the end of the
example.

documentsAll = preprocessText(textData);
documentsAll(1:5)

ans = 
  5×1 tokenizedDocument:

    72 tokens: describe new algorithm $(k,\ell)$ pebble game color obtain characterization family $(k,\ell)$ sparse graph algorithmic solution family problem concerning tree decomposition graph special instance sparse graph appear rigidity theory receive increase attention recent year particular colored pebble generalize strengthen previous result lee streinu give new proof tuttenashwilliams characterization arboricity present new decomposition certify sparsity base $(k,\ell)$ pebble game color work expose connection pebble game algorithm previous sparse graph algorithm gabow gabow westermann hendrickson
    22 tokens: show determinant stirling cycle number count unlabeled acyclic singlesource automaton proof involve bijection automaton certain marked lattice path signreversing involution evaluate determinant
    18 tokens: paper show compute $\lambda_{\alpha}$ norm alpha dyadic grid result consequence description hardy space $h^p(r^n)$ term dyadic special atom
    62 tokens: partial cube isometric subgraphs hypercubes structure graph define mean semicubes djokovi winklers relation play important role theory partial cube structure employ paper characterize bipartite graph partial cube arbitrary dimension new characterization establish new proof know result give operation cartesian product paste expansion contraction process utilize paper construct new partial cube old particular isometric lattice dimension finite partial cube obtain mean operation calculate
    29 tokens: paper present algorithm compute hecke eigensystems hilbertsiegel cusp form real quadratic field narrow class number give illustrative example quadratic field $\q(\sqrt{5})$ example identify hilbertsiegel eigenforms possible lift hilbert eigenforms

Remove labels that do not belong to the "math" set.

for i = 1:numel(labelsAll)
    labelsAll{i} = labelsAll{i}(startsWith(labelsAll{i},"math."));
end

Visualize some of the classes in a word cloud. Find the documents corresponding to the following:

• Abstracts tagged with "Combinatorics" and not tagged with "Statistics Theory"
• Abstracts tagged with "Statistics Theory" and not tagged with "Combinatorics"
• Abstracts tagged with both "Combinatorics" and "Statistics Theory"

Find the document indices for each of the groups using the ismember function.

idxCO = cellfun(@(lbls) ismember("math.CO",lbls) && ~ismember("math.ST",lbls),labelsAll);
idxST = cellfun(@(lbls) ismember("math.ST",lbls) && ~ismember("math.CO",lbls),labelsAll);
idxCOST = cellfun(@(lbls) ismember("math.CO",lbls) && ismember("math.ST",lbls),labelsAll);

Visualize the documents for each group in a word cloud.

figure
subplot(1,3,1)
wordcloud(documentsAll(idxCO));
title("Combinatorics")

subplot(1,3,2)
wordcloud(documentsAll(idxST));
title("Statistics Theory")

subplot(1,3,3)

4 Deep Learning with Time Series, Sequences, and Text

4-212



wordcloud(documentsAll(idxCOST));
title("Both")

View the number of classes.

classNames = unique(cat(1,labelsAll{:}));
numClasses = numel(classNames)

numClasses = 32

Visualize the number of per-document labels using a histogram.

labelCounts = cellfun(@numel,labelsAll);
figure
histogram(labelCounts)
xlabel("Number of Labels")
ylabel("Frequency")
title("Label Counts")

 Multilabel Text Classification Using Deep Learning

4-213



Prepare Text Data for Deep Learning

Partition the data into training and validation partitions using the cvpartition function. Hold out
10% of the data for validation by setting the HoldOut option to 0.1.

cvp = cvpartition(numel(documentsAll),HoldOut=0.1);
documentsTrain = documentsAll(training(cvp));
documentsValidation = documentsAll(test(cvp));

labelsTrain = labelsAll(training(cvp));
labelsValidation = labelsAll(test(cvp));

Create a word encoding object that encodes the training documents as sequences of word indices.
Specify a vocabulary of the 5000 words by setting the Order option to "frequency", and the
MaxNumWords option to 5000.

enc = wordEncoding(documentsTrain,Order="frequency",MaxNumWords=5000)

enc = 
  wordEncoding with properties:

      NumWords: 5000
    Vocabulary: [1×5000 string]

To improve training, use the following techniques:

4 Deep Learning with Time Series, Sequences, and Text

4-214



1 When training, truncate the documents to a length that reduces the amount of padding used and
does not does discard too much data.

2 Train for one epoch with the documents sorted by length in ascending order, then shuffle the
data each epoch. This technique is known as sortagrad.

To choose a sequence length for truncation, visualize the document lengths in a histogram and
choose a value that captures most of the data.

documentLengths = doclength(documentsTrain);

figure
histogram(documentLengths)
xlabel("Document Length")
ylabel("Frequency")
title("Document Lengths")

Most of the training documents have fewer than 175 tokens. Use 175 tokens as the target length for
truncation and padding.

maxSequenceLength = 175;

To use the sortagrad technique, sort the documents by length in ascending order.

[~,idx] = sort(documentLengths);
documentsTrain = documentsTrain(idx);
labelsTrain = labelsTrain(idx);

 Multilabel Text Classification Using Deep Learning

4-215



Define and Initialize Model Parameters

Define the parameters for each of the operations and include them in a struct. Use the format
parameters.OperationName.ParameterName, where parameters is the struct,
OperationName is the name of the operation (for example "fc"), and ParameterName is the name
of the parameter (for example, "Weights").

Create a struct parameters containing the model parameters. Initialize the bias with zeros. Use the
following weight initializers for the operations:

• For the embedding, initialize the weights using the initializeGaussian function.
• For the GRU operation, initialize the weights and bias using the initializeGlorot and

initializeZeros functions, respectively.
• For the fully connect operation, initialize the weights and bias using the initializeGaussian

and initializeZeros functions, respectively.

The initialization functions initializeGlorot, initializeGaussian, and initializeZeros
are attached to the example as supporting files. To access these functions, open the example as a live
script.

Initialize the learnable parameters for the embedding.

embeddingDimension = 300;
numHiddenUnits = 250;
inputSize = enc.NumWords + 1;

parameters = struct;

sz = [embeddingDimension inputSize];
mu = 0;
sigma = 0.01;
parameters.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the learnable parameters for the GRU operation using.

sz = [3*numHiddenUnits embeddingDimension];
numOut = 3*numHiddenUnits;
numIn = embeddingDimension;
parameters.gru.InputWeights = initializeGlorot(sz,numOut,numIn);

sz = [3*numHiddenUnits numHiddenUnits];
numOut = 3*numHiddenUnits;
numIn = numHiddenUnits;
parameters.gru.RecurrentWeights = initializeGlorot(sz,numOut,numIn);

sz = [3*numHiddenUnits 1];
parameters.gru.Bias = initializeZeros(sz);

Initialize the learnable parameters for the fully connect operation.

sz = [numClasses numHiddenUnits];
mu = 0;
sigma = 0.01;
parameters.fc.Weights = initializeGaussian(sz,mu,sigma);

sz = [numClasses 1];
parameters.fc.Bias = initializeZeros(sz);

4 Deep Learning with Time Series, Sequences, and Text

4-216



View the parameters struct.

parameters

parameters = struct with fields:
    emb: [1×1 struct]
    gru: [1×1 struct]
     fc: [1×1 struct]

View the parameters for the GRU operation.

parameters.gru

ans = struct with fields:
        InputWeights: [750×300 dlarray]
    RecurrentWeights: [750×250 dlarray]
                Bias: [750×1 dlarray]

Define Model Function

Create the function model, listed at the end of the example, which computes the outputs of the deep
learning model described earlier. The function model takes as input the input data and the model
parameters. The network outputs the predictions for the labels.

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, which takes as input a mini-batch of
input data and the corresponding targets, and returns the loss, the gradients of the loss with respect
to the learnable parameters, and the network outputs.

Specify Training Options

Train for 5 epochs with a mini-batch size of 256.

numEpochs = 5;
miniBatchSize = 256;

Train using the Adam optimizer, with a learning rate of 0.01, and specify gradient decay and squared
gradient decay factors of 0.5 and 0.999, respectively.

learnRate = 0.01;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;

Clip the gradients with a threshold of 1 using L2 norm gradient clipping.

gradientThreshold = 1;

To convert a vector of probabilities to labels, use the labels with probabilities higher than a specified
threshold. Specify a label threshold of 0.5.

labelThreshold = 0.5;

Validate the network every epoch.

 Multilabel Text Classification Using Deep Learning

4-217



numObservationsTrain = numel(documentsTrain);
numIterationsPerEpoch = floor(numObservationsTrain/miniBatchSize);
validationFrequency = numIterationsPerEpoch;

Train Model

Initialize the training progress plot. Create animated lines for the F-score and the loss.

figure
C = colororder;

subplot(2,1,1)
lineFScoreTrain = animatedline(Color=C(1,:));
lineFScoreValidation = animatedline( ...
    LineStyle="--", ...
    Marker="o", ...
    MarkerFaceColor="black");
ylim([0 1])
xlabel("Iteration")
ylabel("Labeling F-Score")
grid on

subplot(2,1,2)
lineLossTrain = animatedline(Color=C(2,:));
lineLossValidation = animatedline( ...
    LineStyle="--", ...
    Marker="o", ...
    MarkerFaceColor="black");
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

Initialize parameters for the Adam optimizer.

trailingAvg = [];
trailingAvgSq = [];

Prepare the validation data. Create a one-hot encoded matrix where non-zero entries correspond to
the labels of each observation.

numObservationsValidation = numel(documentsValidation);
TValidation = zeros(numClasses, numObservationsValidation,"single");
for i = 1:numObservationsValidation
    [~,idx] = ismember(labelsValidation{i},classNames);
    TValidation(idx,i) = 1;
end

Train the model using a custom training loop.

For each epoch, loop over mini-batches of data. At the end of each epoch, shuffle the data. At the end
of each iteration, update the training progress plot.

For each mini-batch:

• Convert the documents to sequences of word indices and convert the labels to dummy variables.
• Convert the sequences to dlarray objects with underlying type single and specify the dimension

labels "BTC" (batch, time, channel).

4 Deep Learning with Time Series, Sequences, and Text

4-218



• Train on a GPU if one is available. This requires Parallel Computing Toolbox™. Using a GPU
requires Parallel Computing Toolbox™ and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

• For GPU training, convert to gpuArray objects.
• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Clip the gradients.
• Update the network parameters using the adamupdate function.
• If necessary, validate the network using the modelPredictions function, listed at the end of the

example.
• Update the training plot.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        
        % Read mini-batch of data and convert the labels to dummy
        % variables.
        documents = documentsTrain(idx);
        labels = labelsTrain(idx);
        
        % Convert documents to sequences.
        len = min(maxSequenceLength,max(doclength(documents)));
        X = doc2sequence(enc,documents, ...
            PaddingValue=inputSize, ...
            Length=len);
        X = cat(1,X{:});
        
        % Dummify labels.
        T = zeros(numClasses,miniBatchSize,"single");
        for j = 1:miniBatchSize
            [~,idx2] = ismember(labels{j},classNames);
            T(idx2,j) = 1;
        end
        
        % Convert mini-batch of data to dlarray.
        X = dlarray(X,"BTC");
        
        % If training on a GPU, then convert data to gpuArray.
        if canUseGPU
            X = gpuArray(X);
        end
        
        % Evaluate the model loss, gradients, and predictions using dlfeval and the
        % modelLoss function.
        [loss,gradients,Y] = dlfeval(@modelLoss,X,T,parameters);
        
        % Gradient clipping.
        gradients = dlupdate(@(g) thresholdL2Norm(g,gradientThreshold),gradients);

 Multilabel Text Classification Using Deep Learning

4-219



        
        % Update the network parameters using the Adam optimizer.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration,learnRate, ...
            gradientDecayFactor,squaredGradientDecayFactor);

        % Display the training progress.
        subplot(2,1,1)
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        title("Epoch: " + epoch + ", Elapsed: " + string(D))

        % Loss.
        loss = double(loss);
        addpoints(lineLossTrain,iteration,loss)

        % Labeling F-score.
        Y = Y > labelThreshold;
        score = labelingFScore(Y,T);
        addpoints(lineFScoreTrain,iteration,double(gather(score)))

        drawnow

        % Display validation metrics.
        if iteration == 1 || mod(iteration,validationFrequency) == 0
            YValidation = modelPredictions(parameters,enc,documentsValidation,miniBatchSize,maxSequenceLength);

            % Loss.
            lossValidation = crossentropy(YValidation,TValidation, ...
                TargetCategories="independent", ...
                DataFormat="CB");
            lossValidation = double(lossValidation);
            addpoints(lineLossValidation,iteration,lossValidation)

            % Labeling F-score.
            YValidation = YValidation > labelThreshold;
            score = labelingFScore(YValidation,TValidation);
            score = double(score);
            addpoints(lineFScoreValidation,iteration,score)

            drawnow
        end
    end
    
    % Shuffle data.
    idx = randperm(numObservationsTrain);
    documentsTrain = documentsTrain(idx);
    labelsTrain = labelsTrain(idx);
end

4 Deep Learning with Time Series, Sequences, and Text

4-220



Test Model

To make predictions on a new set of data, use the modelPredictions function, listed at the end of
the example. The modelPredictions function takes as input the model parameters, a word
encoding, and an array of tokenized documents, and outputs the model predictions corresponding to
the specified mini-batch size and the maximum sequence length.

YValidation = modelPredictions(parameters,enc,documentsValidation,miniBatchSize,maxSequenceLength);

To evaluate the performance, calculate the labeling F-score using the labelingFScore function,
listed at the end of the example. The labeling F-score evaluates multilabel classification by focusing
on per-text classification with partial matches. To convert the network outputs to an array of labels,
find the labels with scores higher than the specified label threshold.

score = labelingFScore(YValidation > labelThreshold,TValidation)

score = single
    0.5663

View the effect of the labeling threshold on the labeling F-score by trying a range of values for the
threshold and comparing the results.

thr = linspace(0,1,10);
score = zeros(size(thr));
for i = 1:numel(thr)
    YPredValidationThr = YValidation >= thr(i);
    score(i) = labelingFScore(YPredValidationThr,TValidation);

 Multilabel Text Classification Using Deep Learning

4-221



end

figure
plot(thr,score)
xline(labelThreshold,"r--");
xlabel("Threshold")
ylabel("Labeling F-Score")
title("Effect of Labeling Threshold")

Visualize Predictions

To visualize the correct predictions of the classifier, calculate the numbers of true positives. A true
positive is an instance of a classifier correctly predicting a particular class for an observation.

Y = YValidation > labelThreshold;
T = TValidation;

numTruePositives = sum(T & Y,2);

numObservationsPerClass = sum(T,2);
truePositiveRates = numTruePositives ./ numObservationsPerClass;

Visualize the numbers of true positives for each class in a histogram.

figure
truePositiveRates = extractdata(truePositiveRates);
[~,idx] = sort(truePositiveRates,"descend");
histogram(Categories=classNames(idx),BinCounts=truePositiveRates(idx))

4 Deep Learning with Time Series, Sequences, and Text

4-222



xlabel("Category")
ylabel("True Positive Rate")
title("True Positive Rates")

Visualize the instances where the classifier predicts incorrectly by showing the distribution of true
positives, false positives, and false negatives. A false positive is an instance of a classifier assigning a
particular incorrect class to an observation. A false negative is an instance of a classifier failing to
assign a particular correct class to an observation.

Create a confusion matrix showing the true positive, false positive, and false negative counts:

• For each class, display the true positive counts on the diagonal.
• For each pair of classes (i,j), display the number of instances of a false positive for j when the

instance is also a false negative for i.

That is, the confusion matrix with elements given by:

TPFNi j =
numTruePositives(i), if i = j

numFalsePositives( j | i is a false negative), if i ≠ j

Calculate the false negatives and false positives.

falseNegatives = T & ~Y;
falsePositives = ~T & Y;

Calculate the off-diagonal elements.

 Multilabel Text Classification Using Deep Learning

4-223



falseNegatives = permute(falseNegatives,[3 2 1]);
numConditionalFalsePositives = sum(falseNegatives & falsePositives, 2);
numConditionalFalsePositives = squeeze(numConditionalFalsePositives);

tpfnMatrix = numConditionalFalsePositives;

Set the diagonal elements to the true positive counts.

idxDiagonal = 1:numClasses+1:numClasses^2;
tpfnMatrix(idxDiagonal) = numTruePositives;

Visualize the true positive and false positive counts in a confusion matrix using the confusionchart
function and sort the matrix such that the elements on the diagonal are in descending order.

figure
tpfnMatrix = extractdata(tpfnMatrix);
cm = confusionchart(tpfnMatrix,classNames);
sortClasses(cm,"descending-diagonal");
title("True Positives, False Positives")

To view the matrix in more detail, open this example as a live script and open the figure in a new
window.

Preprocess Text Function

The preprocessText function tokenizes and preprocesses the input text data using the following
steps:

4 Deep Learning with Time Series, Sequences, and Text

4-224



1 Tokenize the text using the tokenizedDocument function. Extract mathematical equations as a
single token using the RegularExpressions option by specifying the regular expression "\
$.*?\$", which captures text appearing between two "$" symbols.

2 Erase the punctuation using the erasePunctuation function.
3 Convert the text to lowercase using the lower function.
4 Remove the stop words using the removeStopWords function.
5 Lemmatize the text using the normalizeWords function with the Style option set to "lemma".

function documents = preprocessText(textData)

% Tokenize the text.
regularExpressions = table;
regularExpressions.Pattern = "\$.*?\$";
regularExpressions.Type = "equation";

documents = tokenizedDocument(textData,RegularExpressions=regularExpressions);

% Erase punctuation.
documents = erasePunctuation(documents);

% Convert to lowercase.
documents = lower(documents);

% Lemmatize.
documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents,Style="lemma");

% Remove stop words.
documents = removeStopWords(documents);

% Remove short words.
documents = removeShortWords(documents,2);

end

Model Function

The function model takes as input the input data X and the model parameters parameters, and
returns the predictions for the labels.

function Y = model(X,parameters)

% Embedding
weights = parameters.emb.Weights;
X = embed(X,weights);

% GRU
inputWeights = parameters.gru.InputWeights;
recurrentWeights = parameters.gru.RecurrentWeights;
bias = parameters.gru.Bias;

numHiddenUnits = size(inputWeights,1)/3;
hiddenState = dlarray(zeros([numHiddenUnits 1]));

Y = gru(X,hiddenState,inputWeights,recurrentWeights,bias);

 Multilabel Text Classification Using Deep Learning

4-225



% Max pooling along time dimension
Y = max(Y,[],3);

% Fully connect
weights = parameters.fc.Weights;
bias = parameters.fc.Bias;
Y = fullyconnect(Y,weights,bias);

% Sigmoid
Y = sigmoid(Y);

end

Model Loss Function

The modelLoss function takes as input a mini-batch of input data X with corresponding targets T
containing the labels and returns the loss, the gradients of the loss with respect to the learnable
parameters, and the network outputs.

function [loss,gradients,Y] = modelLoss(X,T,parameters)

Y = model(X,parameters);

loss = crossentropy(Y,T,TargetCategories="independent");

gradients = dlgradient(loss,parameters);

end

Model Predictions Function

The modelPredictions function takes as input the model parameters, a word encoding, an array of
tokenized documents, a mini-batch size, and a maximum sequence length, and returns the model
predictions by iterating over mini-batches of the specified size.

function Y = modelPredictions(parameters,enc,documents,miniBatchSize,maxSequenceLength)

inputSize = enc.NumWords + 1;

numObservations = numel(documents);
numIterations = ceil(numObservations / miniBatchSize);

numFeatures = size(parameters.fc.Weights,1);
Y = zeros(numFeatures,numObservations,"like",parameters.fc.Weights);

for i = 1:numIterations
    
    idx = (i-1)*miniBatchSize+1:min(i*miniBatchSize,numObservations);
    
    len = min(maxSequenceLength,max(doclength(documents(idx))));
    X = doc2sequence(enc,documents(idx), ...
        PaddingValue=inputSize, ...
        Length=len);
    X = cat(1,X{:});
    
    X = dlarray(X,"BTC");
    
    Y(:,idx) = model(X,parameters);

4 Deep Learning with Time Series, Sequences, and Text

4-226



end

end

Labeling F-Score Function

The labeling F-score function [2] evaluates multilabel classification by focusing on per-text
classification with partial matches. The measure is the normalized proportion of matching labels
against the total number of true and predicted labels given by

1
N ∑

n = 1

N 2∑c = 1
C YncTnc

∑c = 1
C (Ync + Tnc)

,

where N and C correspond to the number of observations and classes, respectively, and Y and T
correspond to the predictions and targets, respectively.

function score = labelingFScore(Y,T)

numObservations = size(T,2);

scores = (2 * sum(Y .* T)) ./ sum(Y + T);
score = sum(scores) / numObservations;

end

Gradient Clipping Function

The thresholdL2Norm function scales the input gradients so that their L2 norm values equal the
specified gradient threshold when the L2 norm value of the gradient of a learnable parameter is
larger than the specified threshold.

function gradients = thresholdL2Norm(gradients,gradientThreshold)

gradientNorm = sqrt(sum(gradients(:).^2));
if gradientNorm > gradientThreshold
    gradients = gradients * (gradientThreshold / gradientNorm);
end

end

References

1 arXiv. "arXiv API." Accessed January 15, 2020. https://arxiv.org/help/api
2 Sokolova, Marina, and Guy Lapalme. "A Sytematic Analysis of Performance Measures for

Classification Tasks." Information Processing & Management 45, no. 4 (2009): 427–437.

See Also
tokenizedDocument | fullyconnect | gru | dlupdate | adamupdate | dlarray | dlfeval |
dlgradient | wordEncoding | doc2sequence | extractHTMLText | htmlTree

Related Examples
• “Train Network Using Custom Training Loop” on page 19-239

 Multilabel Text Classification Using Deep Learning

4-227

https://arxiv.org/help/api


• “Specify Training Options in Custom Training Loop” on page 19-230
• “Sequence-to-Sequence Translation Using Attention” on page 4-266
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Classify Text Data Using Deep Learning” on page 4-195
• “Deep Learning Tips and Tricks” on page 1-87
• “Automatic Differentiation Background” on page 19-214

4 Deep Learning with Time Series, Sequences, and Text

4-228



Classify Text Data Using Custom Training Loop

This example shows how to classify text data using a deep learning bidirectional long short-term
memory (BiLSTM) network with a custom training loop.

When training a deep learning network using the trainNetwork function, if trainingOptions
does not provide the options you need (for example, a custom learning rate schedule), then you can
define your own custom training loop using automatic differentiation. For an example showing how to
classify text data using the trainNetwork function, see “Classify Text Data Using Deep Learning” on
page 4-195.

This example trains a network to classify text data with the time-based decay learning rate schedule:

for each iteration, the solver uses the learning rate given by ρt =
ρ0

1 + kt , where t is the iteration
number, ρ0 is the initial learning rate, and k is the decay.

Import Data

Import the factory reports data. This data contains labeled textual descriptions of factory events. To
import the text data as strings, specify the text type to be "string".

filename = "factoryReports.csv";
data = readtable(filename,TextType="string");
head(data)

                                 Description                                       Category          Urgency          Resolution         Cost 
    _____________________________________________________________________    ____________________    ________    ____________________    _____

    "Items are occasionally getting stuck in the scanner spools."            "Mechanical Failure"    "Medium"    "Readjust Machine"         45
    "Loud rattling and banging sounds are coming from assembler pistons."    "Mechanical Failure"    "Medium"    "Readjust Machine"         35
    "There are cuts to the power when starting the plant."                   "Electronic Failure"    "High"      "Full Replacement"      16200
    "Fried capacitors in the assembler."                                     "Electronic Failure"    "High"      "Replace Components"      352
    "Mixer tripped the fuses."                                               "Electronic Failure"    "Low"       "Add to Watch List"        55
    "Burst pipe in the constructing agent is spraying coolant."              "Leak"                  "High"      "Replace Components"      371
    "A fuse is blown in the mixer."                                          "Electronic Failure"    "Low"       "Replace Components"      441
    "Things continue to tumble off of the belt."                             "Mechanical Failure"    "Low"       "Readjust Machine"         38

The goal of this example is to classify events by the label in the Category column. To divide the data
into classes, convert these labels to categorical.

data.Category = categorical(data.Category);

View the distribution of the classes in the data using a histogram.

figure
histogram(data.Category);
xlabel("Class")
ylabel("Frequency")
title("Class Distribution")

 Classify Text Data Using Custom Training Loop

4-229



The next step is to partition it into sets for training and validation. Partition the data into a training
partition and a held-out partition for validation and testing. Specify the holdout percentage to be
20%.

cvp = cvpartition(data.Category,Holdout=0.2);
dataTrain = data(training(cvp),:);
dataValidation = data(test(cvp),:);

Extract the text data and labels from the partitioned tables.

textDataTrain = dataTrain.Description;
textDataValidation = dataValidation.Description;
TTrain = dataTrain.Category;
TValidation = dataValidation.Category;

To check that you have imported the data correctly, visualize the training text data using a word
cloud.

figure
wordcloud(textDataTrain);
title("Training Data")

4 Deep Learning with Time Series, Sequences, and Text

4-230



View the number of classes.

classes = categories(TTrain);
numClasses = numel(classes)

numClasses = 4

Preprocess Text Data

Create a function that tokenizes and preprocesses the text data. The function preprocessText,
listed at the end of the example, performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

Preprocess the training data and the validation data using the preprocessText function.

documentsTrain = preprocessText(textDataTrain);
documentsValidation = preprocessText(textDataValidation);

View the first few preprocessed training documents.

documentsTrain(1:5)

ans = 
  5×1 tokenizedDocument:

 Classify Text Data Using Custom Training Loop

4-231



     9 tokens: items are occasionally getting stuck in the scanner spools
    10 tokens: loud rattling and banging sounds are coming from assembler pistons
    10 tokens: there are cuts to the power when starting the plant
     5 tokens: fried capacitors in the assembler
     4 tokens: mixer tripped the fuses

Create a single datastore that contains both the documents and the labels by creating
arrayDatastore objects, then combining them using the combine function.

dsDocumentsTrain = arrayDatastore(documentsTrain,OutputType="cell");
dsTTrain = arrayDatastore(TTrain,OutputType="cell");
dsTrain = combine(dsDocumentsTrain,dsTTrain);

Create an array datastore for the validation documents.

dsDocumentsValidation = arrayDatastore(documentsValidation,OutputType="cell");

Create Word Encoding

To input the documents into a BiLSTM network, use a word encoding to convert the documents into
sequences of numeric indices.

To create a word encoding, use the wordEncoding function.

enc = wordEncoding(documentsTrain)

enc = 
  wordEncoding with properties:

      NumWords: 424
    Vocabulary: ["items"    "are"    "occasionally"    "getting"    "stuck"    "in"    "the"    "scanner"    "spools"    "loud"    "rattling"    "and"    "banging"    "sounds"    "coming"    "from"    "assembler"    "pistons"    "there"    …    ]

Define Network

Define the BiLSTM network architecture. To input sequence data into the network, include a
sequence input layer and set the input size to 1. Next, include a word embedding layer of dimension
25 and the same number of words as the word encoding. Next, include a BiLSTM layer and set the
number of hidden units to 40. To use the BiLSTM layer for a sequence-to-label classification problem,
set the output mode to "last". Finally, add a fully connected layer with the same size as the number
of classes, and a softmax layer.

inputSize = 1;
embeddingDimension = 25;
numHiddenUnits = 40;

numWords = enc.NumWords;

layers = [
    sequenceInputLayer(inputSize)
    wordEmbeddingLayer(embeddingDimension,numWords)
    bilstmLayer(numHiddenUnits,OutputMode="last")
    fullyConnectedLayer(numClasses)
    softmaxLayer]

layers = 
  5×1 Layer array with layers:

4 Deep Learning with Time Series, Sequences, and Text

4-232



     1   ''   Sequence Input         Sequence input with 1 dimensions
     2   ''   Word Embedding Layer   Word embedding layer with 25 dimensions and 424 unique words
     3   ''   BiLSTM                 BiLSTM with 40 hidden units
     4   ''   Fully Connected        4 fully connected layer
     5   ''   Softmax                softmax

Convert the layer array to a dlnetwork object.

net = dlnetwork(layers)

net = 
  dlnetwork with properties:

         Layers: [5×1 nnet.cnn.layer.Layer]
    Connections: [4×2 table]
     Learnables: [6×3 table]
          State: [2×3 table]
     InputNames: {'sequenceinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, that takes a dlnetwork object, a
mini-batch of input data with corresponding labels, and returns the loss and the gradients of the loss
with respect to the learnable parameters in the network.

Specify Training Options

Train for 30 epochs with a mini-batch size of 16.

numEpochs = 30;
miniBatchSize = 16;

Specify the options for Adam optimization. Specify an initial learn rate of 0.001 with a decay of 0.01,
gradient decay factor 0.9, and squared gradient decay factor 0.999.

initialLearnRate = 0.001;
decay = 0.01;
gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Train Model

Create a minibatchqueue object that processes and manages the mini-batches of data. For each
mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert documents to sequences and one-hot encode the labels. To pass the word
encoding to the mini-batch, create an anonymous function that takes two inputs.

• Format the predictors with the dimension labels "BTC" (batch, time, channel). The
minibatchqueue object, by default, converts the data to dlarray objects with underlying type
single.

 Classify Text Data Using Custom Training Loop

4-233



• Train on a GPU if one is available. The minibatchqueue object, by default, converts each output
to gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain, ...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@(X,T) preprocessMiniBatch(X,T,enc), ...
    MiniBatchFormat=["BTC" ""]);

Create a minibatchqueue object for the validation documents. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatchPredictors (defined
at the end of this example) to convert documents to sequences. This preprocessing function does
not require label data. To pass the word encoding to the mini-batch, create an anonymous function
that takes one input only.

• Format the predictors with the dimension labels "BTC" (batch, time, channel). The
minibatchqueue object, by default, converts the data to dlarray objects with underlying type
single.

• To make predictions for all observations, return any partial mini-batches.

mbqValidation = minibatchqueue(dsDocumentsValidation, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@(X) preprocessMiniBatchPredictors(X,enc), ...
    MiniBatchFormat="BTC", ...
    PartialMiniBatch="return");

To easily calculate the validation loss, convert the validation labels to one-hot encoded vectors and
transpose the encoded labels to match the network output format.

TValidation = onehotencode(TValidation,2);
TValidation = TValidation';

Initialize the parameters for Adam.

trailingAvg = [];
trailingAvgSq = [];

Calculate the total number of iterations for the training progress monitor.

numObservationsTrain = numel(documentsTrain);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics=["TrainingLoss","ValidationLoss"], ...
    Info=["Epoch","LearnRate"], ...
    XLabel="Iteration");

groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"])

Train the network. For each epoch, shuffle the data and loop over mini-batches of data. At the end of
each iteration, display the training progress. At the end of each epoch, validate the network using the
validation data.

4 Deep Learning with Time Series, Sequences, and Text

4-234



For each mini-batch:

• Convert the documents to sequences of integers and one-hot encode the labels.
• Convert the data to dlarray objects with underlying type single and specify the dimension labels

"BTC" (batch, time, channel).
• For GPU training, convert to gpuArray objects.
• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the adamupdate function.
• Update the training plot.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(mbq);

        % Evaluate the model loss and gradients using dlfeval and the
        % modelLoss function.
        [loss,gradients] = dlfeval(@modelLoss,net,X,T);

        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);

        % Update the network parameters using the Adam optimizer.
        [net,trailingAvg,trailingAvgSq] = adamupdate(net, gradients, ...
            trailingAvg, trailingAvgSq, iteration, learnRate, ...
            gradientDecayFactor, squaredGradientDecayFactor);

        % Display the training progress.
        recordMetrics(monitor,iteration,TrainingLoss=loss);
        updateInfo(monitor,LearnRate=learnRate,Epoch=(epoch+" of "+numEpochs));

        % Validate network.
        if iteration == 1 || ~hasdata(mbq)
            [~,scoresValidation] = modelPredictions(net,mbqValidation,classes);
            lossValidation = crossentropy(scoresValidation,TValidation);

            % Update plot.
            recordMetrics(monitor,iteration,ValidationLoss=lossValidation);
        end

 Classify Text Data Using Custom Training Loop

4-235



        monitor.Progress = 100*iteration/numIterations;
    end
end

Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

Classify the validation data using modelPredictions function, listed at the end of the example.

YNew = modelPredictions(net,mbqValidation,classes);

To easily calculate the validation accuracy, convert the one-hot encoded validation labels to
categorical and transpose.

TValidation = onehotdecode(TValidation,classes,1)';

Evaluate the classification accuracy.

accuracy = mean(YNew == TValidation)

accuracy = 0.8646

Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.

reportsNew = [
    "Coolant is pooling underneath sorter."
    "Sorter blows fuses at start up."
    "There are some very loud rattling sounds coming from the assembler."];

4 Deep Learning with Time Series, Sequences, and Text

4-236



Preprocess the text data using the preprocessing steps as the training documents.

documentsNew = preprocessText(reportsNew);
dsNew = arrayDatastore(documentsNew,OutputType="cell");

Create a minibatchqueue object that processes and manages the mini-batches of data. For each
mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatchPredictors (defined
at the end of this example) to convert documents to sequences. This preprocessing function does
not require label data. To pass the word encoding to the mini-batch, create an anonymous function
that takes one input only.

• Format the predictors with the dimension labels "BTC" (batch, time, channel). The
minibatchqueue object, by default, converts the data to dlarray objects with underlying type
single.

• To make predictions for all observations, return any partial mini-batches.

mbqNew = minibatchqueue(dsNew, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@(X) preprocessMiniBatchPredictors(X,enc), ...
    MiniBatchFormat="BTC", ...
    PartialMiniBatch="return");

Classify the text data using modelPredictions function, listed at the end of the example and find
the classes with the highest scores.

YNew = modelPredictions(net,mbqNew,classes)

YNew = 3×1 categorical
     Leak 
     Electronic Failure 
     Mechanical Failure 

Supporting Functions

Text Preprocessing Function

The function preprocessText performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Convert to lowercase.
documents = lower(documents);

% Erase punctuation.
documents = erasePunctuation(documents);

end

 Classify Text Data Using Custom Training Loop

4-237



Mini-Batch Preprocessing Function

The preprocessMiniBatch function converts a mini-batch of documents to sequences of integers
and one-hot encodes label data.

function [X,T] = preprocessMiniBatch(dataX,dataT,enc)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX,enc);

% Extract labels from cell and concatenate.
T = cat(1,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,2);

% Transpose the encoded labels to match the network output.
T = T';

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function converts a mini-batch of documents to sequences
of integers.

function X = preprocessMiniBatchPredictors(dataX,enc)

% Extract documents from cell and concatenate.
documents = cat(4,dataX{1:end});

% Convert documents to sequences of integers.
X = doc2sequence(enc,documents);
X = cat(1,X{:});

end

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the gradients of the loss with respect to the learnable
parameters in net, and the loss. To compute the gradients automatically, use the dlgradient
function.

function [loss,gradients] = modelLoss(net,X,T)

Y = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Model Predictions Function

The modelPredictions function takes a dlnetwork object net, a mini-batch queue, and outputs
the model predictions and scores by iterating over mini-batches in the queue.

function [predictions,scores] = modelPredictions(net,mbq,classes)

4 Deep Learning with Time Series, Sequences, and Text

4-238



% Initialize predictions.
predictions = [];
scores = [];

% Reset mini-batch queue.
reset(mbq);

% Loop over mini-batches.
while hasdata(mbq)

    % Make predictions.
    X = next(mbq);
    Y = predict(net,X);

    scores = [scores Y];

    Y = onehotdecode(Y,classes,1)';
    predictions = [predictions; Y];
end

end

See Also
wordEmbeddingLayer | tokenizedDocument | lstmLayer | doc2sequence |
sequenceInputLayer | wordcloud | dlfeval | dlgradient | dlarray

Related Examples
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Classify Text Data Using Deep Learning” on page 4-195
• “Create Simple Text Model for Classification” (Text Analytics Toolbox)
• “Analyze Text Data Using Topic Models” (Text Analytics Toolbox)
• “Analyze Text Data Using Multiword Phrases” (Text Analytics Toolbox)
• “Train a Sentiment Classifier” (Text Analytics Toolbox)
• “Sequence Classification Using Deep Learning” on page 4-3
• “Deep Learning in MATLAB” on page 1-2

 Classify Text Data Using Custom Training Loop

4-239



Generate Text Using Autoencoders

This example shows how to generate text data using autoencoders.

An autoencoder is a type of deep learning network that is trained to replicate its input. An
autoencoder consists of two smaller networks: and encoder and a decoder. The encoder maps the
input data to a feature vector in some latent space. The decoder reconstructs data using vectors in
this latent space.

The training process is unsupervised. In other words, the model does not require labeled data. To
generate text, you can use the decoder to reconstruct text from arbitrary input.

This example trains an autoencoder to generate text. The encoder uses a word embedding and an
LSTM operation to map the input text into latent vectors. The decoder uses an LSTM operation and
the same embedding to reconstruct the text from the latent vectors.

Load Data

The file sonnets.txt contains all of Shakespeare's sonnets in a single text file.

Read the Shakespeare's Sonnets data from the file "sonnets.txt".

filename = "sonnets.txt";
textData = fileread(filename);

The sonnets are indented by two whitespace characters. Remove the indentations using replace and
split the text into separate lines using the split function. Remove the header from the first nine
elements and the short sonnet titles.

textData = replace(textData,"  ","");
textData = split(textData,newline);
textData(1:9) = [];
textData(strlength(textData)<5) = [];

Prepare Data

Create a function that tokenizes and preprocesses the text data. The function preprocessText,
listed at the end of the example, performs these steps:

1 Prepends and appends each input string with the specified start and stop tokens, respectively.
2 Tokenize the text using tokenizedDocument.

Preprocess the text data and specify the start and stop tokens "<start>" and "<stop>",
respectively.

startToken = "<start>";
stopToken = "<stop>";
documents = preprocessText(textData,startToken,stopToken);

Create a word encoding object from the tokenized documents.

enc = wordEncoding(documents);

4 Deep Learning with Time Series, Sequences, and Text

4-240



When training a deep learning model, the input data must be a numeric array containing sequences
of a fixed length. Because the documents have different lengths, you must pad the shorter sequences
with a padding value.

Recreate the word encoding to also include a padding token and determine the index of that token.

paddingToken = "<pad>";
newVocabulary = [enc.Vocabulary paddingToken];
enc = wordEncoding(newVocabulary);
paddingIdx = word2ind(enc,paddingToken)

paddingIdx = 3595

Initialize Model Parameters

Initialize the parameters for the following model.

Here, T is the sequence length, x1,⋯, xT is the input sequence of word indices, and y1,⋯, yT is the
reconstructed sequence.

The encoder maps sequences of word indices to a latent vector by converting the input to sequences
of word vectors using an embedding, inputting the word vector sequences into an LSTM operation,
and applying a fully connected operation to the last time step of the LSTM output. The decoder
reconstructs the input using an LSTM initialized the encoder output. For each time step, the decoder
predicts the next time step and uses the output for the next time-step predictions. Both the encoder
and the decoder use the same embedding.

Specify the dimensions of the parameters.

embeddingDimension = 100;
numHiddenUnits = 150;
latentDimension = 75;
vocabularySize = enc.NumWords;

Create a struct for the parameters.

parameters = struct;

 Generate Text Using Autoencoders

4-241



Initialize the weights of the embedding using the Gaussian using the initializeGaussian function
which is attached to this example as a supporting file. Specify a mean of 0 and a standard deviation of
0.01. To learn more, see “Gaussian Initialization” on page 19-325.

sz = [embeddingDimension vocabularySize];
mu = 0;
sigma = 0.01;
parameters.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the learnable parameters for the encoder LSTM operation:

• Initialize the input weights with the Glorot initializer using the initializeGlorot function
which is attached to this example as a supporting file. To learn more, see “Glorot Initialization” on
page 19-322.

• Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function which is attached to this example as a supporting file. To learn more, see “Orthogonal
Initialization” on page 19-326.

• Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function which is attached to this example as a supporting file. To learn more, see “Unit Forget
Gate Initialization” on page 19-327.

sz = [4*numHiddenUnits embeddingDimension];
numOut = 4*numHiddenUnits;
numIn = embeddingDimension;

parameters.lstmEncoder.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.lstmEncoder.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits]);
parameters.lstmEncoder.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize the learnable parameters for the encoder fully connected operation:

• Initialize the weights with the Glorot initializer.
• Initialize the bias with zeros using the initializeZeros function which is attached to this

example as a supporting file. To learn more, see “Zeros Initialization” on page 19-328.

sz = [latentDimension numHiddenUnits];
numOut = latentDimension;
numIn = numHiddenUnits;

parameters.fcEncoder.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fcEncoder.Bias = initializeZeros([latentDimension 1]);

Initialize the learnable parameters for the decoder LSTM operation:

• Initialize the input weights with the Glorot initializer.
• Initialize the recurrent weights with the orthogonal initializer.
• Initialize the bias with the unit forget gate initializer.

sz = [4*latentDimension embeddingDimension];
numOut = 4*latentDimension;
numIn = embeddingDimension;

parameters.lstmDecoder.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.lstmDecoder.RecurrentWeights = initializeOrthogonal([4*latentDimension latentDimension]);
parameters.lstmDecoder.Bias = initializeZeros([4*latentDimension 1]);

4 Deep Learning with Time Series, Sequences, and Text

4-242



Initialize the learnable parameters for the decoder fully connected operation:

• Initialize the weights with the Glorot initializer.
• Initialize the bias with zeros.

sz = [vocabularySize latentDimension];
numOut = vocabularySize;
numIn = latentDimension;

parameters.fcDecoder.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fcDecoder.Bias = initializeZeros([vocabularySize 1]);

To learn more about weight initialization, see “Initialize Learnable Parameters for Model Function” on
page 19-318.

Define Model Encoder Function

Create the function modelEncoder, listed in the Encoder Model Function on page 4-247 section of
the example, that computes the output of the encoder model. The modelEncoder function, takes as
input sequences of word indices, the model parameters, and the sequence lengths, and returns the
corresponding latent feature vector. To learn more about defining a model encoder function, see
“Define Text Encoder Model Function” on page 4-252.

Define Model Decoder Function

Create the function modelDecoder, listed in the Decoder Model Function on page 4-248 section of
the example, that computes the output of the decoder model. The modelDecoder function, takes as
input sequences of word indices, the model parameters, and the sequence lengths, and returns the
corresponding latent feature vector. To learn more about defining a model decoder function, see
“Define Text Decoder Model Function” on page 4-259.

Define Model Loss Function

The modelLoss function, listed in the Model Loss Function on page 4-249 section of the example,
takes as input the model learnable parameters, the input data and a vector of sequence lengths for
masking, and returns the loss, and the gradients of the loss with respect to the learnable parameters.
To learn more about defining a model loss function, see “Define Model Loss Function for Custom
Training Loop” on page 19-256.

Specify Training Options

Specify the options for training.

Train for 100 epochs with a mini-batch size of 128.

miniBatchSize = 128;
numEpochs = 100;

Train with a learning rate of 0.01.

learnRate = 0.01;

Train Network

Train the network using a custom training loop.

Initialize the parameters for the Adam optimizer.

 Generate Text Using Autoencoders

4-243



trailingAvg = [];
trailingAvgSq = [];

Initialize the training progress plot. Create an animated line that plots the loss against the
corresponding iteration.

figure
C = colororder;
lineLossTrain = animatedline(Color=C(2,:));
xlabel("Iteration")
ylabel("Loss")
ylim([0 inf])
grid on

Train the model. For the first epoch, shuffle the data and loop over mini-batches of data.

For each mini-batch:

• Convert the text data to sequences of word indices.
• Convert the data to dlarray.
• For GPU training, convert the data to gpuArray objects.
• Compute loss and gradients.
• Update the learnable parameters using the adamupdate function.
• Update the training progress plot.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

Training can take some time to run.

numObservations = numel(documents);
numIterationsPerEpoch = floor(numObservations / miniBatchSize);

iteration = 0;
start = tic;

for epoch = 1:numEpochs

    % Shuffle.
    idx = randperm(numObservations);
    documents = documents(idx);

    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;

        % Read mini-batch.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        documentsBatch = documents(idx);

        % Convert to sequences.
        X = doc2sequence(enc,documentsBatch, ...
            PaddingDirection="right", ...
            PaddingValue=paddingIdx);

4 Deep Learning with Time Series, Sequences, and Text

4-244



        X = cat(1,X{:});

        % Convert to dlarray.
        X = dlarray(X,"BTC");

        % If training on a GPU, then convert data to gpuArray.
        if canUseGPU
            X = gpuArray(X);
        end

        % Calculate sequence lengths.
        sequenceLengths = doclength(documentsBatch);

        % Evaluate model loss and gradients.
        [loss,gradients] = dlfeval(@modelLoss, parameters, X, sequenceLengths);

        % Update learnable parameters.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration,learnRate);

        % Display the training progress.
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        loss = double(loss);
        addpoints(lineLossTrain,iteration,loss)
        title("Epoch: " + epoch + ", Elapsed: " + string(D))

        drawnow
    end
end

 Generate Text Using Autoencoders

4-245



Generate Text

Generate text using closed loop generation by initializing the decoder with different random states.
Closed loop generation is when the model generates data one time-step at a time and uses the
previous prediction as input for the next prediction.

Specify to generate 3 sequences of length 16.

numGenerations = 3;
sequenceLength = 16;

Create an array of random values to initialize the decoder state.

Z = dlarray(randn(latentDimension,numGenerations),"CB");

If predicting on a GPU, then convert data to gpuArray.

if canUseGPU
    Z = gpuArray(Z);
end

Make predictions using the modelPredictions function, listed at the end of the example. The
modelPredictions function returns the output scores of the decoder given the model parameters,
decoder initial state, maximum sequence length, word encoding, start token, and mini-batch size.

Y = modelDecoderPredictions(parameters,Z,sequenceLength,enc,startToken,miniBatchSize);

Find the word indices with the highest scores.

4 Deep Learning with Time Series, Sequences, and Text

4-246



[~,idx] = max(Y,[],1);
idx = squeeze(idx);

Convert the numeric indices to words and join them using the join function.

strGenerated = join(enc.Vocabulary(idx));

Extract the text before the first stop token using the extractBefore function. To prevent the
function from returning missing when there are no stop tokens, append a stop token to the end of
each sequence.

strGenerated = extractBefore(strGenerated+stopToken,stopToken);

Remove padding tokens.

strGenerated = erase(strGenerated,paddingToken);

The generation process introduces whitespace characters between each prediction, which means that
some punctuation characters appear with unnecessary spaces before and after. Reconstruct the
generated text by removing the spaces before and after the appropriate punctuation characters.

Remove the spaces that appear before the specified punctuation characters.

punctuationCharacters = ["." "," "’" ")" ":" ";" "?" "!"];
strGenerated = replace(strGenerated," " + punctuationCharacters,punctuationCharacters);

Remove the spaces that appear after the specified punctuation characters.

punctuationCharacters = ["(" "‘"];
strGenerated = replace(strGenerated,punctuationCharacters + " ",punctuationCharacters);

Remove leading and trailing white space using the strip function and view the generated text.

strGenerated = strip(strGenerated)

strGenerated = 3×1 string
    "me whose fool black grounded less waning travels less pine pine sing cool thrive kindness this"
    "perjur'd outward a looks black, here might."
    "birds him antique side his hours age,"

Encoder Model Function

The modelEncoder function, takes as input the model parameters, sequences of word indices, and
the sequence lengths, and returns the corresponding latent feature vector.

Because the input data contains padded sequences of different lengths, the padding can have adverse
effects on loss calculations. For the LSTM operation, instead of returning the output of the last time
step of the sequence (which likely corresponds to the LSTM state after processing lots of padding
values), determine the actual last time step given by the sequenceLengths input.

function Z = modelEncoder(parameters,X,sequenceLengths)

% Embedding.
weights = parameters.emb.Weights;
Z = embed(X,weights);

% LSTM.

 Generate Text Using Autoencoders

4-247



inputWeights = parameters.lstmEncoder.InputWeights;
recurrentWeights = parameters.lstmEncoder.RecurrentWeights;
bias = parameters.lstmEncoder.Bias;

numHiddenUnits = size(recurrentWeights,2);
hiddenState = zeros(numHiddenUnits,1,"like",X);
cellState = zeros(numHiddenUnits,1,"like",X);

Z1 = lstm(Z,hiddenState,cellState,inputWeights,recurrentWeights,bias);

% Output mode 'last' with masking.
miniBatchSize = size(Z1,2);
Z = zeros(numHiddenUnits,miniBatchSize,"like",Z1);

for n = 1:miniBatchSize
    t = sequenceLengths(n);
    Z(:,n) = Z1(:,n,t);
end

% Fully connect.
weights = parameters.fcEncoder.Weights;
bias = parameters.fcEncoder.Bias;
Z = fullyconnect(Z,weights,bias,DataFormat="CB");

end

Decoder Model Function

The modelDecoder function, takes as input the model parameters, sequences of word indices, and
the network state, and returns the decoded sequences.

Because the lstm function is stateful (when given a time series as input, the function propagates and
updates the state between each time step) and that the embed and fullyconnect functions are
time-distributed by default (when given a time series as input, the functions operate on each time
step independently), the modelDecoder function supports both sequence and single time-step
inputs.

function [Y,state] = modelDecoder(parameters,X,state)

% Embedding.
weights = parameters.emb.Weights;
X = embed(X,weights);

% LSTM.
inputWeights = parameters.lstmDecoder.InputWeights;
recurrentWeights = parameters.lstmDecoder.RecurrentWeights;
bias = parameters.lstmDecoder.Bias;

hiddenState = state.HiddenState;
cellState = state.CellState;

[Y,hiddenState,cellState] = lstm(X,hiddenState,cellState, ...
    inputWeights,recurrentWeights,bias);

state.HiddenState = hiddenState;
state.CellState = cellState;

% Fully connect.

4 Deep Learning with Time Series, Sequences, and Text

4-248



weights = parameters.fcDecoder.Weights;
bias = parameters.fcDecoder.Bias;
Y = fullyconnect(Y,weights,bias);

% Softmax.
Y = softmax(Y);

end

Model Loss Function

The modelLoss function takes as input the model learnable parameters, the input data X, and a
vector of sequence lengths for masking, and returns the loss and the gradients of the loss with
respect to the learnable parameters.

To calculate the masked loss, the model loss function uses the maskedCrossEntropy function, listed
at the end of the example. To train the decoder to predict the next time-step of the sequence, specify
the targets to be the input sequences shifted by one time-step.

To learn more about defining a model loss function, see “Define Model Loss Function for Custom
Training Loop” on page 19-256.

function [loss,gradients] = modelLoss(parameters,X,sequenceLengths)

% Model encoder.
Z = modelEncoder(parameters,X,sequenceLengths);

% Initialize LSTM state.
state = struct;
state.HiddenState = Z;
state.CellState = zeros(size(Z),"like",Z);

% Teacher forcing.
Y = modelDecoder(parameters,X,state);

% Loss.
Y = Y(:,:,1:end-1);
T = X(:,:,2:end);
loss = mean(maskedCrossEntropy(Y,T,sequenceLengths));

% Gradients.
gradients = dlgradient(loss,parameters);

% Normalize loss for plotting.
sequenceLength = size(X,3);
loss = loss / sequenceLength;

end

Model Predictions Function

The modelPredictions function returns the output scores of the decoder given the model
parameters, decoder initial state, maximum sequence length, word encoding, start token, and mini-
batch size.

function Y = modelDecoderPredictions(parameters,Z,maxLength,enc,startToken,miniBatchSize)

numObservations = size(Z,2);

 Generate Text Using Autoencoders

4-249



numIterations = ceil(numObservations / miniBatchSize);

startTokenIdx = word2ind(enc,startToken);
vocabularySize = enc.NumWords;

Y = zeros(vocabularySize,numObservations,maxLength,"like",Z);

% Loop over mini-batches.
for i = 1:numIterations
    idxMiniBatch = (i-1)*miniBatchSize+1:min(i*miniBatchSize,numObservations);
    miniBatchSize = numel(idxMiniBatch);

    % Initialize state.
    state = struct;
    state.HiddenState = Z(:,idxMiniBatch);
    state.CellState = zeros(size(Z(:,idxMiniBatch)),"like",Z);

    % Initialize decoder input.
    decoderInput = dlarray(repmat(startTokenIdx,[1 miniBatchSize]),"CBT");

    % Loop over time steps.
    for t = 1:maxLength
        % Predict next time step.
        [Y(:,idxMiniBatch,t), state] = modelDecoder(parameters,decoderInput,state);

        % Closed loop generation.
        [~,idx] = max(Y(:,idxMiniBatch,t));
        decoderInput = dlarray(idx,"CB");
    end
end

end

Masked Cross Entropy Loss Function

The maskedCrossEntropy function calculates the loss between the specified input sequences and
target sequences ignoring any time steps containing padding using the specified vector of sequence
lengths.

function maskedLoss = maskedCrossEntropy(Y,T,sequenceLengths)

numClasses = size(Y,1);
miniBatchSize = size(Y,2);
sequenceLength = size(Y,3);

maskedLoss = zeros(sequenceLength,miniBatchSize,"like",Y);

for t = 1:sequenceLength
    T1 = single(oneHot(T(:,:,t),numClasses));

    mask = (t<=sequenceLengths)';

    maskedLoss(t,:) = mask .* crossentropy(Y(:,:,t),T1);
end

maskedLoss = sum(maskedLoss,1);

end

4 Deep Learning with Time Series, Sequences, and Text

4-250



Text Preprocessing Function

The function preprocessText performs these steps:

1 Prepends and appends each input string with the specified start and stop tokens, respectively.
2 Tokenize the text using tokenizedDocument.

function documents = preprocessText(textData,startToken,stopToken)

% Add start and stop tokens.
textData = startToken + textData + stopToken;

% Tokenize the text.
documents = tokenizedDocument(textData,'CustomTokens',[startToken stopToken]);

end

One-Hot Encoding Function

The oneHot function converts an array of numeric indices to one-hot encoded vectors.

function oh = oneHot(idx, outputSize)

miniBatchSize = numel(idx);
oh = zeros(outputSize,miniBatchSize);

for n = 1:miniBatchSize
    c = idx(n);
    oh(c,n) = 1;
end

end

See Also
dlfeval | dlgradient | dlarray

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Text Encoder Model Function” on page 4-252
• “Define Text Decoder Model Function” on page 4-259

 Generate Text Using Autoencoders

4-251



Define Text Encoder Model Function

This example shows how to define a text encoder model function.

In the context of deep learning, an encoder is the part of a deep learning network that maps the input
to some latent space. You can use these vectors for various tasks. For example,

• Classification by applying a softmax operation to the encoded data and using cross entropy loss.
• Sequence-to-sequence translation by using the encoded vector as a context vector.

Load Data

The file sonnets.txt contains all of Shakespeare's sonnets in a single text file.

Read the Shakespeare's Sonnets data from the file "sonnets.txt".

filename = "sonnets.txt";
textData = fileread(filename);

The sonnets are indented by two whitespace characters. Remove the indentations using replace and
split the text into separate lines using the split function. Remove the header from the first nine
elements and the short sonnet titles.

textData = replace(textData,"  ","");
textData = split(textData,newline);
textData(1:9) = [];
textData(strlength(textData)<5) = [];

Prepare Data

Create a function that tokenizes and preprocesses the text data. The function preprocessText,
listed at the end of the example, performs these steps:

1 Prepends and appends each input string with the specified start and stop tokens, respectively.
2 Tokenize the text using tokenizedDocument.

Preprocess the text data and specify the start and stop tokens "<start>" and "<stop>",
respectively.

startToken = "<start>";
stopToken = "<stop>";
documents = preprocessText(textData,startToken,stopToken);

Create a word encoding object from the tokenized documents.

enc = wordEncoding(documents);

When training a deep learning model, the input data must be a numeric array containing sequences
of a fixed length. Because the documents have different lengths, you must pad the shorter sequences
with a padding value.

Recreate the word encoding to also include a padding token and determine the index of that token.

paddingToken = "<pad>";
newVocabulary = [enc.Vocabulary paddingToken];

4 Deep Learning with Time Series, Sequences, and Text

4-252



enc = wordEncoding(newVocabulary);
paddingIdx = word2ind(enc,paddingToken)

paddingIdx = 3595

Initialize Model Parameters

The goal of the encoder is to map sequences of word indices to vectors in some latent space.

Initialize the parameters for the following model.

This model uses three operations:

• The embedding maps word indices in the range 1 though vocabularySize to vectors of
dimension embeddingDimension, where vocabularySize is the number of words in the
encoding vocabulary and embeddingDimension is the number of components learned by the
embedding.

• The LSTM operation takes as input sequences of word vectors and outputs 1-by-numHiddenUnits
vectors, where numHiddenUnits is the number of hidden units in the LSTM operation.

• The fully connected operation multiplies the input by a weight matrix adding bias and outputs
vectors of size latentDimension, where latentDimension is the dimension of the latent
space.

Specify the dimensions of the parameters.

embeddingDimension = 100;
numHiddenUnits = 150;
latentDimension = 50;
vocabularySize = enc.NumWords;

Create a struct for the parameters.

parameters = struct;

Initialize the weights of the embedding using the Gaussian using the initializeGaussian function
which is attached to this example as a supporting file. Specify a mean of 0 and a standard deviation of
0.01. To learn more, see “Gaussian Initialization” on page 19-325.

mu = 0;
sigma = 0.01;
parameters.emb.Weights = initializeGaussian([embeddingDimension vocabularySize],mu,sigma);

Initialize the learnable parameters for the encoder LSTM operation:

• Initialize the input weights with the Glorot initializer using the initializeGlorot function
which is attached to this example as a supporting file. To learn more, see “Glorot Initialization” on
page 19-322.

• Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function which is attached to this example as a supporting file. To learn more, see “Orthogonal
Initialization” on page 19-326.

 Define Text Encoder Model Function

4-253



• Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function which is attached to this example as a supporting file. To learn more, see “Unit Forget
Gate Initialization” on page 19-327.

The sizes of the learnable parameters depend on the size of the input. Because the inputs to the
LSTM operation are sequences of word vectors from the embedding operation, the number of input
channels is embeddingDimension.

• The input weight matrix has size 4*numHiddenUnits-by-inputSize, where inputSize is the
dimension of the input data.

• The recurrent weight matrix has size 4*numHiddenUnits-by-numHiddenUnits.
• The bias vector has size 4*numHiddenUnits-by-1.

sz = [4*numHiddenUnits embeddingDimension];
numOut = 4*numHiddenUnits;
numIn = embeddingDimension;

parameters.lstmEncoder.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.lstmEncoder.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits]);
parameters.lstmEncoder.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize the learnable parameters for the encoder fully connected operation:

• Initialize the weights with the Glorot initializer.
• Initialize the bias with zeros using the initializeZeros function which is attached to this

example as a supporting file. To learn more, see “Zeros Initialization” on page 19-328.

The sizes of the learnable parameters depend on the size of the input. Because the inputs to the fully
connected operation are the outputs of the LSTM operation, the number of input channels is
numHiddenUnits. To make the fully connected operation output vectors with size
latentDimension, specify an output size of latentDimension.

• The weights matrix has size outputSize-by-inputSize, where outputSize and inputSize
correspond to the output and input dimensions, respectively.

• The bias vector has size outputSize-by-1.

sz = [latentDimension numHiddenUnits];
numOut = latentDimension;
numIn = numHiddenUnits;

parameters.fcEncoder.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fcEncoder.Bias = initializeZeros([latentDimension 1]);

Define Model Encoder Function

Create the function modelEncoder, listed in the Encoder Model Function on page 4-257 section of
the example, that computes the output of the encoder model. The modelEncoder function, takes as
input sequences of word indices, the model parameters, and the sequence lengths, and returns the
corresponding latent feature vector.

Prepare Mini-Batch of Data

To train the model using a custom training loop, you must iterate over mini-batches of data and
convert it into the format required for the encoder model and the model gradients functions. This

4 Deep Learning with Time Series, Sequences, and Text

4-254



section of the example illustrates the steps needed for preparing a mini-batch of data inside the
custom training loop.

Prepare an example mini-batch of data. Select a mini-batch of 32 documents from documents. This
represents the mini-batch of data used in an iteration of a custom training loop.

miniBatchSize = 32;
idx = 1:miniBatchSize;
documentsBatch = documents(idx);

Convert the documents to sequences using the doc2sequence function and specify to right-pad the
sequences with the word index corresponding to the padding token.

X = doc2sequence(enc,documentsBatch, ...
    PaddingDirection="right", ...
    PaddingValue=paddingIdx);

The output of the doc2sequence function is a cell array, where each element is a row vector of word
indices. Because the encoder model function requires numeric input, concatenate the rows of the
data using the cat function and specify to concatenate along the first dimension. The output has size
miniBatchSize-by-sequenceLength, where sequenceLength is the length of the longest
sequence in the mini-batch.

X = cat(1,X{:});
size(X)

ans = 1×2

    32    14

Convert the data to a dlarray with format "BTC" (batch, time, channel). The software automatically
rearranges the output to have format "CTB" so the output has size 1-by-miniBatchSize-by-
sequenceLength.

X = dlarray(X,'BTC');
size(X)

ans = 1×3

     1    32    14

For masking, calculate the unpadded sequence lengths of the input data using the doclength
function with the mini-batch of documents as input.

sequenceLengths = doclength(documentsBatch);

This code snippet shows an example of preparing a mini-batch in a custom training loop.

iteration = 0;

% Loop over epochs.
for epoch = 1:numEpochs

    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch

 Define Text Encoder Model Function

4-255



        iteration = iteration + 1;

        % Read mini-batch.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        documentsBatch = documents(idx);

        % Convert to sequences.
        X = doc2sequence(enc,documentsBatch, ...
            PaddingDirection="right", ...
            PaddingValue=paddingIdx);
        X = cat(1,X{:});

        % Convert to dlarray.
        X = dlarray(X,"BTC");

        % Calculate sequence lengths.
        sequenceLengths = doclength(documentsBatch);

        % Evaluate model gradients.
        % ...

        % Update learnable parameters.
        % ...
    end
end

Use Model Function in Model Loss Function

When training a deep learning model with a custom training loop, you must calculate the loss and the
gradients of the loss with respect to the learnable parameters. This calculation depends on the output
of a forward pass of the model function.

To perform a forward pass of the encoder, use the modelEncoder function directly with the
parameters, data, and sequence lengths as input. The output is a latentDimension-by-
miniBatchSize matrix.

Z = modelEncoder(parameters,X,sequenceLengths);
size(Z)

ans = 1×2

    50    32

This code snippet shows an example of using a model encoder function inside the model gradients
function.

function [loss,gradients] = modelLoss(parameters,X,sequenceLengths)
    
    Z = modelEncoder(parameters,X,sequenceLengths);

    % Calculate loss.
    % ...

    % Calculate gradients.
    % ...

end

4 Deep Learning with Time Series, Sequences, and Text

4-256



This code snippet shows an example of evaluating the model gradients in a custom training loop.

iteration = 0;

% Loop over epochs.
for epoch = 1:numEpochs

    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;

        % Prepare mini-batch.
        % ...

        % Evaluate model gradients.
        [loss,gradients] = dlfeval(@modelLoss, parameters, X, sequenceLengths);

        % Update learnable parameters.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration);
    end
end

Encoder Model Function

The modelEncoder function, takes as input the model parameters, sequences of word indices, and
the sequence lengths, and returns the corresponding latent feature vector.

Because the input data contains padded sequences of different lengths, the padding can have adverse
effects on loss calculations. For the LSTM operation, instead of returning the output of the last time
step of the sequence (which likely corresponds to the LSTM state after processing lots of padding
values), determine the actual last time step given by the sequenceLengths input.

function Z = modelEncoder(parameters,X,sequenceLengths)

% Embedding.
weights = parameters.emb.Weights;
Z = embed(X,weights);

% LSTM.
inputWeights = parameters.lstmEncoder.InputWeights;
recurrentWeights = parameters.lstmEncoder.RecurrentWeights;
bias = parameters.lstmEncoder.Bias;

numHiddenUnits = size(recurrentWeights,2);
hiddenState = zeros(numHiddenUnits,1,"like",X);
cellState = zeros(numHiddenUnits,1,"like",X);

Z1 = lstm(Z,hiddenState,cellState,inputWeights,recurrentWeights,bias);

% Output mode "last" with masking.
miniBatchSize = size(Z1,2);
Z = zeros(numHiddenUnits,miniBatchSize,"like",Z1);
Z = dlarray(Z,"CB");

for n = 1:miniBatchSize
    t = sequenceLengths(n);
    Z(:,n) = Z1(:,n,t);

 Define Text Encoder Model Function

4-257



end

% Fully connect.
weights = parameters.fcEncoder.Weights;
bias = parameters.fcEncoder.Bias;
Z = fullyconnect(Z,weights,bias);

end

Preprocessing Function

The function preprocessText performs these steps:

1 Prepends and appends each input string with the specified start and stop tokens, respectively.
2 Tokenize the text using tokenizedDocument.

function documents = preprocessText(textData,startToken,stopToken)

% Add start and stop tokens.
textData = startToken + textData + stopToken;

% Tokenize the text.
documents = tokenizedDocument(textData,'CustomTokens',[startToken stopToken]);

end

See Also
dlfeval | dlgradient | dlarray

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Generate Text Using Autoencoders” on page 4-240
• “Define Text Decoder Model Function” on page 4-259

4 Deep Learning with Time Series, Sequences, and Text

4-258



Define Text Decoder Model Function

This example shows how to define a text decoder model function.

In the context of deep learning, a decoder is the part of a deep learning network that maps a latent
vector to some sample space. You can use decode the vectors for various tasks. For example,

• Text generation by initializing a recurrent network with the encoded vector.
• Sequence-to-sequence translation by using the encoded vector as a context vector.
• Image captioning by using the encoded vector as a context vector.

Load Data

Load the encoded data from sonnetsEncoded.mat. This MAT file contains the word encoding, a
mini-batch of sequences X, and the corresponding encoded data Z output by the encoder used in the
example “Define Text Encoder Model Function” on page 4-252.

s = load("sonnetsEncoded.mat");
enc = s.enc;
X = s.X;
Z = s.Z;

[latentDimension,miniBatchSize] = size(Z,1:2);

Initialize Model Parameters

The goal of the decoder is to generate sequences given some initial input data and network state.

Initialize the parameters for the following model.

 Define Text Decoder Model Function

4-259



The decoder reconstructs the input using an LSTM initialized the encoder output. For each time step,
the decoder predicts the next time step and uses the output for the next time-step predictions. Both
the encoder and the decoder use the same embedding.

This model uses three operations:

• The embedding maps word indices in the range 1 though vocabularySize to vectors of
dimension embeddingDimension, where vocabularySize is the number of words in the
encoding vocabulary and embeddingDimension is the number of components learned by the
embedding.

• The LSTM operation takes as input a single word vector and outputs 1-by-numHiddenUnits
vector, where numHiddenUnits is the number of hidden units in the LSTM operation. The initial
state of the LSTM network (the state at the first time-step) is the encoded vector, so the number of
hidden units must match the latent dimension of the encoder.

• The fully connected operation multiplies the input by a weight matrix adding bias and outputs
vectors of size vocabularySize.

Specify the dimensions of the parameters. The embedding sizes must match the encoder.

embeddingDimension = 100;
vocabularySize = enc.NumWords;
numHiddenUnits = latentDimension;

Create a struct for the parameters.

parameters = struct;

4 Deep Learning with Time Series, Sequences, and Text

4-260



Initialize the weights of the embedding using the Gaussian using the initializeGaussian function
which is attached to this example as a supporting file. Specify a mean of 0 and a standard deviation of
0.01. To learn more, see “Gaussian Initialization” on page 19-325.

sz = [embeddingDimension vocabularySize];
mu = 0;
sigma = 0.01;
parameters.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the learnable parameters for the decoder LSTM operation:

• Initialize the input weights with the Glorot initializer using the initializeGlorot function
which is attached to this example as a supporting file. To learn more, see “Glorot Initialization” on
page 19-322.

• Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function which is attached to this example as a supporting file. To learn more, see “Orthogonal
Initialization” on page 19-326.

• Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function which is attached to this example as a supporting file. To learn more, see “Unit Forget
Gate Initialization” on page 19-327.

The sizes of the learnable parameters depend on the size of the input. Because the inputs to the
LSTM operation are sequences of word vectors from the embedding operation, the number of input
channels is embeddingDimension.

• The input weight matrix has size 4*numHiddenUnits-by-inputSize, where inputSize is the
dimension of the input data.

• The recurrent weight matrix has size 4*numHiddenUnits-by-numHiddenUnits.
• The bias vector has size 4*numHiddenUnits-by-1.

sz = [4*numHiddenUnits embeddingDimension];
numOut = 4*numHiddenUnits;
numIn = embeddingDimension;

parameters.lstmDecoder.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.lstmDecoder.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits]);
parameters.lstmDecoder.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize the learnable parameters for the encoder fully connected operation:

• Initialize the weights with the Glorot initializer.
• Initialize the bias with zeros using the initializeZeros function which is attached to this

example as a supporting file. To learn more, see “Zeros Initialization” on page 19-328.

The sizes of the learnable parameters depend on the size of the input. Because the inputs to the fully
connected operation are the outputs of the LSTM operation, the number of input channels is
numHiddenUnits. To make the fully connected operation output vectors with size
latentDimension, specify an output size of latentDimension.

• The weights matrix has size outputSize-by-inputSize, where outputSize and inputSize
correspond to the output and input dimensions, respectively.

• The bias vector has size outputSize-by-1.

 Define Text Decoder Model Function

4-261



To make the fully connected operation output vectors with size vocabularySize, specify an output
size of vocabularySize.

sz = [vocabularySize numHiddenUnits];
mu = 0;
sigma = 1;
parameters.fcDecoder.Weights = initializeGaussian(sz,mu,sigma);
parameters.fcDecoder.Bias = initializeZeros([vocabularySize 1]);

Define Model Decoder Function

Create the function modelDecoder, listed in the Decoder Model Function on page 4-264 section of
the example, that computes the output of the decoder model. The modelDecoder function, takes as
input sequences of word indices, the model parameters, and the sequence lengths, and returns the
corresponding latent feature vector.

Use Model Function in Model Loss Function

When training a deep learning model with a custom training loop, you must calculate the loss and
gradients of the loss with respect to the learnable parameters. This calculation depends on the output
of a forward pass of the model function.

There are two common approaches to generating text data with a decoder:

1 Closed loop — For each time step, make predictions using the previous prediction as input.
2 Open loop — For each time step, make predictions using inputs from an external source (for

example, training targets).

Closed Loop Generation

Closed loop generation is when the model generates data one time-step at a time and uses the
previous prediction as input for the next prediction. Unlike open loop generation, this process does
not require any input between predictions and is best suited for scenarios without supervision. For
example, a language translation model that generates output text in one go.

Initialize the hidden state of the LSTM network with the encoder output Z.

state = struct;
state.HiddenState = Z;
state.CellState = zeros(size(Z),'like',Z);

For the first time step, use an array of start tokens as input for the decoder. For simplicity, extract an
array of start tokens from the first time-step of the training data.

decoderInput = X(:,:,1);

Preallocate the decoder output to have size numClasses-by-miniBatchSize-by-sequenceLength
with the same datatype as dlX, where sequenceLength is the desired length of the generation, for
example, the length of the training targets. For this example, specify a sequence length of 16.

sequenceLength = 16;
Y = zeros(vocabularySize,miniBatchSize,sequenceLength,"like",X);
Y = dlarray(Y,"CBT");

For each time step, predict the next time step of the sequence using the modelDecoder function.
After each prediction, find the indices corresponding to the maximum values of the decoder output
and use these indices as the decoder input for the next time step.

4 Deep Learning with Time Series, Sequences, and Text

4-262



for t = 1:sequenceLength
    [Y(:,:,t), state] = modelDecoder(parameters,decoderInput,state);
    
    [~,idx] = max(Y(:,:,t));
    decoderInput = idx;
end

The output is a vocabularySize-by-miniBatchSize-by-sequenceLength array.

size(Y)

ans = 1×3

        3595          32          16

This code snippet shows an example of performing closed loop generation in a model gradients
function.

function [loss,gradients] = modelLoss(parameters,X,sequenceLengths)

    % Encode input.
    Z = modelEncoder(parameters,X,sequenceLengths);

    % Initialize LSTM state.
    state = struct;
    state.HiddenState = Z;
    state.CellState = zeros(size(Z),"like",Z);

    % Initialize decoder input.
    decoderInput = X(:,:,1);

    % Closed loop prediction.
    sequenceLength = size(X,3);
    Y = zeros(numClasses,miniBatchSize,sequenceLength,"like",X);
    for t = 1:sequenceLength
        [Y(:,:,t), state] = modelDecoder(parameters,decoderInput,state);
    
        [~,idx] = max(Y(:,:,t));
        decoderInput = idx;
    end

    % Calculate loss.
    % ...

    % Calculate gradients.
    % ...

end

Open Loop Generation: Teacher Forcing

When training with closed loop generation, predicting the most likely word for each step in the
sequence can lead to suboptimal results. For example, in an image captioning workflow, if the
decoder predicts the first word of a caption is "a" when given an image of an elephant, then the
probability of predicting "elephant" for the next word becomes much more unlikely because of the
extremely low probability of the phrase "a elephant" appearing in English text.

 Define Text Decoder Model Function

4-263



To help the network converge faster, you can use teacher forcing: use the target values as input to
the decoder instead of the previous predictions. Using teacher forcing helps the network to learn
characteristics from the later time steps of the sequences without having to wait for the network to
correctly generate the earlier time steps of the sequences.

To perform teacher forcing, use the modelEncoder function directly with the target sequence as
input.

Initialize the hidden state of the LSTM network with the encoder output Z.

state = struct;
state.HiddenState = Z;
state.CellState = zeros(size(Z),"like",Z);

Make predictions using the target sequence as input.

Y = modelDecoder(parameters,X,state);

The output is a vocabularySize-by-miniBatchSize-by-sequenceLength array, where
sequenceLength is the length of the input sequences.

size(Y)

ans = 1×3

        3595          32          14

This code snippet shows an example of performing teacher forcing in a model gradients function.

function [loss,gradients] = modelLoss(parameters,X,sequenceLengths)

    % Encode input.
    Z = modelEncoder(parameters,X);

    % Initialize LSTM state.
    state = struct;
    state.HiddenState = Z;
    state.CellState = zeros(size(Z),"like",Z);

    % Teacher forcing.
    Y = modelDecoder(parameters,X,state);

    % Calculate loss.
    % ...

    % Calculate gradients.
    % ...

end

Decoder Model Function

The modelDecoder function, takes as input the model parameters, sequences of word indices, and
the network state, and returns the decoded sequences.

Because the lstm function is stateful (when given a time series as input, the function propagates and
updates the state between each time step) and that the embed and fullyconnect functions are

4 Deep Learning with Time Series, Sequences, and Text

4-264



time-distributed by default (when given a time series as input, the functions operate on each time
step independently), the modelDecoder function supports both sequence and single time-step
inputs.

function [Y,state] = modelDecoder(parameters,X,state)

% Embedding.
weights = parameters.emb.Weights;
X = embed(X,weights);

% LSTM.
inputWeights = parameters.lstmDecoder.InputWeights;
recurrentWeights = parameters.lstmDecoder.RecurrentWeights;
bias = parameters.lstmDecoder.Bias;

hiddenState = state.HiddenState;
cellState = state.CellState;

[Y,hiddenState,cellState] = lstm(X,hiddenState,cellState, ...
    inputWeights,recurrentWeights,bias);

state.HiddenState = hiddenState;
state.CellState = cellState;

% Fully connect. 
weights = parameters.fcDecoder.Weights;
bias = parameters.fcDecoder.Bias;
Y = fullyconnect(Y,weights,bias);

end

See Also
dlfeval | dlgradient | dlarray

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Generate Text Using Autoencoders” on page 4-240
• “Define Text Encoder Model Function” on page 4-252

 Define Text Decoder Model Function

4-265



Sequence-to-Sequence Translation Using Attention

This example shows how to convert decimal strings to Roman numerals using a recurrent sequence-
to-sequence encoder-decoder model with attention.

Recurrent encoder-decoder models have proven successful at tasks like abstractive text
summarization and neural machine translation. The model consists of an encoder which typically
processes input data with a recurrent layer such as LSTM, and a decoder which maps the encoded
input into the desired output, typically with a second recurrent layer. Models that incorporate
attention mechanisms into the models allows the decoder to focus on parts of the encoded input while
generating the translation.

For the encoder model, this example uses a simple network consisting of an embedding followed by
an LSTM operation. Embedding is a method of converting categorical tokens into numeric vectors.

4 Deep Learning with Time Series, Sequences, and Text

4-266



For the decoder model, this example uses a network that contains an LSTM operation and an
attention mechanism. The attention mechanism allows the decoder to attend to specific parts of the
encoder output.

Load Training Data

Download the decimal-Roman numeral pairs from "romanNumerals.csv".

filename = fullfile("romanNumerals.csv");

 Sequence-to-Sequence Translation Using Attention

4-267



options = detectImportOptions(filename, ...
    TextType="string", ...
    ReadVariableNames=false);
options.VariableNames = ["Source" "Target"];
options.VariableTypes = ["string" "string"];

data = readtable(filename,options);

Split the data into training and test partitions containing 50% of the data each.

idx = randperm(size(data,1),500);
dataTrain = data(idx,:);
dataTest = data;
dataTest(idx,:) = [];

View some of the decimal-Roman numeral pairs.

head(dataTrain)

    Source       Target   
    ______    ____________

    "437"     "CDXXXVII"  
    "431"     "CDXXXI"    
    "102"     "CII"       
    "862"     "DCCCLXII"  
    "738"     "DCCXXXVIII"
    "527"     "DXXVII"    
    "401"     "CDI"       
    "184"     "CLXXXIV"   

Preprocess Data

Preprocess the text data using the transformText function, listed at the end of the example. The
transformText function preprocesses and tokenizes the input text for translation by splitting the
text into characters and adding start and stop tokens. To translate text by splitting the text into words
instead of characters, skip the first step.

startToken = "<start>";
stopToken = "<stop>";

strSource = dataTrain.Source;
documentsSource = transformText(strSource,startToken,stopToken);

Create a wordEncoding object that maps tokens to a numeric index and vice-versa using a
vocabulary.

encSource = wordEncoding(documentsSource);

Using the word encoding, convert the source text data to numeric sequences.

sequencesSource = doc2sequence(encSource,documentsSource,PaddingDirection="none");

Convert the target data to sequences using the same steps.

strTarget = dataTrain.Target;
documentsTarget = transformText(strTarget,startToken,stopToken);
encTarget = wordEncoding(documentsTarget);
sequencesTarget = doc2sequence(encTarget,documentsTarget,PaddingDirection="none");

4 Deep Learning with Time Series, Sequences, and Text

4-268



Sort the sequences by length. Training with the sequences sorted by increasing sequence length
results in batches with sequences of approximately the same sequence length and ensures smaller
sequence batches are used to update the model before longer sequence batches.

sequenceLengths = cellfun(@(sequence) size(sequence,2),sequencesSource);
[~,idx] = sort(sequenceLengths);
sequencesSource = sequencesSource(idx);
sequencesTarget = sequencesTarget(idx);

Create arrayDatastore objects containing the source and target data and combine them using the
combine function.

sequencesSourceDs = arrayDatastore(sequencesSource,OutputType="same");
sequencesTargetDs = arrayDatastore(sequencesTarget,OutputType="same");

sequencesDs = combine(sequencesSourceDs,sequencesTargetDs);

Initialize Model Parameters

Initialize the model parameters. For both the encoder and decoder, specify an embedding dimension
of 128, an LSTM layer with 100 hidden units, and dropout layers with random dropout with
probability 0.05.

embeddingDimension = 128;
numHiddenUnits = 100;
dropout = 0.05;

Initialize Encoder Model Parameters

Initialize the weights of the encoding embedding using the Gaussian using the
initializeGaussian function which is attached to this example as a supporting file. Specify a
mean of 0 and a standard deviation of 0.01. To learn more, see “Gaussian Initialization” on page 19-
325.

inputSize = encSource.NumWords + 1;
sz = [embeddingDimension inputSize];
mu = 0;
sigma = 0.01;
parameters.encoder.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the learnable parameters for the encoder LSTM operation:

• Initialize the input weights with the Glorot initializer using the initializeGlorot function
which is attached to this example as a supporting file. To learn more, see “Glorot Initialization” on
page 19-322.

• Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function which is attached to this example as a supporting file. To learn more, see “Orthogonal
Initialization” on page 19-326.

• Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function which is attached to this example as a supporting file. To learn more, see “Unit Forget
Gate Initialization” on page 19-327.

Initialize the learnable parameters for the encoder LSTM operation.

sz = [4*numHiddenUnits embeddingDimension];
numOut = 4*numHiddenUnits;

 Sequence-to-Sequence Translation Using Attention

4-269



numIn = embeddingDimension;

parameters.encoder.lstm.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.encoder.lstm.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits]);
parameters.encoder.lstm.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize Decoder Model Parameters

Initialize the weights of the encoding embedding using the Gaussian using the
initializeGaussian function. Specify a mean of 0 and a standard deviation of 0.01.

outputSize = encTarget.NumWords + 1;
sz = [embeddingDimension outputSize];
mu = 0;
sigma = 0.01;
parameters.decoder.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the weights of the attention mechanism using the Glorot initializer using the
initializeGlorot function.

sz = [numHiddenUnits numHiddenUnits];
numOut = numHiddenUnits;
numIn = numHiddenUnits;
parameters.decoder.attention.Weights = initializeGlorot(sz,numOut,numIn);

Initialize the learnable parameters for the decoder LSTM operation:

• Initialize the input weights with the Glorot initializer using the initializeGlorot function.
• Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal

function.
• Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate

function.

Initialize the learnable parameters for the decoder LSTM operation.

sz = [4*numHiddenUnits embeddingDimension+numHiddenUnits];
numOut = 4*numHiddenUnits;
numIn = embeddingDimension + numHiddenUnits;

parameters.decoder.lstm.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.decoder.lstm.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits]);
parameters.decoder.lstm.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize the learnable parameters for the decoder fully connected operation:

• Initialize the weights with the Glorot initializer.
• Initialize the bias with zeros using the initializeZeros function which is attached to this

example as a supporting file. To learn more, see “Zeros Initialization” on page 19-328.

sz = [outputSize 2*numHiddenUnits];
numOut = outputSize;
numIn = 2*numHiddenUnits;

parameters.decoder.fc.Weights = initializeGlorot(sz,numOut,numIn);
parameters.decoder.fc.Bias = initializeZeros([outputSize 1]);

4 Deep Learning with Time Series, Sequences, and Text

4-270



Define Model Functions

Create the functions modelEncoder and modelDecoder, listed at the end of the example, that
compute the outputs of the encoder and decoder models, respectively.

The modelEncoder function, listed in the Encoder Model Function on page 4-275 section of the
example, takes the input data, the model parameters, the optional mask that is used to determine the
correct outputs for training and returns the model outputs and the LSTM hidden state.

The modelDecoder function, listed in the Decoder Model Function on page 4-276 section of the
example, takes the input data, the model parameters, the context vector, the LSTM initial hidden
state, the outputs of the encoder, and the dropout probability and outputs the decoder output, the
updated context vector, the updated LSTM state, and the attention scores.

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 4-275 section of the
example, that takes the encoder and decoder model parameters, a mini-batch of input data and the
padding masks corresponding to the input data, and the dropout probability and returns the loss and
the gradients of the loss with respect to the learnable parameters in the models.

Specify Training Options

Train with a mini-batch size of 32 for 100 epochs with a learning rate of 0.001.

miniBatchSize = 32;
numEpochs = 100;
learnRate = 0.001;

Initialize the options from Adam.

gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Train Model

Train the model using a custom training loop. Use minibatchqueue to process and manage mini-
batches of images during training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to find the lengths of all sequence in the mini-batch and pad the sequences to the
same length as the longest sequence, for the source and target sequences, respectively.

• Permute the second and third dimensions of the padded sequences.
• Return the mini-batch variables unformatted dlarray objects with underlying data type single.

All other outputs are arrays of data type single.
• Train on a GPU if one is available. Return all mini-batch variables on the GPU if one is available.

Using a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information
on supported devices, see GPU Support by Release.

The minibatchqueue object returns four output arguments for each mini-batch: the source
sequences, the target sequences, the lengths of all source sequences in the mini-batch, and the
sequence mask of the target sequences.

numMiniBatchOutputs = 4;

 Sequence-to-Sequence Translation Using Attention

4-271



mbq = minibatchqueue(sequencesDs,numMiniBatchOutputs,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@(x,t) preprocessMiniBatch(x,t,inputSize,outputSize));

Initialize the values for the adamupdate function.

trailingAvg = [];
trailingAvgSq = [];

Calculate the total number of iterations for the training progress monitor

numObservationsTrain = numel(sequencesSource);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the training progress monitor. Because the timer starts when you create the monitor object,
make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics="Loss", ...
    Info="Epoch", ...
    XLabel="Iteration");

Train the model. For each mini-batch:

• Read a mini-batch of padded sequences.
• Compute loss and gradients.
• Update the encoder and decoder model parameters using the adamupdate function.
• Update the training progress monitor.
• Stop training when the Stop property of the training progress monitor is true. The Stop

property of the training monitor changes to 1 when you click the stop button.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    reset(mbq);

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        [X,T,sequenceLengthsSource,maskSequenceTarget] = next(mbq);

        % Compute loss and gradients.
        [loss,gradients] = dlfeval(@modelLoss,parameters,X,T,sequenceLengthsSource,...
            maskSequenceTarget,dropout);

        % Update parameters using adamupdate.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients,trailingAvg,trailingAvgSq,...
            iteration,learnRate,gradientDecayFactor,squaredGradientDecayFactor);

        % Normalize loss by sequence length.

4 Deep Learning with Time Series, Sequences, and Text

4-272



        loss = loss ./ size(T,3);

        % Update the training progress monitor. 
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
        monitor.Progress = 100*iteration/numIterations;
    end
end

Generate Translations

To generate translations for new data using the trained model, convert the text data to numeric
sequences using the same steps as when training and input the sequences into the encoder-decoder
model and convert the resulting sequences back into text using the token indices.

Preprocess the text data using the same steps as when training. Use the transformText function,
listed at the end of the example, to split the text into characters and add the start and stop tokens.

strSource = dataTest.Source;
strTarget = dataTest.Target;

Translate the text using the modelPredictions function.

maxSequenceLength = 10;
delimiter = "";

strTranslated = translateText(parameters,strSource,maxSequenceLength,miniBatchSize, ...
    encSource,encTarget,startToken,stopToken,delimiter);

Create a table containing the test source text, target text, and translations.

tbl = table;
tbl.Source = strSource;

 Sequence-to-Sequence Translation Using Attention

4-273



tbl.Target = strTarget;
tbl.Translated = strTranslated;

View a random selection of the translations.

idx = randperm(size(dataTest,1),miniBatchSize);
tbl(idx,:)

ans=32×3 table
    Source      Target        Translated 
    ______    ___________    ____________

    "996"     "CMXCVI"       "CMMXCVI"   
    "576"     "DLXXVI"       "DCLXXVI"   
    "86"      "LXXXVI"       "DCCCLXV"   
    "23"      "XXIII"        "CCCCXIII"  
    "99"      "XCIX"         "CMMXIX"    
    "478"     "CDLXXVIII"    "DCCCLXXVII"
    "313"     "CCCXIII"      "CCCXIII"   
    "60"      "LX"           "DLX"       
    "864"     "DCCCLXIV"     "DCCCLIV"   
    "280"     "CCLXXX"       "CCCCLX"    
    "792"     "DCCXCII"      "DCCCIII"   
    "959"     "CMLIX"        "CMLXI"     
    "283"     "CCLXXXIII"    "CCCCLXXIII"
    "356"     "CCCLVI"       "CCCCVI"    
    "534"     "DXXXIV"       "DCCXXIV"   
    "721"     "DCCXXI"       "DCCCII"    
      ⋮

Text Transformation Function

The transformText function preprocesses and tokenizes the input text for translation by splitting
the text into characters and adding start and stop tokens. To translate text by splitting the text into
words instead of characters, skip the first step.

function documents = transformText(str,startToken,stopToken)

str = strip(replace(str,""," "));
str = startToken + str + stopToken;
documents = tokenizedDocument(str,CustomTokens=[startToken stopToken]);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function, described in the Train Model section of the example,
preprocesses the data for training. The function preprocesses the data using the following steps:

1 Determine the lengths of all source and target sequences in the mini-batch
2 Pad the sequences to the same length as the longest sequence in the mini-batch using the

padsequences function.
3 Permute the last two dimensions of the sequences

function [X,T,sequenceLengthsSource,maskTarget] = preprocessMiniBatch(sequencesSource,sequencesTarget,inputSize,outputSize)

4 Deep Learning with Time Series, Sequences, and Text

4-274



sequenceLengthsSource = cellfun(@(x) size(x,2),sequencesSource);

X = padsequences(sequencesSource,2,PaddingValue=inputSize);
X = permute(X,[1 3 2]);

[T,maskTarget] = padsequences(sequencesTarget,2,PaddingValue=outputSize);
T = permute(T,[1 3 2]);
maskTarget = permute(maskTarget,[1 3 2]);

end

Model Loss Function

The modelLoss function takes the encoder and decoder model parameters, a mini-batch of input
data and the padding masks corresponding to the input data, and the dropout probability and returns
the loss and the gradients of the loss with respect to the learnable parameters in the models.

function [loss,gradients] = modelLoss(parameters,X,T,...
    sequenceLengthsSource,maskTarget,dropout)

% Forward through encoder.
[Z,hiddenState] = modelEncoder(parameters.encoder,X,sequenceLengthsSource);

% Decoder Output.
doTeacherForcing = rand < 0.5;
sequenceLength = size(T,3);
Y = decoderPredictions(parameters.decoder,Z,T,hiddenState,dropout,...
    doTeacherForcing,sequenceLength);

% Masked loss.
Y = Y(:,:,1:end-1);
T = extractdata(gather(T(:,:,2:end)));
T = onehotencode(T,1,ClassNames=1:size(Y,1));

maskTarget = maskTarget(:,:,2:end);
maskTarget = repmat(maskTarget,[size(Y,1),1,1]);

loss = crossentropy(Y,T,Mask=maskTarget,Dataformat="CBT");

% Update gradients.
gradients = dlgradient(loss,parameters);

end

Encoder Model Function

The function modelEncoder takes the input data, the model parameters, the optional mask that is
used to determine the correct outputs for training and returns the model output and the LSTM
hidden state.

If sequenceLengths is empty, then the function does not mask the output. Specify and empty value
for sequenceLengths when using the modelEncoder function for prediction.

function [Z,hiddenState] = modelEncoder(parameters,X,sequenceLengths)

% Embedding.
weights = parameters.emb.Weights;
Z = embed(X,weights,DataFormat="CBT");

 Sequence-to-Sequence Translation Using Attention

4-275



% LSTM.
inputWeights = parameters.lstm.InputWeights;
recurrentWeights = parameters.lstm.RecurrentWeights;
bias = parameters.lstm.Bias;

numHiddenUnits = size(recurrentWeights, 2);
initialHiddenState = dlarray(zeros([numHiddenUnits 1]));
initialCellState = dlarray(zeros([numHiddenUnits 1]));

[Z,hiddenState] = lstm(Z,initialHiddenState,initialCellState,inputWeights, ...
    recurrentWeights,bias,DataFormat="CBT");

% Masking for training.
if ~isempty(sequenceLengths)
    miniBatchSize = size(Z,2);
    for n = 1:miniBatchSize
        hiddenState(:,n) = Z(:,n,sequenceLengths(n));
    end
end

end

Decoder Model Function

The function modelDecoder takes the input data, the model parameters, the context vector, the
LSTM initial hidden state, the outputs of the encoder, and the dropout probability and outputs the
decoder output, the updated context vector, the updated LSTM state, and the attention scores.

function [Y,context,hiddenState,attentionScores] = modelDecoder(parameters,X,context, ...
    hiddenState,Z,dropout)

% Embedding.
weights = parameters.emb.Weights;
X = embed(X,weights,DataFormat="CBT");

% RNN input.
sequenceLength = size(X,3);
Y = cat(1, X, repmat(context,[1 1 sequenceLength]));

% LSTM.
inputWeights = parameters.lstm.InputWeights;
recurrentWeights = parameters.lstm.RecurrentWeights;
bias = parameters.lstm.Bias;

initialCellState = dlarray(zeros(size(hiddenState)));

[Y,hiddenState] = lstm(Y,hiddenState,initialCellState, ...
    inputWeights,recurrentWeights,bias,DataFormat="CBT");

% Dropout.
mask = rand(size(Y),"like",Y) > dropout;
Y = Y.*mask;

% Attention.
weights = parameters.attention.Weights;
[context,attentionScores] = luongAttention(hiddenState,Z,weights);

4 Deep Learning with Time Series, Sequences, and Text

4-276



% Concatenate.
Y = cat(1, Y, repmat(context,[1 1 sequenceLength]));

% Fully connect.
weights = parameters.fc.Weights;
bias = parameters.fc.Bias;
Y = fullyconnect(Y,weights,bias,DataFormat="CBT");

% Softmax.
Y = softmax(Y,DataFormat="CBT");

end

Luong Attention Function

The luongAttention function returns the context vector and attention scores according to Luong
"general" scoring [1]. This is equivalent to dot-product attention with queries, keys, and values
specified as the hidden state, the weighted latent representation, and the latent representation,
respectively.

function [context,attentionScores] = luongAttention(hiddenState,Z,weights)

numHeads = 1;
queries = hiddenState;
keys = pagemtimes(weights,Z);
values = Z;

[context,attentionScores] = attention(queries,keys,values,numHeads, ...
    Scale=1, ...
    DataFormat="CBT");

end

Decoder Model Predictions Function

The decoderModelPredictions function returns the predicted sequence Y given the input
sequence, target sequence, hidden state, dropout probability, flag to enable teacher forcing, and the
sequence length.

function Y = decoderPredictions(parameters,Z,T,hiddenState,dropout, ...
    doTeacherForcing,sequenceLength)

% Convert to dlarray.
T = dlarray(T);

% Initialize context.
miniBatchSize = size(T,2);
numHiddenUnits = size(Z,1);
context = zeros([numHiddenUnits miniBatchSize],"like",Z);

if doTeacherForcing
    % Forward through decoder.
    Y = modelDecoder(parameters,T,context,hiddenState,Z,dropout);
else
    % Get first time step for decoder.
    decoderInput = T(:,:,1);

    % Initialize output.

 Sequence-to-Sequence Translation Using Attention

4-277



    numClasses = numel(parameters.fc.Bias);
    Y = zeros([numClasses miniBatchSize sequenceLength],"like",decoderInput);

    % Loop over time steps.
    for t = 1:sequenceLength
        % Forward through decoder.
        [Y(:,:,t), context, hiddenState] = modelDecoder(parameters,decoderInput,context, ...
            hiddenState,Z,dropout);

        % Update decoder input.
        [~, decoderInput] = max(Y(:,:,t),[],1);
    end
end

end

Text Translation Function

The translateText function translates an array of text by iterating over mini-batches. The function
takes as input the model parameters, the input string array, a maximum sequence length, the mini-
batch size, the source and target word encoding objects, the start and stop tokens, and the delimiter
for assembling the output.

function strTranslated = translateText(parameters,strSource,maxSequenceLength,miniBatchSize, ...
    encSource,encTarget,startToken,stopToken,delimiter)

% Transform text.
documentsSource = transformText(strSource,startToken,stopToken);
sequencesSource = doc2sequence(encSource,documentsSource, ...
    PaddingDirection="right", ...
    PaddingValue=encSource.NumWords + 1);

% Convert to dlarray.
X = cat(3,sequencesSource{:});
X = permute(X,[1 3 2]);
X = dlarray(X);

% Initialize output.
numObservations = numel(strSource);
strTranslated = strings(numObservations,1);

% Loop over mini-batches.
numIterations = ceil(numObservations / miniBatchSize);
for i = 1:numIterations
    idxMiniBatch = (i-1)*miniBatchSize+1:min(i*miniBatchSize,numObservations);
    miniBatchSize = numel(idxMiniBatch);

    % Encode using model encoder.
    sequenceLengths = [];
    [Z, hiddenState] = modelEncoder(parameters.encoder,X(:,idxMiniBatch,:),sequenceLengths);

    % Decoder predictions.
    doTeacherForcing = false;
    dropout = 0;
    decoderInput = repmat(word2ind(encTarget,startToken),[1 miniBatchSize]);
    decoderInput = dlarray(decoderInput);
    Y = decoderPredictions(parameters.decoder,Z,decoderInput,hiddenState,dropout, ...
        doTeacherForcing,maxSequenceLength);

4 Deep Learning with Time Series, Sequences, and Text

4-278



    [~, idxPred] = max(extractdata(Y),[],1);

    % Keep translating flag.
    idxStop = word2ind(encTarget,stopToken);
    keepTranslating = idxPred ~= idxStop;

    % Loop over time steps.
    t = 1;
    while t <= maxSequenceLength && any(keepTranslating(:,:,t))

        % Update output.
        newWords = ind2word(encTarget, idxPred(:,:,t))';
        idxUpdate = idxMiniBatch(keepTranslating(:,:,t));
        strTranslated(idxUpdate) = strTranslated(idxUpdate) + delimiter + newWords(keepTranslating(:,:,t));

        t = t + 1;
    end
end

end

Bibliography

[1] Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-
based neural machine translation." arXiv preprint arXiv:1508.04025 (2015).

See Also
word2ind | tokenizedDocument | wordEncoding | dlarray | adamupdate | dlupdate | dlfeval
| dlgradient | crossentropy | softmax | lstm | doc2sequence

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Multilabel Text Classification Using Deep Learning” on page 4-210
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Automatic Differentiation Background” on page 19-214

 Sequence-to-Sequence Translation Using Attention

4-279



Generate Text Using Deep Learning

This example shows how to train a deep learning long short-term memory (LSTM) network to
generate text.

To train a deep learning network for text generation, train a sequence-to-sequence LSTM network to
predict the next character in a sequence of characters. To train the network to predict the next
character, specify the input sequences shifted by one time step as the responses.

To input a sequence of characters into an LSTM network, convert each training observation to a
sequence of characters represented by the vectors x ∈ ℝD, where D is the number of unique
characters in the vocabulary. For each vector, xi = 1 if x corresponds to the character with index i in a
given vocabulary, and x j = 0 for j ≠ i.

Load Training Data

Extract the text data from the text file sonnets.txt.

filename = "sonnets.txt";
textData = fileread(filename);

The sonnets are indented by two whitespace characters and are separated by two newline characters.
Remove the indentations using replace and split the text into separate sonnets using split.
Remove the main title from the first three elements and the sonnet titles which appear before each
sonnet.

textData = replace(textData,"  ","");
textData = split(textData,[newline newline]);
textData = textData(5:2:end);

View the first few observations.

textData(1:10)

ans = 10×1 cell array
    {'From fairest creatures we desire increase,↵That thereby beauty's rose might never die,↵But as the riper should by time decease,↵His tender heir might bear his memory:↵But thou, contracted to thine own bright eyes,↵Feed'st thy light's flame with self-substantial fuel,↵Making a famine where abundance lies,↵Thy self thy foe, to thy sweet self too cruel:↵Thou that art now the world's fresh ornament,↵And only herald to the gaudy spring,↵Within thine own bud buriest thy content,↵And tender churl mak'st waste in niggarding:↵Pity the world, or else this glutton be,↵To eat the world's due, by the grave and thee.'                                 }
    {'When forty winters shall besiege thy brow,↵And dig deep trenches in thy beauty's field,↵Thy youth's proud livery so gazed on now,↵Will be a tatter'd weed of small worth held:↵Then being asked, where all thy beauty lies,↵Where all the treasure of thy lusty days;↵To say, within thine own deep sunken eyes,↵Were an all-eating shame, and thriftless praise.↵How much more praise deserv'd thy beauty's use,↵If thou couldst answer 'This fair child of mine↵Shall sum my count, and make my old excuse,'↵Proving his beauty by succession thine!↵This were to be new made when thou art old,↵And see thy blood warm when thou feel'st it cold.'               }
    {'Look in thy glass and tell the face thou viewest↵Now is the time that face should form another;↵Whose fresh repair if now thou not renewest,↵Thou dost beguile the world, unbless some mother.↵For where is she so fair whose unear'd womb↵Disdains the tillage of thy husbandry?↵Or who is he so fond will be the tomb,↵Of his self-love to stop posterity?↵Thou art thy mother's glass and she in thee↵Calls back the lovely April of her prime;↵So thou through windows of thine age shalt see,↵Despite of wrinkles this thy golden time.↵But if thou live, remember'd not to be,↵Die single and thine image dies with thee.'                                    }
    {'Unthrifty loveliness, why dost thou spend↵Upon thy self thy beauty's legacy?↵Nature's bequest gives nothing, but doth lend,↵And being frank she lends to those are free:↵Then, beauteous niggard, why dost thou abuse↵The bounteous largess given thee to give?↵Profitless usurer, why dost thou use↵So great a sum of sums, yet canst not live?↵For having traffic with thy self alone,↵Thou of thy self thy sweet self dost deceive:↵Then how when nature calls thee to be gone,↵What acceptable audit canst thou leave?↵Thy unused beauty must be tombed with thee,↵Which, used, lives th' executor to be.'                                                      }
    {'Those hours, that with gentle work did frame↵The lovely gaze where every eye doth dwell,↵Will play the tyrants to the very same↵And that unfair which fairly doth excel;↵For never-resting time leads summer on↵To hideous winter, and confounds him there;↵Sap checked with frost, and lusty leaves quite gone,↵Beauty o'er-snowed and bareness every where:↵Then were not summer's distillation left,↵A liquid prisoner pent in walls of glass,↵Beauty's effect with beauty were bereft,↵Nor it, nor no remembrance what it was:↵But flowers distill'd, though they with winter meet,↵Leese but their show; their substance still lives sweet.'                   }
    {'Then let not winter's ragged hand deface,↵In thee thy summer, ere thou be distill'd:↵Make sweet some vial; treasure thou some place↵With beauty's treasure ere it be self-kill'd.↵That use is not forbidden usury,↵Which happies those that pay the willing loan;↵That's for thy self to breed another thee,↵Or ten times happier, be it ten for one;↵Ten times thy self were happier than thou art,↵If ten of thine ten times refigur'd thee:↵Then what could death do if thou shouldst depart,↵Leaving thee living in posterity?↵Be not self-will'd, for thou art much too fair↵To be death's conquest and make worms thine heir.'                                }
    {'Lo! in the orient when the gracious light↵Lifts up his burning head, each under eye↵Doth homage to his new-appearing sight,↵Serving with looks his sacred majesty;↵And having climb'd the steep-up heavenly hill,↵Resembling strong youth in his middle age,↵Yet mortal looks adore his beauty still,↵Attending on his golden pilgrimage:↵But when from highmost pitch, with weary car,↵Like feeble age, he reeleth from the day,↵The eyes, 'fore duteous, now converted are↵From his low tract, and look another way:↵So thou, thyself outgoing in thy noon:↵Unlook'd, on diest unless thou get a son.'                                                            }
    {'Music to hear, why hear'st thou music sadly?↵Sweets with sweets war not, joy delights in joy:↵Why lov'st thou that which thou receiv'st not gladly,↵Or else receiv'st with pleasure thine annoy?↵If the true concord of well-tuned sounds,↵By unions married, do offend thine ear,↵They do but sweetly chide thee, who confounds↵In singleness the parts that thou shouldst bear.↵Mark how one string, sweet husband to another,↵Strikes each in each by mutual ordering;↵Resembling sire and child and happy mother,↵Who, all in one, one pleasing note do sing:↵Whose speechless song being many, seeming one,↵Sings this to thee: 'Thou single wilt prove none.''}
    {'Is it for fear to wet a widow's eye,↵That thou consum'st thy self in single life?↵Ah! if thou issueless shalt hap to die,↵The world will wail thee like a makeless wife;↵The world will be thy widow and still weep↵That thou no form of thee hast left behind,↵When every private widow well may keep↵By children's eyes, her husband's shape in mind:↵Look! what an unthrift in the world doth spend↵Shifts but his place, for still the world enjoys it;↵But beauty's waste hath in the world an end,↵And kept unused the user so destroys it.↵No love toward others in that bosom sits↵That on himself such murd'rous shame commits.'                           }
    {'For shame! deny that thou bear'st love to any,↵Who for thy self art so unprovident.↵Grant, if thou wilt, thou art belov'd of many,↵But that thou none lov'st is most evident:↵For thou art so possess'd with murderous hate,↵That 'gainst thy self thou stick'st not to conspire,↵Seeking that beauteous roof to ruinate↵Which to repair should be thy chief desire.↵O! change thy thought, that I may change my mind:↵Shall hate be fairer lodg'd than gentle love?↵Be, as thy presence is, gracious and kind,↵Or to thyself at least kind-hearted prove:↵Make thee another self for love of me,↵That beauty still may live in thine or thee.'                     }

Convert Text Data to Sequences

Convert the text data to sequences of vectors for the predictors and categorical sequences for the
responses.

Create special characters to denote "start of text", "whitespace", "end of text" and "newline". Use the
special characters "\x0002" (start of text), "\x00B7" ("·", middle dot), "\x2403" ("␃", end of text),
and "\x00B6" ("¶", pilcrow) respectively. To prevent ambiguity, you must choose special characters

4 Deep Learning with Time Series, Sequences, and Text

4-280



that do not appear in the text. Because these characters do not appear in the training data, they can
be used for this purpose.

startOfTextCharacter = compose("\x0002");
whitespaceCharacter = compose("\x00B7");
endOfTextCharacter = compose("\x2403");
newlineCharacter = compose("\x00B6");

For each observation, insert the start of text character at the beginning and replace the whitespace
and newlines with the corresponding characters.

textData = startOfTextCharacter + textData;
textData = replace(textData,[" " newline],[whitespaceCharacter newlineCharacter]);

Create a vocabulary of the unique characters in the text.

uniqueCharacters = unique([textData{:}]);
numUniqueCharacters = numel(uniqueCharacters);

Loop over the text data and create a sequence of vectors representing the characters of each
observation and a categorical sequence of characters for the responses. To denote the end of each
observation, include the end of text character.

numDocuments = numel(textData);
XTrain = cell(1,numDocuments);
YTrain = cell(1,numDocuments);
for i = 1:numel(textData)
    characters = textData{i};
    sequenceLength = numel(characters);
    
    % Get indices of characters.
    [~,idx] = ismember(characters,uniqueCharacters);
    
    % Convert characters to vectors.
    X = zeros(numUniqueCharacters,sequenceLength);
    for j = 1:sequenceLength
        X(idx(j),j) = 1;
    end
    
    % Create vector of categorical responses with end of text character.
    charactersShifted = [cellstr(characters(2:end)')' endOfTextCharacter];
    Y = categorical(charactersShifted);
    
    XTrain{i} = X;
    YTrain{i} = Y;
end

View the first observation and the size of the corresponding sequence. The sequence is a D-by-S
matrix, where D is the number of features (the number of unique characters) and S is the sequence
length (the number of characters in the text).

textData{1}

ans = 
'From·fairest·creatures·we·desire·increase,¶That·thereby·beauty's·rose·might·never·die,¶But·as·the·riper·should·by·time·decease,¶His·tender·heir·might·bear·his·memory:¶But·thou,·contracted·to·thine·own·bright·eyes,¶Feed'st·thy·light's·flame·with·self-substantial·fuel,¶Making·a·famine·where·abundance·lies,¶Thy·self·thy·foe,·to·thy·sweet·self·too·cruel:¶Thou·that·art·now·the·world's·fresh·ornament,¶And·only·herald·to·the·gaudy·spring,¶Within·thine·own·bud·buriest·thy·content,¶And·tender·churl·mak'st·waste·in·niggarding:¶Pity·the·world,·or·else·this·glutton·be,¶To·eat·the·world's·due,·by·the·grave·and·thee.'

size(XTrain{1})

 Generate Text Using Deep Learning

4-281



ans = 1×2

    62   611

View the corresponding response sequence. The sequence is a 1-by-S categorical vector of responses.

YTrain{1}

ans = 1×611 categorical array
     F      r      o      m      ·      f      a      i      r      e      s      t      ·      c      r      e      a      t      u      r      e      s      ·      w      e      ·      d      e      s      i      r      e      ·      i      n      c      r      e      a      s      e      ,      ¶      T      h      a      t      ·      t      h      e      r      e      b      y      ·      b      e      a      u      t      y      '      s      ·      r      o      s      e      ·      m      i      g      h      t      ·      n      e      v      e      r      ·      d      i      e      ,      ¶      B      u      t      ·      a      s      ·      t      h      e      ·      r      i      p      e      r      ·      s      h      o      u      l      d      ·      b      y      ·      t      i      m      e      ·      d      e      c      e      a      s      e      ,      ¶      H      i      s      ·      t      e      n      d      e      r      ·      h      e      i      r      ·      m      i      g      h      t      ·      b      e      a      r      ·      h      i      s      ·      m      e      m      o      r      y      :      ¶      B      u      t      ·      t      h      o      u      ,      ·      c      o      n      t      r      a      c      t      e      d      ·      t      o      ·      t      h      i      n      e      ·      o      w      n      ·      b      r      i      g      h      t      ·      e      y      e      s      ,      ¶      F      e      e      d      '      s      t      ·      t      h      y      ·      l      i      g      h      t      '      s      ·      f      l      a      m      e      ·      w      i      t      h      ·      s      e      l      f      -      s      u      b      s      t      a      n      t      i      a      l      ·      f      u      e      l      ,      ¶      M      a      k      i      n      g      ·      a      ·      f      a      m      i      n      e      ·      w      h      e      r      e      ·      a      b      u      n      d      a      n      c      e      ·      l      i      e      s      ,      ¶      T      h      y      ·      s      e      l      f      ·      t      h      y      ·      f      o      e      ,      ·      t      o      ·      t      h      y      ·      s      w      e      e      t      ·      s      e      l      f      ·      t      o      o      ·      c      r      u      e      l      :      ¶      T      h      o      u      ·      t      h      a      t      ·      a      r      t      ·      n      o      w      ·      t      h      e      ·      w      o      r      l      d      '      s      ·      f      r      e      s      h      ·      o      r      n      a      m      e      n      t      ,      ¶      A      n      d      ·      o      n      l      y      ·      h      e      r      a      l      d      ·      t      o      ·      t      h      e      ·      g      a      u      d      y      ·      s      p      r      i      n      g      ,      ¶      W      i      t      h      i      n      ·      t      h      i      n      e      ·      o      w      n      ·      b      u      d      ·      b      u      r      i      e      s      t      ·      t      h      y      ·      c      o      n      t      e      n      t      ,      ¶      A      n      d      ·      t      e      n      d      e      r      ·      c      h      u      r      l      ·      m      a      k      '      s      t      ·      w      a      s      t      e      ·      i      n      ·      n      i      g      g      a      r      d      i      n      g      :      ¶      P      i      t      y      ·      t      h      e      ·      w      o      r      l      d      ,      ·      o      r      ·      e      l      s      e      ·      t      h      i      s      ·      g      l      u      t      t      o      n      ·      b      e      ,      ¶      T      o      ·      e      a      t      ·      t      h      e      ·      w      o      r      l      d      '      s      ·      d      u      e      ,      ·      b      y      ·      t      h      e      ·      g      r      a      v      e      ·      a      n      d      ·      t      h      e      e      .      ␃ 

Create and Train LSTM Network

Define the LSTM architecture. Specify a sequence-to-sequence LSTM classification network with 200
hidden units. Set the feature dimension of the training data (the number of unique characters) as the
input size, and the number of categories in the responses as the output size of the fully connected
layer.

inputSize = size(XTrain{1},1);
numHiddenUnits = 200;
numClasses = numel(categories([YTrain{:}]));

layers = [
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options using the trainingOptions function. Specify the number of training
epochs as 500 and the initial learn rate as 0.01. To prevent the gradients from exploding, set the
gradient threshold to 2. Specify to shuffle the data every epoch by setting the 'Shuffle' option to
'every-epoch'. To monitor the training progress, set the 'Plots' option to 'training-
progress'. To suppress verbose output, set 'Verbose' to false.

The mini-batch size option specifies the number of observations to process in a single iteration.
Specify a mini-batch size that evenly divides the data to ensure that the function uses all observations
for training. Otherwise, the function ignores observations that do not complete a mini-batch. Set the
mini-batch size to 77.

options = trainingOptions('adam', ...
    'MaxEpochs',500, ...
    'InitialLearnRate',0.01, ...
    'GradientThreshold',2, ...
    'MiniBatchSize',77,...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false);

Train the network.

net = trainNetwork(XTrain,YTrain,layers,options);

4 Deep Learning with Time Series, Sequences, and Text

4-282



Generate New Text

Use the generateText function, listed at the end of the example, to generate text using the trained
network.

The generateText function generates text character by character, starting with the start of text
character and reconstructs the text using the special characters. The function samples each
character using the output prediction scores. The function stops predicting when the network
predicts the end-of-text character or when the generated text is 500 characters long.

Generate text using the trained network.

generatedText = generateText(net,uniqueCharacters,startOfTextCharacter,newlineCharacter,whitespaceCharacter,endOfTextCharacter)

generatedText = 
    "Look, that your lepperites of such soous toor men,
     Where than proud on your sweetest but lever ill lie.
     One of Death a deal doth teal hearts come,
     And that which gives did mistress one learn
     Made mens of tongue that hands hear,
     And all they with me, do I fortune to brief;
     And every peinted could with this right ampontion sorend
     By genilir'd lime thau hours, and wonder sposing,
     And night by day you waster'd then new;
     For ailling thuse borrowest vein fulse were of here spent,
     Since my heart morey "

 Generate Text Using Deep Learning

4-283



Text Generation Function

The generateText function generates text character by character, starting with the start of text
character and reconstructs the text using the special characters. The function samples each
character using the output prediction scores. The function stops predicting when the network
predicts the end-of-text character or when the generated text is 500 characters long.

function generatedText = generateText(net,uniqueCharacters,startOfTextCharacter,newlineCharacter,whitespaceCharacter,endOfTextCharacter)

Create the vector of the start of text character by finding its index.

numUniqueCharacters = numel(uniqueCharacters);
X = zeros(numUniqueCharacters,1);
idx = strfind(uniqueCharacters,startOfTextCharacter);
X(idx) = 1;

Generate the text character by character using the trained LSTM network using
predictAndUpdateState and datasample. Stop predicting when the network predicts the end-of-
text character or when the generated text is 500 characters long. The datasample function requires
Statistics and Machine Learning Toolbox™.

For large collections of data, long sequences, or large networks, predictions on the GPU are usually
faster to compute than predictions on the CPU. Otherwise, predictions on the CPU are usually faster
to compute. For single time step predictions, use the CPU. To use the CPU for prediction, set the
'ExecutionEnvironment' option of predictAndUpdateState to 'cpu'.

generatedText = "";
vocabulary = string(net.Layers(end).Classes);

maxLength = 500;
while strlength(generatedText) < maxLength
    % Predict the next character scores.
    [net,characterScores] = predictAndUpdateState(net,X,'ExecutionEnvironment','cpu');
    
    % Sample the next character.
    newCharacter = datasample(vocabulary,1,'Weights',characterScores);
    
    % Stop predicting at the end of text.
    if newCharacter == endOfTextCharacter
        break
    end
    
    % Add the character to the generated text.
    generatedText = generatedText + newCharacter;
    
    % Create a new vector for the next input.
    X(:) = 0;
    idx = strfind(uniqueCharacters,newCharacter);
    X(idx) = 1;
end

Reconstruct the generated text by replacing the special characters with their corresponding
whitespace and newline characters.

4 Deep Learning with Time Series, Sequences, and Text

4-284



generatedText = replace(generatedText,[newlineCharacter whitespaceCharacter],[newline " "]);

end

See Also
trainNetwork | trainingOptions | lstmLayer | sequenceInputLayer

Related Examples
• “Word-By-Word Text Generation Using Deep Learning” (Text Analytics Toolbox)
• “Pride and Prejudice and MATLAB” (Text Analytics Toolbox)
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

 Generate Text Using Deep Learning

4-285



Pride and Prejudice and MATLAB

This example shows how to train a deep learning LSTM network to generate text using character
embeddings.

To train a deep learning network for text generation, train a sequence-to-sequence LSTM network to
predict the next character in a sequence of characters. To train the network to predict the next
character, specify the responses to be the input sequences shifted by one time step.

To use character embeddings, convert each training observation to a sequence of integers, where the
integers index into a vocabulary of characters. Include a word embedding layer in the network which
learns an embedding of the characters and maps the integers to vectors.

Load Training Data

Read the HTML code from The Project Gutenberg EBook of Pride and Prejudice, by Jane Austen and
parse it using webread and htmlTree.

url = "https://www.gutenberg.org/files/1342/1342-h/1342-h.htm";
code = webread(url);
tree = htmlTree(code);

Extract the paragraphs by finding the p elements. Specify to ignore paragraph elements with class
"toc" using the CSS selector ':not(.toc)'.

paragraphs = findElement(tree,'p:not(.toc)');

Extract the text data from the paragraphs using extractHTMLText. and remove the empty strings.

textData = extractHTMLText(paragraphs);
textData(textData == "") = [];

Remove strings shorter than 20 characters.

idx = strlength(textData) < 20;
textData(idx) = [];

Visualize the text data in a word cloud.

figure
wordcloud(textData);
title("Pride and Prejudice")

4 Deep Learning with Time Series, Sequences, and Text

4-286

https://www.gutenberg.org/files/1342/1342-h/1342-h.htm


Convert Text Data to Sequences

Convert the text data to sequences of character indices for the predictors and categorical sequences
for the responses.

The categorical function treats newline and whitespace entries as undefined. To create categorical
elements for these characters, replace them with the special characters "¶" (pilcrow, "\x00B6") and
"·" (middle dot, "\x00B7") respectively. To prevent ambiguity, you must choose special characters
that do not appear in the text. These characters do not appear in the training data so can be used for
this purpose.

newlineCharacter = compose("\x00B6");
whitespaceCharacter = compose("\x00B7");
textData = replace(textData,[newline " "],[newlineCharacter whitespaceCharacter]);

Loop over the text data and create a sequence of character indices representing the characters of
each observation and a categorical sequence of characters for the responses. To denote the end of
each observation, include the special character "␃" (end of text, "\x2403").

endOfTextCharacter = compose("\x2403");
numDocuments = numel(textData);
for i = 1:numDocuments
    characters = textData{i};
    X = double(characters);
    
    % Create vector of categorical responses with end of text character.
    charactersShifted = [cellstr(characters(2:end)')' endOfTextCharacter];

 Pride and Prejudice and MATLAB

4-287



    Y = categorical(charactersShifted);
    
    XTrain{i} = X;
    YTrain{i} = Y;
end

During training, by default, the software splits the training data into mini-batches and pads the
sequences so that they have the same length. Too much padding can have a negative impact on the
network performance.

To prevent the training process from adding too much padding, you can sort the training data by
sequence length, and choose a mini-batch size so that sequences in a mini-batch have a similar
length.

Get the sequence lengths for each observation.

numObservations = numel(XTrain);
for i=1:numObservations
    sequence = XTrain{i};
    sequenceLengths(i) = size(sequence,2);
end

Sort the data by sequence length.

[~,idx] = sort(sequenceLengths);
XTrain = XTrain(idx);
YTrain = YTrain(idx);

Create and Train LSTM Network

Define the LSTM architecture. Specify a sequence-to-sequence LSTM classification network with 400
hidden units. Set the input size to be the feature dimension of the training data. For sequences of
character indices, the feature dimension is 1. Specify a word embedding layer with dimension 200
and specify the number of words (which correspond to characters) to be the highest character value
in the input data. Set the output size of the fully connected layer to be the number of categories in
the responses. To help prevent overfitting, include a dropout layer after the LSTM layer.

The word embedding layer learns an embedding of characters and maps each character to a 200-
dimension vector.

inputSize = size(XTrain{1},1);
numClasses = numel(categories([YTrain{:}]));
numCharacters = max([textData{:}]);

layers = [
    sequenceInputLayer(inputSize)
    wordEmbeddingLayer(200,numCharacters)
    lstmLayer(400,'OutputMode','sequence')
    dropoutLayer(0.2);
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Specify to train with a mini-batch size of 32 and initial learn rate 0.01. To
prevent the gradients from exploding, set the gradient threshold to 1. To ensure the data remains
sorted, set 'Shuffle' to 'never'. To monitor the training progress, set the 'Plots' option to
'training-progress'. To suppress verbose output, set 'Verbose' to false.

4 Deep Learning with Time Series, Sequences, and Text

4-288



options = trainingOptions('adam', ...
    'MiniBatchSize',32,...
    'InitialLearnRate',0.01, ...
    'GradientThreshold',1, ...
    'Shuffle','never', ...
    'Plots','training-progress', ...
    'Verbose',false);

Train the network.

net = trainNetwork(XTrain,YTrain,layers,options);

Generate New Text

Generate the first character of the text by sampling a character from a probability distribution
according to the first characters of the text in the training data. Generate the remaining characters
by using the trained LSTM network to predict the next sequence using the current sequence of
generated text. Keep generating characters one-by-one until the network predicts the "end of text"
character.

Sample the first character according to the distribution of the first characters in the training data.

initialCharacters = extractBefore(textData,2);
firstCharacter = datasample(initialCharacters,1);
generatedText = firstCharacter;

Convert the first character to a numeric index.

X = double(char(firstCharacter));

 Pride and Prejudice and MATLAB

4-289



For the remaining predictions, sample the next character according to the prediction scores of the
network. The prediction scores represent the probability distribution of the next character. Sample
the characters from the vocabulary of characters given by the class names of the output layer of the
network. Get the vocabulary from the classification layer of the network.

vocabulary = string(net.Layers(end).ClassNames);

Make predictions character by character using predictAndUpdateState. For each prediction,
input the index of the previous character. Stop predicting when the network predicts the end of text
character or when the generated text is 500 characters long. For large collections of data, long
sequences, or large networks, predictions on the GPU are usually faster to compute than predictions
on the CPU. Otherwise, predictions on the CPU are usually faster to compute. For single time step
predictions, use the CPU. To use the CPU for prediction, set the 'ExecutionEnvironment' option
of predictAndUpdateState to 'cpu'.

maxLength = 500;
while strlength(generatedText) < maxLength
    % Predict the next character scores.
    [net,characterScores] = predictAndUpdateState(net,X,'ExecutionEnvironment','cpu');
    
    % Sample the next character.
    newCharacter = datasample(vocabulary,1,'Weights',characterScores);
    
    % Stop predicting at the end of text.
    if newCharacter == endOfTextCharacter
        break
    end
    
    % Add the character to the generated text.
    generatedText = generatedText + newCharacter;
    
    % Get the numeric index of the character.
    X = double(char(newCharacter));
end

Reconstruct the generated text by replacing the special characters with their corresponding
whitespace and new line characters.

generatedText = replace(generatedText,[newlineCharacter whitespaceCharacter],[newline " "])

generatedText = 
"“I wish Mr. Darcy, upon latter of my sort sincerely fixed in the regard to relanth. We were to join on the Lucases. They are married with him way Sir Wickham, for the possibility which this two od since to know him one to do now thing, and the opportunity terms as they, and when I read; nor Lizzy, who thoughts of the scent; for a look for times, I never went to the advantage of the case; had forcibling himself. They pility and lively believe she was to treat off in situation because, I am exceal"

To generate multiple pieces of text, reset the network state between generations using resetState.

net = resetState(net);

See Also
wordEmbeddingLayer | doc2sequence | tokenizedDocument | lstmLayer | trainNetwork |
trainingOptions | sequenceInputLayer | wordcloud | extractHTMLText | findElement |
htmlTree

Related Examples
• “Generate Text Using Deep Learning” on page 4-280

4 Deep Learning with Time Series, Sequences, and Text

4-290



• “Word-By-Word Text Generation Using Deep Learning” (Text Analytics Toolbox)
• “Create Simple Text Model for Classification” (Text Analytics Toolbox)
• “Analyze Text Data Using Topic Models” (Text Analytics Toolbox)
• “Analyze Text Data Using Multiword Phrases” (Text Analytics Toolbox)
• “Train a Sentiment Classifier” (Text Analytics Toolbox)
• “Sequence Classification Using Deep Learning” on page 4-3
• “Deep Learning in MATLAB” on page 1-2

 Pride and Prejudice and MATLAB

4-291



Word-By-Word Text Generation Using Deep Learning

This example shows how to train a deep learning LSTM network to generate text word-by-word.

To train a deep learning network for word-by-word text generation, train a sequence-to-sequence
LSTM network to predict the next word in a sequence of words. To train the network to predict the
next word, specify the responses to be the input sequences shifted by one time step.

This example reads text from a website. It reads and parses the HTML code to extract the relevant
text, then uses a custom mini-batch datastore documentGenerationDatastore to input the
documents to the network as mini-batches of sequence data. The datastore converts documents to
sequences of numeric word indices. The deep learning network is an LSTM network that contains a
word embedding layer.

A mini-batch datastore is an implementation of a datastore with support for reading data in batches.
You can use a mini-batch datastore as a source of training, validation, test, and prediction data sets
for deep learning applications. Use mini-batch datastores to read out-of-memory data or to perform
specific preprocessing operations when reading batches of data.

You can adapt the custom mini-batch datastore specified by documentGenerationDatastore.m to
your data by customizing the functions. This file is attached to this example as a supporting file. To
access this file, open the example as a live script. For an example showing how to create your own
custom mini-batch datastore, see “Develop Custom Mini-Batch Datastore” on page 20-38.

Load Training Data

Load the training data. Read the HTML code from Alice's Adventures in Wonderland by Lewis Carroll
from Project Gutenberg.

url = "https://www.gutenberg.org/files/11/11-h/11-h.htm";
code = webread(url);

Parse HTML Code

The HTML code contains the relevant text inside <p> (paragraph) elements. Extract the relevant text
by parsing the HTML code using htmlTree and then finding all the elements with element name
"p".

tree = htmlTree(code);
selector = "p";
subtrees = findElement(tree,selector);

Extract the text data from the HTML subtrees using extractHTMLText and view the first 10
paragraphs.

textData = extractHTMLText(subtrees);
textData(1:10)

ans = 10×1 string
    "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, “and what is the use of a book,” thought Alice “without pictures or conversations?”"
    "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her."
    "There was nothing so very remarkable in that; nor did Alice think it so very much out of the way to hear the Rabbit say to itself, “Oh dear! Oh dear! I shall be late!” (when she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it all seemed quite natural); but when the Rabbit actually took a watch out of its waistcoat-pocket, and looked at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and burning with curiosity, she ran across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge."
    "In another moment down went Alice after it, never once considering how in the world she was to get out again."
    "The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not a moment to think about stopping herself before she found herself falling down a very deep well."
    "Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down to look about her and to wonder what was going to happen next. First, she tried to look down and make out what she was coming to, but it was too dark to see anything; then she looked at the sides of the well, and noticed that they were filled with cupboards and book-shelves; here and there she saw maps and pictures hung upon pegs. She took down a jar from one of the shelves as she passed; it was labelled “ORANGE MARMALADE”, but to her great disappointment it was empty: she did not like to drop the jar for fear of killing somebody underneath, so managed to put it into one of the cupboards as she fell past it."

4 Deep Learning with Time Series, Sequences, and Text

4-292

https://www.gutenberg.org/files/11/11-h/11-h.htm


    "“Well!” thought Alice to herself, “after such a fall as this, I shall think nothing of tumbling down stairs! How brave they’ll all think me at home! Why, I wouldn’t say anything about it, even if I fell off the top of the house!” (Which was very likely true.)"
    "Down, down, down. Would the fall never come to an end? “I wonder how many miles I’ve fallen by this time?” she said aloud. “I must be getting somewhere near the centre of the earth. Let me see: that would be four thousand miles down, I think-” (for, you see, Alice had learnt several things of this sort in her lessons in the schoolroom, and though this was not a very good opportunity for showing off her knowledge, as there was no one to listen to her, still it was good practice to say it over) “-yes, that’s about the right distance-but then I wonder what Latitude or Longitude I’ve got to?” (Alice had no idea what Latitude was, or Longitude either, but thought they were nice grand words to say.)"
    "Presently she began again. “I wonder if I shall fall right through the earth! How funny it’ll seem to come out among the people that walk with their heads downward! The Antipathies, I think-” (she was rather glad there was no one listening, this time, as it didn’t sound at all the right word) “-but I shall have to ask them what the name of the country is, you know. Please, Ma’am, is this New Zealand or Australia?” (and she tried to curtsey as she spoke-fancy curtseying as you’re falling through the air! Do you think you could manage it?) “And what an ignorant little girl she’ll think me for asking! No, it’ll never do to ask: perhaps I shall see it written up somewhere.”"
    "Down, down, down. There was nothing else to do, so Alice soon began talking again. “Dinah’ll miss me very much to-night, I should think!” (Dinah was the cat.) “I hope they’ll remember her saucer of milk at tea-time. Dinah my dear! I wish you were down here with me! There are no mice in the air, I’m afraid, but you might catch a bat, and that’s very like a mouse, you know. But do cats eat bats, I wonder?” And here Alice began to get rather sleepy, and went on saying to herself, in a dreamy sort of way, “Do cats eat bats? Do cats eat bats?” and sometimes, “Do bats eat cats?” for, you see, as she couldn’t answer either question, it didn’t much matter which way she put it. She felt that she was dozing off, and had just begun to dream that she was walking hand in hand with Dinah, and saying to her very earnestly, “Now, Dinah, tell me the truth: did you ever eat a bat?” when suddenly, thump! thump! down she came upon a heap of sticks and dry leaves, and the fall was over."

Remove the empty paragraphs and view the first 10 remaining paragraphs.

textData(textData == "") = [];
textData(1:10)

ans = 10×1 string
    "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, “and what is the use of a book,” thought Alice “without pictures or conversations?”"
    "So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her."
    "There was nothing so very remarkable in that; nor did Alice think it so very much out of the way to hear the Rabbit say to itself, “Oh dear! Oh dear! I shall be late!” (when she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it all seemed quite natural); but when the Rabbit actually took a watch out of its waistcoat-pocket, and looked at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and burning with curiosity, she ran across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge."
    "In another moment down went Alice after it, never once considering how in the world she was to get out again."
    "The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not a moment to think about stopping herself before she found herself falling down a very deep well."
    "Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down to look about her and to wonder what was going to happen next. First, she tried to look down and make out what she was coming to, but it was too dark to see anything; then she looked at the sides of the well, and noticed that they were filled with cupboards and book-shelves; here and there she saw maps and pictures hung upon pegs. She took down a jar from one of the shelves as she passed; it was labelled “ORANGE MARMALADE”, but to her great disappointment it was empty: she did not like to drop the jar for fear of killing somebody underneath, so managed to put it into one of the cupboards as she fell past it."
    "“Well!” thought Alice to herself, “after such a fall as this, I shall think nothing of tumbling down stairs! How brave they’ll all think me at home! Why, I wouldn’t say anything about it, even if I fell off the top of the house!” (Which was very likely true.)"
    "Down, down, down. Would the fall never come to an end? “I wonder how many miles I’ve fallen by this time?” she said aloud. “I must be getting somewhere near the centre of the earth. Let me see: that would be four thousand miles down, I think-” (for, you see, Alice had learnt several things of this sort in her lessons in the schoolroom, and though this was not a very good opportunity for showing off her knowledge, as there was no one to listen to her, still it was good practice to say it over) “-yes, that’s about the right distance-but then I wonder what Latitude or Longitude I’ve got to?” (Alice had no idea what Latitude was, or Longitude either, but thought they were nice grand words to say.)"
    "Presently she began again. “I wonder if I shall fall right through the earth! How funny it’ll seem to come out among the people that walk with their heads downward! The Antipathies, I think-” (she was rather glad there was no one listening, this time, as it didn’t sound at all the right word) “-but I shall have to ask them what the name of the country is, you know. Please, Ma’am, is this New Zealand or Australia?” (and she tried to curtsey as she spoke-fancy curtseying as you’re falling through the air! Do you think you could manage it?) “And what an ignorant little girl she’ll think me for asking! No, it’ll never do to ask: perhaps I shall see it written up somewhere.”"
    "Down, down, down. There was nothing else to do, so Alice soon began talking again. “Dinah’ll miss me very much to-night, I should think!” (Dinah was the cat.) “I hope they’ll remember her saucer of milk at tea-time. Dinah my dear! I wish you were down here with me! There are no mice in the air, I’m afraid, but you might catch a bat, and that’s very like a mouse, you know. But do cats eat bats, I wonder?” And here Alice began to get rather sleepy, and went on saying to herself, in a dreamy sort of way, “Do cats eat bats? Do cats eat bats?” and sometimes, “Do bats eat cats?” for, you see, as she couldn’t answer either question, it didn’t much matter which way she put it. She felt that she was dozing off, and had just begun to dream that she was walking hand in hand with Dinah, and saying to her very earnestly, “Now, Dinah, tell me the truth: did you ever eat a bat?” when suddenly, thump! thump! down she came upon a heap of sticks and dry leaves, and the fall was over."

Visualize the text data in a word cloud.

figure
wordcloud(textData);
title("Alice's Adventures in Wonderland")

 Word-By-Word Text Generation Using Deep Learning

4-293



Prepare Data for Training

Create a datastore that contains the data for training using documentGenerationDatastore. For
the predictors, this datastore converts the documents into sequences of word indices using a word
encoding. The first word index for each document corresponds to a "start of text" token. The "start of
text" token is given by the string "startOfText". For the responses, the datastore returns
categorical sequences of the words shifted by one.

Tokenize the text data using tokenizedDocument.

documents = tokenizedDocument(textData);

Create a document generation datastore using the tokenized documents.

ds = documentGenerationDatastore(documents);

To reduce the amount of padding added to the sequences, sort the documents in the datastore by
sequence length.

ds = sort(ds);

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include a sequence
input layer and set the input size to 1. Next, include a word embedding layer of dimension 100 and
the same number of words as the word encoding. Next, include an LSTM layer and specify the hidden
size to be 100. Finally, add a fully connected layer with the same size as the number of classes, a

4 Deep Learning with Time Series, Sequences, and Text

4-294



softmax layer, and a classification layer. The number of classes is the number of words in the
vocabulary plus an extra class for the "end of text" class.

inputSize = 1;
embeddingDimension = 100;
numWords = numel(ds.Encoding.Vocabulary);
numClasses = numWords + 1;

layers = [ 
    sequenceInputLayer(inputSize)
    wordEmbeddingLayer(embeddingDimension,numWords)
    lstmLayer(100)
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Specify the solver to be 'adam'. Train for 300 epochs with learn rate
0.01. Set the mini-batch size to 32. To keep the data sorted by sequence length, set the 'Shuffle'
option to 'never'. To monitor the training progress, set the 'Plots' option to 'training-
progress'. To suppress verbose output, set 'Verbose' to false.

options = trainingOptions('adam', ...
    'MaxEpochs',300, ...
    'InitialLearnRate',0.01, ...
    'MiniBatchSize',32, ...
    'Shuffle','never', ...
    'Plots','training-progress', ...
    'Verbose',false);

Train the network using trainNetwork.

net = trainNetwork(ds,layers,options);

 Word-By-Word Text Generation Using Deep Learning

4-295



Generate New Text

Generate the first word of the text by sampling a word from a probability distribution according to
the first words of the text in the training data. Generate the remaining words by using the trained
LSTM network to predict the next time step using the current sequence of generated text. Keep
generating words one-by-one until the network predicts the "end of text" word.

To make the first prediction using the network, input the index that represents the "start of text"
token. Find the index by using the word2ind function with the word encoding used by the document
datastore.

enc = ds.Encoding;
wordIndex = word2ind(enc,"startOfText")

wordIndex = 1

For the remaining predictions, sample the next word according to the prediction scores of the
network. The prediction scores represent the probability distribution of the next word. Sample the
words from the vocabulary given by the class names of the output layer of the network.

vocabulary = string(net.Layers(end).Classes);

Make predictions word by word using predictAndUpdateState. For each prediction, input the
index of the previous word. Stop predicting when the network predicts the end of text word or when
the generated text is 500 characters long. For large collections of data, long sequences, or large
networks, predictions on the GPU are usually faster to compute than predictions on the CPU.
Otherwise, predictions on the CPU are usually faster to compute. For single time step predictions, use
the CPU. To use the CPU for prediction, set the 'ExecutionEnvironment' option of
predictAndUpdateState to 'cpu'.

4 Deep Learning with Time Series, Sequences, and Text

4-296



generatedText = "";
maxLength = 500;
while strlength(generatedText) < maxLength
    % Predict the next word scores.
    [net,wordScores] = predictAndUpdateState(net,wordIndex,'ExecutionEnvironment','cpu');
    
    % Sample the next word.
    newWord = datasample(vocabulary,1,'Weights',wordScores);
    
    % Stop predicting at the end of text.
    if newWord == "EndOfText"
        break
    end
    
    % Add the word to the generated text.
    generatedText = generatedText + " " + newWord;
    
    % Find the word index for the next input.
    wordIndex = word2ind(enc,newWord);
end

The generation process introduces whitespace characters between each prediction, which means that
some punctuation characters appear with unnecessary spaces before and after. Reconstruct the
generated text by removing the spaces before and after the appropriate punctuation characters.

Remove the spaces that appear before the specified punctuation characters.

punctuationCharacters = ["." "," "’" ")" ":" "?" "!"];
generatedText = replace(generatedText," " + punctuationCharacters,punctuationCharacters);

Remove the spaces that appear after the specified punctuation characters.

punctuationCharacters = ["(" "‘"];
generatedText = replace(generatedText,punctuationCharacters + " ",punctuationCharacters)

generatedText = 
" “ Just about as much right, ” said the Duchess, “ and that’s all the least, ” said the Hatter. “ Fetch me to my witness at the shepherd heart of him."

To generate multiple pieces of text, reset the network state between generations using resetState.

net = resetState(net);

See Also
wordEmbeddingLayer | doc2sequence | tokenizedDocument | lstmLayer | trainNetwork |
trainingOptions | sequenceInputLayer | wordcloud | extractHTMLText | findElement |
htmlTree

Related Examples
• “Generate Text Using Deep Learning” on page 4-280
• “Create Simple Text Model for Classification” (Text Analytics Toolbox)
• “Analyze Text Data Using Topic Models” (Text Analytics Toolbox)
• “Analyze Text Data Using Multiword Phrases” (Text Analytics Toolbox)
• “Train a Sentiment Classifier” (Text Analytics Toolbox)

 Word-By-Word Text Generation Using Deep Learning

4-297



• “Sequence Classification Using Deep Learning” on page 4-3
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-298



Image Captioning Using Attention

This example shows how to train a deep learning model for image captioning using attention.

Most pretrained deep learning networks are configured for single-label classification. For example,
given an image of a typical office desk, the network might predict the single class "keyboard" or
"mouse". In contrast, an image captioning model combines convolutional and recurrent operations to
produce a textual description of what is in the image, rather than a single label.

This model trained in this example uses an encoder-decoder architecture. The encoder is a pretrained
Inception-v3 network used as a feature extractor. The decoder is a recurrent neural network (RNN)
that takes the extracted features as input and generates a caption. The decoder incorporates an
attention mechanism that allows the decoder to focus on parts of the encoded input while generating
the caption.

The encoder model is a pretrained Inception-v3 model that extracts features from the "mixed10"
layer, followed by fully connected and ReLU operations.

 Image Captioning Using Attention

4-299



The decoder model consists of a word embedding, an attention mechanism, a gated recurrent unit
(GRU), and two fully connected operations.

4 Deep Learning with Time Series, Sequences, and Text

4-300



Load Pretrained Network

Load a pretrained Inception-v3 network. This step requires the Deep Learning Toolbox™ Model for
Inception-v3 Network support package. If you do not have the required support package installed,
then the software provides a download link.

net = inceptionv3;
inputSizeNet = net.Layers(1).InputSize;

Convert the network to a dlnetwork object for feature extraction and remove the last four layers,
leaving the "mixed10" layer as the last layer.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,["avg_pool" "predictions" "predictions_softmax" "ClassificationLayer_predictions"]);

View the input layer of the network. The Inception-v3 network uses symmetric-rescale normalization
with a minimum value of 0 and a maximum value of 255.

lgraph.Layers(1)

 Image Captioning Using Attention

4-301



ans = 
  ImageInputLayer with properties:

                      Name: 'input_1'
                 InputSize: [299 299 3]

   Hyperparameters
          DataAugmentation: 'none'
             Normalization: 'rescale-symmetric'
    NormalizationDimension: 'auto'
                       Max: 255
                       Min: 0

Custom training does not support this normalization, so you must disable normalization in the
network and perform the normalization in the custom training loop instead. Save the minimum and
maximum values as doubles in variables named inputMin and inputMax, respectively, and replace
the input layer with an image input layer without normalization.

inputMin = double(lgraph.Layers(1).Min);
inputMax = double(lgraph.Layers(1).Max);
layer = imageInputLayer(inputSizeNet,Normalization="none",Name="input");
lgraph = replaceLayer(lgraph,"input_1",layer);

Determine the output size of the network. Use the analyzeNetwork function to see the activation
sizes of the last layer. To analyze the network for custom training loop workflows, set the
TargetUsage option to "dlnetwork".

analyzeNetwork(lgraph,TargetUsage="dlnetwork")

4 Deep Learning with Time Series, Sequences, and Text

4-302



Create a variable named outputSizeNet containing the network output size.

outputSizeNet = [8 8 2048];

Convert the layer graph to a dlnetwork object and view the output layer. The output layer is the
"mixed10" layer of the Inception-v3 network.

net = dlnetwork(lgraph)

dlnet = 
  dlnetwork with properties:

         Layers: [311×1 nnet.cnn.layer.Layer]
    Connections: [345×2 table]
     Learnables: [376×3 table]
          State: [188×3 table]
     InputNames: {'input'}
    OutputNames: {'mixed10'}

Import COCO Data Set

Download images and annotations from the data sets "2014 Train images" and "2014 Train/val
annotations," respectively, from https://cocodataset.org/#download. Extract the images and
annotations into a folder named "coco". The COCO 2014 data set was collected by Coco Consortium.

Extract the captions from the file "captions_train2014.json" using the jsondecode function.

dataFolder = fullfile(tempdir,"coco");
filename = fullfile(dataFolder,"annotations_trainval2014","annotations","captions_train2014.json");
str = fileread(filename);
data = jsondecode(str)

data = struct with fields:
           info: [1×1 struct]
         images: [82783×1 struct]
       licenses: [8×1 struct]
    annotations: [414113×1 struct]

The annotations field of the struct contains the data required for image captioning.

data.annotations

ans=414113×1 struct array with fields:
    image_id
    id
    caption

The data set contains multiple captions for each image. To ensure the same images do not appear in
both training and validation sets, identify the unique images in the data set using the unique
function by using the IDs in the image_id field of the annotations field of the data, then view the
number of unique images.

numObservationsAll = numel(data.annotations)

numObservationsAll = 414113

 Image Captioning Using Attention

4-303

https://cocodataset.org/#download
https://cocodataset.org


imageIDs = [data.annotations.image_id];
imageIDsUnique = unique(imageIDs);
numUniqueImages = numel(imageIDsUnique)

numUniqueImages = 82783

Each image has at least five captions. Create a struct annotationsAll with these fields:

• ImageID — Image ID
• Filename — File name of the image
• Captions — String array of raw captions
• CaptionIDs — Vector of indices of the corresponding captions in data.annotations

To make merging easier, sort the annotations by the image IDs.

[~,idx] = sort([data.annotations.image_id]);
data.annotations = data.annotations(idx);

Loop over the annotations and merge multiple annotations when necessary.

i = 0;
j = 0;
imageIDPrev = 0;
while i < numel(data.annotations)
    i = i + 1;
    
    imageID = data.annotations(i).image_id;
    caption = string(data.annotations(i).caption);
    
    if imageID ~= imageIDPrev
        % Create new entry
        j = j + 1;
        annotationsAll(j).ImageID = imageID;
        annotationsAll(j).Filename = fullfile(dataFolder,"train2014","COCO_train2014_" + pad(string(imageID),12,"left","0") + ".jpg");
        annotationsAll(j).Captions = caption;
        annotationsAll(j).CaptionIDs = i;
    else
        % Append captions
        annotationsAll(j).Captions = [annotationsAll(j).Captions; caption];
        annotationsAll(j).CaptionIDs = [annotationsAll(j).CaptionIDs; i];
    end
    
    imageIDPrev = imageID;
end

Partition the data into training and validation sets. Hold out 5% of the observations for testing.

cvp = cvpartition(numel(annotationsAll),HoldOut=0.05);
idxTrain = training(cvp);
idxTest = test(cvp);
annotationsTrain = annotationsAll(idxTrain);
annotationsTest = annotationsAll(idxTest);

The struct contains three fields:

• id — Unique identifier for the caption

4 Deep Learning with Time Series, Sequences, and Text

4-304



• caption — Image caption, specified as a character vector
• image_id — Unique identifier of the image corresponding to the caption

To view the image and the corresponding caption, locate the image file with file name
"train2014\COCO_train2014_XXXXXXXXXXXX.jpg", where "XXXXXXXXXXXX" corresponds to
the image ID left-padded with zeros to have length 12.

imageID = annotationsTrain(1).ImageID;
captions = annotationsTrain(1).Captions;
filename = annotationsTrain(1).Filename;

To view the image, use the imread and imshow functions.

img = imread(filename);
figure
imshow(img)
title(captions)

Prepare Data for Training

Prepare the captions for training and testing. Extract the text from the Captions field of the struct
containing both the training and test data (annotationsAll), erase the punctuation, and convert
the text to lowercase.

captionsAll = cat(1,annotationsAll.Captions);
captionsAll = erasePunctuation(captionsAll);
captionsAll = lower(captionsAll);

In order to generate captions, the RNN decoder requires special start and stop tokens to indicate
when to start and stop generating text, respectively. Add the custom tokens "<start>" and
"<stop>" to the beginnings and ends of the captions, respectively.

captionsAll = "<start>" + captionsAll + "<stop>";

Tokenize the captions using the tokenizedDocument function and specify the start and stop tokens
using the CustomTokens option.

documentsAll = tokenizedDocument(captionsAll,CustomTokens=["<start>" "<stop>"]);

Create a wordEncoding object that maps words to numeric indices and back. Reduce the memory
requirements by specifying a vocabulary size of 5000 corresponding to the most frequently observed
words in the training data. To avoid bias, use only the documents corresponding to the training set.

enc = wordEncoding(documentsAll(idxTrain),MaxNumWords=5000,Order="frequency");

Create an augmented image datastore containing the images corresponding to the captions. Set the
output size to match the input size of the convolutional network. To keep the images synchronized
with the captions, specify a table of file names for the datastore by reconstructing the file names
using the image ID. To return grayscale images as 3-channel RGB images, set the
ColorPreprocessing option to "gray2rgb".

tblFilenames = table(cat(1,annotationsTrain.Filename));
augimdsTrain = augmentedImageDatastore(inputSizeNet,tblFilenames,ColorPreprocessing="gray2rgb")

augimdsTrain = 
  augmentedImageDatastore with properties:

 Image Captioning Using Attention

4-305



         NumObservations: 78644
           MiniBatchSize: 1
        DataAugmentation: 'none'
      ColorPreprocessing: 'gray2rgb'
              OutputSize: [299 299]
          OutputSizeMode: 'resize'
    DispatchInBackground: 0

Initialize Model Parameters

Initialize the model parameters. Specify 512 hidden units with a word embedding dimension of 256.

embeddingDimension = 256;
numHiddenUnits = 512;

Initialize a struct containing the parameters for the encoder model.

• Initialize the weights of the fully connected operations using the Glorot initializer, specified by the
initializeGlorot function, listed at the end of the example. Specify the output size to match
the embedding dimension of the decoder (256) and an input size to match the number of output
channels of the pretrained network. The 'mixed10' layer of the Inception-v3 network outputs
data with 2048 channels.

numFeatures = outputSizeNet(1) * outputSizeNet(2);
inputSizeEncoder = outputSizeNet(3);
parametersEncoder = struct;

% Fully connect
parametersEncoder.fc.Weights = dlarray(initializeGlorot(embeddingDimension,inputSizeEncoder));
parametersEncoder.fc.Bias = dlarray(zeros([embeddingDimension 1],"single"));

Initialize a struct containing parameters for the decoder model.

• Initialize the word embedding weights with the size given by the embedding dimension and the
vocabulary size plus one, where the extra entry corresponds to the padding value.

• Initialize the weights and biases for the Bahdanau attention mechanism with sizes corresponding
to the number of hidden units of the GRU operation.

• Initialize the weights and bias of the GRU operation.
• Initialize the weights and biases of two fully connected operations.

For the model decoder parameters, initialize each of the weighs and biases with the Glorot initializer
and zeros, respectively.

inputSizeDecoder = enc.NumWords + 1;
parametersDecoder = struct;

% Word embedding
parametersDecoder.emb.Weights = dlarray(initializeGlorot(embeddingDimension,inputSizeDecoder));

% Attention
parametersDecoder.attention.Weights1 = dlarray(initializeGlorot(numHiddenUnits,embeddingDimension));
parametersDecoder.attention.Bias1 = dlarray(zeros([numHiddenUnits 1],"single"));
parametersDecoder.attention.Weights2 = dlarray(initializeGlorot(numHiddenUnits,numHiddenUnits));
parametersDecoder.attention.Bias2 = dlarray(zeros([numHiddenUnits 1],"single"));
parametersDecoder.attention.WeightsV = dlarray(initializeGlorot(1,numHiddenUnits));

4 Deep Learning with Time Series, Sequences, and Text

4-306



parametersDecoder.attention.BiasV = dlarray(zeros(1,1,"single"));

% GRU
parametersDecoder.gru.InputWeights = dlarray(initializeGlorot(3*numHiddenUnits,2*embeddingDimension));
parametersDecoder.gru.RecurrentWeights = dlarray(initializeGlorot(3*numHiddenUnits,numHiddenUnits));
parametersDecoder.gru.Bias = dlarray(zeros(3*numHiddenUnits,1,"single"));

% Fully connect
parametersDecoder.fc1.Weights = dlarray(initializeGlorot(numHiddenUnits,numHiddenUnits));
parametersDecoder.fc1.Bias = dlarray(zeros([numHiddenUnits 1],"single"));

% Fully connect
parametersDecoder.fc2.Weights = dlarray(initializeGlorot(enc.NumWords+1,numHiddenUnits));
parametersDecoder.fc2.Bias = dlarray(zeros([enc.NumWords+1 1],"single"));

Define Model Functions

Create the functions modelEncoder and modelDecoder, listed at the end of the example, which
compute the outputs of the encoder and decoder models, respectively.

The modelEncoder function, listed in the Encoder Model Function on page 4-317 section of the
example, takes as input an array of activations X from the output of the pretrained network and
passes it through a fully connected operation and a ReLU operation. Because the pretrained network
does not need to be traced for automatic differentiation, extracting the features outside the encoder
model function is more computationally efficient.

The modelDecoder function, listed in the Decoder Model Function on page 4-317 section of the
example, takes as input a single input time-step corresponding to an input word, the decoder model
parameters, the features from the encoder, and the network state, and returns the predictions for the
next time step, the updated network state, and the attention weights.

Specify Training Options

Specify the options for training. Train for 30 epochs with a mini-batch size of 128 and display the
training progress in a plot.

miniBatchSize = 128;
numEpochs = 30;
plots = "training-progress";

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

executionEnvironment = "auto";

Train Network

Train the network using a custom training loop.

At the beginning of each epoch, shuffle the input data. To keep the images in the augmented image
datastore and the captions synchronized, create an array of shuffled indices that indexes into both
data sets.

For each mini-batch:

 Image Captioning Using Attention

4-307



• Rescale the images to the size that the pretrained network expects.
• For each image, select a random caption.
• Convert the captions to sequences of word indices. Specify right-padding of the sequences with

the padding value corresponding to the index of the padding token.
• Convert the data to dlarray objects. For the images, specify dimension labels "SSCB" (spatial,

spatial, channel, batch).
• For GPU training, convert the data to gpuArray objects.
• Extract the image features using the pretrained network and reshape them to the size the encoder

expects.
• Evaluate the model loss and gradients using the dlfeval and modelLoss functions.
• Update the encoder and decoder model parameters using the adamupdate function.
• Display the training progress in a plot.

Initialize the parameters for the Adam optimizer.

trailingAvgEncoder = [];
trailingAvgSqEncoder = [];

trailingAvgDecoder = [];
trailingAvgSqDecoder = [];

Initialize the training progress plot. Create an animated line that plots the loss against the
corresponding iteration.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline(Color=[0.85 0.325 0.098]);
    xlabel("Iteration")
    ylabel("Loss")
    ylim([0 inf])
    grid on
end

Train the model.

iteration = 0;
numObservationsTrain = numel(annotationsTrain);
numIterationsPerEpoch = floor(numObservationsTrain / miniBatchSize);
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Shuffle data.
    idxShuffle = randperm(numObservationsTrain);
    
    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        
        % Determine mini-batch indices.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        idxMiniBatch = idxShuffle(idx);
        

4 Deep Learning with Time Series, Sequences, and Text

4-308



        % Read mini-batch of data.
        tbl = readByIndex(augimdsTrain,idxMiniBatch);
        X = cat(4,tbl.input{:});
        annotations = annotationsTrain(idxMiniBatch);
        
        % For each image, select random caption.
        idx = cellfun(@(captionIDs) randsample(captionIDs,1),{annotations.CaptionIDs});
        documents = documentsAll(idx);
        
        % Create batch of data.
        [X, T] = createBatch(X,documents,net,inputMin,inputMax,enc,executionEnvironment);
        
        % Evaluate the model loss and gradients using dlfeval and the
        % modelLoss function.
        [loss, gradientsEncoder, gradientsDecoder] = dlfeval(@modelLoss, parametersEncoder, ...
            parametersDecoder, X, T);
        
        % Update encoder using adamupdate.
        [parametersEncoder, trailingAvgEncoder, trailingAvgSqEncoder] = adamupdate(parametersEncoder, ...
            gradientsEncoder, trailingAvgEncoder, trailingAvgSqEncoder, iteration);
        
        % Update decoder using adamupdate.
        [parametersDecoder, trailingAvgDecoder, trailingAvgSqDecoder] = adamupdate(parametersDecoder, ...
            gradientsDecoder, trailingAvgDecoder, trailingAvgSqDecoder, iteration);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),Format="hh:mm:ss");
            addpoints(lineLossTrain,iteration,double(loss))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            
            drawnow
        end
    end
end

 Image Captioning Using Attention

4-309



Predict New Captions

The caption generation process is different from the process for training. During training, at each
time step, the decoder uses the true value of the previous time step as input. This is known as
"teacher forcing". When making predictions on new data, the decoder uses the previous predicted
values instead of the true values.

Predicting the most likely word for each step in the sequence can lead to suboptimal results. For
example, if the decoder predicts the first word of a caption is "a" when given an image of an elephant,
then the probability of predicting "elephant" for the next word becomes much more unlikely because
of the extremely low probability of the phrase "a elephant" appearing in English text.

To address this issue, you can use the beam search algorithm: instead of taking the most likely
prediction for each step in the sequence, take the top k predictions (the beam index) and for each
following step, keep the top k predicted sequences so far according to the overall score.

Generate a caption of a new image by extracting the image features, inputting them into the encoder,
and then using the beamSearch function, listed in the Beam Search Function on page 4-319 section
of the example.

img = imread("laika_sitting.jpg");
X = extractImageFeatures(net,img,inputMin,inputMax,executionEnvironment);

beamIndex = 3;
maxNumWords = 20;
[words,attentionScores] = beamSearch(X,beamIndex,parametersEncoder,parametersDecoder,enc,maxNumWords);
caption = join(words)

4 Deep Learning with Time Series, Sequences, and Text

4-310



caption = 
"a dog is standing on a tile floor"

Display the image with the caption.

figure
imshow(img)
title(caption)

 Image Captioning Using Attention

4-311



4 Deep Learning with Time Series, Sequences, and Text

4-312



Predict Captions for Data Set

To predict captions for a collection of images, loop over mini-batches of data in the datastore and
extract the features from the images using the extractImageFeatures function. Then, loop over
the images in the mini-batch and generate captions using the beamSearch function.

Create an augmented image datastore and set the output size to match the input size of the
convolutional network. To output grayscale images as 3-channel RGB images, set the
ColorPreprocessing option to "gray2rgb".

tblFilenamesTest = table(cat(1,annotationsTest.Filename));
augimdsTest = augmentedImageDatastore(inputSizeNet,tblFilenamesTest,ColorPreprocessing="gray2rgb")

augimdsTest = 
  augmentedImageDatastore with properties:

         NumObservations: 4139
           MiniBatchSize: 1
        DataAugmentation: 'none'
      ColorPreprocessing: 'gray2rgb'
              OutputSize: [299 299]
          OutputSizeMode: 'resize'
    DispatchInBackground: 0

Generate captions for the test data. Predicting captions on a large data set can take some time. If you
have Parallel Computing Toolbox™, then you can make predictions in parallel by generating captions
inside a parfor look. If you do not have Parallel Computing Toolbox. then the parfor loop runs in
serial.

beamIndex = 2;
maxNumWords = 20;

numObservationsTest = numel(annotationsTest);
numIterationsTest = ceil(numObservationsTest/miniBatchSize);

captionsTestPred = strings(1,numObservationsTest);
documentsTestPred = tokenizedDocument(strings(1,numObservationsTest));

for i = 1:numIterationsTest
    % Mini-batch indices.
    idxStart = (i-1)*miniBatchSize+1;
    idxEnd = min(i*miniBatchSize,numObservationsTest);
    idx = idxStart:idxEnd;
    
    sz = numel(idx);
    
    % Read images.
    tbl = readByIndex(augimdsTest,idx);
    
    % Extract image features.
    X = cat(4,tbl.input{:});
    X = extractImageFeatures(net,X,inputMin,inputMax,executionEnvironment);
    
    % Generate captions.
    captionsPredMiniBatch = strings(1,sz);
    documentsPredMiniBatch = tokenizedDocument(strings(1,sz));
    

 Image Captioning Using Attention

4-313



    parfor j = 1:sz
        words = beamSearch(X(:,:,j),beamIndex,parametersEncoder,parametersDecoder,enc,maxNumWords);
        captionsPredMiniBatch(j) = join(words);
        documentsPredMiniBatch(j) = tokenizedDocument(words,TokenizeMethod="none");
    end
    
    captionsTestPred(idx) = captionsPredMiniBatch;
    documentsTestPred(idx) = documentsPredMiniBatch;
end

Analyzing and transferring files to the workers ...done.

To view a test image with the corresponding caption, use the imshow function and set the title to the
predicted caption.

idx = 1;
tbl = readByIndex(augimdsTest,idx);
img = tbl.input{1};
figure
imshow(img)
title(captionsTestPred(idx))

Evaluate Model Accuracy

To evaluate the accuracy of the captions using the BLEU score, calculate the BLEU score for each
caption (the candidate) against the corresponding captions in the test set (the references) using the
bleuEvaluationScore function. Using the bleuEvaluationScore function, you can compare a
single candidate document to multiple reference documents.

The bleuEvaluationScore function, by default, scores similarity using n-grams of length one
through four. As the captions are short, this behavior can lead to uninformative results as most scores
are close to zero. Set the n-gram length to one through two by setting the NgramWeights option to a
two-element vector with equal weights.

ngramWeights = [0.5 0.5];

for i = 1:numObservationsTest
    annotation = annotationsTest(i);
    
    captionIDs = annotation.CaptionIDs;
    candidate = documentsTestPred(i);
    references = documentsAll(captionIDs);
    
    score = bleuEvaluationScore(candidate,references,NgramWeights=ngramWeights);
    
    scores(i) = score;
end

View the mean BLEU score.

scoreMean = mean(scores)

scoreMean = 0.4224

Visualize the scores in a histogram.

figure
histogram(scores)

4 Deep Learning with Time Series, Sequences, and Text

4-314



xlabel("BLEU Score")
ylabel("Frequency")

Attention Function

The attention function calculates the context vector and the attention weights using Bahdanau
attention.

function [contextVector, attentionWeights] = attention(hidden,features,weights1, ...
    bias1,weights2,bias2,weightsV,biasV)

% Model dimensions.
[embeddingDimension,numFeatures,miniBatchSize] = size(features);
numHiddenUnits = size(weights1,1);

% Fully connect.
Y1 = reshape(features,embeddingDimension, numFeatures*miniBatchSize);
Y1 = fullyconnect(Y1,weights1,bias1,DataFormat="CB");
Y1 = reshape(Y1,numHiddenUnits,numFeatures,miniBatchSize);

% Fully connect.
Y2 = fullyconnect(hidden,weights2,bias2,DataFormat="CB");
Y2 = reshape(Y2,numHiddenUnits,1,miniBatchSize);

% Addition, tanh.
scores = tanh(Y1 + Y2);
scores = reshape(scores, numHiddenUnits, numFeatures*miniBatchSize);

 Image Captioning Using Attention

4-315



% Fully connect, softmax.
attentionWeights = fullyconnect(scores,weightsV,biasV,DataFormat="CB");
attentionWeights = reshape(attentionWeights,1,numFeatures,miniBatchSize);
attentionWeights = softmax(attentionWeights,DataFormat="SCB");

% Context.
contextVector = attentionWeights .* features;
contextVector = squeeze(sum(contextVector,2));

end

Embedding Function

The embedding function maps an array of indices to a sequence of embedding vectors.

function Z = embedding(X, weights)

% Reshape inputs into a vector
[N, T] = size(X, 1:2);
X = reshape(X, N*T, 1);

% Index into embedding matrix
Z = weights(:, X);

% Reshape outputs by separating out batch and sequence dimensions
Z = reshape(Z, [], N, T);

end

Feature Extraction Function

The extractImageFeatures function takes as input a trained dlnetwork object, an input image,
statistics for image rescaling, and the execution environment, and returns a dlarray containing the
features extracted from the pretrained network.

function X = extractImageFeatures(net,X,inputMin,inputMax,executionEnvironment)

% Resize and rescale.
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);
X = rescale(X,-1,1,InputMin=inputMin,InputMax=inputMax);

% Convert to dlarray.
X = dlarray(X,"SSCB");

% Convert to gpuArray.
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    X = gpuArray(X);
end

% Extract features and reshape.
X = predict(net,X);
sz = size(X);
numFeatures = sz(1) * sz(2);
inputSizeEncoder = sz(3);
miniBatchSize = sz(4);
X = reshape(X,[numFeatures inputSizeEncoder miniBatchSize]);

end

4 Deep Learning with Time Series, Sequences, and Text

4-316



Batch Creation Function

The createBatch function takes as input a mini-batch of data, tokenized captions, a pretrained
network, statistics for image rescaling, a word encoding, and the execution environment, and returns
a mini-batch of data corresponding to the extracted image features and captions for training.

function [X, T] = createBatch(X,documents,net,inputMin,inputMax,enc,executionEnvironment)

X = extractImageFeatures(net,X,inputMin,inputMax,executionEnvironment);

% Convert documents to sequences of word indices.
T = doc2sequence(enc,documents,PaddingDirection="right",PaddingValue=enc.NumWords+1);
T = cat(1,T{:});

% Convert mini-batch of data to dlarray.
T = dlarray(T);

% If training on a GPU, then convert data to gpuArray.
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    T = gpuArray(T);
end

end

Encoder Model Function

The modelEncoder function takes as input an array of activations X and passes it through a fully
connected operation and a ReLU operation. For the fully connected operation, operate on the channel
dimension only. To apply the fully connected operation across the channel dimension only, flatten the
other channels into a single dimension and specify this dimension as the batch dimension using the
DataFormat option of the fullyconnect function.

function Y = modelEncoder(X,parametersEncoder)

[numFeatures,inputSizeEncoder,miniBatchSize] = size(X);

% Fully connect
weights = parametersEncoder.fc.Weights;
bias = parametersEncoder.fc.Bias;
embeddingDimension = size(weights,1);

X = permute(X,[2 1 3]);
X = reshape(X,inputSizeEncoder,numFeatures*miniBatchSize);
Y = fullyconnect(X,weights,bias,DataFormat="CB");
Y = reshape(Y,embeddingDimension,numFeatures,miniBatchSize);

% ReLU
Y = relu(Y);

end

Decoder Model Function

The modelDecoder function takes as input a single time-step X, the decoder model parameters, the
features from the encoder, and the network state, and returns the predictions for the next time step,
the updated network state, and the attention weights.

 Image Captioning Using Attention

4-317



function [Y,state,attentionWeights] = modelDecoder(X,parametersDecoder,features,state)

hiddenState = state.gru.HiddenState;

% Attention
weights1 = parametersDecoder.attention.Weights1;
bias1 = parametersDecoder.attention.Bias1;
weights2 = parametersDecoder.attention.Weights2;
bias2 = parametersDecoder.attention.Bias2;
weightsV = parametersDecoder.attention.WeightsV;
biasV = parametersDecoder.attention.BiasV;
[contextVector, attentionWeights] = attention(hiddenState,features,weights1,bias1,weights2,bias2,weightsV,biasV);

% Embedding
weights = parametersDecoder.emb.Weights;
X = embedding(X,weights);

% Concatenate
Y = cat(1,contextVector,X);

% GRU
inputWeights = parametersDecoder.gru.InputWeights;
recurrentWeights = parametersDecoder.gru.RecurrentWeights;
bias = parametersDecoder.gru.Bias;
[Y, hiddenState] = gru(Y, hiddenState, inputWeights, recurrentWeights, bias, DataFormat="CBT");

% Update state
state.gru.HiddenState = hiddenState;

% Fully connect
weights = parametersDecoder.fc1.Weights;
bias = parametersDecoder.fc1.Bias;
Y = fullyconnect(Y,weights,bias,DataFormat="CB");

% Fully connect
weights = parametersDecoder.fc2.Weights;
bias = parametersDecoder.fc2.Bias;
Y = fullyconnect(Y,weights,bias,DataFormat="CB");

end

Model Loss

The modelLoss function takes as input the encoder and decoder parameters, the encoder features X,
and the target caption T, and returns the loss, the gradients of the encoder and decoder parameters
with respect to the loss, and the predictions.

function [loss,gradientsEncoder,gradientsDecoder,YPred] = ...
    modelLoss(parametersEncoder,parametersDecoder,X,T)

miniBatchSize = size(X,3);
sequenceLength = size(T,2) - 1;
vocabSize = size(parametersDecoder.emb.Weights,2);

% Model encoder
features = modelEncoder(X,parametersEncoder);

% Initialize state

4 Deep Learning with Time Series, Sequences, and Text

4-318



numHiddenUnits = size(parametersDecoder.attention.Weights1,1);
state = struct;
state.gru.HiddenState = dlarray(zeros([numHiddenUnits miniBatchSize],"single"));

YPred = dlarray(zeros([vocabSize miniBatchSize sequenceLength],"like",X));
loss = dlarray(single(0));

padToken = vocabSize;

for t = 1:sequenceLength
    decoderInput = T(:,t);
    
    YReal = T(:,t+1);
    
    [YPred(:,:,t),state] = modelDecoder(decoderInput,parametersDecoder,features,state);
    
    mask = YReal ~= padToken;
    
    loss = loss + sparseCrossEntropyAndSoftmax(YPred(:,:,t),YReal,mask);
end

% Calculate gradients
[gradientsEncoder,gradientsDecoder] = dlgradient(loss, parametersEncoder,parametersDecoder);

end

Sparse Cross Entropy and Softmax Loss Function

The sparseCrossEntropyAndSoftmax takes as input the predictions Y, corresponding targets T,
and sequence padding mask, and applies the softmax functions and returns the cross-entropy loss.

function loss = sparseCrossEntropyAndSoftmax(Y, T, mask)

miniBatchSize = size(Y, 2);

% Softmax.
Y = softmax(Y,DataFormat="CB");

% Find rows corresponding to the target words.
idx = sub2ind(size(Y), T', 1:miniBatchSize);
Y = Y(idx);

% Bound away from zero.
Y = max(Y, single(1e-8));

% Masked loss.
loss = log(Y) .* mask';
loss = -sum(loss,"all") ./ miniBatchSize;

end

Beam Search Function

The beamSearch function takes as input the image features X, a beam index, the parameters for the
encoder and decoder networks, a word encoding, and a maximum sequence length, and returns the
caption words for the image using the beam search algorithm.

 Image Captioning Using Attention

4-319



function [words,attentionScores] = beamSearch(X,beamIndex,parametersEncoder,parametersDecoder, ...
    enc,maxNumWords)

% Model dimensions
numFeatures = size(X,1);
numHiddenUnits = size(parametersDecoder.attention.Weights1,1);

% Extract features
features = modelEncoder(X,parametersEncoder);

% Initialize state
state = struct;
state.gru.HiddenState = dlarray(zeros([numHiddenUnits 1],"like",X));

% Initialize candidates
candidates = struct;
candidates.State = state;
candidates.Words = "<start>";
candidates.Score = 0;
candidates.AttentionScores = dlarray(zeros([numFeatures maxNumWords],"like",X));
candidates.StopFlag = false;

t = 0;

% Loop over words
while t < maxNumWords
    t = t + 1;
    
    candidatesNew = [];
    
    % Loop over candidates
    for i = 1:numel(candidates)
        
        % Stop generating when stop token is predicted
        if candidates(i).StopFlag
            continue
        end
        
        % Candidate details
        state = candidates(i).State;
        words = candidates(i).Words;
        score = candidates(i).Score;
        attentionScores = candidates(i).AttentionScores;
        
        % Predict next token
        decoderInput = word2ind(enc,words(end));
        [YPred,state,attentionScores(:,t)] = modelDecoder(decoderInput,parametersDecoder,features,state);
        
        YPred = softmax(YPred,DataFormat="CB");
        [scoresTop,idxTop] = maxk(extractdata(YPred),beamIndex);
        idxTop = gather(idxTop);
        
        % Loop over top predictions
        for j = 1:beamIndex
            candidate = struct;
            
            candidateWord = ind2word(enc,idxTop(j));
            candidateScore = scoresTop(j);

4 Deep Learning with Time Series, Sequences, and Text

4-320



            
            if candidateWord == "<stop>"
                candidate.StopFlag = true;
                attentionScores(:,t+1:end) = [];
            else
                candidate.StopFlag = false;
            end
            
            candidate.State = state;
            candidate.Words = [words candidateWord];
            candidate.Score = score + log(candidateScore);
            candidate.AttentionScores = attentionScores;
            
            candidatesNew = [candidatesNew candidate];
        end
    end
    
    % Get top candidates
    [~,idx] = maxk([candidatesNew.Score],beamIndex);
    candidates = candidatesNew(idx);
    
    % Stop predicting when all candidates have stop token
    if all([candidates.StopFlag])
        break
    end
end

% Get top candidate
words = candidates(1).Words(2:end-1);
attentionScores = candidates(1).AttentionScores;

end

Glorot Weight Initialization Function

The initializeGlorot function generates an array of weights according to Glorot initialization.

function weights = initializeGlorot(numOut, numIn)

varWeights = sqrt( 6 / (numIn + numOut) );
weights = varWeights * (2 * rand([numOut, numIn], "single") - 1);

end

See Also
word2ind | tokenizedDocument | wordEncoding | dlarray | adamupdate | dlupdate | dlfeval
| dlgradient | crossentropy | softmax | lstm | doc2sequence | gru

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230

 Image Captioning Using Attention

4-321



• “Multilabel Text Classification Using Deep Learning” on page 4-210
• “Automatic Differentiation Background” on page 19-214

4 Deep Learning with Time Series, Sequences, and Text

4-322



Language Translation Using Deep Learning

This example shows how to train a German to English language translator using a recurrent
sequence-to-sequence encoder-decoder model with attention.

Recurrent encoder-decoder models have proven successful at tasks such as abstractive text
summarization and neural machine translation. These models consist of an encoder, which typically
processes input data with a recurrent layer such as an LSTM layer, and a decoder which maps the
encoded input into the desired output, typically also with a recurrent layer. Models that incorporate
attention mechanisms into the models allow the decoder to focus on parts of the encoded input while
generating the translation one time step at a time. This example implements Luong attention [1] on
page 4-344 using the custom layer luongAttentionLayer, attached to this example as a supporting
file. To access this layer, open this example as a live script.

This diagram shows the structure of a language translation model. The input text, specified as a
sequence of words, is passed through the encoder, which outputs an encoded version of the input
sequence and a hidden state used to initialize the decoder state. The decoder makes predictions one
word at a time using previous prediction as input and also outputs update state and context values.

For more information and the details about the encoder and decoder networks used in this example,
see the Define Encoder and Decoder Networks on page 4-326 section of the example.

Predicting the most likely word for each step in the sequence can lead to suboptimal results. Any
incorrect predictions can cause even more incorrect predictions in later time steps. For example, for
the target text "An eagle flew by.", if the decoder predicts the first word of a translation as "A",
then the probability of predicting "eagle" for the next word becomes much more unlikely because of
the low probability of the phrase "a eagle" appearing in English text. The translation generation
process differs for training and prediction. This example uses different approaches to stabilize
training and the predictions:

• To stabilize training, you can randomly use the target values as inputs to the decoder. In
particular, you can adjust the probability used to inject the target values as training progresses.
For example, you can train using the target values at a much higher rate at the start of training,
then decay the probability such that towards the end of training the model uses only the previous
predictions. This technique is known as scheduled sampling [2] on page 4-344. For more
information, see the Decoder Predictions Function on page 4-340 section of the example.

 Language Translation Using Deep Learning

4-323



• To improve the predictions at translation time, for each time step, you can consider the top K
predictions for some positive integer K and explore different sequences of predictions to identify
the best combination. This technique is known as beam search. For more information, see the
Beam Search Function on page 4-336 section of the example.

This example shows how to load and preprocess text data to train a German to English language
translator, define the encoder and decoder networks, train the model using a custom training loop,
and generate translations using beam search.

Note: Language translation is a computationally intensive task. Training on the full data set used in
this example can take many hours to run. To make the example run quicker, you can reduce training
time at the cost of accuracy of predictions with previously unseen data by discarding a portion of the
training data. Removing observations can speed up training because it reduces the amount of data to
process in an epoch and reduces the vocabulary size of the training data.

To shorten the time it takes to run the example, discard 70% of the data. Note that discarding large
amounts of data negatively affects the accuracy of the learned model. For more accurate results,
reduce the amount of discarded data. To speed up the example, increase the amount of discarded
data.

discardProp = 0.70;

Load Training Data

Download and extract the English-German Tab-delimited Bilingual Sentence Pairs data set. The data
comes from https://www.manythings.org/anki/ and https://tatoeba.org, and is provided under the
Tatoeba Terms of Use and the CC-BY license.

downloadFolder = tempdir;
url = "https://www.manythings.org/anki/deu-eng.zip";
filename = fullfile(downloadFolder,"deu-eng.zip");
dataFolder = fullfile(downloadFolder,"deu-eng");

if ~exist(dataFolder,"dir")
    fprintf("Downloading English-German Tab-delimited Bilingual Sentence Pairs data set (7.6 MB)... ")
    websave(filename,url);
    unzip(filename,dataFolder);
    fprintf("Done.\n")
end

Create a table that contains the sentence pairs specified as strings. Read the tab-delimited sentences
pairs using readtable. Specify the German text as the source and the English text as the target.

filename = fullfile(dataFolder,"deu.txt");

opts = delimitedTextImportOptions(...
    Delimiter="\t", ...
    VariableNames=["Target" "Source" "License"], ...
    SelectedVariableNames=["Source" "Target"], ...
    VariableTypes=["string" "string" "string"], ...
    Encoding="UTF-8");

View the first few sentence pairs in the data.

data = readtable(filename, opts);
head(data)

4 Deep Learning with Time Series, Sequences, and Text

4-324

https://www.manythings.org/anki/
https://tatoeba.org
https://tatoeba.org/eng/terms_of_use
https://creativecommons.org/licenses/by/2.0/


ans=8×2 table
        Source         Target 
    _______________    _______

    "Geh."             "Go."  
    "Hallo!"           "Hi."  
    "Grüß Gott!"       "Hi."  
    "Lauf!"            "Run!" 
    "Lauf!"            "Run." 
    "Potzdonner!"      "Wow!" 
    "Donnerwetter!"    "Wow!" 
    "Feuer!"           "Fire!"

Training on the full dataset can take a long time to run. To reduce training time at the cost of
accuracy, you can discard a portion of the training data. Removing observations can speed up training
because it reduces the amount of data to process in an epoch as well as reducing the vocabulary size
of the training data.

Discard a portion of the data according to the discardProp variable defined at the start of the
example. Note that discarding large amounts of data negatively affects the accuracy of the learned
model. For more accurate results, reduce the amount of discarded data by setting discardProp to a
lower value.

idx = size(data,1) - floor(discardProp*size(data,1)) + 1;
data(idx:end,:) = [];

View the number of remaining observations.

size(data,1)

ans = 68124

Split the data into training and test partitions containing 90% and 10% of the data, respectively.

trainingProp = 0.9;
idx = randperm(size(data,1),floor(trainingProp*size(data,1)));
dataTrain = data(idx,:);
dataTest = data;
dataTest(idx,:) = [];

View the first few rows of the training data.

head(dataTrain)

ans=8×2 table
                  Source                            Target          
    ___________________________________    _________________________

    "Tom erschoss Mary."                   "Tom shot Mary."         
    "Ruf mich bitte an."                   "Call me, please."       
    "Kann das einer nachprüfen?"           "Can someone check this?"
    "Das lasse ich mir nicht gefallen!"    "I won't stand for it."  
    "Ich mag Englisch nicht."              "I don't like English."  
    "Er ist auf dem Laufenden."            "He is up to date."      
    "Sie sieht glücklich aus."             "She seems happy."       
    "Wo wurden sie geboren?"               "Where were they born?"  

 Language Translation Using Deep Learning

4-325



View the number of training observations.

numObservationsTrain = size(dataTrain,1)

numObservationsTrain = 61311

Preprocess Data

Preprocess the text data using the preprocessText function, listed at the end of the example. The
preprocessText function preprocesses and tokenizes the input text for translation by splitting the
text into words and adding start and stop tokens.

documentsGerman = preprocessText(dataTrain.Source);

Create a wordEncoding object that maps tokens to a numeric index and vice versa using a
vocabulary.

encGerman = wordEncoding(documentsGerman);

Convert the target data to sequences using the same steps.

documentsEnglish = preprocessText(dataTrain.Target);
encEnglish = wordEncoding(documentsEnglish);

View the vocabulary sizes of the source and target encodings.

numWordsGerman = encGerman.NumWords

numWordsGerman = 12117

numWordsEnglish = encEnglish.NumWords

numWordsEnglish = 7226

Define Encoder and Decoder Networks

This diagram shows the structure of a language translation model. The input text, specified as a
sequence of words, is passed through the encoder, which outputs an encoded version of the input
sequence and a hidden state used to initialize the decoder state. The decoder makes predictions one
word at a time using previous the prediction as input and also outputs updated state and context
values.

4 Deep Learning with Time Series, Sequences, and Text

4-326



Create the encoder and decoder networks using the languageTranslationLayers function,
attached to this example as a supporting file. To access this function, open the example as a live
script.

For the encoder network, the languageTranslationLayers function defines a simple network
consisting of an embedding layer followed by an LSTM layer. An embedding operation converts
categorical tokens into numeric vectors, where the numeric vectors are learned by the network.

For the decoder network, the languageTranslationLayers function defines a network that passes
the input data concatenated with the input context through an LSTM layer, and takes the updated
hidden state and the encoder output and passes it through an attention mechanism to determine the
context vector. The LSTM output and the context vector are then concatenated and passed through a
fully connected and a softmax layer for classification.

 Language Translation Using Deep Learning

4-327



4 Deep Learning with Time Series, Sequences, and Text

4-328



Create the encoder and decoder networks using the languageTranslationLayers function,
attached to this example as a supporting file. To access this function, open the example as a live
script. Specify an embedding dimension of 128, and 128 hidden units in the LSTM layers.

embeddingDimension = 128;
numHiddenUnits = 128;

[lgraphEncoder,lgraphDecoder] = languageTranslationLayers(embeddingDimension,numHiddenUnits,numWordsGerman,numWordsEnglish);

To train the network in a custom training loop, convert the encoder and decoder networks to
dlnetwork objects.

netEncoder = dlnetwork(lgraphEncoder);
netDecoder = dlnetwork(lgraphDecoder);

The decoder has multiple outputs including the context output of the attention layer, which is also
passed to another layer. Specify the network outputs using the OutputNames property of the decoder
dlnetwork object.

netDecoder.OutputNames = ["softmax" "context" "lstm2/hidden" "lstm2/cell"];

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 4-339 section of the
example, which takes as input the encoder and decoder model parameters, a mini-batch of input data
and the padding masks corresponding to the input data, and the dropout probability and returns the
loss, the gradients of the loss with respect to the learnable parameters in the models, and the model
predictions.

Specify Training Options

Train with a mini-batch size of 64 for 15 epochs and a learning rate of 0.005.

miniBatchSize = 64;
numEpochs = 15;
learnRate = 0.005;

Initialize the options for Adam optimization.

gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Train using gradually decaying values of ϵ for scheduled sampling. Start with a value of ϵ = 0 . 5 and
linearly decay to end with a value of ϵ = 0. For more information about scheduled sampling, see the
Decoder Predictions Function on page 4-340 section of the example.

epsilonStart = 0.5;
epsilonEnd = 0;

Train using SortaGrad [3] on page 4-344, which is a strategy to improve training of ragged sequences
by training for one epoch with the sequences sorted by sequence then shuffling once per epoch
thereafter.

Sort the training sequences by sequence length.

sequenceLengths = doclength(documentsGerman);
[~,idx] = sort(sequenceLengths);

 Language Translation Using Deep Learning

4-329



documentsGerman = documentsGerman(idx);
documentsEnglish = documentsEnglish(idx);

Train Model

Train the model using a custom training loop.

Create array datastores for the source and target data using the arrayDatastore function.
Combine the datastores using the combine function.

adsSource = arrayDatastore(documentsGerman);
adsTarget = arrayDatastore(documentsEnglish);
cds = combine(adsSource,adsTarget);

Create a mini-batch queue to automatically prepare mini-batches for training.

• Preprocess the training data using the preprocessMiniBatch function, which returns a mini-
batch of source sequences, target sequences, the corresponding mask, and the initial start token.

• Output dlarray objects with the format "CTB" (channel, time, batch).
• Discard any partial mini-batches.

mbq = minibatchqueue(cds,4, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@(X,Y) preprocessMiniBatch(X,Y,encGerman,encEnglish), ...
    MiniBatchFormat=["CTB" "CTB" "CTB" "CTB"], ...
    PartialMiniBatch="discard");

Initialize the training progress plot.

figure
C = colororder;
lineLossTrain = animatedline(Color=C(2,:));

xlabel("Iteration")
ylabel("Loss")
ylim([0 inf])
grid on

For the encoder and decoder networks, initialize the values for Adam optimization.

trailingAvgEncoder = [];
trailingAvgSqEncoder = [];
trailingAvgDecder = [];
trailingAvgSqDecoder = [];

Create an array of ϵ values for scheduled sampling.

numIterationsPerEpoch = floor(numObservationsTrain/miniBatchSize);
numIterations = numIterationsPerEpoch * numEpochs;
epsilon = linspace(epsilonStart,epsilonEnd,numIterations);

Train the model. For each iteration:

• Read a mini-batch of data from the mini-batch queue.
• Compute the model loss and gradients.
• Update the encoder and decoder networks using the adamupdate function.

4 Deep Learning with Time Series, Sequences, and Text

4-330



• Update the training progress plot and display an example translation using the ind2str function,
attached to this example as a supporting file. To access this function, open this example as a live
script.

• If the iteration yields the lowest training loss, then save the network.

At the end of each epoch, shuffle the mini-batch queue.

For large data sets, training can take many hours to run.

iteration = 0;
start = tic;
lossMin = inf;
reset(mbq)

% Loop over epochs.
for epoch = 1:numEpochs

    % Loop over mini-batches.
    while hasdata(mbq)
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T,maskT,decoderInput] = next(mbq);
        
        % Compute loss and gradients.
        [loss,gradientsEncoder,gradientsDecoder,YPred] = dlfeval(@modelLoss,netEncoder,netDecoder,X,T,maskT,decoderInput,epsilon(iteration));
        
        % Update network learnable parameters using adamupdate.
        [netEncoder, trailingAvgEncoder, trailingAvgSqEncoder] = adamupdate(netEncoder,gradientsEncoder,trailingAvgEncoder,trailingAvgSqEncoder, ...
            iteration,learnRate,gradientDecayFactor,squaredGradientDecayFactor);

        [netDecoder, trailingAvgDecder, trailingAvgSqDecoder] = adamupdate(netDecoder,gradientsDecoder,trailingAvgDecder,trailingAvgSqDecoder, ...
            iteration,learnRate,gradientDecayFactor,squaredGradientDecayFactor);

        % Generate translation for plot.
        if iteration == 1 || mod(iteration,10) == 0
            strGerman = ind2str(X(:,1,:),encGerman);
            strEnglish = ind2str(T(:,1,:),encEnglish,Mask=maskT);
            strTranslated = ind2str(YPred(:,1,:),encEnglish);
        end

        % Display training progress.
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        loss = double(gather(extractdata(loss)));
        addpoints(lineLossTrain,iteration,loss)
        title( ...
            "Epoch: " + epoch + ", Elapsed: " + string(D) + newline + ...
            "Source: " + strGerman + newline + ...
            "Target: " + strEnglish + newline + ...
            "Training Translation: " + strTranslated)

        drawnow
        
        % Save best network.
        if loss < lossMin
            lossMin = loss;
            netBest.netEncoder = netEncoder;

 Language Translation Using Deep Learning

4-331



            netBest.netDecoder = netDecoder;
            netBest.loss = loss;
            netBest.iteration = iteration;
            netBest.D = D;
        end
    end

    % Shuffle.
    shuffle(mbq);
end

The plot shows two translations of the source text. The target is the target translation provided by the
training data that the network attempts to reproduce. The training translation is the predicted
translation, which uses information from the target text via the scheduled sampling mechanism.

Add the word encodings to the netBest structure and save the structure in a MAT file.

netBest.encGerman = encGerman;
netBest.encEnglish = encEnglish;

D = datetime("now",Format="yyyy_MM_dd__HH_mm_ss");
filename = "net_best__" + string(D) + ".mat";
save(filename,"netBest");

Extract the best network from netBest.

netEncoder = netBest.netEncoder;
netDecoder = netBest.netDecoder;

4 Deep Learning with Time Series, Sequences, and Text

4-332



Test Model

To evaluate the quality of the translations, use the BiLingual Evaluation Understudy (BLEU) scoring
algorithm [4] on page 4-344.

Translate the test data using the translateText function listed at the end of the example.

strTranslatedTest = translateText(netEncoder,netDecoder,encGerman,encEnglish,dataTest.Source);

View a random selection of the test source text, target text, and predicted translations in a table.

numObservationsTest = size(dataTest,1);
idx = randperm(numObservationsTest,8);
tbl = table;
tbl.Source = dataTest.Source(idx);
tbl.Target = dataTest.Target(idx);
tbl.Translated = strTranslatedTest(idx)

tbl=8×3 table
                   Source                              Target                         Translated            
    _____________________________________    __________________________    _________________________________

    "Er sieht krank aus."                    "He seems ill."               "he looks sick ."                
    "Ich werde das Buch holen."              "I'll get the book."          "i'll get the book . . it . ."   
    "Ruhst du dich jemals aus?"              "Do you ever rest?"           "do you look out of ? ? ? ?"     
    "Was willst du?"                         "What are you after?"         "what do you want want ? ? ? ?"  
    "Du hast keinen Beweis."                 "You have no proof."          "you have no proof . . . . ."    
    "Macht es, wann immer ihr wollt."        "Do it whenever you want."    "do it you like it . . it ."     
    "Tom ist gerade nach Hause gekommen."    "Tom has just come home."     "tom just came home home . . . ."
    "Er lügt nie."                           "He never tells a lie."       "he never lie lies . . . . ."    

To evaluate the quality of the translations using the BLEU similarity score, first preprocess the text
data using the same steps as for training. Specify empty start and stop tokens, as these are not used
in the translation.

candidates = preprocessText(strTranslatedTest,StartToken="",StopToken="");
references = preprocessText(dataTest.Target,StartToken="",StopToken="");

The bleuEvaluationScore function, by default, evaluates the similarity scores by comparing n-
grams of length one through four (multiword phrases with four or fewer words or single words). If
the candidate or reference documents have fewer than four tokens, then the resulting BLEU
evaluation score is zero. To ensure that bleuEvaluationScore returns nonzero scores for these
short candidate documents, set the n-gram weights to a vector with fewer elements than the number
of words in candidate.

Determine the length of the shortest candidate document.

minLength = min([doclength(candidates); doclength(references)])

minLength = 2

If the shortest document has fewer than four tokens, then set the n-gram weights to a vector with a
length matching the shortest document with equal weights that sum to one. Otherwise, specify n-
gram weights of [0.25 0.25 0.25 0.25]. Note that if minLength is 1 (and consequently the n-
gram weights is also 1), then the bleuEvaluationScore function can return less meaningful results
as it only compares individual words (unigrams) and does not compare any n-grams (multiword
phrases).

 Language Translation Using Deep Learning

4-333



if minLength < 4
    ngramWeights = ones(1,minLength) / minLength;
else
    ngramWeights = [0.25 0.25 0.25 0.25];
end

Calculate the BLEU evaluation scores by iterating over the translations and using the
bleuEvaluationScore function.

for i = 1:numObservationsTest
    score(i) = bleuEvaluationScore(candidates(i),references(i),NgramWeights=ngramWeights);
end

Visualize the BLEU evaluation scores in a histogram.

figure
histogram(score);
title("BLEU Evaluation Scores")
xlabel("Score")
ylabel("Frequency")

View a table of some of the best translations.

[~,idxSorted] = sort(score,"descend");
idx = idxSorted(1:8);
tbl = table;
tbl.Source = dataTest.Source(idx);

4 Deep Learning with Time Series, Sequences, and Text

4-334



tbl.Target = dataTest.Target(idx);
tbl.Translated = strTranslatedTest(idx)

tbl=8×3 table
             Source                Target        Translated  
    ________________________    ____________    _____________

    "Legen Sie sich hin!"       "Lie low."      "lie low ."  
    "Ich gähnte."               "I yawned."     "i yawned ." 
    "Küsse Tom!"                "Kiss Tom."     "kiss tom ." 
    "Küssen Sie Tom!"           "Kiss Tom."     "kiss tom ." 
    "Nimm Tom."                 "Take Tom."     "take tom ." 
    "Komm bald."                "Come soon."    "come soon ."
    "Ich habe es geschafft."    "I made it."    "i made it ."
    "Ich sehe Tom."             "I see Tom."    "i see tom ."

View a table of some of the worst translations.

idx = idxSorted(end-7:end);
tbl = table;
tbl.Source = dataTest.Source(idx);
tbl.Target = dataTest.Target(idx);
tbl.Translated = strTranslatedTest(idx)

tbl=8×3 table
                                Source                                           Target                       Translated         
    _______________________________________________________________    __________________________    ____________________________

    "Diese Schnecken kann man essen."                                  "These snails are edible."    "this can be eat ."         
    "Sie stehen noch zu Verfügung."                                    "They're still available."    "it's still at . . . . . ." 
    "Diese Schraube passt zu dieser Mutter."                           "This bolt fits this nut."    "this life is too . . . . ."
    "Diese Puppe gehört mir."                                          "This doll belongs to me."    "this one is mine ."        
    "Das ist eine japanische Puppe."                                   "This is a Japanese doll."    "that's a old trick ."      
    "Das ist eine Kreuzung, an der alle Fahrzeuge anhalten müssen."    "This is a four-way stop."    "that's a to to to . . . ." 
    "Diese Sendung ist eine Wiederholung."                             "This program is a rerun."    "this is is quiet ."        
    "Die heutige Folge ist eine Wiederholung."                         "Today's show is a rerun."    "uranus is care ."          

Generate Translations

Generate translations for new data using the translateText function.

strGermanNew = [
    "Wie geht es Dir heute?"
    "Wie heißen Sie?"
    "Das Wetter ist heute gut."];

Translate the text using the translateText, function listed at the end of the example.

strTranslatedNew = translateText(netEncoder,netDecoder,encGerman,encEnglish,strGermanNew)

strTranslatedNew = 3×1 string
    "how do you feel today ?"
    "what's your your name ? ? ? ? ?"
    "the is is today . . today . ."

 Language Translation Using Deep Learning

4-335



Prediction Functions

Beam Search Function

Beam search is technique for exploring different combinations of time-step predictions to help find
the best prediction sequence. The premise of beam search is for each time-step prediction, identify
the top K predictions for some positive integer K (also known as the beam index or the beam width),
and maintain the top K predicted sequences so far at each time step.

This diagram shows the structure of an example beam search with beam index K = 3. For each
prediction, the top three sequences are maintained.

The beamSearch function takes as input the input data X, the encoder and decoder networks, and
the target word encoding, and returns the predicted translated words using the beam search
algorithm with a beam index of 3 and a maximum sequence length of 10. You can also specify optional
arguments using name-value arguments:

• BeamIndex — Beam index. The default is 3.
• MaxNumWords — Maximum sequence length. The default is 10.

function str = beamSearch(X,netEncoder,netDecoder,encEnglish,args)

% Parse input arguments.
arguments
    X
    netEncoder
    netDecoder
    encEnglish
    
    args.BeamIndex = 3;
    args.MaxNumWords = 10;
end

4 Deep Learning with Time Series, Sequences, and Text

4-336



beamIndex = args.BeamIndex;
maxNumWords = args.MaxNumWords;
startToken = "<start>";
stopToken = "<stop>";

% Encoder predictions.
[Z, hiddenState, cellState] = predict(netEncoder,X);

% Initialize context.
miniBatchSize = size(X,2);
numHiddenUnits = size(Z,1);
context = zeros([numHiddenUnits miniBatchSize],"like",Z);
context = dlarray(context,"CB");

% Initialize candidates.
candidates = struct;
candidates.Words = startToken;
candidates.Score = 0;
candidates.StopFlag = false;
candidates.HiddenState = hiddenState;
candidates.CellState = cellState;

% Loop over words.
t = 0;
while t < maxNumWords
    t = t + 1;

    candidatesNew = [];

    % Loop over candidates.
    for i = 1:numel(candidates)

        % Stop generating when stop token is predicted.
        if candidates(i).StopFlag
            continue
        end

        % Candidate details.
        words = candidates(i).Words;
        score = candidates(i).Score;
        hiddenState = candidates(i).HiddenState;
        cellState = candidates(i).CellState;

        % Predict next token.
        decoderInput = word2ind(encEnglish,words(end));
        decoderInput = dlarray(decoderInput,"CBT");

        [YPred,context,hiddenState,cellState] = predict(netDecoder,decoderInput,hiddenState,cellState,context,Z, ...
            Outputs=["softmax" "context" "lstm2/hidden" "lstm2/cell"]);

        % Find top predictions.
        [scoresTop,idxTop] = maxk(extractdata(YPred),beamIndex);
        idxTop = gather(idxTop);

        % Loop over top predictions.
        for j = 1:beamIndex
            candidate = struct;

 Language Translation Using Deep Learning

4-337



            % Determine candidate word and score.
            candidateWord = ind2word(encEnglish,idxTop(j));
            candidateScore = scoresTop(j);

            % Set stop translating flag.
            if candidateWord == stopToken
                candidate.StopFlag = true;
            else
                candidate.StopFlag = false;
            end

            % Update candidate details.
            candidate.Words = [words candidateWord];
            candidate.Score = score + log(candidateScore);
            candidate.HiddenState = hiddenState;
            candidate.CellState = cellState;

            % Add to new candidates.
            candidatesNew = [candidatesNew candidate];
        end
    end

    % Get top candidates.
    [~,idx] = maxk([candidatesNew.Score],beamIndex);
    candidates = candidatesNew(idx);

    % Stop predicting when all candidates have stop token.
    if all([candidates.StopFlag])
        break
    end
end

% Get top candidate.
words = candidates(1).Words;

% Convert to string scalar.
words(ismember(words,[startToken stopToken])) = [];
str = join(words);

end

Translate Text Function

The translateText function takes as input the encoder and decoder networks, an input string, and
source and target word encodings and returns the translated text.

function strTranslated = translateText(netEncoder,netDecoder,encGerman,encEnglish,strGerman,args)

% Parse input arguments.
arguments
    netEncoder
    netDecoder
    encGerman
    encEnglish
    strGerman
    
    args.BeamIndex = 3;

4 Deep Learning with Time Series, Sequences, and Text

4-338



end

beamIndex = args.BeamIndex;

% Preprocess text.
documentsGerman = preprocessText(strGerman);
X = preprocessPredictors(documentsGerman,encGerman);
X = dlarray(X,"CTB");

% Loop over observations.
numObservations = numel(strGerman);
strTranslated = strings(numObservations,1);             
for n = 1:numObservations
    
    % Translate text.
    strTranslated(n) = beamSearch(X(:,n,:),netEncoder,netDecoder,encEnglish,BeamIndex=beamIndex);
end

end

Model Functions

Model Loss Function

The modelLoss function takes as input the encoder network, decoder network, mini-batches of
predictors X, targets T, padding mask corresponding to the targets maskT, and ϵ value for scheduled
sampling. The function returns the loss, the gradients of the loss with respect to the learnable
parameters in the networks gradientsE and gradientsD, and the decoder predictions YPred
encoded as sequences of one-hot vectors.

function [loss,gradientsE,gradientsD,YPred] = modelLoss(netEncoder,netDecoder,X,T,maskT,decoderInput,epsilon)

% Forward through encoder.
[Z, hiddenState, cellState] = forward(netEncoder,X);

% Decoder output.
Y = decoderPredictions(netDecoder,Z,T,hiddenState,cellState,decoderInput,epsilon);

% Sparse cross-entropy loss.
loss = sparseCrossEntropy(Y,T,maskT);

 Language Translation Using Deep Learning

4-339



% Update gradients.
[gradientsE,gradientsD] = dlgradient(loss,netEncoder.Learnables,netDecoder.Learnables);

% For plotting, return loss normalized by sequence length.
sequenceLength = size(T,3);
loss = loss ./ sequenceLength;

% For plotting example translations, return the decoder output.
YPred = onehotdecode(Y,1:size(Y,1),1,"single");

end

Decoder Predictions Function

The decoderPredictions function takes as input, the decoder network, the encoder output Z, the
targets T, the decoder input hidden and cell state values, and the ϵ value for scheduled sampling.

To stabilize training, you can randomly use the target values as inputs to the decoder. In particular,
you can adjust the probability used to inject the target values as training progresses. For example,
you can train using the target values at a much higher rate at the start of training, then decay the
probability such that towards the end of training the model uses only the previous predictions. This
technique is known as scheduled sampling [2] on page 4-344. This diagram shows the sampling
mechanism incorporated into one time step of a decoder prediction.

4 Deep Learning with Time Series, Sequences, and Text

4-340



The decoder makes predictions one time step at a time. At each time step, the input is randomly
selected according to the ϵ value for scheduled sampling. In particular, the function uses the target
value as input with probability ϵ and uses the previous prediction otherwise.

function Y = decoderPredictions(netDecoder,Z,T,hiddenState,cellState,decoderInput,epsilon)

% Initialize context.
numHiddenUnits = size(Z,1);
miniBatchSize = size(Z,2);
context = zeros([numHiddenUnits miniBatchSize],"like",Z);
context = dlarray(context,"CB");

 Language Translation Using Deep Learning

4-341



% Initialize output.
idx = (netDecoder.Learnables.Layer == "fc" & netDecoder.Learnables.Parameter=="Bias");
numClasses = numel(netDecoder.Learnables.Value{idx});
sequenceLength = size(T,3);
Y = zeros([numClasses miniBatchSize sequenceLength],"like",Z);
Y = dlarray(Y,"CBT");

% Forward start token through decoder.
[Y(:,:,1),context,hiddenState,cellState] = forward(netDecoder,decoderInput,hiddenState,cellState,context,Z);

% Loop over remaining time steps.
for t = 2:sequenceLength

    % Scheduled sampling. Randomly select previous target or previous
    % prediction.
    if rand < epsilon
        % Use target value.
        decoderInput = T(:,:,t-1);
    else
        % Use previous prediction.
        [~,Yhat] = max(Y(:,:,t-1),[],1);
        decoderInput = Yhat;
    end

    % Forward through decoder.
    [Y(:,:,t),context,hiddenState,cellState] = forward(netDecoder,decoderInput,hiddenState,cellState,context,Z);
end

end

Sparse Cross-Entropy Loss

The sparseCrossEntropy function calculates the cross-entropy loss between the predictions Y and
targets T with the target mask maskT, where Y is an array of probabilities and T is encoded as a
sequence of integer values.

function loss = sparseCrossEntropy(Y,T,maskT)

% Initialize loss.
[~,miniBatchSize,sequenceLength] = size(Y);
loss = zeros([miniBatchSize sequenceLength],"like",Y);

% To prevent calculating log of 0, bound away from zero.
precision = underlyingType(Y);
Y(Y < eps(precision)) = eps(precision);

% Loop over time steps.
for n = 1:miniBatchSize
    for t = 1:sequenceLength
        idx = T(1,n,t);
        loss(n,t) = -log(Y(idx,n,t));
    end
end

% Apply masking.
maskT = squeeze(maskT);
loss = loss .* maskT;

4 Deep Learning with Time Series, Sequences, and Text

4-342



% Calculate sum and normalize.
loss = sum(loss,"all");
loss = loss / miniBatchSize;

end

Preprocessing Functions

Text Preprocessing Function

The preprocessText function preprocesses the input text for translation by converting the text to
lowercase, adding start and stop tokens, and tokenizing.

function documents = preprocessText(str,args)

arguments
    str
    args.StartToken = "<start>";
    args.StopToken = "<stop>";
end

startToken = args.StartToken;
stopToken = args.StopToken;

str = lower(str);
str = startToken + str + stopToken;
documents = tokenizedDocument(str,CustomTokens=[startToken stopToken]);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses tokenized documents for training. The function
encodes mini-batches of documents as sequences of numeric indices and pads the sequences to have
the same length.

function [XSource,XTarget,mask,decoderInput] = preprocessMiniBatch(dataSource,dataTarget,encGerman,encEnglish)

documentsGerman = cat(1,dataSource{:});
XSource = preprocessPredictors(documentsGerman,encGerman);

documentsEngligh = cat(1,dataTarget{:});
sequencesTarget = doc2sequence(encEnglish,documentsEngligh,PaddingDirection="none");

[XTarget,mask] = padsequences(sequencesTarget,2,PaddingValue=1);

decoderInput = XTarget(:,1,:);
XTarget(:,1,:) = [];
mask(:,1,:) = [];

end

Predictors Preprocessing Function

The preprocessPredictors function preprocesses source documents for training or prediction.
The function encodes an array of tokenized documents as sequences of numeric indices.

function XSource = preprocessPredictors(documentsGerman,encGerman)

 Language Translation Using Deep Learning

4-343



sequencesSource = doc2sequence(encGerman,documentsGerman,PaddingDirection="none");
XSource = padsequences(sequencesSource,2);

end

Bibliography

1 Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-
based neural machine translation." arXiv preprint arXiv:1508.04025 (2015).

2 Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. “Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks.” Preprint, submitted September 23, 2015.
https://arxiv.org/abs/1506.03099.

3 Amodei, Dario, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg,
Carl Case, Jared Casper et al. "Deep Speech 2: End-to-End Speech Recognition in English and
Mandarin." In Proceedings of Machine Learning Research 48 (2016): 173–182.

4 Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "BLEU: A Method for Automatic
Evaluation of Machine Translation." In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics (2002): 311–318.

See Also
dlarray | dlfeval | dlgradient | lstm | minibatchqueue

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Sequence Classification Using 1-D Convolutions” on page 4-10
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “List of Deep Learning Layers” on page 1-43
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239

4 Deep Learning with Time Series, Sequences, and Text

4-344



Predict and Update Network State in Simulink

This example shows how to predict responses for a trained recurrent neural network in Simulink® by
using the Stateful Predict block. This example uses a pretrained long short-term memory
(LSTM) network.

Load Pretrained Network

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

analyzeNetwork(net);

Load Test Data

Load the Japanese Vowels test data. XTest is a cell array containing 370 sequences of dimension 12
of varying length. TTest is a categorical vector of labels "1","2",..."9", which correspond to the nine
speakers.

Create a timetable array simin with time-stamped rows and repeated copies of X.

[XTest,TTest] = japaneseVowelsTestData;
X = XTest{94};
numTimeSteps = size(X,2);
simin = timetable(repmat(X,1,4)','TimeStep',seconds(0.2));

Simulink Model for Predicting Responses

The Simulink model for predicting responses contains a Stateful Predict block to predict the
scores and From Workspace block to load the input data sequence over the time steps.

To reset the state of recurrent neural network to its initial state during simulation, place the
Stateful Predict block inside a Resettable Subsystem and use the Reset control signal as
trigger.

open_system('StatefulPredictExample');

 Predict and Update Network State in Simulink

4-345



Configure Model for Simulation

Set the model configuration parameters for the Stateful Predict block.

set_param('StatefulPredictExample/Stateful Predict','NetworkFilePath','JapaneseVowelsNet.mat');
set_param('StatefulPredictExample', 'SimulationMode', 'Normal');

Run the Simulation

To compute responses for the JapaneseVowelsNet network, run the simulation. The prediction
scores are saved in the MATLAB® workspace.

out = sim('StatefulPredictExample');

Plot the prediction scores. The plot shows how the prediction scores change between time steps.

scores = squeeze(out.yPred.Data(:,:,1:numTimeSteps));

classNames = string(net.Layers(end).Classes);
figure
lines = plot(scores');
xlim([1 numTimeSteps])
legend("Class " + classNames,'Location','northwest')
xlabel("Time Step")
ylabel("Score")
title("Prediction Scores Over Time Steps")

Highlight the prediction scores over time steps for the correct class.

4 Deep Learning with Time Series, Sequences, and Text

4-346



trueLabel = TTest(94);
lines(trueLabel).LineWidth = 3;

Display the final time step prediction in a bar chart.

figure
bar(scores(:,end))
title("Final Prediction Scores")
xlabel("Class")
ylabel("Score")

 Predict and Update Network State in Simulink

4-347



References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

See Also
Stateful Predict | Stateful Classify | Predict | Image Classifier

Related Examples
• “Physical System Modeling Using LSTM Network in Simulink” on page 4-365
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Classify and Update Network State in Simulink” on page 4-349
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-348



Classify and Update Network State in Simulink

This example shows how to classify data for a trained recurrent neural network in Simulink® by
using the Stateful Classify block. This example uses a pretrained long short-term memory
(LSTM) network.

Load Pretrained Network

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

analyzeNetwork(net);

Load Test Data

Load the Japanese Vowels test data. XTest is a cell array containing 370 sequences of dimension 12
of varying length. TTest is a categorical vector of labels "1","2",..."9", which correspond to the nine
speakers.

Create a timetable array simin with time-stamped rows and repeated copies of X.

[XTest,TTest] = japaneseVowelsTestData;
X = XTest{94};
numTimeSteps = size(X,2);
simin = timetable(repmat(X,1,4)','TimeStep',seconds(0.2));

Simulink Model for Classifying Data

The Simulink model for classifying data contains a Stateful Classify block to predict the labels
and From Workspace block to load the input data sequence over the time steps.

To reset the state of recurrent neural network to its initial state during simulation, place the
Stateful Classify block inside a Resettable Subsystem and use the Reset control signal as
trigger.

open_system('StatefulClassifyExample');

 Classify and Update Network State in Simulink

4-349



Configure Model for Simulation

Set the model configuration parameters for the Stateful Classify block.

set_param('StatefulClassifyExample/Stateful Classify','NetworkFilePath','JapaneseVowelsNet.mat');
set_param('StatefulClassifyExample','SimulationMode','Normal');

Run the Simulation

To compute responses for the JapaneseVowelsNet network, run the simulation. The prediction
labels are saved in the MATLAB® workspace.

out = sim('StatefulClassifyExample');

Plot the predicted labels in a stair plot. The plot shows how the predictions change between time
steps.

labels = squeeze(out.YPred.Data(1:numTimeSteps,1));

figure
stairs(labels, '-o')
xlim([1 numTimeSteps])
xlabel("Time Step")
ylabel("Predicted Class")
title("Classification Over Time Steps")

Compare the predictions with the true label. Plot a horizontal line showing the true label of the
observation.

4 Deep Learning with Time Series, Sequences, and Text

4-350



trueLabel = double(TTest(94));
hold on
line([1 numTimeSteps],[trueLabel trueLabel], ...
    'Color','red', ...
    'LineStyle','--')
legend(["Prediction" "True Label"])
axis([1 numTimeSteps+1 0 9]);

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

See Also
Stateful Predict | Stateful Classify | Predict | Image Classifier

Related Examples
• “Physical System Modeling Using LSTM Network in Simulink” on page 4-365
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Predict and Update Network State in Simulink” on page 4-345

 Classify and Update Network State in Simulink

4-351



• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-352



Time Series Prediction in Simulink Using Deep Learning
Network

This example shows how to use an LSTM deep learning network inside a Simulink® model to predict
the remaining useful life (RUL) of an engine. You include the network inside the Simulink model by
using a Stateful Predict block, which predicts the RUL at every simulation step.

This example uses data from the Turbofan Engine Degradation Simulation Data Set as described in
[1]. The example uses a trained LSTM network to predict the RUL of an engine (predictive
maintenance), measured in cycles, given time series data representing various sensors in the engine.
The data used to train the network contains simulated time series data for 100 engines. Each
sequence has 17 features of varying length and corresponds to a full run to failure (RTF) instance.
For more information on how to train the network, see “Sequence-to-Sequence Regression Using
Deep Learning” on page 4-44.

Download Data

Download and unzip the Turbofan Engine Degradation Simulation data set.

Each time series of the Turbofan Engine Degradation Simulation data set represents a different
engine. Each engine starts with unknown degrees of initial wear and manufacturing variation. The
engine is operating normally at the start of each time series, and develops a fault at some point
during the series. In the training set, the fault grows in magnitude until system failure.

The data contains a ZIP-compressed text files with 26 columns of numbers, separated by spaces. Each
row is a snapshot of data taken during a single operational cycle, and each column is a different
variable. The columns correspond to the following:

• Column 1 – Unit number
• Column 2 – Time in cycles
• Columns 3–5 – Operational settings
• Columns 6–26 – Sensor measurements 1–21

Create a directory to store the Turbofan Engine Degradation Simulation data set.

dataFolder = "data";
if ~exist(dataFolder,"dir")
    mkdir(dataFolder);
end

Download and extract the Turbofan Engine Degradation Simulation data set.

filename = matlab.internal.examples.downloadSupportFile("nnet","data/TurbofanEngineDegradationSimulationData.zip");
unzip(filename,dataFolder)

Prepare Data

Load the data using the processTurboFanDataTrain helper function. The
processTurboFanDataTrain function extracts the data from filenamePredictors and returns
the cell array XTrain, which contains the training predictor data.

filenamePredictors = fullfile(dataFolder,"train_FD001.txt");
[XTrain] = processTurboFanDataTrain(filenamePredictors);

 Time Series Prediction in Simulink Using Deep Learning Network

4-353



Remove Features with Constant Values

Since the network was trained with features that do not remain constant for all time steps, features
with constant values for all time steps need to be removed for prediction. Find the rows of data that
have the same minimum and maximum values, and remove the rows.

m = min([XTrain{:}],[],2);
M = max([XTrain{:}],[],2);
idxConstant = M == m;

for i = 1:numel(XTrain)
    XTrain{i}(idxConstant,:) = [];
end

Normalize Training Predictors

Normalize the training predictors to have zero mean and unit variance. To calculate the mean and
standard deviation over all observations, concatenate the sequence data horizontally.

mu = mean([XTrain{:}],2);
sig = std([XTrain{:}],0,2);

for i = 1:numel(XTrain)
    XTrain{i} = (XTrain{i} - mu) ./ sig;
end

Extract data for one engine

In the Simulink model, we calculate the RUL for one engine only. In this example, we extract the 9th
element of XTrain and store it in a variable named SensorData. You can choose any other engine
from the XTrain cell array. SensorData is a double array of size 17-by-201. Every row corresponds
to one feature and every column corresponds to the sensor readings at a given cycle.

SensorData = XTrain{9};

Simulink models have an associated simulation time, which in this example needs to be related to the
engine cycles. For this reason, we define a timeseries named EngineData, which stores the sensor
data as a timeseries object that can be loaded in the Simulink model. As the default simulation time in
Simulink is 10.0 and the engine runs through 201 cycles, the Time field of EngineData needs to be
an array of size 201-by-1 with values linearly increasing from 0 to 10.

Time = linspace(0,10,201)';
EngineData = timeseries(SensorData',Time);

4 Deep Learning with Time Series, Sequences, and Text

4-354



The top panel of this figure shows the sensor readings from each sensor at each cycle and the bottom
panel shows the RUL of the engine in units of cycles. After 201 cycles, the engine stops operating.
Note, if you select another engine from the XTrain data, then you need to adapt the Time field of
EngineData accordingly, as each engine operates for a different number of cycles.

Simulink Model to Predict RUL

Load the Simulink model RULPredictionLSTM.slx.

modelName = 'RULPredictionLSTM';
open_system(modelName);

 Time Series Prediction in Simulink Using Deep Learning Network

4-355



EngineData is loaded from the base workspace using a From Workspace block. In this example,
the time step in EngineData is 0.05. So, we set the sample time of the From Workspace block to
0.05. Hence, at the first step the block outputs the first row of EngineData, at the second step it
outputs the second row - corresponding to the second engine cycle - and so on. If another engine is
chosen from XData, then the sample time of the block needs to be updated accordingly.

set_param([modelName,'/From Workspace'],'SampleTime','0.05');

The Stateful Predict block loads the pretrained LSTM network in the turbofanNet MAT-file
and returns the RUL at its output port. The Stateful Predict block updates the state of the
network with every prediction, improving the prediction of the current RUL.The Half Gauge block
shows the value of the calculated RUL (in units of engine cycles) during the simulation.

RUL_sigSpec = Simulink.HMI.SignalSpecification;
RUL_sigSpec.BlockPath = Simulink.BlockPath('RULPredictionLSTM/Stateful Predict');
set_param('RULPredictionLSTM/Half Gauge','Binding',RUL_sigSpec)

Run the Simulation

Because the simulation reads data from a MAT-file, it runs very quickly and can be difficult to follow.
To slow down the simulation, set the Simulation Pacing option to 0.5.

set_param(modelName,'EnablePacing','on');
set_param(modelName,'PacingRate',0.5);

To compute the RUL, run the simulation.

sim(modelName);

4 Deep Learning with Time Series, Sequences, and Text

4-356



The figure shows the model while it is running. The gauge shows the estimated RUL, corresponding
in this case to 90 cycles. At the end of the simulation, the RUL is returned to the Base Workspace in
the form of a single array, containing the values calculated at each simulation iteration.

You could integrate this system within a bigger framework, for example in a system that continuously
monitors the status of an engine, and which adopts precautionary measures if the RUL falls below a
given user-defined value.

References

1 Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. "Damage propagation modeling for
aircraft engine run-to-failure simulation." In Prognostics and Health Management, 2008. PHM
2008. International Conference on, pp. 1-9. IEEE, 2008.

See Also
Stateful Predict | Stateful Classify | Predict | Image Classifier

Related Examples
• “Physical System Modeling Using LSTM Network in Simulink” on page 4-365
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Predict and Update Network State in Simulink” on page 4-345
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

 Time Series Prediction in Simulink Using Deep Learning Network

4-357



Battery State of Charge Estimation in Simulink Using Deep
Learning Network

This example shows how to use a feedforward deep learning network inside a Simulink® model to
predict the state of charge (SOC) of a battery. You include the network inside the Simulink model by
using a Predict block, which predicts the SOC at every simulation step.

Battery SOC is the level of charge of an electric battery relative to its capacity measured as a
percentage. SOC is critical information for the vehicle energy management system and must be
accurately estimated to ensure reliable and affordable electrified vehicles. Methods based on the
Kalman filter (EKF) algorithm are the traditional approaches to this problem but they usually require
precise parameters and knowledge of the battery composition as well as its physical response. In
contrast, using neural networks is a data-driven approach that requires minimal knowledge of the
battery or its nonlinear behavior [1].

This example uses the preprocessed data set
LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020 from [1]. The example uses a
trained feedforward neural network to predict the SOC of a Li-ion battery, given time series data
representing various features of the battery such as voltage, current, temperature, average voltage,
and average current. For an example showing how to train the network, see “Predict Battery State of
Charge Using Deep Learning” on page 4-78.

Simulink Model to Predict SOC

Open the Simulink model BatterySOCSimulinkEstimation.slx.

BatterySOCSimulinkEstimation_ini;
modelName = 'BatterySOCSimulinkEstimation';
open_system(modelName);

4 Deep Learning with Time Series, Sequences, and Text

4-358



The model uses two From Workspace blocks to load the predictors for the trained network and the
target SOC from the test data, a Predict block from the Deep Learning Toolbox™ library, and two
Scope blocks to show the predicted output and the input signals.

The Predict block predicts responses for the data at the input by using the trained network that you
specify using the block parameters. The block accepts an input signal with a dimensionality of the
input layer of the neural network and outputs the prediction.

Run Simulation

To predict the state of charge of the battery and verify the efficiency of the prediction, run the
simulation.

sim('BatterySOCSimulinkEstimation');

You can integrate this system within a larger framework, for example, in a battery management
system that continuously monitors the status of the battery and enacts precautionary measures if the
battery operates outside its safe operating area.

Plot Input

To plot the inputs, use the soc_estimation_plot_inputs.m script.

BatterySOCSimulinkEstimation_plot_inputs;

Plot and Analyze Output

To analyze the performance of the network, compare the results of predictions obtained from the
network with the test data.

To plot the outputs, use the soc_estimation_plot_outputs.m script.

BatterySOCSimulinkEstimation_plot_outputs;

 Battery State of Charge Estimation in Simulink Using Deep Learning Network

4-359



The plot shows the neural network predictions of the SOC over time. The network predictions are
close to the SOC values obtained from the test data. The network predicts the state of charge with an
accuracy of 3 within a temperature range between –10˚ C and 25˚ C.

References

[1] Kollmeyer, Phillip, Carlos Vidal, Mina Naguib, and Michael Skells. “LG 18650HG2 Li-Ion Battery
Data and Example Deep Neural Network XEV SOC Estimator Script.” Mendeley, March 5, 2020.
https://doi.org/10.17632/CP3473X7XV.3.

See Also
Stateful Predict | Predict | trainingOptions | trainNetwork

Related Examples
• “Predict Battery State of Charge Using Deep Learning” on page 4-78
• “Physical System Modeling Using LSTM Network in Simulink” on page 4-365
• “Improve Performance of Deep Learning Simulations in Simulink” on page 4-361
• “Predict and Update Network State in Simulink” on page 4-345
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-360

https://doi.org/10.17632/CP3473X7XV.3


Improve Performance of Deep Learning Simulations in
Simulink

This example shows how to use code generation to improve the performance of deep learning
simulations in Simulink®.

By default, Simulink models simulate deep learning blocks using interpreted execution via the
MATLAB® execution engine. You can choose to instead simulate deep leaning blocks using code
generation, which supports optimized implementations for common computational functions used in
deep neural networks. Using code generation instead of interpreted execution speeds up deep
learning simulations, often requires no modification of the neural network or the Simulink model, and
does not require additional product licenses such as MATLAB Coder™.

In this example, you improve the performance of the Simulink model from the “Battery State of
Charge Estimation in Simulink Using Deep Learning Network” on page 4-358 example by enabling
code generation. This example uses the preprocessed data set
LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020 from [1] on page 4-364.

Open Simulink Model

Open the Simulink model BatterySOCSimulinkEstimation.

BatterySOCSimulinkEstimation_ini;
model = "BatterySOCSimulinkEstimation";
open_system(model)
activeConfigObj = getActiveConfigSet(model);

The model uses a trained neural network net to predict the state of charge of a Li-ion battery for the
input time-series data representing features of the battery such as the voltage, current, temperature,
and the average voltage and current over the last 500 seconds.

Display the layers of the trained neural network.

 Improve Performance of Deep Learning Simulations in Simulink

4-361



net.Layers

ans = 
  8×1 Layer array with layers:

     1   'sequenceinput'      Sequence Input      Sequence input with 5 dimensions
     2   'fc_1'               Fully Connected     55 fully connected layer
     3   'layer'              Tanh                Hyperbolic tangent
     4   'fc_2'               Fully Connected     55 fully connected layer
     5   'leakyrelu'          Leaky ReLU          Leaky ReLU with scale 0.3
     6   'fc_3'               Fully Connected     1 fully connected layer
     7   'clippedrelu'        Clipped ReLU        Clipped ReLU with ceiling 1
     8   'regressionoutput'   Regression Output   mean-squared-error with response 'Response'

For an example showing how to train the network, see “Predict Battery State of Charge Using Deep
Learning” on page 4-78.

Requirements for Improving Simulation Performance Using Code Generation

To enable execution using code generation in Simulink, perform these steps:

1 Install a supported compiler.
2 Install the add-on MATLAB Coder Interface for Deep Learning Libraries.
3 Ensure that all the layers in the deep neural network in your model support code generation.
4 Set the simulation target language to C++.

Install Supported C++ Compiler

On a Windows® operating system, a Microsoft® Visual C++® compiler is required. On a Linux®
operating system, a GCC C/C++ compiler is required. The MinGW® compiler is not supported for
this workflow. To view a list of compilers, see Supported and Compatible Compilers.

Verify that a supported C++ compiler is installed and selected.

myCppCompiler = mex.getCompilerConfigurations('C++','Selected');
myCppCompiler.Name

ans = 
'Microsoft Visual C++ 2019'

If you have multiple C++ compilers installed, display information for the installed compilers with the
following command, then click one of the links.

mex -setup cpp

Install MATLAB Coder Interface for Deep Learning Libraries

MATLAB Coder Interface for Deep Learning Libraries is a free add-on for MATLAB. With this add-on
you can use the Intel Math Kernel Library for Deep Neural Networks (MKL-DNN). You do not need a
MATLAB Coder license for this workflow.

To find and install add-ons, go to the Home tab and, in the Environment section, click the Add-Ons
icon. The Add-On Explorer opens and displays the list of available add-ons. Using the search bar, find
the MATLAB Coder Interface for Deep Learning Libraries add-on. Open the add-on and click the
Install icon.

Verify that the add-on has properly installed using these commands.

4 Deep Learning with Time Series, Sequences, and Text

4-362

https://www.mathworks.com/support/requirements/supported-compilers.html


requiredAddOns = "MATLAB Coder Interface for Deep Learning Libraries";
matlab.addons.isAddonEnabled(requiredAddOns)

Verify Layers in Deep Neural Network Support Code Generation

Check that your network supports code generation using MKL-DNN.

analyzeNetworkForCodegen(net,TargetLibrary="mkldnn")

              Supported
              _________

    mkldnn      "Yes"  

To view a full list of deep learning layers that support code generation in Simulink, use the following
command.

supportedLayers = coder.getDeepLearningLayers

Set Simulation Target Language

The simulation target language defines the language of the generated code. By default, the simulation
target language is C.

get_param(activeConfigObj,"SimTargetLang")

ans = 
'C'

To set the simulation target language to C++, use this command.

set_param(activeConfigObj,"SimTargetLang","C++")

Run Simulation Using Code Generation

Run the simulation and time it using tic and toc.

tic
sim(model);
tCodegenInitial = toc

tCodegenInitial = 69.2416

When the simulation is first run using code generation, generation of the code may take several
seconds. The code generation does not need to be repeated for subsequent simulations and therefore
subsequent simulations will run faster. Run the simulation and time it.

tic
sim(model);
tCodegen = toc

tCodegen = 2.7368

Provided your deep learning network supports code generation, a performance improvement can be
achieved without editing the neural network or the Simulink model.

When applying the techniques described in this example to your own simulation, note that the
performance improvement will strongly depend on your hardware and on the specific simulation
being run.

 Improve Performance of Deep Learning Simulations in Simulink

4-363



References

[1] Kollmeyer, Phillip, Carlos Vidal, Mina Naguib, and Michael Skells. “LG 18650HG2 Li-Ion Battery
Data and Example Deep Neural Network XEV SOC Estimator Script.” 3 (March 5, 2020). https://
doi.org/10.17632/CP3473X7XV.3.

See Also
Stateful Predict | Stateful Classify | Predict | Image Classifier

Related Examples
• “Battery State of Charge Estimation in Simulink Using Deep Learning Network” on page 4-358
• “Physical System Modeling Using LSTM Network in Simulink” on page 4-365
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Predict and Update Network State in Simulink” on page 4-345
• “Long Short-Term Memory Neural Networks” on page 1-97

4 Deep Learning with Time Series, Sequences, and Text

4-364

https://doi.org/10.17632/CP3473X7XV.3
https://doi.org/10.17632/CP3473X7XV.3


Physical System Modeling Using LSTM Network in Simulink

This example shows how to create a reduced order model (ROM) to replace a Simscape component in
a Simulink® model by training a long short-term memory (LSTM) neural network.

A ROM is a surrogate for a physical model that allows you to reduce the computation required
without compromising the accuracy of the original physical model. For workflows that require heavy
computations, such as design exploration, you can use the ROM in place of the original physical
system. While there is a variety of techniques for building a ROM, this example builds an LSTM-ROM
(a type of ROM that leverages an LSTM network) and uses it in a Simulink model as part of a Deep
Learning Stateful Predict block.

To train the LSTM network, the example uses the original model to generate the training data. The
trained LSTM in the ROM takes the B and F signals of the load shaft and the control pressure as
input and predicts the next value of the B and F signals of the load shaft. After the model is trained,
the example creates an LSTM-ROM component and replaces the physical component in the Simulink
model with it. This diagram shows the replacement of a physical component with an LSTM-ROM
subcomponent in a Simulink model.

Training the LSTM network for an LSTM-ROM is a computationally intensive task and can take a long
time to run. To speed up the example, the example skips training and loads a pretrained version of
the network. To instead train the network, set the doTraining variable to true.

doTraining = false;

 Physical System Modeling Using LSTM Network in Simulink

4-365



Generate Training Data

Generate the training data using the Simulink model ex_sdl_flexible_shaft, attached to this
example as a supporting file. To access this model, open this example as a live script. This Simulink
model simulates a flexible shaft. It has two flexible aluminum shafts modeled using a lumped
parameter approach: the motor shaft, consisting of 20 segments, and the load shaft, consisting of 5
segments. Both shafts contain inertias, damping, and stiff torsional springs. At the start of the
simulation, the clutch is unlocked and the driven shaft is free. The initial velocity of the motor shaft is
set to 200 rad/s and the system starts at steady state. The model uses the pressure applied on the
clutch as a control parameter to determine the dynamics of the model.

The Simulink model outputs four values:

1 Base (B) signal of the load shaft
2 Follower (F) signal of the load shaft
3 Control pressure
4 F signal of the motor shaft

The first three states are used to train the LSTM-ROM. The fourth state is used for evaluating the
accuracy of the trained model.

This diagram shows the structure of the model.

The Simulink model depends on the workspace variables stopTime and timeInterval, which
specify the final time step and the interval between output time steps of the simulation, respectively.
The initial time step of the simulation is 0.

Specify a stop time of 0.2 and a time interval of 5 × 10−5.

stopTime = 0.2;
timeInterval = 5e-5;

The Pressure block of the model depends on the workspace variable maxPressure, which defines the
value of the maximum pressure applied on the clutch. Run the model for 20 different equally spaced
values of maxPressure between 105 and 106. Collect the output data in the cell array data, where
each element corresponds to a time series observation computed with the specified pressure profile.

numObservations = 20;
maxPressures = linspace(1e5,1e6,numObservations);

4 Deep Learning with Time Series, Sequences, and Text

4-366



data = cell(numObservations,1);

for i = 1:numObservations
    maxPressure = maxPressures(i);
    simout = sim("ex_sdl_flexible_shaft");
    data{i} = simout.simout.Data';
end

Extract the time steps of the simulations.

times = simout.simout.Time;
numTimeSteps = length(times);

Plot the control pressures of the first five simulations.

figure
for i = 1:5
    pressure = data{i}(3,:);
    plot(times,pressure);
    hold on
end

title("Input Pressure")
legend("Observation " + (1:5))
xlabel("Time")
ylabel("Pressure (Pa)")
hold off

 Physical System Modeling Using LSTM Network in Simulink

4-367



Plot the B and F signals of the load shaft and the F signal of the motor shaft of one of the simulations.

idx = 4;
BLoadShaft = data{idx}(1,:);
FLoadShaft = data{idx}(2,:);
FMotorShaft = data{idx}(4,:);

figure
plot(times,BLoadShaft, ...
    times,FLoadShaft, ...
    times,FMotorShaft)

legend("B - Load Shaft", "F - Load Shaft", "F - Motor Shaft")
title("Model Dynamics (Maximum Pressure =  " + maxPressures(idx) + " Pa)")

Prepare Data for Training

When you train an LSTM with very long sequences, the accumulation of the gradients computed for
each time step can lead to vanishing gradients and cause the training process to converge to a
suboptimal result. To prevent the gradients from vanishing, downsample the training data so that the
sequences are much shorter without losing too much of the information.

To downsample the data, specify a sample time that is larger than the sample time of the training
data. When you use the LSTM network in a Stateful Predict block, you must specify the same value in
the Sample Time parameter.

Specify a sample time of 10−3.

4 Deep Learning with Time Series, Sequences, and Text

4-368



sampleTime = 1e-3;

Downsample the training data by extracting time steps with a fixed interval given by the sample time
divided by the time interval of the simulation.

intervalDownsampled = sampleTime / timeInterval;
timeStepsDownsampled = 1:intervalDownsampled:numTimeSteps;

for i = 1:numObservations
    dataDownsampled{i} = data{i}(:,timeStepsDownsampled);
end

Partition the training data evenly into training and test partitions using the trainingPartitions
function, attached to this example as a supporting file. To access this file, open the example as a live
script.

[idxTrain,idxTest] = trainingPartitions(numObservations,[0.5 0.5]);

maxPressuresTrain = maxPressures(idxTrain);
maxPressuresTest = maxPressures(idxTest);
dataTrain = dataDownsampled(idxTrain);
dataTest = dataDownsampled(idxTest);

Extract the predictors and targets from the training data. The predictors are the B and F signals of
the load shaft and the control pressure. The targets are the B and F signals of the load shaft shifted
by one time step. The predictors correspond to the first three channels of dataTrain. The targets
correspond to the first two channels of each element of dataTrain shifted by one time step.

inputStatesTrain  = [1 2 3];
outputStatesTrain = [1 2];

numObservationsTrain = numel(dataTrain);
for i = 1:numObservationsTrain
    XTrain{i} = dataTrain{i}(inputStatesTrain,1:end-1);
    TTrain{i} = dataTrain{i}(outputStatesTrain,2:end);
end

Define Network Architecture

Define the following LSTM network, which predicts the next B and F signal values.

• For sequence input, specify a sequence input layer with an input size matching the number of
inputs. Normalize the inputs by rescaling them to have values between zero and one.

• To learn interactions between the input features, include a fully connected layer with an output
size of 200 followed by a ReLU layer.

• To learn long-term dependencies in the sequence data, include two LSTM layers with 200 hidden
units followed by a ReLU layer.

• To output predictions of the correct size, include a fully connected layer with a size matching the
number of responses.

• To train the network for regression, include a regression layer.

numHiddenUnits = 200;

numFeatures = numel(inputStatesTrain);
numResponses = numel(outputStatesTrain);

 Physical System Modeling Using LSTM Network in Simulink

4-369



layers = [
    sequenceInputLayer(numFeatures,Normalization="rescale-zero-one")
    fullyConnectedLayer(numHiddenUnits)
    reluLayer
    lstmLayer(numHiddenUnits)
    lstmLayer(numHiddenUnits)
    reluLayer
    fullyConnectedLayer(numResponses)
    regressionLayer];

Specify Training Options

Specify the training options:

• Train a network using the Adam solver for 3 × 104 epochs.
• To prevent the gradients from exploding, clip the gradients with a threshold of 1.
• To improve training, schedule a piecewise decreasing learning rate factor. Use an initial learning

rate of 5 × 10−3 and decrease the rate by a factor of 0.6 every 104 iterations.
• Display the training progress in a plot and suppress verbose output.
• Train on a GPU if one is available. The trainNetwork function, by default, trains on an available

GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing
Toolbox).

options = trainingOptions("adam", ...
    MaxEpochs=3e4, ...
    GradientThreshold=1, ...
    InitialLearnRate=5e-3, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=1e4, ...
    LearnRateDropFactor=0.6, ...
    Verbose=0, ...
    Plots="training-progress");

Train LSTM Network

Train the LSTM network using the trainNetwork function. To use the LSTM network in a Simulink
model, save the network in a MAT file.

Training the LSTM network for an LSTM-ROM is a computationally intensive task and can take a long
time to run. To speed up the example, the example skips training and loads a pretrained version of
the network. To instead train the network, set the doTraining variable to true.

filename = "flexibleShaftLoadNet.mat";
if doTraining
    net = trainNetwork(XTrain, TTrain, layers, options);
    save(filename,"net")
else
    load(filename);
end

4 Deep Learning with Time Series, Sequences, and Text

4-370



Use LSTM-ROM in Simulink Model

Create the following Simulink subcomponent, which outputs the predicted B and F signals of the load
shaft using a trained LSTM network. The block uses the predictions for the next time step through a
feedback loop.

 Physical System Modeling Using LSTM Network in Simulink

4-371



In the Stateful Predict block, set the File path parameter to the location of the saved trained network
and specify the same sample time used for generating the training data. Use the same sample time in
the Rate Transition block connected to the Stateful Predict block input and the Unit Delay block.

Replace the load shaft in the original Simulink model with the LSTM-ROM subcomponent. The
resulting model is saved in ex_sdl_flexible_shaft_lstm. To access this file, open the example as
a live script.

4 Deep Learning with Time Series, Sequences, and Text

4-372



Test Model

Evaluate the model accuracy using the held-out test data set.

To test the accuracy of the full model, not just the LSTM network, compare the outputs with the
simulated F signals of the motor shaft generated by the original Simulink model.

Extract the targets from the test data. The test targets are simulated F signals of the motor shaft
using the original model, shifted by one time step.

numObservationsTest = numel(dataTest);

outputStatesTest = 4;

for i = 1:numObservationsTest
    TTest{i} = dataTest{i}(outputStatesTest,2:end);
end

For each of the maximum pressure values of the test data set, run the simulation and save the
simulated F signals of the motor shaft in the cell array YTest.

errs = [];
for i = 1:numObservationsTest
    maxPressure = maxPressuresTest(i);
    simout = sim("ex_sdl_flexible_shaft_lstm");

    YTest{i} = simout.simout.Data(1:end-1,4)';
end

Visualize the time step predictions in a scatter plot.

figure
scatter([TTest{:}], [YTest{:}])
xlabel("Target")
ylabel("Prediction")

m = min([TTest{:} YTest{:}]);
M = max([TTest{:} YTest{:}]);
xlim([m M])
ylim([m M])

hold on
plot([m M],[m M],"r--")

 Physical System Modeling Using LSTM Network in Simulink

4-373



Visualize the prediction errors in a histogram.

figure
histogram([TTest{:}] - [YTest{:}])
xlabel("Error")
ylabel("Frequency")

4 Deep Learning with Time Series, Sequences, and Text

4-374



Values close to zero indicate accurate predictions.

Simulate Using New Data

Run the model with a previously unseen maximum pressure value of 2 . 7 × 105 Pa.

maxPressure = 2.7e5;
simout = sim("ex_sdl_flexible_shaft_lstm");
Y = simout.simout.Data(:,4)';

Visualize the predicted F signal in a plot.

figure
plot(simout.simout.Time, Y)
ylim([0 inf])
xlabel("Time")
ylabel("F Signal - Motor Shaft")
title("Model Predictions (Maximum pressure = " + maxPressure + " Pa)")

 Physical System Modeling Using LSTM Network in Simulink

4-375



See Also
Stateful Predict | Predict | lstmLayer | trainingOptions | trainNetwork

Related Examples
• “Predict and Update Network State in Simulink” on page 4-345
• “Battery State of Charge Estimation in Simulink Using Deep Learning Network” on page 4-358
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

4 Deep Learning with Time Series, Sequences, and Text

4-376



Deep Learning Tuning and Visualization

• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Deep Dream Images Using GoogLeNet” on page 5-16
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Interpret Deep Learning Time-Series Classifications Using Grad-CAM” on page 5-25
• “Understand Network Predictions Using Occlusion” on page 5-39
• “Investigate Classification Decisions Using Gradient Attribution Techniques” on page 5-46
• “Understand Network Predictions Using LIME” on page 5-57
• “Investigate Spectrogram Classifications Using LIME” on page 5-64
• “Interpret Deep Network Predictions on Tabular Data Using LIME” on page 5-74
• “Explore Semantic Segmentation Network Using Grad-CAM” on page 5-81
• “Investigate Audio Classifications Using Deep Learning Interpretability Techniques”

on page 5-88
• “Generate Untargeted and Targeted Adversarial Examples for Image Classification” on page 5-102
• “Train Image Classification Network Robust to Adversarial Examples” on page 5-109
• “Generate Adversarial Examples for Semantic Segmentation” on page 5-121
• “Verify Robustness of Deep Learning Neural Network” on page 5-132
• “Out-of-Distribution Detection for Deep Neural Networks” on page 5-139
• “Out-of-Distribution Data Discriminator for YOLO v4 Object Detector” on page 5-154
• “Resume Training from Checkpoint Network” on page 5-172
• “Deep Learning Using Bayesian Optimization” on page 5-177
• “Train Deep Learning Networks in Parallel” on page 5-187
• “Monitor Deep Learning Training Progress” on page 5-192
• “Customize Output During Deep Learning Network Training” on page 5-196
• “Detect Issues During Deep Neural Network Training” on page 5-200
• “Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions”

on page 5-209
• “Investigate Network Predictions Using Class Activation Mapping” on page 5-220
• “View Network Behavior Using tsne” on page 5-226
• “Visualize Activations of a Convolutional Neural Network” on page 5-238
• “Visualize Activations of LSTM Network” on page 5-249
• “Visualize Features of a Convolutional Neural Network” on page 5-253
• “Visualize Image Classifications Using Maximal and Minimal Activating Images” on page 5-260
• “Monitor GAN Training Progress and Identify Common Failure Modes” on page 5-279
• “Deep Learning Visualization Methods” on page 5-283
• “ROC Curve and Performance Metrics” on page 5-290

5



• “Compare Deep Learning Models Using ROC Curves” on page 5-301

5 Deep Learning Tuning and Visualization

5-2



Explore Network Predictions Using Deep Learning Visualization
Techniques

This example shows how to investigate network predictions using deep learning visualization
techniques.

Deep learning networks are often described as "black boxes" because why a network makes a certain
decision is not always obvious. You can use an interpretability technique to translate network
behavior into output that a person can interpret. This interpretable output can then answer questions
about the predictions of a network. This example focuses on visualization methods, which are
interpretability techniques that explain network predictions using visual representations of what a
network is “looking” at.

Load Pretrained Network

Load a pretrained image classification network. For this example, use GoogLeNet, a pretrained
network that can classify images into 1000 object categories, such as keyboard, mouse, pencil, and
many animals.

net = googlenet;

 Explore Network Predictions Using Deep Learning Visualization Techniques

5-3



Find the input size of the network and the class labels.

inputSize = net.Layers(1).InputSize(1:2);
classes = net.Layers(end).Classes;

Classify Image

Load a test image containing a picture of a golden retriever.

img = imread("sherlock.jpg");
img = imresize(img,inputSize);

figure
imshow(img)

Classify the image using the pretrained network.

[YPred,scores] = classify(net,img);
YPred

YPred = categorical
     golden retriever 

The network correctly classifies the image as a golden retriever. Find the three classes with the
highest scores.

[~,topIdx] = maxk(scores,3);
topScores = scores(topIdx)';
topClasses = classes(topIdx);
table(topClasses,topScores)

ans=3×2 table
        topClasses        topScores
    __________________    _________

5 Deep Learning Tuning and Visualization

5-4



    golden retriever       0.55419 
    Labrador retriever     0.39633 
    kuvasz                 0.02544 

The classes with the top three scores are all dog breeds. The network outputs higher scores for the
classes that share similar features with the true golden retriever class.

You can use visualization techniques to understand why the network classifies this image as a golden
retriever.

Activation Visualization

One of the simplest ways of understanding network behavior is to visualize the activations of each
layer. Most convolutional neural networks learn to detect features such as color and edges in their
first convolutional layer. In deeper convolutional layers, the network learns to detect more
complicated features, such as eyes. Pass the image through the network and examine the output
activations of the conv2-relu_3x3_reduce layer.

act = activations(net,img,"conv2-relu_3x3_reduce");
sz = size(act);
act = reshape(act,[sz(1) sz(2) 1 sz(3)]);

Display the activations for the first 12 channels of the layer.

I = imtile(mat2gray(act(:,:,:,1:12)));
figure
imshow(I)

White pixels represent strong positive activations and black pixels represent strong negative
activations. You can see that the network is learning low-level features, such as edges and texture.
The first channel highlights the eyes and nose of the dog, possibly due to their distinctive edge and
color.

Investigate a deeper layer.

 Explore Network Predictions Using Deep Learning Visualization Techniques

5-5



actDeep = activations(net,img,"inception_5b-output");
sz = size(actDeep)

sz = 1×3

           7           7        1024

actDeep = reshape(actDeep,[sz(1) sz(2) 1 sz(3)]);

This layer has 1024 channels. Each channel has an image. Investigating every image in detail is
impractical. Instead, you can gain insight into the network behavior by considering the channel with
the strongest activation.

[maxValue,maxValueIndex] = max(max(max(actDeep)));
actDeepMax = actDeep(:,:,:,maxValueIndex);

tiledlayout("flow")
nexttile
imshow(img)
nexttile
imshow(imresize(mat2gray(actDeepMax),inputSize))

The strongest activating channel focuses on the head of the dog, indicating that this layer is picking
out more complex features.

To further explore network behavior, you can use more complex visualization methods.

Grad-CAM

Explore the network predictions using gradient-weighted class activation mapping (Grad-CAM). To
understand which parts of the image are most important for classification, Grad-CAM uses the
gradient of the classification score with respect to the convolutional features determined by the
network. The places where this gradient is large are exactly the places where the final score depends
most on the data. Compute the Grad-CAM map using the gradCAM function and the predicted class.

gradcamMap = gradCAM(net,img,YPred);

5 Deep Learning Tuning and Visualization

5-6



By default, the gradCAM function extracts the feature maps from the last ReLU layer with
nonsingleton spatial dimensions or the last layer that gathers the outputs of ReLU layers (such as
depth concatenation or addition layers). You can compute the Grad-CAM map for earlier layers in the
network by specifying the feature layer. Compute the Grad-CAM map for the early convolutional layer
conv2-relu_3x3.

gradcamMapShallow = gradCAM(net,img,YPred,'FeatureLayer',"conv2-relu_3x3");

Use the plotMaps on page 5-13 supporting function, listed at the end of this example, to compare
the Grad-CAM maps.

figure
alpha = 0.5;
cmap = "jet";
plotMaps(img,gradcamMap,gradcamMapShallow,"Deep Layer","Shallow Layer",alpha,cmap)

The Grad-CAM map for the layer at the end of the network highlights the head and ear of the dog,
suggesting that the shape of the ear and the eye are important for classifying this dog as a golden
retriever. The Grad-CAM map produced by the earlier layer highlights the edges of the dog. This is
because earlier layers in a network learn simple features such as color and edges, while deep layers
learn more complex features such as ears or eyes.

Occlusion Sensitivity

Compute the occlusion sensitivity of the image. Occlusion sensitivity is a simple technique for
measuring network sensitivity to small perturbations in the input data. This method perturbs small
areas of the input by replacing it with an occluding mask, typically a gray square. The mask moves

 Explore Network Predictions Using Deep Learning Visualization Techniques

5-7



across the image and the change in probability score for a given class is measured. You can use this
method to highlight which parts of the image are most important to the classification. You can
perform occlusion sensitivity using occlusionSensitivity.

Compute the occlusion sensitivity map for the golden retriever class.

occlusionMap = occlusionSensitivity(net,img,YPred);

To examine the results of occlusion with higher resolution, reduce the mask size and stride using the
MaskSize and Stride options. A smaller Stride value yields a higher resolution map but can take
longer to compute and use more memory. A smaller MaskSize value yields more detail but can lead
to noisier results. To get the best results from occlusion sensitivity, you must carefully choose the
right values for the MaskSize and Stride options.

occlusionMapDetail = occlusionSensitivity(net,img,YPred,'Stride',10,'MaskSize',15);

Use the plotMaps function to compare the different occlusion sensitivity results.

plotMaps(img,occlusionMap,occlusionMapDetail, ...
    "Occlusion Sensitivity","Occlusion Sensitivity \newline (High Resolution)",alpha,cmap)

The lower resolution map shows similar results to Grad-CAM, highlighting the ear and eye of the dog.
The higher resolution map shows that the ear is most important to the classification. The higher
resolution map also indicates that the fur on the back of the dog is contributing to the classification
decision.

5 Deep Learning Tuning and Visualization

5-8



LIME

Next, consider the locally interpretable model-agnostic explanations (LIME) technique. LIME
approximates the classification behavior of a deep neural network using a simpler, more interpretable
model, such as a regression tree. Interpreting the decisions of this simpler model provides insight
into the decisions of the neural network. The simple model is used to determine the importance of
features of the input data, as a proxy for the importance of the features to the deep neural network.
The LIME technique uses a very different underlying mechanism to occlusion sensitivity or Grad-
CAM.

Use the imageLIME function to view the most important features in the classification decision of a
deep network. Compute the LIME map for the top two classes: golden retriever and Labrador
retriever.

limeMapClass1 = imageLIME(net,img,topClasses(1));
limeMapClass2 = imageLIME(net,img,topClasses(2));

titleClass1 = "LIME (" + string(topClasses(1)) + ")";
titleClass2 = "LIME (" + string(topClasses(2)) + ")";
plotMaps(img,limeMapClass1,limeMapClass2,titleClass1,titleClass2,alpha,cmap)

The maps show which areas of the image are important to the classification. Red areas of the map
have a higher importance—an image lacking these areas would have a lower score for the specified
class. For the golden retriever class, the network focuses on the dog's head and ear to make its
prediction. For the Labrador retriever class, the network is more focused on the dog's nose and eyes,

 Explore Network Predictions Using Deep Learning Visualization Techniques

5-9



rather than the ear. While both maps highlight the dog's forehead, for the network, the dog's ear and
neck indicate the golden retriever class, while the dog's eyes indicate the Labrador retriever class.

The LIME maps are consistent with the occlusion sensitivity and Grad-CAM maps. Comparing the
results of different interpretability techniques is important for verifying the conclusions you make.

Gradient Attribution

Gradient attribution methods produce pixel-resolution maps showing which pixels are most important
to the network classification decision. These methods compute the gradient of the class score with
respect to the input pixels. Intuitively, the map shows which pixels most affect the class score when
changed. The gradient attribution methods produce maps with a higher resolution than those from
Grad-CAM or occlusion sensitivity, but that tend to be much noisier, as a well-trained deep network is
not strongly dependent on the exact value of specific pixels.

Use the gradientAttribution on page 5-13 supporting function, listed at the end of this
example, to compute the gradient attribution map for the golden retriever class.

softmaxName = 'prob';
pixelMap = gradientAttribution(net,img,YPred,softmaxName,"autodiff");

You can obtain a sharper gradient attribution map by modifying the backwards pass through ReLU
layers so that elements of the gradient that are less than zero and elements of the input to the ReLU
layer that are less than zero are both set to zero. This method is known as guided backpropagation.
Compute the gradient attribution map for the network using guided backpropagation.

pixelGuidedBackpropMap = gradientAttribution(net,img,YPred,softmaxName,"guided-backprop");

Display the gradient attribution maps using a custom colormap with 255 colors that maps values of 0
to white and 1 to black. The darker pixels are those most important for classification.

alpha = 1;
cmap = [linspace(1,0,255)' linspace(1,0,255)' linspace(1,0,255)'];
plotMaps(img,pixelMap,pixelGuidedBackpropMap, ...
    "Gradient Attribution","Guided Backpropagation",alpha,cmap)

5 Deep Learning Tuning and Visualization

5-10



The darkest parts of the map are those centered around the dog. The map is very noisy, but it does
suggest that the network is using the expected information in the image to perform classification. The
pixels in the dog have much more impact on the classification score than the pixels of the
background. In the guided backpropagation map, the pixels are focused on the face of the dog,
specifically the eyes and nose. Interestingly, this method highlights different regions than the lower
resolution visualization techniques. The result suggests that, at a pixel level, the nose and eyes of the
dog are important for classifying the image as a golden retriever.

Deep Dream Image

Deep dream is a feature visualization technique that creates images that strongly activate network
layers. By visualizing these images, you can highlight the image features learned by a network. These
images are useful for understanding and diagnosing network behavior. You can generate images by
visualizing the features of the layers toward the end of the network. Unlike the previous methods,
this technique is global and shows you the overall behavior of the network, not just for a specific
input image.

To produce images that resemble a given class most closely, use the final fully connected layer
loss3-classifier. Generate deep dream images for the top three classes the network predicts for
the test image. Set 'Verbose' to false to suppress detailed information on the optimization
process.

channels = topIdx;
learnableLayer =  "loss3-classifier";
dreamImage = deepDreamImage(net,learnableLayer,channels,'Verbose',false);

 Explore Network Predictions Using Deep Learning Visualization Techniques

5-11



Increasing the number of pyramid levels and iterations per pyramid level can produce more detailed
images at the expense of additional computation. Generate detailed deep dream images.

dreamImageDetailed = deepDreamImage(net,learnableLayer,channels, ...
    'Verbose',false,'NumIterations',100,'PyramidLevels',4);

Compare the deep dream images of the top three classes.

tiledlayout(2,3)

for i = 1:3
nexttile
imshow(dreamImage(:,:,:,i));
title(string(topClasses(i)));
end

for i = 1:3
nexttile
imshow(dreamImageDetailed(:,:,:,i));
title(string(topClasses(i)) + "\newline (High Resolution)");
end

The deep dream images show how the network envisions each of the three classes. Although these
images are quite abstract, you can see key features for each of the top classes. It also shows how the
network distinguishes the golden and Labrador retriever classes.

To explore applying these methods interactively using an app, see the Explore Deep Network
Explainability Using an App GitHub® repository.

5 Deep Learning Tuning and Visualization

5-12

https://github.com/matlab-deep-learning/Explore-Deep-Network-Explainability-Using-an-App
https://github.com/matlab-deep-learning/Explore-Deep-Network-Explainability-Using-an-App


Supporting Functions

Replace Layers Function

The replaceLayersOfType function replaces all layers of the specified class with instances of a
new layer. The new layers have the same names as the original layers.

function lgraph = replaceLayersOfType(lgraph,layerType,newLayer)

% Replace layers in the layerGraph lgraph of the type specified by
% layerType with copies of the layer newLayer.

for i=1:length(lgraph.Layers)
    if isa(lgraph.Layers(i),layerType)
        % Match names between the old and new layers.
        layerName = lgraph.Layers(i).Name;
        newLayer.Name = layerName;
        
        lgraph = replaceLayer(lgraph,layerName,newLayer);
    end
end
end

Plot Maps

Plot two maps, map1 and map2, for the input image img. Use alpha to set the transparency of the
map. Specify which colormap to use using cmap.

function plotMaps(img,map1,map2,title1,title2,alpha,cmap)

figure
subplot(1,3,1)
imshow(img)

subplot(1,3,2)
imshow(img)
hold on
imagesc(map1,'AlphaData',alpha)
colormap(cmap)
title(title1)
hold off

subplot(1,3,3)
imshow(img)
hold on
imagesc(map2,'AlphaData',alpha)
colormap(cmap)
title(title2)
hold off
end

Gradient Attribution Map

Compute the gradient attribution map. You must specify the softmax layer. You can compute the basic
map, or a higher resolution map using guided backpropagation.

function map = gradientAttribution(net,img,YPred,softmaxName,method)

 Explore Network Predictions Using Deep Learning Visualization Techniques

5-13



lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,lgraph.Layers(end).Name);
dlnet = dlnetwork(lgraph);

% To use automatic differentiation, convert the image to a dlarray.
dlImg = dlarray(single(img),"SSC");

if method == "autodiff"
% Use dlfeval and the gradientMap function to compute the derivative. The gradientMap
% function passes the image forward through the network to obtain the class scores
% and contains a call to dlgradient to evaluate the gradients of the scores with respect
% to the image.
dydI = dlfeval(@gradientMap,dlnet,dlImg,softmaxName,YPred);
end

if method == "guided-backprop"

% Use the custom layer CustomBackpropReluLayer (attached as a supporting file)  
% with a nonstandard backward pass, and use it with automatic differentiation.
customRelu = CustomBackpropReluLayer();

% Set the BackpropMode property of each CustomBackpropReluLayer to "guided-backprop".
customRelu.BackpropMode = "guided-backprop";

% Use the supporting function replaceLayersOfType to replace all instances of reluLayer in the network with
% instances of CustomBackpropReluLayer. 
lgraphGB = replaceLayersOfType(lgraph, ...
    'nnet.cnn.layer.ReLULayer',customRelu);

% Convert the layer graph containing the CustomBackpropReluLayers into a dlnetwork.
dlnetGB = dlnetwork(lgraphGB);
dydI = dlfeval(@gradientMap,dlnetGB,dlImg,softmaxName,YPred);
end

% Sum the absolute values of each pixel along the channel dimension, then rescale
% between 0 and 1.
map = sum(abs(extractdata(dydI)),3);
map = rescale(map);
end

Gradient Map

Compute the gradient of a class score with respect to one or more input images.

function dydI = gradientMap(dlnet,dlImgs,softmaxName,classIdx)

dydI = dlarray(zeros(size(dlImgs)));

for i=1:size(dlImgs,4)
    I = dlImgs(:,:,:,i);
    scores = predict(dlnet,I,'Outputs',{softmaxName});
    classScore = scores(classIdx);
    dydI(:,:,:,i) = dlgradient(classScore,I);

5 Deep Learning Tuning and Visualization

5-14



end
end

References
[1] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning Deep

Features for Discriminative Localization." In 2016 Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition: 2921–29. Las Vegas, NV, USA: IEEE, 2016. https://
doi.org/10.1109/CVPR.2016.319.

[2] Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization.” In 2017 Proceedings of the IEEE Conference on Computer Vision: 618–626.
Venice, Italy: IEEE, 2017. https://doi.org/10.1109/ICCV.2017.74.

[3] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “‘Why Should I Trust You?’: Explaining
the Predictions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016): 1135–1144. New York, NY:
Association for Computing Machinery, 2016. https://doi.org/10.1145/2939672.2939778.

[4] Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps.” Preprint, submitted April 19,
2014. https://arxiv.org/abs/1312.6034.

[5] TensorFlow. "DeepDreaming with TensorFlow." https://github.com/tensorflow/docs/blob/master/
site/en/tutorials/generative/deepdream.ipynb.

See Also
gradCAM | imageLIME | occlusionSensitivity | deepDreamImage | tsne

Related Examples
• “Deep Learning Visualization Methods” on page 5-283
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Understand Network Predictions Using LIME” on page 5-57
• “Understand Network Predictions Using Occlusion” on page 5-39
• “Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions” on

page 5-209

 Explore Network Predictions Using Deep Learning Visualization Techniques

5-15



Deep Dream Images Using GoogLeNet

This example shows how to generate images using deepDreamImage with the pretrained
convolutional neural network GoogLeNet.

Deep Dream is a feature visualization technique in deep learning that synthesizes images that
strongly activate network layers. By visualizing these images, you can highlight the image features
learned by a network. These images are useful for understanding and diagnosing network behavior.

You can generate interesting images by visualizing the features of the layers towards the end of the
network.

The example uses Deep Learning Toolbox™ and Deep Learning Toolbox Model for GoogLeNet
Network to generate the images.

Load Pretrained Network

Load a pretrained GoogLeNet Network. If the Deep Learning Toolbox Model for GoogLeNet Network
support package is not installed, then the software provides a download link.

net = googlenet;

Generate Image

To produce images that resemble a given class the most closely, select the fully connected layer. First,
locate the layer index of this layer by viewing the network architecture using analyzeNetwork.

analyzeNetwork(net) 

5 Deep Learning Tuning and Visualization

5-16



Then select the fully connected layer, in this example, 142.

layer = 142;
layerName = net.Layers(layer).Name

layerName = 
'loss3-classifier'

You can generate multiple images at once by selecting multiple classes. Select the classes you want to
visualize by setting channels to be the indices of those class names.

channels = [114 293 341 484 563 950];

The classes are stored in the Classes property of the output layer (the last layer). You can view the
names of the selected classes by selecting the entries in channels.

net.Layers(end).Classes(channels)

ans = 6×1 categorical
     snail 
     tiger 
     zebra 
     castle 
     fountain 
     strawberry 

Generate the images using deepDreamImage. This command uses a compatible GPU, if available.
Otherwise it uses the CPU. Using a GPU requires Parallel Computing Toolbox™ and a supported GPU
device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

I = deepDreamImage(net,layerName,channels);

|==============================================|
|  Iteration  |  Activation  |  Pyramid Level  |
|             |   Strength   |                 |
|==============================================|
|           1 |         0.01 |               1 |
|           2 |         1.47 |               1 |
|           3 |         3.63 |               1 |
|           4 |         7.24 |               1 |
|           5 |        10.63 |               1 |
|           6 |        15.78 |               1 |
|           7 |        19.05 |               1 |
|           8 |        24.21 |               1 |
|           9 |        27.25 |               1 |
|          10 |        29.49 |               1 |
|           1 |         7.93 |               2 |
|           2 |        10.10 |               2 |
|           3 |        14.41 |               2 |
|           4 |        20.48 |               2 |
|           5 |        17.10 |               2 |
|           6 |        23.32 |               2 |
|           7 |        27.97 |               2 |
|           8 |        25.79 |               2 |
|           9 |        30.26 |               2 |
|          10 |        35.68 |               2 |

 Deep Dream Images Using GoogLeNet

5-17



|           1 |        33.57 |               3 |
|           2 |        42.50 |               3 |
|           3 |        49.39 |               3 |
|           4 |        58.22 |               3 |
|           5 |        58.82 |               3 |
|           6 |        52.32 |               3 |
|           7 |        67.45 |               3 |
|           8 |        68.73 |               3 |
|           9 |        75.19 |               3 |
|          10 |        68.91 |               3 |
|==============================================|
Training finished: Max epochs completed.

Display all the images together using imtile.

figure
I = imtile(I);
imshow(I)

Generate More Detailed Images

Increasing the number of pyramid levels and iterations per pyramid level can produce more detailed
images at the expense of additional computation.

You can increase the number of iterations using the 'NumIterations' option. Set the number of
iterations to 100.

5 Deep Learning Tuning and Visualization

5-18



iterations = 100;

Generate a detailed image that strongly activates the 'tiger' class (channel 293). Set 'Verbose' to
false to suppress detailed information on the optimization process.

channels = 293;
I = deepDreamImage(net,layerName,channels, ...
    'Verbose',false, ...
    'NumIterations',iterations);

figure
imshow(I)

To produce larger and more detailed output images, you can increase both the number of pyramid
levels and iterations per pyramid level.

Set the number of pyramid levels to 4.

levels = 4;

 Deep Dream Images Using GoogLeNet

5-19



Generate a detailed image that strongly activates the 'castle' class (channel 484).

channels = 484;

I = deepDreamImage(net,layerName,channels, ...
    'Verbose',false, ...
    'NumIterations',iterations, ...
    'PyramidLevels',levels);

figure
imshow(I)

5 Deep Learning Tuning and Visualization

5-20



See Also
googlenet | deepDreamImage | occlusionSensitivity | imageLIME | gradCAM

Related Examples
• “Deep Learning Visualization Methods” on page 5-283
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Pretrained Deep Neural Networks” on page 1-11
• “Visualize Activations of a Convolutional Neural Network” on page 5-238
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22

 Deep Dream Images Using GoogLeNet

5-21



Grad-CAM Reveals the Why Behind Deep Learning Decisions

This example shows how to use the gradient-weighted class activation mapping (Grad-CAM)
technique to understand why a deep learning network makes its classification decisions. Grad-CAM,
invented by Selvaraju and coauthors [1] on page 5-24, uses the gradient of the classification score
with respect to the convolutional features determined by the network in order to understand which
parts of the image are most important for classification. This example uses the GoogLeNet pretrained
network for images.

Grad-CAM is a generalization of the class activation mapping (CAM) technique. For activation
mapping techniques on live webcam data, see “Investigate Network Predictions Using Class
Activation Mapping” on page 5-220. Grad-CAM can also be applied to nonclassification examples such
as regression or semantic segmentation. For an example showing how to use Grad-CAM to investigate
the predictions of a semantic segmentation network, see “Explore Semantic Segmentation Network
Using Grad-CAM” on page 5-81.

Load Pretrained Network

Load the GoogLeNet network.

net = googlenet;

Classify Image

Read the GoogLeNet image size.

inputSize = net.Layers(1).InputSize(1:2);

Load sherlock.jpg., an image of a golden retriever included with this example.

img = imread("sherlock.jpg");

Resize the image to the network input dimensions.

img = imresize(img,inputSize);

Classify the image and display it, along with its classification and classification score.

[classfn,score] = classify(net,img);
imshow(img);
title(sprintf("%s (%.2f)", classfn, score(classfn)));

5 Deep Learning Tuning and Visualization

5-22



GoogLeNet correctly classifies the image as a golden retriever. But why? What characteristics of the
image cause the network to make this classification?

Grad-CAM Explains Why

The Grad-CAM technique utilizes the gradients of the classification score with respect to the final
convolutional feature map, to identify the parts of an input image that most impact the classification
score. The places where this gradient is large are exactly the places where the final score depends
most on the data.

The gradCAM function computes the importance map by taking the derivative of the reduction layer
output for a given class with respect to a convolutional feature map. For classification tasks, the
gradCAM function automatically selects suitable layers to compute the importance map for. You can
also specify the layers with the 'ReductionLayer' and 'FeatureLayer' name-value arguments.

Compute the Grad-CAM map.

map = gradCAM(net,img,classfn);

Show the Grad-CAM map on top of the image by using an 'AlphaData' value of 0.5. The 'jet'
colormap has deep blue as the lowest value and deep red as the highest.

imshow(img);
hold on;
imagesc(map,'AlphaData',0.5);
colormap jet
hold off;
title("Grad-CAM");

 Grad-CAM Reveals the Why Behind Deep Learning Decisions

5-23



Clearly, the upper face and ear of the dog have the greatest impact on the classification.

For a different approach to investigating the reasons for deep network classifications, see
occlusionSensitivity and imageLIME.

References

[1] Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. "Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization." In IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 618–626. Available at Grad-CAM on the Computer
Vision Foundation Open Access website.

See Also
gradCAM | imageLIME | occlusionSensitivity | deepDreamImage

More About
• “Interpret Deep Learning Time-Series Classifications Using Grad-CAM” on page 5-25
• “Explore Semantic Segmentation Network Using Grad-CAM” on page 5-81
• “Investigate Network Predictions Using Class Activation Mapping” on page 5-220
• “Deep Learning Visualization Methods” on page 5-283
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Understand Network Predictions Using LIME” on page 5-57

5 Deep Learning Tuning and Visualization

5-24

http://openaccess.thecvf.com/content_ICCV_2017/papers/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.pdf


Interpret Deep Learning Time-Series Classifications Using
Grad-CAM

This example shows how to use the gradient-weighted class activation mapping (Grad-CAM)
technique to understand the classification decisions of a 1-D convolutional neural network trained on
time-series data.

Grad-CAM [1] uses the gradient of the classification score with respect to the convolutional features
determined by the network to understand which parts of the data are most important for
classification. For time-series data, Grad-CAM computes the most important time steps for the
classification decision of the network.

This image shows an example sequence with a Grad-CAM importance colormap. The map highlights
the regions the network uses to make the classification decision.

This example uses supervised learning on labeled data to classify time-series data as "Normal" or
"Sensor Failure". You can also use an autoencoder network to perform time-series anomaly detection
on unlabeled data. For more information, see “Time Series Anomaly Detection Using Deep Learning”
on page 4-132.

Load Waveform Data

Load the Waveform data set from WaveformData.mat. This data set contains synthetically generated
waveforms of varying length. Each waveform has three channels.

 Interpret Deep Learning Time-Series Classifications Using Grad-CAM

5-25



rng("default")
load WaveformData

numChannels = size(data{1},1);
numObservations = numel(data);

Visualize the first few sequences in a plot.

figure
tiledlayout(2,2)
for i = 1:4
    nexttile
    stackedplot(data{i}',DisplayLabels="Channel "+(1:numChannels));
    title("Observation "+i)
    xlabel("Time Step")
end

Simulate Sensor Failure

Create a new set of data by manually editing some of the sequences to simulate sensor failure.

Create a copy of the unmodified data.

dataUnmodified = data;

Randomly select 10% of the sequences to modify.

failureFraction = 0.1;

5 Deep Learning Tuning and Visualization

5-26



numFailures = round(numObservations*failureFraction);
failureIdx = randperm(numel(data),numFailures);

To simulate the sensor failure, introduce a small additive anomaly between 0.25 and 2 in height. Each
anomaly occurs at a random place in the sequence and occurs for between four and 20 time steps.

anomalyHeight = [0.25 2];
anomalyPatchSize = [4 20];

anomalyHeightRange = anomalyHeight(2) - anomalyHeight(1);

Modify the sequences.

failureLocation = cell(size(data));

for i = 1:numFailures
    X = data{failureIdx(i)};

    % Generate sensor failure location.
    patchLength = randi(anomalyPatchSize,1);
    patchStart = randi(length(X)-patchLength);
    idxPatch = patchStart:(patchStart+patchLength);

    % Generate anomaly height. 
    patchExtraHeight = anomalyHeight(1) + anomalyHeightRange*rand(1,1);
    X(:,idxPatch) = X(:,idxPatch) + patchExtraHeight;
    
    % Save modified sequence.
    data{failureIdx(i)} = X;

    % Save failure location.
    failureLocation{failureIdx(i)} = idxPatch;
end

For the unmodified sequences, set the class label to Normal. For the modified sequences, set the
class label to Sensor Failure.

labels = repmat("Normal",numObservations,1);
labels(failureIdx) = "Sensor Failure";
labels = categorical(labels);

Visualize the class label distribution using a histogram.

figure
histogram(labels)

 Interpret Deep Learning Time-Series Classifications Using Grad-CAM

5-27



Visualize Sensor Failures

Compare a selection of modified sequences with the original sequences. The dashed lines indicate the
region of the sensor failure.

numFailuresToShow = 2;

for i=1:numFailuresToShow
    figure
    t = tiledlayout(numChannels,1);
    idx = failureIdx(i);

    modifiedSignal = data{idx};
    originalSignal = dataUnmodified{idx};

    for j = 1:numChannels
        nexttile
       
        plot(modifiedSignal(j,:))
        hold on
        plot(originalSignal(j,:))

        ylabel("Channel "+j)
        xlabel("Time Step")

        xline(failureLocation{idx}(1),":")
        xline(failureLocation{idx}(end),":")

5 Deep Learning Tuning and Visualization

5-28



        hold off
    end
    
    title(t,"Observation "+failureIdx(i))
    legend("Modified","Original", ...
        Location="southoutside", ...
        NumColumns=2)
end

 Interpret Deep Learning Time-Series Classifications Using Grad-CAM

5-29



The modified and original signals match except for the anomalous patch corresponding to the sensor
failure.

Prepare Data

Prepare the data for training by splitting the data into training and validation sets. Use 90% of the
data for training and 10% of the data for validation.

trainFraction = 0.9;
idxTrain = 1:floor(trainFraction*numObservations);
idxValidation = (idxTrain(end)+1):numObservations;

XTrain = data(idxTrain);
TTrain = labels(idxTrain);

XValidation = data(idxValidation);
TValidation = labels(idxValidation);
failureLocationValidation = failureLocation(idxValidation);

Define Network Architecture

Define the 1-D convolutional neural network architecture.

• Use a sequence input layer with an input size that matches the number of channels of the input
data.

• Specify two blocks of 1-D convolution, ReLU, and layer normalization layers, where the
convolutional layer has a filter size of 3. Specify 32 and 64 filters for the first and second

5 Deep Learning Tuning and Visualization

5-30



convolutional layers, respectively. For both convolutional layers, left-pad the inputs such that the
outputs have the same length (causal padding).

• To reduce the output of the convolutional layers to a single vector, use a 1-D global average
pooling layer.

• To map the output to a vector of probabilities, specify a fully connected layer with an output size
matching the number of classes, followed by a softmax layer and a classification layer.

classes = categories(TTrain);
numClasses = numel(classes);

filterSize = 3;
numFilters = 32;

layers = [ ...
    sequenceInputLayer(numChannels)
    convolution1dLayer(filterSize,numFilters,Padding="causal")
    reluLayer
    layerNormalizationLayer(OperationDimension="batch-excluded")
    convolution1dLayer(filterSize,2*numFilters,Padding="causal")
    reluLayer
    layerNormalizationLayer(OperationDimension="batch-excluded")
    globalAveragePooling1dLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify Training Options

Train the network using adaptive momentum (ADAM). Set the maximum number of epochs to 15 and
use a mini-batch size of 27. Left-pad all the sequences in a mini-batch to be the same length. Use
validation data to validate the network during training. Monitor the training progress in a plot and
suppress the verbose output.

miniBatchSize = 27;

options = trainingOptions("adam", ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=15, ...
    SequencePaddingDirection="left", ...
    ValidationData={XValidation,TValidation}, ...
    Plots="training-progress", ...
    Verbose=false);

Train Network

Train the convolutional network with the specified options using the trainNetwork function.

net = trainNetwork(XTrain,TTrain,layers,options);

 Interpret Deep Learning Time-Series Classifications Using Grad-CAM

5-31



Test Network

Classify the validation data using the same mini-batch size and sequence padding options used for
training.

YValidation = classify(net,XValidation, ...
    MiniBatchSize=miniBatchSize, ...
    SequencePaddingDirection="left");

Calculate the classification accuracy of the predictions.

accuracy = mean(YValidation == TValidation)

accuracy = 0.9500

Visualize the predictions in a confusion matrix.

figure
confusionchart(TValidation,YValidation)

5 Deep Learning Tuning and Visualization

5-32



Use Grad-CAM to Interpret Classification Results

Use Grad-CAM to visualize the parts of the sequence that the network uses to make the classification
decisions.

Find a subset of sequences that the network correctly classifies as "Sensor Failure".

numFailuresToShow = 2;

isCorrect = TValidation == "Sensor Failure" & YValidation == "Sensor Failure";
idxValidationFailure = find(isCorrect,numFailuresToShow);

For each observation, compute and visualize the Grad-CAM map. To compute the Grad-CAM
importance map, use gradCAM. Display a colormap representing the Grad-CAM importance using the
plotWithColorGradient helper function, defined at the end of this example. Add dashed lines to
show the true location of the sensor failure.

for i = 1:numFailuresToShow
    figure
    t = tiledlayout(numChannels,1);
    idx = idxValidationFailure(i);

    modifiedSignal = XValidation{idx};
    importance = gradCAM(net,modifiedSignal,"Sensor Failure");

    for j = 1:numChannels
        nexttile

 Interpret Deep Learning Time-Series Classifications Using Grad-CAM

5-33



        plotWithColorGradient(modifiedSignal(j,:)',importance');

        ylabel("Channel "+j)
        xlabel("Time Steps")

        if ~isempty(failureLocationValidation{idx})
            xline(failureLocationValidation{idx}(1),":")
            xline(failureLocationValidation{idx}(end),":")
        end
    end
    
    title(t,"Grad-CAM: Validation Observation "+idx)

    c = colorbar;
    c.Layout.Tile = "east";
    c.Label.String = "Grad-CAM Importance";
end

5 Deep Learning Tuning and Visualization

5-34



The Grad-CAM map shows that the network is correctly using the sensor failure regions of the
sequence to make the classification decisions. Use of the correct regions suggests that the network is
learning how to discriminate between normal and failing data. The network is using the failure to
decide, rather than spurious background features.

Use Grad-CAM to Investigate Misclassifications

You can also use Grad-CAM to investigate misclassified sequences.

Find a subset of sensor failure sequences that the network misclassifies as "Normal".

numFailuresToShow = 2;
isIncorrect = TValidation == "Sensor Failure" & YValidation == "Normal";
idxValidationFailure = find(isIncorrect,numFailuresToShow);

For each misclassification, compute and visualize the Grad-CAM map. For the misclassified sensor
failure sequences, the Grad-CAM map shows that the network does find the failure region. However,
unlike the correctly classified sequences, the network does not use the entire failure region to make
the classification decision.

for i = 1:length(idxValidationFailure)
    figure
    t = tiledlayout(numChannels,1);
    idx = idxValidationFailure(i);

    modifiedSignal = XValidation{idx};
    importance = gradCAM(net,modifiedSignal,"Sensor Failure");

 Interpret Deep Learning Time-Series Classifications Using Grad-CAM

5-35



    for j = 1:numChannels
        nexttile
        plotWithColorGradient(modifiedSignal(j,:)',importance');

        ylabel("Channel "+j)
        xlabel("Time Steps")

        if ~isempty(failureLocationValidation{idx})
            xline(failureLocationValidation{idx}(1),":")
            xline(failureLocationValidation{idx}(end),":")
        end
    end

    title(t,"Grad-CAM: Validation Observation "+idx)

    c = colorbar;
    c.Layout.Tile = "east";
    c.Label.String = "Grad-CAM Importance";
end

5 Deep Learning Tuning and Visualization

5-36



Helper Function

The plotWithColorGradient function takes as input a sequence with a single channel and an
importance map with the same number of time steps as the sequence. The function uses the
importance map to color segments of the sequence.

Set the last entry of y and c to NaN so that patch creates a line instead of a closed polygon.

function plotWithColorGradient(sequence,importance)

x = 1:size(sequence,1) + 1;
y = [sequence; NaN];
c = [importance; NaN];

patch(x,y,c,EdgeColor="interp");
end

[1] Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization.” International Journal of Computer Vision 128, no. 2 (February 2020): 336–59. https://
doi.org/10.1007/s11263-019-01228-7.

See Also
gradCAM | imageLIME | occlusionSensitivity | deepDreamImage

 Interpret Deep Learning Time-Series Classifications Using Grad-CAM

5-37



More About
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Explore Semantic Segmentation Network Using Grad-CAM” on page 5-81
• “Deep Learning Visualization Methods” on page 5-283
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Understand Network Predictions Using LIME” on page 5-57

5 Deep Learning Tuning and Visualization

5-38



Understand Network Predictions Using Occlusion

This example shows how to use occlusion sensitivity maps to understand why a deep neural network
makes a classification decision. Occlusion sensitivity is a simple technique for understanding which
parts of an image are most important for a deep network's classification. You can measure a
network's sensitivity to occlusion in different regions of the data using small perturbations of the
data. Use occlusion sensitivity to gain a high-level understanding of what image features a network
uses to make a particular classification, and to provide insight into the reasons why a network can
misclassify an image.

Deep Learning Toolbox provides the occlusionSensitivity function to compute occlusion
sensitivity maps for deep neural networks that accept image inputs. The occlusionSensitivity
function perturbs small areas of the input by replacing it with an occluding mask, typically a gray
square. The mask moves across the image, and the change in probability score for a given class is
measured as a function of mask position. You can use this method to highlight which parts of the
image are most important to the classification: when that part of the image is occluded, the
probability score for the predicted class will fall sharply.

Load Pretrained Network and Image

Load the pretrained network GoogLeNet, which will be used for image classification.

net = googlenet;

Extract the image input size and the output classes of the network.

inputSize = net.Layers(1).InputSize(1:2);
classes = net.Layers(end).Classes;

Load the image. The image is of a dog named Laika. Resize the image to the network input size.

imgLaikaGrass = imread("laika_grass.jpg");
imgLaikaGrass = imresize(imgLaikaGrass,inputSize);

Classify the image, and display the three classes with the highest classification score in the image
title.

[YPred,scores] = classify(net,imgLaikaGrass);
[~,topIdx] = maxk(scores, 3);
topScores = scores(topIdx);
topClasses = classes(topIdx);

imshow(imgLaikaGrass)
titleString = compose("%s (%.2f)",topClasses,topScores');
title(sprintf(join(titleString, "; ")));

 Understand Network Predictions Using Occlusion

5-39



Laika is a poodle-cocker spaniel cross. This breed is not a class in GoogLeNet, so the network has
some difficulty classifying the image. The network is not very confident in its predictions — the
predicted class miniature poodle only has a score of 23%. The class with the next highest score is
also a type of poodle, which is a reasonable classification. The network also assigns a moderate
probability to the Tibetan terrier class. We can use occlusion to understand which parts of the
image cause the network to suggest these three classes.

Identify Areas of an Image the Network Uses for Classification

You can use occlusion to find out which parts of the image are important for the classification. First,
look at the predicted class of miniature poodle. What parts of the image suggest this class? Use
the occlusion sensitivity function to map the change in the classification score when parts of the
image are occluded.

map = occlusionSensitivity(net,imgLaikaGrass,YPred);

Display the image of Laika with the occlusion sensitivity map overlaid.

imshow(imgLaikaGrass,'InitialMagnification', 150)
hold on
imagesc(map,'AlphaData',0.5)
colormap jet
colorbar

title(sprintf("Occlusion sensitivity (%s)", ...
    YPred))

5 Deep Learning Tuning and Visualization

5-40



The occlusion map shows which parts of the image have a positive contribution to the score for the
miniature poodle class, and which parts have a negative contribution. Red areas of the map have
a higher value and are evidence for the miniature poodle class — when the red areas are
obscured, the score for miniature poodle goes down. In this image, Laika's head, back, and ears
provide the strongest evidence for the miniature poodle class.

Blue areas of the map with lower values are parts of the image that lead to an increase in the score
for miniature poodle when occluded. Often, these areas are evidence of another class, and can
confuse the network. In this case, Laika's mouth and legs have a negative contribution to the overall
score for miniature poodle.

The occlusion map is strongly focused on the dog in the image, which shows that GoogLeNet is
classifying the correct object in the image. If your network is not producing the results you expect, an
occlusion map can help you understand why. For example, if the network is strongly focused on other
parts of the image, this suggests that the network learned the wrong features.

You can get similar results using the gradient class activation mapping (Grad-CAM) technique. Grad-
CAM uses the gradient of the classification score with respect to the last convolutional layer in a
network in order to understand which parts of the image are most important for classification. For an
example, see “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22.

Occlusion sensitivity and Grad-CAM usually return qualitatively similar results, although they work in
different ways. Typically, you can compute the Grad-CAM map faster that the occlusion map, without
tuning any parameters. However, the Grad-CAM map can usually has a lower spatial resolution than
an occlusion map and can miss fine details. The underlying resolution of Grad-CAM is the spatial

 Understand Network Predictions Using Occlusion

5-41



resolution of the last convolutional feature map; in the case of GoogleNet this is 7-by-7 pixels. To get
the best results from occlusion sensitivity, you must choose the right values for the MaskSize and
Stride options. This tuning provides more flexibility to examine the input features at different length
scales.

Compare Evidence for Different Classes

You can use occlusion to compare which parts of the image the network identifies as evidence for
different classes. This can be useful in cases where the network is not confident in the classification
and gives similar scores to several classes.

Compute an occlusion map for each of the top three classes. To examine the results of occlusion with
higher resolution, reduce the mask size and stride using the MaskSize and Stride options. A
smaller Stride leads to a higher-resolution map, but can take longer to compute and use more
memory. A smaller MaskSize illustrates smaller details, but can lead to noisier results.

topClasses = classes(topIdx);
topClassesMap = occlusionSensitivity(net, imgLaikaGrass, topClasses, ...
    "Stride", 10, ...
    "MaskSize", 15);

Plot the results for each of the top three classes.

for i=1:length(topIdx)        
    figure
    imshow(imgLaikaGrass); 
    hold on
    imagesc(topClassesMap(:,:,i), 'AlphaData', 0.5);
    colormap jet;
    
    classLabel = string(classes(topIdx(i)));
    title(sprintf("%s", classLabel));
end

5 Deep Learning Tuning and Visualization

5-42



Different parts of the image have a very different impact on the class scores for different dog breeds.
The dog's back has a strong influence in favor of the miniature poodle and toy poodle classes,
while the mouth and ears contribute to the Tibetan terrier class.

Investigate Misclassification Issues

If your network is consistently misclassifying certain types of input data, you can use occlusion
sensitivity to determine if particular features of your input data are confusing the network. From the
occlusion map of Laika sitting on the grass, you could expect that images of Laika which are more
focused on her face are likely to be misclassified as Tibetan terrier. You can verify that this is the
case using another image of Laika.

 Understand Network Predictions Using Occlusion

5-43



imgLaikaSit = imresize(imread("laika_sitting.jpg"),inputSize);

[YPred,scores] = classify(net,imgLaikaSit);
[score,idx] = max(scores);
YPred, score

YPred = categorical
     Tibetan terrier 

score = single
    0.5668

Compute the occlusion map of the new image.

map = occlusionSensitivity(net,imgLaikaSit,YPred);

imshow(imgLaikaSit); 
hold on;
imagesc(map, 'AlphaData', 0.5);
colormap jet;

title(sprintf("%s (%.2f)",...
    string(classes(idx)),score));

Again, the network strongly associates the dog's nose and mouth with the Tibetan terrier class.
This highlights a possible failure mode of the network, since it suggests that images of Laika's face
will consistently be misclassified as Tibetan terrier.

You can use the insights gained from the occlusionSensitivity function to make sure your
network is focusing on the correct features of the input data. The cause of the classification problem
in this example is that the available classes of GoogleNet do not include cross-breed dogs like Laika.
The occlusion map demonstrates why the network is confused by these images of Laika. It is
important to be sure that the network you are using is suitable for the task at hand.

5 Deep Learning Tuning and Visualization

5-44



In this example, the network is mistakenly identifying different parts of the object in the image as
different classes. One solution to this issue is to retrain the network with more labeled data that
covers a wider range of observations of the misclassified class. For example, the network here could
be retrained using a large number of images of Laika taken at different angles, so that it learns to
associate both the back and the front of the dog with the correct class.

References

[1] Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks. In: Fleet D.,
Pajdla T., Schiele B., Tuytelaars T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in
Computer Science, vol 8689. Springer, Cham

See Also
googlenet | occlusionSensitivity

More About
• “Deep Learning Visualization Methods” on page 5-283
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Visualize Features of a Convolutional Neural Network” on page 5-253
• “Visualize Activations of a Convolutional Neural Network” on page 5-238

 Understand Network Predictions Using Occlusion

5-45



Investigate Classification Decisions Using Gradient Attribution
Techniques

This example shows how to use gradient attribution maps to investigate which parts of an image are
most important for classification decisions made by a deep neural network.

Deep neural networks can look like black box decision makers — they give excellent results on
complex problems, but it can be hard to understand why a network gives a particular output.
Explainability is increasingly important as deep networks are used in more applications. To consider a
network explainable, it must be clear what parts of the input data the network is using to make a
decision and how much this data contributes to the network output.

A range of visualization techniques are available to determine if a network is using sensible parts of
the input data to make a classification decision. As well as the gradient attribution methods shown in
this example, you can use techniques such as gradient-weighted class-activation mapping (Grad-
CAM) and occlusion sensitivity. For examples, see

• “Understand Network Predictions Using Occlusion” on page 5-39
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22

The gradient attribution methods explored in this example provide pixel-resolution maps that show
which pixels are most important to the network's classification. They compute the gradient of the
class score with respect to the input pixels. Intuitively, the map shows which pixels most affect the
class score when changed. The gradient attribution methods produce maps with higher resolution
than those from Grad-CAM or occlusion sensitivity, but that tend to be much noisier, as a well-trained
deep network is not strongly dependent on the exact value of specific pixels. Use the gradient
attribution techniques to find the broad areas of an image that are important to the classification.

The simplest gradient attribution map is the gradient of the class score for the predicted class with
respect to each pixel in the input image [1]. This shows which pixels have the largest impact on the
class score, and therefore which pixels are most important to the classification. This example shows
how to use gradient attribution and two extended methods: guided backpropagation [2] and
integrated gradients [3]. The use of these techniques is under debate as it is not clear how much
insight these extensions can provide into the model [4].

Load Pretrained Network and Image

Load the pretrained GoogLeNet network.

net = googlenet;

Extract the image input size and the output classes of the network.

inputSize = net.Layers(1).InputSize(1:2);
classes = net.Layers(end).Classes;

Load the image. The image is of a dog named Laika. Resize the image to the network input size.

img = imread("laika_grass.jpg");
img = imresize(img,inputSize);

Classify the image and display the predicted class and classification score.

5 Deep Learning Tuning and Visualization

5-46



[YPred, scores] = classify(net, img);
[score, classIdx] = max(scores);

predClass = classes(classIdx);

imshow(img);
title(sprintf("%s (%.2f)",string(predClass),score));

The network classifies Laika as a miniature poodle, which is a reasonable guess. She is a poodle/
cocker spaniel cross.

Compute Gradient Attribution Map Using Automatic Differentiation

The gradient attribution techniques rely on finding the gradient of the prediction score with respect
to the input image. The gradient attribution map is calculated using the following formula:

Wxy
c = ∂Sc

∂Ixy

where Wxy
c  represents the importance of the pixel at location x, y  to the prediction of class c, Sc is

the softmax score for that class, and Ixy is the image at pixel location x, y  [1].

Convert the network to a dlnetwork so that you can use automatic differentiation to compute the
gradients.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,lgraph.Layers(end).Name);

dlnet = dlnetwork(lgraph);

Specify the name of the softmax layer, 'prob'.

softmaxName = 'prob';

 Investigate Classification Decisions Using Gradient Attribution Techniques

5-47



To use automatic differentiation, convert the image of Laika to a dlarray.

dlImg = dlarray(single(img),'SSC');

Use dlfeval and the gradientMap function (defined in the Supporting Functions on page 5-54

section of this example) to compute the derivative ∂S
c

∂Ixy
 . The gradientMap function passes the image

forward through the network to obtain the class scores and contains a call to dlgradient to
evaluate the gradients of the scores with respect to the image.

dydI = dlfeval(@gradientMap,dlnet,dlImg,softmaxName,classIdx);

The attribution map dydI is a 227-by-227-by-3 array. Each element in each channel corresponds to
the gradient of the class score with respect to the input image for that channel of the original RGB
image.

There are a number of ways to visualize this map. Directly plotting the gradient attribution map as an
RGB image can be unclear as the map is typically quite noisy. Instead, sum the absolute values of
each pixel along the channel dimension, then rescale between 0 and 1. Display the gradient
attribution map using a custom colormap with 255 colors that maps values of 0 to white and 1 to
black.

map = sum(abs(extractdata(dydI)),3);
map = rescale(map);

cmap = [linspace(1,0,255)' linspace(1,0,255)' linspace(1,0,255)'];

imshow(map, "Colormap", cmap);
title("Gradient Attribution Map (" + string(predClass) + ")");

The darkest parts of the map are those centered around the dog. The map is extremely noisy, but it
does suggest that the network is using the expected information in the image to perform
classification. The pixels in the dog have much more impact on the classification score than the pixels
of the grassy background.

5 Deep Learning Tuning and Visualization

5-48



Sharpen the Gradient Attribution Map Using Guided Backpropagation

You can obtain a sharper gradient attribution map by modifying the network's backwards pass
through ReLU layers so that elements of the gradient that are less than zero and elements of the
input to the ReLU layer that are less than zero are both set to zero. This is known as guided
backpropagation [2].

The guided backpropagation backward function is:

dL
dZ = X > 0 * dL

dZ > 0 * dL
dZ

where L is the loss, X is the input to the ReLU layer, and Z is the output.

You can write a custom layer with a non-standard backward pass, and use it with automatic
differentiation. A custom layer class CustomBackpropReluLayer that implements this modification
is included as a supporting file in this example. When automatic differentiation backpropagates
through CustomBackpropReluLayer objects, it uses the modified guided backpropagation function
defined in the custom layer.

Use the supporting function replaceLayersOfType (defined in the Supporting Functions on page 5-
54 section of this example) to replace all instances of reluLayer in the network with instances of
CustomBackpropReluLayer. Set the BackpropMode property of each
CustomBackpropReluLayer to "guided-backprop".

customRelu = CustomBackpropReluLayer();
customRelu.BackpropMode = "guided-backprop";

lgraphGB = replaceLayersOfType(lgraph, ...
    "nnet.cnn.layer.ReLULayer",customRelu);

Convert the layer graph containing the CustomBackpropReluLayers into a dlnetwork.

dlnetGB = dlnetwork(lgraphGB);

Compute and plot the gradient attribution map for the network using guided backpropagation.

dydIGB = dlfeval(@gradientMap,dlnetGB,dlImg,softmaxName,classIdx);

mapGB = sum(abs(extractdata(dydIGB)),3);
mapGB = rescale(mapGB);

imshow(mapGB, "Colormap", cmap);
title("Guided Backpropagation (" + string(predClass) + ")");

 Investigate Classification Decisions Using Gradient Attribution Techniques

5-49



You can see that guided backpropagation technique more clearly highlights different parts of the dog,
such as the eyes and nose.

You can also use the Zeiler-Fergus technique for backpropagation through ReLU layers [5]. For the
Zeiler-Fergus technique, the backward function is given as:

dL
dZ = dL

dZ > 0 * dL
dZ

Set the BackpropMode property of the CustomBackpropReluLayer instances to "zeiler-
fergus".

customReluZF = CustomBackpropReluLayer();
customReluZF.BackpropMode = "zeiler-fergus";

lgraphZF = replaceLayersOfType(lgraph, ...
    "nnet.cnn.layer.ReLULayer",customReluZF);

dlnetZF = dlnetwork(lgraphZF);

dydIZF = dlfeval(@gradientMap,dlnetZF,dlImg,softmaxName,classIdx);

mapZF = sum(abs(extractdata(dydIZF)),3);
mapZF = rescale(mapZF);

imshow(mapZF,"Colormap", cmap);
title("Zeiler-Fergus (" + string(predClass) + ")");

5 Deep Learning Tuning and Visualization

5-50



The gradient attribution maps computed using the Zeiler-Fergus backpropagation technique are
much less clear than those computed using guided backpropagation.

Evaluate Sensitivity to Image Changes Using Integrated Gradients

The integrated gradients approach computes integrates the gradients of class score with respect to
image pixels across a set of images that are linearly interpolated between a baseline image and the
original image of interest [3]. The integrated gradients technique is designed to be sensitive to the
changes in the pixel value over the integration, such that if a change in a pixel value affects the class
score, that pixel has a non-zero value in the map. Non-linearities in the network, such as ReLU layers,
can prevent this sensitivity in simpler gradient attribution techniques.

The integrated gradients attribution map is calculated as

Wxy
c = Ixy− Ixy

0 ∫α = 0
1 dα

∂Sc Ixy α
∂Ixy α ,

where Wxy
c  is the map's value for class c at pixel location x, y , Ixy

0  is a baseline image, and Ixy α  is
the image at a distance α along the path between the baseline image and the input image:

Ixy α = Ixy
0 + α Ixy− Ixy

0 .

In this example, the integrated gradients formula is simplified by summing over a discrete index,n,
instead of integrating over α :

Wxy
c = Ixy− Ixy

0 ∑n = 0
N ∂Sc Ixy

n

∂Ixy
n ,

with

Ixy
n = Ixy

0 + n
N Ixy− Ixy

0 .

 Investigate Classification Decisions Using Gradient Attribution Techniques

5-51



For image data, choose the baseline image to be a black image of zeros. Find the image that is the
difference between the original image and the baseline image. In this case, differenceImg is the
same as the original image as the baseline image is zero.

baselineImg = zeros([inputSize, 3]);
differenceImg = single(img) - baselineImg;

Create an array of images corresponding to discrete steps along the linear path from the baseline
image to the original input image. A larger number of images will give smoother results but take
longer to compute.

numPathImages = ;

pathImgs = zeros([inputSize 3 numPathImages-1]);
for n=0:numPathImages-1
    pathImgs(:,:,:,n+1) = baselineImg + (n)/(numPathImages-1) * differenceImg;
end

figure;
imshow(imtile(rescale(pathImgs)));
title("Images Along Integration Path");

5 Deep Learning Tuning and Visualization

5-52



Convert the mini-batch of path images to a dlarray. Format the data with the format 'SSCB' for the
two spatial, one channel and one batch dimensions. Each path image is a single observation in the
mini-batch. Compute the gradient map for the resulting batch of images along the path.

dlPathImgs = dlarray(pathImgs, 'SSCB');
dydIIG = dlfeval(@gradientMap, dlnet, dlPathImgs, softmaxName, classIdx);

For each channel, sum the gradients of all observations in the mini-batch.

dydIIGSum = sum(dydIIG,4);

 Investigate Classification Decisions Using Gradient Attribution Techniques

5-53



Multiply each element of the summed gradient attribution maps with the corresponding element of
differenceImg. To compute the integrated gradient attribution map, sum over each channel and
rescale.

dydIIGSum = differenceImg .* dydIIGSum;

mapIG = sum(extractdata(abs(dydIIGSum)),3);
mapIG = rescale(mapIG);

imshow(mapIG, "Colormap", cmap);
title("Integrated Gradients (" + string(predClass) + ")");

The computed map shows the network is more strongly focused on the dog's face as a means of
deciding on its class.

The gradient attribution techniques demonstrated here can be used to check whether your network is
focusing on the expected parts of the image when making a classification. To get good insights into
the way your model is working and explain classification decisions, you can perform these techniques
on a range of images and find the specific features that strongly contribute to a particular class. The
unmodified gradient attributions technique is likely to be the more reliable method for explaining
network decisions. While the guided backpropagation and integrated gradient techniques can
produce the clearest gradient maps, it is not clear how much insight these techniques can provide
into how the model works [4].

Supporting Functions

Gradient Map Function

The function gradientMap computes the gradients of the score with respect to an image, for a
specified class. The function accepts a single image or a mini-batch of images. Within this example,
the function gradientMap is introduced in the section Compute Gradient Attribution Map Using
Automatic Differentiation on page 5-47.

5 Deep Learning Tuning and Visualization

5-54



function dydI = gradientMap(dlnet, dlImgs, softmaxName, classIdx)
% Compute the gradient of a class score with respect to one or more input
% images.

dydI = dlarray(zeros(size(dlImgs)));

for i=1:size(dlImgs,4)
    I = dlImgs(:,:,:,i);
    scores = predict(dlnet,I,'Outputs',{softmaxName});
    classScore = scores(classIdx);
    dydI(:,:,:,i) = dlgradient(classScore,I);
end
end

Replace Layers Function

The replaceLayersOfType function replaces all layers of the specified class with instances of a
new layer. The new layers are named with the same names as the original layers. Within this example,
the function replaceLayersOfType is introduced in the section Sharpen the Gradient Attribution
Map using Guided Backpropagation on page 5-49.

function lgraph = replaceLayersOfType(lgraph, layerType, newLayer)
% Replace layers in the layerGraph lgraph of the type specified by
% layerType with copies of the layer newLayer.

for i=1:length(lgraph.Layers)
    if isa(lgraph.Layers(i), layerType)
        % Match names between old and new layer.
        layerName = lgraph.Layers(i).Name;
        newLayer.Name = layerName;
        
        lgraph = replaceLayer(lgraph, layerName, newLayer);
    end
end
end

References

[1] Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps.” ArXiv:1312.6034 [Cs], April 19, 2014.
http://arxiv.org/abs/1312.6034.

[2] Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. “Striving for
Simplicity: The All Convolutional Net.” ArXiv:1412.6806 [Cs], April 13, 2015. http://arxiv.org/abs/
1412.6806.

[3] Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic Attribution for Deep Networks."
Proceedings of the 34th International Conference on Machine Learning (PMLR) 70 (2017): 3319-3328

[4] Adebayo, Julius, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
“Sanity Checks for Saliency Maps.” ArXiv:1810.03292 [Cs, Stat], October 27, 2018. http://
arxiv.org/abs/1810.03292.

 Investigate Classification Decisions Using Gradient Attribution Techniques

5-55



[5] Zeiler, Matthew D. and Rob Fergus. "Visualizing and Understanding Convolutional Networks." In
Computer Vision – ECCV 2014. Lecture Notes in Computer Science 8689, edited by D. Fleet, T. Pajdla,
B. Schiele, T. Tuytelaars. Springer, Cham, 2014.

See Also
googlenet | occlusionSensitivity | dlarray | dlgradient | dlfeval | dlnetwork | gradCAM
| imageLIME

More About
• “Deep Learning Visualization Methods” on page 5-283
• “Understand Network Predictions Using Occlusion” on page 5-39
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Understand Network Predictions Using LIME” on page 5-57
• “Specify Custom Layer Backward Function” on page 19-117

5 Deep Learning Tuning and Visualization

5-56



Understand Network Predictions Using LIME

This example shows how to use locally interpretable model-agnostic explanations (LIME) to
understand why a deep neural network makes a classification decision.

Deep neural networks are very complex and their decisions can be hard to interpret. The LIME
technique approximates the classification behavior of a deep neural network using a simpler, more
interpretable model, such as a regression tree. Interpreting the decisions of this simpler model
provides insight into the decisions of the neural network [1]. The simple model is used to determine
the importance of features of the input data, as a proxy for the importance of the features to the deep
neural network.

When a particular feature is very important to a deep network's classification decision, removing that
feature significantly affects the classification score. That feature is therefore important to the simple
model too.

Deep Learning Toolbox provides the imageLIME function to compute maps of the feature importance
determined by the LIME technique. The LIME algorithm for images works by:

• Segmenting an image into features.
• Generating many synthetic images by randomly including or excluding features. Excluded features

have every pixel replaced with the value of the image average, so they no longer contain
information useful for the network.

• Classifying the synthetic images with the deep network.
• Fitting a simpler regression model using the presence or absence of image features for each

synthetic image as binary regression predictors for the scores of the target class. The model
approximates the behavior of the complex deep neural network in the region of the observation.

• Computing the importance of features using the simple model, and converting this feature
importance into a map that indicates the parts of the image that are most important to the model.

You can compare results from the LIME technique to other explainability techniques, such as
occlusion sensitivity or Grad-CAM. For examples of how to use these related techniques, see the
following examples.

• “Understand Network Predictions Using Occlusion” on page 5-39
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22

Load Pretrained Network and Image

Load the pretrained network GoogLeNet.

net = googlenet;

Extract the image input size and the output classes of the network.

inputSize = net.Layers(1).InputSize(1:2);
classes = net.Layers(end).Classes;

Load the image. The image is of a retriever called Sherlock. Resize the image to the network input
size.

img = imread("sherlock.jpg");
img = imresize(img,inputSize);

 Understand Network Predictions Using LIME

5-57



Classify the image, and display the three classes with the highest classification score in the image
title.

[YPred,scores] = classify(net,img);
[~,topIdx] = maxk(scores, 3);
topScores = scores(topIdx);
topClasses = classes(topIdx);

imshow(img)
titleString = compose("%s (%.2f)",topClasses,topScores');
title(sprintf(join(titleString, "; ")));

GoogLeNet classifies Sherlock as a golden retriever. Understandably, the network also assigns a
high probability to the Labrador retriever class. You can use imageLIME to understand which
parts of the image the network is using to make these classification decisions.

Identify Areas of an Image the Network Uses for Classification

You can use LIME to find out which parts of the image are important for a class. First, look at the
predicted class of golden retriever. What parts of the image suggest this class?

By default, imageLIME identifies features in the input image by segmenting the image into
superpixels. This method of segmentation requires Image Processing Toolbox; however, if you do not
have Image Processing Toolbox, you can use the option "Segmentation","grid" to segment the
image into square features.

Use the imageLIME function to map the importance of different superpixel features. By default, the
simple model is a regression tree.

map = imageLIME(net,img,YPred);

Display the image of Sherlock with the LIME map overlaid.

figure
imshow(img,'InitialMagnification',150)

5 Deep Learning Tuning and Visualization

5-58



hold on
imagesc(map,'AlphaData',0.5)
colormap jet
colorbar

title(sprintf("Image LIME (%s)", ...
    YPred))
hold off

The maps shows which areas of the image are important to the classification of golden retriever.
Red areas of the map have a higher importance — when these areas are removed, the score for the
golden retriever class goes down. The network focuses on the dog's face and ear to make its
prediction of golden retriever. This is consistent with other explainability techniques like occlusion
sensitivity or Grad-CAM.

Compare to Results of a Different Class

GoogLeNet predicts a score of 55% for the golden retriever class, and 40% for the Labrador
retriever class. These classes are very similar. You can determine which parts of the dog are more
important for both classes by comparing the LIME maps computed for each class.

Using the same settings, compute the LIME map for the Labrador retriever class.

secondClass = topClasses(2);
map = imageLIME(net,img,secondClass);
figure;

 Understand Network Predictions Using LIME

5-59



imshow(img,'InitialMagnification',150)
hold on
imagesc(map,'AlphaData',0.5)
colormap jet
colorbar

title(sprintf("Image LIME (%s)",secondClass))
hold off

For the Labrador retriever class, the network is more focused on the dog's nose and eyes, rather
than the ear. While both maps highlight the dog's forehead, the network has decided that the dog's
ear and neck indicate the golden retriever class, while the dog's eye and nose indicate the
Labrador retriever class.

Compare LIME with Grad-CAM

Other image interpretability techniques such as Grad-CAM upsample the resulting map to produce a
smooth heatmap of the important areas of the image. You can produce similar-looking maps with
imageLIME, by calculating the importance of square or rectangular features and upsampling the
resulting map.

To segment the image into a grid of square features instead of irregular superpixels, use the
"Segmentation","grid" name-value pair. Upsample the computed map to match the image
resolution using bicubic interpolation, by setting "OutputUpsampling","bicubic".

5 Deep Learning Tuning and Visualization

5-60



To increase the resolution of the initially computed map, increase the number of features to 100 by
specifying the "NumFeatures",100 name-value pair. As the image is square, this produces a 10-
by-10 grid of features.

The LIME technique generates synthetic images based on the original observation by randomly
choosing some features and replacing all the pixels in those features with the average image pixel,
effectively removing that feature. Increase the number of random samples to 6000 by setting
"NumSamples",6000. When you increase the number of features, increasing the number of samples
usually gives better results.

By default the imageLIME function uses a regression tree as its simple model. Instead, fit a linear
regression model with lasso regression by setting "Model","linear".

map = imageLIME(net,img,"golden retriever", ...
    "Segmentation","grid",...
    "OutputUpsampling","bicubic",...
    "NumFeatures",100,...
    "NumSamples",6000,...
    "Model","linear");

imshow(img,'InitialMagnification', 150)
hold on
imagesc(map,'AlphaData',0.5)
colormap jet

title(sprintf("Image LIME (%s - linear model)", ...
    YPred))
hold off

 Understand Network Predictions Using LIME

5-61



Similar to the gradient map computed by Grad-CAM, the LIME technique also strongly identifies the
dog's ear as significant to the prediction of golden retriever.

Display Only the Most Important Features

LIME results are often plotted by showing only the most important few features. When you use the
imageLIME function, you can also obtain a map of the features used in the computation and the
calculated importance of each feature. Use these results to determine the four most important
superpixel features and display only the four most important features in an image.

Compute the LIME map and obtain the feature map and the calculated importance of each feature.

[map,featureMap,featureImportance] = imageLIME(net,img,YPred);

Find the indices of the top four features.

numTopFeatures = 4;
[~,idx] = maxk(featureImportance,numTopFeatures);

Next, mask out the image using the LIME map so only pixels in the most important four superpixels
are visible. Display the masked image.

mask = ismember(featureMap,idx);
maskedImg = uint8(mask).*img;

figure
imshow(maskedImg);

5 Deep Learning Tuning and Visualization

5-62



title(sprintf("Image LIME (%s - top %i features)", ...
    YPred, numTopFeatures))

References

[1] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “‘Why Should I Trust You?’: Explaining
the Predictions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 1135–44. San Francisco California USA: ACM, 2016.
https://doi.org/10.1145/2939672.2939778.

See Also
DAGNetwork | googlenet | occlusionSensitivity | imageLIME | gradCAM

More About
• “Investigate Spectrogram Classifications Using LIME” on page 5-64
• “Interpret Deep Network Predictions on Tabular Data Using LIME” on page 5-74
• “Deep Learning Visualization Methods” on page 5-283
• “Understand Network Predictions Using Occlusion” on page 5-39
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22

 Understand Network Predictions Using LIME

5-63



Investigate Spectrogram Classifications Using LIME

This example shows how to use locally interpretable model-agnostic explanations (LIME) to
investigate the robustness of a deep convolutional neural network trained to classify spectrograms.
LIME is a technique for visualizing which parts of an observation contribute to the classification
decision of a network. This example uses the imageLIME function to understand which features in
the spectrogram data are most important for classification.

In this example, you create and train a neural network to classify four kinds of simulated time series
data:

• Sine waves of a single frequency
• Superposition of three sine waves
• Broad Gaussian peaks in the time series
• Gaussian pulses in the time series

To make this problem more realistic, the time series include added confounding signals: a constant
low-frequency background sinusoid and a large amount of high-frequency noise. Noisy time series
data is a challenging sequence classification problem. You can approach the problem by first
converting the time series data into a time-frequency spectrogram to reveal the underlying features
in the time series data. You can then input the spectrograms to an image classification network.

Generate Waveforms and Spectrograms

Generate time series data for the four classes. This example uses the helper function
generateSpectrogramData to generate the time series and the corresponding spectrogram data.
The helper functions used in this example are attached as supporting files.

numObsPerClass = 500;

classes = categorical(["SingleFrequency","ThreeFrequency","Gaussian","Pulse"]);
numClasses = length(classes);

[noisyTimeSeries,spectrograms,labels] = generateSpectrogramData(numObsPerClass,classes);

Compute the size of the spectrogram images and the number of observations.

inputSize = size(spectrograms, [1 2]);
numObs = size(spectrograms,4);

Plot Generated Data

Plot a subset of the time series data with noise added. Because the noise has a comparable amplitude
to the signal, the data appears noisy in the time domain. This feature makes classification a
challenging problem.

figure
numPlots = 12;

for i=1:numPlots
    subplot(3,4,i)
    plot(noisyTimeSeries(i,:))
    title(labels(i))
end

5 Deep Learning Tuning and Visualization

5-64



Plot the time-frequency spectrograms of the noisy data, in the same order as the time series plots.
The horizontal axis is time and the vertical axis is frequency.

figure
for i=1:12
    subplot(3,4,i)
    imshow(spectrograms(:,:,1,i))
    hold on
    colormap parula
    title(labels(i))
    hold off
end

 Investigate Spectrogram Classifications Using LIME

5-65



Features from each class are clearly visible, demonstrating why converting from the time domain to
spectrogram images can be beneficial for this type of problem. For example, the SingleFrequency
class has a single peak at the fundamental frequency, visible as a horizontal bar in the spectrogram.
For the ThreeFrequency class, the three frequencies are visible.

All classes display a faint band at low frequency (near the top of the image), corresponding to the
background sinusoid.

Split Data

Use the splitlabels function to divide the data into training and validation data. Use 80% of the
data for training and 20% for validation.

splitIndices = splitlabels(labels,0.8);

trainLabels = labels(splitIndices{1});
trainSpectrograms = spectrograms(:,:,:,splitIndices{1});

valLabels = labels(splitIndices{2});
valSpectrograms = spectrograms(:,:,:,splitIndices{2});

Define Neural Network Architecture

Create a convolutional neural network with blocks of convolution, batch normalization, and ReLU
layers.

dropoutProb = 0.2;
numFilters = 8;

5 Deep Learning Tuning and Visualization

5-66



layers = [
    imageInputLayer(inputSize)
    
    convolution2dLayer(3,numFilters,'Padding','same')
    batchNormalizationLayer
    reluLayer    
    maxPooling2dLayer(3,'Stride',2,'Padding','same')
    
    convolution2dLayer(3,2*numFilters,'Padding','same')
    batchNormalizationLayer
    
    convolution2dLayer(3,4*numFilters,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    globalMaxPooling2dLayer
    
    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Define Training Options

Define options for training using the SGDM optimizer. Shuffle the data every epoch by setting the
'Shuffle' option to 'every-epoch'. Monitor the training progress by setting the 'Plots' option
to 'training-progress'. To suppress verbose output, set 'Verbose' to false.

options = trainingOptions('sgdm', ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{valSpectrograms,valLabels});

Train Network

Train the network to classify the spectrogram images.

net = trainNetwork(trainSpectrograms,trainLabels,layers,options);

 Investigate Spectrogram Classifications Using LIME

5-67



Accuracy

Classify the validation observations using the trained network.

predLabels = classify(net,valSpectrograms);

Investigate the network performance by plotting a confusion matrix with confusionchart.

figure
confusionchart(valLabels,predLabels,'Normalization','row-normalized')

5 Deep Learning Tuning and Visualization

5-68



The network accurately classifies the validation spectrograms, with close to 100% accuracy for most
of the classes.

Investigate Network Predictions

Use the imageLIME function to understand which features in the image data are most important for
classification.

The LIME technique segments an image into several features and generates synthetic observations
by randomly including or excluding features. Each pixel in an excluded feature is replaced with the
value of the average image pixel. The network classifies these synthetic observations, and uses the
resulting scores for the predicted class, along with the presence or absence of a feature, as responses
and predictors to train a regression problem with a simpler model—in this example, a regression tree.
The regression tree tries to approximate the behavior of the network on a single observation. It
learns which features are important and significantly impact the class score.

Define Custom Segmentation Map

By default, imageLIME uses superpixel segmentation to divide the image into features. This option
works well for natural images, but is less effective for spectrogram data. You can specify a custom
segmentation map by setting the 'Segmentation' name-value argument to a numeric array the
same size as the image, where each element is an integer corresponding to the index of the feature
that pixel is in.

For the spectrogram data, the spectrogram images have much finer features in the y-dimension
(frequency) than the x-dimension (time). Generate a segmentation map with 240 segments, in a 40-

 Investigate Spectrogram Classifications Using LIME

5-69



by-6 grid, to provide higher frequency resolution. Upsample the grid to the size of the image by using
the imresize function, specifying the upsampling method as 'nearest'.

featureIdx = 1:240;
segmentationMap = reshape(featureIdx,6,40)';
segmentationMap = imresize(segmentationMap,inputSize,'nearest');

Compute LIME Map

Plot the spectrogram and compute the LIME map for two observations from each class.

obsToShowPerClass = 2;

for j=1:obsToShowPerClass
    figure

    for i=1:length(classes)

        idx = find(valLabels == classes(i),obsToShowPerClass);

        % Read the test image and label.
        testSpectrogram = valSpectrograms(:,:,:,idx(j));
        testLabel = valLabels(idx(j));

        % Compute the LIME importance map.
        map = imageLIME(net,testSpectrogram,testLabel, ...
            'NumSamples',4096, ...
            'Segmentation',segmentationMap);

        % Rescale the map to the size of the image.
        mapRescale = uint8(255*rescale(map));

        % Plot the spectrogram image next to the LIME map.
        subplot(2,2,i)
        imshow(imtile({testSpectrogram,mapRescale}))
        title(string(testLabel))
        colormap parula
    end
end

5 Deep Learning Tuning and Visualization

5-70



 Investigate Spectrogram Classifications Using LIME

5-71



The LIME maps demonstrate that for most classes, the network is focused on the relevant features
for classification. For example, for the SingleFrequency class, the network focuses on the
frequency corresponding to the power spectrum of the sine wave and not on spurious background
details or noise.

For the SingleFrequency class, the network uses the frequency to classify. For the Pulse and
Gaussian classes, the network additionally focuses on the correct frequency part of the
spectrogram. For these three classes, the network is not confused by the background frequency
visible near the top of all of the spectrograms. This information is not helpful for distinguishing
between these classes (as it is present in all classes), so the network ignores it. In contrast, for the
ThreeFrequency class, the constant background frequency is relevant to the classification decision
of the network. For this class, the network does not ignore this frequency, but treats it with similar
importance to the three actual frequencies.

The imageLIME results demonstrate that the network is correctly using peaks in the time-frequency
spectrograms and is not confused by the spurious background sinusoid for all classes except for the
ThreeFrequency class, where the network does not distinguish between the three frequencies in
the signal and the low-frequency background.

See Also
imageLIME | pspectrum | trainNetwork

5 Deep Learning Tuning and Visualization

5-72



More About
• “Understand Network Predictions Using LIME” on page 5-57
• “Investigate Audio Classifications Using Deep Learning Interpretability Techniques” on page 5-

88
• “Deep Learning Visualization Methods” on page 5-283
• “Understand Network Predictions Using Occlusion” on page 5-39
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22

 Investigate Spectrogram Classifications Using LIME

5-73



Interpret Deep Network Predictions on Tabular Data Using
LIME

This example shows how to use the locally interpretable model-agnostic explanations (LIME)
technique to understand the predictions of a deep neural network classifying tabular data. You can
use the LIME technique to understand which predictors are most important to the classification
decision of a network.

In this example, you interpret a feature data classification network using LIME. For a specified query
observation, LIME generates a synthetic data set whose statistics for each feature match the real
data set. This synthetic data set is passed through the deep neural network to obtain a classification,
and a simple, interpretable model is fitted. This simple model can be used to understand the
importance of the top few features to the classification decision of the network. In training this
interpretable model, synthetic observations are weighted by their distance from the query
observation, so the explanation is "local" to that observation.

This example uses lime (Statistics and Machine Learning Toolbox) and fit (Statistics and Machine
Learning Toolbox) to generate a synthetic data set and fit a simple interpretable model to the
synthetic data set. To understand the predictions of a trained image classification neural network, use
imageLIME. For more information, see “Understand Network Predictions Using LIME” on page 5-57.

Load Data

Load the Fisher iris data set. This data contains 150 observations with four input features
representing the parameters of the plant and one categorical response representing the plant
species. Each observation is classified as one of the three species: setosa, versicolor, or virginica.
Each observation has four measurements: sepal width, sepal length, petal width, and petal length.

filename = fullfile(toolboxdir('stats'),'statsdemos','fisheriris.mat');
load(filename)

Convert the numeric data to a table.

features = ["Sepal length","Sepal width","Petal length","Petal width"];

predictors = array2table(meas,"VariableNames",features);
trueLabels = array2table(categorical(species),"VariableNames","Response");

Create a table of training data whose final column is the response.

data = [predictors trueLabels];

Calculate the number of observations, features, and classes.

numObservations = size(predictors,1);
numFeatures = size(predictors,2);
numClasses = length(categories(data{:,5}));

Split Data into Training, Validation, and Test Sets

Partition the data set into training, validation, and test sets. Set aside 15% of the data for validation
and 15% for testing.

Determine the number of observations for each partition. Set the random seed to make the data
splitting and CPU training reproducible.

5 Deep Learning Tuning and Visualization

5-74



rng('default');
numObservationsTrain = floor(0.7*numObservations);
numObservationsValidation = floor(0.15*numObservations);

Create an array of random indices corresponding to the observations and partition it using the
partition sizes.

idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxValidation = idx(numObservationsTrain + 1:numObservationsTrain + numObservationsValidation);
idxTest = idx(numObservationsTrain + numObservationsValidation + 1:end);

Partition the table of data into training, validation, and testing partitions using the indices.

dataTrain = data(idxTrain,:);
dataVal = data(idxValidation,:);
dataTest = data(idxTest,:);

Define Network Architecture

Create a simple multi-layer perceptron, with a single hidden layer with five neurons and ReLU
activations. The feature input layer accepts data containing numeric scalars representing features,
such as the Fisher iris data set.

numHiddenUnits = 5;
layers = [
    featureInputLayer(numFeatures)
    fullyConnectedLayer(numHiddenUnits)
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Define Training Options and Train Network

Train the network using stochastic gradient descent with momentum (SGDM). Set the maximum
number of epochs to 30 and use a mini-batch size of 15, as the training data does not contain many
observations.

opts = trainingOptions("sgdm", ...
    "MaxEpochs",30, ...
    "MiniBatchSize",15, ...
    "Shuffle","every-epoch", ...
    "ValidationData",dataVal, ...
    "ExecutionEnvironment","cpu");

Train the network.

net = trainNetwork(dataTrain,layers,opts);

|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:00 |       40.00% |       31.82% |       1.3060 |       1.2897 |          0.0100 |
|       8 |          50 |       00:00:00 |       86.67% |       90.91% |       0.4223 |       0.3656 |          0.0100 |
|      15 |         100 |       00:00:00 |       93.33% |       86.36% |       0.2947 |       0.2927 |          0.0100 |
|      22 |         150 |       00:00:00 |       86.67% |       81.82% |       0.2804 |       0.3707 |          0.0100 |

 Interpret Deep Network Predictions on Tabular Data Using LIME

5-75



|      29 |         200 |       00:00:01 |       86.67% |       90.91% |       0.2268 |       0.2129 |          0.0100 |
|      30 |         210 |       00:00:01 |       93.33% |       95.45% |       0.2782 |       0.1666 |          0.0100 |
|======================================================================================================================|

Assess Network Performance

Classify observations from the test set using the trained network.

predictedLabels = net.classify(dataTest);
trueLabels = dataTest{:,end};

Visualize the results using a confusion matrix.

figure
confusionchart(trueLabels,predictedLabels)

The network successfully uses the four plant features to predict the species of the test observations.

Understand How Different Predictors Are Important to Different Classes

Use LIME to understand the importance of each predictor to the classification decisions of the
network.

Investigate the two most important predictors for each observation.

numImportantPredictors = 2;

Use lime to create a synthetic data set whose statistics for each feature match the real data set.
Create a lime object using a deep learning model blackbox and the predictor data contained in

5 Deep Learning Tuning and Visualization

5-76



predictors. Use a low 'KernelWidth' value so lime uses weights that are focused on the
samples near the query point.

blackbox = @(x)classify(net,x);
explainer = lime(blackbox,predictors,'Type','classification','KernelWidth',0.1);

You can use the LIME explainer to understand the most important features to the deep neural
network. The function estimates the importance of a feature by using a simple linear model that
approximates the neural network in the vicinity of a query observation.

Find the indices of the first two observations in the test data corresponding to the setosa class.

trueLabelsTest = dataTest{:,end};

label = "setosa";
idxSetosa = find(trueLabelsTest == label,2);

Use the fit function to fit a simple linear model to the first two observations from the specified class.

explainerObs1 = fit(explainer,dataTest(idxSetosa(1),1:4),numImportantPredictors);
explainerObs2 = fit(explainer,dataTest(idxSetosa(2),1:4),numImportantPredictors);

Plot the results.

figure
subplot(2,1,1)
plot(explainerObs1);
subplot(2,1,2)
plot(explainerObs2);

 Interpret Deep Network Predictions on Tabular Data Using LIME

5-77



For the setosa class, the most important predictors are a low petal length value and a high sepal
width value.

Perform the same analysis for class versicolor.

label = "versicolor";
idxVersicolor = find(trueLabelsTest == label,2);

explainerObs1 = fit(explainer,dataTest(idxVersicolor(1),1:4),numImportantPredictors);
explainerObs2 = fit(explainer,dataTest(idxVersicolor(2),1:4),numImportantPredictors);

figure
subplot(2,1,1)
plot(explainerObs1);
subplot(2,1,2)
plot(explainerObs2);

For the versicolor class, a high petal length value is important.

Finally, consider the virginica class.

label = "virginica";
idxVirginica = find(trueLabelsTest == label,2);

explainerObs1 = fit(explainer,dataTest(idxVirginica(1),1:4),numImportantPredictors);
explainerObs2 = fit(explainer,dataTest(idxVirginica(2),1:4),numImportantPredictors);

figure

5 Deep Learning Tuning and Visualization

5-78



subplot(2,1,1)
plot(explainerObs1);
subplot(2,1,2)
plot(explainerObs2);

For the virginica class, a high petal length value and a low sepal width value is important.

Validate LIME Hypothesis

The LIME plots suggest that a high petal length value is associated with the versicolor and virginica
classes and a low petal length value is associated with the setosa class. You can investigate the
results further by exploring the data.

Plot the petal length of each image in the data set.

setosaIdx = ismember(data{:,end},"setosa");
versicolorIdx = ismember(data{:,end},"versicolor");
virginicaIdx = ismember(data{:,end},"virginica");

figure
hold on
plot(data{setosaIdx,"Petal length"},'.')
plot(data{versicolorIdx,"Petal length"},'.')
plot(data{virginicaIdx,"Petal length"},'.')
hold off

xlabel("Observation number")

 Interpret Deep Network Predictions on Tabular Data Using LIME

5-79



ylabel("Petal length")
legend(["setosa","versicolor","virginica"])

The setosa class has much lower petal length values than the other classes, matching the results
produced from the lime model.

See Also
fit | lime | trainNetwork | classify | featureInputLayer | imageLIME

More About
• “Understand Network Predictions Using LIME” on page 5-57
• “Investigate Spectrogram Classifications Using LIME” on page 5-64
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Interpret Deep Learning Time-Series Classifications Using Grad-CAM” on page 5-25
• “Deep Learning Visualization Methods” on page 5-283

5 Deep Learning Tuning and Visualization

5-80



Explore Semantic Segmentation Network Using Grad-CAM

This example shows how to explore the predictions of a pretrained semantic segmentation network
using Grad-CAM.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. You can use Grad-CAM, a deep learning visualization technique, to see which
regions of the image are important for the pixel classification decision.

Download Pretrained Network

Download a semantic segmentation network trained on the CamVid data set [1] from the University of
Cambridge. For more information on building and training a semantic segmentation network, see
“Semantic Segmentation Using Deep Learning” on page 8-138.

pretrainedURL = "https://www.mathworks.com/supportfiles/vision/data/deeplabv3plusResnet18CamVid.mat";
pretrainedFolder = fullfile(tempdir,"pretrainedNetwork");
pretrainedNetwork = fullfile(pretrainedFolder,"deeplabv3plusResnet18CamVid.mat");

if ~exist(pretrainedNetwork,"file")
    mkdir(pretrainedFolder);
    disp("Downloading pretrained network (58 MB)...");
    websave(pretrainedNetwork,pretrainedURL);
end
pretrainedNet = load(pretrainedNetwork); 
net = pretrainedNet.net;

Perform Semantic Segmentation

Before analyzing the network predictions using Grad-CAM, use the pretrained network to segment a
test image.

Load a test image and resize it to match the size required by the network.

img = imread('highway.png');
inputSize = net.Layers(1).InputSize(1:2);
img = imresize(img,inputSize);

Use the semanticseg function to predict the pixel labels of the image.

predLabels = semanticseg(img,net);

Overlay the segmentation results on the original image and display the results.

cmap = camvidColorMap;
segImg = labeloverlay(img,predLabels,Colormap=cmap,Transparency=0.4);

figure
imshow(segImg,InitialMagnification=40)
classes = camvidClasses();
pixelLabelColorbar(cmap,classes)

 Explore Semantic Segmentation Network Using Grad-CAM

5-81

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/


The network does misclassify some areas, for example, the road near the tires is misclassified as car.
Next, you will explore the network predictions with Grad-CAM to gain insight into why the network
misclassified certain regions.

Explore Network Predictions

Deep networks are complex, so understanding how a network determines a particular prediction is
difficult. You can use Grad-CAM to see which areas of the test image the semantic segmentation
network is using to make its pixel classifications.

Grad-CAM computes the gradient of a differentiable output, such as class score, with respect to the
convolutional features in a chosen layer. Grad-CAM is typically used for image classification tasks [2];
however, it can also be extended to semantic segmentation problems [3].

In semantic segmentation tasks, the softmax layer of the network outputs a score for each class for
every pixel in the original image. This contrasts with standard image classification problems, where
the softmax layer outputs a score for each class for the entire image. The Grad-CAM map for class c
is

Mc = ReLU(∑
k

αc
kAk) where αc

k = 1/N∑
i, j

dyc

dAi, j
k

N is the number of pixels, Ak is the feature map of interest, and yc corresponds to a scalar class
score. For a simple image classification problem, yc is the softmax score for the class of interest. For
semantic segmentation, you can obtainyc by reducing the pixel-wise class scores for the class of
interest to a scalar. For example, sum over the spatial dimensions of the softmax layer:
yc = ∑

(i, j) ∈ P
yi, j

c , where P is the pixels in the output layer of a semantic segmentation network [3]. In

this example, the output layer is the softmax layer before the pixel classification layer. The map Mc

highlights areas that influence the decision for class c. Higher values indicate regions of the image
that are important for the pixel classification decision.

5 Deep Learning Tuning and Visualization

5-82



To use Grad-CAM, you must select a feature layer to extract the feature map from and a reduction
layer to extract the output activations from. Use analyzeNetwork to find the layers to use with
Grad-CAM.

analyzeNetwork(net)

Specify a feature layer. Typically this is a ReLU layer which takes the output of a convolutional layer
at the end of the network.

featureLayer = "dec_relu4";

Specify a reduction layer. The gradCAM function sums the spatial dimensions of the reduction layer,
for the specified classes, to produce a scalar value. This scalar value is then differentiated with
respect to each feature in the feature layer. For semantic segmentation problems, the reduction layer
is usually the softmax layer.

reductionLayer = "softmax-out";

Compute the Grad-CAM map for the road and pavement classes.

classes = ["Road" "Car"];

gradCAMMap = gradCAM(net,img,classes, ...
    ReductionLayer=reductionLayer, ...
    FeatureLayer=featureLayer);

Compare the Grad-CAM map for the two classes to pixel labels predicted by the network.

figure
subplot(2,2,1)
imshow(img)
title("Test Image")
subplot(2,2,2)
imshow(segImg)
title("Semantic Segmentation")
subplot(2,2,3)
imshow(img)
hold on
imagesc(gradCAMMap(:,:,1),AlphaData=0.5)
title("Grad-CAM: " + classes(1))
colormap jet
subplot(2,2,4)
imshow(img)
hold on
imagesc(gradCAMMap(:,:,2),AlphaData=0.5)
title("Grad-CAM: " + classes(2))
colormap jet

 Explore Semantic Segmentation Network Using Grad-CAM

5-83



The Grad-CAM maps and semantic segmentation map show similar highlighting. The Grad-CAM map
for the road class shows that the center of the scene is more important for the classification decision
of the network. The network possibly misclassifies road areas near the bottom of the cars because of
the poor resolution between the tire and road boundary.

Explore Intermediate Layers

The Grad-CAM map resembles the semantic segmentation map when you use a layer near the end of
the network for the computation. You can also use Grad-CAM to investigate intermediate layers in the
trained network. Earlier layers have a small receptive field size and learn small, low-level features
compared to the layers at the end of the network.

Compute the Grad-CAM map for layers that are successively deeper in the network.

layers = ["res5b_relu","catAspp","dec_relu1"];
numLayers = length(layers);

The res5b_relu layer is near the middle of the network, whereas dec_relu1 is near the end of the
network.

Investigate the network classification decisions for the car and road classes. For each layer and class,
compute the Grad-CAM map.

classes = ["Car" "Road"];
numClasses = length(classes);

gradCAMMaps = [];
for i = 1:numLayers
    gradCAMMaps(:,:,:,i) = gradCAM(net,img,classes, ...
        ReductionLayer=reductionLayer, ...
        FeatureLayer=layers(i));
end

Display the Grad-CAM maps for each layer and each class. The rows represent the map for each
layer, with the layers ordered from those early in the network to those at the end of the network.

5 Deep Learning Tuning and Visualization

5-84



figure;
idx = 1;
for i=1:numLayers
    for j=1:numClasses
        subplot(numLayers,numClasses,idx)
        imshow(img)
        hold on
        imagesc(gradCAMMaps(:,:,j,i),AlphaData=0.5)
        title(sprintf("%s (%s)",classes(j),layers(i)), ...
            Interpreter="none")
        colormap jet
        idx = idx + 1;
    end
end

The later layers produce maps very similar to the segmentation map. However, the layers earlier in
the network produce more abstract results and are typically more concerned with lower level
features like edges, with less awareness of semantic classes. For example, in the maps for earlier
layers, you can see that for both car and road classes, the sky is highlighted. This suggests that the
earlier layers focus on areas of the image that are related to the class but do not necessarily belong
to it.

References

[1] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. “Semantic Object Classes in Video: A
High-Definition Ground Truth Database.” Pattern Recognition Letters 30, no. 2 (January 2009): 88–97.
https://doi.org/10.1016/j.patrec.2008.04.005.

[2] Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. "Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization." In IEEE International

 Explore Semantic Segmentation Network Using Grad-CAM

5-85



Conference on Computer Vision (ICCV), 2017, pp. 618–626. Available at Grad-CAM on the Computer
Vision Foundation Open Access website.

[3] Vinogradova, Kira, Alexandr Dibrov, and Gene Myers. “Towards Interpretable Semantic
Segmentation via Gradient-Weighted Class Activation Mapping (Student Abstract).” Proceedings of
the AAAI Conference on Artificial Intelligence 34, no. 10 (April 3, 2020): 13943–44. https://doi.org/
10.1609/aaai.v34i10.7244.

Supporting Functions
function classes = camvidClasses()
% Return the CamVid class names used during network training. 
%
% The CamVid data set has 32 classes. Group them into 11 classes following
% the original SegNet training methodology [1].
%
% The 11 classes are:
%   "Sky", "Building", "Pole", "Road", "Pavement", "Tree", "SignSymbol",
%   "Fence", "Car", "Pedestrian",  and "Bicyclist".
%
classes = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];
end

function pixelLabelColorbar(cmap, classNames)
% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca,cmap)

% Add a colorbar to the current figure.
c = colorbar("peer",gca);

% Use class names for tick marks.
c.TickLabels = classNames;
numClasses = size(cmap,1);

% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick marks.
c.TickLength = 0;
end

function cmap = camvidColorMap

5 Deep Learning Tuning and Visualization

5-86

http://openaccess.thecvf.com/content_ICCV_2017/papers/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.pdf
https://doi.org/10.1609/aaai.v34i10.7244
https://doi.org/10.1609/aaai.v34i10.7244


% Define the colormap used by the CamVid data set.

cmap = [
    128 128 128   % Sky
    128 0 0       % Building
    192 192 192   % Pole
    128 64 128    % Road
    60 40 222     % Pavement
    128 128 0     % Tree
    192 128 128   % SignSymbol
    64 64 128     % Fence
    64 0 128      % Car
    64 64 0       % Pedestrian
    0 128 192     % Bicyclist
    ];

% Normalize between [0 1].
cmap = cmap ./ 255;
end

See Also
gradCAM | semanticseg | pixelLabelDatastore

More About
• “Semantic Segmentation With Deep Learning” (Computer Vision Toolbox)
• “Investigate Spectrogram Classifications Using LIME” on page 5-64
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Interpret Deep Learning Time-Series Classifications Using Grad-CAM” on page 5-25
• “Deep Learning Visualization Methods” on page 5-283

 Explore Semantic Segmentation Network Using Grad-CAM

5-87



Investigate Audio Classifications Using Deep Learning
Interpretability Techniques

This example shows how to use interpretability techniques to investigate the predictions of a deep
neural network trained to classify audio data.

Deep learning networks are often described as "black boxes" because why a network makes a certain
decision is not always obvious. You can use interpretability techniques to translate network behavior
into output that a person can interpret. This interpretable output can then answer questions about
the predictions of a network. This example uses interpretability techniques that explain network
predictions using visual representations of what a network is “looking” at. You can then use these
visual representations to see which parts of the input images the network is using to make decisions.

This example uses transfer learning to retrain VGGish, a pretrained convolutional neural network, to
classify a new set of audio signals.

Load Data

Download and unzip the environmental sound classification data set. This data set consists of
recordings labeled as one of 10 different audio sound classes (ESC-10). Download the ESC-10.zip
zip file from the MathWorks website, then unzip the file.

rng("default")
zipFile = matlab.internal.examples.downloadSupportFile("audio","ESC-10.zip");

filepath = fileparts(zipFile);
dataFolder = fullfile(filepath,"ESC-10");
unzip(zipFile,dataFolder)

Create an audioDatastore object to manage the data and split it into training and validation sets.
Use countEachLabel to display the distribution of sound classes and the number of unique labels.

ads = audioDatastore(dataFolder,IncludeSubfolders=true,LabelSource="foldernames");
labelTable = countEachLabel(ads)

labelTable=10×2 table
        Label         Count
    ______________    _____

    chainsaw           40  
    clock_tick         40  
    crackling_fire     40  
    crying_baby        40  
    dog                40  
    helicopter         40  
    rain               40  
    rooster            38  
    sea_waves          40  
    sneezing           40  

Determine the total number of classes.

classes = labelTable.Label;
numClasses = size(labelTable,1);

5 Deep Learning Tuning and Visualization

5-88



Use splitEachLabel to split the data set into training and validation sets. Use 80% of the data for
training and 20% for validation.

[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);

The VGGish pretrained network requires preprocessing of the audio signals into log mel
spectrograms. The supporting function helperAudioPreprocess, defined at the end of this
example, takes as input an audioDatastore object and the overlap percentage between log mel
spectrograms and returns matrices of predictors and responses suitable for input to the VGGish
network. Each audio file is split into several segments to feed into the VGGish network.

overlapPercentage = 75;

[trainFeatures,trainLabels] = helperAudioPreprocess(adsTrain,overlapPercentage);
[validationFeatures,validationLabels,segmentsPerFile] = helperAudioPreprocess(adsValidation,overlapPercentage);

Visualize Data

View a random sample of the data.

numImages = 9;
idxSubset = randi(numel(trainLabels),1,numImages);

viewingAngle = ;

figure
tiledlayout("flow",TileSpacing="compact");
for i = 1:numImages
    img = trainFeatures(:,:,:,idxSubset(i));
    label = trainLabels(idxSubset(i));
    nexttile
    surf(img,EdgeColor="none")
    view(viewingAngle)
    title("Class: " + string(label),interpreter="none")
end
colormap parula

 Investigate Audio Classifications Using Deep Learning Interpretability Techniques

5-89



Build Network

This example uses transfer learning to retrain VGGish, a pretrained convolutional neural network, to
classify a new set of audio signals.

Download VGGish Network

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggish in the Command Window. If the Audio Toolbox model for VGGish is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Load the VGGish model and convert it to a layerGraph object.

pretrainedNetwork = vggish;
lgraph = layerGraph(pretrainedNetwork.Layers);

5 Deep Learning Tuning and Visualization

5-90



Prepare Network for Transfer Learning

Prepare the network for transfer learning by replacing the final layers with new layers suitable for
the new data. You can adapt VGGish for the new data programmatically or interactively using Deep
Network Designer. For an example showing how to use Deep Network Designer to perform transfer
learning with an audio classification network, see “Transfer Learning with Pretrained Audio
Networks in Deep Network Designer” on page 2-93.

Use removeLayers to remove the final regression output layer from the graph. After you remove the
regression layer, the new final layer of the graph is a ReLU layer named EmbeddingBatch.

lgraph = removeLayers(lgraph,"regressionoutput");
lgraph.Layers(end)

ans = 
  ReLULayer with properties:

    Name: 'EmbeddingBatch'

Use addLayers to add a fullyConnectedLayer, a softmaxLayer, and a classificationLayer
to the layer graph.

lgraph = addLayers(lgraph,fullyConnectedLayer(numClasses,Name="FCFinal"));
lgraph = addLayers(lgraph,softmaxLayer(Name="softmax"));
lgraph = addLayers(lgraph,classificationLayer(Name="classOut"));

Use connectLayers to append the fully connected, softmax, and classification layers to the layer
graph.

lgraph = connectLayers(lgraph,"EmbeddingBatch","FCFinal");
lgraph = connectLayers(lgraph,"FCFinal","softmax");
lgraph = connectLayers(lgraph,"softmax","classOut");

Specify Training Options

To define the training options, use the trainingOptions function. Set the solver to "adam" and
train for five epochs with a mini-batch size of 128. Specify an initial learning rate of 0.001 and drop
the learning rate after two epochs by multiplying by a factor of 0.5. Monitor the network accuracy
during training by specifying validation data and the validation frequency.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    MaxEpochs=5, ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate = 0.001, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=2, ...
    LearnRateDropFactor=0.5, ...
    ValidationData={validationFeatures,validationLabels}, ...
    ValidationFrequency=50, ...
    Shuffle="every-epoch");

Train Network

To train the network, use the trainNetwork function. By default, trainNetwork uses a GPU if one
is available. Otherwise, it uses a CPU. Training on a GPU requires Parallel Computing Toolbox™ and a

 Investigate Audio Classifications Using Deep Learning Interpretability Techniques

5-91



supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). You can also specify the execution environment by using the
ExecutionEnvironment name-value argument of trainingOptions.

[net,netInfo] = trainNetwork(trainFeatures,trainLabels,lgraph,options);

Training on single GPU.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:17 |        3.91% |       20.07% |       2.4103 |       2.1531 |          0.0010 |
|       2 |          50 |       00:00:22 |       96.88% |       82.57% |       0.1491 |       0.7013 |          0.0010 |
|       3 |         100 |       00:00:27 |       92.19% |       83.75% |       0.1730 |       0.7196 |          0.0005 |
|       4 |         150 |       00:00:32 |       94.53% |       85.15% |       0.1654 |       0.8350 |          0.0005 |
|       5 |         200 |       00:00:37 |       96.09% |       85.96% |       0.1747 |       0.8034 |          0.0003 |
|       5 |         210 |       00:00:38 |       93.75% |       86.03% |       0.1643 |       0.7835 |          0.0003 |
|======================================================================================================================|
Training finished: Max epochs completed.

Test Network

Classify the validation mel spectrograms using the trained network.

[validationPredictions,validationScores] = classify(net,validationFeatures);

Each audio file produces multiple mel spectrograms. Combine the predictions for each audio file in
the validation set using a majority-rule decision and calculate the classification accuracy.

idx = 1;
validationPredictionsPerFile = categorical;
for ii = 1:numel(adsValidation.Files)
    validationPredictionsPerFile(ii,1) = mode(validationPredictions(idx:idx+segmentsPerFile(ii)-1));
    idx = idx + segmentsPerFile(ii);
end

accuracy = mean(validationPredictionsPerFile==adsValidation.Labels)*100

accuracy = 92.5000

Use confusionchart to evaluate the performance of the network on the validation set.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5]);
cm = confusionchart(adsValidation.Labels,validationPredictionsPerFile);
cm.Title = sprintf("Confusion Matrix for Validation Data \nAccuracy = %0.2f %%",accuracy);
cm.ColumnSummary = "column-normalized";
cm.RowSummary = "row-normalized";

5 Deep Learning Tuning and Visualization

5-92



Visualize Predictions

View a random sample of the input data with the true and predicted class labels.

numImages = ;
idxSubset = randi(numel(validationLabels),1,numImages);

viewingAngle = ;

figure
t1 = tiledlayout("flow",TileSpacing="compact");
for i = 1:numImages
    img = validationFeatures(:,:,:,idxSubset(i));
    YPred = validationPredictions(idxSubset(i));
    YTrue = validationLabels(idxSubset(i));

    nexttile
    surf(img,EdgeColor="none")
    view(viewingAngle)
    title({"True: " + string(YTrue),"Predicted: " + string(YPred)},interpreter= "none")
end
colormap parula

 Investigate Audio Classifications Using Deep Learning Interpretability Techniques

5-93



The x-axis represents time, the y-axis represents frequency, and the colormap represents decibels.
For several of the classes, you can see interpretable features. For example, the spectrogram for the
clock_tick class shows a repeating pattern through time representing the ticking of a clock. The
first spectrogram from the helicopter class has the constant, loud, low-frequency sound of the
helicopter engine and a repeating high-frequency sound representing the spinning of the helicopter
blades.

As the network is a convolutional neural network with image input, the network might use these
features when making classification decisions. You can investigate this hypothesis using deep
learning interpretability techniques.

Investigate Predictions

Investigate the predictions of the validation mel spectrograms. For each input, generate the Grad-
CAM (gradCAM), LIME (imageLIME), and occlusion sensitivity (occlusionSensitivity) maps for
the predicted classes. These methods take an input image and a class label and produce a map
indicating the regions of the image that are important to the score for the specified class. Each
visualization method has a specific approach that determines the output it produces.

• Grad-CAM — Use the gradient of the classification score with respect to the convolutional features
determined by the network to understand which parts of the image are most important for
classification. The places where the gradient is large are the places where the final score depends
most on the data.

5 Deep Learning Tuning and Visualization

5-94



• LIME — Approximate the classification behavior of a deep learning network using a simpler, more
interpretable model, such as a linear model or a regression tree. The simple model determines the
importance of features of the input data as a proxy for the importance of the features to the deep
learning network.

• Occlusion sensitivity — Perturb small areas of the input by replacing them with an occluding
mask, typically a gray square. As the mask moves across the image, the technique measures the
change in probability score for a given class.

Comparing the results of different interpretability techniques is important for verifying the
conclusions you make. For more information about these techniques, see “Deep Learning
Visualization Methods” on page 5-283.

Using the supporting function helperPlotMaps, defined at the end of this example, plot the input
log mel spectrogram and the three interpretability maps for a selection of images and their predicted
classes.

viewingAngle = ;
imgIdx = [250 500 750];
numImages = length(imgIdx);

figure
t2 = tiledlayout(numImages,4,TileSpacing="compact");
for i = 1:numImages

    img = validationFeatures(:,:,:,imgIdx(i));
    YPred = validationPredictions(imgIdx(i));
    YTrue = validationLabels(imgIdx(i));

    mapClass = YPred;

    mapGradCAM = gradCAM(net,img,mapClass, ...
        OutputUpsampling="nearest");

    mapLIME = imageLIME(net,img,mapClass, ...
        OutputUpsampling="nearest", ...
        Segmentation="grid");

    mapOcclusion = occlusionSensitivity(net,img,mapClass, ...
        OutputUpsampling="nearest");

    maps = {mapGradCAM,mapLIME,mapOcclusion};
    mapNames = ["Grad-CAM","LIME","Occlusion Sensitivity"];

    helperPlotMaps(img,YPred,YTrue,maps,mapNames,viewingAngle,mapClass)
end

 Investigate Audio Classifications Using Deep Learning Interpretability Techniques

5-95



The interpretability mappings highlight regions of interest for the predicted class label of each
spectrogram.

• For the clock_tick class, all three methods focus on the same area of interest. The network uses
the region corresponding to the ticking sound to make its prediction.

• For the helicopter class, all the three methods focus on the same region at the bottom of the
spectrogram.

• For the crying_baby class, the three methods highlight different areas of the spectrogram,
possibly because this spectrogram contains many small features. Methods like Grad-CAM, which
produce lower resolution maps, might have difficulty picking out meaningful features. This
example highlights the limits of using interpretability methods to understand individual network
predictions.

As the results of training have an element of randomness, if you run this example again, you might
see different results. Additionally, to produce interpretable output for different images, you might
need to adjust the map parameters for the occlusion sensitivity and LIME maps. Grad-CAM does not
require parameter tuning, but it can produce lower resolution maps than the other two methods.

Investigate Predictions for Specific Class

Investigate the interpretability maps for spectrograms from a particular class.

Find the spectrograms corresponding to the helicopter class.

5 Deep Learning Tuning and Visualization

5-96



classToInvestigate = ;
idxClass = find(classes == classToInvestigate);
idxSubset = validationLabels==classes(idxClass);

subsetLabels = validationLabels(idxSubset);
subsetImages = validationFeatures(:,:,:,idxSubset);
subsetPredictions = validationPredictions(idxSubset);

imgIdx = [25 50 100];
numImages = length(imgIdx);

Generate and plot the interpretability maps using the input spectrograms and the predicted class
labels.

viewingAngle = ;

figure
t3 = tiledlayout(numImages,4,"TileSpacing","compact");
for i = 1:numImages

    img = subsetImages(:,:,:,imgIdx(i));
    YPred = subsetPredictions(imgIdx(i));
    YTrue = subsetLabels(imgIdx(i));

    mapClass = YPred;

    mapGradCAM = gradCAM(net,img,mapClass, ...
        OutputUpsampling="nearest");

    mapLIME = imageLIME(net,img,mapClass, ...
        OutputUpsampling="nearest", ...
        Segmentation="grid");

    mapOcclusion = occlusionSensitivity(net,img,mapClass, ...
        OutputUpsampling="nearest");

    maps = {mapGradCAM,mapLIME,mapOcclusion};
    mapNames = ["Grad-CAM","LIME","Occlusion Sensitivity"];

    helperPlotMaps(img,YPred,YTrue,maps,mapNames,viewingAngle,mapClass)
end

 Investigate Audio Classifications Using Deep Learning Interpretability Techniques

5-97



The maps for each image show that the network is focusing on the area of high intensity and low
frequency. The result is surprising as you might expect the network to also be interested in the high-
frequency noise that repeats through time. Spotting patterns like this is important for understanding
the features a network is using to make predictions.

Investigate Misclassifications

Use the interpretability maps to investigate misclassifications.

Investigate a spectrogram with the true class chainsaw but the predicted class helicopter.

trueClass = ;

predictedClass = ;

incorrectIdx = find(validationPredictions == predictedClass & validationLabels' == trueClass);

idxToInvestigate = incorrectIdx(1);
YPred = validationPredictions(idxToInvestigate);
YTrue = validationLabels(idxToInvestigate);

Generate and plot the maps for both the true class (chainsaw) and the predicted class
(helicopter).

5 Deep Learning Tuning and Visualization

5-98



figure
t4 = tiledlayout(2,4,"TileSpacing","compact");
img = validationFeatures(:,:,:,idxToInvestigate);

for mapClass = [YPred, YTrue]

    mapGradCAM = gradCAM(net,img,mapClass, ...
        OutputUpsampling="nearest");

    mapLIME = imageLIME(net,img,mapClass, ...
        OutputUpsampling="nearest", ...
        Segmentation="grid");

    mapOcclusion = occlusionSensitivity(net,img,mapClass, ...
        OutputUpsampling="nearest");

    maps = {mapGradCAM,mapLIME,mapOcclusion};
    mapNames = ["Grad-CAM","LIME","Occlusion Sensitivity"];

    helperPlotMaps(img,YPred,YTrue,maps,mapNames,viewingAngle,mapClass)
end

 Investigate Audio Classifications Using Deep Learning Interpretability Techniques

5-99



The network focuses on the area of low frequency for the helicopter class. The result matches the
interpretability maps generated for the helicopter class. Visual inspection is important for
investigating what parts of an input the network is using to make its classification decisions.

Supporting Functions

helperPlotMaps

The supporting function helperPlotMap generates a plot of the input image and the specified
interpretability maps.

function helperPlotMaps(img,YPred,YTrue,maps,mapNames,viewingAngle,mapClass)
nexttile
surf(img,EdgeColor="none")
view(viewingAngle)
title({"True: "+ string(YTrue), "Predicted: " + string(YPred)}, ...
    interpreter="none")
colormap parula

numMaps = length(maps);
for i = 1:numMaps
    map = maps{i};
    mapName = mapNames(i);

    nexttile
    surf(map,EdgeColor="none")
    view(viewingAngle)
    title(mapName,mapClass,interpreter="none")
end
end

helperAudioPreprocess

The supporting function helperAudioPreprocess takes as input an audioDatastore object and
the overlap percentage between log mel spectrograms and returns matrices of predictors and
responses suitable for input to the VGGish network.

function [predictor,response,segmentsPerFile] = helperAudioPreprocess(ads,overlap)

numFiles = numel(ads.Files);

% Extract predictors and responses for each file
for ii = 1:numFiles
    [audioIn,info] = read(ads);

    fs = info.SampleRate;
    features = vggishPreprocess(audioIn,fs,OverlapPercentage=overlap); 
    numSpectrograms = size(features,4);

    predictor{ii} = features;
    response{ii} = repelem(info.Label,numSpectrograms);
    segmentsPerFile(ii) = numSpectrograms;

end

% Concatenate predictors and responses into arrays
predictor = cat(4,predictor{:});

5 Deep Learning Tuning and Visualization

5-100



response = cat(2,response{:});
end

See Also
gradCAM | imageLIME | occlusionSensitivity | trainNetwork

Related Examples
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Deep Learning Visualization Methods” on page 5-283
• “Transfer Learning with Pretrained Audio Networks” on page 15-2
• “Transfer Learning with Pretrained Audio Networks in Deep Network Designer” on page 2-93

 Investigate Audio Classifications Using Deep Learning Interpretability Techniques

5-101



Generate Untargeted and Targeted Adversarial Examples for
Image Classification

This example shows how to use the fast gradient sign method (FGSM) and the basic iterative method
(BIM) to generate adversarial examples for a pretrained neural network.

Neural networks can be susceptible to a phenomenon known as adversarial examples [1], where very
small changes to an input can cause the input to be misclassified. These changes are often
imperceptible to humans.

In this example, you create two types of adversarial examples:

• Untargeted — Modify an image so that it is misclassified as any incorrect class.
• Targeted — Modify an image so that it is misclassified as a specific class.

Load Network and Image

Load a network that has been trained on the ImageNet [2] data set and convert it to a dlnetwork.

net = ;

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,lgraph.Layers(end).Name);
dlnet = dlnetwork(lgraph);

Extract the class labels.

classes = categories(net.Layers(end).Classes);

Load an image to use to generate an adversarial example. The image is a picture of a golden
retriever.

img = imread('sherlock.jpg');
T = "golden retriever";

Resize the image to match the input size of the network.

inputSize = dlnet.Layers(1).InputSize;
img = imresize(img,inputSize(1:2));

figure
imshow(img)
title("Ground Truth: " + T)

5 Deep Learning Tuning and Visualization

5-102



Prepare the image by converting it to a dlarray.

X = dlarray(single(img),"SSCB");

Prepare the label by one-hot encoding it.

T = onehotencode(T,1,'ClassNames',classes);
T = dlarray(single(T),"CB");

Untargeted Fast Gradient Sign Method

Create an adversarial example using the untargeted FGSM [3]. This method calculates the gradient
∇XL X, T  of the loss function L, with respect to the image X you want to find an adversarial example
for, and the class label T. This gradient describes the direction to "push" the image in to increase the
chance it is misclassified. You can then add or subtract a small error from each pixel to increase the
likelihood the image is misclassified.

The adversarial example is calculated as follows:

Xadv = X + ϵ . sign ∇XL X, T .

Parameter ϵ controls the size of the push. A larger ϵ value increases the chance of generating a
misclassified image, but makes the change in the image more visible. This method is untargeted, as
the aim is to get the image misclassified, regardless of which class.

Calculate the gradient of the image with respect to the golden retriever class.

gradient = dlfeval(@untargetedGradients,dlnet,X,T);

Set epsilon to 1 and generate the adversarial example.

epsilon = 1;
XAdv = X + epsilon*sign(gradient);

 Generate Untargeted and Targeted Adversarial Examples for Image Classification

5-103



Predict the class of the original image and the adversarial image.

YPred = predict(dlnet,X);
YPred = onehotdecode(squeeze(YPred),classes,1)

YPred = categorical
     golden retriever 

YPredAdv = predict(dlnet,XAdv);
YPredAdv = onehotdecode(squeeze(YPredAdv),classes,1)

YPredAdv = categorical
     Labrador retriever 

Display the original image, the perturbation added to the image, and the adversarial image. If the
epsilon value is large enough, the adversarial image has a different class label from the original
image.

showAdversarialImage(X,YPred,XAdv,YPredAdv,epsilon);

The network correctly classifies the unaltered image as a golden retriever. However, because of
perturbation, the network misclassifies the adversarial image as a labrador retriever. Once added to
the image, the perturbation is imperceptible, demonstrating how adversarial examples can exploit
robustness issues within a network.

5 Deep Learning Tuning and Visualization

5-104



Targeted Adversarial Examples

A simple improvement to FGSM is to perform multiple iterations. This approach is known as the basic
iterative method (BIM) [4] or projected gradient descent [5]. For the BIM, the size of the perturbation
is controlled by parameter α representing the step size in each iteration. This is as the BIM usually
takes many, smaller, FGSM steps in the direction of the gradient. After each iteration, clip the
perturbation to ensure the magnitude does not exceed ϵ. This method can yield adversarial examples
with less distortion than FGSM.

When you use untargeted FGSM, the predicted label of the adversarial example can be very similar to
the label of the original image. For example, a dog might be misclassified as a different kind of dog.
However, you can easily modify these methods to misclassify an image as a specific class. Instead of
maximizing the cross-entropy loss, you can minimize the mean squared error between the output of
the network and the desired target output.

Generate a targeted adversarial example using the BIM and the great white shark target class.

targetClass = "great white shark";
targetClass = onehotencode(targetClass,1,'ClassNames',classes);

Increase the epsilon value to 5, set the step size alpha to 0.2, and perform 25 iterations. Note that
you may have to adjust these settings for other networks.

epsilon = 5;
alpha = 0.2;
numIterations = 25;

Keep track of the perturbation and clip any values that exceed epsilon.

delta = zeros(size(X),'like',X);
for i = 1:numIterations
    gradient = dlfeval(@targetedGradients,dlnet,X+delta,targetClass);
    
    delta = delta - alpha*sign(gradient);
    delta(delta > epsilon) = epsilon;
    delta(delta < -epsilon) = -epsilon;
end

XAdvTarget = X + delta;

Predict the class of the targeted adversarial example.

YPredAdvTarget = predict(dlnet,XAdvTarget);
YPredAdvTarget = onehotdecode(squeeze(YPredAdvTarget),classes,1)

YPredAdvTarget = categorical
     great white shark 

Display the original image, the perturbation added to the image, and the targeted adversarial image.

showAdversarialImage(X,YPred,XAdvTarget,YPredAdvTarget,epsilon);

 Generate Untargeted and Targeted Adversarial Examples for Image Classification

5-105



Because of imperceptible perturbation, the network classifies the adversarial image as a great white
shark.

To make the network more robust against adversarial examples, you can use adversarial training. For
an example showing how to train a network robust to adversarial examples, see “Train Image
Classification Network Robust to Adversarial Examples” on page 5-109.

Supporting Functions

Untargeted Input Gradient Function

Calculate the gradient used to create an untargeted adversarial example. This gradient is the
gradient of the cross-entropy loss.

function gradient = untargetedGradients(dlnet,X,target)

Y = predict(dlnet,X);
Y = stripdims(squeeze(Y));
loss = crossentropy(Y,target,'DataFormat','CB');
gradient = dlgradient(loss,X);

end

Targeted Input Gradient Function

Calculate the gradient used to create a targeted adversarial example. This gradient is the gradient of
the mean squared error.

5 Deep Learning Tuning and Visualization

5-106



function gradient = targetedGradients(dlnet,X,target)

Y = predict(dlnet,X);
Y = stripdims(squeeze(Y));
loss = mse(Y,target,'DataFormat','CB');
gradient = dlgradient(loss,X);

end

Show Adversarial Image

Show an image, the corresponding adversarial image, and the difference between the two
(perturbation).

function showAdversarialImage(image,label,imageAdv,labelAdv,epsilon)

figure
subplot(1,3,1)
imgTrue = uint8(extractdata(image));
imshow(imgTrue)
title("Original Image" + newline + "Class: " + string(label))

subplot(1,3,2)
perturbation = uint8(extractdata(imageAdv-image+127.5));
imshow(perturbation)
title("Perturbation")

subplot(1,3,3)
advImg = uint8(extractdata(imageAdv));
imshow(advImg)
title("Adversarial Image (Epsilon = " + string(epsilon) + ")" + newline + ...
    "Class: " + string(labelAdv))
end

References

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples.” Preprint, submitted March 20, 2015. https://arxiv.org/abs/1412.6572.

[2] ImageNet. http://www.image-net.org.

[3] Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. “Intriguing Properties of Neural Networks.” Preprint, submitted February 19, 2014.
https://arxiv.org/abs/1312.6199.

[4] Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. “Adversarial Examples in the Physical World.”
Preprint, submitted February 10, 2017. https://arxiv.org/abs/1607.02533.

 Generate Untargeted and Targeted Adversarial Examples for Image Classification

5-107



[5] Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
“Towards Deep Learning Models Resistant to Adversarial Attacks.” Preprint, submitted September 4,
2019. https://arxiv.org/abs/1706.06083.

See Also
dlnetwork | onehotdecode | onehotencode | predict | dlfeval | dlgradient |
estimateNetworkOutputBounds | verifyNetworkRobustness

More About
• “Train Image Classification Network Robust to Adversarial Examples” on page 5-109
• “Generate Adversarial Examples for Semantic Segmentation” on page 5-121
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Understand Network Predictions Using LIME” on page 5-57
• “Out-of-Distribution Detection for Deep Neural Networks” on page 5-139

5 Deep Learning Tuning and Visualization

5-108



Train Image Classification Network Robust to Adversarial
Examples

This example shows how to train a neural network that is robust to adversarial examples using fast
gradient sign method (FGSM) adversarial training.

Neural networks can be susceptible to a phenomenon known as adversarial examples [1], where very
small changes to an input can cause it to be misclassified. These changes are often imperceptible to
humans.

Techniques for creating adversarial examples include the FGSM [2] and the basic iterative method
(BIM) [3], also known as projected gradient descent [4]. These techniques can significantly degrade
the accuracy of a network.

You can use adversarial training [5] to train networks that are robust to adversarial examples. This
example shows how to:

1 Train an image classification network.
2 Investigate network robustness by generating adversarial examples.
3 Train an image classification network that is robust to adversarial examples.

Load Training Data

The digitTrain4DArrayData function loads images of handwritten digits and their digit labels.
Create an arrayDatastore object for the images and the labels, and then use the combine function
to make a single datastore containing all the training data.

rng default
[XTrain,TTrain] = digitTrain4DArrayData;

dsXTrain = arrayDatastore(XTrain,IterationDimension=4);
dsTTrain = arrayDatastore(TTrain);

dsTrain = combine(dsXTrain,dsTTrain);

Extract the class names.

classes = categories(TTrain);

 Train Image Classification Network Robust to Adversarial Examples

5-109



Construct Network Architecture

Define an image classification network.

layers = [
    imageInputLayer([28 28 1],Normalization="none")
    convolution2dLayer(3,32,Padding=1)
    reluLayer
    convolution2dLayer(3,64,Padding=1)
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    fullyConnectedLayer(10)
    softmaxLayer];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

net = dlnetwork(lgraph);

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, that takes as input a dlnetwork
object and a mini-batch of input data with corresponding labels and returns the loss and the
gradients of the loss with respect to the learnable parameters in the network.

Train Network

Train the network using a custom training loop.

Specify the training options. Train for 30 epochs with a mini-batch size of 100 and a learning rate of
0.01.

numEpochs = 30;
miniBatchSize = 100;
learnRate = 0.01;

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch).
• Train on a GPU if one is available. By default, the minibatchqueue object converts each output

to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain, ...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB",""]);

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Calculate the total number of iterations for the training progress monitor.

5 Deep Learning Tuning and Visualization

5-110



numObservationsTrain = numel(TTrain);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model loss, gradients, and state using the dlfeval and modelLoss functions and
update the network state.

• Update the network parameters using the sgdmupdate function.
• Display the training progress using the TrainingProgressMonitor object.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration +1;

        % Read mini-batch of data.
        [X,T] = next(mbq);

        % Evaluate the model loss, gradients, and state.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T);
        net.State = state;

        % Update the network parameters using the SGDM optimizer.
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

 Train Image Classification Network Robust to Adversarial Examples

5-111



Test Network

Test the classification accuracy of the network by evaluating network predictions on a test data set.

Create a minibatchqueue object containing the test data.

[XTest,TTest] = digitTest4DArrayData;

dsXTest = arrayDatastore(XTest,IterationDimension=4);
dsTTest = arrayDatastore(TTest);

dsTest = combine(dsXTest,dsTTest);

mbqTest = minibatchqueue(dsTest, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat="SSCB");

Predict the classes of the test data using the trained network and the modelPredictions function
defined at the end of this example.

YPred = modelPredictions(net,mbqTest,classes);
acc = mean(YPred == TTest)

acc = 0.9868

The network accuracy is very high.

Test Network with Adversarial Inputs

Apply adversarial perturbations to the input images and see how doing so affects the network
accuracy.

5 Deep Learning Tuning and Visualization

5-112



You can generate adversarial examples using techniques such as FGSM and BIM. FGSM is a simple
technique that takes a single step in the direction of the gradient ∇XL X, T  of the loss function L,
with respect to the image X you want to find an adversarial example for, and the class label T. The
adversarial example is calculated as

Xadv = X + ϵ . sign ∇XL X, T .

Parameter ϵ controls how different the adversarial examples look from the original images. In this
example, the values of the pixels are between 0 and 1, so an ϵ value of 0.1 alters each individual pixel
value by up to 10% of the range. The value of ϵ depends on the image scale. For example, if your
image is instead between 0 and 255, you need to multiply this value by 255.

BIM is a simple improvement to FGSM which applies FGSM over multiple iterations and applies a
threshold. After each iteration, the BIM clips the perturbation to ensure the magnitude does not
exceed ϵ. This method can yield adversarial examples with less distortion than FGSM. For more
information about generating adversarial examples, see “Generate Untargeted and Targeted
Adversarial Examples for Image Classification” on page 5-102.

Create adversarial examples using the BIM. Set epsilon to 0.1.

epsilon = 0.1;

For the BIM, the size of the perturbation is controlled by parameter α representing the step size in
each iteration. This is as the BIM usually takes many, smaller, FGSM steps in the direction of the
gradient.

Define the step size alpha and the number of iterations.

alpha = 0.01;
numAdvIter = 20;

Use the adversarialExamples function (defined at the end of this example) to compute adversarial
examples using the BIM on the test data set. This function also returns the new predictions for the
adversarial images.

reset(mbqTest)
[XAdv,YPredAdv] = adversarialExamples(net,mbqTest,epsilon,alpha,numAdvIter,classes);

Compute the accuracy of the network on the adversarial example data.

accAdversarial = mean(YPredAdv == TTest)

accAdversarial = 0.0122

Plot the results.

visualizePredictions(XAdv,YPredAdv,TTest);

 Train Image Classification Network Robust to Adversarial Examples

5-113



You can see that the accuracy is severely degraded by the BIM, even though the image perturbation
is hardly visible.

Train Robust Network

You can train a network to be robust against adversarial examples. One popular method is adversarial
training. Adversarial training involves applying adversarial perturbations to the training data during
the training process [4] [5].

FGSM adversarial training is a fast and effective technique for training a network to be robust to
adversarial examples. The FGSM is similar to the BIM, but it takes a single larger step in the
direction of the gradient to generate an adversarial image.

Adversarial training involves applying the FGSM technique to each mini-batch of training data.
However, for the training to be effective, these criteria must apply:

• The FGSM training method must use a randomly initialized perturbation instead of a perturbation
that is initialized to zero.

• For the network to be robust to perturbations of size ϵ, perform FGSM training with a value
slightly larger than ϵ. For this example, during adversarial training, you perturb the images using
step size α = 1 . 25ϵ.

Train a new network with FGSM adversarial training. Start by using the same untrained network
architecture as in the original network.

netRobust = dlnetwork(lgraph);

5 Deep Learning Tuning and Visualization

5-114



Define the adversarial training parameters. Set the number of iterations to 1, as the FGSM is
equivalent to the BIM with a single iteration. Randomly initialize the perturbation and perturb the
images using alpha.

numIter = 1;
initialization = "random";
alpha = 1.25*epsilon;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitorRobust = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the robust network using a custom training loop and the same training options as previously
defined. This loop is the same as in the previous custom training, but with added adversarial
perturbation.

velocity = [];
epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitorRobust.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitorRobust.Stop
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(mbq);

        % Apply adversarial perturbations to the data.
        X = basicIterativeMethod(netRobust,X,T,alpha,epsilon, ...
            numIter,initialization);

        % Evaluate the model loss, gradients, and state.
        [loss,gradients,state] = dlfeval(@modelLoss,netRobust,X,T);
        net.State = state;

        % Update the network parameters using the SGDM optimizer.
        [netRobust,velocity] = sgdmupdate(netRobust,gradients,velocity,learnRate);

        % Update the training progress monitor.
        recordMetrics(monitorRobust,iteration,Loss=loss);
        updateInfo(monitorRobust,Epoch=epoch + " of " + numEpochs);
        monitorRobust.Progress = 100 * iteration/numIterations;
    end
end

 Train Image Classification Network Robust to Adversarial Examples

5-115



Test Robust Network

Calculate the accuracy of the robust network on the digits test data. The accuracy of the robust
network can be slightly lower than the nonrobust network on the standard data.

reset(mbqTest)
YPred = modelPredictions(netRobust,mbqTest,classes);
accRobust = mean(YPred == TTest)

accRobust = 0.9966

Compute the adversarial accuracy.

reset(mbqTest)
[XAdv,YPredAdv] = adversarialExamples(netRobust,mbqTest,epsilon,alpha,numAdvIter,classes);
accRobustAdv = mean(YPredAdv == TTest)

accRobustAdv = 0.7538

The adversarial accuracy of the robust network is much better than that of the original network.

Supporting Functions

Model Loss Function

The modelLoss function takes as input a dlnetwork object net and a mini-batch of input data X
with corresponding labels T and returns the loss, the gradients of the loss with respect to the
learnable parameters in net, and the network state. To compute the gradients automatically, use the
dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T)

[YPred,state] = forward(net,X);

5 Deep Learning Tuning and Visualization

5-116



loss = crossentropy(YPred,T);
gradients = dlgradient(loss,net.Learnables);

loss = double(loss);

end

Input Gradients Function

The modelGradientsInput function takes as input a dlnetwork object net and a mini-batch of
input data X with corresponding labels T and returns the gradients of the loss with respect to the
input data X.

function gradient = modelGradientsInput(net,X,T)

T = squeeze(T);
T = dlarray(T,'CB');

[YPred] = forward(net,X);

loss = crossentropy(YPred,T);
gradient = dlgradient(loss,X);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Extract the image data from the incoming cell array and concatenate into a four-dimensional
array.

2 Extract the label data from the incoming cell array and concatenate into a categorical array
along the second dimension.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(XCell,TCell)

% Concatenate.
X = cat(4,XCell{1:end});

X = single(X);

% Extract label data from the cell and concatenate.
T = cat(2,TCell{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

end

Model Predictions Function

The modelPredictions function takes as input a dlnetwork object net, a minibatchqueue of
input data mbq, and the network classes, and computes the model predictions by iterating over all

 Train Image Classification Network Robust to Adversarial Examples

5-117



data in the minibatchqueue object. The function uses the onehotdecode function to find the
predicted class with the highest score.

function predictions = modelPredictions(net,mbq,classes)

predictions = [];

while hasdata(mbq)

    XTest = next(mbq);
    YPred = predict(net,XTest);

    YPred = onehotdecode(YPred,classes,1)';

    predictions = [predictions; YPred];
end

end

Adversarial Examples Function

Generate adversarial examples for a minibatchqueue object using the basic iterative method (BIM)
and predict the class of the adversarial examples using the trained network net.

function [XAdv,predictions] = adversarialExamples(net,mbq,epsilon,alpha,numIter,classes)

XAdv = {};
predictions = [];
iteration = 0;

% Generate adversarial images for each mini-batch.
while hasdata(mbq)

    iteration = iteration +1;
    [X,T] = next(mbq);

    initialization = "zero";

    % Generate adversarial images.
    XAdvMBQ = basicIterativeMethod(net,X,T,alpha,epsilon, ...
        numIter,initialization);

    % Predict the class of the adversarial images.
    YPred = predict(net,XAdvMBQ);
    YPred = onehotdecode(YPred,classes,1)';

    XAdv{iteration} = XAdvMBQ;
    predictions = [predictions; YPred];
end

% Concatenate.
XAdv = cat(4,XAdv{:});

end

5 Deep Learning Tuning and Visualization

5-118



Basic Iterative Method Function

Generate adversarial examples using the basic iterative method (BIM). This method runs for multiple
iterations with a threshold at the end of each iteration to ensure that the entries do not exceed
epsilon. When numIter is set to 1, this is equivalent to using the fast gradient sign method
(FGSM).

function XAdv = basicIterativeMethod(net,X,T,alpha,epsilon,numIter,initialization)

% Initialize the perturbation.
if initialization == "zero"
    delta = zeros(size(X),like=X);
else
    delta = epsilon*(2*rand(size(X),like=X) - 1);
end

for i = 1:numIter

    % Apply adversarial perturbations to the data.
    gradient = dlfeval(@modelGradientsInput,net,X+delta,T);
    delta = delta + alpha*sign(gradient);
    delta(delta > epsilon) = epsilon;
    delta(delta < -epsilon) = -epsilon;
end

XAdv = X + delta;

end

Visualize Prediction Results Function

Visualize images along with their predicted classes. Correct predictions use green text. Incorrect
predictions use red text.

function visualizePredictions(XTest,YPred,TTest)

figure
height = 4;
width = 4;
numImages = height*width;

% Select random images from the data.
indices = randperm(size(XTest,4),numImages);

XTest = extractdata(XTest);
XTest = XTest(:,:,:,indices);
YPred = YPred(indices);
TTest = TTest(indices);

% Plot images with the predicted label.
for i = 1:(numImages)
    subplot(height,width,i)
    imshow(XTest(:,:,:,i))

    % If the prediction is correct, use green. If the prediction is false,
    % use red.
    if YPred(i) == TTest(i)
        color = "\color{green}";

 Train Image Classification Network Robust to Adversarial Examples

5-119



    else
        color = "\color{red}";
    end
    title("Prediction: " + color + string(YPred(i)))
end

end

References

[1] Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. “Intriguing Properties of Neural Networks.” Preprint, submitted February 19, 2014.
https://arxiv.org/abs/1312.6199.

[2] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples.” Preprint, submitted March 20, 2015. https://arxiv.org/abs/1412.6572.

[3] Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. “Adversarial Examples in the Physical World.”
Preprint, submitted February 10, 2017. https://arxiv.org/abs/1607.02533.

[4] Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
“Towards Deep Learning Models Resistant to Adversarial Attacks.” Preprint, submitted September 4,
2019. https://arxiv.org/abs/1706.06083.

[5] Wong, Eric, Leslie Rice, and J. Zico Kolter. “Fast Is Better than Free: Revisiting Adversarial
Training.” Preprint, submitted January 12, 2020. https://arxiv.org/abs/2001.03994.

See Also
dlfeval | dlnetwork | dlgradient | arrayDatastore | minibatchqueue |
estimateNetworkOutputBounds | verifyNetworkRobustness

More About
• “Generate Untargeted and Targeted Adversarial Examples for Image Classification” on page 5-

102
• “Generate Adversarial Examples for Semantic Segmentation” on page 5-121
• “Verify Robustness of Deep Learning Neural Network” on page 5-132
• “Define Deep Learning Network for Custom Training Loops” on page 19-223
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Out-of-Distribution Detection for Deep Neural Networks” on page 5-139

5 Deep Learning Tuning and Visualization

5-120



Generate Adversarial Examples for Semantic Segmentation

This example shows how to generate adversarial examples for a semantic segmentation network
using the basic iterative method (BIM).

Semantic segmentation is the process of assigning each pixel in an image a class label, for example,
car, bike, person, or sky. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis.

Neural networks can be susceptible to a phenomenon known as adversarial examples [1], where very
small changes to an input can cause it to be misclassified. These changes are often imperceptible to
humans. This example shows how to generate an adversarial example for a semantic segmentation
network.

This example generates adversarial examples using the CamVid [2] data set from the University of
Cambridge. The CamVid data set is a collection of images containing street-level views obtained while
driving. The data set provides pixel-level labels for 32 semantic classes including car, pedestrian, and
road.

Load Network

Load a pretrained semantic segmentation network. This example loads a Deeplab v3+ network
trained on the CamVid data set with weights initialized from a pretrained ResNet-18 network. For
more information on building and training a Deeplab v3+ semantic segmentation network, see
“Semantic Segmentation Using Deep Learning” on page 8-138.

pretrainedURL = "https://www.mathworks.com/supportfiles/vision/data/deeplabv3plusResnet18CamVid.mat";
pretrainedFolder = fullfile(tempdir,"pretrainedNetwork");
pretrainedNetwork = fullfile(pretrainedFolder,"deeplabv3plusResnet18CamVid.mat"); 
if ~exist(pretrainedNetwork,"file")
    mkdir(pretrainedFolder);
    disp("Downloading pretrained network (58 MB)...");
    websave(pretrainedNetwork,pretrainedURL);
end

Load the network and convert it to a dlnetwork.

data = load(pretrainedNetwork);
net = data.net;

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,lgraph.Layers(end).Name);
net = dlnetwork(lgraph);

Load Image

Load an image and its corresponding label image. The image is a street-level view obtained from a
car being driven. The label image contains the ground truth pixel labels. In this example, you create
an adversarial example that causes the semantic segmentation network to misclassify the pixels in
the Bicyclist class.

img = imread("0016E5_08145.png");

Use the supporting function convertCamVidLabelImage, defined at the end of this example, to
convert the label image to a categorical array.

 Generate Adversarial Examples for Semantic Segmentation

5-121

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/


T = convertCamVidLabelImage(imread("0016E5_08145_L.png"));

The data set contains 32 classes. Use the supporting function camVidClassNames11, defined at the
end of this example, to reduce the number of classes to 11 by grouping multiple classes from the
original data set together.

classNames = camVidClassNames11;

Use the supporting function camVidColorMap11 to create a colormap for the 11 classes.

cmap = camVidColorMap11;

Display the image with an overlay showing the pixels with the ground truth label Bicyclist.

classOfInterest = "Bicyclist";
notTheClassOfInterest = T ~= classOfInterest;

TClassOfInterest = T;
TClassOfInterest(notTheClassOfInterest) = "";

overlayImage = labeloverlay(img,TClassOfInterest,ColorMap=cmap);
imshow(overlayImage)

5 Deep Learning Tuning and Visualization

5-122



Create Adversarial Target Labels

To create an adversarial example, you must specify the adversarial target label for each pixel you
want the network to misclassify. In this example, the aim is to get the network to misclassify the
Bicyclist pixels as another class. Therefore, you need to specify target classes for each of the
Bicyclist pixels.

Using the supporting function eraseClass, defined at the end of this example, create adversarial
target labels by replacing all Bicyclist pixel labels with the label of the nearest pixel that is not in
the Bicyclist class [3].

TDesired = eraseClass(T,classOfInterest);

Display the adversarial target labels.

overlayImage = labeloverlay(img,TDesired,ColorMap=cmap);
figure
imshow(overlayImage)
pixelLabelColorbar(cmap,classNames);

The labels of the Bicyclist pixels are now Road, Building, or Pavement.

 Generate Adversarial Examples for Semantic Segmentation

5-123



Prepare Data

To create the adversarial example using the image and the adversarial target labels, you must first
prepare the image and the labels.

Prepare the image by converting it to a dlarray.

X = dlarray(single(img), "SSCB");

Prepare the label by one-hot encoding it. Because some of the pixels have undefined labels, replace
NaN values with 0.

TDesired = onehotencode(TDesired,3,"single",ClassNames=classNames);
TDesired(isnan(TDesired)) = 0;
TDesired = dlarray(TDesired,"SSCB");

Create Adversarial Example

Use the adversarial target labels to create an adversarial example using the basic iterative method
(BIM) [4]. The BIM iteratively calculates the gradient ∇XL X, T  of the loss function L with respect to
the image X you want to find an adversarial example for and the adversarial target labels T. The
negative of this gradient describes the direction to "push" the image in to make the output closer to
the desired class labels.

The adversarial example image is calculated iteratively as follows:

Xadv = X − α . sign ∇XL X, T .

Parameter α controls the size of the push for a single iteration. After each iteration, clip the
perturbation to ensure the magnitude does not exceed ϵ. Parameter ϵ defines a ceiling on how large
the total change can be over all the iterations. A larger ϵ value increases the chance of generating a
misclassified image, but makes the change in the image more visible.

Set the epsilon value to 5, set the step size alpha to 1, and perform 10 iterations.

epsilon = 5;
alpha = 1;
numIterations = 10;

Keep track of the perturbation and clip any values that exceed epsilon.

delta = zeros(size(X),like=X);
for i = 1:numIterations
    gradient = dlfeval(@targetedGradients,net,X+delta,TDesired);
    
    delta = delta - alpha*sign(gradient);
    delta(delta > epsilon) = epsilon;
    delta(delta < -epsilon) = -epsilon;
end

XAdvTarget = X + delta;

Display the original image, the perturbation added to the image, and the adversarial image.

showAdversarialImage(X,XAdvTarget,epsilon)

5 Deep Learning Tuning and Visualization

5-124



The added perturbation is imperceptible, demonstrating how adversarial examples can exploit
robustness issues within a network.

Predict Pixel Labels

Predict the class labels of the original image and the adversarial image using the semantic
segmentation network.

Y = semanticseg(extractdata(X),net);
YAdv = semanticseg(extractdata(XAdvTarget),net);

Display an overlay of the predictions for both images.

overlayImage = labeloverlay(uint8(extractdata(X)),Y,ColorMap=cmap);
overlayAdvImage = labeloverlay(uint8(extractdata(XAdvTarget)),YAdv,ColorMap=cmap);

figure
tiledlayout("flow",TileSpacing="tight")
nexttile
imshow(uint8(extractdata(X)))
title("Original Image")
nexttile
imshow(overlayImage)
pixelLabelColorbar(cmap,classNames);
title("Original Predicted Labels")
nexttile 
imshow(uint8(extractdata(XAdvTarget)))

 Generate Adversarial Examples for Semantic Segmentation

5-125



title("Adversarial Image")
nexttile
imshow(overlayAdvImage)
pixelLabelColorbar(cmap,classNames);
title("Adversarial Predicted Labels")

The network correctly identifies the bicyclist in the original image. However, because of
imperceptible perturbation, the network mislabels the bicyclist in the adversarial image.

Supporting Functions

Convert CamVid Label Image to a Categorical

The supporting function convertCamVidLabelImage takes as input a label image from the CamVid
data set and converts it to a categorical array.

function labelImage = convertCamVidLabelImage(image)

colorMap32 = camVidColorMap32;
map32To11 = cellfun(@(x,y)repmat(x,size(y,1),1), ...
    num2cell((1:numel(colorMap32))'), ...
    colorMap32, ...
    UniformOutput=false);

colorMap32 = cat(1,colorMap32{:});
map32To11 = cat(1,map32To11{:});

labelImage = rgb2ind(double(image)./255,colorMap32);

5 Deep Learning Tuning and Visualization

5-126



labelImage = map32To11(labelImage+1);
labelImage = categorical(labelImage,1:11,camVidClassNames11);

end

CamVid Color Map (32 classes)

The supporting function camVidColorMap32 returns the color map for the 32 original classes in the
CamVid data set.

function cmap = camVidColorMap32

cmap = {

    % Sky
    [
    128 128 128
    ]
    
    % Building
    [
      0 128  64     % Bridge
    128   0   0     % Building
     64 192   0     % Wall
     64   0  64     % Tunnel
    192   0 128     % Archway
    ]

    % Pole
    [
    192 192 128     % Column_Pole
      0   0  64     % TrafficCone
    ]

    % Road
    [
    128  64 128     % Road
    128   0 192     % LaneMkgsDriv
    192   0  64     % LaneMkgsNonDriv
    ]

    % Pavement
    [
      0   0 192     % Sidewalk 
     64 192 128     % ParkingBlock
    128 128 192     % RoadShoulder
    ]

    % Tree
    [
    128 128   0     % Tree
    192 192   0     % VegetationMisc
    ]

    % SignSymbol
    [
    192 128 128     % SignSymbol
    128 128  64     % Misc_Text

 Generate Adversarial Examples for Semantic Segmentation

5-127



      0  64  64     % TrafficLight
    ]

    % Fence
    [
     64  64 128     % Fence
    ]

    % Car
    [
     64   0 128     % Car
     64 128 192     % SUVPickupTruck
    192 128 192     % Truck_Bus
    192  64 128     % Train
    128  64  64     % OtherMoving
    ]

    % Pedestrian
    [
     64  64   0     % Pedestrian
    192 128  64     % Child
     64   0 192     % CartLuggagePram
     64 128  64     % Animal
    ]

    % Bicyclist
    [
      0 128 192     % Bicyclist
    192   0 192     % MotorcycleScooter
    ]

    % Void
    [
      0   0   0     % Void
    ]
    
    };

% Normalize between [0 1].
cmap = cellfun(@(x)x./255,cmap,UniformOutput=false);

end

CamVid Color Map (11 classes)

The supporting function camVidColorMap11 returns the color map for the 11 umbrella classes in the
CamVid data set.

function cmap = camVidColorMap11

cmap = [
    128 128 128     % Sky
    128   0   0     % Building
    192 192 192     % Pole
    128  64 128     % Road
     60  40 222     % Pavement
    128 128   0     % Tree
    192 128 128     % SignSymbol

5 Deep Learning Tuning and Visualization

5-128



     64  64 128     % Fence
     64   0 128     % Car
     64  64   0     % Pedestrian
      0 128 192     % Bicyclist
    ];

% Normalize between [0 1].
cmap = cmap ./ 255;

end

CamVid Labels (11 classes)

The supporting function classNames returns the 11 umbrella classes of the CamVid data set.

function classNames = camVidClassNames11
classNames = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];
end

Pixel Label Colorbar Function

The supporting function pixelLabelColorbar adds a colorbar to the current axis. The colorbar is
formatted to display the class names with the color.

function pixelLabelColorbar(cmap, classNames)
% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca,cmap)

% Add colorbar to current figure.
c = colorbar("peer", gca);

% Use class names for tick marks.
c.TickLabels = classNames;
numClasses = size(cmap,1);

% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick mark.
c.TickLength = 0;
end

 Generate Adversarial Examples for Semantic Segmentation

5-129



Erase Class Function

The supporting function eraseClass removes class classToErase from the label image T by
relabeling the pixels in class classToErase. For each pixel in class classToErase, the
eraseClass function sets the pixel label to the class of the nearest pixel not in class classToErase.

function TDesired = eraseClass(T,classToErase)
classToEraseMask = T == classToErase;
[~,idx] = bwdist(~(classToEraseMask | isundefined(T)));
TDesired = T;
TDesired(classToEraseMask) = T(idx(classToEraseMask));
end

Targeted Input Gradient Function

Calculate the gradient used to create a targeted adversarial example. The gradient is the gradient of
the mean squared error.

function gradient = targetedGradients(net,X,target)
Y = predict(net,X);
loss = mse(Y,target);
gradient = dlgradient(loss,X);
end

Show Adversarial Image

Show an image, the corresponding adversarial image, and the difference between the two
(perturbation).

function showAdversarialImage(image,imageAdv,epsilon)

figure
tiledlayout(1,3,TileSpacing="compact")
nexttile
imgTrue = uint8(extractdata(image));
imshow(imgTrue)
title("Original Image")

nexttile
perturbation = uint8(extractdata(imageAdv-image+127.5));
imshow(perturbation)
title("Perturbation")

nexttile
advImg = uint8(extractdata(imageAdv));
imshow(advImg)
title("Adversarial Image" + newline + "Epsilon = " + string(epsilon))
end

References

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples.” Preprint, submitted March 20, 2015. https://arxiv.org/abs/1412.6572.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. “Semantic Object Classes in Video: A
High-Definition Ground Truth Database.” Pattern Recognition Letters 30, no. 2 (January 2009): 88–97.
https://doi.org/10.1016/j.patrec.2008.04.005.

5 Deep Learning Tuning and Visualization

5-130



[3] Fischer, Volker, Mummadi Chaithanya Kumar, Jan Hendrik Metzen, and Thomas Brox. “Adversarial
Examples for Semantic Image Segmentation.” Preprint, submitted March 3, 2017. http://
arxiv.org/abs/1703.01101.

[4] Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. “Adversarial Examples in the Physical World.”
Preprint, submitted February 10, 2017. https://arxiv.org/abs/1607.02533.

See Also
dlnetwork | dlarray | semanticseg | verifyNetworkRobustness

Related Examples
• “Generate Untargeted and Targeted Adversarial Examples for Image Classification” on page 5-

102
• “Train Image Classification Network Robust to Adversarial Examples” on page 5-109
• “Semantic Segmentation Using Deep Learning” on page 8-138
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Out-of-Distribution Data Discriminator for YOLO v4 Object Detector” on page 5-154

 Generate Adversarial Examples for Semantic Segmentation

5-131



Verify Robustness of Deep Learning Neural Network

This example shows how to verify the adversarial robustness of a deep learning neural network.

Neural networks can be susceptible to a phenomenon known as adversarial examples [1], where very
small changes to an input can cause the network predictions to significantly change. For example,
making small changes to the pixels in an image can cause the image to be misclassified. These
changes are often imperceptible to humans.

A network is adversarially robust if the output of the network does not change significantly when the
input is perturbed. For classification tasks, adversarial robustness means that the output of the fully
connected layer with the highest value does not change, and therefore the predicted class does not
change [2].

In this example, you compare the robustness of a normal network and a network that is trained to be
robust to adversarial examples.

This example requires the Deep Learning Toolbox™ Verification Library support package. If this
support package is not installed, use the Add-On Explorer. To open the Add-On Explorer, go to the
MATLAB® Toolstrip and click Add-Ons > Get Add-Ons.

Load Pretrained Network

Load a pretrained network. This network has been trained to classify images of digits.

load("digitsClassificationConvolutionNet.mat")

This network has a convolutional architecture with repeating sets of convolution, batch normalization
and ReLU layers, followed by a global average pooling layer, and then a fully connected and softmax
layer. The network is a dlnetwork object that has been trained using the first custom training loop
from the “Train Image Classification Network Robust to Adversarial Examples” on page 5-109
example with a learning rate of 0.1 and the max epochs set to 30.

Show the layers of the network.

net.Layers

ans = 
  13×1 Layer array with layers:

     1   'imageinput'    Image Input                  28×28×1 images
     2   'conv_1'        2-D Convolution              10 3×3×1 convolutions with stride [2  2] and padding [0  0  0  0]
     3   'batchnorm_1'   Batch Normalization          Batch normalization with 10 channels
     4   'relu_1'        ReLU                         ReLU
     5   'conv_2'        2-D Convolution              20 3×3×10 convolutions with stride [2  2] and padding [0  0  0  0]
     6   'batchnorm_2'   Batch Normalization          Batch normalization with 20 channels
     7   'relu_2'        ReLU                         ReLU
     8   'conv_3'        2-D Convolution              40 3×3×20 convolutions with stride [2  2] and padding [0  0  0  0]
     9   'batchnorm_3'   Batch Normalization          Batch normalization with 40 channels
    10   'relu_3'        ReLU                         ReLU
    11   'gap'           2-D Global Average Pooling   2-D global average pooling
    12   'fc'            Fully Connected              10 fully connected layer
    13   'softmax'       Softmax                      softmax

5 Deep Learning Tuning and Visualization

5-132



You can use the verifyNetworkRobustness function to verify the adversarial robustness of the
network. The function verifies the robustness with respect to the final layer. For most use cases, use
the final fully connected layer for verification.

Prepare the network for verification by removing the softmax layer.

net = removeLayers(net,"softmax");

When you remove layers from a dlnetwork object, the software returns the network as an
uninitialized dlnetwork object. To initialize the network, use the initialize function.

net = initialize(net);

Load Test Data

Load test images of digits with which to verify the network.

[XTest,TTest] = digitTest4DArrayData;

Verification of the whole test set can take a long time. Use a subset of the test data for verification.

numObservations = numel(TTest);
numToVerify = 200;

idx = randi(numObservations,numToVerify,1);
X = XTest(:,:,:,idx);
T = TTest(idx);

Convert the test images to a dlarray object with the data format "SSCB" (spatial, spatial, channel,
batch), which represents image data.

X = dlarray(X,"SSCB");

Verify Network Robustness

To verify the adversarial robustness of a deep learning network, use the
verifyNetworkRobustness function. The verifyNetworkRobustness function requires the
Deep Learning Toolbox™ Verification Library support package.

To verify network robustness, the verifyNetworkRobustness function checks that, for all inputs
between the specified input bounds, there does not exist an adversarial example. The absence of an
adversarial example means that, for all images within the input set defined by the lower and upper
input bounds, the predicted class label matches the specified label (usually the true class label).

For each set of input lower and upper bounds, the function returns one of these values:

• "verified" — The network is robust to adversarial inputs between the specified bounds.
• "violated" — The network is not robust to adversarial inputs between the specified bounds.
• "unproven" — The function cannot prove whether the network is robust to adversarial inputs

between the specified bounds.

Create lower and upper bounds for each of the test images. Verify the network robustness to an input
perturbation between –0.05 and 0.05 for each pixel.

perturbation = 0.05;

 Verify Robustness of Deep Learning Neural Network

5-133



XLower = X - perturbation;
XUpper = X + perturbation;

Verify the network robustness for the specified input bounds and true class labels.

result = verifyNetworkRobustness(net,XLower,XUpper,T);
summary(result)

     verified        0 
     violated        0 
     unproven      200 

figure
bar(countcats(result))
xticklabels(categories(result))
ylabel("Number of Observations")

Verify Adversarially Trained Network

Adversarial training is a technique for training a network so that it is robust to adversarial examples
[3]. Load a pretrained network that has been trained to be robust to adversarial examples using the
methods described in “Train Image Classification Network Robust to Adversarial Examples” on page
5-109. This network has the same layers as the normal network. The network has been trained to be
robust to pixel perturbations in the range [–0.05, 0.05].

load("digitsRobustClassificationConvolutionNet.mat")
netRobust.Layers

5 Deep Learning Tuning and Visualization

5-134



ans = 
  13×1 Layer array with layers:

     1   'imageinput'    Image Input                  28×28×1 images
     2   'conv_1'        2-D Convolution              10 3×3×1 convolutions with stride [2  2] and padding [0  0  0  0]
     3   'batchnorm_1'   Batch Normalization          Batch normalization with 10 channels
     4   'relu_1'        ReLU                         ReLU
     5   'conv_2'        2-D Convolution              20 3×3×10 convolutions with stride [2  2] and padding [0  0  0  0]
     6   'batchnorm_2'   Batch Normalization          Batch normalization with 20 channels
     7   'relu_2'        ReLU                         ReLU
     8   'conv_3'        2-D Convolution              40 3×3×20 convolutions with stride [2  2] and padding [0  0  0  0]
     9   'batchnorm_3'   Batch Normalization          Batch normalization with 40 channels
    10   'relu_3'        ReLU                         ReLU
    11   'gap'           2-D Global Average Pooling   2-D global average pooling
    12   'fc'            Fully Connected              10 fully connected layer
    13   'softmax'       Softmax                      softmax

Prepare the network for verification using the same steps as for the normal network.

netRobust = removeLayers(netRobust,"softmax");
netRobust = initialize(netRobust);

Verify the network robustness.

resultRobust = verifyNetworkRobustness(netRobust,XLower,XUpper,T);
summary(resultRobust)

     verified      154 
     violated        0 
     unproven       46 

Compare the results from the two networks. The robust network has a greater number of
observations that correspond to a verified result in comparison to the network without adversarial
training.

combineResults = [countcats(result),countcats(resultRobust)];
figure
bar(combineResults)
xticklabels(categories(result))
ylabel("Number of Observations")
legend(["Normal Network","Robust Network"],Location="northwest")

 Verify Robustness of Deep Learning Neural Network

5-135



Compare Perturbation Values

Compare the number of verified results as the perturbation value changes. Create lower and upper
bounds for each image for a range of perturbation values. To reduce computation time, specify
multiple pairs of input bounds in a single call to the verifyNetworkRobustness function.

numToVerify = 50;
X = X(:,:,:,1:numToVerify);
T = T(1:numToVerify);

perturbationRange = 0:0.01:0.1;

XLower = [];
XUpper = [];
TRange = [];

j = 1;
for i = 1:numel(perturbationRange)
    idxRange = j:(j+numToVerify-1);

    perturbationRangeIdx(i,1) = idxRange(1);
    perturbationRangeIdx(i,2) = idxRange(end);

    XLower(:,:,:,idxRange) = X - perturbationRange(i);
    XUpper(:,:,:,idxRange) = X + perturbationRange(i);

    TRange(idxRange) = T;

5 Deep Learning Tuning and Visualization

5-136



    j = j + numToVerify;
end

XLower = dlarray(XLower,"SSCB");
XUpper = dlarray(XUpper,"SSCB");

Verify the robustness of both networks for each pair of input lower and upper bounds.

result = verifyNetworkRobustness(net,XLower,XUpper,TRange);
resultRobust = verifyNetworkRobustness(netRobust,XLower,XUpper,TRange);

Find the number of verified results for each perturbation value.

numVerified = [];
numVerifiedRobust = [];

for i = 1:numel(perturbationRange)
    range = perturbationRangeIdx(i,:);

    numVerified(i) = sum(result(range(1):range(2)) == "verified");
    numVerifiedRobust(i) = sum(resultRobust(range(1):range(2)) == "verified");
end

Plot the results. As the perturbation increases, the number of observations returning verified
decreases for both networks.

figure
plot(perturbationRange,numVerified,"*-")
hold on
plot(perturbationRange,numVerifiedRobust,"*-")
hold off

legend(["Normal Network","Robust Network"])
xlabel("Perturbation")
ylabel("Number of verified Results")

 Verify Robustness of Deep Learning Neural Network

5-137



References

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples.” Preprint, submitted March 20, 2015. https://arxiv.org/abs/1412.6572.

[2] Singh, Gagandeep, Timon Gehr, Markus Püschel, and Martin Vechev. “An Abstract Domain for
Certifying Neural Networks.” Proceedings of the ACM on Programming Languages 3, no. POPL
(January 2, 2019): 1–30. https://doi.org/10.1145/3290354.

[3] Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
“Towards Deep Learning Models Resistant to Adversarial Attacks.” Preprint, submitted September 4,
2019. https://arxiv.org/abs/1706.06083.

See Also
dlnetwork | dlarray | estimateNetworkOutputBounds | verifyNetworkRobustness

Related Examples
• “Generate Untargeted and Targeted Adversarial Examples for Image Classification” on page 5-

102
• “Train Image Classification Network Robust to Adversarial Examples” on page 5-109
• “Generate Adversarial Examples for Semantic Segmentation” on page 5-121
• “Out-of-Distribution Detection for Deep Neural Networks” on page 5-139

5 Deep Learning Tuning and Visualization

5-138



Out-of-Distribution Detection for Deep Neural Networks

This example shows how to detect out-of-distribution (OOD) data in deep neural networks.

OOD data detection is the process of identifying inputs to a deep neural network that might yield
unreliable predictions. OOD data refers to data that is different from the data used to train the model.
For example, data collected in a different way, at a different time, under different conditions, or for a
different task than the data on which the model was originally trained.

By assigning confidence scores to the predictions of a network, you can classify data as in-distribution
(ID) or OOD. You can then choose how you treat OOD data. For example, you can choose to reject the
prediction of a neural network if it detects OOD data.

This example requires the Deep Learning Toolbox™ Verification Library. To download and install the
support package, use the Add-On Explorer. Alternatively, see Deep Learning Toolbox Verification
Library.

Load Data

This example uses MATLAB® files converted by MathWorks® from the Tennessee Eastman Process
(TEP) simulation data [1]. These files are available at the MathWorks support files site. For more
information, see the disclaimer: https://www.mathworks.com/supportfiles/predmaint/chemical-
process-fault-detection-data/Disclaimer.txt.

Download the training and test files. Depending on your internet connection, the download process
can take a long time.

faultfreetrainingFileName = matlab.internal.examples.downloadSupportFile("predmaint","chemical-process-fault-detection-data/faultfreetraining.mat");
faultfreetestingFileName = matlab.internal.examples.downloadSupportFile("predmaint","chemical-process-fault-detection-data/faultfreetesting.mat");
faultytrainingFileName = matlab.internal.examples.downloadSupportFile("predmaint","chemical-process-fault-detection-data/faultytraining.mat");
faultyttestingFileName = matlab.internal.examples.downloadSupportFile("predmaint","chemical-process-fault-detection-data/faultytesting.mat");

Load the downloaded files into the MATLAB workspace. For more information about this data set, see
“Chemical Process Fault Detection Using Deep Learning” on page 17-2.

load(faultfreetrainingFileName);
load(faultfreetestingFileName);
load(faultytrainingFileName);
load(faultyttestingFileName);

The data set consists of four MAT files: fault-free training, fault-free testing, faulty training, and faulty
testing.

• The fault-free training and testing data sets each comprise 500 simulations of fault-free data. Each
fault-free simulation has 52 channels and the class label 0.

• The faulty training and testing data sets each comprise 10,000 simulations corresponding to 500
simulations for each of 20 possible faults. Simulations 1–500 correspond to class label 1,
simulations 501–1000 correspond to class label 2, and so on. Each simulation has 52 channels.

The length of each simulation depends on the data set. All simulations were sampled every three
minutes.

• Each simulation in the training data sets contains 500 time samples from 25 hours of simulation.

 Out-of-Distribution Detection for Deep Neural Networks

5-139

https://mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library


• Each simulation in the testing data sets contains 960 time samples from 48 hours of simulation.

Load Pretrained Network

Load a pretrained network. This network has been trained using the training method from the
“Chemical Process Fault Detection Using Deep Learning” on page 17-2 example. Because of the
randomness of training, if you train this network yourself, you will likely see different results.

load("trainedFaultDetectionNetwork.mat");

Preprocess Data

Remove data entries with the fault class labels 3, 9, and 15 in the training and testing data sets.
These faults are not present in the original training data set. Because the model was not trained
using these faults, they are OOD inputs to the network.

Use the supporting function helperPrepareDataSets to prepare the data sets for training and
testing. The function performs these steps:

1 Combine the fault-free data, corresponding to class label 0, with the faulty data, corresponding to
class labels 1-20.

2 Hold-out the simulations for faults 3, 9, and 15.
3 Normalize the data.
4 Create an array of class labels.

Process the training and test data sets.

classesToRemove = [3 9 15];

[XTrain,XTrainHoldOut,TTrain,TTrainHoldOut] = helperPrepareDataSets(faultfreetraining,faultytraining,classesToRemove);
[XTest,XTestHoldOut,TTest,TTestHoldOut] = helperPrepareDataSets(faultfreetesting,faultytesting,classesToRemove);

Visualize Data

The XTrain and XTest data sets each contain 500 fault-free simulations followed by 8500 faulty
simulations corresponding to 500 simulations for each of the 17 faults in the training set. Visualize
the fault-free and faulty training data for four of the 52 channels.

numChannelsToPlot = 4;

Plot an example of fault-free data. The first 500 simulations correspond to the fault-free data.

figure
tiledlayout(2,1)
nexttile
plot(XTrain{1}(1:numChannelsToPlot,:)')
xlabel("Time Step");
title("Fault-Free Data (Class 0)")
legend("Channel " + string(1:numChannelsToPlot),Location="northeastoutside")

Plot an example of faulty data. Simulations 501–1000 correspond to data with fault 1.

nexttile
plot(XTrain{501}(1:numChannelsToPlot,:)')
xlabel("Time Step")
title("Faulty Data (Class 1)")
legend("Channel " + string(1:numChannelsToPlot),Location="northeastoutside")

5 Deep Learning Tuning and Visualization

5-140



Test Network

Test the trained network by classifying the fault type for each of the test observations.

YPred = classify(net,XTest);

Calculate the accuracy.

acc = sum(YPred == TTest)/numel(YPred)

acc = 0.9988

Plot the confusion matrix using the true class labels and the predicted labels.

figure
confusionchart(TTest,YPred)

 Out-of-Distribution Detection for Deep Neural Networks

5-141



Test the trained network on the held-out data.

YPredHoldOut = classify(net,XTestHoldOut);

Plot the predicted class labels for the held-out data. The network must predict the class of the held-
out data as one of the classes on which it was trained. Here, the network predicts class 0 (fault-free)
for all of the held-out test observations. Because the network was not trained using these fault labels,
it cannot classify the faults correctly. Therefore, the network predicts "fault-free" even though the
data is faulty.

figure
histogram(YPredHoldOut)
xlabel("Predicted Fault")
ylabel("Frequency")
title("Predicted Fault Class for OOD Test Data")

5 Deep Learning Tuning and Visualization

5-142



Analyze Softmax Scores

The data set contains two types of data:

• In-distribution (ID) — Data used to train the network. This data corresponds to faults with class
labels 0, 1, 2, 4–8,10–14, and 16–20.

• Out-of-distribution (OOD) — Data that is different from the training data, for example, the data
corresponding to faults 3, 9, and 15. The network cannot classify this type of data reliably.

You can use OOD detection to assign a confidence score to the network predictions. A lower
confidence value corresponds to data that is more likely to be OOD.

In this example, you assign confidence scores to network predictions by using the softmax
probabilities to compute a distribution confidence score for each observation. ID data usually has a
higher maximum softmax probability than OOD data [2]. You can then apply a threshold to the
softmax probabilities to determine whether an input is ID or OOD. This technique is called the
baseline method.

Compute the maximum softmax scores for each observation in the training data sets.

scoreTraining = max(predict(net,XTrain),[],2);
scoreTrainingHoldOut = max(predict(net,XTrainHoldOut),[],2);

Plot histograms of the scores for the ID data (scoreTraining) and the OOD data
(scoreTrainingHoldOut). To compare the distributions, set the histogram normalization to
"probability". The plot shows a clear separation between the distribution confidence scores for

 Out-of-Distribution Detection for Deep Neural Networks

5-143



the ID and OOD data. A threshold of around 0.99 reliably separates the scores of the ID and OOD
observations.

figure
binWidth = 0.001;

histogram(scoreTraining,Normalization="probability",BinWidth=binWidth)
hold on
histogram(scoreTrainingHoldOut,Normalization="probability",BinWidth=binWidth)
hold off
xlim([0.95 1]);
legend("Training data (ID)", "Held-out training data (OOD)",Location="northwest")
xlabel("Distribution Confidence Scores")
ylabel("Relative Percentage")

Out-of-Distribution Detection

You can use the isInNetworkDistribution function to determine whether an observation is ID or
OOD. The function takes as input a network, data, and a threshold. The function uses the maximum
softmax scores to find the distribution confidence scores and the specified threshold to classify data
as ID or OOD.

The isInNetworkDistribution function requires data as a formatted dlarray object and the
network as a dlnetwork object. Convert the data to a formatted dlarray object using the
convertDataToDlarray supporting function, found at the end of this example.

XTrain = convertDataToDlarray(XTrain);
XTrainHoldOut = convertDataToDlarray(XTrainHoldOut);

5 Deep Learning Tuning and Visualization

5-144



XTest = convertDataToDlarray(XTest);
XTestHoldOut = convertDataToDlarray(XTestHoldOut);

Convert the network to a dlnetwork object by removing the output layer and calling dlnetwork.

dlnet = layerGraph(net);
dlnet = removeLayers(dlnet,dlnet.OutputNames{:});
dlnet = dlnetwork(dlnet);

Manual Threshold

You can use the histogram of the softmax scores to manually choose a threshold that visually
separates the maximum softmax scores in the training data set. This process is called OOD data
discrimination.

Use the threshold to classify the test data as ID or OOD. The isInNetworkDistribution function
returns a logical 1 (true) for each observation with maximum softmax above the specified threshold,
corresponding to that observation being classified as ID.

threshold = 0.99;
tfID = isInNetworkDistribution(dlnet,XTest,Threshold=threshold);
tfOOD = isInNetworkDistribution(dlnet,XTestHoldOut,Threshold=threshold);

You can test the performance of the OOD data discriminator by calculating the true positive rate
(TPR) and the false positive rate (FPR).

• TPR — Proportion of ID observations correctly classified as ID.
• FPR — Proportion of OOD observations incorrectly classified as ID.

Compute the TPR and FPR using the helperPredictionMetrics helper function. A good
discriminator has a TPR close to 1 and a FPR close to 0.

[TPR,FPR] = helperPredictionMetrics(tfID,tfOOD)

TPR = 0.8818

FPR = 0

Optimal Threshold

Rather than manually selecting a threshold, you can use the threshold that best separates the
softmax scores. You can find the optimal threshold by maximizing the TPR and minimizing the FPR.
Create a distribution discriminator object using the networkDistributionDiscriminator
function. You can use this object to find the optimal threshold.

Use the networkDistributionDiscriminator function with the network as input. Use the
training data as ID data and the held-out training data as OOD data. Set the method input to
"baseline" to use the maximum softmax scores as the distribution confidence scores. The
discriminator determines the optimal threshold.

method = "baseline";
discriminatorOptimized = networkDistributionDiscriminator(dlnet,XTrain,XTrainHoldOut,method)

discriminatorOptimized = 
  BaselineDistributionDiscriminator with properties:

       Method: "baseline"

 Out-of-Distribution Detection for Deep Neural Networks

5-145



      Network: [1×1 dlnetwork]
    Threshold: 0.9861

Use the distribution discriminator to classify the test data as ID or OOD.

tfIDOptimized = isInNetworkDistribution(discriminatorOptimized,XTest);
tfOODOptimized = isInNetworkDistribution(discriminatorOptimized,XTestHoldOut);

Compute the TPR and FPR using the optimized threshold.

[TPROptimized,FPROptimized] = helperPredictionMetrics(tfIDOptimized,tfOODOptimized)

TPROptimized = 0.9251

FPROptimized = 6.6667e-04

Threshold for Specified True Positive Goal

You can set a target number of true positives at the expense of a greater number of false positives.
Set a true positive goal of 95% and use the training data to find a threshold. Again, use the
distribution discriminator to classify the test data as ID or OOD and examine the TPR and FPR for the
test set.

discriminatorTPR = networkDistributionDiscriminator(dlnet,XTrain,XTrainHoldOut,method,TruePositiveGoal=0.95);
tfIDTPR = isInNetworkDistribution(discriminatorTPR,XTest);
tfOODTPR = isInNetworkDistribution(discriminatorTPR,XTestHoldOut);
[TPROptimizedTPR,FPROptimizedTPR] = helperPredictionMetrics(tfIDTPR,tfOODTPR)

TPROptimizedTPR = 0.9464

FPROptimizedTPR = 0.3040

Compare Discriminators

Use the helperDistributionConfusionMatrix helper function to plot the confusion matrix
resulting from the predictions using each of the three threshold choices.

figure
tiledlayout(2,2)
nexttile
helperDistributionConfusionMatrix(tfID,tfOOD);
title("Manual Threshold")
nexttile
helperDistributionConfusionMatrix(tfIDOptimized,tfOODOptimized);
title("Optimal Threshold (TPR & FPR)")
nexttile
helperDistributionConfusionMatrix(tfIDTPR,tfOODTPR);
title("Threshold (TPR of 0.95)")

5 Deep Learning Tuning and Visualization

5-146



Plot ROC Curve

The distribution discriminator object is a binary classifier that uses a threshold to classify network
predictions as ID or OOD. Plot the receiver operating characteristic (ROC) curve for this binary
classifier to see the trade-off between true positive and false positive rates. The ROC curve
represents every possible threshold. Add a point to the curve highlighting each threshold value.

scoresID = distributionScores(discriminatorOptimized,XTest);
scoresOOD = distributionScores(discriminatorOptimized,XTestHoldOut);

numObservationsID = size(scoresID,1);
numObservationsOOD = size(scoresOOD,1);
scores = [scoresID',scoresOOD'];

trueDataLabels = [
    repelem("In-Distribution",numObservationsID), ...
    repelem("Out-of-Distribution",numObservationsOOD)];

rocObj = rocmetrics(trueDataLabels,scores,"In-Distribution");
figure
plot(rocObj,ShowModelOperatingPoint=false)
hold on
plot(FPR,TPR,".", ...
    MarkerSize=20, ...
    DisplayName="Manual Threshold")
plot(FPROptimized,TPROptimized,".", ...
    MarkerSize=20, ...

 Out-of-Distribution Detection for Deep Neural Networks

5-147



    DisplayName="Optimal Threshold")
plot(FPROptimizedTPR,TPROptimizedTPR,".", ...
    MarkerSize=20, ...
    DisplayName="Threshold at TPR=0.95")

Verify Network Predictions

You can use the distribution discriminator object to add an extra level of verification to network
predictions. For example, for every prediction that the network makes, the distribution discriminator
can confirm whether to reject the result based on the input classification. If the distribution
discriminator determines that the input is OOD, then you can reject the result.

Suppose that a silent, temporary failure in the system alters a single fault-free simulation such that
the data contains white noise from timestep 101-200.

rng("default")

faultfreetestingSample = extractdata(squeeze(XTest(:,1,:)));
alteredFaultFreeSignal = faultfreetestingSample;
alteredFaultFreeSignal(:,101:200) = randn(52,100);

Plot the first 300 timesteps of the original fault-free signal and an altered fault-free signal for four of
the 52 channels.

figure
tiledlayout(2,1)
nexttile

5 Deep Learning Tuning and Visualization

5-148



plot(faultfreetestingSample(1:4, 1:300)')
ylim([-3 3])
xlabel("Time Step");
title("Fault-Free Data")
legend("Channel " + string(1:4),Location="northeastoutside")
nexttile
plot(alteredFaultFreeSignal(1:4, 1:300)')
ylim([-3 3])
xlabel("Time Step")
title("Altered Fault-Free Data")
legend("Channel " + string(1:4),Location="northeastoutside")

Classify the altered fault-free signal.

YPredi = classify(net,alteredFaultFreeSignal)

YPredi = categorical
     0 

The network still classifies the altered signal as class label 0, which corresponds to "fault-free".
However, this altered signal is from a different distribution than the data that the network sees
during training and the classification must be flagged in a safety-critical system.

Use the discriminator to determine whether the signal is ID or OOD. Use the
isInNetworkDistribution function to test if the observation is ID.

 Out-of-Distribution Detection for Deep Neural Networks

5-149



dlbrokenFaultFreeSignal = dlarray(alteredFaultFreeSignal,'CT');
tf = isInNetworkDistribution(discriminatorOptimized,dlbrokenFaultFreeSignal)

tf = logical
   0

Apply the same alteration to all 500 fault-free signals and analyze the number of OOD samples
detected. The discriminator successfully picks up this new fault and classifies most of the altered
simulations as OOD.

alteredFaultFreeSignals = XTest(:,1:500,:);
alteredFaultFreeSignals(:,:,101:200) = randn(52,500,100);
tf = isInNetworkDistribution(discriminatorOptimized,alteredFaultFreeSignals);

figure
YPredAltered = repelem("Out-of-Distribution",length(tf));
YPredAltered(tf == 1) = "In-Distribution";
histogram(categorical(YPredAltered))
ylabel("Count")
title("Predicted Distribution Class of Altered Fault-Free Simulations")

Helper Functions

helperNormalizeData

The helperNormalizeData function normalizes the data using the same statistics as the training
data.

5 Deep Learning Tuning and Visualization

5-150



function processed = helperNormalizeData(data)

limit = max(data.sample);
processed = helperPreprocess(data{:,:},limit);

% The network requires the input data to be normalized with respect to the training
% data. Loading the training data and computing these statistics is
% computationally expensive, so load precalculated statistics.
s = load("faultDetectionNormalizationStatistics.mat","tMean","tSigma");

processed = helperNormalize(processed,s.tMean,s.tSigma);
end

helperPreprocess

The helperPreprocess function uses the maximum sample number to preprocess the data. The
sample number indicates the signal length, which is consistent across the data set. The function uses
a for-loop to go over the data set with a signal length filter to form sets of 52 signals. Each set is an
element of a cell array. Each cell array contains data from a single simulation.

function processed = helperPreprocess(data,limit)

H = size(data);
processed = {};
for ind = 1:limit:H
    x = data(ind:(ind+(limit-1)),4:end);
    processed = [processed; x'];
end
end

helperNormalize

The helperNormalize function uses the mean and standard deviation of the training data to
normalize data.

function data = helperNormalize(data,m,s)

for ind = 1:size(data)
    data{ind} = (data{ind} - m)./s;
end
end

helperPrepareDataSets

The helperPrepareDataSets function prepares the data set for analysis. The function takes as
input the fault-free data, the faulty data, and the faults to be removed. The function returns the faulty
data with the specified classes removed, the removed data, and the associated labels for both data
sets. This is the same data processing performed before training.

function[dataProcessed,dataHoldOut,labels,labelsHoldOut] = helperPrepareDataSets(faultFreeData,faultyData,classesToRemove)

index = ismember(faultyData.faultNumber,classesToRemove);
data = [faultFreeData; faultyData(~index,:)];
dataHoldOut = faultyData(index,:);

dataProcessed = helperNormalizeData(data);
dataHoldOut = helperNormalizeData(dataHoldOut);

 Out-of-Distribution Detection for Deep Neural Networks

5-151



classesToKeep = 1:20;
classesToKeep = classesToKeep(~ismember(classesToKeep,classesToRemove));
labels = categorical([zeros(500,1); repmat(classesToKeep,1,500)']);
labelsHoldOut = categorical(repmat(classesToRemove,1,500)');
end

convertDataToDlarray

The convertDataToDlarray function converts the data to a dlarray object.

function dldata = convertDataToDlarray(data)

% Reshape the data.
dataSize = size(data,1);
dldata = reshape(data,1,1,dataSize);

% Convert the cell arrays to 3-D numeric arrays.
dldata = cell2mat(dldata);

% Convert the cell arrays to a dlarray object with data format labels.
dldata = dlarray(dldata,"CTB");
end

helperDistributionConfusionMatrix

The helperDistributionConfusionMatrix function computes the confusion matrix for ID and
OOD data. The function takes as input an array of logical values for the ID data and OOD data. A
value of 1 (true) corresponds to the detector predicting that the observation is ID. A value of 0
(false) corresponding to the detector predicting that the observation is OOD.

function cm = helperDistributionConfusionMatrix(tfID,tfOOD)

trueDataLabels = [
    repelem("ID",numel(tfID)), ...
    repelem("OOD",numel(tfOOD))];

predDataLabelsID = repelem("OOD",length(tfID));
predDataLabelsID(tfID == 1) = "ID";

predDataLabelsOOD = repelem("OOD",length(tfOOD));
predDataLabelsOOD(tfOOD == 1) = "ID";
predDataLabels = [predDataLabelsID,predDataLabelsOOD];

cm = confusionchart(trueDataLabels,predDataLabels);
end

helperPredictionMetrics

The helperPredictionMetrics function computes the true positive rate and false positive rate for
a binary classifier.

function [truePositiveRate,falseNegativeRate] = helperPredictionMetrics(tfID,tfOOD)

truePositiveRate = sum(tfID)/(sum(tfID)+sum(1-tfID));
falseNegativeRate = sum(tfOOD)/(sum(tfOOD) + sum(1-tfOOD));
end

5 Deep Learning Tuning and Visualization

5-152



References

[1] Rieth, C. A., B. D. Amsel, R. Tran., and B. Maia. "Additional Tennessee Eastman Process
Simulation Data for Anomaly Detection Evaluation." Harvard Dataverse, Version 1, 2017. https://
doi.org/10.7910/DVN/6C3JR1.

[2] Hendrycks, Dan, and Kevin Gimpel. A Baseline for Detecting Misclassified and Out of Distribution
Examples in Neural Networks." arXiv:1610.02136 [cs.NE], October 3, 2018, https://arxiv.org/abs/
1610.02136.

See Also
dlnetwork | dlarray | isInNetworkDistribution | networkDistributionDiscriminator |
verifyNetworkRobustness | rocmetrics

Related Examples
• “Verify Robustness of Deep Learning Neural Network” on page 5-132
• “Generate Untargeted and Targeted Adversarial Examples for Image Classification” on page 5-

102
• “Train Image Classification Network Robust to Adversarial Examples” on page 5-109
• “Compare Deep Learning Models Using ROC Curves” on page 5-301
• “Out-of-Distribution Data Discriminator for YOLO v4 Object Detector” on page 5-154

 Out-of-Distribution Detection for Deep Neural Networks

5-153



Out-of-Distribution Data Discriminator for YOLO v4 Object
Detector

This example shows how to detect out-of-distribution (OOD) data in a YOLO v4 object detector.

OOD data detection is the process of identifying inputs to a deep neural network that might yield
unreliable predictions. OOD data refers to data that is different from the data used to train the model.
For example, data collected in a different way, under different conditions, or for a different task than
the data on which the model was originally trained.

By assigning confidence scores to the predictions of a network, you can classify data as in-distribution
(ID) or OOD. You can then choose how you treat OOD data. For example, you can choose to reject the
prediction of a neural network if the network detects OOD data.

This example shows how to train a model to detect vehicles in images and construct a discriminator
to classify the images as ID or OOD.

5 Deep Learning Tuning and Visualization

5-154



Note: This example requires the Computer Vision Toolbox™ Model for YOLO v4 Object Detection and
the Deep Learning Toolbox™ Verification Library support packages. You can install these add-ons
from Add-On Explorer. For more information about installing add-ons, see “Get and Manage Add-
Ons”. Alternatively, see Deep Learning Toolbox Verification Library.

Prepare Training Data

This example uses a small vehicle data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission.
Each image contains one or two labeled instances of a vehicle. A small data set is useful for exploring
the YOLO v4 training procedure, but in practice, more labeled images are needed to train a robust
detector.

 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-155

https://mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library


Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

Add the full path to the local vehicle data folder.

vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

Split the data set into training and validation sets. Use 60% of the data for training and 40% for
validation.

rng("default");
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices));
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx),:);
validationDataTbl = vehicleDataset(shuffledIndices(idx+1:end),:);

Use imageDatastore and boxLabelDatastore (Computer Vision Toolbox) to create datastores for
loading the image and label data during training and validation.

imdsTrain = imageDatastore(trainingDataTbl.imageFilename);
bldsTrain = boxLabelDatastore(trainingDataTbl(:,"vehicle"));

imdsValidation = imageDatastore(validationDataTbl.imageFilename);
bldsValidation  = boxLabelDatastore(validationDataTbl(:,"vehicle"));

Combine the image and box label datastores.

dsTrain = combine(imdsTrain,bldsTrain);
dsValidation  = combine(imdsValidation,bldsValidation);

numObservationsTrain =  numel(imdsTrain.Files);
numObservationsValidation = numel(imdsValidation.Files);

Specify the input size to use for resizing the images and the bounding boxes. For the pretrained
YOLO v4 detector, the underlying base networks require the size of the training images to be a
multiple of 32.

inputSize = [224 224 3];

Estimate Anchor Boxes

Use the estimateAnchorBoxes (Computer Vision Toolbox) function to estimate anchor boxes based
on the size of objects in the training data. To account for the resizing of the images prior to training,
resize the training data for estimating anchor boxes. Use the transform function to preprocess the
training data, then define the number of anchor boxes and estimate the anchor boxes. Resize the
training data to the input size of the network by using the preprocessData helper function.

trainingDataForEstimation = transform(dsTrain,@(data)preprocessData(data,inputSize));

numAnchors = 6;
[anchors,meanIoU] = estimateAnchorBoxes(trainingDataForEstimation,numAnchors);

area = anchors(:,1).*anchors(:,2);
[~,idx] = sort(area,"descend");

5 Deep Learning Tuning and Visualization

5-156



anchors = anchors(idx,:);
anchorBoxes = {anchors(1:3,:);anchors(4:6,:)};

For more information about choosing anchor boxes, see “Estimate Anchor Boxes From Training Data”
(Computer Vision Toolbox) and “Anchor Boxes for Object Detection” (Computer Vision Toolbox).

Configure and Train YOLO v4 Network

This example uses a YOLO v4 network pretrained on the COCO data set. In this example, you fine-
tune the detector for detecting vehicles in an image. For more information on the fine-tuning and the
vehicle data set used for the fine-tuning, see trainYOLOv4ObjectDetector (Computer Vision
Toolbox).

Specify the class names and configure the pretrained YOLO v4 deep learning network for the new
data set by using the yolov4ObjectDetector (Computer Vision Toolbox) function.

classes = "vehicle";
detector = yolov4ObjectDetector("tiny-yolov4-coco",classes,anchorBoxes,InputSize=inputSize);

Specify the training options and retrain the pretrained YOLO v4 network on the new data set by using
the trainYOLOv4ObjectDetector function.

options = trainingOptions("sgdm", ...
    InitialLearnRate=0.001, ...
    MiniBatchSize=16, ...
    MaxEpochs=50, ...
    ValidationData=dsValidation, ...
    BatchNormalizationStatistics="moving", ...
    ResetInputNormalization=false, ...
    VerboseFrequency=30);

To save time, set the doTraining flag to false and load a pretrained network. If you want to train
the detector, set the doTraining value to true.

doTraining = false;
if doTraining
    trainedDetector = trainYOLOv4ObjectDetector(dsTrain,detector,options);
else    
    filename = matlab.internal.examples.downloadSupportFile("nnet","data/trainedYolov4VehicleDetectionNetwork.mat");
    load(filename);
end

Examine the underlying backbone network for the YOLO v4 detector. For more information, see
“Getting Started with YOLO v4” (Computer Vision Toolbox).

net = trainedDetector.Network

net = 
  dlnetwork with properties:

         Layers: [74×1 nnet.cnn.layer.Layer]
    Connections: [80×2 table]
     Learnables: [80×3 table]
          State: [38×3 table]
     InputNames: {'input_1'}
    OutputNames: {'convOut1'  'convOut2'}
    Initialized: 1

 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-157



  View summary with summary.

Detect Vehicles in Image

Load a sample image.

reset(dsTrain)
imgIdx = 1;
img = read(dsTrain);
img = img{imgIdx};

Normalize and resize the image.

img = im2single(img);
img = imresize(img,inputSize(1:2));

Detect vehicles and find the bounding boxes in the sample image.

detectorThr = 0.05;
[bboxes,~,labels] = detect(trainedDetector,img,Threshold=detectorThr);
detectedImage = insertObjectAnnotation(img,"Rectangle",bboxes,labels);

Display the image and bounding boxes.

figure
imshow(detectedImage)

Test Object Detector on OOD Data

The network can detect objects in images like those on which it was trained. Test how the network
performs on data that you did not use during training.

5 Deep Learning Tuning and Visualization

5-158



Augment the image to generate images different to those on which the network was trained. Use
three types of image augmentation to generate the images:

• Flip the image in the left-right direction.
• Flip the image in the up-down direction.
• Invert the image.

imgLRFlip = fliplr(img);
imgUDFlip = flipud(img);
imgInvert = 1-img;

Use the fine-tuned YOLO v4 object detector to detect vehicles in the three augmented images.

[bboxesLRFlip,~,labelsLRFlip] = detect(trainedDetector,imgLRFlip,Threshold=detectorThr);
detectedLRFlip = insertObjectAnnotation(imgLRFlip,"Rectangle",bboxesLRFlip,labelsLRFlip);

[bboxesUDFlip,~,labelsUDFlip] = detect(trainedDetector,imgUDFlip,Threshold=detectorThr);
detectedUDFlip = insertObjectAnnotation(imgUDFlip,"Rectangle",bboxesUDFlip,labelsUDFlip);

[bboxesInvert,~,labelsInvert] = detect(trainedDetector,imgInvert,Threshold=detectorThr);
detectedInvert = insertObjectAnnotation(imgInvert,"Rectangle",bboxesInvert,labelsInvert);

Display the results for the original image and the augmented images using the helper function
plotAugmentedImages, found at the end of this example. The network is unable to detect the car in
the up-down flipped and the inverted images.

figure
plotAugmentedImages( ...
    detectedImage,"Original", ...
    detectedLRFlip,"Left-Right Flipped", ...
    detectedUDFlip,"Up-Down Flipped", ...
    detectedInvert,"Pixel Inverted")

 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-159



When deploying models to safety-critical environments, it is important to have a method of assigning
confidence to the network predictions. It is also important to have a method of classifying the image
as outside of the distribution of data that the model has been trained on.

Create OOD Data Discriminator

You can assign confidence to network predictions by computing a distribution confidence score for
each observation. ID data usually has a higher confidence score than OOD data [1]. You can then
apply a threshold to the scores to determine whether an input is ID or OOD. The discriminator acts as
an additional output of the trained network which classifies an observation as ID or OOD.

5 Deep Learning Tuning and Visualization

5-160



You can use the networkDistributionDiscriminator function to create a discriminator to
separate data into ID and OOD. The function returns a discriminator containing a threshold for
separating data into ID and OOD using their distribution scores.

To create a discriminator for a network with multiple outputs, you must have a set of ID data. The ID
data must also be a dlarray object. In this example, you use the training data to create a data
discriminator. Use the helper function convertToDlarray, found at the end of this example, to
convert the data to a dlarray object. The helper function normalizes the data and resizes it to the
input size the network expects. The function then returns a dlarray object. For more information
about image preprocessing, see trainYOLOv4ObjectDetector (Computer Vision Toolbox).

XTrain = convertToDlarray(dsTrain,numObservationsTrain);

Using the networkDistributionDiscriminator function and the training data as the ID data,
create a distribution discriminator object using the histogram based outlier scores (HBOS) method
[2] with a true positive goal of 0.95. The function creates a discriminator object containing a
threshold for separating the ID and OOD data and a method for computing confidence scores. The
software chooses a threshold such that at least 95% of the distribution confidence scores for the ID
data are above the threshold. By default, the function computes the distribution scores using first
output layer ('convOut1'). The HBOS method calculates distribution scores by modeling the
underlying features of the network using histograms. For more information, see “Distribution
Confidence Scores”.

discriminator = networkDistributionDiscriminator(net,XTrain,[],"hbos")

discriminator = 
  HBOSDistributionDiscriminator with properties:

            Method: "hbos"
           Network: [1×1 dlnetwork]
        LayerNames: "convOut1"
    VarianceCutoff: 1.0000e-03
         Threshold: -42.4617

Find the threshold for separating ID and OOD data.

discriminatorThreshold = discriminator.Threshold

discriminatorThreshold = single
    -42.4617

 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-161



Examine Feature Dependence

The HBOS algorithm assumes that the features are statistically independent when constructing
univariate histograms for scoring. You can test this assumption using statistical techniques. For
example, if you have the Statistics and Machine Learning Toolbox™, then you can test the degree of
pairwise rank correlation of the features using the corr (Statistics and Machine Learning Toolbox)
function. To test for feature dependence, set the doDependenceTest flag to true.

doDependenceTest = true;
if doDependenceTest

Use the principalComponentFeatureCorrelation supporting function to compute the
correlation between each pair of features and the p-value. You can use the p-value to test the
hypothesis of no correlation against the alternative hypothesis of a nonzero correlation. If p(a,b) is
small (less than 0.05), then the correlation rho(a,b) is significantly different from zero.

    [rho,p] = principalComponentFeatureCorrelation(discriminator,XTrain);

Plot the surface of correlation coefficients.

    figure
    heatmap(rho,GridVisible="off",ColorLimits=[0,1],Title="Pairwise Feature Correlation")

Specify a significance level of 0.05. For multiple comparisons, use the Bonferroni correction to test
the hypothesis that the pairwise correlations between any two principal component features is zero.
If for a given pair of features, p is less than the significance divided by the correction, then reject the
hypothesis that those features have zero correlation. Plot the surface showing pairs of principal
component features that reject the hypothesis of zero correlation.

    pvalue = 0.05;
    numFeatures = size(p,1);

    bonferroniCorrection = numFeatures*(numFeatures-1)/2;
    rejectZeroCorrHypotheses = p < pvalue / bonferroniCorrection;

    figure
    heatmap(single(rejectZeroCorrHypotheses),GridVisible="off",ColorLimits=[0,1],Title="Reject Zero Correlation Hypothesis")

In this example, the hypothesis that no correlation exists between any two features is not rejected.

end

5 Deep Learning Tuning and Visualization

5-162



 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-163



Test OOD Data Discriminator

Test the performance of the discriminator on the augmented training data.

XTrain = convertToDlarray(dsTrain,numObservationsTrain);

Generate OOD data sets by augmenting each training image.

XTrainLRFlip = fliplr(XTrain);
XTrainUDFlip = flipud(XTrain);
XTrainInvert = 1-XTrain;

Find the distribution scores for each of the data sets using the discriminator.

scoresTrain= distributionScores(discriminator,XTrain);
scoresTrainLRFlip = distributionScores(discriminator,XTrainLRFlip);
scoresTrainUDFlip = distributionScores(discriminator,XTrainUDFlip);
scoresTrainInvert = distributionScores(discriminator,XTrainInvert);

Find the receiver operating characteristic (ROC) curves for the original and augmented data sets
using the discriminator and the distribution scores. A well-performing discriminator achieves an AUC
value close to 1, corresponding to the discriminator being able to separate the ID and OOD data.

trueDataLabels = [
    repelem("Training",numObservationsTrain), ...

5 Deep Learning Tuning and Visualization

5-164



    repelem("Augmented",numObservationsTrain)];

scoresTrainAndLRFlip = [scoresTrain',scoresTrainLRFlip'];
scoresTrainAndUDFlip = [scoresTrain',scoresTrainUDFlip'];
scoresTrainAndInvert = [scoresTrain',scoresTrainInvert'];

rocObjTrainLRFlip = rocmetrics(trueDataLabels,gather(scoresTrainAndLRFlip),"Training");
rocObjTrainUDFlip = rocmetrics(trueDataLabels,gather(scoresTrainAndUDFlip),"Training");
rocObjTrainInvert = rocmetrics(trueDataLabels,gather(scoresTrainAndInvert),"Training");

Plot the ROC curves. If the discriminator performs well, then the ROC curve should be close to the
top-left corner (corresponding to an AUC value of 1). The ROC curves show that the discriminator can
distinguish the augmented images (OOD) from the training images (ID). The discriminator has
greatest difficulty distinguishing the left-right flipped images as OOD. This is because those images
are closer to the distribution of the training images. To ensure the model is robust to these
augmentations, retrain the model using the augmented images. For more information, see “Object
Detection Using YOLO v4 Deep Learning” (Computer Vision Toolbox).

figure
tiledlayout(2,2)
nexttile
plot(rocObjTrainLRFlip,ShowModelOperatingPoint=false)
title("Left-Right Flipped")
nexttile
plot(rocObjTrainUDFlip,ShowModelOperatingPoint=false)
title("Up-Down Flipped")
nexttile
plot(rocObjTrainInvert,ShowModelOperatingPoint=false)
title("Pixel Inverted")

 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-165



The discriminator selects a threshold that best splits the ID and OOD data. Use the
isInNetworkDistribution function to see the proportion of images classified as OOD by the
discriminator. The function returns 1 (true) if the discriminator classifies the image as ID and 0
(false) if the discriminator classifies the image as OOD.

Test the discriminator on the original training data.

tfTrain = isInNetworkDistribution(discriminator,XTrain);
propotionTrainID = sum(tfTrain)/numel(tfTrain)

propotionTrainID =

    0.9548

For the training data, the proportion of ID observations is above the true positive goal of 0.975
specified when creating the discriminator.

Test the discriminator on the augmented training data. Find the proportion of left-right flipped
images that the network classifies as ID.

tfTrainLRFlip = isInNetworkDistribution(discriminator,XTrainLRFlip);
propotionTrainLRFlipID = sum(tfTrainLRFlip)/numel(tfTrainLRFlip)

5 Deep Learning Tuning and Visualization

5-166



propotionTrainLRFlipID =

    0.6045

Find the proportion of up-down flipped images that the network classifies as ID.

tfTrainUDFlip = isInNetworkDistribution(discriminator,XTrainUDFlip);
propotionTrainUDFlipID = sum(tfTrainUDFlip)/numel(tfTrainUDFlip)

propotionTrainUDFlipID =

    0.1695

Find the proportion of inverted images that the network classifies as ID.

tfTrainInvert= isInNetworkDistribution(discriminator,XTrainInvert);
propotionTrainInvertID = sum(tfTrainInvert)/numel(tfTrainInvert)

propotionTrainInvertID =

    0.3503

Visualize the results for the first image. The discriminator classifies the original training and the left-
right flipped image as ID. The left-right flipped image is similar to the images that the network sees
during training, so it is not surprising that the discriminator classifies this as ID. The left-right flipped
image has a lower distribution confidence score reflecting the additional uncertainty. The up-down
flipped and inverted images have a distribution score of -Inf. This is because those images are
outside of the range of histograms that the HBOS method uses to compute the scores.

figure
tiledlayout(2,2)
nexttile
imshow(detectedImage)
colorTitle(tfTrain(1),scoresTrain(1))
nexttile
imshow(detectedLRFlip)
colorTitle(tfTrainLRFlip(1),scoresTrainLRFlip(1))
nexttile
imshow(detectedUDFlip)
colorTitle(tfTrainUDFlip(1),scoresTrainUDFlip(1))
nexttile
imshow(detectedInvert)
colorTitle(tfTrainInvert(1),scoresTrainInvert(1))

 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-167



References

[1] Shalev, Gal, Gabi Shalev, and Joseph Keshet. “A Baseline for Detecting Out-of-Distribution
Examples in Image Captioning.” In Proceedings of the 30th ACM International Conference on
Multimedia, 4175–84. Lisboa Portugal: ACM, 2022. https://doi.org/10.1145/3503161.3548340.

[2] Markus Goldstein and Andreas Dengel. "Histogram-based outlier score (hbos): A fast
unsupervised anomaly detection algorithm." KI-2012: poster and demo track 9 (2012).

Helper Functions

preprocessData

The preprocessData function takes as input data containing the image and the bounding box, and
a target size, and returns the image and bounding box resized to match the target size.

function data = preprocessData(data,targetSize)
for num = 1:size(data,1)
    I = data{num,1};
    imgSize = size(I);
    bboxes = data{num,2};
    I = im2single(imresize(I,targetSize(1:2)));
    scale = targetSize(1:2)./imgSize(1:2);
    bboxes = bboxresize(bboxes,scale);

5 Deep Learning Tuning and Visualization

5-168



    data(num,1:2) = {I,bboxes};
end
end

preprocessMiniBatch

The preprocessMiniBatch function preprocesses a mini-batch of data by extracting the image data
from the input cell array and concatenating the data into a numeric array.

function x = preprocessMiniBatch(xCell,~,~)
targetSize = [224 224 3];

for num = 1:size(xCell,1)
    I = xCell{num,1};
    I = im2single(imresize(I,targetSize(1:2)));
    xCell{num,1} = I;
end

% Concatenate over batch.
x = cat(4,xCell{:});
end

convertToDlarray

The convertToDlarray function takes as input a datastore and returns the data as a dlarray
object.

function X = convertToDlarray(ds,numObservations)

minibatchsize = numObservations;
numOutputs = 1;

mbq = minibatchqueue(ds,numOutputs,...
    MiniBatchSize=minibatchsize,...
    MiniBatchFcn=@preprocessMiniBatch, ...
    OutputAsDlarray=ones(1,numOutputs), ...
    MiniBatchFormat="SSCB");

X = next(mbq);
end

plotAugmentedImages

Th plotAugmentedImages function takes as input four pairs of images (x, y, z, and w) and image
titles (xtitle, ytitle, ztitle, and wtitle) and returns a plot.

function plotAugmentedImages(x,xtitle,y,ytitle,z,ztitle,w,wtitle)
tiledlayout(2,2)
nexttile
imshow(x)
title(xtitle)
nexttile
imshow(y)
title(ytitle)
nexttile
imshow(z)
title(ztitle)
nexttile

 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-169



imshow(w)
title(wtitle)
end

colorTitle

The colorTitle function takes as input a logical value indicating if the image is ID, and the raw
score, and returns a custom figure title.

function colorTitle(tf,score)
if gather(tf)
    title({"\color{green}" + "In-Distribution: " + gather(tf) + "\color{black}"; "Distribution Score = " + gather(score)})
else
    title({"\color{red}" + "In-Distribution: " + gather(tf) + "\color{black}"; "Distribution Score = " + gather(score)})
end
end

principalComponentFeatureCorrelation

The principalComponentFeatureCorrelation function takes as input a discriminator object and
ID data and returns a matrix of the pairwise correlation coefficient between each pair of features and
the p-values.

function [rho,p] = principalComponentFeatureCorrelation(discriminator,X)

layerName = discriminator.LayerNames;
features = predict(discriminator.Network,X,Outputs=layerName);

% Flatten the SSC channels.
nonBatchDims = [finddim(features,"S") finddim(features,"C")];
batchDim = finddim(features,"B");
sz = size(features);
features = reshape(extractdata(gather(features)), ...
    [prod(sz(nonBatchDims)),prod(sz(batchDim))]);

features = features';

% Compute the principal components.
[coeff,~,latent] = pca(features);
rank = sum( latent/max(latent) > discriminator.VarianceCutoff);
principalComponentFeatures = features*coeff(:,1:rank);

% Compute Kendall tau rank coefficients and pvalues.
[rho,p] = corr(principalComponentFeatures,Type="Kendall");
end

See Also
dlnetwork | dlarray | isInNetworkDistribution | networkDistributionDiscriminator |
verifyNetworkRobustness | rocmetrics

Related Examples
• “Out-of-Distribution Detection for Deep Neural Networks” on page 5-139
• “Verify Robustness of Deep Learning Neural Network” on page 5-132
• “Generate Untargeted and Targeted Adversarial Examples for Image Classification” on page 5-

102

5 Deep Learning Tuning and Visualization

5-170



• “Train Image Classification Network Robust to Adversarial Examples” on page 5-109
• “Compare Deep Learning Models Using ROC Curves” on page 5-301

 Out-of-Distribution Data Discriminator for YOLO v4 Object Detector

5-171



Resume Training from Checkpoint Network

This example shows how to save checkpoint networks while training a deep learning network and
resume training from a previously saved network.

Load Sample Data

Load the sample data as a 4-D array. digitTrain4DArrayData loads the digit training set as 4-D
array data. XTrain is a 28-by-28-by-1-by-5000 array, where 28 is the height and 28 is the width of the
images. 1 is the number of channels and 5000 is the number of synthetic images of handwritten
digits. YTrain is a categorical vector containing the labels for each observation.

[XTrain,YTrain] = digitTrain4DArrayData;
size(XTrain)

ans = 1×4

          28          28           1        5000

Display some of the images in XTrain.

figure;
perm = randperm(size(XTrain,4),20);
for i = 1:20
    subplot(4,5,i);
    imshow(XTrain(:,:,:,perm(i)));
end

5 Deep Learning Tuning and Visualization

5-172



Define Network Architecture

Define the neural network architecture.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer    
    maxPooling2dLayer(2,'Stride',2) 
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    averagePooling2dLayer(7)  
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

 Resume Training from Checkpoint Network

5-173



Specify Training Options and Train Network

Specify training options for stochastic gradient descent with momentum (SGDM) and specify the path
for saving the checkpoint networks.

checkpointPath = pwd;
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.1, ...
    'MaxEpochs',20, ...
    'Verbose',false, ...
    'Plots','training-progress', ...
    'Shuffle','every-epoch', ...
    'CheckpointPath',checkpointPath);

Train the network. trainNetwork uses a GPU if there is one available. If there is no available GPU,
then it uses CPU. trainNetwork saves one checkpoint network each epoch and automatically
assigns unique names to the checkpoint files.

net1 = trainNetwork(XTrain,YTrain,layers,options);

Load Checkpoint Network and Resume Training

Suppose that training was interrupted and did not complete. Rather than restarting the training from
the beginning, you can load the last checkpoint network and resume training from that point.
trainNetwork saves the checkpoint files with file names on the form
net_checkpoint__195__2018_07_13__11_59_10.mat, where 195 is the iteration number,

5 Deep Learning Tuning and Visualization

5-174



2018_07_13 is the date, and 11_59_10 is the time trainNetwork saved the network. The
checkpoint network has the variable name net.

Load the checkpoint network into the workspace.

load('net_checkpoint__195__2018_07_13__11_59_10.mat','net')

Specify the training options and reduce the maximum number of epochs. You can also adjust other
training options, such as the initial learning rate.

options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.1, ...
    'MaxEpochs',15, ...
    'Verbose',false, ...
    'Plots','training-progress', ...
    'Shuffle','every-epoch', ...
    'CheckpointPath',checkpointPath);

Resume training using the layers of the checkpoint network you loaded with the new training options.
If the checkpoint network is a DAG network, then use layerGraph(net) as the argument instead of
net.Layers.

net2 = trainNetwork(XTrain,YTrain,net.Layers,options);

 Resume Training from Checkpoint Network

5-175



See Also
trainingOptions | trainNetwork

Related Examples
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43

More About
• “Learn About Convolutional Neural Networks” on page 1-21
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64

5 Deep Learning Tuning and Visualization

5-176



Deep Learning Using Bayesian Optimization

This example shows how to apply Bayesian optimization to deep learning and find optimal network
hyperparameters and training options for convolutional neural networks.

To train a deep neural network, you must specify the neural network architecture, as well as options
of the training algorithm. Selecting and tuning these hyperparameters can be difficult and take time.
Bayesian optimization is an algorithm well suited to optimizing hyperparameters of classification and
regression models. You can use Bayesian optimization to optimize functions that are
nondifferentiable, discontinuous, and time-consuming to evaluate. The algorithm internally maintains
a Gaussian process model of the objective function, and uses objective function evaluations to train
this model.

This example shows how to:

• Download and prepare the CIFAR-10 data set for network training. This data set is one of the most
widely used data sets for testing image classification models.

• Specify variables to optimize using Bayesian optimization. These variables are options of the
training algorithm, as well as parameters of the network architecture itself.

• Define the objective function, which takes the values of the optimization variables as inputs,
specifies the network architecture and training options, trains and validates the network, and
saves the trained network to disk. The objective function is defined at the end of this script.

• Perform Bayesian optimization by minimizing the classification error on the validation set.
• Load the best network from disk and evaluate it on the test set.

As an alternative, you can use Bayesian optimization to find optimal training options in Experiment
Manager. For more information, see “Tune Experiment Hyperparameters by Using Bayesian
Optimization” on page 6-49.

Prepare Data

Download the CIFAR-10 data set [1]. This data set contains 60,000 images, and each image has the
size 32-by-32 and three color channels (RGB). The size of the whole data set is 175 MB. Depending on
your internet connection, the download process can take some time.

datadir = tempdir;
downloadCIFARData(datadir);

Load the CIFAR-10 data set as training images and labels, and test images and labels. To enable
network validation, use 5000 of the test images for validation.

[XTrain,YTrain,XTest,YTest] = loadCIFARData(datadir);

idx = randperm(numel(YTest),5000);
XValidation = XTest(:,:,:,idx);
XTest(:,:,:,idx) = [];
YValidation = YTest(idx);
YTest(idx) = [];

You can display a sample of the training images using the following code.

figure;
idx = randperm(numel(YTrain),20);

 Deep Learning Using Bayesian Optimization

5-177



for i = 1:numel(idx)
    subplot(4,5,i);
    imshow(XTrain(:,:,:,idx(i)));
end

Choose Variables to Optimize

Choose which variables to optimize using Bayesian optimization, and specify the ranges to search in.
Also, specify whether the variables are integers and whether to search the interval in logarithmic
space. Optimize the following variables:

• Network section depth. This parameter controls the depth of the network. The network has three
sections, each with SectionDepth identical convolutional layers. So the total number of
convolutional layers is 3*SectionDepth. The objective function later in the script takes the
number of convolutional filters in each layer proportional to 1/sqrt(SectionDepth). As a
result, the number of parameters and the required amount of computation for each iteration are
roughly the same for different section depths.

• Initial learning rate. The best learning rate can depend on your data as well as the network you
are training.

• Stochastic gradient descent momentum. Momentum adds inertia to the parameter updates by
having the current update contain a contribution proportional to the update in the previous
iteration. This results in more smooth parameter updates and a reduction of the noise inherent to
stochastic gradient descent.

• L2 regularization strength. Use regularization to prevent overfitting. Search the space of
regularization strength to find a good value. Data augmentation and batch normalization also help
regularize the network.

optimVars = [
    optimizableVariable('SectionDepth',[1 3],'Type','integer')
    optimizableVariable('InitialLearnRate',[1e-2 1],'Transform','log')
    optimizableVariable('Momentum',[0.8 0.98])
    optimizableVariable('L2Regularization',[1e-10 1e-2],'Transform','log')];

Perform Bayesian Optimization

Create the objective function for the Bayesian optimizer, using the training and validation data as
inputs. The objective function trains a convolutional neural network and returns the classification
error on the validation set. This function is defined at the end of this script. Because bayesopt uses
the error rate on the validation set to choose the best model, it is possible that the final network
overfits on the validation set. The final chosen model is then tested on the independent test set to
estimate the generalization error.

ObjFcn = makeObjFcn(XTrain,YTrain,XValidation,YValidation);

Perform Bayesian optimization by minimizing the classification error on the validation set. Specify the
total optimization time in seconds. To best utilize the power of Bayesian optimization, you should
perform at least 30 objective function evaluations. To train networks in parallel on multiple GPUs, set
the 'UseParallel' value to true. If you have a single GPU and set the 'UseParallel' value to
true, then all workers share that GPU, and you obtain no training speed-up and increase the chances
of the GPU running out of memory.

After each network finishes training, bayesopt prints the results to the command window. The
bayesopt function then returns the file names in BayesObject.UserDataTrace. The objective
function saves the trained networks to disk and returns the file names to bayesopt.

5 Deep Learning Tuning and Visualization

5-178



BayesObject = bayesopt(ObjFcn,optimVars, ...
    'MaxTime',14*60*60, ...
    'IsObjectiveDeterministic',false, ...
    'UseParallel',false);

|===================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | SectionDepth | InitialLearn-|     Momentum | L2Regulariza-|
|      | result |             | runtime     | (observed)  | (estim.)    |              | Rate         |              | tion         |
|===================================================================================================================================|
|    1 | Best   |       0.197 |      955.69 |       0.197 |       0.197 |            3 |      0.61856 |      0.80624 |   0.00035179 |

|    2 | Best   |      0.1918 |      790.38 |      0.1918 |     0.19293 |            2 |     0.074118 |      0.91031 |   2.7229e-09 |

|    3 | Accept |      0.2438 |      660.29 |      0.1918 |     0.19344 |            1 |     0.051153 |      0.90911 |   0.00043113 |

|    4 | Accept |       0.208 |      672.81 |      0.1918 |      0.1918 |            1 |      0.70138 |      0.81923 |   3.7783e-08 |

|    5 | Best   |      0.1792 |      844.07 |      0.1792 |     0.17921 |            2 |      0.65156 |      0.93783 |   3.3663e-10 |

|    6 | Best   |      0.1776 |      851.49 |      0.1776 |     0.17759 |            2 |      0.23619 |      0.91932 |   1.0007e-10 |

|    7 | Accept |      0.2232 |       883.5 |      0.1776 |     0.17759 |            2 |     0.011147 |      0.91526 |    0.0099842 |

|    8 | Accept |      0.2508 |      822.65 |      0.1776 |     0.17762 |            1 |     0.023919 |      0.91048 |   1.0002e-10 |

|    9 | Accept |      0.1974 |      1947.6 |      0.1776 |     0.17761 |            3 |     0.010017 |      0.97683 |   5.4603e-10 |

|   10 | Best   |       0.176 |      1938.4 |       0.176 |     0.17608 |            2 |       0.3526 |      0.82381 |   1.4244e-07 |

|   11 | Accept |      0.1914 |      2874.4 |       0.176 |     0.17608 |            3 |     0.079847 |      0.86801 |   9.7335e-07 |

|   12 | Accept |       0.181 |        2578 |       0.176 |     0.17809 |            2 |      0.35141 |      0.80202 |   4.5634e-08 |

|   13 | Accept |      0.1838 |      2410.8 |       0.176 |     0.17946 |            2 |      0.39508 |      0.95968 |   9.3856e-06 |

|   14 | Accept |      0.1786 |      2490.6 |       0.176 |     0.17737 |            2 |      0.44857 |      0.91827 |   1.0939e-10 |

|   15 | Accept |      0.1776 |        2668 |       0.176 |     0.17751 |            2 |      0.95793 |      0.85503 |   1.0222e-05 |

|   16 | Accept |      0.1824 |      3059.8 |       0.176 |     0.17812 |            2 |      0.41142 |      0.86931 |    1.447e-06 |

|   17 | Accept |      0.1894 |      3091.5 |       0.176 |     0.17982 |            2 |      0.97051 |      0.80284 |   1.5836e-10 |

|   18 | Accept |       0.217 |      2794.5 |       0.176 |     0.17989 |            1 |       0.2464 |      0.84428 |   4.4938e-06 |

|   19 | Accept |      0.2358 |      4054.2 |       0.176 |     0.17601 |            3 |      0.22843 |       0.9454 |   0.00098248 |

|   20 | Accept |      0.2216 |      4411.7 |       0.176 |     0.17601 |            3 |     0.010847 |      0.82288 |   2.4756e-08 |

|===================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | SectionDepth | InitialLearn-|     Momentum | L2Regulariza-|
|      | result |             | runtime     | (observed)  | (estim.)    |              | Rate         |              | tion         |
|===================================================================================================================================|
|   21 | Accept |      0.2038 |      3906.4 |       0.176 |     0.17601 |            2 |      0.09885 |      0.81541 |    0.0021184 |

|   22 | Accept |      0.2492 |      4103.4 |       0.176 |     0.17601 |            2 |      0.52313 |      0.83139 |    0.0016269 |

|   23 | Accept |      0.1814 |      4240.5 |       0.176 |     0.17601 |            2 |      0.29506 |      0.84061 |   6.0203e-10 |

 Deep Learning Using Bayesian Optimization

5-179



__________________________________________________________
Optimization completed.
MaxTime of 50400 seconds reached.
Total function evaluations: 23
Total elapsed time: 53088.5123 seconds
Total objective function evaluation time: 53050.7026

Best observed feasible point:
    SectionDepth    InitialLearnRate    Momentum    L2Regularization
    ____________    ________________    ________    ________________

         2               0.3526         0.82381        1.4244e-07   

Observed objective function value = 0.176
Estimated objective function value = 0.17601
Function evaluation time = 1938.4483

Best estimated feasible point (according to models):
    SectionDepth    InitialLearnRate    Momentum    L2Regularization
    ____________    ________________    ________    ________________

         2               0.3526         0.82381        1.4244e-07   

Estimated objective function value = 0.17601
Estimated function evaluation time = 1898.2641

5 Deep Learning Tuning and Visualization

5-180



Evaluate Final Network

Load the best network found in the optimization and its validation accuracy.

bestIdx = BayesObject.IndexOfMinimumTrace(end);
fileName = BayesObject.UserDataTrace{bestIdx};
savedStruct = load(fileName);
valError = savedStruct.valError

valError = 0.1760

Predict the labels of the test set and calculate the test error. Treat the classification of each image in
the test set as independent events with a certain probability of success, which means that the number
of incorrectly classified images follows a binomial distribution. Use this to calculate the standard
error (testErrorSE) and an approximate 95% confidence interval (testError95CI) of the
generalization error rate. This method is often called the Wald method. bayesopt determines the
best network using the validation set without exposing the network to the test set. It is then possible
that the test error is higher than the validation error.

[YPredicted,probs] = classify(savedStruct.trainedNet,XTest);
testError = 1 - mean(YPredicted == YTest)

testError = 0.1910

NTest = numel(YTest);
testErrorSE = sqrt(testError*(1-testError)/NTest);
testError95CI = [testError - 1.96*testErrorSE, testError + 1.96*testErrorSE]

testError95CI = 1×2

    0.1801    0.2019

Plot the confusion matrix for the test data. Display the precision and recall for each class by using
column and row summaries.

figure('Units','normalized','Position',[0.2 0.2 0.4 0.4]);
cm = confusionchart(YTest,YPredicted);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

 Deep Learning Using Bayesian Optimization

5-181



You can display some test images together with their predicted classes and the probabilities of those
classes using the following code.

figure
idx = randperm(numel(YTest),9);
for i = 1:numel(idx)
    subplot(3,3,i)
    imshow(XTest(:,:,:,idx(i)));
    prob = num2str(100*max(probs(idx(i),:)),3);
    predClass = char(YPredicted(idx(i)));
    label = [predClass,', ',prob,'%'];
    title(label)
end

Objective Function for Optimization

Define the objective function for optimization. This function performs the following steps:

1 Takes the values of the optimization variables as inputs. bayesopt calls the objective function
with the current values of the optimization variables in a table with each column name equal to
the variable name. For example, the current value of the network section depth is
optVars.SectionDepth.

2 Defines the network architecture and training options.
3 Trains and validates the network.
4 Saves the trained network, the validation error, and the training options to disk.
5 Returns the validation error and the file name of the saved network.

5 Deep Learning Tuning and Visualization

5-182



function ObjFcn = makeObjFcn(XTrain,YTrain,XValidation,YValidation)
ObjFcn = @valErrorFun;
    function [valError,cons,fileName] = valErrorFun(optVars)

Define the convolutional neural network architecture.

• Add padding to the convolutional layers so that the spatial output size is always the same as the
input size.

• Each time you down-sample the spatial dimensions by a factor of two using max pooling layers,
increase the number of filters by a factor of two. Doing so ensures that the amount of computation
required in each convolutional layer is roughly the same.

• Choose the number of filters proportional to 1/sqrt(SectionDepth), so that networks of
different depths have roughly the same number of parameters and require about the same amount
of computation per iteration. To increase the number of network parameters and the overall
network flexibility, increase numF. To train even deeper networks, change the range of the
SectionDepth variable.

• Use convBlock(filterSize,numFilters,numConvLayers) to create a block of
numConvLayers convolutional layers, each with a specified filterSize and numFilters
filters, and each followed by a batch normalization layer and a ReLU layer. The convBlock
function is defined at the end of this example.

        imageSize = [32 32 3];
        numClasses = numel(unique(YTrain));
        numF = round(16/sqrt(optVars.SectionDepth));
        layers = [
            imageInputLayer(imageSize)
            
            % The spatial input and output sizes of these convolutional
            % layers are 32-by-32, and the following max pooling layer
            % reduces this to 16-by-16.
            convBlock(3,numF,optVars.SectionDepth)
            maxPooling2dLayer(3,'Stride',2,'Padding','same')
            
            % The spatial input and output sizes of these convolutional
            % layers are 16-by-16, and the following max pooling layer
            % reduces this to 8-by-8.
            convBlock(3,2*numF,optVars.SectionDepth)
            maxPooling2dLayer(3,'Stride',2,'Padding','same')
            
            % The spatial input and output sizes of these convolutional
            % layers are 8-by-8. The global average pooling layer averages
            % over the 8-by-8 inputs, giving an output of size
            % 1-by-1-by-4*initialNumFilters. With a global average
            % pooling layer, the final classification output is only
            % sensitive to the total amount of each feature present in the
            % input image, but insensitive to the spatial positions of the
            % features.
            convBlock(3,4*numF,optVars.SectionDepth)
            averagePooling2dLayer(8)
            
            % Add the fully connected layer and the final softmax and
            % classification layers.
            fullyConnectedLayer(numClasses)
            softmaxLayer
            classificationLayer];

 Deep Learning Using Bayesian Optimization

5-183



Specify options for network training. Optimize the initial learning rate, SGD momentum, and L2
regularization strength.

Specify validation data and choose the 'ValidationFrequency' value such that trainNetwork
validates the network once per epoch. Train for a fixed number of epochs and lower the learning rate
by a factor of 10 during the last epochs. This reduces the noise of the parameter updates and lets the
network parameters settle down closer to a minimum of the loss function.

        miniBatchSize = 256;
        validationFrequency = floor(numel(YTrain)/miniBatchSize);
        options = trainingOptions('sgdm', ...
            'InitialLearnRate',optVars.InitialLearnRate, ...
            'Momentum',optVars.Momentum, ...
            'MaxEpochs',60, ...
            'LearnRateSchedule','piecewise', ...
            'LearnRateDropPeriod',40, ...
            'LearnRateDropFactor',0.1, ...
            'MiniBatchSize',miniBatchSize, ...
            'L2Regularization',optVars.L2Regularization, ...
            'Shuffle','every-epoch', ...
            'Verbose',false, ...
            'Plots','training-progress', ...
            'ValidationData',{XValidation,YValidation}, ...
            'ValidationFrequency',validationFrequency);

Use data augmentation to randomly flip the training images along the vertical axis, and randomly
translate them up to four pixels horizontally and vertically. Data augmentation helps prevent the
network from overfitting and memorizing the exact details of the training images.

        pixelRange = [-4 4];
        imageAugmenter = imageDataAugmenter( ...
            'RandXReflection',true, ...
            'RandXTranslation',pixelRange, ...
            'RandYTranslation',pixelRange);
        datasource = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter);

Train the network and plot the training progress during training. Close all training plots after training
finishes.

        trainedNet = trainNetwork(datasource,layers,options);
        close(findall(groot,'Tag','NNET_CNN_TRAININGPLOT_UIFIGURE'))

5 Deep Learning Tuning and Visualization

5-184



Evaluate the trained network on the validation set, calculate the predicted image labels, and
calculate the error rate on the validation data.

        YPredicted = classify(trainedNet,XValidation);
        valError = 1 - mean(YPredicted == YValidation);

Create a file name containing the validation error, and save the network, validation error, and training
options to disk. The objective function returns fileName as an output argument, and bayesopt
returns all the file names in BayesObject.UserDataTrace. The additional required output
argument cons specifies constraints among the variables. There are no variable constraints.

        fileName = num2str(valError) + ".mat";
        save(fileName,'trainedNet','valError','options')
        cons = [];
        
    end
end

The convBlock function creates a block of numConvLayers convolutional layers, each with a
specified filterSize and numFilters filters, and each followed by a batch normalization layer and
a ReLU layer.

function layers = convBlock(filterSize,numFilters,numConvLayers)
layers = [
    convolution2dLayer(filterSize,numFilters,'Padding','same')
    batchNormalizationLayer
    reluLayer];

 Deep Learning Using Bayesian Optimization

5-185



layers = repmat(layers,numConvLayers,1);
end

References
[1] Krizhevsky, Alex. "Learning multiple layers of features from tiny images." (2009). https://

www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

See Also
Experiment Manager | trainNetwork | trainingOptions | bayesopt

Related Examples
• “Learn About Convolutional Neural Networks” on page 1-21
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2
• “Compare Layer Weight Initializers” on page 19-195
• “Specify Custom Weight Initialization Function” on page 19-189
• “Tune Experiment Hyperparameters by Using Bayesian Optimization” on page 6-49

5 Deep Learning Tuning and Visualization

5-186



Train Deep Learning Networks in Parallel

This example shows how to run multiple deep learning experiments on your local machine. Using this
example as a template, you can modify the network layers and training options to suit your specific
application needs. You can use this approach with a single or multiple GPUs. If you have a single GPU,
the networks train one after the other in the background. The approach in this example enables you
to continue using MATLAB® while deep learning experiments are in progress.

As an alternative, you can use Experiment Manager to interactively train multiple deep networks in
parallel. For more information, see “Use Experiment Manager to Train Networks in Parallel” on page
6-18.

Prepare Data Set

Before you can run the example, you must have access to a local copy of a deep learning data set.
This example uses a data set with synthetic images of digits from 0 to 9. In the following code,
change the location to point to your data set.

datasetLocation = fullfile(matlabroot,'toolbox','nnet', ...
    'nndemos','nndatasets','DigitDataset');

If you want to run the experiments with more resources, you can run this example in a cluster in the
cloud.

• Upload the data set to an Amazon S3 bucket. For an example, see “Work with Deep Learning Data
in AWS” on page 7-59.

• Create a cloud cluster. In MATLAB, you can create clusters in the cloud directly from the MATLAB
Desktop. For more information, see “Create Cloud Cluster” (Parallel Computing Toolbox).

• Select your cloud cluster as the default, on the Home tab, in the Environment section, select
Parallel > Select a Default Cluster.

Load Data Set

Load the data set by using an imageDatastore object. Split the data set into training, validation,
and test sets.

imds = imageDatastore(datasetLocation, ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');

[imdsTrain,imdsValidation,imdsTest] = splitEachLabel(imds,0.8,0.1);

To train the network with augmented image data, create an augmentedImageDatastore. Use
random translations and horizontal reflections. Data augmentation helps prevent the network from
overfitting and memorizing the exact details of the training images.

imageSize = [28 28 1];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augmentedImdsTrain = augmentedImageDatastore(imageSize,imdsTrain, ...
    'DataAugmentation',imageAugmenter);

 Train Deep Learning Networks in Parallel

5-187



Train Networks in Parallel

Start a parallel pool with as many workers as GPUs. You can check the number of available GPUs by
using the gpuDeviceCount (Parallel Computing Toolbox) function. MATLAB assigns a different GPU
to each worker. By default, parpool uses your default cluster profile. If you have not changed the
default, it is local. This example was run using a machine with 2 GPUs.

numGPUs = gpuDeviceCount("available");
parpool(numGPUs);

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 2).

To send training progress information from the workers during training, use a
parallel.pool.DataQueue (Parallel Computing Toolbox) object. To learn more about how to use
data queues to obtain feedback during training, see the example “Use parfeval to Train Multiple Deep
Learning Networks” on page 7-36.

dataqueue = parallel.pool.DataQueue;

Define the network layers and training options. For code readability, you can define them in a
separate function that returns several network architectures and training options. In this case,
networkLayersAndOptions returns a cell array of network layers and an array of training options
of the same length. Open this example in MATLAB and then click networkLayersAndOptions to
open the supporting function networkLayersAndOptions. Paste in your own network layers and
options. The file contains sample training options that show how to send information to the data
queue using an output function.

[layersCell,options] = networkLayersAndOptions(augmentedImdsTrain,imdsValidation,dataqueue);

Prepare the training progress plots, and set a callback function to update these plots after each
worker sends data to the queue. preparePlots and updatePlots are supporting functions for this
example.

handles = preparePlots(numel(layersCell));

5 Deep Learning Tuning and Visualization

5-188



afterEach(dataqueue,@(data) updatePlots(handles,data));

To hold the computation results in parallel workers, use future objects. Preallocate an array of future
objects for the result of each training.

trainingFuture(1:numel(layersCell)) = parallel.FevalFuture;

Loop through the network layers and options by using a for loop, and use parfeval (Parallel
Computing Toolbox) to train the networks on a parallel worker. To request two output arguments
from trainNetwork, specify 2 as the second input argument to parfeval.

for i=1:numel(layersCell)
    trainingFuture(i) = parfeval(@trainNetwork,2,augmentedImdsTrain,layersCell{i},options(i));
end

parfeval does not block MATLAB, so you can continue working while the computations take place.

To fetch results from future objects, use the fetchOutputs function. For this example, fetch the
trained networks and their training information. fetchOutputs blocks MATLAB until the results are
available. This step can take a few minutes.

[network,trainingInfo] = fetchOutputs(trainingFuture);

Save the results to disk using the save function. To load the results again later, use the load
function. Use sprintf and datetime to name the file using the current date and time.

filename = sprintf('experiment-%s',datetime('now','Format','yyyyMMdd''T''HHmmss'));
save(filename,'network','trainingInfo');

 Train Deep Learning Networks in Parallel

5-189



Plot Results

After the networks complete training, plot their training progress by using the information in
trainingInfo.

Use subplots to distribute the different plots for each network. For this example, use the first row of
subplots to plot the training accuracy against the number of epoch along with the validation accuracy.

figure('Units','normalized','Position',[0.1 0.1 0.6 0.6]);
title('Training Progress Plots');

for i=1:numel(layersCell)
    subplot(2,numel(layersCell),i);
    hold on; grid on;
    ylim([0 100]);
    iterationsPerEpoch = floor(augmentedImdsTrain.NumObservations/options(i).MiniBatchSize);
    epoch = (1:numel(trainingInfo(i).TrainingAccuracy))/iterationsPerEpoch;
    plot(epoch,trainingInfo(i).TrainingAccuracy);
    plot(epoch,trainingInfo(i).ValidationAccuracy,'.k','MarkerSize',10);
end
subplot(2,numel(layersCell),1), ylabel('Accuracy');

Then, use the second row of subplots to plot the training loss against the number of epoch along with
the validation loss.

for i=1:numel(layersCell)
    subplot(2,numel(layersCell),numel(layersCell) + i);
    hold on; grid on;
    ylim([0 10]);
    iterationsPerEpoch = floor(augmentedImdsTrain.NumObservations/options(i).MiniBatchSize);
    epoch = (1:numel(trainingInfo(i).TrainingAccuracy))/iterationsPerEpoch;
    plot(epoch,trainingInfo(i).TrainingLoss);
    plot(epoch,trainingInfo(i).ValidationLoss,'.k','MarkerSize',10);
    xlabel('Epoch');
end
subplot(2,numel(layersCell),numel(layersCell)+1), ylabel('Loss');

5 Deep Learning Tuning and Visualization

5-190



After you choose a network, you can use classify and obtain its accuracy on the test data
imdsTest.

See Also
Experiment Manager | augmentedImageDatastore | imageDatastore | parfeval |
fetchOutputs | trainNetwork | trainingOptions

Related Examples
• “Train Network Using Automatic Multi-GPU Support” on page 7-48
• “Use parfeval to Train Multiple Deep Learning Networks” on page 7-36
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18

More About
• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2

 Train Deep Learning Networks in Parallel

5-191



Monitor Deep Learning Training Progress

This example shows how to monitor the training process of deep learning networks.

When you train networks for deep learning, it is often useful to monitor the training progress. By
plotting various metrics during training, you can learn how the training is progressing. For example,
you can determine if and how quickly the network accuracy is improving, and whether the network is
starting to overfit the training data.

This example shows how to monitor training progress for networks trained using the trainNetwork
function. For networks trained using a custom training loop, use a trainingProgressMonitor
object to plot metrics during training. For more information, see “Monitor Custom Training Loop
Progress” on page 19-521.

When you set the Plots training option to "training-progress" in trainingOptions and start
network training, trainNetwork creates a figure and displays training metrics at every iteration.
Each iteration is an estimation of the gradient and an update of the network parameters. If you
specify validation data in trainingOptions, then the figure shows validation metrics each time
trainNetwork validates the network. The figure plots the following:

• Training accuracy — Classification accuracy on each individual mini-batch.
• Smoothed training accuracy — Smoothed training accuracy, obtained by applying a smoothing

algorithm to the training accuracy. It is less noisy than the unsmoothed accuracy, making it easier
to spot trends.

• Validation accuracy — Classification accuracy on the entire validation set (specified using
trainingOptions).

• Training loss, smoothed training loss, and validation loss — The loss on each mini-batch, its
smoothed version, and the loss on the validation set, respectively. If the final layer of your network
is a classificationLayer, then the loss function is the cross entropy loss. For more
information about loss functions for classification and regression problems, see “Output Layers”
on page 1-61.

For regression networks, the figure plots the root mean square error (RMSE) instead of the accuracy.

The figure marks each training Epoch using a shaded background. An epoch is a full pass through
the entire data set.

During training, you can stop training and return the current state of the network by clicking the stop
button in the top-right corner. For example, you might want to stop training when the accuracy of the
network reaches a plateau and it is clear that the accuracy is no longer improving. After you click the
stop button, it can take a while for the training to complete. Once training is complete,
trainNetwork returns the trained network.

When training finishes, view the Results showing the finalized validation accuracy and the reason
that training finished. If the OutputNetwork training option is "last-iteration" (default), the
finalized metrics correspond to the last training iteration. If the OutputNetwork training option is
"best-validation-loss", the finalized metrics correspond to the iteration with the lowest
validation loss. The iteration from which the final validation metrics are calculated is labeled Final in
the plots.

If your network contains batch normalization layers, then the final validation metrics can be different
to the validation metrics evaluated during training. This is because the mean and variance statistics

5 Deep Learning Tuning and Visualization

5-192



used for batch normalization can be different after training completes. For example, if the
BatchNormalizationStatisics training option is "population", then after training, the
software finalizes the batch normalization statistics by passing through the training data once more
and uses the resulting mean and variance. If the BatchNormalizationStatisics training option
is "moving", then the software approximates the statistics during training using a running estimate
and uses the latest values of the statistics.

On the right, view information about the training time and settings. To learn more about training
options, see “Set Up Parameters and Train Convolutional Neural Network” on page 1-64.

To save the training progress plot, click Export Training Plot in the training window. You can save
the plot as a PNG, JPEG, TIFF, or PDF file. You can also save the individual plots of loss, accuracy, and
root mean squared error using the axes toolbar.

Plot Training Progress During Training

Train a network and plot the training progress during training.

Load the training data, which contains 5000 images of digits. Set aside 1000 of the images for
network validation.

[XTrain,YTrain] = digitTrain4DArrayData;

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

 Monitor Deep Learning Training Progress

5-193



Construct a network to classify the digit image data.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,Padding="same")
    batchNormalizationLayer
    reluLayer   
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(3,16,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(3,32,Padding="same")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify options for network training. To validate the network at regular intervals during training,
specify validation data. Choose the ValidationFrequency value so that the network is validated
about once per epoch. To plot training progress during training, set the Plots training option to
"training-progress".

options = trainingOptions("sgdm", ...
    MaxEpochs=8, ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=30, ...
    Verbose=false, ...
    Plots="training-progress");

Train the network.

net = trainNetwork(XTrain,YTrain,layers,options);

5 Deep Learning Tuning and Visualization

5-194



See Also
trainNetwork | trainingOptions

Related Examples
• “Monitor Custom Training Loop Progress” on page 19-521
• “Learn About Convolutional Neural Networks” on page 1-21
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2

 Monitor Deep Learning Training Progress

5-195



Customize Output During Deep Learning Network Training

This example shows how to define an output function that runs at each iteration during training of
deep learning neural networks. If you specify output functions by using the 'OutputFcn' name-
value pair argument of trainingOptions, then trainNetwork calls these functions once before
the start of training, after each training iteration, and once after training has finished. Each time the
output functions are called, trainNetwork passes a structure containing information such as the
current iteration number, loss, and accuracy. You can use output functions to display or plot progress
information, or to stop training. To stop training early, make your output function return true. If any
output function returns true, then training finishes and trainNetwork returns the latest network.

To stop training when the loss on the validation set stops decreasing, simply specify validation data
and a validation patience using the 'ValidationData' and the 'ValidationPatience' name-
value pair arguments of trainingOptions, respectively. The validation patience is the number of
times that the loss on the validation set can be larger than or equal to the previously smallest loss
before network training stops. You can add additional stopping criteria using output functions. This
example shows how to create an output function that stops training when the classification accuracy
on the validation data stops improving. The output function is defined at the end of the script.

Load the training data, which contains 5000 images of digits. Set aside 1000 of the images for
network validation.

[XTrain,YTrain] = digitTrain4DArrayData;

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Construct a network to classify the digit image data.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

5 Deep Learning Tuning and Visualization

5-196



Specify options for network training. To validate the network at regular intervals during training,
specify validation data. Choose the 'ValidationFrequency' value so that the network is validated
once per epoch.

To stop training when the classification accuracy on the validation set stops improving, specify
stopIfAccuracyNotImproving as an output function. The second input argument of
stopIfAccuracyNotImproving is the number of times that the accuracy on the validation set can
be smaller than or equal to the previously highest accuracy before network training stops. Choose
any large value for the maximum number of epochs to train. Training should not reach the final epoch
because training stops automatically.

miniBatchSize = 128;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',100, ...
    'MiniBatchSize',miniBatchSize, ...
    'VerboseFrequency',validationFrequency, ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',validationFrequency, ...
    'Plots','training-progress', ...
    'OutputFcn',@(info)stopIfAccuracyNotImproving(info,3));

Train the network. Training stops when the validation accuracy stops increasing.

net = trainNetwork(XTrain,YTrain,layers,options);

Training on single CPU.
Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:03 |        7.81% |       12.70% |       2.7155 |       2.5169 |          0.0100 |
|       1 |          31 |       00:00:07 |       71.09% |       74.90% |       0.8812 |       0.8124 |          0.0100 |
|       2 |          62 |       00:00:11 |       87.50% |       88.00% |       0.3888 |       0.4470 |          0.0100 |
|       3 |          93 |       00:00:15 |       95.31% |       94.20% |       0.2202 |       0.2538 |          0.0100 |
|       4 |         124 |       00:00:20 |       96.09% |       96.90% |       0.1438 |       0.1762 |          0.0100 |
|       5 |         155 |       00:00:24 |       98.44% |       97.50% |       0.1011 |       0.1303 |          0.0100 |
|       6 |         186 |       00:00:29 |       99.22% |       97.90% |       0.0775 |       0.1130 |          0.0100 |
|       7 |         217 |       00:00:33 |      100.00% |       98.10% |       0.0552 |       0.0934 |          0.0100 |
|       8 |         248 |       00:00:37 |      100.00% |       97.70% |       0.0436 |       0.0861 |          0.0100 |
|       9 |         279 |       00:00:41 |      100.00% |       97.90% |       0.0342 |       0.0785 |          0.0100 |
|      10 |         310 |       00:00:45 |      100.00% |       98.50% |       0.0274 |       0.0680 |          0.0100 |
|      11 |         341 |       00:00:49 |      100.00% |       98.30% |       0.0240 |       0.0626 |          0.0100 |
|      12 |         372 |       00:00:53 |      100.00% |       98.60% |       0.0217 |       0.0578 |          0.0100 |
|      13 |         403 |       00:00:57 |      100.00% |       98.70% |       0.0188 |       0.0543 |          0.0100 |
|      14 |         434 |       00:01:01 |      100.00% |       98.80% |       0.0165 |       0.0516 |          0.0100 |
|      15 |         465 |       00:01:05 |      100.00% |       98.80% |       0.0145 |       0.0491 |          0.0100 |
|      16 |         496 |       00:01:09 |      100.00% |       98.80% |       0.0128 |       0.0465 |          0.0100 |
|      17 |         527 |       00:01:13 |      100.00% |       99.00% |       0.0113 |       0.0442 |          0.0100 |
|      18 |         558 |       00:01:17 |      100.00% |       98.90% |       0.0103 |       0.0423 |          0.0100 |
|      19 |         589 |       00:01:21 |      100.00% |       99.00% |       0.0094 |       0.0406 |          0.0100 |
|      20 |         620 |       00:01:25 |      100.00% |       99.10% |       0.0088 |       0.0391 |          0.0100 |
|      21 |         651 |       00:01:29 |      100.00% |       99.10% |       0.0082 |       0.0379 |          0.0100 |
|      22 |         682 |       00:01:32 |      100.00% |       99.10% |       0.0078 |       0.0369 |          0.0100 |
|      23 |         713 |       00:01:36 |      100.00% |       99.10% |       0.0074 |       0.0359 |          0.0100 |

 Customize Output During Deep Learning Network Training

5-197



|======================================================================================================================|
Training finished: Stopped by OutputFcn.

Define Output Function

Define the output function stopIfAccuracyNotImproving(info,N), which stops network training
if the best classification accuracy on the validation data does not improve for N network validations in
a row. This criterion is similar to the built-in stopping criterion using the validation loss, except that it
applies to the classification accuracy instead of the loss.

function stop = stopIfAccuracyNotImproving(info,N)

stop = false;

% Keep track of the best validation accuracy and the number of validations for which
% there has not been an improvement of the accuracy.
persistent bestValAccuracy
persistent valLag

% Clear the variables when training starts.

5 Deep Learning Tuning and Visualization

5-198



if info.State == "start"
    bestValAccuracy = 0;
    valLag = 0;
    
elseif ~isempty(info.ValidationLoss)
    
    % Compare the current validation accuracy to the best accuracy so far,
    % and either set the best accuracy to the current accuracy, or increase
    % the number of validations for which there has not been an improvement.
    if info.ValidationAccuracy > bestValAccuracy
        valLag = 0;
        bestValAccuracy = info.ValidationAccuracy;
    else
        valLag = valLag + 1;
    end
    
    % If the validation lag is at least N, that is, the validation accuracy
    % has not improved for at least N validations, then return true and
    % stop training.
    if valLag >= N
        stop = true;
    end
    
end

end

See Also
trainNetwork | trainingOptions

Related Examples
• “Learn About Convolutional Neural Networks” on page 1-21
• “Set Up Parameters and Train Convolutional Neural Network” on page 1-64
• “Deep Learning in MATLAB” on page 1-2
• “Compare Layer Weight Initializers” on page 19-195
• “Specify Custom Weight Initialization Function” on page 19-189
• “Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions” on

page 5-209

 Customize Output During Deep Learning Network Training

5-199



Detect Issues During Deep Neural Network Training

This example shows how to automatically detect issues while training a deep neural network.

When you train networks for deep learning, it is often useful to monitor the training progress. In this
example, use a trainingProgressMonitor object to check if your network is overfitting during
training.

Load and Preprocess Data

Load the digits data as an image datastore using the imageDatastore function and specify the
folder containing the image data.

dataFolder = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");

imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ....
    LabelSource="foldernames");

Choose 70% of the data for training and 30% for validation. To demonstrate overfitting, this example
does not randomize the data split.

trainingProportion = 0.7;
[imdsTrain,imdsValidation] = splitEachLabel(imds,trainingProportion);

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the training and validation images, use an augmented image datastore.

inputSize = [28 28 1];

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Determine the number of classes in the training data.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network

Define the network for image classification.

• For image input, specify an image input layer with input size matching the training data.
• Do not normalize the image input, set the Normalization option of the input layer to "none".
• Specify three convolution-batchnorm-ReLU blocks.
• Pad the input to the convolution layers such that the output has the same size by setting the

Padding option to "same".
• For the first convolution layer, specify 20 filters of size 5. For the remaining convolution layers,

specify 20 filters of size 3.
• For classification, specify a fully connected layer with size matching the number of classes
• To map the output to probabilities, include a softmax layer.

When training a network using a custom training loop, do not include an output layer.

5 Deep Learning Tuning and Visualization

5-200



layers = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(5,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers);

Define Model Loss Function

Training a deep neural network is an optimization task. By considering a neural network as a function
f X; Θ , where X is the network input and Θ is the set of learnable parameters, you can optimize Θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable
parameters Θ such that for a given inputs X with a corresponding targets T, they minimize the error
between the predictions Y = f X, Θ  and T.

Create the function modelLoss, listed in the Model Loss Function on page 5-205 section of the
example, that takes as input the dlnetwork object, a mini-batch of input data with corresponding
targets, and returns the loss, the gradients of the loss with respect to the learnable parameters, and
the network state.

Specify Training Options

Train for five epochs with a mini-batch size of 128. Specify the options for SGDM optimization.
Specify an initial learn rate of 0.01 and momentum 0.9. Try experimenting with different values for
the number of epochs and the learn rate.

numEpochs = ;
miniBatchSize = 128;

learnRate = ;
momentum = 0.9;

Evaluate the model on the validation data every 10 iterations.

validationFrequency = 10;

Define Overfitting Check Function

Create the function checkForOverfitting, listed in the Overfitting Check Function on page 5-208
section of the example. This function takes metric data containing the training and validation
accuracy, and determines if the network is overfitting by checking if the ratio of validation accuracy
to training accuracy is less than the threshold specified.

Overfitting Ratio = Validation Accuracy
Training Accuracy

 Detect Issues During Deep Neural Network Training

5-201



If the overfitting ratio is less than the overfitting threshold, then the network is overfitting. Specify an
overfitting threshold of 0.9.

overFittingThreshold = ;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not format the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(augimdsTrain,  ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["SSCB" ""]);

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Find the total number of iterations.

totalIterations = numEpochs*ceil(augimdsTrain.NumObservations/miniBatchSize);

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(...
    Metrics=["TrainingLoss","ValidationLoss","TrainingAccuracy","ValidationAccuracy"], ...
    Info=["Epoch","MaxEpochs"], ...
    XLabel="Iteration", ...
    Status="Training...");

groupSubPlot(monitor,Accuracy=["TrainingAccuracy","ValidationAccuracy"]);
groupSubPlot(monitor,Loss=["TrainingLoss","ValidationLoss"]);

updateInfo(monitor,MaxEpochs=numEpochs);

Initialize the monitor with the training check information using the showCheckOnPlot function
defined at the end of this example. The showCheckOnPlot function creates a struct with
information that you can use to update the overfitting check during training.

trainingCheck = showCheckOnPlot(monitor,overFittingThreshold);

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

5 Deep Learning Tuning and Visualization

5-202



• Evaluate the model loss, gradients, and state using the dlfeval and modelLoss functions and
update the network state.

• Update the network parameters using the sgdmupdate function.
• Display the training progress.
• Check for overfitting every validation iteration.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button in the Training Progress window.

iteration = 0;
epoch = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(mbq);

        % Evaluate the model loss, gradients, and state using dlfeval and the
        % modelLoss function and update the network state.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T);
        net.State = state;

        % Compute the training accuracy.
        Y = predict(net,X);
        accuracyTrain = 100*mean(onehotdecode(Y,classes,1) == onehotdecode(T,classes,1));

        % Update the network parameters using the SGDM optimizer.
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);

        % Display the training progress.
        recordMetrics(monitor,iteration, ...
            TrainingLoss=loss, ...
            TrainingAccuracy=accuracyTrain);

        % Calculate the validation accuracy.
        if iteration == 1 || mod(iteration,validationFrequency) == 0
            [lossVal,accuracyVal] = calculateValidationMetrics(net,augimdsValidation,miniBatchSize,classes);

            recordMetrics(monitor,iteration, ...
                ValidationAccuracy=accuracyVal, ...
                ValidationLoss=lossVal);

            % Check if the model is overfitting.
            trainingCheck = updateTrainingChecks(monitor,trainingCheck);
        end

        % Update the training progress bar.
        monitor.Progress = 100*iteration/totalIterations;

 Detect Issues During Deep Neural Network Training

5-203



    end

    % Update the epoch on the training progress monitor.
    updateInfo(monitor,Epoch=epoch);
end

% Set the final status on the monitor.
if monitor.Stop
    monitor.Status = "Training Stopped";
else
    monitor.Status = "Training Complete";
end

Check for Overfitting

Find the last value of the overfitting check for the model.

trainingCheck.LastValue

ans = 0

A LastValue value of 0 means that the model is overfitting. To prevent overfitting, try one or more of
the following:

• Randomize the data
• Use data augmentation
• Use dropout layers
• Increase the regularization factor.

In this example, to prevent overfitting, randomize your data before training. To randomize the data,
specify "randomized" when using the splitEachLabel function.

[imdsTrain,imdsValidation] =
splitEachLabel(imds,trainingProportion,"randomized");

5 Deep Learning Tuning and Visualization

5-204



If you train the model again with the data randomized, then the model passes the overfitting check.

Supporting Functions

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding targets T and returns the loss, the gradients of the loss with respect to the learnable
parameters in net, and the network state. To compute the gradients automatically, use the
dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T)

% Forward data through network.
[Y,state] = forward(net,X);

% Calculate cross-entropy loss.
loss = crossentropy(Y,T);

% Calculate gradients of loss with respect to learnable parameters.
gradients = dlgradient(loss,net.Learnables);

end

Validation Metrics Function

The calculateValidationMetrics function takes a network, augmentedImageDatastore object
containing the validation data, mini-batch size, and classes, and returns the loss and accuracy for the
validation data.

function [loss,accuracy] = calculateValidationMetrics(net,augvalDatastore,miniBatchSize,classes)

% Pass the validation data through the network in batches.
mbq = minibatchqueue(augvalDatastore, ...
    MiniBatchSize=miniBatchSize, ...

 Detect Issues During Deep Neural Network Training

5-205



    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["SSCB",""]);

T = [];
Y = [];

% Loop over mini-batches.
while hasdata(mbq)
    [X,batchT] = next(mbq);

    % Pass the data through the network.
    batchY = predict(net,X);

    % Append to the output.
    Y = [Y,batchY];
    T = [T,batchT];
end

% Calculate the cross-entropy loss.
loss = crossentropy(Y,T);

% Compute the accuracy.
accuracy = 100*mean(onehotdecode(Y,classes,1) == onehotdecode(T,classes,1));

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenating it into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

5 Deep Learning Tuning and Visualization

5-206



function X = preprocessMiniBatchPredictors(dataX)

% Concatenate.
X = cat(4,dataX{1:end});

end

Initialize Training Check

The showCheckOnPlot function creates a struct with information that you can use to update the
overfitting check during training.

• Name — Display name of the check in the training progress monitor window.
• CheckFunction — Function handle to use to check for issues. For more information, see the

checkForOverfitting on page 5-208 function.

The function adds the check to the TrainingProgressMonitor object and displays the result in the
Training Progress window. You can add more checks to the struct by defining more check functions
and adding them to the struct.

function trainingCheck = showCheckOnPlot(monitor,threshold)

trainingCheck = struct("Name","OverfittingCheck", ...
    "CheckFunction",@(x)checkForOverfitting(x,threshold));

% Create an info item on the training progress monitor for the
% training check.
monitor.Info = [monitor.Info trainingCheck.Name];
updateInfo(monitor,trainingCheck.Name,"❓ Unknown");

end

Update Training Check

The updateTrainingChecks function takes as input a TrainingProgressMonitor object and a
training check. The function verifies if the check passes by calling CheckFunction and updates
LastValue with the result. If the check passes, then the check value is 1 and no issue was detected.
If the check fails, then the check value is 0 and an issue was detected. The function updates the
training progress monitor with the latest results.

function trainingCheck = updateTrainingChecks(monitor,trainingCheck)

% Update the training check.
check = trainingCheck.CheckFunction(monitor.MetricData);
if check == 0
    % Check failed.
    updateInfo(monitor,trainingCheck.Name,"⚠ Fail");
    trainingCheck.LastValue = 0;
elseif check == 1
    % Check passed.
    updateInfo(monitor,trainingCheck.Name,"✔ Pass")
    trainingCheck.LastValue = 1;
else
    % Check unverified. Use the existing value
    % in the Info field.
end

end

 Detect Issues During Deep Neural Network Training

5-207



Overfitting Check Function

This checkForOverfitting function takes metric data containing the training and validation
accuracy and determines if the model is not overfitting by checking if the ratio of validation accuracy
to training accuracy is greater than or equal to the threshold given.

function result = checkForOverfitting(metricData,threshold)

% Set the number of training points to average the check across.
n = 10;

% If there is no value for one or other of the training or validation
% accuracies, then return unknown.
trainingAccData = metricData.TrainingAccuracy;
if size(trainingAccData,1) < n
    result = -1;
else
    % Check that the ratio of the last validation accuracy
    % to the average of the last 'n' training accuracy is
    % greater than the chosen threshold.
    avgTrainAcc = mean(trainingAccData(end-n+1:end));
    validationAccData = metricData.ValidationAccuracy;
    lastValidationAccPoint = validationAccData(end,:);
    result = lastValidationAccPoint(2)/avgTrainAcc >= threshold;
end

end

See Also
dlfeval | dlnetwork | minibatchqueue | trainingProgressMonitor

Related Examples
• “Monitor Custom Training Loop Progress” on page 19-521
• “Train Network Using Custom Training Loop” on page 19-239
• “Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions” on

page 5-209
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Customize Output During Deep Learning Network Training” on page 5-196

5 Deep Learning Tuning and Visualization

5-208



Detect Vanishing Gradients in Deep Neural Networks by
Plotting Gradient Distributions

This example shows how to monitor vanishing gradients while training a deep neural network.

A common problem in deep network training is vanishing gradients. Deep learning training
algorithms aim to minimize the loss by adjusting the learnable parameters of the network during
training. Gradient-based training algorithms determine the level of adjustment using the gradients of
the loss function with respect to the current learnable parameters. For earlier layers, the gradient
computation uses the propagated gradients from the previous layers. Therefore, when a network
contains activation functions that always produce gradient values less than 1, the value of the
gradients can become increasingly small as the updating algorithm moves towards the initial layers.
As a result, early layers in the network can receive a gradient that is vanishingly small and, therefore,
the network is unable to learn. However, if the gradient of the activation function is always greater
than or equal to 1, the gradients can flow through the network, reducing the chance of vanishing
gradients.

This example trains two networks with different activation functions and compares their gradient
distributions.

Compare Activation Functions

To illustrate the different properties of activation functions, compare two common deep learning
activation functions: ReLU and sigmoid.

ReLU x =
x x ≥ 0
0 x < 0

Sigmoid x = 1 + exp −x −1

Evaluate the gradients of the ReLU and sigmoid activation functions.

x = linspace(-5,5,1000);

reluActivation = max(0,x);
reluGradient = gradient(reluActivation,0.01);

sigmoidActivation = 1./(1 + exp(-x));
sigmoidGradient = gradient(sigmoidActivation,0.01);

Plot the ReLU and sigmoid activation functions and their gradients.

figure
tiledlayout(1,2)

nexttile
plot(x,[reluActivation;reluGradient])
legend("ReLU","Gradient of ReLU")

nexttile
plot(x,[sigmoidActivation;sigmoidGradient])
legend("Sigmoid","Gradient of Sigmoid")

 Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions

5-209



The ReLU gradient is either 0 or 1 for the entire range. Therefore, the gradient does not become
increasingly small as it backpropagates through the network, reducing the chance of vanishing
gradients. The sigmoid gradient curve is less than 1 for the entire range. Therefore, a network
containing sigmoid activation layers can suffer from the vanishing gradient problem.

Load Data

Load sample data consisting of 5000 synthetic images of handwritten digits and their labels using
digitTrain4DArrayData.

[XTrain,TTrain] = digitTrain4DArrayData;
numObservations = length(TTrain);

To automatically resize the training images, use an augmented image datastore.

inputSize = [28,28,1];
augimdsTrain = augmentedImageDatastore(inputSize(1:2),XTrain,TTrain);

Determine the number of classes in the training data.

classes = categories(TTrain);
numClasses = numel(classes);

Define Network

To compare the effect of the activation layer, construct two networks. Each network contains either
ReLU or sigmoid activation layers separating four fully connected layers. By comparing the training

5 Deep Learning Tuning and Visualization

5-210



progress of these two networks, you can see the impact of the activation layer during training. These
networks are for demonstration purposes only. For an example showing how to create and train a
simple image classification network, see “Create Simple Deep Learning Neural Network for
Classification” on page 3-43.

activationTypes = ["ReLU","Sigmoid"];
numNetworks = length(activationTypes);

for i = 1:numNetworks
    activationType = activationTypes(i);

    switch activationType
        case "ReLU"
            activationLayer = reluLayer;
        case "Sigmoid"
            activationLayer = sigmoidLayer;
    end

    layers = [
        imageInputLayer(inputSize,Normalization="none")
        fullyConnectedLayer(10)
        activationLayer
        fullyConnectedLayer(10)
        activationLayer
        fullyConnectedLayer(10)
        activationLayer
        fullyConnectedLayer(numClasses)
        softmaxLayer];

    % Create a dlnetwork object from the layers.
    networks{i} = dlnetwork(layers);
end

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, which takes as input a dlnetwork
object and a mini-batch of input data with corresponding labels and returns the loss and the
gradients of the loss with respect to the learnable parameters in the network.

Specify Training Options

Train for 50 epochs with a mini-batch size of 128.

numEpochs = 50;
miniBatchSize = 128;

Train Models

To compare the two networks, track the loss and average gradients for each layer in each network.
Each network contains four learnable layers.

numIterations = numEpochs*ceil(numObservations/miniBatchSize);
numLearnableLayers = 4;

losses = zeros(numIterations,numNetworks);
meanGradients = zeros(numIterations,numNetworks,numLearnableLayers);

 Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions

5-211



Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch, defined at the end of
this example, to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB",""]);

Loop over each of the networks. For each network:

• Find the indices of the weights and the names of the layers with weights.
• Initialize the plots of the weight distributions using the supporting function

setupGradientDistributionAxes on page 5-218, defined at the end of this example.
• Train the network using a custom training loop.

For each epoch of the custom training loop, shuffle the data and loop over mini-batches of data. For
each mini-batch:

• Evaluate the model loss and gradients using the dlfeval and modelLoss functions.
• Update the network parameters using the adamupdate function.
• Save the average gradient value for each layer at each iteration.

At the end of each epoch, plot the gradient distributions of the weights for each learnable layer using
the supporting function plotGradientDistributions on page 5-219, defined at the end of this
example.

for activationIdx = 1:numNetworks

    activationName =  activationTypes(activationIdx);
    net = networks{activationIdx};

    % Find the indices of the weight learnables.
    weightIdx = ismember(net.Learnables.Parameter,"Weights");

    % Find the names of the layers with weights.
    weightLayerNames = join([net.Learnables.Layer(weightIdx),...
        net.Learnables.Parameter(weightIdx)]);

    % Prepare axes to display the weight distributions for each epoch
    % using the supporting function setupGradientDistributionAxes.
    plotSetup = setupGradientDistributionAxes(activationName,weightLayerNames,numEpochs);

    % Initialize parameters for the Adam training algorithm.
    averageGrad = [];

5 Deep Learning Tuning and Visualization

5-212



    averageSqGrad = [];

    % Train the network using a custom training loop.
    iteration = 0;
    start = tic;

    % Reset minibatchqueue to the start of the data.
    reset(mbq);

    % Loop over epochs.
    for epoch = 1:numEpochs
        % Shuffle data.
        shuffle(mbq);

        % Loop over mini-batches.
        while hasdata(mbq)
            iteration = iteration + 1;

            % Read mini-batch of data.
            [X,T] = next(mbq);

            % Evaluate the model loss and gradients using dlfeval and the
            % modelLoss function.
            [loss,gradients] = dlfeval(@modelLoss,net,X,T);

            % Update the network parameters using the Adam optimizer.
            [net,averageGrad,averageSqGrad] = adamupdate(net,gradients,averageGrad,averageSqGrad,iteration);

            % Record the loss at every iteration.
            losses(iteration,activationIdx) = loss;

            % Record the average gradient of each learnable layer at each iteration.
            gradientValues = gradients.Value(weightIdx);
            for ii = 1:numLearnableLayers
                meanGradients(iteration,activationIdx,ii) = mean(gradientValues{ii},"all");
            end
        end

        % At the end of each epoch, plot the gradient distributions of the weights
        % of each learnable layer using the supporting function
        % plotGradientDistributions.
        gradientValues = gradients.Value(weightIdx);
        plotGradientDistributions(plotSetup,gradientValues,epoch)
    end
end

 Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions

5-213



5 Deep Learning Tuning and Visualization

5-214



The gradient distribution plots show that the sigmoid network suffers from vanishingly small
gradients. This effect becomes increasingly noticeable as the gradients flow back through the
network toward the earlier layers.

Compare Losses

Compare the losses of the trained networks.

figure
plot(losses)
xlabel("Iteration")
ylabel("Loss")
legend(activationTypes)

 Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions

5-215



The loss for the sigmoid network decreases slower than the loss for the ReLU network. Therefore, for
this model, using ReLU activation layers results in faster learning.

Compare Mean Gradients

Compare the average gradient for each layer in each training iteration.

figure
tiledlayout("flow")
for ii = 1:numLearnableLayers
    nexttile
    plot(meanGradients(:,:,ii))
    xlabel("Iteration")
    ylabel("Average Gradient")
    title(weightLayerNames(ii))
    legend(activationTypes)
end

5 Deep Learning Tuning and Visualization

5-216



The average gradient plot is consistent with the results seen in the gradient distribution plots. For the
network with sigmoid layers, the range of values for the gradients is very small and centered around
0. In comparison, the network with ReLU layers has a much wider range of gradients, reducing the
chance of vanishing gradients and increasing the rate of learning.

Supporting Functions

Model Loss Function

The modelLoss function takes as input the dlnetwork object net and a mini-batch of input data X
with corresponding targets T containing the labels, and returns the loss and the gradients of the loss
with respect to the learnable parameters.

function [loss,gradients] = modelLoss(net,X,T)
Y = forward(net,X);

loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);
end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

• Preprocess the images using the preprocessMiniBatchPredictors function.

 Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions

5-217



• Extract the label data from the incoming cell array and concatenate the data into a categorical
array along the second dimension.

• One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(XCell,TCell)
% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);

% Extract label data from cell and concatenate.
T = cat(2,TCell{1:end});

% One-hot encode labels.
T = onehotencode(T,1);
end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenating it into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image to use
as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(XCell)
% Concatenate.
X = cat(4,XCell{1:end});
end

Calculate Distribution

The gradientDistributions function computes the histogram values and returns the bin centers
and histogram counts.

function [centers,counts] = gradientDistributions(values)
% Get the histogram count for the values.
[counts,edges] = histcounts(values,30);

% histcounts returns edges of the bins. To get the bin centers,
% calculate the midpoints between consecutive elements of the edges.
centers =  edges(1:end-1) + diff(edges)/2;
end

Create Gradient Distribution Plot Axes

The setupGradientDistributionAxes function creates axes suitable for plotting the gradient
distribution plots in 3-D. This function returns a structure array containing a TiledChartLayout
object and a colormap that act as input to the plotGradientDistributions supporting function.

function plotSetup = setupGradientDistributionAxes(activationName,weightLayerNames,numEpochs)
f = figure;
t = tiledlayout(f,"flow",TileSpacing="tight");
t.Title.String = "Gradient Distributions with " + activationName + " Layers";

% To avoid updating the same values every epoch, set up axis 
% information before the training loop.
for i = 1 : numel(weightLayerNames)
    tiledAx = nexttile(t,i);

5 Deep Learning Tuning and Visualization

5-218



    % Set up the label names and titles.
    xlabel(tiledAx,"Gradients");
    ylabel(tiledAx,"Epochs");
    zlabel(tiledAx,"Counts");
    title(tiledAx,weightLayerNames(i));

    % Rotate the view.
    view(tiledAx, [-130, 50]);
    xlim(tiledAx,[-0.5,0.5]);
    ylim(tiledAx,[1,Inf]);
end

plotSetup.ColorMap = parula(numEpochs);
plotSetup.TiledLayout = t;
end

Plot Gradient Distributions

The plotGradientDistributions function takes as input a structure array containing a
TiledChartLayout object and a colormap, and an array of values (for example, layer gradients) at a
specific epoch, and plots smoothed histograms in 3-D. Use the supporting function
setupGradientDistributionAxes to generate a suitable structure array input.

function plotGradientDistributions(plotSetup,gradientValues,epoch)

for w = 1:numel(gradientValues)
    nexttile(plotSetup.TiledLayout,w)
    color = plotSetup.ColorMap(epoch,:);

    values = extractdata(gradientValues{w});

    % Get the centers and counts for the distribution.
    [centers,counts] = gradientDistributions(values);

    % Plot the gradient values on the x axis, the epochs on the y axis, and the
    % counts on the z axis. Set the edge color as white to more easily distinguish
    % between the different histograms.
    hold("on");
    fill3(centers,zeros(size(counts))+epoch,counts,color,EdgeColor="#D9D9D9");
    hold("off")
    drawnow
end
end

See Also
dlfeval | adamupdate | dlnetwork | minibatchqueue

Related Examples
• “Train Network Using Custom Training Loop” on page 19-239
• “Detect Issues During Deep Neural Network Training” on page 5-200
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Customize Output During Deep Learning Network Training” on page 5-196

 Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions

5-219



Investigate Network Predictions Using Class Activation
Mapping

This example shows how to use class activation mapping (CAM) to investigate and explain the
predictions of a deep convolutional neural network for image classification.

Deep learning networks are often considered to be "black boxes" that offer no way of figuring out
what a network has learned or which part of an input to the network was responsible for the
prediction of the network. When these models fail and give incorrect predictions, they often fail
spectacularly without any warning or explanation. Class activation mapping [1] is one technique that
you can use to get visual explanations of the predictions of convolutional neural networks. Incorrect,
seemingly unreasonable predictions can often have reasonable explanations. Using class activation
mapping, you can check if a specific part of an input image "confused" the network and led it to make
an incorrect prediction.

You can use class activation mapping to identify bias in the training set and increase model accuracy.
If you discover that the network bases predictions on the wrong features, then you can make the
network more robust by collecting better data. For example, suppose that you train a network to
distinguish images of cats and dogs. The network has high accuracy on the training set, but performs
poorly on real-world examples. By using class activation mapping on the training examples, you
discover that the network is basing predictions not on the cats and dogs in the images, but on the
backgrounds. You then realize that all your cat pictures have red backgrounds, all your dog pictures
have green backgrounds, and that it is the color of the background that the network learned during
training. You can then collect new data that does not have this bias.

This example class activation map shows which regions of the input image contribute the most to the
predicted class mouse. Red regions contribute the most.

5 Deep Learning Tuning and Visualization

5-220



Load Pretrained Network and Webcam

Load a pretrained convolutional neural network for image classification. SqueezeNet, GoogLeNet,
ResNet-18, and MobileNet-v2 are relatively fast networks. SqueezeNet is the fastest network and its
class activation map has four times higher resolution than the maps of the other networks. You
cannot use class activation mapping with networks that have multiple fully connected layers at the
end of the network, such as AlexNet, VGG-16, and VGG-19.

netName = ;
net = eval(netName);

Create a webcam object and connect to your webcam.

camera = webcam;

Extract the image input size and the output classes of the network. The activationLayerName
helper function, defined at the end of this example, returns the name of the layer to extract the
activations from. This layer is the ReLU layer that follows the last convolutional layer of the network.

 Investigate Network Predictions Using Class Activation Mapping

5-221



inputSize = net.Layers(1).InputSize(1:2);
classes = net.Layers(end).Classes;
layerName = activationLayerName(netName);

Display Class Activation Maps

Create a figure and perform class activation mapping in a loop. To terminate execution of the loop,
close the figure.

h = figure('Units','normalized','Position',[0.05 0.05 0.9 0.8],'Visible','on');

while ishandle(h)

Take a snapshot using the webcam. Resize the image so that the length of its shortest side (in this
case, the image height) equals the image input size of the network. As you resize, preserve the aspect
ratio of the image. You can also resize the image to a larger or smaller size. Making the image larger
increases the resolution of the final class activation map, but can lead to less accurate overall
predictions.

Compute the activations of the resized image in the ReLU layer that follows the last convolutional
layer of the network.

    im = snapshot(camera);
    imResized = imresize(im,[inputSize(1), NaN]);
    imageActivations = activations(net,imResized,layerName);

The class activation map for a specific class is the activation map of the ReLU layer that follows the
final convolutional layer, weighted by how much each activation contributes to the final score of that
class. Those weights equal the weights of the final fully connected layer of the network for that class.
SqueezeNet does not have a final fully connected layer. Instead, the output of the ReLU layer that
follows the last convolutional layer is already the class activation map.

You can generate a class activation map for any output class. For example, if the network makes an
incorrect classification, you can compare the class activation maps for the true and predicted classes.
For this example, generate the class activation map for the predicted class with the highest score.

    scores = squeeze(mean(imageActivations,[1 2]));
    
    if netName ~= "squeezenet"
        fcWeights = net.Layers(end-2).Weights;
        fcBias = net.Layers(end-2).Bias;
        scores =  fcWeights*scores + fcBias;
        
        [~,classIds] = maxk(scores,3);
        
        weightVector = shiftdim(fcWeights(classIds(1),:),-1);
        classActivationMap = sum(imageActivations.*weightVector,3);
    else
        [~,classIds] = maxk(scores,3);
        classActivationMap = imageActivations(:,:,classIds(1));
    end
    

Calculate the top class labels and the final normalized class scores.

    scores = exp(scores)/sum(exp(scores));     
    maxScores = scores(classIds);
    labels = classes(classIds);

5 Deep Learning Tuning and Visualization

5-222



Plot the class activation map. Display the original image in the first subplot. In the second subplot,
use the CAMshow helper function, defined at the end of this example, to display the class activation
map on top of a darkened grayscale version of the original image. Display the top three predicted
labels with their predicted scores.

    subplot(1,2,1)
    imshow(im)
    
    subplot(1,2,2)
    CAMshow(im,classActivationMap)
    title(string(labels) + ", " + string(maxScores));
    
    drawnow
    
end

Clear the webcam object.

clear camera

Example Maps

The network correctly identifies the object in this image as a loafer (a type of shoe). The class
activation map in the image to the right shows the contribution of each region of the input image to
the predicted class Loafer. Red regions contribute the most. The network bases its classification on
the entire shoe, but the strongest input comes from the red areas – that is, the tip and the opening of
the shoe.

The network classifies this image as a mouse. As the class activation map shows, the prediction is
based not only on the mouse in the image, but also the keyboard. Because the training set likely has
many images of mice next to keyboards, the network predicts that images containing keyboards are
more likely to contain mice.

 Investigate Network Predictions Using Class Activation Mapping

5-223



The network classifies this image of a coffee cup as a buckle. As the class activation map shows, the
network misclassifies the image because the image contains too many confounding objects. The
network detects and focuses on the watch wristband, not the coffee cup.

Helper Functions

CAMshow(im,CAM) overlays the class activation map CAM on a darkened, grayscale version of the
image im. The function resizes the class activation map to the size of im, normalizes it, thresholds it
from below, and visualizes it using a jet colormap.

function CAMshow(im,CAM)
imSize = size(im);
CAM = imresize(CAM,imSize(1:2));
CAM = normalizeImage(CAM);
CAM(CAM<0.2) = 0;
cmap = jet(255).*linspace(0,1,255)';
CAM = ind2rgb(uint8(CAM*255),cmap)*255;

combinedImage = double(rgb2gray(im))/2 + CAM;
combinedImage = normalizeImage(combinedImage)*255;

5 Deep Learning Tuning and Visualization

5-224



imshow(uint8(combinedImage));
end

function N = normalizeImage(I)
minimum = min(I(:));
maximum = max(I(:));
N = (I-minimum)/(maximum-minimum);
end

function layerName = activationLayerName(netName)

if netName == "squeezenet"
    layerName = 'relu_conv10';
elseif netName == "googlenet"
    layerName = 'inception_5b-output';
elseif netName == "resnet18"
    layerName = 'res5b_relu';
elseif netName == "mobilenetv2"
    layerName = 'out_relu';
end

end

References
[1] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning deep

features for discriminative localization." In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2921-2929. 2016.

See Also
activations | squeezenet | occlusionSensitivity | gradCAM | imageLIME

Related Examples
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Deep Learning Visualization Methods” on page 5-283
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Understand Network Predictions Using LIME” on page 5-57
• “Understand Network Predictions Using Occlusion” on page 5-39

 Investigate Network Predictions Using Class Activation Mapping

5-225



View Network Behavior Using tsne

This example shows how to use the tsne function to view activations in a trained network. This view
can help you understand how a network works.

The tsne (Statistics and Machine Learning Toolbox) function in Statistics and Machine Learning
Toolbox™ implements t-distributed stochastic neighbor embedding (t-SNE) [1]. This technique maps
high-dimensional data (such as network activations in a layer) to two dimensions. The technique uses
a nonlinear map that attempts to preserve distances. By using t-SNE to visualize the network
activations, you can gain an understanding of how the network responds.

You can use t-SNE to visualize how deep learning networks change the representation of input data
as it passes through the network layers. You can also use t-SNE to find issues with the input data and
to understand which observations the network classifies incorrectly.

For example, t-SNE can reduce the multidimensional activations of a softmax layer to a 2-D
representation with a similar structure. Tight clusters in the resulting t-SNE plot correspond to
classes that the network usually classifies correctly. The visualization allows you to find points that
appear in the wrong cluster, indicating an observation that the network classifies incorrectly. The
observation might be labeled incorrectly, or the network might predict that an observation is an
instance of a different class because it appears similar to other observations from that class. Note
that the t-SNE reduction of the softmax activations uses only those activations, not the underlying
observations.

Download Data Set

This example uses the Example Food Images data set, which contains 978 photographs of food in nine
classes and is approximately 77 MB in size. Download the data set into your temporary directory by
calling the downloadExampleFoodImagesData helper function; the code for this helper function
appears at the end of this example on page 5-236.

dataDir = fullfile(tempdir, "ExampleFoodImageDataset");
url = "https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip";

if ~exist(dataDir, "dir")
    mkdir(dataDir);
end

downloadExampleFoodImagesData(url,dataDir);

Downloading MathWorks Example Food Image dataset...
This can take several minutes to download...
Download finished...
Unzipping file...
Unzipping finished...
Done.

Train Network to Classify Food Images

Modify the SqueezeNet pretrained network to classify images of food from the data set. Replace the
final convolutional layer, which has 1000 filters for the 1000 classes of ImageNet, with a new
convolutional layer that has only nine filters. Each filter corresponds to a single type of food.

lgraph = layerGraph(squeezenet());
lgraph = lgraph.replaceLayer("ClassificationLayer_predictions",...

5 Deep Learning Tuning and Visualization

5-226



    classificationLayer("Name", "ClassificationLayer_predictions"));

newConv =  convolution2dLayer([14 14], 9, "Name", "conv", "Padding", "same");
lgraph = lgraph.replaceLayer("conv10", newConv);

Create an imageDatastore containing paths to the image data. Split the datastore into training and
validation sets, using 65% of the data for training and the rest for validation. Because the data set is
fairly small, overfitting is a significant issue. To minimize overfitting, augment the training set with
random flips and scaling.

imds = imageDatastore(dataDir, ...
    "IncludeSubfolders", true, "LabelSource", "foldernames");

aug = imageDataAugmenter("RandXReflection", true, ...
    "RandYReflection", true, ...
    "RandXScale", [0.8 1.2], ...
    "RandYScale", [0.8 1.2]);

trainingFraction = 0.65;
[trainImds,valImds] = splitEachLabel(imds, trainingFraction);

augImdsTrain = augmentedImageDatastore([227 227], trainImds, ...
    'DataAugmentation', aug);
augImdsVal = augmentedImageDatastore([227 227], valImds);

Create training options and train the network. SqueezeNet is a small network that is quick to train.
You can train on a GPU or a CPU; this example trains on a CPU.

opts = trainingOptions("adam", ...
    "InitialLearnRate", 1e-4, ...
    "MaxEpochs", 30, ...
    "ValidationData", augImdsVal, ...
    "Verbose", false,...
    "Plots", "training-progress", ...
    "ExecutionEnvironment","cpu",...
    "MiniBatchSize",128);
rng default
net = trainNetwork(augImdsTrain, lgraph, opts);

 View Network Behavior Using tsne

5-227



Classify Validation Data

Use the network to classify images in the validation set. To verify that the network is reasonably
accurate at classifying new data, plot a confusion matrix of the true and predicted labels.

figure();
YPred = classify(net,augImdsVal);
confusionchart(valImds.Labels,YPred,'ColumnSummary',"column-normalized")

5 Deep Learning Tuning and Visualization

5-228



The network classifies several images well. The network appears to have trouble with sushi images,
classifying many as sushi but some as pizza or hamburger. The network does not classify any images
into the hot dog class.

Compute Activations for Several Layers

To continue to analyze the network performance, compute activations for every observation in the
data set at an early max pooling layer, the final convolutional layer, and the final softmax layer. Output
the activations as an NxM matrix, where N is the number of observations and M is the number of
dimensions of the activation. M is the product of spatial and channel dimensions. Each row is an
observation, and each column is a dimension. At the softmax layer M = 9, because the food data set
has nine classes. Each row in the matrix contains nine elements, corresponding to the probabilities
that an observation belongs to each of the nine classes of food.

earlyLayerName = "pool1";
finalConvLayerName = "conv";
softmaxLayerName = "prob";
pool1Activations = activations(net,...
    augImdsVal,earlyLayerName,"OutputAs","rows");
finalConvActivations = activations(net,...
    augImdsVal,finalConvLayerName,"OutputAs","rows");
softmaxActivations = activations(net,...
    augImdsVal,softmaxLayerName,"OutputAs","rows");

 View Network Behavior Using tsne

5-229



Ambiguity of Classifications

You can use the softmax activations to calculate the image classifications that are most likely to be
incorrect. Define the ambiguity of a classification as the ratio of the second-largest probability to the
largest probability. The ambiguity of a classification is between zero (nearly certain classification) and
1 (nearly as likely to be classified to the most likely class as the second class). An ambiguity of near 1
means the network is unsure of the class in which a particular image belongs. This uncertainty might
be caused by two classes whose observations appear so similar to the network that it cannot learn the
differences between them. Or, a high ambiguity can occur because a particular observation contains
elements of more than one class, so the network cannot decide which classification is correct. Note
that low ambiguity does not necessarily imply correct classification; even if the network has a high
probability for a class, the classification can still be incorrect.

[R,RI] = maxk(softmaxActivations,2,2);
ambiguity = R(:,2)./R(:,1);

Find the most ambiguous images.

[ambiguity,ambiguityIdx] = sort(ambiguity,"descend");

View the most probable classes of the ambiguous images and the true classes.

classList = unique(valImds.Labels);
top10Idx = ambiguityIdx(1:10);
top10Ambiguity = ambiguity(1:10);
mostLikely = classList(RI(ambiguityIdx,1));
secondLikely = classList(RI(ambiguityIdx,2));
table(top10Idx,top10Ambiguity,mostLikely(1:10),secondLikely(1:10),valImds.Labels(ambiguityIdx(1:10)),...
    'VariableNames',["Image #","Ambiguity","Likeliest","Second","True Class"])

ans=10×5 table
    Image #    Ambiguity    Likeliest       Second        True Class 
    _______    _________    _________    ____________    ____________

       94        0.9879     hamburger    pizza           hamburger   
      175       0.96311     hamburger    french_fries    hot_dog     
      179       0.94939     pizza        hamburger       hot_dog     
      337       0.93426     sushi        sashimi         sushi       
      256       0.92972     sushi        pizza           pizza       
      297       0.91776     sushi        sashimi         sashimi     
      283       0.80407     pizza        sushi           pizza       
       27       0.80278     hamburger    pizza           french_fries
      302       0.79283     sashimi      sushi           sushi       
      201       0.76034     pizza        greek_salad     pizza       

The network predicts that image 27 is most likely hamburger or pizza. However, this image is actually
French fries. View the image to see why this misclassification might occur.

v = 27;
figure();
imshow(valImds.Files{v});
title(sprintf("Observation: %i\n" + ...
    "Actual: %s. Predicted: %s", v, ...
    string(valImds.Labels(v)), string(YPred(v))), ...
    'Interpreter', 'none');

5 Deep Learning Tuning and Visualization

5-230



The image contains several distinct regions, some of which might confuse the network.

Compute 2-D Representations of Data Using t-SNE

Calculate a low-dimensional representation of the network data for an early max pooling layer, the
final convolutional layer, and the final softmax layer. Use the tsne function to reduce the
dimensionality of the activation data from M to 2. The larger the dimensionality of the activations, the
longer the t-SNE computation takes. Therefore, computation for the early max pooling layer, where
activations have 200,704 dimensions, takes longer than for the final softmax layer. Set the random
seed for reproducibility of the t-SNE result.

rng default
pool1tsne = tsne(pool1Activations);
finalConvtsne = tsne(finalConvActivations);
softmaxtsne = tsne(softmaxActivations);

Compare Network Behavior for Early and Later Layers

The t-SNE technique tries to preserve distances so that points near each other in the high-
dimensional representation are also near each other in the low-dimensional representation. As shown
in the confusion matrix, the network is effective at classifying into different classes. Therefore,
images that are semantically similar (or of the same type), such as caesar salad and caprese salad,

 View Network Behavior Using tsne

5-231



are near each other in the softmax activations space. t-SNE captures this proximity in a 2-D
representation that is easier to understand and plot than the nine-dimensional softmax scores.

Early layers tend to operate on low-level features such as edges and colors. Deeper layers have
learned high-level features with more semantic meaning, such as the difference between a pizza and
a hot dog. Therefore, activations from early layers do not show any clustering by class. Two images
that are similar pixelwise (for example, they both contain a lot of green pixels) are near each other in
the high-dimensional space of the activations, regardless of their semantic contents. Activations from
later layers tend to cluster points from the same class together. This behavior is most pronounced at
the softmax layer and is preserved in the two-dimensional t-SNE representation.

Plot the t-SNE data for the early max pooling layer, the final convolutional layer, and the final softmax
layer using the gscatter function. Observe that the early max pooling activations do not exhibit any
clustering between images of the same class. Activations of the final convolutional layer are clustered
by class to some extent, but less so than the softmax activations. Different colors correspond to
observations of different classes.

doLegend = 'off';
markerSize = 7;
figure;

subplot(1,3,1);
gscatter(pool1tsne(:,1),pool1tsne(:,2),valImds.Labels, ...
    [],'.',markerSize,doLegend);
title("Max pooling activations");

subplot(1,3,2);
gscatter(finalConvtsne(:,1),finalConvtsne(:,2),valImds.Labels, ...
    [],'.',markerSize,doLegend);
title("Final conv activations");

subplot(1,3,3);
gscatter(softmaxtsne(:,1),softmaxtsne(:,2),valImds.Labels, ...
    [],'.',markerSize,doLegend);
title("Softmax activations");

5 Deep Learning Tuning and Visualization

5-232



Explore Observations in t-SNE Plot

Create a larger plot of the softmax activations, including a legend labeling each class. From the t-
SNE plot, you can understand more about the structure of the posterior probability distribution.

For example, the plot shows a distinct, separate cluster of French fries observations, whereas the
sashimi and sushi clusters are not resolved very well. Similar to the confusion matrix, the plot
suggests that the network is more accurate at predicting into the French fries class.

numClasses = length(classList);
colors = lines(numClasses);
h = figure;
gscatter(softmaxtsne(:,1),softmaxtsne(:,2),valImds.Labels,colors);

l = legend;
l.Interpreter = "none";
l.Location = "bestoutside";

 View Network Behavior Using tsne

5-233



You can also use t-SNE to determine which images are misclassified by the network and why.
Incorrect observations are often isolated points of the wrong color for their surrounding cluster. For
example, a misclassified image of hamburger is very near the French fries region (the green dot
nearest the center of the orange cluster). This dot is observation 99. Circle this observation on the t-
SNE plot, and display the image with imshow.

obs = ;
figure(h)
hold on;
hs = scatter(softmaxtsne(obs, 1), softmaxtsne(obs, 2), ...
    'black','LineWidth',1.5);
l.String{end} = 'Hamburger';
hold off;
figure();
imshow(valImds.Files{obs});
title(sprintf("Observation: %i\n" + ...
    "Actual: %s. Predicted: %s", obs, ...
    string(valImds.Labels(obs)), string(YPred(obs))), ...
    'Interpreter', 'none');

5 Deep Learning Tuning and Visualization

5-234



If an image contains multiple types of food, the network can get confused. In this case, the network
classifies the image as French fries even though the food in the foreground is hamburger. The French
fries visible at the edge of the image cause the confusion.

Similarly, the ambiguous image 27 (shown earlier in the example) has multiple regions. Examine the
t-SNE plot highlighting the ambiguous aspect of this French fries image.

obs = ;
figure(h)
hold on;
h = scatter(softmaxtsne(obs, 1), softmaxtsne(obs, 2), ...
    'k','d','LineWidth',1.5);
l.String{end} = 'French Fries';
hold off;

 View Network Behavior Using tsne

5-235



The image is not in a well-defined cluster in the plot, which indicates that the classification is likely
incorrect. The image is far from the French fries cluster, and close to the hamburger cluster.

The why of a misclassification must be provided by other information, typically a hypothesis based on
the contents of the image. You can then test the hypothesis using other data, or using tools that
indicate which spatial regions of an image are important to network classification. For examples, see
occlusionSensitivity and “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on
page 5-22.

References

[1] van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing Data using t-SNE." Journal of Machine
Learning Research 9, 2008, pp. 2579–2605.

Helper Function

function downloadExampleFoodImagesData(url, dataDir)
% Download the Example Food Image data set, containing 978 images of
% different types of food split into 9 classes.

% Copyright 2019 The MathWorks, Inc.

fileName = "ExampleFoodImageDataset.zip";
fileFullPath = fullfile(dataDir, fileName);

5 Deep Learning Tuning and Visualization

5-236



% Download the .zip file into a temporary directory.
if ~exist(fileFullPath, "file")
    fprintf("Downloading MathWorks Example Food Image dataset...\n");
    fprintf("This can take several minutes to download...\n");
    websave(fileFullPath, url);
    fprintf("Download finished...\n");
else
    fprintf("Skipping download, file already exists...\n");
end

% Unzip the file.
%
% Check if the file has already been unzipped by checking for the presence
% of one of the class directories.
exampleFolderFullPath = fullfile(dataDir, "pizza");
if ~exist(exampleFolderFullPath, "dir")
    fprintf("Unzipping file...\n");
    unzip(fileFullPath, dataDir);
    fprintf("Unzipping finished...\n");
else
    fprintf("Skipping unzipping, file already unzipped...\n");
end
fprintf("Done.\n");

end

See Also
squeezenet | layerGraph | trainingOptions | trainNetwork | occlusionSensitivity |
classify | activations | tsne

More About
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Investigate Network Predictions Using Class Activation Mapping” on page 5-220
• “Visualize Features of a Convolutional Neural Network” on page 5-253
• “Visualize Activations of a Convolutional Neural Network” on page 5-238
• “Deep Learning Visualization Methods” on page 5-283

 View Network Behavior Using tsne

5-237



Visualize Activations of a Convolutional Neural Network

This example shows how to feed an image to a convolutional neural network and display the
activations of different layers of the network. Examine the activations and discover which features
the network learns by comparing areas of activation with the original image. Find out that channels
in earlier layers learn simple features like color and edges, while channels in the deeper layers learn
complex features like eyes. Identifying features in this way can help you understand what the
network has learned.

The example requires Deep Learning Toolbox™ and the Image Processing Toolbox™.

Load Pretrained Network and Data

Load a pretrained SqueezeNet network.

net = squeezenet;

Read and show an image. Save its size for future use.

im = imread('face.jpg');
imshow(im)

5 Deep Learning Tuning and Visualization

5-238



imgSize = size(im);
imgSize = imgSize(1:2);

View Network Architecture

Analyze the network to see which layers you can look at. The convolutional layers perform
convolutions with learnable parameters. The network learns to identify useful features, often with
one feature per channel. Observe that the first convolutional layer has 64 channels.

analyzeNetwork(net)

The Image Input layer specifies the input size. You can resize the image before passing it through the
network, but the network also can process larger images. If you feed the network larger images, the
activations also become larger. However, since the network is trained on images of size 227-by-227, it
is not trained to recognize objects or features larger than that size.

Show Activations of First Convolutional Layer

Investigate features by observing which areas in the convolutional layers activate on an image and
comparing with the corresponding areas in the original images. Each layer of a convolutional neural
network consists of many 2-D arrays called channels. Pass the image through the network and
examine the output activations of the conv1 layer.

act1 = activations(net,im,'conv1');

The activations are returned as a 3-D array, with the third dimension indexing the channel on the
conv1 layer. To show these activations using the imtile function, reshape the array to 4-D. The third
dimension in the input to imtile represents the image color. Set the third dimension to have size 1
because the activations do not have color. The fourth dimension indexes the channel.

 Visualize Activations of a Convolutional Neural Network

5-239



sz = size(act1);
act1 = reshape(act1,[sz(1) sz(2) 1 sz(3)]);

Now you can show the activations. Each activation can take any value, so normalize the output using
mat2gray. All activations are scaled so that the minimum activation is 0 and the maximum is 1.
Display the 64 images on an 8-by-8 grid, one for each channel in the layer.

I = imtile(mat2gray(act1),'GridSize',[8 8]);
imshow(I)

5 Deep Learning Tuning and Visualization

5-240



Investigate the Activations in Specific Channels

Each tile in the grid of activations is the output of a channel in the conv1 layer. White pixels
represent strong positive activations and black pixels represent strong negative activations. A
channel that is mostly gray does not activate as strongly on the input image. The position of a pixel in
the activation of a channel corresponds to the same position in the original image. A white pixel at
some location in a channel indicates that the channel is strongly activated at that position.

Resize the activations in channel 22 to have the same size as the original image and display the
activations.

act1ch22 = act1(:,:,:,22);
act1ch22 = mat2gray(act1ch22);
act1ch22 = imresize(act1ch22,imgSize);

I = imtile({im,act1ch22});
imshow(I)

You can see that this channel activates on red pixels, because the whiter pixels in the channel
correspond to red areas in the original image.

Find the Strongest Activation Channel

You also can try to find interesting channels by programmatically investigating channels with large
activations. Find the channel with the largest activation using the max function, resize, and show the
activations.

[maxValue,maxValueIndex] = max(max(max(act1)));
act1chMax = act1(:,:,:,maxValueIndex);
act1chMax = mat2gray(act1chMax);
act1chMax = imresize(act1chMax,imgSize);

 Visualize Activations of a Convolutional Neural Network

5-241



I = imtile({im,act1chMax});
imshow(I)

Compare to the original image and notice that this channel activates on edges. It activates positively
on light left/dark right edges, and negatively on dark left/light right edges.

Investigate a Deeper Layer

Most convolutional neural networks learn to detect features like color and edges in their first
convolutional layer. In deeper convolutional layers, the network learns to detect more complicated
features. Later layers build up their features by combining features of earlier layers. Investigate the
fire6-squeeze1x1 layer in the same way as the conv1 layer. Calculate, reshape, and show the
activations in a grid.

act6 = activations(net,im,'fire6-squeeze1x1');
sz = size(act6);
act6 = reshape(act6,[sz(1) sz(2) 1 sz(3)]);

I = imtile(imresize(mat2gray(act6),[64 64]),'GridSize',[6 8]);
imshow(I)

5 Deep Learning Tuning and Visualization

5-242



There are too many images to investigate in detail, so focus on some of the more interesting ones.
Display the strongest activation in the fire6-squeeze1x1 layer.

[maxValue6,maxValueIndex6] = max(max(max(act6)));
act6chMax = act6(:,:,:,maxValueIndex6);
imshow(imresize(mat2gray(act6chMax),imgSize))

 Visualize Activations of a Convolutional Neural Network

5-243



In this case, the maximum activation channel is not as interesting for detailed features as some
others, and shows strong negative (dark) as well as positive (light) activation. This channel is possibly
focusing on faces.

In the grid of all channels, there are channels that might be activating on eyes. Investigate channels
14 and 47 further.

I = imtile(imresize(mat2gray(act6(:,:,:,[14 47])),imgSize));
imshow(I)

5 Deep Learning Tuning and Visualization

5-244



Many of the channels contain areas of activation that are both light and dark. These are positive and
negative activations, respectively. However, only the positive activations are used because of the
rectified linear unit (ReLU) that follows the fire6-squeeze1x1 layer. To investigate only positive
activations, repeat the analysis to visualize the activations of the fire6-relu_squeeze1x1 layer.

act6relu = activations(net,im,'fire6-relu_squeeze1x1');
sz = size(act6relu);
act6relu = reshape(act6relu,[sz(1) sz(2) 1 sz(3)]);

I = imtile(imresize(mat2gray(act6relu(:,:,:,[14 47])),imgSize));
imshow(I)

 Visualize Activations of a Convolutional Neural Network

5-245



Compared to the activations of the fire6-squeeze1x1 layer, the activations of the fire6-
relu_squeeze1x1 layer clearly pinpoint areas of the image that have strong facial features.

Test Whether a Channel Recognizes Eyes

Check whether channels 14 and 47 of the fire6-relu_squeeze1x1 layer activate on eyes. Input a
new image with one closed eye to the network and compare the resulting activations with the
activations of the original image.

Read and show the image with one closed eye and compute the activations of the fire6-
relu_squeeze1x1 layer.

imClosed = imread('face-eye-closed.jpg');
imshow(imClosed)

5 Deep Learning Tuning and Visualization

5-246



act6Closed = activations(net,imClosed,'fire6-relu_squeeze1x1');
sz = size(act6Closed);
act6Closed = reshape(act6Closed,[sz(1),sz(2),1,sz(3)]);

Plot the images and activations in one figure.

channelsClosed = repmat(imresize(mat2gray(act6Closed(:,:,:,[14 47])),imgSize),[1 1 3]);
channelsOpen = repmat(imresize(mat2gray(act6relu(:,:,:,[14 47])),imgSize),[1 1 3]);
I = imtile(cat(4,im,channelsOpen*255,imClosed,channelsClosed*255));
imshow(I)
title('Input Image, Channel 14, Channel 47');

 Visualize Activations of a Convolutional Neural Network

5-247



You can see from the activations that both channels 14 and 47 activate on individual eyes, and to
some degree also on the area around the mouth.

The network has never been told to learn about eyes, but it has learned that eyes are a useful feature
to distinguish between classes of images. Previous machine learning approaches often manually
designed features specific to the problem, but these deep convolutional networks can learn useful
features for themselves. For example, learning to identify eyes could help the network distinguish
between a leopard and a leopard print rug.

See Also
squeezenet | activations | deepDreamImage

Related Examples
• “Deep Learning in MATLAB” on page 1-2
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Dream Images Using GoogLeNet” on page 5-16
• “Visualize Features of a Convolutional Neural Network” on page 5-253
• “Deep Learning Visualization Methods” on page 5-283

5 Deep Learning Tuning and Visualization

5-248



Visualize Activations of LSTM Network

This example shows how to investigate and visualize the features learned by LSTM networks by
extracting the activations.

Load pretrained network. JapaneseVowelsNet is a pretrained LSTM network trained on the
Japanese Vowels dataset as described in [1] and [2]. It was trained on the sequences sorted by
sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Visualize the first time series in a plot. Each line corresponds to a feature.

X = XTest{1};

figure
plot(XTest{1}')
xlabel("Time Step")
title("Test Observation 1")
numFeatures = size(XTest{1},1);
legend("Feature " + string(1:numFeatures),'Location','northeastoutside')

 Visualize Activations of LSTM Network

5-249



For each time step of the sequences, get the activations output by the LSTM layer (layer 2) for that
time step and update the network state.

sequenceLength = size(X,2);
idxLayer = 2;
outputSize = net.Layers(idxLayer).NumHiddenUnits;

for i = 1:sequenceLength
    features(:,i) = activations(net,X(:,i),idxLayer);
    [net, YPred(i)] = classifyAndUpdateState(net,X(:,i));
end

Visualize the first 10 hidden units using a heatmap.

figure
heatmap(features(1:10,:));
xlabel("Time Step")
ylabel("Hidden Unit")
title("LSTM Activations")

5 Deep Learning Tuning and Visualization

5-250



The heatmap shows how strongly each hidden unit activates and highlights how the activations
change over time.

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

See Also
trainNetwork | trainingOptions | lstmLayer | bilstmLayer | sequenceInputLayer |
activations

Related Examples
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53

 Visualize Activations of LSTM Network

5-251



• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

5 Deep Learning Tuning and Visualization

5-252



Visualize Features of a Convolutional Neural Network

This example shows how to visualize the features learned by convolutional neural networks.

Convolutional neural networks use features to classify images. The network learns these features
itself during the training process. What the network learns during training is sometimes unclear.
However, you can use the deepDreamImage function to visualize the features learned.

The convolutional layers output a 3D activation volume, where slices along the third dimension
correspond to a single filter applied to the layer input. The channels output by fully connected layers
at the end of the network correspond to high-level combinations of the features learned by earlier
layers.

You can visualize what the learned features look like by using deepDreamImage to generate images
that strongly activate a particular channel of the network layers.

The example requires Deep Learning Toolbox™ and Deep Learning Toolbox Model for GoogLeNet
Network support package.

Load Pretrained Network

Load a pretrained GoogLeNet network.

net = googlenet;

Visualize Early Convolutional Layers

There are multiple convolutional layers in the GoogLeNet network. The convolutional layers towards
the beginning of the network have a small receptive field size and learn small, low-level features. The
layers towards the end of the network have larger receptive field sizes and learn larger features.

Using analyzeNetwork, view the network architecture and locate the convolutional layers.

analyzeNetwork(net)

 Visualize Features of a Convolutional Neural Network

5-253



Features on Convolutional Layer 1

Set layer to be the first convolutional layer. This layer is the second layer in the network and is
named 'conv1-7x7_s2'.

layer = 2;
name = net.Layers(layer).Name

name = 
'conv1-7x7_s2'

Visualize the first 36 features learned by this layer using deepDreamImage by setting channels to
be the vector of indices 1:36. Set 'PyramidLevels' to 1 so that the images are not scaled. To
display the images together, you can use imtile.

deepDreamImage uses a compatible GPU, by default, if available. Otherwise it uses the CPU. Using a
GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

channels = 1:36;
I = deepDreamImage(net,name,channels, ...
    'PyramidLevels',1);

|==============================================|
|  Iteration  |  Activation  |  Pyramid Level  |
|             |   Strength   |                 |
|==============================================|
|           1 |         0.26 |               1 |
|           2 |         6.99 |               1 |
|           3 |        14.24 |               1 |

5 Deep Learning Tuning and Visualization

5-254



|           4 |        21.49 |               1 |
|           5 |        28.74 |               1 |
|           6 |        35.99 |               1 |
|           7 |        43.24 |               1 |
|           8 |        50.50 |               1 |
|           9 |        57.75 |               1 |
|          10 |        65.00 |               1 |
|==============================================|

figure
I = imtile(I,'ThumbnailSize',[64 64]);
imshow(I)
title(['Layer ',name,' Features'],'Interpreter','none')

These images mostly contain edges and colors, which indicates that the filters at layer
'conv1-7x7_s2' are edge detectors and color filters.

Features on Convolutional Layer 2

The second convolutional layer is named 'conv2-3x3_reduce', which corresponds to layer 6.
Visualize the first 36 features learned by this layer by setting channels to be the vector of indices
1:36.

 Visualize Features of a Convolutional Neural Network

5-255



To suppress detailed output on the optimization process, set 'Verbose' to 'false' in the call to
deepDreamImage.

layer = 6;
name = net.Layers(layer).Name

name = 
'conv2-3x3_reduce'

channels = 1:36;
I = deepDreamImage(net,name,channels, ...
    'Verbose',false, ...
    'PyramidLevels',1);
figure
I = imtile(I,'ThumbnailSize',[64 64]);
imshow(I)
name = net.Layers(layer).Name;
title(['Layer ',name,' Features'],'Interpreter','none')

Filters for this layer detect more complex patterns than the first convolutional layer.

Visualize Deeper Convolutional Layers

The deeper layers learn high-level combinations of features learned by the earlier layers.

5 Deep Learning Tuning and Visualization

5-256



Increasing the number of pyramid levels and iterations per pyramid level can produce more detailed
images at the expense of additional computation. You can increase the number of iterations using the
'NumIterations' option and increase the number of pyramid levels using the 'PyramidLevels'
option.

layer = 97;
name = net.Layers(layer).Name

name = 
'inception_4e-1x1'

channels = 1:6;
I = deepDreamImage(net,name,channels, ...
    'Verbose',false, ...
    "NumIterations",20, ...
    'PyramidLevels',2);
figure
I = imtile(I,'ThumbnailSize',[250 250]);
imshow(I)
name = net.Layers(layer).Name;
title(['Layer ',name,' Features'],'Interpreter','none')

Notice that the layers which are deeper into the network yield more detailed filters which have
learned complex patterns and textures.

 Visualize Features of a Convolutional Neural Network

5-257



Visualize Fully Connected Layer

To produce images that resemble each class the most closely, select the fully connected layer, and set
channels to be the indices of the classes.

Select the fully connected layer (layer 142).

layer = 142;
name = net.Layers(layer).Name

name = 
'loss3-classifier'

Select the classes you want to visualize by setting channels to be the indices of those class names.

channels = [114 293 341 484 563 950];

The classes are stored in the Classes property of the output layer (the last layer). You can view the
names of the selected classes by selecting the entries in channels.

net.Layers(end).Classes(channels)

ans = 6×1 categorical
     snail 
     tiger 
     zebra 
     castle 
     fountain 
     strawberry 

Generate detailed images that strongly activate these classes. Set 'NumIterations' to 100 in the
call to deepDreamImage to produce more detailed images. The images generated from the fully
connected layer correspond to the image classes.

I = deepDreamImage(net,name,channels, ...
    'Verbose',false, ...
    'NumIterations',100, ...
    'PyramidLevels',2);
figure
I = imtile(I,'ThumbnailSize',[250 250]);
imshow(I)
name = net.Layers(layer).Name;
title(['Layer ',name,' Features'])

5 Deep Learning Tuning and Visualization

5-258



The images generated strongly activate the selected classes. The image generated for the ‘zebra’
class contain distinct zebra stripes, whilst the image generated for the ‘castle’ class contains turrets
and windows.

See Also
googlenet | deepDreamImage | occlusionSensitivity | gradCAM | imageLIME

Related Examples
• “Deep Learning in MATLAB” on page 1-2
• “Deep Dream Images Using GoogLeNet” on page 5-16
• “Deep Learning Visualization Methods” on page 5-283
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Visualize Activations of a Convolutional Neural Network” on page 5-238

 Visualize Features of a Convolutional Neural Network

5-259



Visualize Image Classifications Using Maximal and Minimal
Activating Images

This example shows how to use a data set to find out what activates the channels of a deep neural
network. This allows you to understand how a neural network works and diagnose potential issues
with a training data set.

This example covers a number of simple visualization techniques, using a GoogLeNet transfer-learned
on a food data set. By looking at images that maximally or minimally activate the classifier, you can
discover why a neural network gets classifications wrong.

Load and Preprocess the Data

Load the images as an image datastore. This small data set contains a total of 978 observations with
9 classes of food.

Split this data into a training, validation, and test sets to prepare for transfer learning using
GoogLeNet. Display a selection of images from the data set.

rng default
dataDir = fullfile(tempdir,"Food Dataset");
url = "https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip";

if ~exist(dataDir,"dir")
    mkdir(dataDir);
end

downloadExampleFoodImagesData(url,dataDir);

Downloading MathWorks Example Food Image dataset...
This can take several minutes to download...
Download finished...
Unzipping file...
Unzipping finished...
Done.

imds = imageDatastore(dataDir, ...
    "IncludeSubfolders",true,"LabelSource","foldernames");
[imdsTrain,imdsValidation,imdsTest] = splitEachLabel(imds,0.6,0.2);

rnd = randperm(numel(imds.Files),9);
for i = 1:numel(rnd)
subplot(3,3,i)
imshow(imread(imds.Files{rnd(i)}))
label = imds.Labels(rnd(i));
title(label,"Interpreter","none")
end

5 Deep Learning Tuning and Visualization

5-260



Train Network to Classify Food Images

Use the pretrained GoogLeNet network and train it again to classify the 9 types of food. If you don't
have the Deep Learning Toolbox™ Model for GoogLeNet Network support package installed, then the
software provides a download link.

To try a different pretrained network, open this example in MATLAB® and select a different network,
such as squeezenet, a network that is even faster than googlenet. For a list of all available
networks, see “Pretrained Deep Neural Networks” on page 1-11.

net = googlenet;

The first element of the Layers property of the network is the image input layer. This layer requires
input images of size 224-by-224-by-3, where 3 is the number of color channels.

inputSize = net.Layers(1).InputSize;

Network Architecture

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'loss3-classifier' and
'output' in GoogLeNet, contain information on how to combine the features that the network
extracts into class probabilities, a loss value, and predicted labels. To train a pretrained network to
classify new images, replace these two layers with new layers adapted to the new data set.

Extract the layer graph from the trained network.

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-261



lgraph = layerGraph(net);

In most networks, the last layer with learnable weights is a fully connected layer. Replace this fully
connected layer with a new fully connected layer with the number of outputs equal to the number of
classes in the new data set (9, in this example).

numClasses = numel(categories(imdsTrain.Labels));

newfclayer = fullyConnectedLayer(numClasses,...
    'Name','new_fc',...
    'WeightLearnRateFactor',10,...
    'BiasLearnRateFactor',10);
lgraph = replaceLayer(lgraph,net.Layers(end-2).Name,newfclayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newclasslayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,net.Layers(end).Name,newclasslayer);

Train Network

The network requires input images of size 224-by-224-by-3, but the images in the image datastore
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, randomly translate them up to 30 pixels, and scale them up to
10% horizontally and vertically. Data augmentation helps prevent the network from overfitting and
memorizing the exact details of the training images.

pixelRange = [-30 30];
scaleRange = [0.9 1.1];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange, ...
    'RandXScale',scaleRange, ...
    'RandYScale',scaleRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. Set InitialLearnRate to a small value to slow down learning in the
transferred layers that are not already frozen. In the previous step, you increased the learning rate
factors for the last learnable layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning in the new layers, slower learning in the middle layers,
and no learning in the earlier, frozen layers.

Specify the number of epochs to train for. When performing transfer learning, you do not need to
train for as many epochs. An epoch is a full training cycle on the entire training data set. Specify the
mini-batch size and validation data. Compute the validation accuracy once per epoch.

miniBatchSize = 10;
valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize);

5 Deep Learning Tuning and Visualization

5-262



options = trainingOptions('sgdm', ...
    'MiniBatchSize',miniBatchSize, ...
    'MaxEpochs',4, ...
    'InitialLearnRate',3e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',valFrequency, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network using the training data. By default, trainNetwork uses a GPU if one is available.
This requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Otherwise,
trainNetwork uses a CPU. You can also specify the execution environment by using the
'ExecutionEnvironment' name-value pair argument of trainingOptions. Because this data set
is small, the training is fast. If you run this example and train the network yourself, you will get
different results and misclassifications caused by the randomness involved in the training process.

net = trainNetwork(augimdsTrain,lgraph,options);

Classify Test Images

Classify the test images using the fine-tuned network and calculate the classification accuracy.

augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);
[predictedClasses,predictedScores] = classify(net,augimdsTest);

accuracy = mean(predictedClasses == imdsTest.Labels)

accuracy = 0.8418

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-263



Confusion Matrix for the Test Set

Plot a confusion matrix of the test set predictions. This highlights which particular classes cause most
problems for the network.

figure;
confusionchart(imdsTest.Labels,predictedClasses,'Normalization',"row-normalized");

The confusion matrix shows that the network has poor performance for some classes, such as Greek
salad, sashimi, hot dog, and sushi. These classes are underrepresented in the data set which may be
impacting network performance. Investigate one of these classes to better understand why the
network is struggling.

figure();
histogram(imdsValidation.Labels);
ax = gca();
ax.XAxis.TickLabelInterpreter = "none";

5 Deep Learning Tuning and Visualization

5-264



Investigate Classifications

Investigate network classification for the sushi class.

Sushi Most Like Sushi

First, find which images of sushi most strongly activate the network for the sushi class. This answers
the question "Which images does the network think are most sushi-like?".

Plot the maximally-activating images, these are the input images that strongly activate the fully-
connected layer's "sushi" neuron. This figure shows the top 4 images, in a descending class score.

chosenClass = "sushi";
classIdx = find(net.Layers(end).Classes == chosenClass);

numImgsToShow = 4;

[sortedScores,imgIdx] = findMaxActivatingImages(imdsTest,chosenClass,predictedScores,numImgsToShow);

figure
plotImages(imdsTest,imgIdx,sortedScores,predictedClasses,numImgsToShow)

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-265



Visualize Cues for the Sushi Class

Is the network looking at the right thing for sushi? The maximally-activating images of the sushi class
for the network all look similar to each other - a lot of round shapes clustered closely together.

The network is doing well at classifying those kinds of sushi. However, to verify that this is true and
to better understand why the network makes its decisions, use a visualization technique like Grad-
CAM. For more information on using Grad-CAM, see “Grad-CAM Reveals the Why Behind Deep
Learning Decisions” on page 5-22.

Read the first resized image from the augmented image datastore, then plot the Grad-CAM
visualization using gradCAM.

imageNumber = 1;

observation = augimdsTest.readByIndex(imgIdx(imageNumber));
img = observation.input{1};

label = predictedClasses(imgIdx(imageNumber));
score = sortedScores(imageNumber);

gradcamMap = gradCAM(net,img,label);

figure
alpha = 0.5;
plotGradCAM(img,gradcamMap,alpha);
sgtitle(string(label)+" (score: "+ max(score)+")")

5 Deep Learning Tuning and Visualization

5-266



The Grad-CAM map confirms that the network is focusing on the sushi in the image. However you can
also see that the network is looking at parts of the plate and the table.

The second image has a cluster of sushi on the left and a lone sushi on the right. To see what the
network focuses on, read the second image and plot the Grad-CAM.

imageNumber = 2;
observation = augimdsTest.readByIndex(imgIdx(imageNumber));
img = observation.input{1};

label = predictedClasses(imgIdx(imageNumber));
score = sortedScores(imageNumber);

gradcamMap = gradCAM(net,img,label);

figure
plotGradCAM(img,gradcamMap,alpha);
sgtitle(string(label)+" (score: "+ max(score)+")")

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-267



The network classifies this image as sushi because it sees a group of sushi. However, is it able to
classify one sushi on its own? Test this by looking at a picture of just one sushi.

img = imread(strcat(tempdir,"Food Dataset/sushi/sushi_18.jpg"));
img = imresize(img,net.Layers(1).InputSize(1:2),"Method","bilinear","AntiAliasing",true);

[label,score] = classify(net,img);

gradcamMap = gradCAM(net,img,label);

figure
alpha = 0.5;
plotGradCAM(img,gradcamMap,alpha);
sgtitle(string(label)+" (score: "+ max(score)+")")

5 Deep Learning Tuning and Visualization

5-268



The network is able to classify this lone sushi correctly. However, the Grad-CAM shows that the
network is focusing on the top of the sushi and the cluster of cucumber, rather than the whole piece
together.

Run the Grad-CAM visualization technique on a lone sushi that does not contain any stacked small
pieces of ingredients.

img = imread("crop__sushi34-copy.jpg");
img = imresize(img,net.Layers(1).InputSize(1:2),"Method","bilinear","AntiAliasing",true);

[label,score] = classify(net,img);

gradcamMap = gradCAM(net,img,label);

figure
alpha = 0.5;
plotGradCAM(img,gradcamMap,alpha);
title(string(label)+" (score: "+ max(score)+")")

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-269



In this case, the visualization technique highlights why the network performs poorly. It incorrectly
classifies the image of the sushi as a hamburger.

To solve this issue, you must feed the network with more images of lone sushi during the training
process.

Sushi Least Like Sushi

Now find which images of sushi activate the network for the sushi class the least. This answers the
question "Which images does the network think are less sushi-like?".

This is useful because it finds the images on which the network performs badly, and it provides some
insight into its decision.

chosenClass = "sushi";
numImgsToShow = 9;

[sortedScores,imgIdx] = findMinActivatingImages(imdsTest,chosenClass,predictedScores,numImgsToShow);

figure
plotImages(imdsTest,imgIdx,sortedScores,predictedClasses,numImgsToShow)

5 Deep Learning Tuning and Visualization

5-270



Investigate Sushi Misclassified as Sashimi

Why is the network classifying sushi as sashimi? The network classifies 3 out of the 9 images as
sashimi. Some of these images, for example images 4 and 9, actually contain sashimi, which means
the network isn't actually misclassifying them. These images are mislabeled.

To see what the network is focusing on, run the Grad-CAM technique on one of these images.

imageNumber = 4;
observation = augimdsTest.readByIndex(imgIdx(imageNumber));
img = observation.input{1};

label = predictedClasses(imgIdx(imageNumber));
score = sortedScores(imageNumber);

gradcamMap = gradCAM(net,img,label);

figure
alpha = 0.5;
plotGradCAM(img,gradcamMap,alpha);
title(string(label)+" (sushi score: "+ max(score)+")")

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-271



As expected, the network focuses on the sashimi instead of the sushi.

Investigate Sushi Misclassified as Pizza

Why is the network classifying sushi as pizza? The network classifies four of the images as pizza
instead of sushi. Consider image 1, this image has a colorful topping which may be confusing the
network.

To see which part of the image the network is looking at, run the Grad-CAM technique on one of
these images.

imageNumber = 1;
observation = augimdsTest.readByIndex(imgIdx(imageNumber));
img = observation.input{1};

label = predictedClasses(imgIdx(imageNumber));
score = sortedScores(imageNumber);

gradcamMap = gradCAM(net,img,label);

figure
alpha = 0.5;
plotGradCAM(img,gradcamMap,alpha);
title(string(label)+" (sushi score: "+ max(score)+")")

5 Deep Learning Tuning and Visualization

5-272



The network strongly focuses on the toppings. To help the network distinguish pizza from sushi with
toppings, add more training images of sushi with toppings. The network also focuses on the plate.
This may be as the network has learned to associate certain foods with certain types of plates, as also
highlighted when looking at the sushi images. To improve the network's performance, train using
more examples of food on different types of plates.

Investigate Sushi Misclassified as a Hamburger

Why is the network classifying sushi as a hamburger? To see what the network is focusing on, run the
Grad-CAM technique on the misclassified image.

imageNumber = 2;
observation = augimdsTest.readByIndex(imgIdx(imageNumber));
img = observation.input{1};

label = predictedClasses(imgIdx(imageNumber));
score = sortedScores(imageNumber);

gradcamMap = gradCAM(net,img,label);

figure
alpha = 0.5;
plotGradCAM(img,gradcamMap,alpha);
title(string(label)+" (sushi score: "+ max(score)+")")

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-273



The network is focusing on the flower in the image. The colorful purple flower and brown stalk has
confused the network into identifying this image as a hamburger.

Investigate Sushi Misclassified as French Fries

Why is the network classifying sushi as French fries? The network classifies the 3rd image as French
fries instead of sushi. This specific sushi has a yellow topping and the network might associate this
color with French fries.

Run Grad-CAM on this image.

imageNumber = 3;
observation = augimdsTest.readByIndex(imgIdx(imageNumber));
img = observation.input{1};

label = predictedClasses(imgIdx(imageNumber));
score = sortedScores(imageNumber);

gradcamMap = gradCAM(net,img,label);

figure
alpha = 0.5;
plotGradCAM(img,gradcamMap,alpha);
title(string(label)+" (sushi score: "+ max(score)+")","Interpreter","none")

5 Deep Learning Tuning and Visualization

5-274



The networks focuses on the yellow sushi classifying it as French fries. As with the hamburger, the
unusual color has caused the network to misclassify the sushi.

To help the network in this specific case, train it with more images of yellow foods that are not
French fries.

Conclusions

Investigating the datapoints that give rise to large or small class scores, and datapoints that the
network classifies confidently but incorrectly, is a simple technique which can provide useful insight
into how a trained network is functioning. In the case of the food data set, this example highlighted
that:

• The test data contains several images with incorrect true labels, such as the "sashimi" which is
actually "sushi". The data also contains incomplete labels, such as images which contain both
sushi and sashimi.

• The network considers a "sushi" to be "multiple, clustered, round-shaped things". However, it
must be able to distinguish a lone sushi as well.

• Any sushi or sashimi with toppings or unusual colors confuses the network. To resolve this
problem, the data must have a wider variety of sushi and sashimi.

• To improve performance the network needs to see more images from the underrepresented
classes.

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-275



Helper Functions

function downloadExampleFoodImagesData(url,dataDir)
% Download the Example Food Image data set, containing 978 images of
% different types of food split into 9 classes.

% Copyright 2019 The MathWorks, Inc.

fileName = "ExampleFoodImageDataset.zip";
fileFullPath = fullfile(dataDir,fileName);

% Download the .zip file into a temporary directory.
if ~exist(fileFullPath,"file")
    fprintf("Downloading MathWorks Example Food Image dataset...\n");
    fprintf("This can take several minutes to download...\n");
    websave(fileFullPath,url);
    fprintf("Download finished...\n");
else
    fprintf("Skipping download, file already exists...\n");
end

% Unzip the file.
%
% Check if the file has already been unzipped by checking for the presence
% of one of the class directories.
exampleFolderFullPath = fullfile(dataDir,"pizza");
if ~exist(exampleFolderFullPath,"dir")
    fprintf("Unzipping file...\n");
    unzip(fileFullPath,dataDir);
    fprintf("Unzipping finished...\n");
else
    fprintf("Skipping unzipping, file already unzipped...\n");
end
fprintf("Done.\n");

end

function [sortedScores,imgIdx] = findMaxActivatingImages(imds,className,predictedScores,numImgsToShow)
% Find the predicted scores of the chosen class on all the images of the chosen class
% (e.g. predicted scores for sushi on all the images of sushi)
[scoresForChosenClass,imgsOfClassIdxs] = findScoresForChosenClass(imds,className,predictedScores);

% Sort the scores in descending order
[sortedScores,idx] = sort(scoresForChosenClass,'descend');

% Return the indices of only the first few
imgIdx = imgsOfClassIdxs(idx(1:numImgsToShow));

end

function [sortedScores,imgIdx] = findMinActivatingImages(imds,className,predictedScores,numImgsToShow)
% Find the predicted scores of the chosen class on all the images of the chosen class
% (e.g. predicted scores for sushi on all the images of sushi)
[scoresForChosenClass,imgsOfClassIdxs] = findScoresForChosenClass(imds,className,predictedScores);

% Sort the scores in ascending order
[sortedScores,idx] = sort(scoresForChosenClass,'ascend');

5 Deep Learning Tuning and Visualization

5-276



% Return the indices of only the first few
imgIdx = imgsOfClassIdxs(idx(1:numImgsToShow));

end

function [scoresForChosenClass,imgsOfClassIdxs] = findScoresForChosenClass(imds,className,predictedScores)
% Find the index of className (e.g. "sushi" is the 9th class)
uniqueClasses = unique(imds.Labels);
chosenClassIdx = string(uniqueClasses) == className;

% Find the indices in imageDatastore that are images of label "className"
% (e.g. find all images of class sushi)
imgsOfClassIdxs = find(imds.Labels == className);

% Find the predicted scores of the chosen class on all the images of the
% chosen class
% (e.g. predicted scores for sushi on all the images of sushi)
scoresForChosenClass = predictedScores(imgsOfClassIdxs,chosenClassIdx);
end

function plotImages(imds,imgIdx,sortedScores,predictedClasses,numImgsToShow)

for i=1:numImgsToShow
    score = sortedScores(i);
    sortedImgIdx = imgIdx(i);
    predClass = predictedClasses(sortedImgIdx); 
    correctClass = imds.Labels(sortedImgIdx);
        
    imgPath = imds.Files{sortedImgIdx};
    
    if predClass == correctClass
        color = "\color{green}";
    else
        color = "\color{red}";
    end
    
    predClassTitle = strrep(string(predClass),'_',' ');
    correctClassTitle = strrep(string(correctClass),'_',' ');
    
    subplot(3,ceil(numImgsToShow./3),i)
    imshow(imread(imgPath));
    title("Predicted: " + color + predClassTitle + "\newline\color{black}Score: " + num2str(score) + "\newlineGround truth: " + correctClassTitle);
end

end

function plotGradCAM(img,gradcamMap,alpha)

subplot(1,2,1)
imshow(img);

h = subplot(1,2,2);
imshow(img)
hold on;
imagesc(gradcamMap,'AlphaData',alpha);

originalSize2 = get(h,'Position');

 Visualize Image Classifications Using Maximal and Minimal Activating Images

5-277



colormap jet
colorbar

set(h,'Position',originalSize2);
hold off;
end

See Also
googlenet | imageDatastore | augmentedImageDatastore | confusionchart | dlnetwork |
classify | occlusionSensitivity | gradCAM | imageLIME

Related Examples
• “Deep Learning Visualization Methods” on page 5-283
• “Visualize Activations of a Convolutional Neural Network” on page 5-238
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Understand Network Predictions Using LIME” on page 5-57
• “Deep Learning Visualization Methods” on page 5-283

More About
• “Deep Learning in MATLAB” on page 1-2
• “Pretrained Deep Neural Networks” on page 1-11

5 Deep Learning Tuning and Visualization

5-278



Monitor GAN Training Progress and Identify Common Failure
Modes

Training GANs can be a challenging task. This is because the generator and the discriminator
networks compete against each other during the training. In fact, if one network learns too quickly,
then the other network may fail to learn. This can often result in the network not being able to
converge. To diagnose issues and monitor on a scale from 0 to 1 how well the generator and
discriminator achieve their respective goals you can plot their scores. For an example showing how to
train a GAN and plot the generator and discriminator scores, see “Train Generative Adversarial
Network (GAN)” on page 3-72.

The discriminator learns to classify input images as "real" or "generated". The output of the
discriminator corresponds to a probability Y  that the input images belong to the class "real".

The generator score is the mean of the probabilities corresponding to the discriminator output for the
generated images:

scoreGenerator = mean(Y Generated),

where Y Generated contains the probabilities for the generated images.

Given that 1− Y  is the probability of an image belonging to the class "generated", the discriminator
score is the mean of the probabilities of the input images belonging to the correct class:

scoreDiscriminator = 1
2mean(Y Real) + 1

2mean(1− Y Generated),

where Y Real contains the discriminator output probabilities for the real images and the numbers of
real and generated images passed to the discriminator are equal.

In the ideal case, both scores would be 0.5. This is because the discriminator cannot tell the
difference between real and fake images. However, in practice this scenario is not the only case in
which you can achieve a successful GAN.

To monitor the training progress you can visually inspect the images over time and check if they are
improving. If the images are not improving, then you can use the score plot to help you diagnose
some problems. In some cases, the score plot can tell you there is no point continuing training, and
you should stop, because a failure mode has occurred that training cannot recover from. The
following sections tell you what to look for in the score plot and in the generated images to diagnose
some common failure modes (convergence failure and mode collapse), and suggests possible actions
you can take to improve the training.

Convergence Failure
Convergence failure happens when the generator and discriminator do not reach a balance during
training.

Discriminator Dominates

This scenario happens when the generator score reaches zero or near zero and the discriminator
score reaches one or near one.

 Monitor GAN Training Progress and Identify Common Failure Modes

5-279



This plot shows an example of the discriminator overpowering the generator. Notice that the
generator score approaches zero and does not recover. In this case, the discriminator classifies most
of the images correctly. In turn, the generator cannot produce any images that fool the discriminator
and thus fails to learn.

If the score does not recover from these values for many iterations, then it is better to stop the
training. If this happens, then try balancing the performance of generator and the discriminator by:

• Impairing the discriminator by randomly giving false labels to real images (one-sided label
flipping)

• Impairing the discriminator by adding dropout layers
• Improving the generator's ability to create more features by increasing the number of filters in its

convolution layers
• Impairing the discriminator by reducing its number of filters

For an example showing how to flip the labels of the real images, see “Train Generative Adversarial
Network (GAN)” on page 3-72.

Generator Dominates

This scenario happens when the generator score reaches one or near one.

This plot shows an example of the generator overpowering the discriminator. Notice that the
generator score goes to one for a many iterations. In this case, the generator learns how to fool the
discriminator almost always. When this happens very early in the training process, the generator is
likely to learn a very simple feature representation which fools the discriminator easily. This means
that the generated images can be very poor, despite having high scores. Note that in this example,
the score of the discriminator does not go very close to zero because it is still able to classify
correctly some real images.

5 Deep Learning Tuning and Visualization

5-280



If the score does not recover from these values for many iterations, then it is better to stop the
training. If this happens, then try balancing the performance of generator and the discriminator by:

• Improving the discriminator's ability to learn more features by increasing the number of filters
• Impairing the generator by adding dropout layers
• Impairing the generator by reducing its number of filters

Mode Collapse
Mode collapse is when the GAN produces a small variety of images with many duplicates (modes).
This happens when the generator is unable to learn a rich feature representation because it learns to
associate similar outputs to multiple different inputs. To check for mode collapse, inspect the
generated images. If there is little diversity in the output and some of them are almost identical, then
there is likely mode collapse.

This plot shows an example of mode collapse. Notice that the generated images plot contains a lot of
almost identical images, even though the inputs to the generator were different and random.

 Monitor GAN Training Progress and Identify Common Failure Modes

5-281



If you observe this happening, then try to increase the ability of the generator to create more diverse
outputs by:

• Increasing the dimensions of the input data to the generator
• Increasing the number of filters of the generator to allow it to generate a wider variety of features
• Impairing the discriminator by randomly giving false labels to real images (one-sided label
flipping)

For an example showing how to flip the labels of the real images, see “Train Generative Adversarial
Network (GAN)” on page 3-72.

See Also
dlnetwork | forward | predict | dlarray | dlgradient | dlfeval | adamupdate

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Train Conditional Generative Adversarial Network (CGAN)” on page 3-86
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87
• “Automatic Differentiation Background” on page 19-214

5 Deep Learning Tuning and Visualization

5-282



Deep Learning Visualization Methods
Deep learning networks are often described as "black boxes" because the reason that a network
makes a certain decision is not always obvious. Increasingly, deep learning networks are being used
in domains from medical treatment to loan applications, so understanding why a network makes a
particular decision is crucial.

You can use interpretability techniques to translate network behavior into output that a person can
interpret. This interpretable output can then answer questions about the predictions of a network.
Interpretability techniques have many applications, for example, verification, debugging, learning,
assessing bias, and model selection.

You can apply interpretability techniques after network training, or build them into the network. The
advantage of post-training methods is that you do not have to spend time constructing an
interpretable deep learning network. This topic focuses on post-training methods that use test images
to explain the predictions of a network trained on image data.

Visualization methods are a type of interpretability technique that explain network predictions using
visual representations of what a network is looking at. There are many techniques for visualizing
network behavior, such as heat maps, saliency maps, feature importance maps, and low-dimensional
projections.

Visualization Methods
Interpretability techniques have varying characteristics; which method you use will depend on the
interpretation you want and the network you have trained. Methods can be local and only investigate
network behavior for a specific input or global and investigate network behavior across an entire data
set.

Each visualization method has a specific approach that determines the output it produces. A common
distinction between methods is if they are gradient or perturbation based. Gradient-based methods
backpropagate the signal from the output back towards the input. Perturbation-based methods
perturb the input to the network and consider the effect of the perturbation on prediction. Another
approach to interpretability technique involves mapping or approximating the complex network
model to a more interpretable space. For example, some methods approximate the network
predictions using a simpler, more interpretable model. Other methods use dimension reduction
techniques to reduce high-dimensional activations down to interpretable 2-D or 3-D space.

 Deep Learning Visualization Methods

5-283



The following table compares visualization interpretability techniques for deep learning models for
image classification. For an example showing how to use visualization methods to investigate the
predictions of an image classification network, see “Explore Network Predictions Using Deep
Learning Visualization Techniques” on page 5-3.

5 Deep Learning Tuning and Visualization

5-284



Deep Learning Visualization Methods for Image Classification

Metho
d

Example
Visualizati
on

Funct
ion

Local
ity

Appr
oach

Resol
ution

Requ
ires
Tunin
g

Description

Activati
ons

acti
vati
ons

Local Activ
ation
visual
izatio
n

Low No Visualizing activations is a simple way of
understanding network behavior. Most
convolutional neural networks learn to
detect features like color and edges in
their first convolutional layers. In deeper
convolutional layers, the network learns to
detect more complicated features.

For more information, see “Visualize
Activations of a Convolutional Neural
Network” on page 5-238.

CAM No Local Gradi
ent-
based
class
activa
tion
heat
map

Low No Class activation mapping (CAM) is a
simple technique for generating visual
explanations of the predictions of
convolutional neural networks [1]. CAM
uses the global average pooling layer in a
convolutional neural network to generate
a map that highlights which parts of an
image the network is using with respect to
a particular class label.

For more information, see “Investigate
Network Predictions Using Class
Activation Mapping” on page 5-220.

Grad-
CAM

grad
CAM

Local Gradi
ent-
based
class
activa
tion
heat
map

Low No Gradient-weighted class activation
mapping (Grad-CAM) is a generalization of
the CAM method that uses the gradient of
the classification score with respect to the
convolutional features determined by the
network to understand which parts of an
observation are most important for
classification [2]. The places where the
gradient is large are the places where the
final score depends most on the data.

Grad-CAM gives similar results to CAM
without the architecture restrictions of
CAM.

For more information, see “Grad-CAM
Reveals the Why Behind Deep Learning
Decisions” on page 5-22 and “Explore
Semantic Segmentation Network Using
Grad-CAM” on page 5-81.

 Deep Learning Visualization Methods

5-285



Metho
d

Example
Visualizati
on

Funct
ion

Local
ity

Appr
oach

Resol
ution

Requ
ires
Tunin
g

Description

Occlusi
on
sensitiv
ity

occl
usio
nSen
siti
vity

Local Pertu
rbatio
n-
based
heat
map

Low
to
medi
um

Yes Occlusion sensitivity measures network
sensitivity to small perturbations in input
data. The method perturbs small areas of
the input by replacing it with an occluding
mask, typically a gray square. As the mask
moves across the image, the technique
measures the change in probability score
for a given class. You can use occlusion
sensitivity to highlight which parts of the
image are most important to the
classification.

To get the best results from occlusion
sensitivity, you must choose the right
values for the MaskSize and Stride
options. This tuning provides more
flexibility to examine the input features at
different length scales.

For more information, see “Understand
Network Predictions Using Occlusion” on
page 5-39.

LIME imag
eLIM
E

Local Pertu
rbatio
n-
based
proxy
model
,
featur
e
impor
tance

Low
to
high

Yes The LIME technique approximates the
classification behavior of a deep learning
network using a simpler, more
interpretable model, such as a linear
model or a regression tree [3]. The simple
model determines the importance of
features of the input data, as a proxy for
the importance of the features to the deep
learning network.

For more information, see “Understand
Network Predictions Using LIME” on page
5-57 and “Investigate Spectrogram
Classifications Using LIME” on page 5-64.

5 Deep Learning Tuning and Visualization

5-286



Metho
d

Example
Visualizati
on

Funct
ion

Local
ity

Appr
oach

Resol
ution

Requ
ires
Tunin
g

Description

Gradien
t
attribut
ion

No Local Gradi
ent-
based
salien
cy
map

High No Gradient attribution methods provide
pixel-resolution maps showing which
pixels are most important to the network
classification decisions [4][5]. These
methods compute the gradient of the class
score with respect to the input pixels.
Intuitively, the maps show which pixels
most affect the class score when changed.

The gradient attribution methods produce
maps the same size as the input image.
Therefore, gradient attribution maps have
a high resolution, but they tend to be
much noisier, as a well-trained deep
network is not strongly dependent on the
exact value of specific pixels.

For more information, see “Investigate
Classification Decisions Using Gradient
Attribution Techniques” on page 5-46.

Deep
dream

deep
Drea
mIma
ge

Globa
l

Gradi
ent-
based
activa
tion
maxi
mizati
on

Low
to
high

Yes Deep Dream is a feature visualization
technique that synthesizes images that
strongly activate network layers [6]. By
visualizing these images, you can highlight
the image features learned by a network.
These images are useful for understanding
and diagnosing network behavior.

For more information, see “Deep Dream
Images Using GoogLeNet” on page 5-16.

t-SNE tsne Globa
l

Dime
nsion
reduc
tion

N/A No t-SNE is a dimension reduction technique
that preserves distances so that points
near each other in the high-dimension
representation are also near each other in
the low-dimensional representation [7].
You can use t-SNE to visualize how deep
learning networks change the
representation of input data as it passes
through the network layers.

For more information, see “View Network
Behavior Using tsne” on page 5-226.

 Deep Learning Visualization Methods

5-287



Metho
d

Example
Visualizati
on

Funct
ion

Local
ity

Appr
oach

Resol
ution

Requ
ires
Tunin
g

Description

Maxima
l and
minimal
activati
ng
images

No Globa
l

Gradi
ent-
based
activa
tion
maxi
mizati
on

N/A No Visualizing images that strongly or weakly
activate the network for each class is a
simple way of understating your network.
Images that strongly activate highlight
what the network thinks a "typical" image
from that class looks like. Images that
weakly activate can help you to discover
why your network makes incorrect
classification predictions.

For more information, see “Visualize
Image Classifications Using Maximal and
Minimal Activating Images” on page 5-
260.

To explore applying these methods interactively using an app, see the Explore Deep Network
Explainability Using an App GitHub repository.

Interpretability Methods for Nonimage Data
Many interpretability focus on interpreting image classification or regression networks. Interpreting
nonimage data is often more challenging due to the nonvisual nature of the data. You can use Grad-
CAM to visualize the classification decisions of a 1-D convolutional network trained on time series
data. For more information, see “Interpret Deep Learning Time-Series Classifications Using Grad-
CAM” on page 5-25. To explore the activations of an LSTM network, use the activations and tsne
functions. For an example showing how to explore the predictions of an LSTM network, see “Visualize
Activations of LSTM Network” on page 5-249. To explore the behavior of a network trained on tabular
features, use the lime and shapley functions. For an example showing how to interpret a feature

5 Deep Learning Tuning and Visualization

5-288

https://github.com/matlab-deep-learning/Explore-Deep-Network-Explainability-Using-an-App
https://github.com/matlab-deep-learning/Explore-Deep-Network-Explainability-Using-an-App


input network, see “Interpret Deep Network Predictions on Tabular Data Using LIME” on page 5-74.
For more information about interpreting machine learning models, see “Interpret Machine Learning
Models” (Statistics and Machine Learning Toolbox).

References
[1] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning Deep

Features for Discriminative Localization." In 2016 Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition : 2921–2929. Las Vegas: IEEE, 2016.

[2] Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization.” In 2017 Proceedings of the IEEE Conference on Computer Vision: 618–626.
Venice, Italy: IEEE, 2017. https://doi.org/10.1109/ICCV.2017.74.

[3] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “‘Why Should I Trust You?’: Explaining
the Predictions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016): 1135–1144. New York, NY:
Association for Computing Machinery, 2016. https://doi.org/10.1145/2939672.2939778.

[4] Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps.” Preprint, submitted April 19,
2014. https://arxiv.org/abs/1312.6034.

[5] Tomsett, Richard, Dan Harborne, Supriyo Chakraborty, Prudhvi Gurram, and Alun Preece. “Sanity
Checks for Saliency Metrics.” Proceedings of the AAAI Conference on Artificial Intelligence,
34, no. 04, (April 2020): 6021–29, https://doi.org/10.1609/aaai.v34i04.6064.

[6] TensorFlow. "DeepDreaming with TensorFlow." https://github.com/tensorflow/docs/blob/master/
site/en/tutorials/generative/deepdream.ipynb.

[7] van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing Data Using t-SNE." Journal of
Machine Learning Research, 9 (2008): 2579–2605.

See Also
gradCAM | imageLIME | occlusionSensitivity | deepDreamImage | tsne | activations

Related Examples
• “Explore Network Predictions Using Deep Learning Visualization Techniques” on page 5-3
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22
• “Understand Network Predictions Using LIME” on page 5-57
• “Understand Network Predictions Using Occlusion” on page 5-39
• “View Network Behavior Using tsne” on page 5-226
• “Interpret Machine Learning Models” (Statistics and Machine Learning Toolbox)

External Websites
• https://github.com/matlab-deep-learning/Explore-Deep-Network-Explainability-Using-an-App

 Deep Learning Visualization Methods

5-289

https://github.com/matlab-deep-learning/Explore-Deep-Network-Explainability-Using-an-App


ROC Curve and Performance Metrics
In this section...
“Introduction to ROC Curve” on page 5-290
“Performance Curve with MATLAB” on page 5-291
“ROC Curve for Multiclass Classification” on page 5-291
“Performance Metrics” on page 5-293
“Classification Scores and Thresholds” on page 5-295
“Pointwise Confidence Intervals” on page 5-299

This topic describes the performance metrics for classification, including the receiver operating
characteristic (ROC) curve and the area under a ROC curve (AUC), and introduces the rocmetrics
object, which you can use to compute performance metrics for binary and multiclass classification
problems.

Introduction to ROC Curve
After training a classification model, you can examine the performance of the algorithm on a specific
test data set. A common approach is to compute a gross measure of performance, such as quadratic
loss or accuracy, averaged over the entire test data set. You can inspect the classifier performance
more closely by plotting a ROC curve and computing performance metrics. For example, you can find
the threshold that maximizes the classification accuracy, or assess how the classifier performs in the
regions of high sensitivity and high specificity.

Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate (TPR, or sensitivity) versus the false positive rate (FPR, or
1-specificity) for different thresholds of classification scores.

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs.

For a multiclass classification problem, you can use the one-versus-all on page 5-291 coding design
and find a ROC curve for each class. The one-versus-all coding design treats a multiclass
classification problem as a set of binary classification problems, and assumes one class as positive
and the rest as negative in each binary problem.

A binary classifier typically classifies an observation into a class that yields a larger score, which
corresponds to a positive adjusted score on page 5-296 for a one-versus-all binary classification
problem. That is, a classifier typically uses 0 as a threshold and determines whether an observation is
positive or negative. For example, if an adjusted score for an observation is 0.2, then the classifier
with a threshold value of 0 assigns the observation to the positive class. You can find a pair of TPR
and FPR values by applying the threshold value to all observations, and use the pair as a single point
on a ROC curve. Now, assume you use a new threshold value of 0.25. Then, the classifier with a
threshold value of 0.25 assigns the observation with an adjusted score of 0.2 to the negative class. By
applying the new threshold to all observations, you can find a new pair of TPR and FPR values and
have a new point on the a ROC curve. By repeating this process for various threshold values, you find
pairs of TPR and FPR values and create a ROC curve using the pairs.

5 Deep Learning Tuning and Visualization

5-290



Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

• A perfect classifier always correctly assigns positive class observations to the positive class and
has a true positive rate of 1 for any threshold values. Therefore, the line passing through [0,0],
[0,1], and [1,1] represents the perfect classifier, and the AUC value is 1.

• A random classifier returns random score values and has the same values for the false positive
rate and true positive rate for any threshold values. Therefore, the ROC curve for the random
classifier lies on the diagonal line, and the AUC value is 0.5.

Performance Curve with MATLAB
You can compute a ROC curve and other performance curves by creating a rocmetrics object. The
rocmetrics object supports both binary and multiclass classification problems and provides the
following object functions:

• plot — Plot ROC or other classifier performance curves. plot returns a ROCCurve graphics
object for each curve. You can modify the properties of the objects to control the appearance of
each curve. For details, see ROCCurve Properties.

• average — Compute performance metrics for an average ROC curve for multiclass problems.
• addMetrics — Compute additional classification performance metrics.

You can also compute the confidence intervals of performance curves by providing cross-validated
inputs or by bootstrapping the input data. Using confidence intervals requires Statistics and Machine
Learning Toolbox.

After training a classifier, use a performance curve to evaluate the classifier performance on test
data. Various measures such as mean squared error, classification error, or exponential loss can
summarize the predictive power of a classifier in a single number. However, a performance curve
offers more information because it lets you explore the classifier performance across a range of
thresholds on the classification scores.

ROC Curve for Multiclass Classification
For a multiclass classifier, the rocmetrics function computes the performance metrics of a one-
versus-all ROC curve for each class, and the average function computes the metrics for an average
of the ROC curves. You can use the plot function to plot a ROC curve for each class and the average
ROC curve.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
classification and evaluates the performance on each class by using the binary classification that the
class is positive.

 ROC Curve and Performance Metrics

5-291



For example, the OVA coding design for three classes formulates three binary classifications:

Binary 1 Binary 2 Binary 3
Class 1 1 −1 −1
Class 2 −1 1 −1
Class 3 −1 −1 1

Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

rocmetrics applies the OVA coding design to a binary classification problem as well if you specify
classification scores as a two-column matrix. rocmetrics formulates two one-versus-all binary
classification problems each of which treats one class as a positive class and the other class as a
negative class, and rocmetrics finds two ROC curves. You can use one of them to evaluate the
binary classification problem.

Average of Performance Metrics

You can compute metrics for an average ROC curve by using the average function. Alternatively, you
can use the plot function to compute the metrics and plot the average ROC curve. For examples, see
“Find Average ROC Curve” (example for average).

average and plot support three algorithms for computing the average false positive rate (FPR) and
average true positive rate (TPR) to find the average ROC curve:

• Micro-averaging — The software combines all one-versus-all on page 5-291 binary classification
problems into one binary classification problem and computes the average performance metrics as
follows:

1 Convert the values in the Labels property of a rocmetrics object to logical values where
logical 1 (true) indicates a positive class for each binary problem.

2 Stack the converted vectors of labels, one vector from each binary problem, into a single
vector.

3 Convert the matrix that contains the adjusted values on page 5-296 of the classification scores
(the Scores property) into a vector by stacking the columns of the matrix.

4 Compute the components of the confusion matrix on page 5-294 for the combined binary
problem for each threshold (each distinct value of adjusted scores). A confusion matrix
contains the number of instances for true positive (TP), false negative (FN), false positive
(FP), and true negative (TN).

5 Compute the average FPR and TPR based on the components of the confusion matrix.
• Macro-averaging — The software computes the average values for FPR and TPR by averaging the

values of all one-versus-all binary classification problems.

The software uses three metrics—threshold, FPR, and TPR—to compute the average values as
follows:

1 Determine a fixed metric. If you specify FixedMetric of rocmetrics as
"FalsePositiveRate" or "TruePositiveRate", then the function holds the specified
metric fixed. Otherwise, the function holds the threshold values fixed.

5 Deep Learning Tuning and Visualization

5-292



2 Find all distinct values in the Metrics property for the fixed metric.
3 Find the corresponding values for the other two metrics for each binary problem.
4 Average the FPR and TPR values of all binary problems.

• Weighted macro-averaging — The software computes the weighted average values for FPR and
TPR using the macro-averaging algorithm and using the prior class probabilities (the Prior
property) as weights.

Performance Metrics
The rocmetrics object supports these built-in performance metrics:

• Number of true positives (TP)
• Number of false negatives (FN)
• Number of false positives (FP)
• Number of true negatives (TN)
• Sum of TP and FP
• Rate of positive predictions (RPP)
• Rate of negative predictions (RNP)
• Accuracy
• True positive rate (TPR), recall, or sensitivity
• False negative rate (FNR), or miss rate
• False positive rate (FPR), fallout, or 1-specificity
• True negative rate (TNR), or specificity
• Positive predictive value (PPV), or precision
• Negative predictive value (NPR)
• Expected cost

rocmetrics also supports a custom metric specified as a function handle. For details, see the
AdditionalMetrics name-value argument of the rocmetrics function.

rocmetrics computes performance metric values for various thresholds for each one-versus-all on
page 5-291 binary classification problem using a confusion matrix, scale vector, and misclassification
cost matrix. Each performance metric is a function of a confusion matrix and scale vector. The
expected cost is also a function of the misclassification cost matrix, as is a custom metric.

• Confusion matrix — A confusion matrix contains the number of instances for true positive (TP),
false negative (FN), false positive (FP), and true negative (TN). rocmetrics computes confusion
matrices for various threshold values for each binary problem.

• Scale vector — A scale vector is defined by the prior class probabilities and the number of classes
in true labels. rocmetrics finds the probabilities and number of classes for each binary problem
from the prior class probabilities specified by the Prior name-value argument and the true labels
specified by the Labels input argument.

• Misclassification cost matrix — rocmetrics converts the misclassification cost matrix specified
by the Cost name-value argument to the values for each binary problem.

 ROC Curve and Performance Metrics

5-293



By default, rocmetrics uses all distinct adjusted score on page 5-296 values as threshold values for
each binary problem. For more details on threshold values, see “Thresholds, Fixed Metric, and Fixed
Metric Values” on page 5-297.

Confusion Matrix

A confusion matrix is defined as

TP FN
FP TN

,

where

• P stands for "positive".
• N stands for "negative".
• T stands for "true".
• F stands for "false".

For example, the first row of the confusion matrix defines how the classifier identifies instances of the
positive class: TP is the count of correctly identified positive instances, and FN is the count of positive
instances misidentified as negative.

rocmetrics computes confusion matrices for various threshold values for each one-versus-all binary
classification. The one-versus-all binary classification model classifies an observation into a positive
class if the score for the observation is greater than or equal to the threshold value.

Prior Class Probabilities

By default, rocmetrics uses empirical probabilities, which are class frequencies in the true labels.

rocmetrics normalizes the 1-by-K prior probability vector π to a 1-by-2 vector for each one-versus-
all binary classification, where K is the number of classes.

The prior probabilities for the kth binary classification in which the positive class is the kth class is
πk, 1− πk , where πk is the prior probability for class k in the multiclass problem.

Scale Vector

rocmetrics defines a scale vector sk of size 2-by-1 for each one-versus-all binary classification
problem:

sk = 1
πkN + 1− πk P

πkN
1− πk P

,

where P and N represent the total instances of positive class and negative class, respectively. That is,
P is the sum of TP and FN, and N is the sum of FP and TN. sk(1) (first element of sk) and sk(2) (second
element of sk) are the scales for the positive class (kth class) and negative class (the rest),
respectively.

rocmetrics applies the scale values as multiplicative factors to the counts from the corresponding
class. That is, the function multiplies counts from the positive class by sk(1) and counts from the
negative class by sk(2). For example, to compute the positive predictive value (PPV = TP/(TP+FP))
for the kth binary problem, rocmetrics scales PPV as follows:

5 Deep Learning Tuning and Visualization

5-294



PPV =
sk(1) ⋅ TP

sk(1) ⋅ TP + sk(2) ⋅ FP .

Misclassification Cost Matrix

By default, rocmetrics uses a K-by-K cost matrix C, where C(i,j) = 1 if i ~= j, and C(i,j) = 0 if i = j.
C(i,j) is the cost of classifying a point into class j if its true class is i (that is, the rows correspond to
the true class and the columns correspond to the predicted class).

rocmetrics normalizes the K-by-K cost matrix C to a 2-by-2 matrix for each one-versus-all binary
classification:

Ck =
0 costk(N P)

costk(P N) 0
.

Ck is the cost matrix for the kth binary classification in which the positive class is the kth class, where
costk(N|P) is the cost of misclassifying a positive class as a negative class, and costk(P|N) is the
cost of misclassifying a negative class as a positive class.

For class k, let πk
+ and πk

- be K-by-1 vectors with the following values:

πki
+ =

πi if k = i,
0 otherwise.

πki
− =

0 if k = i,
πi otherwise.

πki
+ and πki

- are the ith elements of πk
+ and πk

-, respectively.

The cost of classifying a positive-class (class k) observation into the negative class (the rest) is

costk(N P) = πk
+ ′Cπk

− .

Similarly, the cost of classifying a negative-class observation into the positive class is

costk(P N) = πk
− ′Cπk

+ .

Classification Scores and Thresholds
The rocmetrics function determines threshold values from the input classification scores or the
FixedMetricValues name-value argument.

Classification Score Input for rocmetrics

rocmetrics accepts classification scores (Scores) in a matrix of size n-by-K or a vector of length n,
where n is the number of observations and K is the number classes. For cross-validated data, Scores
can be a cell array of vectors or a cell array of matrices.

• Matrix of size n-by-K — Specify Scores using the second output argument of the classify
function for a classification model. Each row of the output contains classification scores for an
observation for all classes. The order of the classes matches the order of the classes in your
network. For example, if your classification network net has a classificationLayer output
layer, you can access the class names using net.Layers(end).Classes. You can specify
Scores as a matrix for both binary classification and multiclass classification problems.

If you use a matrix format, rocmetrics adjusts the classification scores for each class relative to
the scores for the rest of the classes. Specifically, the adjusted score for a class given an

 ROC Curve and Performance Metrics

5-295



observation is the difference between the score for the class and the maximum value of the scores
for the rest of the classes. For more details, see “Adjusted Scores for Multiclass Classification
Problem” on page 5-296.

• Vector of length n — Specify Scores using a vector when you have classification scores for one
class only. A vector input is also suitable when you want to use a different type of adjusted scores
for a multiclass problem. As an example, consider a problem with three classes, A, B, and C. If you
want to compute a performance curve for separating classes A and B, with C ignored, you need to
address the ambiguity in selecting A over B. You can use the score ratio s(A)/s(B) or score
difference s(A)–s(B) and pass the vector to rocmetrics; this approach can depend on the
nature of the scores and their normalization.

You can use rocmetrics with any classifier or any function that returns a numeric score for an
instance of input data.

• A high score returned by a classifier for a given instance and class signifies that the instance is
likely from the respective class.

• A low score signifies that the instance is not likely from the respective class.

rocmetrics does not impose any requirements on the input score range. Because of this lack of
normalization, you can use rocmetrics to process scores returned by any classification, regression,
or fit functions. rocmetrics does not make any assumptions about the nature of input scores.

rocmetrics is intended for use with classifiers that return scores, not those that return only
predicted classes. Consider a classifier that returns only classification labels, 0 or 1, for data with two
classes. In this case, the performance curve reduces to a single point because the software can split
classified instances into positive and negative categories in one way only.

Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s1,s2,s3] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s1-max(s2,s3),s2-max(s1,s3),s3-max(s1,s2)].

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.

Model Operating Point

The model operating point represents the FPR and TPR corresponding to the typical threshold value.

5 Deep Learning Tuning and Visualization

5-296



The typical threshold value depends on the input format of the Scores argument (classification
scores) specified when you create a rocmetrics object:

• If you specify Scores as a matrix, rocmetrics assumes that the values in Scores are the scores
for a multiclass classification problem and uses adjusted score on page 5-296 values. A multiclass
classification model classifies an observation into a class that yields the largest score, which
corresponds to a nonnegative score in the adjusted scores. Therefore, the threshold value is 0.

• If you specify Scores as a column vector, rocmetrics assumes that the values in Scores are
posterior probabilities of the class specified in ClassNames. A binary classification model
classifies an observation into a class that yields a higher posterior probability, that is, a posterior
probability greater than 0.5. Therefore, the threshold value is 0.5.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. However, if the classification scores are not posterior probabilities, you must specify Scores
as a matrix. A binary classifier classifies an observation into a class that yields a larger score, which
is equivalent to a class that yields a nonnegative adjusted score. Therefore, if you specify Scores as a
matrix for a binary classifier, rocmetrics can find a correct model operating point using the same
scheme that it applies to a multiclass classifier. If you specify classification scores that are not
posterior probabilities as a vector, rocmetrics cannot identify a correct model operating point
because it always uses 0.5 as a threshold for the model operating point.

The plot function displays a filled circle marker at the model operating point for each ROC curve
(see ShowModelOperatingPoint). The function chooses a point corresponding to the typical
threshold value. If the curve does not have a data point for the typical threshold value, the function
finds a point that has the smallest threshold value greater than the typical threshold. The point on the
curve indicates identical performance to the performance of the typical threshold value.

Thresholds, Fixed Metric, and Fixed Metric Values

rocmetrics finds the ROC curves and other metric values that correspond to the fixed values
(FixedMetricValues name-value argument) of the fixed metric (FixedMetric name-value
argument), and stores the values in the Metrics property as a table.

The default FixedMetric value is "Thresholds", and the default FixedMetricValues value is
"all". For each class, rocmetrics uses all distinct adjusted score on page 5-296 values as
threshold values, computes the components of the confusion matrix on page 5-294 for each threshold
value, and then computes performance metrics using the confusion matrix components.

If you use the default FixedMetricValues value ("all"), specifying a nondefault FixedMetric
value does not change the software behavior unless you specify to compute confidence intervals. If
rocmetrics computes confidence intervals, then it holds FixedMetric fixed at
FixedMetricValues and computes confidence intervals for other metrics. For more details, see
“Pointwise Confidence Intervals” on page 5-299.

If you specify a nondefault value for FixedMetricValues, rocmetrics finds the threshold values
corresponding to the specified fixed metric values (FixedMetricValues for FixedMetric) and
computes other performance metric values using the threshold values.

• If you set the UseNearestNeighbor name-value argument to false, then rocmetrics uses the
exact threshold values corresponding to the specified fixed metric values.

• If you set UseNearestNeighbor to true, then among the adjusted scores, rocmetrics finds a
value that is the nearest to the threshold value corresponding to each specified fixed metric value.

 ROC Curve and Performance Metrics

5-297



The Metrics property includes an additional threshold value that replicates the largest threshold
value for each class so that a ROC curve starts from the origin (0,0). The additional threshold value
represents the reject-all threshold, for which TP = FP = 0 (no positive instances, that is, zero true
positive instances and zero false positive instances).

Another special threshold in Metrics is the accept-all threshold, which is the smallest threshold
value for which TN = FN = 0 (no negative instances, that is, zero true negative instances and zero
false negative instances).

Note that the positive predictive value (PPV = TP/(TP+FP)) is NaN for the reject-all threshold, and
the negative predictive value (NPV = TN/(TN+FN)) is NaN for the accept-all threshold.

NaN Score Values

rocmetrics processes NaN values in the classification score input (Scores) in one of two ways:

• If you specify NaNFlag="omitnan" (default), then rocmetrics discards rows with NaN scores.
• If you specify NaNFlag="includenan", then rocmetrics adds the instances of NaN scores to

false classification counts in the respective class for each one-versus-all binary classification. That
is, for any threshold, the software counts instances with NaN scores from the positive class as false
negative (FN), and counts instances with NaN scores from the negative class as false positive (FP).
The software computes the metrics corresponding to a threshold of 1 by setting the number of
true positive (TP) instances to zero and setting the number of true negative (TN) instances to the
total count minus the NaN count in the negative class.

Consider an example with two rows in the positive class and two rows in the negative class, each pair
having a NaN score:

True Class Label Classification Score
Negative 0.2
Negative NaN
Positive 0.7
Positive NaN

If you discard rows with NaN scores (NaNFlag="omitnan"), then as the score threshold varies,
rocmetrics computes performance metrics as shown in the following table. For example, a
threshold of 0.5 corresponds to the middle row where rocmetrics classifies rows 1 and 3 correctly
and omits rows 2 and 4.

Threshold TP FN FP TN
1 0 1 0 1
0.5 1 0 0 1
0 1 0 1 0

If you add rows with NaN scores to the false category in their respective classes
(NaNFlag="includenan"), rocmetrics computes performance metrics as shown in the following
table. For example, a threshold of 0.5 corresponds to the middle row where rocmetrics counts rows
2 and 4 as incorrectly classified. Notice that only the FN and FP columns differ between these two
tables.

5 Deep Learning Tuning and Visualization

5-298



Threshold TP FN FP TN
1 0 2 1 1
0.5 1 1 1 1
0 1 1 2 0

Pointwise Confidence Intervals
rocmetrics computes pointwise confidence intervals for the performance metrics, including the
AUC values and score thresholds, by using either bootstrap samples or cross-validated data. The
object stores the values in the Metrics and AUC properties.

Note

Using confidence intervals requires Statistics and Machine Learning Toolbox.

• Bootstrap — To compute confidence intervals using bootstrapping, set the NumBootstraps name-
value argument to a positive integer. rocmetrics generates NumBootstraps bootstrap samples.
The function creates each bootstrap sample by randomly selecting n out of the n rows of input
data with replacement. For an example, see “Compute Confidence Intervals Using Bootstrapping”.

• Cross-validation — To compute confidence intervals using cross-validation, specify cross-validated
data for true class labels (Labels), classification scores (Scores), and observation weights
(Weights) using cell arrays. rocmetrics treats elements in the cell arrays as cross-validation
folds.

You cannot specify both options. If you specify a custom metric in AdditionalMetrics, you must
use bootstrap to compute confidence intervals. rocmetrics does not support cross-validation for a
custom metric.

rocmetrics holds FixedMetric (threshold, FPR, TPR, or a metric specified in
AdditionalMetrics) fixed at FixedMetricValues and computes the confidence intervals on AUC
and other metrics for the points corresponding to the values in FixedMetricValues.

• Threshold averaging (TA) (when FixedMetric is "Thresholds" (default)) — rocmetrics
estimates confidence intervals for performance metrics at fixed threshold values. The function
takes samples at the fixed thresholds and averages the corresponding metric values.

• Vertical averaging (VA) (when FixedMetric is a performance metric) — rocmetrics estimates
confidence intervals for thresholds and other performance metrics at the fixed metric values. The
function takes samples at the fixed metric values and averages the corresponding threshold and
metric values.

The function estimates confidence intervals for the AUC value only when FixedMetric is
"Thresholds", "FalsePositiveRate", or "TruePositiveRate".

References
[1] Fawcett, T. “ROC Graphs: Notes and Practical Considerations for Researchers”, Machine Learning

31, no. 1 (2004): 1–38.

 ROC Curve and Performance Metrics

5-299



[2] Zweig, M., and G. Campbell. “Receiver-Operating Characteristic (ROC) Plots: A Fundamental
Evaluation Tool in Clinical Medicine.” Clinical Chemistry 39, no. 4 (1993): 561–577 .

[3] Davis, J., and M. Goadrich. “The Relationship Between Precision-Recall and ROC Curves.”
Proceedings of ICML ’06, 2006, pp. 233–240.

[4] Moskowitz, C. S., and M. S. Pepe. “Quantifying and Comparing the Predictive Accuracy of
Continuous Prognostic Factors for Binary Outcomes.” Biostatistics 5, no. 1 (2004): 113–27.

[5] Huang, Y., M. S. Pepe, and Z. Feng. “Evaluating the Predictiveness of a Continuous Marker.” U.
Washington Biostatistics Paper Series, 2006, 250–61.

[6] Briggs, W. M., and R. Zaretzki. “The Skill Plot: A Graphical Technique for Evaluating Continuous
Diagnostic Tests.” Biometrics 64, no. 1 (2008): 250–256.

[7] Bettinger, R. “Cost-Sensitive Classifier Selection Using the ROC Convex Hull Method.” SAS
Institute, 2003.

See Also
rocmetrics | addMetrics | average | plot | ROCCurve Properties

Related Examples
• “Compare Deep Learning Models Using ROC Curves” on page 5-301

5 Deep Learning Tuning and Visualization

5-300



Compare Deep Learning Models Using ROC Curves

This example shows how to use receiver operating characteristic (ROC) curves to compare the
performance of deep learning models.

A ROC curve shows the true positive rate (TPR), or sensitivity, versus the false positive rate (FPR), or
1-specificity, for different thresholds of classification scores. The area under a ROC curve (AUC)
corresponds to the integral of the curve (TPR values) with respect to FPR values from zero to one.
The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range [0, 1], and larger AUC values indicate better classifier performance.

• A perfect classifier always correctly assigns positive class observations to the positive class and
has a TPR of 1 for all threshold values.

• A random classifier returns random score values and has the same values for the FPR and TPR for
all threshold values.

For a multiclass classification problem, the rocmetrics function formulates a set of one-versus-all
binary classification problems with one binary problem for each class and finds a ROC curve for each
class using the corresponding binary problem. Each binary problem assumes one class as positive
and the rest as negative.

This example shows how to use ROC curves and AUC values to compare two methods of training a
deep neural network for image classification.

 Compare Deep Learning Models Using ROC Curves

5-301



• Train a small network from scratch.
• Adapt a pretrained GoogLeNet network for new data using transfer learning.

Load Data

Download and extract the Flowers [1] data set. The Flowers data set contains 3670 images of flowers
belonging to five classes (daisy, dandelion, roses, sunflowers, and tulips).

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

dataFolder = fullfile(downloadFolder,"flower_photos");
if ~exist(dataFolder,"dir")
    fprintf("Downloading Flowers data set (218 MB)... ")
    websave(filename,url);
    untar(filename,downloadFolder)
    fprintf("Done.\n")
end

Downloading Flowers data set (218 MB)... 

Done.

numClasses = 5;

Create an image datastore containing the photos of the flowers.

imds = imageDatastore(dataFolder,IncludeSubfolders=true,LabelSource="foldernames");

Partition the data into training, validation, and test sets. Set aside 20% of the data for validation and
20% of the data for testing using the splitEachLabel function.

[imdsTrain,imdsValidation,imdsTest] = splitEachLabel(imds,0.6,0.2,0.2,"randomize");

Prepare Networks

Create two image classification models. For the first model, build and train a deep neural network
from scratch. For the second model, adapt a pretrained GoogLeNet network for new data using
transfer learning. This example requires the Deep Learning Toolbox™ Model for GoogLeNet Network
support package. If this support package is not installed, then the googlenet function provides a
download link. The GoogLeNet network requires images of size 224-by-224-by-3 pixels.

inputSize = [224 224 3];

Create New Network

Create a small network from scratch. Set the input size to match the input size of the GoogLeNet
pretrained network. To reduce overfitting, include a dropout layer.

numFilters = 16;
filterSize = 3;
poolSize = 2;

layers = [
    imageInputLayer(inputSize)
    

5 Deep Learning Tuning and Visualization

5-302



    convolution2dLayer(filterSize,numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(filterSize,Stride=2)

    convolution2dLayer(filterSize,2*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(poolSize,Stride=2)

    convolution2dLayer(filterSize,4*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(poolSize,Stride=2)
   
    dropoutLayer(0.8)

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

lgraphSmallNet = layerGraph(layers);

Prepare GoogLeNet Network

Adapt a pretrained GoogLeNet network for the new data.

Load GoogLeNet.

lgraphGoogLeNet = layerGraph(googlenet);

To use a pretrained network for transfer learning, you must adapt the network to match your new
data set.

• Replace the last learnable layer with a new layer that is adapted to the new data. For GoogLeNet,
this layer is the final fully connected layer, loss3-classifier. Set the output size in the new
layer to match the number of classes in the new data. Increase the learning in the new layer by
increasing the weight and bias learn rate factors. This increase ensures that learning is faster in
the new layer than in the transferred layers.

• Replace the output layer, output, with a new output layer that is adapted to the new data.

newLearnableLayer = fullyConnectedLayer(numClasses, ...
    WeightLearnRateFactor=10, ...
    BiasLearnRateFactor=10);
lgraphGoogLeNet = replaceLayer(lgraphGoogLeNet,"loss3-classifier",newLearnableLayer);

newOutputLayer = classificationLayer("Name","ClassificationLayer_predictions");
lgraphGoogLeNet = replaceLayer(lgraphGoogLeNet,"output",newOutputLayer);

Compare Networks

Compare the size of the networks using analyzeNetwork.

analyzeNetwork(lgraphGoogLeNet)
analyzeNetwork(lgraphSmallNet)

The small network has 17 layers and nearly 300,000 learnable parameters. The larger GoogleNet
network has 144 layers and nearly 6 million learnable parameters. Although the pretrained network

 Compare Deep Learning Models Using ROC Curves

5-303



is larger, you do not need to train it for as long when you perform transfer learning. This reduction in
training time is because the network has already learned features that you can use as a starting point
for your new data.

Prepare Data

The networks require input images of size 224-by-224-by-3. To automatically resize the training
images, use an augmented image datastore. Specify additional augmentation operations to perform
on the training images: randomly flip the training images along the vertical axis and randomly scale
them up to 50% horizontally and vertically. Data augmentation helps prevent the network from
overfitting and memorizing the exact details of the training images.

augmenter = imageDataAugmenter(RandXReflection=true,RandScale=[0.5 1.5]);
augimdsTrain = augmentedImageDatastore(inputSize,imdsTrain,DataAugmentation=augmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize,imdsValidation);

Training Options

Train the small network for 150 epochs with an initial learning rate of 0.002.

optsSmallNet = trainingOptions("sgdm", ...
    MaxEpochs=150, ...
    InitialLearnRate=0.002, ...
    ValidationData=augimdsValidation, ...
    ValidationFrequency=150, ...
    Verbose=false, ...
    Plots="training-progress");

You do not need to train the pretrained network for as many epochs, so set the maximum number of
epochs to 15. Previously, you increased the learning rate in the new learnable layer. To slow the
learning in the earlier layers of the pretrained network, choose a small initial learning rate of 0.0001.

optsGoogLeNet = optsSmallNet;
optsGoogLeNet.MaxEpochs = 15;
optsGoogLeNet.InitialLearnRate = 0.0001;

5 Deep Learning Tuning and Visualization

5-304



Train Networks

Train the networks using trainNetwork. Despite being larger, the adapted GoogLeNet network
converges quicker than the small network.

netSmallNet = trainNetwork(augimdsTrain,lgraphSmallNet,optsSmallNet);

netGoogLeNet = trainNetwork(augimdsTrain,lgraphGoogLeNet,optsGoogLeNet);

 Compare Deep Learning Models Using ROC Curves

5-305



Compare Network Accuracy

Test the classification accuracy of the two networks by comparing the predictions on the test set with
the true labels.

Prepare the test data.

augimdsTest = augmentedImageDatastore(inputSize,imdsTest);

Classify the test images using the two networks.

[YTestSmallNet,scoresSmallNet] = classify(netSmallNet,augimdsTest);
[YTestGoogLeNet,scoresGoogLeNet] = classify(netGoogLeNet,augimdsTest);

Compare the accuracy of the two networks.

TTest = imdsTest.Labels;
accSmallNet = sum(TTest == YTestSmallNet)/numel(TTest)

accSmallNet = 0.7361

accGoogLeNet = sum(TTest == YTestGoogLeNet)/numel(TTest)

accGoogLeNet = 0.9034

Plot confusion charts for each mode. For each class, the GoogLeNet network performs better than the
smaller network. Both networks have the greatest difficulty in classifying images from the daisy and
rose classes.

figure 
tiledlayout(1,2)
nexttile
confusionchart(TTest,YTestSmallNet)

5 Deep Learning Tuning and Visualization

5-306



title("SmallNet")
nexttile
confusionchart(TTest,YTestGoogLeNet)
title("GoogLeNet")

Compare ROC Curves

You can use ROC curves to compare the performance of the two networks.

Create rocmetrics objects using the true labels in TTest and the classification scores from each of
the trained networks. Specify the column order of the classification scores by extracting the class
names from the output layers of each network.

classNames = netSmallNet.Layers(end).Classes;
rocSmallNet = rocmetrics(TTest,scoresSmallNet,classNames);
rocGoogLeNet = rocmetrics(TTest,scoresGoogLeNet,classNames);

rocSmallNet and rocGoogLeNet are rocmetrics objects that store the AUC values and
performance metrics for each class in the AUC and Metrics properties. Plot the ROC curves for each
class. You can click on any part of the ROC curve to see the threshold corresponding to the TPR and
FPR values that you select.

The diagonal line indicates the performances of a random classifier. The smaller network performs
the best for the sunflower and dandelion classes. However, across all five classes, the larger network
performs better than the smaller network.

figure
tiledlayout(1,2,TileSpacing="compact")

 Compare Deep Learning Models Using ROC Curves

5-307



nexttile
plot(rocSmallNet,ShowModelOperatingPoint=false)
legend(classNames)
title("ROC Curve: SmallNet")
nexttile
plot(rocGoogLeNet,ShowModelOperatingPoint=false)
legend(classNames)
title("ROC Curve: GoogLeNet")

Compare AUC Values

You can access the AUC value for each class using the rocmetrics object.

aucSmallNet = rocSmallNet.AUC;
aucGoogLeNet = rocGoogLeNet.AUC;

Compare the AUC values for each class. The AUC values provide an aggregate performance measure
across all possible thresholds. The AUC values are in the range [0, 1], and larger AUC values indicate
better classifier performance. For each class, the GoogLeNet network produces AUC values close to
1.

figure
bar([aucSmallNet; aucGoogLeNet]')
xticklabels(classNames)
legend(["SmallNet","GoogLeNet"],Location="southeast")
title("AUC")

5 Deep Learning Tuning and Visualization

5-308



Investigate Specific Class

Investigate the ROC curves for the sunflowers class. By default, the plot function displays the class
names and the AUC values in the legend. To include the model names in the legend instead of the
class names, modify the DisplayName property of the ROCCurve object that the plot function
returns. The model operating point represents the FPR and TPR corresponding to the typical
threshold value. For the sunflower class, both models are performing well.

classToInvestigate = "sunflowers";

figure
c = cell(2,1);
g = cell(2,1);
[c{1},g{1}] = plot(rocSmallNet,ClassNames=classToInvestigate);
hold on
[c{2},g{2}] = plot(rocGoogLeNet,ClassNames=classToInvestigate);
modelNames = ["SmallNet","GoogLeNet"];
for i = 1:2
    c{i}.DisplayName = replace(c{i}.DisplayName, ...
        classToInvestigate,modelNames(i));
    g{i}(1).DisplayName = join([modelNames(i),"Model Operating Point"]);
end
title("ROC Curve","Class: " + classToInvestigate)
hold off

 Compare Deep Learning Models Using ROC Curves

5-309



Compare Average ROC Curves

Find the average ROC curves. Specify AverageROCType as "macro" to compute metrics for the
average ROC curve using the macro-averaging method. Macro-averaging finds the average values of
the FPR and TPR by averaging the values of the one-versus-all binary classification problems for each
class. To learn more, see “Average of Performance Metrics” on page 5-292.

figure
averageType = "macro";
plot(rocSmallNet,AverageROCType=averageType,ClassNames=[])
hold on
plot(rocGoogLeNet,AverageROCType=averageType,ClassNames=[])
legend(["SmallNet (" + averageType + "-average)", ...
    "GoogLeNet (" + averageType + "-average)"])
hold off

5 Deep Learning Tuning and Visualization

5-310



References

[1] The TensorFlow Team. Flowers. http://download.tensorflow.org/example_images/flower_photos.tgz

See Also
rocmetrics | trainNetwork | confusionchart

Related Examples
• “ROC Curve and Performance Metrics” on page 5-290
• “Deep Learning in MATLAB” on page 1-2
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Compare Deep Learning Models Using ROC Curves

5-311

http://download.tensorflow.org/example_images/flower_photos.tgz




Manage Deep Learning Experiments

• “Create a Deep Learning Experiment for Classification” on page 6-2
• “Create a Deep Learning Experiment for Regression” on page 6-10
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21
• “Evaluate Deep Learning Experiments by Using Metric Functions” on page 6-25
• “Try Multiple Pretrained Networks for Transfer Learning” on page 6-33
• “Experiment with Weight Initializers for Transfer Learning” on page 6-41
• “Tune Experiment Hyperparameters by Using Bayesian Optimization” on page 6-49
• “Choose Training Configurations for LSTM Using Bayesian Optimization” on page 6-60
• “Run a Custom Training Experiment for Image Comparison” on page 6-73
• “Use Experiment Manager to Train Generative Adversarial Networks (GANs)” on page 6-89
• “Use Bayesian Optimization in Custom Training Experiments” on page 6-104
• “Custom Training with Multiple GPUs in Experiment Manager” on page 6-117
• “Keyboard Shortcuts for Experiment Manager” on page 6-130
• “Debug Code Before and After Running Experiments” on page 6-132

6



Create a Deep Learning Experiment for Classification

This example shows how to train a deep learning network for classification by using Experiment
Manager. In this example, you train two networks to classify images of MathWorks merchandise into
five classes. Each network is trained using three algorithms. In each case, a confusion matrix
compares the true classes for a set of validation images with the classes predicted by the trained
network. For more information on training a network for image classification, see “Train Deep
Learning Network to Classify New Images” on page 3-6.

This experiment requires the Deep Learning Toolbox™ Model for GoogLeNet Network support
package. Before you run the experiment, install this support package by calling the googlenet
function and clicking the download link.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
ClassificationExperiment.

6 Manage Deep Learning Experiments

6-2



Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. For more information,
see “Configure Built-In Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Merchandise image classification using:
* an untrained network (default) or a pretrained network (googlenet)
* various solvers for training networks (sgdm, rmsprop, or adam)

The Hyperparameters section specifies the strategy and hyperparameter values to use for the
experiment. When you run the experiment, Experiment Manager trains the network using every

 Create a Deep Learning Experiment for Classification

6-3



combination of hyperparameter values specified in the hyperparameter table. This example uses two
hyperparameters:

• Network specifies the network to train. The options include "default" (the default network
provided by the experiment template for image classification) and "googlenet" (a pretrained
GoogLeNet network with modified layers for transfer learning).

• Solver indicates the algorithm used to train the network. The options include "sgdm" (stochastic
gradient descent with momentum), "rmsprop" (root mean square propagation), and "adam"
(adaptive moment estimation). For more information about these algorithms, see “Stochastic
Gradient Descent”.

The Setup Function section specifies a function that configures the training data, network
architecture, and training options for the experiment. To open this function in MATLAB® Editor, click
Edit. The code for the function also appears in Setup Function. The input to the setup function is a
structure with fields from the hyperparameter table. The function returns three outputs that you use
to train a network for image classification problems. In this example, the setup function has these
sections:

• Load Training Data defines image datastores containing the training and validation data. This
example loads images from the file MerchData.zip. This small data set contains 75 images of
MathWorks merchandise, belonging to five different classes. The images are of size 227-by-227-
by-3. For more information on this data set, see “Image Data Sets” on page 20-116.

filename = "MerchData.zip";
dataFolder = fullfile(tempdir,"MerchData");
if ~exist(dataFolder,"dir")
    unzip(filename,tempdir);
end

imdsTrain = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ....
    LabelSource="foldernames");

numTrainingFiles = 0.7;
[imdsTrain,imdsValidation] = splitEachLabel(imdsTrain,numTrainingFiles);

• Define Network Architecture defines the architecture for a convolutional neural network for
deep learning classification. In this example, the choice of network to train depends on the value
of the hyperparameter Network.

switch params.Network
    case "default"
        inputSize = [227 227 3];
        numClasses = 5;
        
        layers = [
            imageInputLayer(inputSize)
            convolution2dLayer(5,20)
            batchNormalizationLayer
            reluLayer
            fullyConnectedLayer(numClasses)
            softmaxLayer
            classificationLayer];

6 Manage Deep Learning Experiments

6-4



        
    case "googlenet"
        inputSize = [224 224 3];
        numClasses = 5;
        
        imdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
        imdsValidation = augmentedImageDatastore(inputSize(1:2), ...
            imdsValidation);
        
        net = googlenet;
        layers = layerGraph(net);
        
        newLearnableLayer = fullyConnectedLayer(numClasses, ...
            Name="new_fc", ...
            WeightLearnRateFactor=10, ...
            BiasLearnRateFactor=10);
        layers = replaceLayer(layers,"loss3-classifier",newLearnableLayer);
        
        newClassLayer = classificationLayer(Name="new_classoutput");
        layers = replaceLayer(layers,"output",newClassLayer);
       
    otherwise
        error("Undefined network selection.");
end

• Specify Training Options defines a trainingOptions object for the experiment. The example
trains the network for 8 epochs using the algorithm specified by the Solver entry in the
hyperparameter table.

options = trainingOptions(params.Solver, ...
    MiniBatchSize=10, ...
    MaxEpochs=8, ...
    InitialLearnRate=1e-4, ...
    Shuffle="every-epoch", ...
    ValidationData=imdsValidation, ...
    ValidationFrequency=5, ...
    Verbose=false);

The Metrics section specifies optional functions that evaluate the results of the experiment. This
example does not include any custom metric functions.

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses a different combination of hyperparameter values. By default, Experiment
Manager runs one trial at a time. If you have Parallel Computing Toolbox™, you can run multiple
trials at the same time or offload your experiment as a batch job in a cluster:

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers

 Create a Deep Learning Experiment for Classification

6-5



as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the accuracy and loss for each trial.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.

Evaluate Results

To find the best result for your experiment, sort the table of results by validation accuracy.

1 Point to the Validation Accuracy column.
2 Click the triangle icon.
3 Select Sort in Descending Order.

The trial with the highest validation accuracy appears at the top of the results table.

To display the confusion matrix for this trial, select the top row in the results table and, under
Review Results, click Validation Data.

6 Manage Deep Learning Experiments

6-6



To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the Validation Accuracy cell of the best trial.
2 Select Add Annotation.
3 In the Annotations pane, enter your observations in the text box.

For more information, see “Sort, Filter, and Annotate Experiment Results”.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Setup Function

This function configures the training data, network architecture, and training options for the
experiment. The input to this function is a structure with fields from the hyperparameter table. The
function returns three outputs that you use to train a network for image classification problems.

function [imdsTrain,layers,options] = ClassificationExperiment_setup(params)

Load Training Data

filename = "MerchData.zip";
dataFolder = fullfile(tempdir,"MerchData");
if ~exist(dataFolder,"dir")
    unzip(filename,tempdir);
end

imdsTrain = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ....
    LabelSource="foldernames");

 Create a Deep Learning Experiment for Classification

6-7



numTrainingFiles = 0.7;
[imdsTrain,imdsValidation] = splitEachLabel(imdsTrain,numTrainingFiles);

Define Network Architecture

switch params.Network
    case "default"
        inputSize = [227 227 3];
        numClasses = 5;
        
        layers = [
            imageInputLayer(inputSize)
            convolution2dLayer(5,20)
            batchNormalizationLayer
            reluLayer
            fullyConnectedLayer(numClasses)
            softmaxLayer
            classificationLayer];
        
    case "googlenet"
        inputSize = [224 224 3];
        numClasses = 5;
        
        imdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
        imdsValidation = augmentedImageDatastore(inputSize(1:2), ...
            imdsValidation);
        
        net = googlenet;
        layers = layerGraph(net);
        
        newLearnableLayer = fullyConnectedLayer(numClasses, ...
            Name="new_fc", ...
            WeightLearnRateFactor=10, ...
            BiasLearnRateFactor=10);
        layers = replaceLayer(layers,"loss3-classifier",newLearnableLayer);
        
        newClassLayer = classificationLayer(Name="new_classoutput");
        layers = replaceLayer(layers,"output",newClassLayer);
       
    otherwise
        error("Undefined network selection.");
end

Specify Training Options

options = trainingOptions(params.Solver, ...
    MiniBatchSize=10, ...
    MaxEpochs=8, ...
    InitialLearnRate=1e-4, ...
    Shuffle="every-epoch", ...
    ValidationData=imdsValidation, ...
    ValidationFrequency=5, ...

6 Manage Deep Learning Experiments

6-8



    Verbose=false);

end

See Also
Apps
Experiment Manager

Functions
googlenet | trainNetwork | trainingOptions

More About
• “Get Started with Transfer Learning”
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Evaluate Deep Learning Experiments by Using Metric Functions” on page 6-25
• “Tune Experiment Hyperparameters by Using Bayesian Optimization” on page 6-49
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

 Create a Deep Learning Experiment for Classification

6-9



Create a Deep Learning Experiment for Regression

This example shows how to train a deep learning network for regression by using Experiment
Manager. In this example, you use a regression model to predict the angles of rotation of
handwritten digits. A custom metric function determines the fraction of angle predictions within an
acceptable error margin from the true angles. For more information on using a regression model, see
“Train Convolutional Neural Network for Regression” on page 3-49.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
RegressionExperiment.

6 Manage Deep Learning Experiments

6-10



Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. For more information,
see “Configure Built-In Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Regression model to predict angles of rotation of digits, using hyperparameters to specify:
* the number of filters used by the convolution layers
* the probability of the dropout layer in the network

The Hyperparameters section specifies the strategy and hyperparameter values to use for the
experiment. When you run the experiment, Experiment Manager trains the network using every

 Create a Deep Learning Experiment for Regression

6-11



combination of hyperparameter values specified in the hyperparameter table. This example uses two
hyperparameters:

• Probability sets the probability of the dropout layer in the neural network. By default, the
values for this hyperparameter are specified as [0.1 0.2].

• Filters indicates the number of filters used by the first convolution layer in the neural network.
In the subsequent convolution layers, the number of filters is a multiple of this value. By default,
the values of this hyperparameter are specified as [4 6 8].

The Setup Function section specifies a function that configures the training data, network
architecture, and training options for the experiment. To open this function in MATLAB® Editor, click
Edit. The code for the function also appears in Setup Function. The input to the setup function is a
structure with fields from the hyperparameter table. The function returns four outputs that you use to
train a network for image regression problems. In this example, the setup function has these
sections:

• Load Training Data defines the training and validation data for the experiment as 4-D arrays.
The training and validation data sets each contain 5000 images of digits from 0 to 9. The
regression values correspond to the angles of rotation of the digits.

[XTrain,~,YTrain] = digitTrain4DArrayData;
[XValidation,~,YValidation] = digitTest4DArrayData;

• Define Network Architecture defines the architecture for a convolutional neural network for
regression.

inputSize = [28 28 1];
numFilters = params.Filters;

layers = [
    imageInputLayer(inputSize)

    convolution2dLayer(3,numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    averagePooling2dLayer(2,Stride=2)

    convolution2dLayer(3,2*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    averagePooling2dLayer(2,Stride=2)
  
    convolution2dLayer(3,4*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(3,4*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    dropoutLayer(params.Probability)
    fullyConnectedLayer(1)

6 Manage Deep Learning Experiments

6-12



    regressionLayer];

• Specify Training Options defines a trainingOptions object for the experiment. The example
trains the network for 30 epochs. The learning rate is initially 0.001 and drops by a factor of 0.1
after 20 epochs. The software trains the network on the training data and calculates the root
mean squared error (RMSE) and loss on the validation data at regular intervals during training.
The validation data is not used to update the network weights.

miniBatchSize = 128;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions("sgdm", ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=30, ...
    InitialLearnRate=1e-3, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=20, ...
    Shuffle="every-epoch", ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=validationFrequency, ...
    Verbose=false);

The Metrics section specifies optional functions that evaluate the results of the experiment.
Experiment Manager evaluates these functions each time it finishes training the network. This
example includes a metric function Accuracy that determines the percentage of angle predictions
within an acceptable error margin from the true angles. By default, the function uses a threshold of
10 degrees. To open this function in MATLAB Editor, select the name of the metric function and click
Edit. The code for the function also appears in Compute Accuracy of Regression Model.

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses a different combination of hyperparameter values. By default, Experiment
Manager runs one trial at a time. If you have Parallel Computing Toolbox™, you can run multiple
trials at the same time or offload your experiment as a batch job in a cluster:

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the RMSE and loss for each trial. The table also displays the accuracy of
the trial, as determined by the custom metric function Accuracy.

 Create a Deep Learning Experiment for Regression

6-13



To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.

Evaluate Results

To find the best result for your experiment, sort the table of results by accuracy.

1 Point to the Accuracy column.
2 Click the triangle icon.
3 Select Sort in Descending Order.

The trial with the highest accuracy appears at the top of the results table.

To test the performance of an individual trial, export the trained network and display a box plot of the
residuals for each digit class.

1 Select the trial with the highest accuracy.
2 On the Experiment Manager toolstrip, click Export > Trained Network.
3 In the dialog window, enter the name of a workspace variable for the exported network. The

default name is trainedNetwork.
4 Use the exported network as the input to the function plotResiduals. For instance, in the

MATLAB Command Window, enter:

plotResiduals(trainedNetwork)

To view the code for this function, see Display Box Plot of Residuals for Each Digit. The function
creates a residual box plot for each digit. The digit classes with highest accuracy have a mean close
to zero and little variance.

6 Manage Deep Learning Experiments

6-14



To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the Accuracy cell of the best trial.
2 Select Add Annotation.
3 In the Annotations pane, enter your observations in the text box.

For more information, see “Sort, Filter, and Annotate Experiment Results”.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Setup Function

This function configures the training data, network architecture, and training options for the
experiment. The input to this function is a structure with fields from the hyperparameter table. The
function returns four outputs that you use to train a network for image regression problems.

function [XTrain,YTrain,layers,options] = RegressionExperiment_setup(params)

Load Training Data

[XTrain,~,YTrain] = digitTrain4DArrayData;
[XValidation,~,YValidation] = digitTest4DArrayData;

Define Network Architecture

inputSize = [28 28 1];

 Create a Deep Learning Experiment for Regression

6-15



numFilters = params.Filters;

layers = [
    imageInputLayer(inputSize)

    convolution2dLayer(3,numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    averagePooling2dLayer(2,Stride=2)

    convolution2dLayer(3,2*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    averagePooling2dLayer(2,Stride=2)
  
    convolution2dLayer(3,4*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(3,4*numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    dropoutLayer(params.Probability)
    fullyConnectedLayer(1)
    regressionLayer];

Specify Training Options

miniBatchSize = 128;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions("sgdm", ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=30, ...
    InitialLearnRate=1e-3, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=20, ...
    Shuffle="every-epoch", ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=validationFrequency, ...
    Verbose=false);

end

Compute Accuracy of Regression Model

This metric function calculates the number of predictions within an acceptable error margin from the
true angles.

function metricOutput = Accuracy(trialInfo)

6 Manage Deep Learning Experiments

6-16



[XValidation,~,YValidation] = digitTest4DArrayData;
YPredicted = predict(trialInfo.trainedNetwork,XValidation);
predictionError = YValidation - YPredicted;

thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numValidationImages = numel(YValidation);

metricOutput = 100*numCorrect/numValidationImages;

end

Display Box Plot of Residuals for Each Digit

This function creates a residual box plot for each digit.

function plotResiduals(net)

[XValidation,~,YValidation] = digitTest4DArrayData;
YPredicted = predict(net,XValidation);
predictionError = YValidation - YPredicted;
residualMatrix = reshape(predictionError,500,10);

figure
boxplot(residualMatrix,...
    "Labels",["0","1","2","3","4","5","6","7","8","9"])
xlabel("Digit Class")
ylabel("Degrees Error")
title("Residuals")

end

See Also
Apps
Experiment Manager

Functions
trainNetwork | trainingOptions

More About
• “Train Convolutional Neural Network for Regression” on page 3-49
• “Evaluate Deep Learning Experiments by Using Metric Functions” on page 6-25
• “Tune Experiment Hyperparameters by Using Bayesian Optimization” on page 6-49
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

 Create a Deep Learning Experiment for Regression

6-17



Use Experiment Manager to Train Networks in Parallel
By default, Experiment Manager runs one trial of your experiment at a time on a single CPU. If you
have Parallel Computing Toolbox, you can configure your experiment to run multiple trials at the
same time or to run a single trial at a time on multiple GPUs, on a cluster, or in the cloud.

Training Scenario Recommendation
Run multiple trials at the same
time using one parallel worker
for each trial.

Set up your parallel environment, set Mode to Simultaneous,

and click Run . Experiment Manager runs as many
simultaneous trials as there are workers in your parallel pool. All
other trials in your experiment are queued for later evaluation.

Alternatively, to offload the experiment as a batch job, set Mode to
Batch Simultaneous, specify your Cluster and Pool Size, and

click Run . For more information, see “Offload Experiments as
Batch Jobs to Cluster” on page 6-21.

Experiment Manager does not support Simultaneous or Batch
Simultaneous execution when you set the training option
ExecutionEnvironment to "multi-gpu" or "parallel" or
when you enable the training option DispatchInBackground.
Use these options to speed up your training only if you intend to
run one trial of your experiment at a time.

Run a single trial at a time on
multiple parallel workers.

Built-In Training Experiments:

In the experiment setup function, set the training option
ExecutionEnvironment to "multi-gpu" or "parallel". For
more information, see “Scale Up Deep Learning in Parallel, on
GPUs, and in the Cloud” on page 7-2.

If you are using a partitionable datastore, enable background
dispatching by setting the training option
DispatchInBackground to true. For more information, see “Use
Datastore for Parallel Training and Background Dispatching” on
page 20-8.

Set up your parallel environment, set Mode to Sequential, and

click Run .

Alternatively, to offload the experiment as a batch job, set Mode to
Batch Sequential, specify your Cluster and Pool Size, and

click Run . Experiment Manager does not support this
execution mode when you set the training option
ExecutionEnvironment to "multi-gpu". For more information,
see “Offload Experiments as Batch Jobs to Cluster” on page 6-21.

6 Manage Deep Learning Experiments

6-18



Training Scenario Recommendation
Custom Training Experiments:

In the experiment training function, set up your parallel
environment and use an spmd block to define a custom parallel
training loop. For more information, see “Custom Training with
Multiple GPUs in Experiment Manager” on page 6-117.

Set Mode to Sequential and click Run .

Alternatively, to offload the experiment as a batch job, set Mode to
Batch Sequential, specify your Cluster and Pool Size, and

click Run . For more information, see “Offload Experiments as
Batch Jobs to Cluster” on page 6-21.

In built-in training experiments, the results table displays whether each trial runs on a single CPU, a
single GPU, multiple CPUs, or multiple GPUs. To show this information, click the Show or hide

columns button  located above the results table and select Execution Environment.

Tip

• Load training and validation data from a location that is accessible to all your workers. For
example, store your data outside the project and access the data by using an absolute path.
Alternatively, create a datastore object that can access the data on another machine by setting up
the AlternateFileSystemRoots property of the datastore. For more information, see “Set Up
Datastore for Processing on Different Machines or Clusters”.

• To run an experiment in parallel using MATLAB Online™, you must have access to a Cloud Center
cluster. For more information, see “Use Parallel Computing Toolbox with Cloud Center Cluster in
MATLAB Online” (Parallel Computing Toolbox).

Set Up Parallel Environment
Train on Multiple GPUs

If you have multiple GPUs, parallel execution typically increases the speed of your experiment. Using
a GPU for deep learning requires Parallel Computing Toolbox and a supported GPU device. For more
information, see “GPU Computing Requirements” (Parallel Computing Toolbox).

• For built-in training experiments, GPU support is automatic. By default, these experiments use a
GPU if one is available.

• For custom training experiments, computations occur on a CPU by default. To train on a GPU,
convert your data to gpuArray objects. To determine whether a usable GPU is available, call the
canUseGPU function.

For best results, before you run your experiment, create a parallel pool with as many workers as
GPUs. You can check the number of available GPUs by using the gpuDeviceCount function.

numGPUs = gpuDeviceCount("available");
parpool(numGPUs)

 Use Experiment Manager to Train Networks in Parallel

6-19



Note If you create a parallel pool on a single GPU, all workers share that GPU, so you do not get the
training speed-up and you increase the chances of the GPU running out of memory.

Train on Cluster or in Cloud

If your experiments take a long time to run on your local machine, you can accelerate training by
using a computer cluster on your onsite network or by renting high-performance GPUs in the cloud.
After you complete the initial setup, you can run your experiments with minimal changes to your
code. Working on a cluster or in the cloud requires MATLAB Parallel Server™. For more information,
see “Deep Learning in the Cloud” on page 7-10.

See Also
Apps
Experiment Manager

Functions
trainingOptions | canUseGPU | gpuDeviceCount | parpool | spmd

Objects
gpuArray

Related Examples
• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2
• “Custom Training with Multiple GPUs in Experiment Manager” on page 6-117
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21
• “Use Parallel Computing Toolbox with Cloud Center Cluster in MATLAB Online” (Parallel

Computing Toolbox)

6 Manage Deep Learning Experiments

6-20



Offload Experiments as Batch Jobs to Cluster
By default, Experiment Manager runs your experiments interactively. While an experiment is
running, you can monitor the progress of each trial in a table of results and in a training plot.
However, running an experiment interactively limits your access to MATLAB functionality. For
example, during training, you cannot close the project that contains the experiment or run other
experiments.

If you have Parallel Computing Toolbox and MATLAB Parallel Server, you can send your experiment
as a batch job to a remote cluster. While the experiment is running in the cluster, you can:

• Run another experiment interactively or start another batch job using the same experiment, using
a different experiment in the same project, or using an experiment in a different project.

• Close the Experiment Manager app and continue using MATLAB.
• Close your MATLAB session.

If you have only Parallel Computing Toolbox, you can use a local cluster profile to develop and test
your experiments on your client machine instead of running them on a network cluster. If you close
your MATLAB session, any batch jobs that are using the local cluster profile also stop immediately.

Create Batch Job on Cluster
To start a batch job for your experiment:

1 Configure your experiment, as described in “Configure Built-In Training Experiment” or
“Configure Custom Training Experiment”.

Tip Load training and validation data from a location that is accessible to all your workers. For
example, store your data outside the project and access the data by using an absolute path.
Alternatively, create a datastore object that can access the data on another machine by setting up
the AlternateFileSystemRoots property of the datastore. For more information, see “Set Up
Datastore for Processing on Different Machines or Clusters”.

2 In the Experiment Manager toolstrip, under Execution, specify an execution Mode:

• To run one trial of the experiment at a time, select Batch Sequential. Experiment Manager
does not support this execution mode when you set the training option
ExecutionEnvironment to "multi-gpu".

• To run multiple trials at the same time, select Batch Simultaneous. Experiment Manager
does not support this execution mode when you set the training option
ExecutionEnvironment to "multi-gpu" or "parallel" or when you enable the training
option DispatchInBackground.

3 Use the Cluster list to select a cluster profile to use for your batch job. To create and manage
cluster profiles, open the Cluster Profile Manager. For more information, see “Discover Clusters
and Use Cluster Profiles” (Parallel Computing Toolbox).

4 In the Pool Size field, enter the number of workers for your batch job.

• In Batch Sequential mode, use this field to configure the number of parallel workers that
collaborate on each trial of the experiment. If you set the pool size to 0, the experiment runs
on a single worker.

 Offload Experiments as Batch Jobs to Cluster

6-21



• In Batch Simultaneous mode, use this field to specify the number of trials that the cluster
runs at the same time.

Because Experiment Manager uses an additional worker to run the batch job, the cluster must
have at least one more worker available than the number you specify in the Pool Size field. For
example, if you specify a pool size of 2, the cluster must have at least three workers available
(two workers for the experiment and an additional worker to run the batch job). For more
information, see “Run a Batch Job with a Parallel Pool” (Parallel Computing Toolbox).

5
Click Run . Experiment Manager uses the batch function to run the experiment in the
specified cluster.

While the batch job runs your experiment, you can close Experiment Manager and recover the results
later. To monitor batch jobs, use the Job Monitor, as described in “Send Deep Learning Batch Job to
Cluster” on page 7-43.

Note Using the Job Monitor to cancel or delete jobs that you create with Experiment Manager can
lead to unexpected behavior. Instead, cancel and delete these batch jobs by using Experiment
Manager.

Track Progress of Batch Job
When you start a batch job for an experiment, a table of results displays training and validation
metrics (such as RMSE and loss) for each trial. Experiment Manager does not continually
communicate with the cluster to update the values in this table. Instead, to retrieve the latest metric
values and the training plot for an experiment running on a cluster, click the Refresh button above
the results table.

6 Manage Deep Learning Experiments

6-22



Interrupt Training in Batch Job
To cancel a batch job running an experiment, in the Experiment Manager toolstrip, click Cancel

. Experiment Manager marks any running and queued trials as Canceled and discards their
results.

Batch execution does not support stopping, canceling, or restarting individual trials of an experiment.

Retrieve Results and Clean Up Data
To download the training results for a completed trial, in the Actions column of the results table,

click the Download button  for the trial. Experiment Manager saves the training results that you
download from the cluster, so you can access them after you close your MATLAB session.

• For built-in training experiments, Experiment Manager downloads the trained network and
training information from the cluster.

• For custom training experiments, Experiment Manager downloads the training output from the
cluster.

After you download the training results from the cluster, you can export these results to the
workspace and perform additional computations to evaluate the quality of the training.

• For built-in training experiments, select Export > Trained Network or Export > Training
Information.

• For custom training experiments, select Export > Training Output.

Once you retrieve all the required results and do not need the job anymore, delete it from the cluster
to avoid consuming resources unnecessarily. To delete the batch job and permanently discard the
training results, training plots, and confusion matrices for any trials you have not downloaded from
the cluster, click the Clean up button above the results table.

See Also
Apps
Experiment Manager | Job Monitor

Functions
batch

Related Examples
• “Run Batch Parallel Jobs” (Parallel Computing Toolbox)

 Offload Experiments as Batch Jobs to Cluster

6-23



• “Discover Clusters and Use Cluster Profiles” (Parallel Computing Toolbox)
• “Send Deep Learning Batch Job to Cluster” on page 7-43
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Use Parallel Computing Toolbox with Cloud Center Cluster in MATLAB Online” (Parallel

Computing Toolbox)

6 Manage Deep Learning Experiments

6-24



Evaluate Deep Learning Experiments by Using Metric
Functions

This example shows how to use metric functions to evaluate the results of an experiment. By default,
when you run a built-in training experiment, Experiment Manager computes the loss, accuracy (for
classification experiments), and root mean squared error (for regression experiments) for each trial in
your experiment. To compute other measures, create your own metric function. For example, you can
define metric functions to:

• Test the prediction performance of a trained network.
• Evaluate the training progress by computing the slope of the validation loss over the final epoch.
• Display the size of the network used in an experiment that uses different network architectures for

each trial.

When each trial finishes training, Experiment Manager evaluates the metric functions and displays
their values in the results table.

In this example, you train a network to classify images of handwritten digits. Two metric functions
determine how well the trained network identifies the images of the numerals one and seven. For
more information on using Experiment Manager to train a network for image classification, see
“Image Classification by Sweeping Hyperparameters”.

Define Metric Functions

Add a metric function to a built-in training experiment.

1 In the Experiment pane, under Metrics, click Add.
2 In the Add metric dialog box, enter a name for the metric function and click OK. If you enter the

name of a function that already exists in the project, Experiment Manager adds it to the
experiment. Otherwise, Experiment Manager creates a function defined by a default template.

3 Select the name of the metric function and click Edit. The metric function opens in MATLAB®
Editor.

The input to a metric function is a structure with three fields:

• trainedNetwork is the SeriesNetwork object or DAGNetwork object returned by the
trainNetwork function. For more information, see “net”.

• trainingInfo is a structure containing the training information returned by the trainNetwork
function. For more information, see “info”.

• parameters is a structure with fields from the hyperparameter table.

The output of a custom metric function must be a scalar number, a logical value, or a string.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
ClassificationExperiment.

 Evaluate Deep Learning Experiments by Using Metric Functions

6-25



Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. For more information,
see “Configure Built-In Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Classification of digits, evaluating results by using metric functions:
* OnesAsSevens returns the percentage of 1s misclassified as 7s.
* SevensAsOnes returns the percentage of 7s misclassified as 1s.

The Hyperparameters section specifies the strategy and hyperparameter values to use for the
experiment. When you run the experiment, Experiment Manager trains the network using every

6 Manage Deep Learning Experiments

6-26



combination of hyperparameter values specified in the hyperparameter table. This example uses the
hyperparameters InitialLearnRate and Momentum.

The Setup Function section specifies a function that configures the training data, network
architecture, and training options for the experiment. To open this function in MATLAB® Editor, click
Edit. The code for the function also appears in Setup Function. The input to the setup function is a
structure with fields from the hyperparameter table. The function returns three outputs that you use
to train a network for image classification problems. In this example, the setup function has these
sections:

• Load Training Data defines image datastores containing the training and validation data. This
example loads images from the Digits data set. For more information on this data set, see “Image
Data Sets” on page 20-116.

digitDatasetPath = fullfile(toolboxdir("nnet"), ...
    "nndemos","nndatasets","DigitDataset");
imdsTrain = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

numTrainingFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imdsTrain,numTrainingFiles);

• Define Network Architecture defines the architecture for a convolutional neural network for
deep learning classification. This example uses the default classification network provided by the
setup function template.

inputSize = [28 28 1];
numClasses = 10;
layers = [
    imageInputLayer(inputSize)
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

• Specify Training Options defines a trainingOptions object for the experiment. The example
loads the values for the training options InitialLearnRate and Momentum from the
hyperparameter table.

options = trainingOptions("sgdm", ...
    MaxEpochs=5, ... 
    ValidationData=imdsValidation, ...
    ValidationFrequency=30, ...
    InitialLearnRate=params.InitialLearnRate, ...
    Momentum=params.Momentum, ...
    Verbose=false);

 Evaluate Deep Learning Experiments by Using Metric Functions

6-27



The Metrics section specifies optional functions that evaluate the results of the experiment.
Experiment Manager evaluates these functions each time it finishes training the network. This
example includes two metric functions:

• OnesAsSevens returns the percentage of images of the numeral one that the trained network
misclassifies as sevens.

• SevensAsOnes returns the percentage of images of the numeral seven that the trained network
misclassifies as ones.

Each of these functions uses the trained network to classify the entire Digits data set. Then, the
functions determine the number of images for which the actual label and the predicted label
disagree. For example, the function OnesAsSevens computes the number of images with an actual
label of "1" and a predicted label of "7". Similarly, the function SevensAsOnes computes the
number of images with an actual label of "7" and a predicted label of "1". To open these functions in
MATLAB Editor, select the name of a metric function and click Edit. The code for these functions also
appears in Find Ones Misclassified as Sevens and Find Sevens Misclassified as Ones.

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses a different combination of hyperparameter values. By default, Experiment
Manager runs one trial at a time. If you have Parallel Computing Toolbox™, you can run multiple
trials at the same time or offload your experiment as a batch job in a cluster:

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the metric function values for each trial.

Evaluate Results

To find the best result for your experiment, sort the table of results. For example, find the trial with
the smallest number of misclassified ones.

1 Point to the OnesAsSevens column.
2 Click the triangle icon.
3 Select Sort in Ascending Order.

6 Manage Deep Learning Experiments

6-28



Similarly, find the trial with the smallest number of misclassified sevens by opening the drop-down
menu for the SevensAsOnes column and selecting Sort in Ascending Order.

If no single trial minimizes both values, opt for a trial that ranks well for both metrics. For example,
you can export the results table to the MATLAB workspace as a table array and compute the
average of the two metric values for each trial.

1 On the Experiment Manager toolstrip, click Export > Results Table.
2 In the dialog window, enter the name of a workspace variable for the exported table. The default

name is resultsTable.
3 Use the exported network as the input to the function averageMetrics. For instance, in the

MATLAB Command Window, enter:

averageMetrics(resultsTable);

To view the code for this function, see Compute Average Metric Values. The function displays a
summary of the metric information for the trial with the lowest average metric value.

******************************************

Best trial: 4
Ones misclassified as sevens: 1.3000% (Ranking: 3)
Sevens misclassified as ones: 1.2000% (Ranking: 1)
Average of metric values: 1.2500%

******************************************

To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the OnesAsSevens cell of the best trial.
2 Select Add Annotation.
3 In the Annotations pane, enter your observations in the text box.
4 Repeat the previous steps for the SevensAsOnes cell.

 Evaluate Deep Learning Experiments by Using Metric Functions

6-29



For more information, see “Sort, Filter, and Annotate Experiment Results”.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Setup Function

This function configures the training data, network architecture, and training options for the
experiment. The input to this function is a structure with fields from the hyperparameter table. The
function returns three outputs that you use to train a network for image classification problems.

function [imdsTrain,layers,options] = ClassificationExperiment_setup(params)

Load Training Data

digitDatasetPath = fullfile(toolboxdir("nnet"), ...
    "nndemos","nndatasets","DigitDataset");
imdsTrain = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

numTrainingFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imdsTrain,numTrainingFiles);

Define Network Architecture

inputSize = [28 28 1];
numClasses = 10;
layers = [
    imageInputLayer(inputSize)
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify Training Options

options = trainingOptions("sgdm", ...
    MaxEpochs=5, ... 
    ValidationData=imdsValidation, ...
    ValidationFrequency=30, ...
    InitialLearnRate=params.InitialLearnRate, ...
    Momentum=params.Momentum, ...
    Verbose=false);

end

6 Manage Deep Learning Experiments

6-30



Find Ones Misclassified as Sevens

This function determines the number of ones that are misclassified as sevens.

function metricOutput = OnesAsSevens(trialInfo)

actualValue = "1";
predValue = "7";

net = trialInfo.trainedNetwork;

digitDatasetPath = fullfile(toolboxdir("nnet"), ...
    "nndemos","nndatasets","DigitDataset");
imds = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

YActual = imds.Labels;
YPred = classify(net,imds);

K = sum(YActual == actualValue & YPred == predValue);
N = sum(YActual == actualValue);

metricOutput = 100*K/N;

end

Find Sevens Misclassified as Ones

This function determines the number of sevens that are misclassified as ones.

function metricOutput = SevensAsOnes(trialInfo)

actualValue = "7";
predValue = "1";

net = trialInfo.trainedNetwork;

digitDatasetPath = fullfile(toolboxdir("nnet"), ...
    "nndemos","nndatasets","DigitDataset");
imds = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

YActual = imds.Labels;
YPred = classify(net,imds);

K = sum(YActual == actualValue & YPred == predValue);
N = sum(YActual == actualValue);

metricOutput = 100*K/N;

end

 Evaluate Deep Learning Experiments by Using Metric Functions

6-31



Compute Average Metric Values

This function extracts metric values from the results table. The function then appends average metric
values and rankings for each metric to the results table, and displays a summary of the metric
information for the best trial.

function results = averageMetrics(results)

Metric1 = results.Metrics.OnesAsSevens;
Metric2 = results.Metrics.SevensAsOnes;
MetricAverage = (Metric1+Metric2)/2;

results = [results table(MetricAverage,Metric1,Metric2)];
N = height(results);

results = sortrows(results,"Metric1");
OnesAsSevensRanking = (1:N)';
results = [results table(OnesAsSevensRanking)];

results = sortrows(results,"Metric2");
SevensAsOnesRanking = (1:N)';
results = [results table(SevensAsOnesRanking)];

results = sortrows(results,"MetricAverage");
results = removevars(results,["Metric1","Metric2"]);

fprintf("\n******************************************\n\n");
fprintf("Best trial: %d\n",results.Trial(1));
fprintf("Ones misclassified as sevens: %.4f%% (Ranking: %d)\n", ...
    results.Metrics.OnesAsSevens(1),results.OnesAsSevensRanking(1));
fprintf("Sevens misclassified as ones: %.4f%% (Ranking: %d)\n", ...
    results.Metrics.SevensAsOnes(1),results.SevensAsOnesRanking(1));
fprintf("Average of metric values: %.4f%%\n", ...
    results.MetricAverage(1));
fprintf("\n******************************************\n\n");
end

See Also
Apps
Experiment Manager

Functions
trainNetwork | trainingOptions | table

More About
• “Create a Deep Learning Experiment for Classification” on page 6-2
• “Create a Deep Learning Experiment for Regression” on page 6-10
• “Tune Experiment Hyperparameters by Using Bayesian Optimization” on page 6-49
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

6 Manage Deep Learning Experiments

6-32



Try Multiple Pretrained Networks for Transfer Learning

This example shows how to configure an experiment that replaces layers of different pretrained
networks for transfer learning. Transfer learning is commonly used in deep learning applications. You
can take a pretrained network and use it as a starting point to learn a new task. Fine-tuning a
network with transfer learning is usually much faster and easier than training a network with
randomly initialized weights from scratch. You can quickly transfer learned features to a new task
using a smaller number of training images.

There are many pretrained networks available in Deep Learning Toolbox™. These pretrained
networks have different characteristics that matter when choosing a network to apply to your
problem. The most important characteristics are network accuracy, speed, and size. Choosing a
network is generally a tradeoff between these characteristics. To compare the performance of
different pretrained networks for your task, edit this experiment and specify which pretrained
networks to use.

This experiment requires the Deep Learning Toolbox Model for GoogLeNet Network support package
and the Deep Learning Toolbox Model for ResNet-18 Network support package. Before you run the
experiment, install these support packages by calling the googlenet and resnet18 functions and
clicking the download links. For more information on other pretrained networks that you can
download from the Add-On Explorer, see “Pretrained Deep Neural Networks” on page 1-11.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
TransferLearningExperiment.

 Try Multiple Pretrained Networks for Transfer Learning

6-33



Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. For more information,
see “Configure Built-In Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Perform transfer learning by replacing layers in a pretrained network.

The Hyperparameters section specifies the strategy and hyperparameter values to use for the
experiment. When you run the experiment, Experiment Manager trains the network using every
combination of hyperparameter values specified in the hyperparameter table. In this example, the

6 Manage Deep Learning Experiments

6-34



hyperparameter NetworkName specifies the network to train and the value of the training option
miniBatchSize.

The Setup Function section specifies a function that configures the training data, network
architecture, and training options for the experiment. To open this function in MATLAB® Editor, click
Edit. The code for the function also appears in Setup Function. The input to the setup function is a
structure with fields from the hyperparameter table. The function returns three outputs that you use
to train a network for image classification problems. In this example, the setup function:

• Loads a pretrained network corresponding to the hyperparameter NetworkName.

networkName = params.NetworkName;

switch networkName
    case "squeezenet"
        net = squeezenet;
        miniBatchSize = 128;
    case "googlenet"
        net = googlenet;
        miniBatchSize = 128;
    case "resnet18"
        net = resnet18;
        miniBatchSize = 128;
    case "mobilenetv2"
        net = mobilenetv2;
        miniBatchSize = 128;
    case "resnet50"
        net = resnet50;
        miniBatchSize = 128;
    case "resnet101"
        net = resnet101;
        miniBatchSize = 64;
    case "inceptionv3"
        net = inceptionv3;
        miniBatchSize = 64;
    case "inceptionresnetv2"
        net = inceptionresnetv2;
        miniBatchSize = 64;
    otherwise
        error("Undefined network selection.");
end

• Downloads and extracts the Flowers data set, which is about 218 MB. For more information on
this data set, see “Image Data Sets” on page 20-116.

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~exist(imageFolder,"dir")
    disp("Downloading Flower Dataset (218 MB)...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

 Try Multiple Pretrained Networks for Transfer Learning

6-35



imds = imageDatastore(imageFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9);
inputSize = net.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize,imdsTrain);
augimdsValidation = augmentedImageDatastore(inputSize,imdsValidation);

• Replaces the learnable layers of the pretrained network to perform transfer learning. The helper
function findLayersToReplace determines the layers in the network architecture that can be
modified for transfer learning. To view the code for this function, see Find Layers to Replace. For
more information on the available pretrained networks, see “Pretrained Deep Neural Networks”
on page 1-11.

lgraph = layerGraph(net);
[learnableLayer,classLayer] = findLayersToReplace(lgraph);
numClasses = numel(categories(imdsTrain.Labels));

if isa(learnableLayer,"nnet.cnn.layer.FullyConnectedLayer")
    newLearnableLayer = fullyConnectedLayer(numClasses, ...
        Name="new_fc", ...
        WeightLearnRateFactor=10, ...
        BiasLearnRateFactor=10);
elseif isa(learnableLayer,"nnet.cnn.layer.Convolution2DLayer")
    newLearnableLayer = convolution2dLayer(1,numClasses, ...
        Name="new_conv", ...
        WeightLearnRateFactor=10, ...
        BiasLearnRateFactor=10);
end

lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);

newClassLayer = classificationLayer(Name="new_classoutput");
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);

• Defines a trainingOptions object for the experiment. The example trains the network for 10
epochs, using an initial learning rate of 0.0003 and validating the network every 5 epochs.

validationFrequencyEpochs = 5;

numObservations = augimdsTrain.NumObservations;
numIterationsPerEpoch = floor(numObservations/miniBatchSize);
validationFrequency = validationFrequencyEpochs * numIterationsPerEpoch;

options = trainingOptions("sgdm", ...
    MaxEpochs=10, ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate=3e-4, ...
    Shuffle="every-epoch", ...
    ValidationData=augimdsValidation, ...
    ValidationFrequency=validationFrequency, ...

6 Manage Deep Learning Experiments

6-36



    Verbose=false);

The Metrics section specifies optional functions that evaluate the results of the experiment. This
example does not include any custom metric functions.

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses a different combination of hyperparameter values. By default, Experiment
Manager runs one trial at a time. If you have Parallel Computing Toolbox™, you can run multiple
trials at the same time or offload your experiment as a batch job in a cluster:

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the accuracy and loss for each trial.

When the experiment finishes, you can sort the results table by column, filter trials by using the
Filters pane, or record observations by adding annotations. For more information, see “Sort, Filter,
and Annotate Experiment Results”.

To test the performance of an individual trial, export the trained network or the training information
for the trial. On the Experiment Manager toolstrip, select Export > Trained Network or Export >
Training Information, respectively. For more information, see “net” and “info”. To save the contents
of the results table as a table array in the MATLAB workspace, select Export > Results Table.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Setup Function

This function configures the training data, network architecture, and training options for the
experiment. The input to this function is a structure with fields from the hyperparameter table. The
function returns three outputs that you use to train a network for image classification problems.

function [augimdsTrain,lgraph,options] = TransferLearningExperiment_setup(params)

Load Pretrained Network

 Try Multiple Pretrained Networks for Transfer Learning

6-37



networkName = params.NetworkName;

switch networkName
    case "squeezenet"
        net = squeezenet;
        miniBatchSize = 128;
    case "googlenet"
        net = googlenet;
        miniBatchSize = 128;
    case "resnet18"
        net = resnet18;
        miniBatchSize = 128;
    case "mobilenetv2"
        net = mobilenetv2;
        miniBatchSize = 128;
    case "resnet50"
        net = resnet50;
        miniBatchSize = 128;
    case "resnet101"
        net = resnet101;
        miniBatchSize = 64;
    case "inceptionv3"
        net = inceptionv3;
        miniBatchSize = 64;
    case "inceptionresnetv2"
        net = inceptionresnetv2;
        miniBatchSize = 64;
    otherwise
        error("Undefined network selection.");
end

Load Training Data

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~exist(imageFolder,"dir")
    disp("Downloading Flower Dataset (218 MB)...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

imds = imageDatastore(imageFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9);
inputSize = net.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize,imdsTrain);
augimdsValidation = augmentedImageDatastore(inputSize,imdsValidation);

Define Network Architecture

6 Manage Deep Learning Experiments

6-38



lgraph = layerGraph(net);
[learnableLayer,classLayer] = findLayersToReplace(lgraph);
numClasses = numel(categories(imdsTrain.Labels));

if isa(learnableLayer,"nnet.cnn.layer.FullyConnectedLayer")
    newLearnableLayer = fullyConnectedLayer(numClasses, ...
        Name="new_fc", ...
        WeightLearnRateFactor=10, ...
        BiasLearnRateFactor=10);
elseif isa(learnableLayer,"nnet.cnn.layer.Convolution2DLayer")
    newLearnableLayer = convolution2dLayer(1,numClasses, ...
        Name="new_conv", ...
        WeightLearnRateFactor=10, ...
        BiasLearnRateFactor=10);
end

lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);

newClassLayer = classificationLayer(Name="new_classoutput");
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);

Specify Training Options

validationFrequencyEpochs = 5;

numObservations = augimdsTrain.NumObservations;
numIterationsPerEpoch = floor(numObservations/miniBatchSize);
validationFrequency = validationFrequencyEpochs * numIterationsPerEpoch;

options = trainingOptions("sgdm", ...
    MaxEpochs=10, ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate=3e-4, ...
    Shuffle="every-epoch", ...
    ValidationData=augimdsValidation, ...
    ValidationFrequency=validationFrequency, ...
    Verbose=false);

end

Find Layers to Replace

This function finds the single classification layer and the preceding learnable (fully connected or
convolutional) layer of the layer graph lgraph.

function [learnableLayer,classLayer] = findLayersToReplace(lgraph)

if ~isa(lgraph,"nnet.cnn.LayerGraph")
    error("Argument must be a LayerGraph object.")
end

src = string(lgraph.Connections.Source);
dst = string(lgraph.Connections.Destination);

 Try Multiple Pretrained Networks for Transfer Learning

6-39



layerNames = string({lgraph.Layers.Name}');

isClassificationLayer = arrayfun(@(l) ...
    (isa(l,"nnet.cnn.layer.ClassificationOutputLayer")|isa(l,"nnet.layer.ClassificationLayer")), ...
    lgraph.Layers);

if sum(isClassificationLayer) ~= 1
    error("Layer graph must have a single classification layer.")
end
classLayer = lgraph.Layers(isClassificationLayer);

currentLayerIdx = find(isClassificationLayer);
while true
    
    if numel(currentLayerIdx) ~= 1
        error("Layer graph must have a single learnable layer preceding the classification layer.")
    end
    
    currentLayerType = class(lgraph.Layers(currentLayerIdx));
    isLearnableLayer = ismember(currentLayerType, ...
        ["nnet.cnn.layer.FullyConnectedLayer","nnet.cnn.layer.Convolution2DLayer"]);
    
    if isLearnableLayer
        learnableLayer =  lgraph.Layers(currentLayerIdx);
        return
    end
    
    currentDstIdx = find(layerNames(currentLayerIdx) == dst);
    currentLayerIdx = find(src(currentDstIdx) == layerNames);
end
end

See Also
Apps
Experiment Manager

Functions
googlenet | resnet18 | squeezenet | trainNetwork | trainingOptions | table

More About
• “Pretrained Deep Neural Networks” on page 1-11
• “Create a Deep Learning Experiment for Classification” on page 6-2
• “Experiment with Weight Initializers for Transfer Learning” on page 6-41
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

6 Manage Deep Learning Experiments

6-40



Experiment with Weight Initializers for Transfer Learning

This example shows how to configure an experiment that initializes the weights of convolution and
fully connected layers using different weight initializers for training. To compare the performance of
different weight initializers for your task, create an experiment using this example as a guide.

When training a deep learning network, the initialization of layer weights and biases can have a big
impact on how well the network trains. The choice of initializer has a bigger impact on networks
without batch normalization layers. For more information on weight initializers, see “Compare Layer
Weight Initializers” on page 19-195.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
WeightInitializerExperiment.

 Experiment with Weight Initializers for Transfer Learning

6-41



Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. For more information,
see “Configure Built-In Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Perform transfer learning by initializing the weights of convolution and
fully connected layers in a pretrained network.

The Hyperparameters section specifies the strategy and hyperparameter values to use for the
experiment. When you run the experiment, Experiment Manager trains the network using every

6 Manage Deep Learning Experiments

6-42



combination of hyperparameter values specified in the hyperparameter table. This example uses the
hyperparameters WeightsInitializer and BiasInitializer to specify the weight and bias
initializers for the convolution and fully connected layers in a pretrained network. For more
information about these initializers, see “WeightsInitializer” and “BiasInitializer”.

The Setup Function section specifies a function that configures the training data, network
architecture, and training options for the experiment. To open this function in MATLAB® Editor, click
Edit. The code for the function also appears in Setup Function. The input to the setup function is a
structure with fields from the hyperparameter table. The function returns three outputs that you use
to train a network for image classification problems. In this example, the setup function:

• Loads a pretrained GoogLeNet network.

lgraph = googlenet(Weights="none");

• Downloads and extracts the Flowers data set, which is about 218 MB. For more information on
this data set, see “Image Data Sets” on page 20-116.

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~exist(imageFolder,"dir")
    disp("Downloading Flower Dataset (218 MB)...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

imds = imageDatastore(imageFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9);
inputSize = lgraph.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize,imdsTrain);
augimdsValidation = augmentedImageDatastore(inputSize,imdsValidation);

• Initializes the input weight in the convolution and fully connected layers by using the initializers
specified in the hyperparameter table. The helper function findLayersToReplace determines
the layers in the network architecture that can be modified for transfer learning. To view the code
for this function, see Find Layers to Replace.

numClasses = numel(categories(imdsTrain.Labels));
weightsInitializer = params.WeightsInitializer;
biasInitializer = params.BiasInitializer;

learnableLayer = findLayersToReplace(lgraph);
newLearnableLayer = fullyConnectedLayer(numClasses,Name="new_fc");
lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);

for i = 1:numel(lgraph.Layers)

 Experiment with Weight Initializers for Transfer Learning

6-43



    layer = lgraph.Layers(i);
    
    if class(layer) == "nnet.cnn.layer.Convolution2DLayer" || ...
            class(layer) == "nnet.cnn.layer.FullyConnectedLayer"
        layerName = layer.Name;
        newLayer = layer;
        
        newLayer.WeightsInitializer = weightsInitializer;
        newLayer.BiasInitializer = biasInitializer;
        
        lgraph = replaceLayer(lgraph,layerName,newLayer);
    end
end

• Defines a trainingOptions object for the experiment. The example trains the network for 10
epochs, using a mini-batch size of 128 and validating the network every 5 epochs.

miniBatchSize = 128;
validationFrequencyEpochs = 5;

numObservations = augimdsTrain.NumObservations;
numIterationsPerEpoch = floor(numObservations/miniBatchSize);
validationFrequency = validationFrequencyEpochs * numIterationsPerEpoch;

options = trainingOptions("sgdm", ...
    MaxEpochs=10, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    ValidationData=augimdsValidation, ...
    ValidationFrequency=validationFrequency, ...
    Verbose=false);

The Metrics section specifies optional functions that evaluate the results of the experiment. This
example does not include any custom metric functions.

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the setup function
multiple times. Each trial uses a different combination of hyperparameter values. By default,
Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox™, you can run
multiple trials at the same time or offload your experiment as a batch job in a cluster:

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

6 Manage Deep Learning Experiments

6-44



A table of results displays the accuracy and loss for each trial.

Note that, for the trials that use the He weight initializer, Experiment Manager interrupts the training
because the training and validation loss become undefined after a few iterations. Continuing the
training for those trials does not produce any useful results. In the results table, the Status column
indicates the reason for stopping these trials (Training loss is NaN).

When the experiment finishes, you can sort the results table by column, filter trials by using the
Filters pane, or record observations by adding annotations. For more information, see “Sort, Filter,
and Annotate Experiment Results”.

To test the performance of an individual trial, export the trained network or the training information
for the trial. On the Experiment Manager toolstrip, select Export > Trained Network or Export >
Training Information, respectively. For more information, see “net” and “info”. To save the contents
of the results table as a table array in the MATLAB workspace, select Export > Results Table.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Setup Function

This function configures the training data, network architecture, and training options for the
experiment. The input to this function is a structure with fields from the hyperparameter table. The
function returns three outputs that you use to train a network for image classification problems.

function [augimdsTrain,lgraph,options] = WeightInitializerExperiment_setup(params)

Load Pretrained Network

lgraph = googlenet(Weights="none");

Load Training Data

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~exist(imageFolder,"dir")
    disp("Downloading Flower Dataset (218 MB)...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

 Experiment with Weight Initializers for Transfer Learning

6-45



imds = imageDatastore(imageFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9);
inputSize = lgraph.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize,imdsTrain);
augimdsValidation = augmentedImageDatastore(inputSize,imdsValidation);

Define Network Architecture

numClasses = numel(categories(imdsTrain.Labels));
weightsInitializer = params.WeightsInitializer;
biasInitializer = params.BiasInitializer;

learnableLayer = findLayersToReplace(lgraph);
newLearnableLayer = fullyConnectedLayer(numClasses,Name="new_fc");
lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);

for i = 1:numel(lgraph.Layers)
    layer = lgraph.Layers(i);
    
    if class(layer) == "nnet.cnn.layer.Convolution2DLayer" || ...
            class(layer) == "nnet.cnn.layer.FullyConnectedLayer"
        layerName = layer.Name;
        newLayer = layer;
        
        newLayer.WeightsInitializer = weightsInitializer;
        newLayer.BiasInitializer = biasInitializer;
        
        lgraph = replaceLayer(lgraph,layerName,newLayer);
    end
end

Specify Training Options

miniBatchSize = 128;
validationFrequencyEpochs = 5;

numObservations = augimdsTrain.NumObservations;
numIterationsPerEpoch = floor(numObservations/miniBatchSize);
validationFrequency = validationFrequencyEpochs * numIterationsPerEpoch;

options = trainingOptions("sgdm", ...
    MaxEpochs=10, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    ValidationData=augimdsValidation, ...
    ValidationFrequency=validationFrequency, ...
    Verbose=false);

end

6 Manage Deep Learning Experiments

6-46



Find Layers to Replace

This function finds the single classification layer and the preceding learnable (fully connected or
convolutional) layer of the layer graph lgraph.

function [learnableLayer,classLayer] = findLayersToReplace(lgraph)

if ~isa(lgraph,"nnet.cnn.LayerGraph")
    error("Argument must be a LayerGraph object.")
end

src = string(lgraph.Connections.Source);
dst = string(lgraph.Connections.Destination);
layerNames = string({lgraph.Layers.Name}');

isClassificationLayer = arrayfun(@(l) ...
    (isa(l,"nnet.cnn.layer.ClassificationOutputLayer")|isa(l,"nnet.layer.ClassificationLayer")), ...
    lgraph.Layers);

if sum(isClassificationLayer) ~= 1
    error("Layer graph must have a single classification layer.")
end
classLayer = lgraph.Layers(isClassificationLayer);

currentLayerIdx = find(isClassificationLayer);
while true
    
    if numel(currentLayerIdx) ~= 1
        error("Layer graph must have a single learnable layer preceding the classification layer.")
    end
    
    currentLayerType = class(lgraph.Layers(currentLayerIdx));
    isLearnableLayer = ismember(currentLayerType, ...
        ["nnet.cnn.layer.FullyConnectedLayer","nnet.cnn.layer.Convolution2DLayer"]);
    
    if isLearnableLayer
        learnableLayer =  lgraph.Layers(currentLayerIdx);
        return
    end
    
    currentDstIdx = find(layerNames(currentLayerIdx) == dst);
    currentLayerIdx = find(src(currentDstIdx) == layerNames);
end
end

See Also
Apps
Experiment Manager

Functions
convolution2dLayer | fullyConnectedLayer | trainNetwork | trainingOptions | table

 Experiment with Weight Initializers for Transfer Learning

6-47



More About
• “Compare Layer Weight Initializers” on page 19-195
• “Create a Deep Learning Experiment for Classification” on page 6-2
• “Try Multiple Pretrained Networks for Transfer Learning” on page 6-33
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

6 Manage Deep Learning Experiments

6-48



Tune Experiment Hyperparameters by Using Bayesian
Optimization

This example shows how to use Bayesian optimization in Experiment Manager to find optimal
network hyperparameters and training options for convolutional neural networks. Bayesian
optimization provides an alternative strategy to sweeping hyperparameters in an experiment. You
specify a range of values for each hyperparameter and select a metric to optimize, and Experiment
Manager searches for a combination of hyperparameters that optimizes your selected metric.
Bayesian optimization requires Statistics and Machine Learning Toolbox™.

In this example, you train a network to classify images from the CIFAR-10 data set. The experiment
uses Bayesian optimization to find the combination of hyperparameters that minimizes a custom
metric function. The hyperparameters include options of the training algorithm, as well as
parameters of the network architecture itself. The custom metric function determines the
classification error on a randomly chosen test set. For more information on defining custom metrics in
Experiment Manager, see “Evaluate Deep Learning Experiments by Using Metric Functions” on page
6-25.

Alternatively, you can find optimal hyperparameter values programmatically by calling the bayesopt
function. For more information, see “Deep Learning Using Bayesian Optimization” on page 5-177.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
BayesOptExperiment.

 Tune Experiment Hyperparameters by Using Bayesian Optimization

6-49



6 Manage Deep Learning Experiments

6-50



Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. Experiments that use
Bayesian optimization include additional options to limit the duration of the experiment. For more
information, see “Configure Built-In Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Find optimal hyperparameters and training options for convolutional neural network.
Hyperparamters determine the network section depth, initial learning rate,
stochastic gradient descent momentum, and L2 regularization strength.

The Hyperparameters section specifies the strategy and hyperparameter options to use for the
experiment. For each hyperparameter, you can specify these options:

• Range — Enter a two-element vector that gives the lower bound and upper bound of a real- or
integer-valued hyperparameter, or a string array or cell array that lists the possible values of a
categorical hyperparameter.

• Type — Select real for a real-valued hyperparameter, integer for an integer-valued
hyperparameter, or categorical for a categorical hyperparameter.

• Transform — Select none to use no transform or log to use a logarithmic transform. When you
select log, the hyperparameter values must be positive. With this setting, the Bayesian
optimization algorithm models the hyperparameter on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters. Each trial in the experiment uses a new combination of hyperparameter values
based on the results of the previous trials. This example uses these hyperparameters:

• SectionDepth — This parameter controls the depth of the network. The total number of layers in
the network is 9*SectionDepth+7. In the experiment setup function, the number of
convolutional filters in each layer is proportional to 1/sqrt(SectionDepth), so the number of
parameters and the required amount of computation for each iteration are roughly the same for
different section depths.

• InitialLearnRate — If the learning rate is too low, then training takes a long time. If the
learning rate is too high, then training can reach a suboptimal result or diverge. The best learning
rate can depend on your data as well as the network you are training.

• Momentum — Stochastic gradient descent momentum adds inertia to the parameter updates by
having the current update contain a contribution proportional to the update in the previous
iteration. The inertial effect results in smoother parameter updates and a reduction of the noise
inherent to stochastic gradient descent.

• L2Regularization — Use L2 regularization to prevent overfitting. Search the space of
regularization strength to find a good value. Data augmentation and batch normalization also help
regularize the network.

Under Bayesian Optimization Options, you can specify the duration of the experiment by entering
the maximum time (in seconds) and the maximum number of trials to run. To best use the power of
Bayesian optimization, perform at least 30 objective function evaluations.

The Setup Function section specifies a function that configures the training data, network
architecture, and training options for the experiment. To open this function in MATLAB® Editor, click
Edit. The code for the function also appears in Setup Function. The input to the setup function is a
structure with fields from the hyperparameter table. The function returns three outputs that you use

 Tune Experiment Hyperparameters by Using Bayesian Optimization

6-51



to train a network for image classification problems. In this example, the setup function has these
sections:

• Load Training Data downloads and extracts images and labels from the CIFAR-10 data set. The
data set is about 175 MB. Depending on your internet connection, the download process can take
some time. For the training data, this example creates an augmentedImageDatastore by
applying random translations and horizontal reflections. Data augmentation helps prevent the
network from overfitting and memorizing the exact details of the training images. To enable
network validation, the example uses 5000 images with no augmentation. For more information on
this data set, see “Image Data Sets” on page 20-116.

datadir = tempdir;
downloadCIFARData(datadir);

[XTrain,YTrain,XTest,YTest] = loadCIFARData(datadir);
idx = randperm(numel(YTest),5000);
XValidation = XTest(:,:,:,idx);
YValidation = YTest(idx);

imageSize = [32 32 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);
augimdsTrain = augmentedImageDatastore(imageSize,XTrain,YTrain, ...
    DataAugmentation=imageAugmenter);

• Define Network Architecture defines the architecture for a convolutional neural network for
deep learning classification. In this example, the network to train has three blocks produced by
the helper function convBlock. To view the code for this function, see Create Block of
Convolutional Layers. Each block contains SectionDepth identical convolutional layers. Each
convolutional layer is followed by a batch normalization layer and a ReLU layer. The convolutional
layers have added padding so that their spatial output size is always the same as the input size.
Between the blocks, max pooling layers downsample the spatial dimensions by a factor of two. To
ensure that the amount of computation required in each convolutional layer is roughly the same,
the number of filters increases by a factor of two from one section to the next. The number of
filters in each convolutional layer is proportional to 1/sqrt(SectionDepth), so that networks of
different depths have roughly the same number of parameters and require about the same amount
of computation per iteration.

numClasses = numel(unique(YTrain));
numF = round(16/sqrt(params.SectionDepth));
layers = [
    imageInputLayer(imageSize)

    convBlock(3,numF,params.SectionDepth)
    maxPooling2dLayer(3,Stride=2,Padding="same")

    convBlock(3,2*numF,params.SectionDepth)
    maxPooling2dLayer(3,Stride=2,Padding="same")

    convBlock(3,4*numF,params.SectionDepth)

6 Manage Deep Learning Experiments

6-52



    averagePooling2dLayer(8)

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

• Specify Training Options defines a trainingOptions object for the experiment using the
values for the training options InitialLearnRate, Momentum, and L2Regularization
generated by the Bayesian optimization algorithm. The example trains the network for a fixed
number of epochs, validating once per epoch and lowering the learning rate by a factor of 10
during the last epochs to reduce the noise of the parameter updates and allow the network
parameters to settle down closer to a minimum of the loss function.

miniBatchSize = 256;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions("sgdm", ...
    InitialLearnRate=params.InitialLearnRate, ...
    Momentum=params.Momentum, ...
    MaxEpochs=60, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=40, ...
    LearnRateDropFactor=0.1, ...
    MiniBatchSize=miniBatchSize, ...
    L2Regularization=params.L2Regularization, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=validationFrequency);

The Metrics section specifies optional functions that evaluate the results of the experiment.
Experiment Manager evaluates these functions each time it finishes training the network. This
example includes the custom metric function ErrorRate. This function selects 5000 test images and
labels at random, evaluates the trained network on these images, and calculates the proportion of
images that the network misclassifies. To open this function in MATLAB Editor, select the name of the
metric function and click Edit. The code for the function also appears in Compute Error Rate.

The Optimize and Direction fields indicate the metric that the Bayesian optimization algorithm uses
as an objective function. For this experiment, Experiment Manager seeks to minimize the value of the
ErrorRate metric.

Run Experiment

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters with respect to the chosen metric. Each trial in the experiment uses a new
combination of hyperparameter values based on the results of the previous trials.

Training can take some time. To limit the duration of the experiment, you can modify the Bayesian
Optimization Options by reducing the maximum running time or the maximum number of trials.
However, note that running fewer than 30 trials can prevent the Bayesian optimization algorithm
from converging to an optimal set of hyperparameters.

By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox™,
you can run multiple trials at the same time or offload your experiment as a batch job in a cluster:

 Tune Experiment Hyperparameters by Using Bayesian Optimization

6-53



• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the metric function values for each trial. Experiment Manager highlights
the trial with the optimal value for the selected metric. For example, in this experiment, the fifth trial
produces the smallest error rate.

To determine the trial that optimizes the selected metric, Experiment Manager uses the best point
criterion "min-observed". For more information, see “Bayesian Optimization Algorithm” (Statistics
and Machine Learning Toolbox) and bestPoint (Statistics and Machine Learning Toolbox).

Evaluate Results

To display the confusion matrix for the best trial in your experiment, select the row in the results
table with the lowest error rate. Then, under Review Results, click Validation Data.

6 Manage Deep Learning Experiments

6-54



To perform additional computations, export the trained network to the workspace.

1 On the Experiment Manager toolstrip, click Export > Trained Network.
2 In the dialog window, enter the name of a workspace variable for the exported network. The

default name is trainedNetwork.
3 Use the exported network as the input to the helper function testSummary. For instance, in the

MATLAB Command Window, enter:

testSummary(trainedNetwork)

To view the code for this function, see Summarize Test Statistics. This function evaluates the network
in several ways:

• It predicts the labels of the entire test set and calculates the test error. Because Experiment
Manager determines the best network without exposing the network to the entire test set, the test
error can be higher than the value of the custom metric ErrorRate.

• It calculates the standard error (testErrorSE) and an approximate 95% confidence interval
(testError95CI) of the generalization error rate by treating the classification of each image in
the test set as an independent event with a certain probability of success. Using this assumption,
the number of incorrectly classified images follows a binomial distribution. This method is often
called the Wald method.

• It displays some test images together with their predicted classes and the probabilities of those
classes.

The function displays a summary of these statistics in the MATLAB Command Window.

******************************************

Test error rate: 0.1829
Standard error: 0.0039
95% confidence interval: [0.1753, 0.1905]

******************************************

To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the ErrorRate cell of the best trial.
2 Select Add Annotation.

 Tune Experiment Hyperparameters by Using Bayesian Optimization

6-55



3 In the Annotations pane, enter your observations in the text box.

For more information, see “Sort, Filter, and Annotate Experiment Results”.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Setup Function

This function configures the training data, network architecture, and training options for the
experiment. The input to this function is a structure with fields from the hyperparameter table. The
function returns three outputs that you use to train a network for image classification problems.

function [augimdsTrain,layers,options] = BayesOptExperiment_setup(params)

Load Training Data

datadir = tempdir;
downloadCIFARData(datadir);

[XTrain,YTrain,XTest,YTest] = loadCIFARData(datadir);
idx = randperm(numel(YTest),5000);
XValidation = XTest(:,:,:,idx);
YValidation = YTest(idx);

imageSize = [32 32 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);
augimdsTrain = augmentedImageDatastore(imageSize,XTrain,YTrain, ...
    DataAugmentation=imageAugmenter);

Define Network Architecture

numClasses = numel(unique(YTrain));
numF = round(16/sqrt(params.SectionDepth));
layers = [
    imageInputLayer(imageSize)

    convBlock(3,numF,params.SectionDepth)
    maxPooling2dLayer(3,Stride=2,Padding="same")

    convBlock(3,2*numF,params.SectionDepth)
    maxPooling2dLayer(3,Stride=2,Padding="same")

6 Manage Deep Learning Experiments

6-56



    convBlock(3,4*numF,params.SectionDepth)
    averagePooling2dLayer(8)

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify Training Options

miniBatchSize = 256;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions("sgdm", ...
    InitialLearnRate=params.InitialLearnRate, ...
    Momentum=params.Momentum, ...
    MaxEpochs=60, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=40, ...
    LearnRateDropFactor=0.1, ...
    MiniBatchSize=miniBatchSize, ...
    L2Regularization=params.L2Regularization, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=validationFrequency);

end

Create Block of Convolutional Layers

This function creates a block of numConvLayers convolutional layers, each with a specified
filterSize and numFilters filters, and each followed by a batch normalization layer and a ReLU
layer.

function layers = convBlock(filterSize,numFilters,numConvLayers)
layers = [
    convolution2dLayer(filterSize,numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer];
layers = repmat(layers,numConvLayers,1);
end

Compute Error Rate

This metric function takes as input a structure that contains the fields trainedNetwork,
trainingInfo, and parameters.

• trainedNetwork is the SeriesNetwork object or DAGNetwork object returned by the
trainNetwork function.

• trainingInfo is a structure containing the training information returned by the trainNetwork
function.

• parameters is a structure with fields from the hyperparameter table.

 Tune Experiment Hyperparameters by Using Bayesian Optimization

6-57



The function selects 5000 test images and labels, evaluates the trained network on the test set,
calculates the predicted image labels, and calculates the error rate on the test data.

function metricOutput = ErrorRate(trialInfo)

datadir = tempdir;
[~,~,XTest,YTest] = loadCIFARData(datadir);

idx = randperm(numel(YTest),5000);
XTest = XTest(:,:,:,idx);
YTest = YTest(idx);
YPredicted = classify(trialInfo.trainedNetwork,XTest);

metricOutput = 1 - mean(YPredicted == YTest);
end

Summarize Test Statistics

This function computes the test error, standard error, and an approximate 95% confidence interval
and displays a summary of these statistics in the MATLAB Command Window. The function also some
test images together with their predicted classes and the probabilities of those classes.

function testSummary(net)

datadir = tempdir; 
[~,~,XTest,YTest] = loadCIFARData(datadir);

[YPredicted,probs] = classify(net,XTest);
testError = 1 - mean(YPredicted == YTest);
NTest = numel(YTest);
testErrorSE = sqrt(testError*(1-testError)/NTest);
testError95CI = [testError - 1.96*testErrorSE, testError + 1.96*testErrorSE];

fprintf("\n******************************************\n\n");
fprintf("Test error rate: %.4f\n",testError);
fprintf("Standard error: %.4f\n",testErrorSE);
fprintf("95%% confidence interval: [%.4f, %.4f]\n",testError95CI(1),testError95CI(2));
fprintf("\n******************************************\n\n");

figure
idx = randperm(numel(YTest),9);
for i = 1:numel(idx)
    subplot(3,3,i)
    imshow(XTest(:,:,:,idx(i)));
    prob = num2str(100*max(probs(idx(i),:)),3);
    predClass = string(YPredicted(idx(i)));
    label = predClass+": "+prob+"%";
    title(label)
end

6 Manage Deep Learning Experiments

6-58



end

See Also
Apps
Experiment Manager

Functions
trainNetwork | trainingOptions | bayesopt | bestPoint | optimizableVariable

More About
• “Deep Learning Using Bayesian Optimization” on page 5-177
• “Evaluate Deep Learning Experiments by Using Metric Functions” on page 6-25
• “Use Bayesian Optimization in Custom Training Experiments” on page 6-104
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21
• “Bayesian Optimization Algorithm” (Statistics and Machine Learning Toolbox)

 Tune Experiment Hyperparameters by Using Bayesian Optimization

6-59



Choose Training Configurations for LSTM Using Bayesian
Optimization

This example shows how to create a deep learning experiment to find optimal network
hyperparameters and training options for long short-term memory (LSTM) networks using Bayesian
optimization. In this example, you use Experiment Manager to train LSTM networks that predict
the remaining useful life (RUL) of engines. The experiment uses the Turbofan Engine Degradation
Simulation data set. For more information on processing this data set for sequence-to-sequence
regression, see “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44.

Bayesian optimization provides an alternative strategy to sweeping hyperparameters in an
experiment. You specify a range of values for each hyperparameter and select a metric to optimize,
and Experiment Manager searches for a combination of hyperparameters that optimizes your
selected metric. Bayesian optimization requires Statistics and Machine Learning Toolbox™. For more
information, see “Tune Experiment Hyperparameters by Using Bayesian Optimization” on page 6-49.

RUL captures how many operational cycles an engine can make before failure. To focus on the
sequence data from when the engines are close to failing, preprocess the data by clipping the
responses at a specified threshold. This preprocessing operation allows the network to focus on
predictor data behaviors close to failing by treating instances with higher RUL values as equal. For
example, this figure shows the first response observation and the corresponding clipped response
with a threshold of 150.

When you train a deep learning network, how you preprocess data, the number of layers and hidden
units, and the initial learning rate in the network can affect the training behavior and performance of
the network. Choosing the depth of an LSTM network involves balancing speed and accuracy. For
example, deeper networks can be more accurate but take longer to train and converge [2].

By default, when you run a built-in training experiment for regression, Experiment Manager
computes the loss and root mean squared error (RMSE) for each trial in your experiment. This
example compares the performance of the network in each trial by using a custom metric that is
specific to the problem data set. For more information on using custom metric functions, see
“Evaluate Deep Learning Experiments by Using Metric Functions” on page 6-25.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment. To
open the experiment, in the Experiment Browser, double-click SequenceRegressionExperiment.

6 Manage Deep Learning Experiments

6-60



 Choose Training Configurations for LSTM Using Bayesian Optimization

6-61



Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. Experiments that use
Bayesian optimization include additional options to limit the duration of the experiment. For more
information, see “Configure Built-In Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Sequence-to-sequence regression to predict the remaining useful life (RUL) of engines.
This experiment compares network performance using Bayesian optimization when changing data
thresholding level, LSTM layer depth, the number of hidden units, and the initial learn rate.

The Hyperparameters section specifies the strategy and hyperparameter options to use for the
experiment. For each hyperparameter, you can specify these options:

• Range — Enter a two-element vector that gives the lower bound and upper bound of a real- or
integer-valued hyperparameter, or a string array or cell array that lists the possible values of a
categorical hyperparameter.

• Type — Select real for a real-valued hyperparameter, integer for an integer-valued
hyperparameter, or categorical for a categorical hyperparameter.

• Transform — Select none to use no transform or log to use a logarithmic transform. When you
select log, the hyperparameter values must be positive. With this setting, the Bayesian
optimization algorithm models the hyperparameter on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters. Each trial uses a new combination of the hyperparameter values based on the
results of the previous trials. This example uses these hyperparameters:

• Threshold sets all response data above the threshold value to be equal to the threshold value. To
prevent uniform response data, use threshold values greater or equal to 150. To limit the set of
allowable values to 150, 200 and 250, the experiment models Threshold as a categorical
hyperparameter.

• LSTMDepth indicates the number of LSTM layers used in the network. Specify this
hyperparameter as an integer between 1 and 3.

• NumHiddenUnits determines the number of hidden units, or the amount of information stored at
each time step, used in the network. Increasing the number of hidden units can result in
overfitting the data and in a longer training time. Decreasing the number of hidden units can
result in underfitting the data. Specify this hyperparameter as an integer between 50 and 300.

• InitialLearnRate specifies the initial learning rate used for training. If the learning rate is too
low, then training takes a long time. If the learning rate is too high, then training can reach a
suboptimal result or diverge. The best learning rate depends on your data as well as the network
you are training. The experiment models this hyperparameter on a logarithmic scale because the
range of values (0.001 to 0.1) spans several orders of magnitude.

Under Bayesian Optimization Options, you can specify the duration of the experiment by entering
the maximum time (in seconds) and the maximum number of trials to run. To best use the power of
Bayesian optimization, perform at least 30 objective function evaluations.

The Setup Function section specifies a function that configures the training data, network
architecture, and training options for the experiment. To open this function in MATLAB® Editor, click
Edit. The code for the function also appears in Setup Function. The input to the setup function is a
structure with fields from the hyperparameter table. The function returns four outputs that you use to

6 Manage Deep Learning Experiments

6-62



train a network for image regression problems. In this example, the setup function has these
sections:

• Load and Preprocess Data downloads and extracts the Turbofan Engine Degradation Simulation
Data Set from https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ [3]. This
section of the setup function also filters out constant valued features, normalizes the predictor
data to have zero mean and unit variance, clips the response data by using the numerical value of
the hyperparameter Threshold, and randomly selects training examples to use for validation.

dataFolder = fullfile(tempdir,"turbofan");

if ~exist(dataFolder,"dir")
    mkdir(dataFolder);
    filename = matlab.internal.examples.downloadSupportFile("nnet", ...
        "data/TurbofanEngineDegradationSimulationData.zip");
    unzip(filename,dataFolder);
end

filenameTrainPredictors = fullfile(dataFolder,"train_FD001.txt");
[XTrain,YTrain] = processTurboFanDataTrain(filenameTrainPredictors);

XTrain = helperFilter(XTrain);
XTrain = helperNormalize(XTrain);

thr = str2double(params.Threshold);
for i = 1:numel(YTrain)
    YTrain{i}(YTrain{i} > thr) = thr;
end

for i=1:numel(XTrain)
    sequence = XTrain{i};
    sequenceLengths(i) = size(sequence,2);
end

[~,idx] = sort(sequenceLengths,"descend");
XTrain = XTrain(idx);
YTrain = YTrain(idx);

idx = randperm(numel(XTrain),10);
XValidation = XTrain(idx);
XTrain(idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

• Define Network Architecture defines the architecture for an LSTM network for sequence-to-
sequence regression. The network consists of LSTM layers followed by a fully connected layer of
size 100 and a dropout layer with a dropout probability of 0.5. The hyperparameters LSTMDepth
and NumHiddenUnits specify the number of LSTM layers and the number of hidden units for
each layer.

numResponses = size(YTrain{1},1);
featureDimension = size(XTrain{1},1);
LSTMDepth = params.LSTMDepth;
numHiddenUnits = params.NumHiddenUnits;

 Choose Training Configurations for LSTM Using Bayesian Optimization

6-63

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/


layers = sequenceInputLayer(featureDimension);

for i = 1:LSTMDepth
    layers = [layers;lstmLayer(numHiddenUnits,OutputMode="sequence")];
end

layers = [layers
    fullyConnectedLayer(100)
    reluLayer()
    dropoutLayer(0.5)
    fullyConnectedLayer(numResponses)
    regressionLayer];

• Specify Training Options defines the training options for the experiment. Because deeper
networks take longer to converge, the number of epochs is set to 300 to ensure all network depths
converge. This example validates the network every 30 iterations. The initial learning rate equals
the InitialLearnRate value from the hyperparameter table and drops by a factor of 0.2 every
15 epochs. With the training option ExecutionEnvironment set to "auto", the experiment runs
on a GPU if one is available. Otherwise, Experiment Manager uses the CPU. Because this example
compares network depths and trains for many epochs, using a GPU speeds up training time
considerably. Using a GPU requires Parallel Computing Toolbox™ and a supported GPU device.
For more information, see “GPU Computing Requirements” (Parallel Computing Toolbox).

maxEpochs = 300;
miniBatchSize = 20;

options = trainingOptions("adam", ...
    ExecutionEnvironment="auto", ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=30, ...
    InitialLearnRate=params.InitialLearnRate, ...
    LearnRateDropFactor=0.2, ...
    LearnRateDropPeriod=15, ...
    GradientThreshold=1, ...
    Shuffle="never", ...
    Verbose=false);

The Metrics section specifies optional functions that evaluate the results of the experiment.
Experiment Manager evaluates these functions each time it finishes training the network. This
example includes a metric function MeanMaxAbsoluteError that identifies networks that
underpredict or overpredict the RUL. If the prediction underestimates the RUL, engine maintenance
might be scheduled before it is necessary. If the prediction overestimates the RUL, the engine might
fail while in operation, resulting in high costs or safety concerns. To help mitigate these scenarios,
the MeanMaxAbsoluteError metric calculates the maximum absolute error, averaged across the
entire training set. This metric calls the predict function to make a sequence of RUL predictions
from the training set. Then, after calculating the maximum absolute error between each training
response and predicted response sequence, the metric function computes the mean of all maximum
absolute errors and identifies the maximum deviations between the actual and predicted responses.
To open this function in MATLAB Editor, select the name of the metric function and click Edit. The
code for the function also appears in Compute Mean of Maximum Absolute Errors.

6 Manage Deep Learning Experiments

6-64



Run Experiment

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters with respect to the chosen metric. Each trial in the experiment uses a new
combination of hyperparameter values based on the results of the previous trials.

Training can take some time. To limit the duration of the experiment, you can modify the Bayesian
Optimization Options by reducing the maximum running time or the maximum number of trials.
However, note that running fewer than 30 trials can prevent the Bayesian optimization algorithm
from converging to an optimal set of hyperparameters.

By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox™,
you can run multiple trials at the same time or offload your experiment as a batch job in a cluster:

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the metric function values for each trial. Experiment Manager highlights
the trial with the optimal value for the selected metric. For example, in this experiment, the 23rd trial
produces the smallest maximum absolute error.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot. The elapsed time for a trial to complete training
increases with network depth.

 Choose Training Configurations for LSTM Using Bayesian Optimization

6-65



Evaluate Results

In the table of results, the MeanMaxAbsoluteError value quantifies how much the network
underpredicts or overpredicts the RUL. The Validation RMSE value quantifies how well the network
generalizes to unseen data. To find the best result for your experiment, sort the table of results and
select the trial that has the lowest MeanMaxAbsoluteError and Validation RMSE values.

1 Point to the MeanMaxAbsoluteError column.
2 Click the triangle icon.
3 Select Sort in Ascending Order.

Similarly, find the trial with the smallest validation RMSE by opening the drop-down menu for the
Validation RMSE column and selecting Sort in Ascending Order.

If no single trial minimizes both values, opt for a trial that ranks well for both metrics. For instance,
in these results, trial 23 has the smallest mean maximum absolute error and the seventh smallest
validation RMSE. Among the trials with a lower validation RMSE, only trial 29 has a comparable
mean maximum absolute error. Which of these trials is preferable depends on whether you favor a
lower mean maximum absolute error or a lower validation RMSE.

6 Manage Deep Learning Experiments

6-66



To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the MeanMaxAbsoluteError cell of the best trial.
2 Select Add Annotation.
3 In the Annotations pane, enter your observations in the text box.
4 Repeat the previous steps for the Validation RMSE cell.

To test the best trial in your experiment, export the trained networks and display the predicted
response sequence for several randomly chosen test sequences.

1 Select the best trial in your experiment.
2 On the Experiment Manager toolstrip, click Export > Trained Network.
3 In the dialog window, enter the name of a workspace variable for the exported network. The

default name is trainedNetwork.
4 Use the exported network and the Threshold value of the network as inputs to the helper

function plotSequences. To view the code for this function, see Plot Predictive Maintenance
Sequences. For instance, in the MATLAB Command Window, enter:

plotSequences(trainedNetwork,200)

The function plots the true and predicted response sequences of unseen test data.

Close Experiment

In the Experiment Browser, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

 Choose Training Configurations for LSTM Using Bayesian Optimization

6-67



Setup Function

This function configures the training data, network architecture, and training options for the
experiment. The input to this function is a structure with fields from the hyperparameter table. The
function returns four outputs that you use to train a network for image regression problems.

function [XTrain,YTrain,layers,options] = SequenceRegressionExperiment_setup(params)

Load and Preprocess Data

dataFolder = fullfile(tempdir,"turbofan");

if ~exist(dataFolder,"dir")
    mkdir(dataFolder);
    filename = matlab.internal.examples.downloadSupportFile("nnet", ...
        "data/TurbofanEngineDegradationSimulationData.zip");
    unzip(filename,dataFolder);
end

filenameTrainPredictors = fullfile(dataFolder,"train_FD001.txt");
[XTrain,YTrain] = processTurboFanDataTrain(filenameTrainPredictors);

XTrain = helperFilter(XTrain);
XTrain = helperNormalize(XTrain);

thr = str2double(params.Threshold);
for i = 1:numel(YTrain)
    YTrain{i}(YTrain{i} > thr) = thr;
end

for i=1:numel(XTrain)
    sequence = XTrain{i};
    sequenceLengths(i) = size(sequence,2);
end

[~,idx] = sort(sequenceLengths,"descend");
XTrain = XTrain(idx);
YTrain = YTrain(idx);

idx = randperm(numel(XTrain),10);
XValidation = XTrain(idx);
XTrain(idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Define Network Architecture

numResponses = size(YTrain{1},1);
featureDimension = size(XTrain{1},1);
LSTMDepth = params.LSTMDepth;
numHiddenUnits = params.NumHiddenUnits;

layers = sequenceInputLayer(featureDimension);

for i = 1:LSTMDepth

6 Manage Deep Learning Experiments

6-68



    layers = [layers;lstmLayer(numHiddenUnits,OutputMode="sequence")];
end

layers = [layers
    fullyConnectedLayer(100)
    reluLayer()
    dropoutLayer(0.5)
    fullyConnectedLayer(numResponses)
    regressionLayer];

Specify Training Options

maxEpochs = 300;
miniBatchSize = 20;

options = trainingOptions("adam", ...
    ExecutionEnvironment="auto", ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=30, ...
    InitialLearnRate=params.InitialLearnRate, ...
    LearnRateDropFactor=0.2, ...
    LearnRateDropPeriod=15, ...
    GradientThreshold=1, ...
    Shuffle="never", ...
    Verbose=false);

end

Filter and Normalize Predictive Maintenance Data

The helper function helperFilter filters the data by removing features with constant values.
Features that remain constant for all time steps can negatively impact the training.

function [XTrain,XTest] = helperFilter(XTrain,XTest)

m = min([XTrain{:}],[],2);
M = max([XTrain{:}],[],2);
idxConstant = M == m;

for i = 1:numel(XTrain)
    XTrain{i}(idxConstant,:) = [];
    if nargin>1
        XTest{i}(idxConstant,:) = [];
    end
end
end

The helper function helperNormalize normalizes the training and test predictors to have zero
mean and unit variance.

function [XTrain,XTest] = helperNormalize(XTrain,XTest)

 Choose Training Configurations for LSTM Using Bayesian Optimization

6-69



mu = mean([XTrain{:}],2);
sig = std([XTrain{:}],0,2);

for i = 1:numel(XTrain)
    XTrain{i} = (XTrain{i} - mu) ./ sig;
    if nargin>1
        XTest{i} = (XTest{i} - mu) ./ sig;
    end
end
end

Compute Mean of Maximum Absolute Errors

This metric function calculates the maximum absolute error of the trained network, averaged over
the training set.

function metricOutput = MeanMaxAbsoluteError(trialInfo)

net = trialInfo.trainedNetwork;
thr = str2double(trialInfo.parameters.Threshold);

filenamePredictors = fullfile(tempdir,"turbofan","train_FD001.txt");
[XTrain,YTrain] = processTurboFanDataTrain(filenamePredictors);
XTrain = helperFilter(XTrain);
XTrain = helperNormalize(XTrain);

for i = 1:numel(YTrain)
    YTrain{i}(YTrain{i} > thr) = thr;
end

YPred = predict(net,XTrain,MiniBatchSize=1);
maxAbsErrors = zeros(1,numel(YTrain));
for i=1:numel(YTrain)
    absError = abs(YTrain{i}-YPred{i});
    maxAbsErrors(i) = max(absError);
end

metricOutput = mean(maxAbsErrors);
end

Plot Predictive Maintenance Sequences

This function plots the true and predicted response sequences to allow you to evaluate the
performance of your trained network. This function uses the helper functions helperFilter and
helperNormalize. To view the code for these functions, see Filter and Normalize Predictive
Maintenance Data.

function plotSequences(net,threshold)

filenameTrainPredictors = fullfile(tempdir,"turbofan","train_FD001.txt");
filenameTestPredictors = fullfile(tempdir,"turbofan","test_FD001.txt");
filenameTestResponses = fullfile(tempdir,"turbofan","RUL_FD001.txt");

6 Manage Deep Learning Experiments

6-70



[XTrain,YTrain] = processTurboFanDataTrain(filenameTrainPredictors);
[XTest,YTest] = processTurboFanDataTest(filenameTestPredictors,filenameTestResponses);
[XTrain,XTest] = helperFilter(XTrain,XTest);
[~,XTest] = helperNormalize(XTrain,XTest);

for i = 1:numel(YTrain)
  YTrain{i}(YTrain{i} > threshold) = threshold;
  YTest{i}(YTest{i} > threshold) = threshold;
end

YPred = predict(net,XTest,MiniBatchSize=1);

idx = randperm(100,4);
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    plot(YTest{idx(i)},"--")
    hold on
    plot(YPred{idx(i)},".-")
    hold off
    ylim([0 threshold+25])
    title("Test Observation " + idx(i))
    xlabel("Time Step")
    ylabel("RUL")
end
legend(["Test Data" "Predicted"],Location="southwest")
end

References
[1] Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. "Damage Propagation Modeling for

Aircraft Engine Run-to-Failure Simulation." 2008 International Conference on Prognostics and
Health Management (2008): 1–9.

[2] Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. "An Empirical Exploration of Recurrent
Network Architectures." Proceedings of the 32nd International Conference on Machine
Learning (2015): 2342–2350.

See Also
Apps
Experiment Manager

Functions
predict | trainNetwork | trainingOptions

More About
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Tune Experiment Hyperparameters by Using Bayesian Optimization” on page 6-49

 Choose Training Configurations for LSTM Using Bayesian Optimization

6-71



• “Evaluate Deep Learning Experiments by Using Metric Functions” on page 6-25
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

6 Manage Deep Learning Experiments

6-72



Run a Custom Training Experiment for Image Comparison

This example shows how to create a custom training experiment to train a Siamese network that
identifies similar images of handwritten characters. For a custom training experiment, you explicitly
define the training procedure used by Experiment Manager. In this example, you implement a
custom training loop to train a Siamese network, a type of deep learning network that uses two or
more identical subnetworks that have the same architecture and share the same parameters and
weights. Some common applications for Siamese networks include facial recognition, signature
verification, and paraphrase identification.

This diagram illustrates the Siamese network architecture in this example.

To compare two images, you pass each image through one of two identical subnetworks that share
weights. The subnetworks convert each 105-by-105-by-1 image to a 4096-dimensional feature vector.
Images of the same class have similar 4096-dimensional representations. The output feature vectors
from each subnetwork are combined through subtraction and the result is passed through a
fullyconnect operation with a single output. A sigmoid operation converts this value to a
probability indicating that the images are similar (when the probability is close to 1) or dissimilar
(when the probability is close to 0). The binary cross-entropy loss between the network prediction
and the true label updates the network during training. For more information, see “Train a Siamese
Network to Compare Images” on page 3-126.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
ImageComparisonExperiment.

 Run a Custom Training Experiment for Image Comparison

6-73



Custom training experiments consist of a description, a table of hyperparameters, and a training
function. For more information, see “Configure Custom Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Train a Siamese network to identify similar and dissimilar images of handwritten characters.
Try different weight and bias initializers for the convolution and fully connected layers in the network.

The Hyperparameters section specifies the strategy and hyperparameter values to use for the
experiment. When you run the experiment, Experiment Manager trains the network using every
combination of hyperparameter values specified in the hyperparameter table. This example uses the
hyperparameters WeightsInitializer and BiasInitializer to specify the weight and bias
initializers, respectively, for the convolution and fully connected layers in each subnetwork. For more
information about these initializers, see “WeightsInitializer” and “BiasInitializer”.

The Training Function section specifies a function that defines the training data, network
architecture, training options, and training procedure used by the experiment. To open this function
in MATLAB® Editor, click Edit. The code for the function also appears in Training Function. The
input to the training function is a structure with fields from the hyperparameter table and an
experiments.Monitor object that you can use to track the progress of the training, record values
of the metrics used by the training, and produce training plots. The function returns a structure that

6 Manage Deep Learning Experiments

6-74



contains the trained network, the weights for the final fullyconnect operation for the network, and
the execution environment used for training. Experiment Manager saves this output so you can
export it to the MATLAB workspace when the training is complete. The training function has these
sections:

• Initialize Output sets the initial value of the network and fullyconnect weights to empty
arrays to indicate that the training has not started. The experiment sets the execution
environment to "auto", so it trains and validates the network on a GPU if one is available. Using
a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For more information,
see “GPU Computing Requirements” (Parallel Computing Toolbox).

output.network = [];
output.weights = [];
output.executionEnvironment = "auto";

• Load and Preprocess Training and Test Data defines the training and test data for the
experiment as imageDatastore objects. The experiment uses the Omniglot data set, which
consists of character sets for 50 alphabets, divided into 30 sets for training and 20 sets for testing.
For more information on this data set, see “Image Data Sets” on page 20-116.

monitor.Status = "Loading Training Data";

url = "https://github.com/brendenlake/omniglot/raw/master/python/images_background.zip";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"images_background.zip");

dataFolderTrain = fullfile(downloadFolder,"images_background");
if ~exist(dataFolderTrain,"dir")
    websave(filename,url);
    unzip(filename,downloadFolder);
end

imdsTrain = imageDatastore(dataFolderTrain, ...
    IncludeSubfolders=true, ...
    LabelSource="none");

files = imdsTrain.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),"_");
imdsTrain.Labels = categorical(labels);

monitor.Status = "Loading Test Data";

url = "https://github.com/brendenlake/omniglot/raw/master/python/images_evaluation.zip";
filename = fullfile(downloadFolder,"images_evaluation.zip");

dataFolderTest = fullfile(downloadFolder,"images_evaluation");
if ~exist(dataFolderTest,"dir")
    websave(filename,url);
    unzip(filename,downloadFolder);
end

imdsTest = imageDatastore(dataFolderTest, ...
    IncludeSubfolders=true, ...

 Run a Custom Training Experiment for Image Comparison

6-75



    LabelSource="none");

files = imdsTest.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),"_");
imdsTest.Labels = categorical(labels);

• Define Network Architecture defines the architecture for two identical subnetworks that accept
105-by-105-by-1 images and output a feature vector. The convolution and fully connected layers
use the weights and bias initializers specified in the hyperparameter table. To train the network
with a custom training loop and enable automatic differentiation, the training function converts
the layer graph to a dlnetwork object. The weights for the final fullyconnect operation are
initialized by sampling a random selection from a narrow normal distribution with standard
deviation of 0.01.

monitor.Status = "Creating Network";

layers = [
    imageInputLayer([105 105 1],Normalization="none")
    convolution2dLayer(10,64, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)
    reluLayer()
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(7,128, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)
    reluLayer()
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(4,128, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)
    reluLayer()
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(5,256, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)
    reluLayer()
    fullyConnectedLayer(4096, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)];

lgraph = layerGraph(layers);
net = dlnetwork(lgraph);

fcWeights = dlarray(0.01*randn(1,4096));
fcBias = dlarray(0.01*randn(1,1));
fcParams = struct(...
    "FcWeights",fcWeights,...
    "FcBias",fcBias);

output.network = net;
output.weights = fcParams;

6 Manage Deep Learning Experiments

6-76



• Specify Training Options defines the training options used by the experiment. In this example,
Experiment Manager trains the network with a mini-batch size of 180 for 1000 iterations,
computing the accuracy of the network every 100 iterations. Training can take some time to run.
For better results, consider increasing the training to 10,000 iterations.

numIterations = 1000;
miniBatchSize = 180;
validationFrequency = 100;
initialLearnRate = 6e-5;
gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.99;
trailingAvgSubnet = [];
trailingAvgSqSubnet = [];
trailingAvgParams = [];
trailingAvgSqParams = [];

• Train Model defines the custom training loop used by the experiment. For each iteration, the
custom training loop extracts a batch of image pairs and labels, converts the data to dlarray
objects with underlying type single, and specifies the dimension labels "SSCB" (spatial, spatial,
channel, batch) for the image data and "CB" (channel, batch) for the labels. If you train on a GPU,
the data is converted to gpuArray (Parallel Computing Toolbox) objects. Then, the training
function evaluates the model loss and updates the network parameters. To validate, the training
function creates a set of five random mini-batches of test pairs, evaluates the network predictions,
and calculates the average accuracy over the mini-batches. After each iteration of the custom
training loop, the training function saves the trained network and the weights for the
fullyconnect operation, records the training loss, and updates the training progress.

monitor.Metrics = ["TrainingLoss" "ValidationAccuracy"];
monitor.XLabel = "Iteration";
monitor.Status = "Training";

for iteration = 1:numIterations
    [X1,X2,pairLabels] = getSiameseBatch(imdsTrain,miniBatchSize);

    X1 = dlarray(single(X1),"SSCB");
    X2 = dlarray(single(X2),"SSCB");
    
    if (output.executionEnvironment == "auto" && canUseGPU) || ...
            output.executionEnvironment == "gpu"
        X1 = gpuArray(X1);
        X2 = gpuArray(X2);
    end
    
    [loss,gradientsSubnet,gradientsParams] = dlfeval(@modelLoss, ...
        net,fcParams,X1,X2,pairLabels);
    lossValue = double(gather(extractdata(loss)));
    
    [net,trailingAvgSubnet,trailingAvgSqSubnet] = ...
        adamupdate(net,gradientsSubnet, ...
        trailingAvgSubnet,trailingAvgSqSubnet, ...
        iteration,initialLearnRate,gradientDecayFactor,squaredGradientDecayFactor);
    
    [fcParams,trailingAvgParams,trailingAvgSqParams] = ...
        adamupdate(fcParams,gradientsParams, ...

 Run a Custom Training Experiment for Image Comparison

6-77



        trailingAvgParams,trailingAvgSqParams, ...
        iteration,initialLearnRate,gradientDecayFactor,squaredGradientDecayFactor);
    
    if ~rem(iteration,validationFrequency) || iteration == 1 || iteration == numIterations
        monitor.Status = "Validating";
        accuracy = zeros(1,5);
        accuracyBatchSize = 150;

        for i = 1:5
            [XAcc1,XAcc2,pairLabelsAcc] = getSiameseBatch(imdsTest,accuracyBatchSize);
            
            XAcc1 = dlarray(single(XAcc1),"SSCB");
            XAcc2 = dlarray(single(XAcc2),"SSCB");
            
            if (output.executionEnvironment == "auto" && canUseGPU) || ...
                    output.executionEnvironment == "gpu"
                XAcc1 = gpuArray(XAcc1);
                XAcc2 = gpuArray(XAcc2);
            end

            Y = predictSiamese(net,fcParams,XAcc1,XAcc2);
            Y = round(Y);
            
            accuracy(i) = sum(Y == pairLabelsAcc)/accuracyBatchSize;
        end
        
        recordMetrics(monitor,iteration, ...
            ValidationAccuracy=mean(accuracy)*100);
        monitor.Status = "Training";
    end
    
    output.network = net;
    output.weights = fcParams;
    recordMetrics(monitor,iteration, ...
        TrainingLoss=lossValue);
    monitor.Progress = (iteration/numIterations)*100;
    
    if monitor.Stop
        return;
    end
end

• Display Pairs of Test Images creates a small batch of image pairs that you can use to visually
check that the network correctly identifies similar and dissimilar pairs. When the training is
complete, the Review Results gallery in the toolstrip displays a button for the figure. The Name
property of the figure specifies the name of the button. You can click the button to display the
figure in the Visualizations pane.

testBatchSize = 10;

[XTest1,XTest2,pairLabelsTest] = getSiameseBatch(imdsTest,testBatchSize);
    
XTest1 = dlarray(single(XTest1),"SSCB");
XTest2 = dlarray(single(XTest2),"SSCB");

6 Manage Deep Learning Experiments

6-78



if (output.executionEnvironment == "auto" && canUseGPU) || ...
        output.executionEnvironment == "gpu"
   XTest1 = gpuArray(XTest1);
   XTest2 = gpuArray(XTest2);
end

YScore = predictSiamese(net,fcParams,XTest1,XTest2);
YScore = gather(extractdata(YScore));

YPred = round(YScore);    

XTest1 = extractdata(XTest1);
XTest2 = extractdata(XTest2);

figure(Name="Test Images");
title(tiledlayout(2,5), ...
    "Comparison of Test Images")
    
for i = 1:numel(pairLabelsTest)
    if pairLabelsTest(i) == YPred(i)
        titleStr = "Correct";
        titleColor = "#77AC30"; % dark green
    else
        titleStr = "Incorrect";
        titleColor = "#FF0000"; % red
    end

    if YPred(i) == 1
        predStr = "Predicted: Similar";
    else
        predStr = "Predicted: Dissimilar" ;
    end
    
    scoreStr = "Score: " + YScore(i);
    
    nexttile        
    imshow([XTest1(:,:,:,i) XTest2(:,:,:,i)]);
    imageTitle = title(titleStr,[predStr,scoreStr]);
    imageTitle.Color = titleColor;
    xticks([])
    yticks([])
end

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the training
function multiple times. Each trial uses a different combination of hyperparameter values. By default,
Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run
multiple trials at the same time or offload your experiment as a batch job in a cluster:

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers

 Run a Custom Training Experiment for Image Comparison

6-79



as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the training loss and validation accuracy for each trial.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.

Evaluate Results

To find the best result for your experiment, sort the table of results by validation accuracy.

1 Point to the ValidationAccuracy column.
2 Click the triangle icon.
3 Select Sort in Descending Order.

The trial with the highest validation accuracy appears at the top of the results table.

6 Manage Deep Learning Experiments

6-80



To visually check that the network correctly identifies similar and dissimilar pairs, select the top row
in the results table and, under Review Results, click Test Images. Experiment Manager displays ten
randomly selected pairs of test images with the prediction from the trained network, the probability
score, and a label indicating whether the prediction is correct or incorrect.

To perform additional computations, export the training output to the workspace as a structure. The
trainedNet field of this structure contains the trained network.

1 On the Experiment Manager toolstrip, click Export > Training Output.
2 In the dialog window, enter the name of a workspace variable for the exported training output.

The default name is trainingOutput.

To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the ValidationAccuracy cell of the best trial.
2 Select Add Annotation.
3 In the Annotations pane, enter your observations in the text box.

 Run a Custom Training Experiment for Image Comparison

6-81



For more information, see “Sort, Filter, and Annotate Experiment Results”.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Training Function

This function specifies the training data, network architecture, training options, and training
procedure used by the experiment. The input to this function is a structure with fields from the
hyperparameter table and an experiments.Monitor object that you can use to track the progress
of the training, record values of the metrics used by the training, and produce training plots. The
training function returns a structure that contains the trained network, the weights for the final
fullyconnect operation for the network, and the execution environment used for training.
Experiment Manager saves this output so you can export it to the MATLAB workspace when the
training is complete.

function output = ImageComparisonExperiment_training(params,monitor)

Initialize Output

output.network = [];
output.weights = [];
output.executionEnvironment = "auto";

Load and Preprocess Training and Test Data

monitor.Status = "Loading Training Data";

url = "https://github.com/brendenlake/omniglot/raw/master/python/images_background.zip";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"images_background.zip");

dataFolderTrain = fullfile(downloadFolder,"images_background");
if ~exist(dataFolderTrain,"dir")
    websave(filename,url);
    unzip(filename,downloadFolder);
end

imdsTrain = imageDatastore(dataFolderTrain, ...
    IncludeSubfolders=true, ...
    LabelSource="none");

files = imdsTrain.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),"_");

6 Manage Deep Learning Experiments

6-82



imdsTrain.Labels = categorical(labels);

monitor.Status = "Loading Test Data";

url = "https://github.com/brendenlake/omniglot/raw/master/python/images_evaluation.zip";
filename = fullfile(downloadFolder,"images_evaluation.zip");

dataFolderTest = fullfile(downloadFolder,"images_evaluation");
if ~exist(dataFolderTest,"dir")
    websave(filename,url);
    unzip(filename,downloadFolder);
end

imdsTest = imageDatastore(dataFolderTest, ...
    IncludeSubfolders=true, ...
    LabelSource="none");

files = imdsTest.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),"_");
imdsTest.Labels = categorical(labels);

Define Network Architecture

monitor.Status = "Creating Network";

layers = [
    imageInputLayer([105 105 1],Normalization="none")
    convolution2dLayer(10,64, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)
    reluLayer()
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(7,128, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)
    reluLayer()
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(4,128, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)
    reluLayer()
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(5,256, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)
    reluLayer()
    fullyConnectedLayer(4096, ...
        WeightsInitializer=params.WeightsInitializer, ...
        BiasInitializer=params.BiasInitializer)];

lgraph = layerGraph(layers);
net = dlnetwork(lgraph);

fcWeights = dlarray(0.01*randn(1,4096));
fcBias = dlarray(0.01*randn(1,1));

 Run a Custom Training Experiment for Image Comparison

6-83



fcParams = struct(...
    "FcWeights",fcWeights,...
    "FcBias",fcBias);

output.network = net;
output.weights = fcParams;

Specify Training Options

numIterations = 1000;
miniBatchSize = 180;
validationFrequency = 100;
initialLearnRate = 6e-5;
gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.99;
trailingAvgSubnet = [];
trailingAvgSqSubnet = [];
trailingAvgParams = [];
trailingAvgSqParams = [];

Train Model

monitor.Metrics = ["TrainingLoss" "ValidationAccuracy"];
monitor.XLabel = "Iteration";
monitor.Status = "Training";

for iteration = 1:numIterations
    [X1,X2,pairLabels] = getSiameseBatch(imdsTrain,miniBatchSize);

    X1 = dlarray(single(X1),"SSCB");
    X2 = dlarray(single(X2),"SSCB");
    
    if (output.executionEnvironment == "auto" && canUseGPU) || ...
            output.executionEnvironment == "gpu"
        X1 = gpuArray(X1);
        X2 = gpuArray(X2);
    end
    
    [loss,gradientsSubnet,gradientsParams] = dlfeval(@modelLoss, ...
        net,fcParams,X1,X2,pairLabels);
    lossValue = double(gather(extractdata(loss)));
    
    [net,trailingAvgSubnet,trailingAvgSqSubnet] = ...
        adamupdate(net,gradientsSubnet, ...
        trailingAvgSubnet,trailingAvgSqSubnet, ...
        iteration,initialLearnRate,gradientDecayFactor,squaredGradientDecayFactor);
    
    [fcParams,trailingAvgParams,trailingAvgSqParams] = ...
        adamupdate(fcParams,gradientsParams, ...
        trailingAvgParams,trailingAvgSqParams, ...
        iteration,initialLearnRate,gradientDecayFactor,squaredGradientDecayFactor);
    
    if ~rem(iteration,validationFrequency) || iteration == 1 || iteration == numIterations
        monitor.Status = "Validating";

6 Manage Deep Learning Experiments

6-84



        accuracy = zeros(1,5);
        accuracyBatchSize = 150;

        for i = 1:5
            [XAcc1,XAcc2,pairLabelsAcc] = getSiameseBatch(imdsTest,accuracyBatchSize);
            
            XAcc1 = dlarray(single(XAcc1),"SSCB");
            XAcc2 = dlarray(single(XAcc2),"SSCB");
            
            if (output.executionEnvironment == "auto" && canUseGPU) || ...
                    output.executionEnvironment == "gpu"
                XAcc1 = gpuArray(XAcc1);
                XAcc2 = gpuArray(XAcc2);
            end

            Y = predictSiamese(net,fcParams,XAcc1,XAcc2);
            Y = round(Y);
            
            accuracy(i) = sum(Y == pairLabelsAcc)/accuracyBatchSize;
        end
        
        recordMetrics(monitor,iteration, ...
            ValidationAccuracy=mean(accuracy)*100);
        monitor.Status = "Training";
    end
    
    output.network = net;
    output.weights = fcParams;
    recordMetrics(monitor,iteration, ...
        TrainingLoss=lossValue);
    monitor.Progress = (iteration/numIterations)*100;
    
    if monitor.Stop
        return;
    end
end

Display Pairs of Test Images

testBatchSize = 10;

[XTest1,XTest2,pairLabelsTest] = getSiameseBatch(imdsTest,testBatchSize);
    
XTest1 = dlarray(single(XTest1),"SSCB");
XTest2 = dlarray(single(XTest2),"SSCB");

if (output.executionEnvironment == "auto" && canUseGPU) || ...
        output.executionEnvironment == "gpu"
   XTest1 = gpuArray(XTest1);
   XTest2 = gpuArray(XTest2);
end

YScore = predictSiamese(net,fcParams,XTest1,XTest2);
YScore = gather(extractdata(YScore));

YPred = round(YScore);    

 Run a Custom Training Experiment for Image Comparison

6-85



XTest1 = extractdata(XTest1);
XTest2 = extractdata(XTest2);

figure(Name="Test Images");
title(tiledlayout(2,5), ...
    "Comparison of Test Images")
    
for i = 1:numel(pairLabelsTest)
    if pairLabelsTest(i) == YPred(i)
        titleStr = "Correct";
        titleColor = "#77AC30"; % dark green
    else
        titleStr = "Incorrect";
        titleColor = "#FF0000"; % red
    end

    if YPred(i) == 1
        predStr = "Predicted: Similar";
    else
        predStr = "Predicted: Dissimilar" ;
    end
    
    scoreStr = "Score: " + YScore(i);
    
    nexttile        
    imshow([XTest1(:,:,:,i) XTest2(:,:,:,i)]);
    imageTitle = title(titleStr,[predStr,scoreStr]);
    imageTitle.Color = titleColor;
    xticks([])
    yticks([])
end

end

Helper Functions

The modelLoss function takes as input the Siamese dlnetwork object net, a pair of mini-batch
input data X1 and X2, and the label indicating whether they are similar or dissimilar. The function
returns the loss with respect to the learnable parameters in the network and the binary cross-entropy
loss between the prediction and the ground truth.

function [loss,gradientsSubnet,gradientsParams] = modelLoss(net,fcParams,X1,X2,pairLabels)
    Y = forwardSiamese(net,fcParams,X1,X2);
    loss = binarycrossentropy(Y,pairLabels);
    [gradientsSubnet,gradientsParams] = dlgradient(loss,net.Learnables,fcParams);
end

The binarycrossentropy function returns the binary cross-entropy loss value for a prediction from
the network.

function loss = binarycrossentropy(Y,pairLabels)
    precision = underlyingType(Y);
    Y(Y < eps(precision)) = eps(precision);
    Y(Y > 1 - eps(precision)) = 1 - eps(precision);

6 Manage Deep Learning Experiments

6-86



     loss = -pairLabels.*log(Y) - (1 - pairLabels).*log(1 - Y);
     loss = sum(loss)/numel(pairLabels);
 end

The forwardSiamese function defines how the subnetworks and the fullyconnect and sigmoid
operations combine to form the complete Siamese network. The function accepts the network
structure and two training images and returns a prediction of the probability of the pair being similar
(closer to 1) or dissimilar (closer to 0).

function Y = forwardSiamese(net,fcParams,X1,X2)
    F1 = forward(net,X1);
    F1 = sigmoid(F1);

     F2 = forward(net,X2);
     F2 = sigmoid(F2);

     Y = abs(F1 - F2);
     Y = fullyconnect(Y,fcParams.FcWeights,fcParams.FcBias);
     Y = sigmoid(Y);
 end

The getSiameseBatch function returns a randomly selected batch of paired images. On average,
this function produces a balanced set of similar and dissimilar pairs.

function [X1,X2,pairLabels] = getSiameseBatch(imds,miniBatchSize)
    pairLabels = zeros(1,miniBatchSize);
    imgSize = size(readimage(imds,1));
    X1 = zeros([imgSize 1 miniBatchSize]);
    X2 = zeros([imgSize 1 miniBatchSize]);
    for i = 1:miniBatchSize
        choice = rand(1);
        if choice < 0.5
            [pairIdx1,pairIdx2,pairLabels(i)] = getSimilarPair(imds.Labels);
        else
            [pairIdx1,pairIdx2,pairLabels(i)] = getDissimilarPair(imds.Labels);
        end
        X1(:,:,:,i) = imds.readimage(pairIdx1);
        X2(:,:,:,i) = imds.readimage(pairIdx2);
    end
end

The getSimilarPair function returns a random pair of indices for images that are in the same class
and the similar pair label of 1.

function [pairIdx1,pairIdx2,label] = getSimilarPair(classLabel)
    classes = unique(classLabel);
    classChoice = randi(numel(classes));
    idxs = find(classLabel==classes(classChoice));
    pairIdxChoice = randperm(numel(idxs),2);
    pairIdx1 = idxs(pairIdxChoice(1));
    pairIdx2 = idxs(pairIdxChoice(2));
    label = 1;
end

The getDissimilarPair function returns a random pair of indices for images that are in different
classes and the dissimilar pair label of 0.

function  [pairIdx1,pairIdx2,label] = getDissimilarPair(classLabel)
    classes = unique(classLabel);

 Run a Custom Training Experiment for Image Comparison

6-87



    classesChoice = randperm(numel(classes),2);
    idxs1 = find(classLabel==classes(classesChoice(1)));
    idxs2 = find(classLabel==classes(classesChoice(2)));
    pairIdx1Choice = randi(numel(idxs1));
    pairIdx2Choice = randi(numel(idxs2));
    pairIdx1 = idxs1(pairIdx1Choice);
    pairIdx2 = idxs2(pairIdx2Choice);
    label = 0;
end

The predictSiamese function uses the trained network to make predictions about the similarity of
two images.

function Y = predictSiamese(net,fcParams,X1,X2)
    F1 = predict(net,X1);
    F1 = sigmoid(F1);

     F2 = predict(net,X2);
     F2 = sigmoid(F2);

     Y = abs(F1 - F2);
     Y = fullyconnect(Y,fcParams.FcWeights,fcParams.FcBias);
     Y = sigmoid(Y);
 end

See Also
Apps
Experiment Manager

Functions
convolution2dLayer | fullyConnectedLayer

Objects
experiments.Monitor | dlnetwork | gpuArray

Related Examples
• “Train a Siamese Network to Compare Images” on page 3-126
• “Train Network Using Custom Training Loop” on page 19-239
• “Compare Layer Weight Initializers” on page 19-195
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

6 Manage Deep Learning Experiments

6-88



Use Experiment Manager to Train Generative Adversarial
Networks (GANs)

This example shows how to create a custom training experiment to train a generative adversarial
network (GAN) that generates images of flowers. For a custom training experiment, you explicitly
define the training procedure used by Experiment Manager. In this example, you implement a
custom training loop to train a GAN, a type of deep learning network that can generate data with
similar characteristics as the input real data. A GAN consists of two networks that train together:

• Generator — Given a vector of random values (latent inputs) as input, this network generates data
with the same structure as the training data.

• Discriminator — Given batches of data containing observations from both the training data, and
generated data from the generator, this network attempts to classify the observations as "real" or
"generated."

To train a GAN, train both networks simultaneously to maximize the performance of both networks:

• Train the generator to generate data that "fools" the discriminator. To optimize the performance of
the generator, maximize the loss of the discriminator when given generated data. In other words,
the objective of the generator is to generate data that the discriminator classifies as "real."

• Train the discriminator to distinguish between real and generated data. To optimize the
performance of the discriminator, minimize the loss of the discriminator when given batches of
both real and generated data. In other words, the objective of the discriminator is to not be
"fooled" by the generator.

Ideally, these strategies result in a generator that generates convincingly realistic data and a
discriminator that has learned strong feature representations that are characteristic of the training
data. For more information, see “Train Generative Adversarial Network (GAN)” on page 3-72.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
ImageGenerationExperiment.

 Use Experiment Manager to Train Generative Adversarial Networks (GANs)

6-89



Custom training experiments consist of a description, a table of hyperparameters, and a training
function. For more information, see “Configure Custom Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Train a generative adversarial network (GAN) to generate images of flowers.
Use hyperparameters to specify:
* the probability of the dropout layer in the discriminator network
* the fraction of real labels to flip while training the discriminator network

The Hyperparameters section specifies the strategy and hyperparameter values to use for the
experiment. When you run the experiment, Experiment Manager trains the network using every
combination of hyperparameter values specified in the hyperparameter table. This example uses two
hyperparameters:

• dropoutProb sets the probability of the dropout layer in the discriminator network. By default,
the values for this hyperparameter are specified as [0.25 0.5 0.75].

• flipFactor sets the fraction of real labels to flip when you train the discriminator network. The
experiment uses this hyperparameter to add noise to the real data and better balance the learning
of the discriminator and the generator. Otherwise, if the discriminator learns to discriminate

6 Manage Deep Learning Experiments

6-90



between real and generated images too quickly, then the generator can fail to train. The values for
this hyperparameter are specified as [0.1 0.3 0.5].

The Training Function section specifies a function that defines the training data, network
architecture, training options, and training procedure used by the experiment. To open this function
in MATLAB® Editor, click Edit. The code for the function also appears in Training Function. The
input to the training function is a structure with fields from the hyperparameter table and an
experiments.Monitor object that you can use to track the progress of the training, record values
of the metrics used by the training, and produce training plots. The function returns a structure that
contains the trained generator network, the trained discriminator network, and the execution
environment used for training. Experiment Manager saves this output so you can export it to the
MATLAB workspace when the training is complete. The training function has these sections:

• Initialize Output sets the initial value of the networks to empty arrays to indicate that the
training has not started. The experiment sets the execution environment to "auto", so it trains
the networks on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and
a supported GPU device. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

output.generator = [];
output.discriminator = [];
output.executionEnvironment = "auto";

• Load Training Data defines the training data for the experiment as an imageDatastore object.
The experiment uses the Flowers data set, which contains 3670 images of flowers and is about
218 MB. For more information on this data set, see “Image Data Sets” on page 20-116.

monitor.Status = "Loading Data";

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~exist(imageFolder,"dir")
    websave(filename,url);
    untar(filename,downloadFolder)
end

datasetFolder = fullfile(imageFolder);
imdsTrain = imageDatastore(datasetFolder, ...
    IncludeSubfolders=true);

augmenter = imageDataAugmenter(RandXReflection=true);
augimdsTrain = augmentedImageDatastore([64 64],imdsTrain, ...
    DataAugmentation=augmenter);

• Define Generator Network defines the architecture for the generator network as a layer graph
that generates images from 1-by-1-by-100 arrays of random values. To train the network with a
custom training loop and enable automatic differentiation, the training function converts the layer
graph to a dlnetwork object. The generator network has this architecture:

 Use Experiment Manager to Train Generative Adversarial Networks (GANs)

6-91



monitor.Status = "Creating Generator";

filterSize = 5;
numFilters = 64;
numLatentInputs = 100;
projectionSize = [4 4 512];

layersGenerator = [
    featureInputLayer(numLatentInputs)
    projectAndReshapeLayer(projectionSize,Name="proj")
    transposedConv2dLayer(filterSize,4*numFilters)
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,2*numFilters,Stride=2,Cropping="same")
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,numFilters,Stride=2,Cropping="same")
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,3,Stride=2,Cropping="same")
    tanhLayer];

lgraphGenerator = layerGraph(layersGenerator);
output.generator = dlnetwork(lgraphGenerator);

• Define Discriminator Network defines the architecture for the discriminator network as a layer
graph that classifies real and generated 64-by-64-by-3 images. The dropout layer uses the dropout
probability defined in the hyperparameter table. To train the network with a custom training loop
and enable automatic differentiation, the training function converts the layer graph to a
dlnetwork object. The discriminator network has this architecture:

6 Manage Deep Learning Experiments

6-92



monitor.Status = "Creating Discriminator";

filterSize = 5;
numFilters = 64;
inputSize = [64 64 3];
dropoutProb = params.dropoutProb;
scale = 0.2;

layersDiscriminator = [
    imageInputLayer(inputSize,Normalization="none")
    dropoutLayer(dropoutProb)
    convolution2dLayer(filterSize,numFilters,Stride=2,Padding="same")
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,2*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,4*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,8*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(4,1)
    sigmoidLayer];

lgraphDiscriminator = layerGraph(layersDiscriminator);
output.discriminator = dlnetwork(lgraphDiscriminator);

• Specify Training Options defines the training options used by the experiment. In this example,
Experiment Manager trains the networks with a mini-batch size of 128 for 50 epochs using an
initial learning rate of 0.0002, a gradient decay factor of 0.5, and a squared gradient decay factor
of 0.999.

numEpochs = 50;
miniBatchSize = 128;
learnRate = 0.0002;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;
trailingAvgG = [];
trailingAvgSqG = [];
trailingAvgD = [];
trailingAvgSqD = [];
flipFactor = params.flipFactor;

• Train Model defines the custom training loop used by the experiment. The custom training loop
uses minibatchqueue to process and manage the mini-batches of images. For each mini-batch,
the minibatchqueue object rescales the images in the range [-1,1], discards any partial mini-
batches with fewer than 128 observations, and formats the image data with the dimension labels
"SSCB" (spatial, spatial, channel, batch). By default, the minibatchqueue object converts the
data to dlarray objects with underlying type single. For each epoch, the custom training loop
shuffles the datastore and loops over mini-batches of data. If you train on a GPU, the data is
converted to gpuArray (Parallel Computing Toolbox) objects. Then, the training function
evaluates the model gradients and updates the discriminator and generator network parameters.

 Use Experiment Manager to Train Generative Adversarial Networks (GANs)

6-93



After each iteration of the custom training loop, the training function saves the trained networks
and updates the training progress.

monitor.Metrics = ["scoreGenerator","scoreDiscriminator","scoreCombined"];
monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Combined Score","scoreCombined");
groupSubPlot(monitor,"Generator and Discriminator Scores", ...
    ["scoreGenerator","scoreDiscriminator"]);
monitor.Status = "Training";

augimdsTrain.MiniBatchSize = miniBatchSize;
mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    PartialMiniBatch="discard",...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat="SSCB",...
    OutputEnvironment=output.executionEnvironment);

iteration = 0;
for epoch = 1:numEpochs
    shuffle(mbq);
    while hasdata(mbq)
        iteration = iteration + 1;
        X = next(mbq);
        
        Z = randn(numLatentInputs,miniBatchSize,"single");
        Z = dlarray(Z,"CB");
        
        if (output.executionEnvironment == "auto" && canUseGPU) || ...
                output.executionEnvironment == "gpu"
            Z = gpuArray(Z);
        end
        
        [~,~,gradientsG,gradientsD,stateG,scoreG,scoreD] = ...
            dlfeval(@modelLoss,output.generator,output.discriminator,X,Z,flipFactor);
        output.generator.State = stateG;
        
        [output.discriminator,trailingAvgD,trailingAvgSqD] = adamupdate( ...
            output.discriminator,gradientsD, ...
            trailingAvgD,trailingAvgSqD,iteration, ...
            learnRate,gradientDecayFactor,squaredGradientDecayFactor);
        
        [output.generator,trailingAvgG,trailingAvgSqG] = adamupdate( ...
            output.generator,gradientsG, ...
            trailingAvgG,trailingAvgSqG,iteration, ...
            learnRate,gradientDecayFactor,squaredGradientDecayFactor);
        
        scoreG = double(gather(extractdata(scoreG)));
        scoreD = double(gather(extractdata(scoreD)));
        scoreCombinedValue = 1-2*max(abs(scoreD-0.5),abs(scoreG-0.5));
        
        recordMetrics(monitor,iteration, ...
            scoreGenerator=scoreG, ...
            scoreDiscriminator=scoreD, ...
            scoreCombined=scoreCombinedValue);
        
        if monitor.Stop || isnan(scoreG) || isnan(scoreD)

6 Manage Deep Learning Experiments

6-94



            return;
        end
    end
    monitor.Progress = (epoch/numEpochs)*100;
end

• Generate Test Images creates a batch of 25 random vectors to input to the generator network
and displays the resulting images in a figure. When the training is complete, the Review Results
gallery in the toolstrip displays a button for the figure. The Name property of the figure specifies
the name of the button. You can click the button to display the figure in the Visualizations pane.
Use this figure to check that the generator produces a variety of images without many duplicates.
If the images have little diversity and some of them are almost identical, then your generator is
likely affected by mode collapse.

numLatentInputs = 100;
numTestImages = 25;

ZTest = randn(numLatentInputs,numTestImages,"single");
ZTest = dlarray(ZTest,"CB");

if (output.executionEnvironment == "auto" && canUseGPU) || ...
        output.executionEnvironment == "gpu"
    ZTest = gpuArray(ZTest);
end

XGenTest = predict(output.generator,ZTest);

figure(Name="Test Images")
I = imtile(extractdata(XGenTest));
I = rescale(I);
image(I)
xticks([])
yticks([])
title("Generated Test Images")

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the training
function multiple times. Each trial uses a different combination of hyperparameter values. By default,
Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run
multiple trials at the same time or offload your experiment as a batch job in a cluster:

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

 Use Experiment Manager to Train Generative Adversarial Networks (GANs)

6-95



A table of results displays the training loss and validation accuracy for each trial.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.

Evaluate Results

Training GANs can be a challenging task because the generator and the discriminator networks
compete against each other during the training. If one network learns too quickly, then the other
network can fail to learn. To help you diagnose issues and monitor how well the generator and
discriminator networks achieve their respective goals, this experiment displays a pair of scores in the
training plot. The generator score scoreGenerator measures the likelihood that the discriminator
can correctly distinguish generated images. The discriminator score scoreDiscriminator
measures the likelihood that the discriminator can correctly distinguish all input images, assuming
that the numbers of real and generated images passed to the discriminator are equal. In the ideal
case, both scores are 0.5. Scores that are too close to zero or one can indicate that one network
dominates the other. For more information, see “Monitor GAN Training Progress and Identify
Common Failure Modes” on page 5-279.

To help you decide which trial produces the best results, this experiment combines the generator
score and discriminator scores into a single numeric value, scoreCombined. This metric uses the L-
∞ norm to determine how close the two networks are to the ideal scenario. The metric returns a value

6 Manage Deep Learning Experiments

6-96



of one if both network scores equal 0.5, and zero if one of the network scores equals zero or one. To
sort the table of results using the combined score:

1 Point to the scoreCombined column.
2 Click the triangle icon.
3 Select Sort in Descending Order.

The trial with the highest combined score appears at the top of the results table.

Using the combined score to sort your results might not identify the best trial in all cases. To evaluate
the quality of the GAN, inspect the images produced by the trained generator. First, select a row in
the results table. Then, on the Experiment Manager toolstrip, under Review Results, click Test
Images. Experiment Manager displays the images generated from a batch of 25 random vectors.

For best results, repeat this process for each trial with a high combined score to visually check that
the generator produces a variety of images without many duplicates. If the images have little
diversity and some of them are almost identical, then your generator is likely affected by mode
collapse. For more information, see “Mode Collapse” on page 5-281.

To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the scoreCombined cell for the best trial.
2 Select Add Annotation.
3 In the Annotations pane, enter your observations in the text box.

 Use Experiment Manager to Train Generative Adversarial Networks (GANs)

6-97



For more information, see “Sort, Filter, and Annotate Experiment Results”.

Rerun Experiment

After you identify the combination of hyperparameters that generates the best images, run the
experiment a second time to train the network for a longer period of time.

1 Return to the experiment definition pane.
2 In the hyperparameter table, enter the hyperparameter values from your best trial. For example,

to use the values from trial 3, change the value of dropoutProb to 0.75 and flipFactor to
0.1.

3 Open the training function and specify a longer training time. Under Specify Training Options,
change the value of numEpochs to 500.

4 Run the experiment using the new hyperparameter values and training function. Experiment
Manager runs a single trial. Training takes about 10 times longer than the previous trials.

5 When the experiment finishes, test the new generator network by inspecting the generated test
images. As before, visually check that the generator produces a variety of images without many
duplicates.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Training Function

This function specifies the training data, network architecture, training options, and training
procedure used by the experiment. The input to this function is a structure with fields from the
hyperparameter table and an experiments.Monitor object that you can use to track the progress
of the training, record values of the metrics used by the training, and produce training plots. The
training function returns a structure that contains the trained generator network, the trained
discriminator network, and the execution environment used for training. Experiment Manager saves
this output so you can export it to the MATLAB workspace when the training is complete.

6 Manage Deep Learning Experiments

6-98



function output = ImageGenerationExperiment_training(params,monitor)

Initialize Output

output.generator = [];
output.discriminator = [];
output.executionEnvironment = "auto";

Load Training Data

monitor.Status = "Loading Data";

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~exist(imageFolder,"dir")
    websave(filename,url);
    untar(filename,downloadFolder)
end

datasetFolder = fullfile(imageFolder);
imdsTrain = imageDatastore(datasetFolder, ...
    IncludeSubfolders=true);

augmenter = imageDataAugmenter(RandXReflection=true);
augimdsTrain = augmentedImageDatastore([64 64],imdsTrain, ...
    DataAugmentation=augmenter);

Define Generator Network

monitor.Status = "Creating Generator";

filterSize = 5;
numFilters = 64;
numLatentInputs = 100;
projectionSize = [4 4 512];

layersGenerator = [
    featureInputLayer(numLatentInputs)
    projectAndReshapeLayer(projectionSize,Name="proj")
    transposedConv2dLayer(filterSize,4*numFilters)
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,2*numFilters,Stride=2,Cropping="same")
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,numFilters,Stride=2,Cropping="same")
    batchNormalizationLayer
    reluLayer
    transposedConv2dLayer(filterSize,3,Stride=2,Cropping="same")
    tanhLayer];

 Use Experiment Manager to Train Generative Adversarial Networks (GANs)

6-99



lgraphGenerator = layerGraph(layersGenerator);
output.generator = dlnetwork(lgraphGenerator);

Define Discriminator Network

monitor.Status = "Creating Discriminator";

filterSize = 5;
numFilters = 64;
inputSize = [64 64 3];
dropoutProb = params.dropoutProb;
scale = 0.2;

layersDiscriminator = [
    imageInputLayer(inputSize,Normalization="none")
    dropoutLayer(dropoutProb)
    convolution2dLayer(filterSize,numFilters,Stride=2,Padding="same")
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,2*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,4*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(filterSize,8*numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    leakyReluLayer(scale)
    convolution2dLayer(4,1)
    sigmoidLayer];

lgraphDiscriminator = layerGraph(layersDiscriminator);
output.discriminator = dlnetwork(lgraphDiscriminator);

Specify Training Options

numEpochs = 50;
miniBatchSize = 128;
learnRate = 0.0002;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;
trailingAvgG = [];
trailingAvgSqG = [];
trailingAvgD = [];
trailingAvgSqD = [];
flipFactor = params.flipFactor;

Train Model

monitor.Metrics = ["scoreGenerator","scoreDiscriminator","scoreCombined"];
monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Combined Score","scoreCombined");

6 Manage Deep Learning Experiments

6-100



groupSubPlot(monitor,"Generator and Discriminator Scores", ...
    ["scoreGenerator","scoreDiscriminator"]);
monitor.Status = "Training";

augimdsTrain.MiniBatchSize = miniBatchSize;
mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    PartialMiniBatch="discard",...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat="SSCB",...
    OutputEnvironment=output.executionEnvironment);

iteration = 0;
for epoch = 1:numEpochs
    shuffle(mbq);
    while hasdata(mbq)
        iteration = iteration + 1;
        X = next(mbq);
        
        Z = randn(numLatentInputs,miniBatchSize,"single");
        Z = dlarray(Z,"CB");
        
        if (output.executionEnvironment == "auto" && canUseGPU) || ...
                output.executionEnvironment == "gpu"
            Z = gpuArray(Z);
        end
        
        [~,~,gradientsG,gradientsD,stateG,scoreG,scoreD] = ...
            dlfeval(@modelLoss,output.generator,output.discriminator,X,Z,flipFactor);
        output.generator.State = stateG;
        
        [output.discriminator,trailingAvgD,trailingAvgSqD] = adamupdate( ...
            output.discriminator,gradientsD, ...
            trailingAvgD,trailingAvgSqD,iteration, ...
            learnRate,gradientDecayFactor,squaredGradientDecayFactor);
        
        [output.generator,trailingAvgG,trailingAvgSqG] = adamupdate( ...
            output.generator,gradientsG, ...
            trailingAvgG,trailingAvgSqG,iteration, ...
            learnRate,gradientDecayFactor,squaredGradientDecayFactor);
        
        scoreG = double(gather(extractdata(scoreG)));
        scoreD = double(gather(extractdata(scoreD)));
        scoreCombinedValue = 1-2*max(abs(scoreD-0.5),abs(scoreG-0.5));
        
        recordMetrics(monitor,iteration, ...
            scoreGenerator=scoreG, ...
            scoreDiscriminator=scoreD, ...
            scoreCombined=scoreCombinedValue);
        
        if monitor.Stop || isnan(scoreG) || isnan(scoreD)
            return;
        end
    end
    monitor.Progress = (epoch/numEpochs)*100;
end

 Use Experiment Manager to Train Generative Adversarial Networks (GANs)

6-101



Generate Test Images

numLatentInputs = 100;
numTestImages = 25;

ZTest = randn(numLatentInputs,numTestImages,"single");
ZTest = dlarray(ZTest,"CB");

if (output.executionEnvironment == "auto" && canUseGPU) || ...
        output.executionEnvironment == "gpu"
    ZTest = gpuArray(ZTest);
end

XGenTest = predict(output.generator,ZTest);

figure(Name="Test Images")
I = imtile(extractdata(XGenTest));
I = rescale(I);
image(I)
xticks([])
yticks([])
title("Generated Test Images")

end

Helper Functions

The modelLoss function takes as input the generator and discriminator dlnetwork objects (netG
and netD), a mini-batch of input data (X), an array of random values (Z), and the percentage of real
labels to flip (flipProb), and returns the loss values, the gradients of the loss values with respect to
the learnable parameters in the networks, the generator state, and the scores of the two networks.

function [lossG,lossD,gradientsG,gradientsD,stateG,scoreG,scoreD] = ...
    modelLoss(netG,netD,X,Z,flipProb)

    YReal = forward(netD,X);
    
    [XGenerated,stateG] = forward(netG,Z);
    YGenerated = forward(netD,XGenerated);
    
    scoreD = (mean(YReal) + mean(1-YGenerated)) / 2;
    scoreG = mean(YGenerated);
    
    numObservations = size(YReal,4);
    idx = rand(1,numObservations) < flipProb;
    YReal(:,:,:,idx) = 1 - YReal(:,:,:,idx);
    
    [lossG, lossD] = GANLoss(YReal,YGenerated);
    
    gradientsG = dlgradient(lossG,netG.Learnables,RetainData=true);
    gradientsD = dlgradient(lossD,netD.Learnables);
end

The GANLoss function returns the loss for the discriminator and generator networks.

6 Manage Deep Learning Experiments

6-102



function [lossG,lossD] = GANLoss(YReal,YGenerated)
    lossD = -mean(log(YReal))-mean(log(1-YGenerated));
    lossG = -mean(log(YGenerated));
end

The preprocessMiniBatch function preprocesses the data by extracting the image data from the
incoming cell array, concatenating the images into a numeric array, and rescaling the images to be in
the range [-1,1].

function X = preprocessMiniBatch(data)
    X = cat(4,data{:});
    X = rescale(X,-1,1,InputMin=0,InputMax=255);
end

See Also
Apps
Experiment Manager

Objects
dlarray | dlnetwork | experiments.Monitor | gpuArray | minibatchqueue

Related Examples
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Train Network Using Custom Training Loop” on page 19-239
• “Monitor GAN Training Progress and Identify Common Failure Modes” on page 5-279
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

 Use Experiment Manager to Train Generative Adversarial Networks (GANs)

6-103



Use Bayesian Optimization in Custom Training Experiments

This example shows how to use Bayesian optimization to find optimal hyperparameter values for
custom training experiments in Experiment Manager. Instead of sweeping hyperparameters, you
specify a range of values for each hyperparameter and select a metric to optimize. Experiment
Manager searches for a combination of hyperparameters that optimizes that metric.

In this example, you train a network to classify images of handwritten digits using a custom learning
rate schedule. The experiment uses Bayesian optimization to find the type of schedule and the
combination of hyperparameters that maximizes the validation accuracy. For more information on
using a custom learning rate schedule, see “Train Network Using Custom Training Loop” on page 19-
239 and “Piecewise Learn Rate Schedule” on page 19-231.

Alternatively, you can find optimal hyperparameter values programmatically by calling the bayesopt
function. For more information, see “Deep Learning Using Bayesian Optimization” on page 5-177.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
BayesOptExperiment.

6 Manage Deep Learning Experiments

6-104



Custom training experiments consist of a description, a table of hyperparameters, and a training
function. Experiments that use Bayesian optimization include additional options to limit the duration
of the experiment. For more information, see “Configure Custom Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Classification of digits, using two custom learning rate schedules:
* decay - Use the learning rate p(t) = p(0)/(1+kt), where t is the iteration number and k is DecayRate.
* piecewise - Multiply the learning rate by DropFactor every 100 iterations.

 Use Bayesian Optimization in Custom Training Experiments

6-105



The Hyperparameters section specifies the strategy and hyperparameter options to use for the
experiment. For each hyperparameter, you can specify these options:

• Range — Enter a two-element vector that gives the lower bound and upper bound of a real- or
integer-valued hyperparameter, or a string array or cell array that lists the possible values of a
categorical hyperparameter.

• Type — Select real for a real-valued hyperparameter, integer for an integer-valued
hyperparameter, or categorical for a categorical hyperparameter.

• Transform — Select none to use no transform or log to use a logarithmic transform. When you
select log, the hyperparameter values must be positive. With this setting, the Bayesian
optimization algorithm models the hyperparameter on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters. Each trial in the experiment uses a new combination of hyperparameter values
based on the results of the previous trials. This example uses the hyperparameters Schedule,
InitialLearnRate, DecayRate, and DropFactor to specify the custom learning rate schedule
used for training. The options for Schedule are:

• decay — For each iteration, use the time-based learning rate , where  is the iteration
number,  is the initial learning rate specified by InitialLearnRate, and  is the decay rate
specified by DecayRate. This option ignores the value of the hyperparameter DropFactor.

• piecewise — Start with the initial learning rate specified by InitialLearnRate and
periodically drop the learning rate by multiplying by the drop factor specified by DropFactor. In
this example, the learning rate drops every 100 iterations. This option ignores the value of the
hyperparameter DecayRate.

The experiment models InitialLearnRate and DecayRate on a logarithmic scale because the
range of values for these hyperparameters spans several orders of magnitude, from 0.001 to 0.1. In
contrast, the values for DropFactor range from 0.1 to 0.9, so the experiment models DropFactor
on a linear scale.

Under Bayesian Optimization Options, you can specify the duration of the experiment by entering
the maximum time in seconds and the maximum number of trials to run. To best use the power of
Bayesian optimization, perform at least 30 objective function evaluations.

The Training Function section specifies a function that defines the training data, network
architecture, training options, and training procedure used by the experiment. To open this function
in MATLAB® Editor, click Edit. The code for the function also appears in Training Function. The
input to the training function is a structure with fields from the hyperparameter table and an
experiments.Monitor object that you can use to track the progress of the training, record values
of the metrics used by the training, and produce training plots. The function returns a structure that
contains the trained network, the training loss, the validation accuracy, and the execution
environment used for training. Experiment Manager saves this output so you can export it to the
MATLAB workspace when the training is complete. The training function has these sections:

• Initialize Output sets the initial value of the network, loss, and accuracy to empty arrays to
indicate that the training has not started. The experiment sets the execution environment to
"auto", so it trains the network on a GPU if one is available. Using a GPU requires Parallel
Computing Toolbox™ and a supported GPU device. For more information, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

output.trainedNet = [];

6 Manage Deep Learning Experiments

6-106



output.trainingInfo.loss = [];
output.trainingInfo.accuracy = [];
output.executionEnvironment = "auto";

• Load Training Data defines the training and validation data for the experiment as augmented
image datastores using the Digits data set. For each image in the training set, the experiment
applies a random translation of up to 5 pixels on the horizontal and vertical axes. For more
information on this data set, see “Image Data Sets” on page 20-116.

dataFolder = fullfile(toolboxdir("nnet"), ...
    "nndemos","nndatasets","DigitDataset");
imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,"randomize");
inputSize = [28 28 1];
pixelRange = [-5 5];
imageAugmenter = imageDataAugmenter( ...
    RandXTranslation = pixelRange, ...
    RandYTranslation = pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    DataAugmentation = imageAugmenter);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

• Define Network Architecture defines the architecture for the image classification network. To
train the network with a custom training loop and enable automatic differentiation, the training
function converts the layer graph to a dlnetwork object.

layers = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(5,20)
    batchNormalizationLayer()
    reluLayer()
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer()
    reluLayer()
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer()
    reluLayer()
    fullyConnectedLayer(numClasses)
    softmaxLayer()];
lgraph = layerGraph(layers);
net = dlnetwork(lgraph);

• Specify Training Options defines the training options used by the experiment. In this example,
Experiment Manager trains the networks with a mini-batch size of 128 for 10 epochs using the
custom learning rate schedule defined by the hyperparameters.

numEpochs = 10;
miniBatchSize = 128;

 Use Bayesian Optimization in Custom Training Experiments

6-107



momentum = 0.9;

learnRateSchedule = params.Schedule;
initialLearnRate = params.InitialLearnRate;
learnRateDecay = params.DecayRate;
learnRateDropFactor = params.DropFactor;
learnRateDropPeriod = 100;
learnRate = initialLearnRate;

• Train Model defines the custom training loop used by the experiment. The custom training loop
uses minibatchqueue to process and manage the mini-batches of images. For each mini-batch,
the minibatchqueue object converts the labels to one-hot encoded variables and formats the
image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By default, the
minibatchqueue object converts the data to dlarray objects with underlying type single. If
you train on a GPU, the data is converted to gpuArray (Parallel Computing Toolbox) objects. For
each epoch, the custom training loop shuffles the datastore, loops over mini-batches of data, and
evaluates the model loss, gradients, and state. Then, the training function determines the learning
rate for the selected schedule and updates the network parameters. After each iteration of the
custom training loop, the training function computes the validation accuracy, saves the trained
network, and updates the training progress.

monitor.Metrics = ["LearnRate" "TrainingLoss" "ValidationAccuracy"];
monitor.XLabel = "Iteration";

mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB",""],...
    OutputEnvironment=output.executionEnvironment);

iteration = 0;
velocity = [];
recordMetrics(monitor,iteration,ValidationAccuracy=0);

for epoch = 1:numEpochs
    shuffle(mbq);

    while hasdata(mbq)
        iteration = iteration + 1;

        [X,Y] = next(mbq);
        
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,Y);
        loss = double(gather(extractdata(loss)));
        net.State = state;
        
        switch learnRateSchedule
            case "decay"
                learnRate = initialLearnRate/(1 + learnRateDecay*iteration);
            case "piecewise"
                if mod(iteration,learnRateDropPeriod) == 0
                    learnRate = learnRate*learnRateDropFactor;
                end
        end
        

6 Manage Deep Learning Experiments

6-108



        recordMetrics(monitor,iteration, ...
            LearnRate=learnRate, ...
            TrainingLoss=loss);
        output.trainingInfo.loss = [output.trainingInfo.loss; iteration loss];
        
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);
        
        if monitor.Stop
            return;
        end
    end

    numOutputs = 1;
    mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
        MiniBatchSize=miniBatchSize, ...
        MiniBatchFcn=@preprocessMiniBatchPredictors, ...
        MiniBatchFormat="SSCB");
    predictedLabels = modelPredictions(net,mbqTest,classes);
    trueLabels = imdsValidation.Labels;
    accuracy = mean(predictedLabels == trueLabels)*100.0;
    
    output.trainedNet = net;
    monitor.Progress = (epoch*100.0)/numEpochs;
    recordMetrics(monitor,iteration, ...
        ValidationAccuracy=accuracy);
    output.trainingInfo.accuracy = [output.trainingInfo.accuracy; iteration accuracy];
end

• Plot Confusion Matrix calls the confusionchart function to create the confusion matrix for
the validation data. When the training is complete, the Review Results gallery in the toolstrip
displays a button for the confusion matrix. The Name property of the figure specifies the name of
the button. You can click the button to display the confusion matrix in the Visualizations pane.

figure(Name="Confusion Matrix")
confusionchart(trueLabels,predictedLabels, ...
    ColumnSummary="column-normalized", ...
    RowSummary="row-normalized", ...
    Title="Confusion Matrix for Validation Data");

In the Metrics section, the Optimize and Direction fields indicate the metric that the Bayesian
optimization algorithm uses as an objective function. For this experiment, Experiment Manager seeks
to maximize the value of the validation accuracy.

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the training
function multiple times. Each trial uses a different combination of hyperparameter values.

Training can take some time. To limit the duration of the experiment, you can modify the Bayesian
Optimization Options by reducing the maximum running time or the maximum number of trials.
However, running fewer than 30 trials can prevent the Bayesian optimization algorithm from
converging to an optimal set of hyperparameters.

By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you
can run multiple trials at the same time or offload your experiment as a batch job in a cluster:

 Use Bayesian Optimization in Custom Training Experiments

6-109



• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” on
page 6-18 and “GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the training loss and validation accuracy for each trial. Experiment
Manager highlights the trial with the optimal value for the selected metric. For example, in this
experiment, the 23rd trial produces the greatest validation accuracy.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot. The training plot shows the learning rate, training loss,
and validation accuracy for each trial. For example, this training plot is for a trial that uses a
piecewise learning rate schedule.

6 Manage Deep Learning Experiments

6-110



In contrast, this training plot is for a trial that uses a time-based decay learning rate schedule.

Evaluate Results

To display the confusion matrix for the best trial in your experiment, select the row in the results
table with the highest validation accuracy. Then, under Review Results, click Confusion Matrix

 Use Bayesian Optimization in Custom Training Experiments

6-111



To perform additional computations, export the training output to the workspace as a structure. The
trainedNet field of this structure contains the trained network.

1 On the Experiment Manager toolstrip, click Export > Training Output.
2 In the dialog window, enter the name of a workspace variable for the exported training output.

The default name is trainingOutput.

To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the ValidationAccuracy cell for the best trial.
2 Select Add Annotation.
3 In the Annotations pane, enter your observations in the text box.

For more information, see “Sort, Filter, and Annotate Experiment Results”.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Training Function

This function specifies the training data, network architecture, training options, and training
procedure used by the experiment. The input to this function is a structure with fields from the

6 Manage Deep Learning Experiments

6-112



hyperparameter table and an experiments.Monitor object that you can use to track the progress
of the training, record values of the metrics used by the training, and produce training plots. The
function returns a structure that contains the trained network, the training loss, the validation
accuracy, and the execution environment used for training. Experiment Manager saves this output so
you can export it to the MATLAB workspace when the training is complete.

function output = BayesOptExperiment_training(params,monitor)

Initialize Output

output.trainedNet = [];
output.trainingInfo.loss = [];
output.trainingInfo.accuracy = [];
output.executionEnvironment = "auto";

Load Training Data

dataFolder = fullfile(toolboxdir("nnet"), ...
    "nndemos","nndatasets","DigitDataset");
imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,"randomize");
inputSize = [28 28 1];
pixelRange = [-5 5];
imageAugmenter = imageDataAugmenter( ...
    RandXTranslation = pixelRange, ...
    RandYTranslation = pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    DataAugmentation = imageAugmenter);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network Architecture

layers = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(5,20)
    batchNormalizationLayer()
    reluLayer()
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer()
    reluLayer()
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer()
    reluLayer()
    fullyConnectedLayer(numClasses)
    softmaxLayer()];
lgraph = layerGraph(layers);
net = dlnetwork(lgraph);

Specify Training Options

 Use Bayesian Optimization in Custom Training Experiments

6-113



numEpochs = 10;
miniBatchSize = 128;
momentum = 0.9;

learnRateSchedule = params.Schedule;
initialLearnRate = params.InitialLearnRate;
learnRateDecay = params.DecayRate;
learnRateDropFactor = params.DropFactor;
learnRateDropPeriod = 100;
learnRate = initialLearnRate;

Train Model

monitor.Metrics = ["LearnRate" "TrainingLoss" "ValidationAccuracy"];
monitor.XLabel = "Iteration";

mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB",""],...
    OutputEnvironment=output.executionEnvironment);

iteration = 0;
velocity = [];
recordMetrics(monitor,iteration,ValidationAccuracy=0);

for epoch = 1:numEpochs
    shuffle(mbq);

    while hasdata(mbq)
        iteration = iteration + 1;

        [X,Y] = next(mbq);
        
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,Y);
        loss = double(gather(extractdata(loss)));
        net.State = state;
        
        switch learnRateSchedule
            case "decay"
                learnRate = initialLearnRate/(1 + learnRateDecay*iteration);
            case "piecewise"
                if mod(iteration,learnRateDropPeriod) == 0
                    learnRate = learnRate*learnRateDropFactor;
                end
        end
        
        recordMetrics(monitor,iteration, ...
            LearnRate=learnRate, ...
            TrainingLoss=loss);
        output.trainingInfo.loss = [output.trainingInfo.loss; iteration loss];
        
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);
        
        if monitor.Stop

6 Manage Deep Learning Experiments

6-114



            return;
        end
    end

    numOutputs = 1;
    mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
        MiniBatchSize=miniBatchSize, ...
        MiniBatchFcn=@preprocessMiniBatchPredictors, ...
        MiniBatchFormat="SSCB");
    predictedLabels = modelPredictions(net,mbqTest,classes);
    trueLabels = imdsValidation.Labels;
    accuracy = mean(predictedLabels == trueLabels)*100.0;
    
    output.trainedNet = net;
    monitor.Progress = (epoch*100.0)/numEpochs;
    recordMetrics(monitor,iteration, ...
        ValidationAccuracy=accuracy);
    output.trainingInfo.accuracy = [output.trainingInfo.accuracy; iteration accuracy];
end

Plot Confusion Matrix

figure(Name="Confusion Matrix")
confusionchart(trueLabels,predictedLabels, ...
    ColumnSummary="column-normalized", ...
    RowSummary="row-normalized", ...
    Title="Confusion Matrix for Validation Data");

end

Helper Functions

The modelLoss function takes a dlnetwork object net and a mini-batch of input data X with
corresponding labels Y. The function returns the gradients of the loss with respect to the learnable
parameters in net, the network state, and the loss. To compute the gradients automatically, the
function calls the dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,Y)
[YPred,state] = forward(net,X);
loss = crossentropy(YPred,Y);
gradients = dlgradient(loss,net.Learnables);
end

The modelPredictions function takes a dlnetwork object net, a minibatchqueue object mbq,
and the network classes. The function computes the model predictions by iterating over the data in
the minibatchqueue object. The function uses the onehotdecode function to find the predicted
class with the highest score.

function predictions = modelPredictions(net,mbq,classes)
predictions = [];
while hasdata(mbq)
    XTest = next(mbq);
    YPred = predict(net,XTest);
    YPred = onehotdecode(YPred,classes,1)';
    predictions = [predictions; YPred];

 Use Bayesian Optimization in Custom Training Experiments

6-115



end
end

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using these
steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate the data into a categorical

array along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,Y] = preprocessMiniBatch(XCell,YCell)
X = preprocessMiniBatchPredictors(XCell);
Y = cat(2,YCell{1:end});
Y = onehotencode(Y,1);
end

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenating the data into a numeric array.

function X = preprocessMiniBatchPredictors(XCell)
X = cat(4,XCell{1:end});
end

See Also
Apps
Experiment Manager

Objects
experiments.Monitor | dlnetwork | gpuArray

Functions
confusionchart

More About
• “Deep Learning Using Bayesian Optimization” on page 5-177
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Tune Experiment Hyperparameters by Using Bayesian Optimization” on page 6-49
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21
• “Bayesian Optimization Algorithm” (Statistics and Machine Learning Toolbox)

6 Manage Deep Learning Experiments

6-116



Custom Training with Multiple GPUs in Experiment Manager

This example shows how to configure multiple parallel workers to collaborate on each trial of a
custom training experiment. In this example, parallel workers train on portions of the overall mini-
batch in each trial of an image classification experiment. During training, a DataQueue object sends
training progress information back to Experiment Manager. If you have a supported GPU, then
training happens on the GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

As an alternative, you can set up a parallel custom training loop that runs a single trial of this
experiment programmatically. For more information, see “Train Network in Parallel with Custom
Training Loop” on page 7-64.

Open Experiment

First, open the example. Experiment Manager loads a project with a preconfigured experiment that
you can inspect and run. To open the experiment, in the Experiment Browser pane, double-click
ParallelCustomLoopExperiment.

 Custom Training with Multiple GPUs in Experiment Manager

6-117



Custom training experiments consist of a description, a table of hyperparameters, and a training
function. For more information, see “Configure Custom Training Experiment”.

The Description field contains a textual description of the experiment. For this example, the
description is:

Use multiple parallel workers to train an image classification network.
Each trial uses a different initial learning rate and momentum.

The Hyperparameters section specifies the strategy and hyperparameter values to use for the
experiment. When you run the experiment, Experiment Manager trains the network using every
combination of hyperparameter values specified in the hyperparameter table. This example uses two
hyperparameters:

• InitialLearnRate sets the initial learning rate used for training. If the learning rate is too low,
then training takes a long time. If the learning rate is too high, then training can reach a
suboptimal result or diverge. The best learning rate depends on your data as well as the network
you are training.

• Momentum specifies the contribution of the gradient step from the previous iteration to the current
iteration of stochastic gradient descent with momentum.

The Training Function section specifies a function that defines the training data, network
architecture, training options, and training procedure used by the experiment. To open this function
in MATLAB® Editor, click Edit. The code for the function also appears in Training Function. The
input to the training function is a structure with fields from the hyperparameter table and an
experiments.Monitor object that you can use to track the progress of the training, record values
of the metrics used by the training, and produce training plots. The function returns a structure that
contains the trained network, the training loss, and the validation accuracy. Experiment Manager
saves this output so you can export it to the MATLAB workspace when the training is complete. The
training function has these sections:

• Initialize Output sets the initial value of the network, training loss, and validation accuracy to
empty arrays to indicate that the training has not started.

output.network = [];
output.loss = [];
output.accuracy = [];

• Load Training and Test Data defines the training and test data for the experiment as
imageDatastore objects. The experiment uses the Digits data set, which consists of 5000 28-
by-28 pixel grayscale images of digits from 0 to 9, categorized by the digit they represent. For
more information on this data set, see “Image Data Sets” on page 20-116.

monitor.Status = "Loading Data";

dataFolder = fullfile(toolboxdir("nnet"), ...
    "nndemos","nndatasets","DigitDataset");
imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsTest] = splitEachLabel(imds,0.9,"randomized");

6 Manage Deep Learning Experiments

6-118



classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

XTest = readall(imdsTest);
XTest = cat(4,XTest{:});
XTest = single(XTest) ./ 255;
trueLabels = imdsTest.Labels;

• Define Network Architecture defines the architecture for the image classification network. This
network architecture includes batch normalization layers that track the mean and variance
statistics of the data set. When training in parallel, to ensure the network state reflects the whole
mini-batch, combine the statistics from all of the workers at the end of each iteration step.
Otherwise, the network state can diverge across the workers. If you are training stateful recurrent
neural networks (RNNs), for example, using sequence data that has been split into smaller
sequences to train networks containing LSTM or GRU layers, you must also manage the state
between the workers. To train the network with a custom training loop and enable automatic
differentiation, the training function converts the layer graph to a dlnetwork object.

monitor.Status = "Creating Network";

layers = [
    imageInputLayer([28 28 1],Normalization="none")
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)];

lgraph = layerGraph(layers);

• Set Up Parallel Environment determines if GPUs are available for MATLAB to use. If there are
GPUs available, then train on the GPUs. If no parallel pool exists, create one with as many workers
as GPUs. If there are no GPUs available, then train on the CPUs. If no parallel pool exists, create
one with the default number of workers.

monitor.Status = "Starting Parallel Pool";

pool = gcp("nocreate");

if canUseGPU
    executionEnvironment = "gpu";
    if isempty(pool)
        numberOfGPUs = gpuDeviceCount("available");
        pool = parpool(numberOfGPUs);
    end
else
    executionEnvironment = "cpu";
    if isempty(pool)

 Custom Training with Multiple GPUs in Experiment Manager

6-119



        pool = parpool;
    end
end

N = pool.NumWorkers;

• Specify Training Options defines the training options used by the experiment. In this example,
Experiment Manager trains the network with a mini-batch size of 128 for 20 epochs using the
initial learning rate and momentum defined in the hyperparameter table. If you are training on a
GPU, the mini-batch size scales up linearly with the number of GPUs to keep the workload on each
GPU constant. For more information, see “Deep Learning with MATLAB on Multiple GPUs” on
page 7-14.

numEpochs = 20;
miniBatchSize = 128;
velocity = [];
initialLearnRate = params.InitialLearnRate;
momentum = params.Momentum;
decay = 0.01;

if executionEnvironment == "gpu"
    miniBatchSize = miniBatchSize .* N;
end

workerMiniBatchSize = floor(miniBatchSize ./ repmat(N,1,N));
remainder = miniBatchSize - sum(workerMiniBatchSize);
workerMiniBatchSize = workerMiniBatchSize + [ones(1,remainder) zeros(1,N-remainder)];

• Train Model defines the parallel custom training loop used by the experiment. To execute the
code simultaneously on all the workers, the training function uses an spmd block that cannot
contain break, continue, or return statements. As a result, you cannot interrupt a trial of the
experiment while training is in progress. If you press Stop, Experiment Manager runs the current
trial to completion before stopping the experiment. For more information on the parallel custom
training loop, see Appendix 1 at the end of this example.

monitor.Metrics = ["TrainingLoss" "ValidationAccuracy"];
monitor.XLabel = "Iteration";
monitor.Status = "Training";

Q = parallel.pool.DataQueue;
updateFcn = @(x) updateTrainingProgress(x,monitor);
afterEach(Q,updateFcn);

spmd
    workerImds = partition(imdsTrain,N,spmdIndex);
    workerImds.ReadSize = workerMiniBatchSize(spmdIndex);
    
    workerVelocity = velocity;
   
    iteration = 0;
    lossArray = [];
    accuracyArray = [];
    

6 Manage Deep Learning Experiments

6-120



    for epoch = 1:numEpochs
        reset(workerImds);
        workerImds = shuffle(workerImds);
        
        if ~monitor.Stop
            while spmdReduce(@and,hasdata(workerImds))
                iteration = iteration + 1;
                
                [workerXBatch,workerTBatch] = read(workerImds);
                workerXBatch = cat(4,workerXBatch{:});
                workerNumObservations = numel(workerTBatch.Label);
    
                workerXBatch =  single(workerXBatch) ./ 255;
                
                workerY = zeros(numClasses,workerNumObservations,"single");
                for c = 1:numClasses
                    workerY(c,workerTBatch.Label==classes(c)) = 1;
                end
                
                workerX = dlarray(workerXBatch,"SSCB");
                
                if executionEnvironment == "gpu"
                    workerX = gpuArray(workerX);
                end
                
                [workerLoss,workerGradients,workerState] = dlfeval(@modelLoss,net,workerX,workerY);
                
                workerNormalizationFactor = workerMiniBatchSize(spmdIndex)./miniBatchSize;
                loss = spmdPlus(workerNormalizationFactor*extractdata(workerLoss));
                
                net.State = aggregateState(workerState,workerNormalizationFactor);
                
                workerGradients.Value = dlupdate(@aggregateGradients,workerGradients.Value,{workerNormalizationFactor});
                
                learnRate = initialLearnRate/(1 + decay*iteration);
                
                [net.Learnables,workerVelocity] = sgdmupdate(net.Learnables,workerGradients,workerVelocity,learnRate,momentum);
            end             
            
            if spmdIndex == 1
                YPredScores = predict(net,dlarray(XTest,"SSCB"));
                [~,idx] = max(YPredScores,[],1);
                Ypred = classes(idx);
                accuracy = mean(Ypred==trueLabels);
                
                lossArray = [lossArray; iteration, loss];
                accuracyArray = [accuracyArray; iteration, accuracy];
                
                data = [numEpochs epoch iteration loss accuracy];
                send(Q,gather(data)); 
            end  
        end
    end
end

output.network = net{1};
output.loss = lossArray{1};
output.accuracy = accuracyArray{1};

 Custom Training with Multiple GPUs in Experiment Manager

6-121



predictedLabels = categorical(Ypred{1});

delete(gcp("nocreate"));

• Plot Confusion Matrix calls the confusionchart function to create the confusion matrix for
the validation data. When the training is complete, the Review Results gallery in the toolstrip
displays a button for the confusion matrix. The Name property of the figure specifies the name of
the button. You can click the button to display the confusion matrix in the Visualizations pane.

figure(Name="Confusion Matrix")
confusionchart(trueLabels,predictedLabels, ...
    ColumnSummary="column-normalized", ...
    RowSummary="row-normalized", ...
    Title="Confusion Matrix for Validation Data");

Run Experiment

When you run the experiment, Experiment Manager trains the network defined by the training
function multiple times. Each trial uses a different combination of hyperparameter values.

Because this experiment uses the parallel pool for this MATLAB session, you cannot train multiple
trials at the same time. On the Experiment Manager toolstrip, under Mode, select Sequential
and click Run. Alternatively, to offload the experiment as a batch job, set Mode to Batch
Sequential, specify your Cluster and Pool Size, and click Run. For more information, see “Offload
Experiments as Batch Jobs to Cluster” on page 6-21.

A table of results displays the training loss and validation accuracy for each trial.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.

6 Manage Deep Learning Experiments

6-122



Note that the training function for this experiment uses an spmd statement, which cannot contain
break, continue, or return statements. As a result, you cannot interrupt a trial of the experiment
while training is in progress. If you click Stop, Experiment Manager runs the current trial to
completion before stopping the experiment.

Evaluate Results

To find the best result for your experiment, sort the table of results by validation accuracy.

1 Point to the ValidationAccuracy column.
2 Click the triangle icon.
3 Select Sort in Descending Order.

The trial with the highest validation accuracy appears at the top of the results table.

To display the confusion matrix for this trial, select the top row in the results table and, under
Review Results, click Confusion Matrix.

 Custom Training with Multiple GPUs in Experiment Manager

6-123



To perform additional computations, export the training output to the workspace as a structure. The
trainedNet field of this structure contains the trained network.

1 On the Experiment Manager toolstrip, click Export > Training Output.
2 In the dialog window, enter the name of a workspace variable for the exported training output.

The default name is trainingOutput.

To record observations about the results of your experiment, add an annotation.

1 In the results table, right-click the ValidationAccuracy cell of the best trial.
2 Select Add Annotation.
3 In the Annotations pane, enter your observations in the text box.

For more information, see “Sort, Filter, and Annotate Experiment Results”.

Close Experiment

In the Experiment Browser pane, right-click the name of the project and select Close Project.
Experiment Manager closes all of the experiments and results contained in the project.

Training Function

This function configures the training data, network architecture, and training options for the
experiment. To execute the code simultaneously on all the workers, the function uses an spmd block.
Within the spmd block, spmdIndex gives the index of the worker currently executing the code.
Before training, the function partitions the datastore for each worker by using the partition
function, and sets ReadSize to the mini-batch size of the worker. For each epoch, the function resets
and shuffles the datastore. For each iteration in the epoch, the function:

• Reads a mini-batch from the datastore and process the data for training.
• Computes the loss and the gradients of the network on each worker by calling dlfeval on the

modelLoss function.
• Obtains the overall loss using cross-entropy and aggregates the losses on all workers using the

sum of all losses.
• Aggregates and updates the gradients of all workers using the dlupdate function with the

aggregateGradients function.
• Aggregates the state of the network on all workers using the aggregateState function.
• Updates the network learnable parameters with the sgdmupdate function.

At the end of each epoch, the function uses only worker to send the training progress information
back to the client.

function output = ParallelCustomLoopExperiment_training(params,monitor)

Initialize Output

6 Manage Deep Learning Experiments

6-124



output.network = [];
output.loss = [];
output.accuracy = [];

Load Training and Test Data

monitor.Status = "Loading Data";

dataFolder = fullfile(toolboxdir("nnet"), ...
    "nndemos","nndatasets","DigitDataset");
imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsTest] = splitEachLabel(imds,0.9,"randomized");

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

XTest = readall(imdsTest);
XTest = cat(4,XTest{:});
XTest = single(XTest) ./ 255;
trueLabels = imdsTest.Labels;

Define Network Architecture

monitor.Status = "Creating Network";

layers = [
    imageInputLayer([28 28 1],Normalization="none")
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)];

lgraph = layerGraph(layers);

Set Up Parallel Environment

monitor.Status = "Starting Parallel Pool";

pool = gcp("nocreate");

if canUseGPU
    executionEnvironment = "gpu";

 Custom Training with Multiple GPUs in Experiment Manager

6-125



    if isempty(pool)
        numberOfGPUs = gpuDeviceCount("available");
        pool = parpool(numberOfGPUs);
    end
else
    executionEnvironment = "cpu";
    if isempty(pool)
        pool = parpool;
    end
end

N = pool.NumWorkers;

Specify Training Options

numEpochs = 20;
miniBatchSize = 128;
velocity = [];
initialLearnRate = params.InitialLearnRate;
momentum = params.Momentum;
decay = 0.01;

if executionEnvironment == "gpu"
    miniBatchSize = miniBatchSize .* N;
end

workerMiniBatchSize = floor(miniBatchSize ./ repmat(N,1,N));
remainder = miniBatchSize - sum(workerMiniBatchSize);
workerMiniBatchSize = workerMiniBatchSize + [ones(1,remainder) zeros(1,N-remainder)];

Train Model

monitor.Metrics = ["TrainingLoss" "ValidationAccuracy"];
monitor.XLabel = "Iteration";
monitor.Status = "Training";

Q = parallel.pool.DataQueue;
updateFcn = @(x) updateTrainingProgress(x,monitor);
afterEach(Q,updateFcn);

spmd
    workerImds = partition(imdsTrain,N,spmdIndex);
    workerImds.ReadSize = workerMiniBatchSize(spmdIndex);
    
    workerVelocity = velocity;
   
    iteration = 0;
    lossArray = [];
    accuracyArray = [];
    
    for epoch = 1:numEpochs
        reset(workerImds);
        workerImds = shuffle(workerImds);
        

6 Manage Deep Learning Experiments

6-126



        if ~monitor.Stop
            while spmdReduce(@and,hasdata(workerImds))
                iteration = iteration + 1;
                
                [workerXBatch,workerTBatch] = read(workerImds);
                workerXBatch = cat(4,workerXBatch{:});
                workerNumObservations = numel(workerTBatch.Label);
    
                workerXBatch =  single(workerXBatch) ./ 255;
                
                workerY = zeros(numClasses,workerNumObservations,"single");
                for c = 1:numClasses
                    workerY(c,workerTBatch.Label==classes(c)) = 1;
                end
                
                workerX = dlarray(workerXBatch,"SSCB");
                
                if executionEnvironment == "gpu"
                    workerX = gpuArray(workerX);
                end
                
                [workerLoss,workerGradients,workerState] = dlfeval(@modelLoss,net,workerX,workerY);
                
                workerNormalizationFactor = workerMiniBatchSize(spmdIndex)./miniBatchSize;
                loss = spmdPlus(workerNormalizationFactor*extractdata(workerLoss));
                
                net.State = aggregateState(workerState,workerNormalizationFactor);
                
                workerGradients.Value = dlupdate(@aggregateGradients,workerGradients.Value,{workerNormalizationFactor});
                
                learnRate = initialLearnRate/(1 + decay*iteration);
                
                [net.Learnables,workerVelocity] = sgdmupdate(net.Learnables,workerGradients,workerVelocity,learnRate,momentum);
            end             
            
            if spmdIndex == 1
                YPredScores = predict(net,dlarray(XTest,"SSCB"));
                [~,idx] = max(YPredScores,[],1);
                Ypred = classes(idx);
                accuracy = mean(Ypred==trueLabels);
                
                lossArray = [lossArray; iteration, loss];
                accuracyArray = [accuracyArray; iteration, accuracy];
                
                data = [numEpochs epoch iteration loss accuracy];
                send(Q,gather(data)); 
            end  
        end
    end
end

output.network = net{1};
output.loss = lossArray{1};
output.accuracy = accuracyArray{1};
predictedLabels = categorical(Ypred{1});

delete(gcp("nocreate"));

 Custom Training with Multiple GPUs in Experiment Manager

6-127



Plot Confusion Matrix

figure(Name="Confusion Matrix")
confusionchart(trueLabels,predictedLabels, ...
    ColumnSummary="column-normalized", ...
    RowSummary="row-normalized", ...
    Title="Confusion Matrix for Validation Data");

end

Helper Functions

The modelLoss function takes a dlnetwork object net and a mini-batch of input data X with
corresponding labels Y. The function returns the gradients of the loss with respect to the learnable
parameters in net, the network state, and the loss. To compute the gradients automatically, the
function calls the dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,Y)
[YPred,state] = forward(net,X);
YPred = softmax(YPred);
loss = crossentropy(YPred,Y);
gradients = dlgradient(loss,net.Learnables);
end

The updateTrainingProgress function updates the training progress information that comes from
the workers. In this example, the DataQueue object calls this function every time a worker sends
data.

function updateTrainingProgress(data,monitor)
monitor.Progress = (data(2)/data(1))*100;
recordMetrics(monitor,data(4), ...
    TrainingLoss=data(3));
end

The aggregateGradients function aggregates the gradients on all workers by adding them
together. spmdplus adds together and replicates all the gradients on the workers. Before adding the
gradients, this function normalizes them by multiplying by a factor that represents the proportion of
the overall mini-batch that the worker is working on.

function gradients = aggregateGradients(gradients,factor)
gradients = spmdPlus(factor*gradients);
end

The aggregateState function aggregates the network state on all workers. The network state
contains the trained batch normalization statistics of the data set. Because each worker only sees a
portion of the mini-batch, this function aggregates the network state so that the statistics are
representative of the statistics across all the data. For each mini-batch, this function calculates the
combined mean as a weighted average of the mean across the workers for each iteration. This
function computes the combined variance according to the formula

6 Manage Deep Learning Experiments

6-128



where  is the total number of workers,  is the total number of observations in a mini-batch,  is

the number of observations processed on the  th worker,  and  are the mean and variance
statistics calculated on that worker, and  is the combined mean across all workers.

function state = aggregateState(state,factor)
numrows = size(state,1);
for j = 1:numrows
    isBatchNormalizationState = state.Parameter(j) =="TrainedMean"...
        && state.Parameter(j+1) =="TrainedVariance"...
        && state.Layer(j) == state.Layer(j+1);
    if isBatchNormalizationState
        meanVal = state.Value{j};
        varVal = state.Value{j+1};
        combinedMean = spmdPlus(factor*meanVal);
        combinedVarTerm = factor.*(varVal + (meanVal - combinedMean).^2);
        state.Value(j) = {combinedMean};
        state.Value(j+1) = {spmdPlus(combinedVarTerm)};
    end
end
end

See Also
Apps
Experiment Manager

Objects
experiments.Monitor | dlnetwork

Functions
confusionchart

More About
• “Train Network in Parallel with Custom Training Loop” on page 7-64
• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2
• “Deep Learning with MATLAB on Multiple GPUs” on page 7-14
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21
• “Use Parallel Computing Toolbox with Cloud Center Cluster in MATLAB Online” (Parallel

Computing Toolbox)

 Custom Training with Multiple GPUs in Experiment Manager

6-129



Keyboard Shortcuts for Experiment Manager
Use these keyboard shortcuts when working with Experiment Manager.

Shortcuts for General Navigation
Action Shortcut
Show the access keys for the toolstrip Alt+E

Not supported on macOS systems.
Move forward through the different areas of the
Experiment Manager app, including the toolstrip,
Experiment Browser, and experiment or results
panes.

Ctrl+F6

On macOS systems, use Command+F6 instead.

Move backward through the different areas of the
Experiment Manager app, including the toolstrip,
Experiment Browser, and experiment or results
panes.

Ctrl+Shift+F6

On macOS systems, use Command+Shift+F6
instead.

Move forward through the different elements in
the start page, toolstrip, experiment pane, or
results pane

Tab

Move backward through the different elements in
the start page, toolstrip, experiment pane, or
results pane

Shift+Tab

Select the current option in the start page or a
menu

Enter

Cancel the current action, for example, hide the
access keys for the toolstrip or close a menu

Esc

Shortcuts for Experiment Browser
Use Ctrl+F6 or Ctrl+Shift+F6 to navigate to the Experiment Browser. Then press Tab to bring into
focus the project, experiment, or result that is currently selected.

Action Shortcut
Show the experiments in the project or the
results for an experiment

Right arrow

If the contents of the project or experiment are
already visible, pressing the right arrow selects
the first experiment in the project or the first
result for the experiment.

Hide the experiments in the project or the results
for an experiment

Left arrow

If the contents of an experiment are already
hidden, pressing the left arrow selects the project
that contains the experiment.

Move to the next item in the browser Down arrow

6 Manage Deep Learning Experiments

6-130



Action Shortcut
Move to the previous item in the browser Up arrow
Open an experiment or result Shift+F10 and select Open

Not supported on macOS systems.
Rename an experiment or result F2

On macOS systems, use Fn+F2 instead.

Shortcuts for Results Table
Use Ctrl+F6 or Ctrl+Shift+F6 to navigate to the results pane. Then press Tab to navigate down to
the results table.

Action Shortcut
Move to the next trial in the table Down arrow
Move to the previous trial in the table Up arrow
Move to the next column in the table Right arrow
Move to the previous column in the table Left arrow

See Also
Apps
Experiment Manager

More About
• “Create a Deep Learning Experiment for Classification” on page 6-2
• “Create a Deep Learning Experiment for Regression” on page 6-10
• “Try Multiple Pretrained Networks for Transfer Learning” on page 6-33
• “Run a Custom Training Experiment for Image Comparison” on page 6-73
• “Use Experiment Manager to Train Generative Adversarial Networks (GANs)” on page 6-89

 Keyboard Shortcuts for Experiment Manager

6-131



Debug Code Before and After Running Experiments
In Experiment Manager, you use functions to configure the training data, network architecture, and
training options for the experiment, specify the training procedure used by the experiment, and
evaluate the results of the experiment. You can diagnose problems in your code before or after you
run the experiment. After you debug the setup function for a built-in training experiment, you can
also call the built-in training function trainNetwork and debug your metric functions.

Debug Setup and Training Functions
To debug your code before you run the experiment:

1 Open the experiment.
2

In the Experiment Manager toolstrip, select Run > Debug .
3 In dialog box, specify the hyperparameter values for your experiment.
4 Click Start.

To debug your code after you run the experiment:

1 Open the results for the experiment.
2 In the results table, select a trial to debug. To ensure reproducibility, Experiment Manager reuses

the hyperparameter values and the random seed saved for this trial.
3

Right-click the trial and select Debug .

Experiment Manager opens the setup or training function in MATLAB Editor, places a breakpoint in
first line of code, and runs the function.

6 Manage Deep Learning Experiments

6-132



MATLAB pauses at each line of code indicated by a breakpoint. When the function execution stops at
a breakpoint, you can add other breakpoints to your function, view the values of your variables, step
through the code line by line, or continue to the next breakpoint. For more information, see “Debug
MATLAB Code Files”.

For custom training experiments, a Training Progress window plots the metric values for your
experiment, as described in “Monitor Custom Training Loop Progress” on page 19-521.

Tip To examine the values stored in the MetricData and InfoData properties of the
trainingProgressMonitor object associated with the Training Progress window, pause the
execution before you reach the end of your training function. When the function runs to completion,
Experiment Manager closes the Training Progress window and deletes the
trainingProgressMonitor object.

After the function runs to completion, you can verify your results by examining the hyperparameters
and output values stored in these workspace variables:

• functionName_params — A structure with fields from the Experiment Manager hyperparameter
table

• functionName_output — A cell array that contains the output values returned by the setup or
training function

 Debug Code Before and After Running Experiments

6-133



Debug Metric Functions
After you debug the setup function for a built-in training experiment, you can inspect the training
data and training options in the MATLAB Workspace browser or visualize the network layers in the
Deep Network Designer app. You can also call the built-in training function trainNetwork and
step through your metric functions:

1 In the MATLAB Command Window, call trainNetwork using the output of your setup function.
For example, if your setup function is called RegressionExperiment_setup, enter:

[tNet,tInfo] = trainNetwork(RegressionExperiment_setup_output{:});

2 Create a structure called trialInfo that contains the fields trainedNetwork, trainingInfo,
and parameters. For values, use the outputs of the trainNetwork function and the
hyperparameters used for training. For example, if your setup function is called
RegressionExperiment_setup, enter:

trialInfo = struct(trainedNetwork=tNet, ...
    trainingInfo=tInfo, ...
    parameters=RegressionExperiment_setup_params);

3 In Experiment Manager, in the experiment pane, under Metrics, select the name of a metric
function and click Edit. The metric function opens in MATLAB Editor.

4 In the metric function, set breakpoints as described in “Set Breakpoints”.

5 In the MATLAB Command Window, call the metric function using the trialInfo structure as the
input to the function. For example, if your metric function is called Accuracy, enter:

metricOutput = Accuracy(trialInfo)

6 Manage Deep Learning Experiments

6-134



MATLAB pauses at each line of code indicated by a breakpoint. When the function execution
stops at the breakpoint, you can view the values of your variables, step through the code line by
line, or continue to the next breakpoint. After the function runs to completion, examine the
output value. The output must be a scalar number, a logical value, or a string.

See Also
Apps
Experiment Manager | Deep Network Designer

Functions
trainNetwork

Objects
trainingProgressMonitor

More About
• “Set Breakpoints”
• “Debug MATLAB Code Files”
• “Monitor Custom Training Loop Progress” on page 19-521
• “Create a Deep Learning Experiment for Regression” on page 6-10

 Debug Code Before and After Running Experiments

6-135





Deep Learning in Parallel and the Cloud

• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2
• “Deep Learning in the Cloud” on page 7-10
• “Work with Deep Learning Data in the Cloud” on page 7-13
• “Deep Learning with MATLAB on Multiple GPUs” on page 7-14
• “Deep Learning with Big Data” on page 7-18
• “Run Custom Training Loops on a GPU and in Parallel” on page 7-21
• “Cloud AI Workflow Using the Deep Learning Container” on page 7-30
• “Train Network in the Cloud Using Automatic Parallel Support” on page 7-31
• “Use parfeval to Train Multiple Deep Learning Networks” on page 7-36
• “Send Deep Learning Batch Job to Cluster” on page 7-43
• “Train Network Using Automatic Multi-GPU Support” on page 7-48
• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61
• “Train Network in Parallel with Custom Training Loop” on page 7-64
• “Train Network Using Federated Learning” on page 7-73
• “Train Network on Amazon Web Services Using MATLAB Deep Learning Container” on page 7-82
• “Use Amazon S3 Buckets with MATLAB Deep Learning Container” on page 7-86
• “Use Experiment Manager in the Cloud with MATLAB Deep Learning Container” on page 7-89

7



Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud
In this section...
“Train Single Network in Parallel” on page 7-3
“Train Multiple Networks in Parallel” on page 7-6
“Batch Deep Learning” on page 7-7
“Manage Cluster Profiles and Automatic Pool Creation” on page 7-8
“Deep Learning Precision” on page 7-8
“Reproducibility” on page 7-9

Training deep networks is computationally intensive and can take many hours of computing time;
however, neural networks are inherently parallel algorithms. You can take advantage of this
parallelism by running in parallel using high-performance GPUs and computer clusters.

It is recommended to train using a GPU or multiple GPUs. Only use single CPU or multiple CPUs if
you do not have a GPU. CPUs are normally much slower that GPUs for both training and inference.
Running on a single GPU typically offers much better performance than running on multiple CPU
cores.

If you do not have a suitable GPU, you can rent high-performance GPUs and clusters in the cloud. For
more information on how to access MATLAB in the cloud for deep learning, see “Deep Learning in the
Cloud” on page 7-10.

Using a GPU or parallel options requires Parallel Computing Toolbox. Using a GPU also requires a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). Using a remote cluster also requires MATLAB Parallel Server.

Tip For trainNetwork workflows, GPU support is automatic. By default, the trainNetwork
function uses a GPU if one is available. If you have access to a machine with multiple GPUs, specify
the ExecutionEnvironment training option as "multi-gpu".

To run custom training workflows, including dlnetwork workflows, on the GPU, use
minibatchqueue to automatically convert data to gpuArray objects.

You can use parallel resources to scale up deep learning for a single network. You can also train
multiple networks simultaneously. The following sections show the available options for deep learning
in parallel in MATLAB:

• “Train Single Network in Parallel” on page 7-3

• “Use Local Resources to Train Single Network in Parallel” on page 7-3
• “Use Remote Cluster Resources to Train Single Network in Parallel” on page 7-4
• “Use Deep Network Designer and Experiment Manager to Train Single Network in Parallel” on

page 7-5

• “Train Multiple Networks in Parallel” on page 7-6

• “Use Local or Remote Cluster Resources to Train Multiple Network in Parallel” on page 7-6

7 Deep Learning in Parallel and the Cloud

7-2



• “Use Experiment Manager to Train Multiple Networks in Parallel” on page 7-7
• “Batch Deep Learning” on page 7-7

Note If you run MATLAB on a single remote machine for example, a cloud machine that you connect
to via ssh or remote desktop protocol, then follow the steps for local resources. For more information
on connecting to cloud resources, see “Deep Learning in the Cloud” on page 7-10.

Train Single Network in Parallel
Use Local Resources to Train Single Network in Parallel

The following table shows you the available options for training and inference with single network on
your local workstation.

Resource trainNetwork
Workflows

Custom Training
Workflows

Required Products

Single CPU Automatic if no GPU is
available.

Training using a single
CPU is not
recommended.

Training using a single
CPU is not
recommended.

• MATLAB
• Deep Learning

Toolbox

Multiple CPU cores Training using multiple
CPU cores is not
recommended if you
have access to a GPU.

Training using multiple
CPU cores is not
recommended if you
have access to a GPU.

• MATLAB
• Deep Learning

Toolbox
• Parallel Computing

ToolboxSingle GPU Automatic. By default,
training and inference
run on the GPU if one is
available.

Alternatively, specify
the
ExecutionEnvironme
nt training option as
"gpu".

Use minibatchqueue
to automatically convert
data to gpuArray
objects. For more
information, see “Run
Custom Training Loops
on a GPU and in
Parallel” on page 7-21.

For an example, see
“Train Network Using
Custom Training Loop”
on page 19-239.

 Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud

7-3



Resource trainNetwork
Workflows

Custom Training
Workflows

Required Products

Multiple GPUs Specify the
ExecutionEnvironme
nt training option as
"multi-gpu".

For an example, see
“Train Network Using
Automatic Multi-GPU
Support” on page 7-48.

Start a local parallel
pool with as many
workers as available
GPUs. For more
information, see “Deep
Learning with MATLAB
on Multiple GPUs” on
page 7-14.

Use parpool to
execute training or
inference with portion
of a mini-batch on each
worker. Convert each
partial mini-batch of
data to gpuArray
objects. For training,
aggregate gradients,
loss and state
parameters after each
iteration. For more
information, see “Run
Custom Training Loops
on a GPU and in
Parallel” on page 7-21.

For an example, see
“Train Network in
Parallel with Custom
Training Loop” on page
7-64. Set the
executionEnvironme
nt variable to "auto"
or "gpu".

Use Remote Cluster Resources to Train Single Network in Parallel

The following table shows you the available options for training and inference with single network on
a remote cluster.

Resource trainNetwork
Workflows

Custom Training
Workflows

Required Products

Multiple CPUs Training using multiple
CPU cores is not
recommended if you
have access to a GPU.

Training using multiple
CPU cores is not
recommended if you
have access to a GPU.

• MATLAB
• Deep Learning

Toolbox
• Parallel Computing

Toolbox
• MATLAB Parallel

Server

7 Deep Learning in Parallel and the Cloud

7-4



Resource trainNetwork
Workflows

Custom Training
Workflows

Required Products

Multiple GPUs Specify the desired
cluster as your default
cluster profile. For more
information, see
“Manage Cluster
Profiles and Automatic
Pool Creation” on page
7-8.

Specify the
ExecutionEnvironme
nt training option as
"parallel".

For an example, see
“Train Network in the
Cloud Using Automatic
Parallel Support” on
page 7-31.

Start a parallel pool in
the desired cluster with
as many workers as
available GPUs. For
more information, see
“Deep Learning with
MATLAB on Multiple
GPUs” on page 7-14.

Use parpool to
execute training or
inference with a portion
of a mini-batch on each
worker. Convert each
partial mini-batch of
data to gpuArray
objects. For training,
aggregate gradients,
loss and state
parameters after each
iteration. For more
information, see “Run
Custom Training Loops
on a GPU and in
Parallel” on page 7-21.

For an example, see
“Train Network in
Parallel with Custom
Training Loop” on page
7-64. Set the
executionEnvironme
nt variable to "auto"
or "gpu".

Use Deep Network Designer and Experiment Manager to Train Single Network in Parallel

You can train a single network in parallel using Deep Network Designer. You can train using local
resources or a remote cluster.

• To train locally using multiple GPUs, set the ExectionEnvironment option to multi-gpu in the
Training Options dialog.

• To train using a remote cluster, set the ExectionEnvironment option to parallel in the
Training Options dialog. If there is no current parallel pool, the software starts one using the
default cluster profile. If the pool has access to GPUs, then only workers with a unique GPU
perform training computation. If the pool does not have GPUs, then training takes place on all
available CPU workers instead.

You can use Experiment Manager to run a single trial using multiple parallel workers. For more
information, see “Use Experiment Manager to Train Networks in Parallel” on page 6-18.

 Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud

7-5



Train Multiple Networks in Parallel
Use Local or Remote Cluster Resources to Train Multiple Network in Parallel

To train multiple networks in parallel, train each network on a different parallel worker. You can
modify the network or training parameters on each worker to perform parameter sweeps in parallel.

Use parfor or parfeval to train a single network on each worker. To run in the background without
blocking your local MATLAB, use parfeval. You can plot results using the OutputFcn training
option.

You can run locally or using a remote cluster. Using a remote cluster requires MATLAB Parallel
Server.

Resource trainNetwork
Workflows

Custom Training
Workflows

Required Products

Multiple CPUs Specify the desired
cluster as your default
cluster profile. For more
information, see
“Manage Cluster
Profiles and Automatic
Pool Creation” on page
7-8.

Use parfor or
parfeval to
simultaneously execute
training or inference on
each worker. Specify
the
ExecutionEnvironme
nt training option as
"cpu" for each
network.

For examples, see

• “Use parfor to Train
Multiple Deep
Learning Networks”
on page 7-52

• “Use parfeval to
Train Multiple Deep
Learning Networks”
on page 7-36

Specify the desired
cluster as your default
cluster profile. For more
information, see
“Manage Cluster
Profiles and Automatic
Pool Creation” on page
7-8.

Use parfor or
parfeval to
simultaneously execute
training or inference on
each worker. For more
information, see “Run
Custom Training Loops
on a GPU and in
Parallel” on page 7-21.

• MATLAB
• Deep Learning

Toolbox
• Parallel Computing

Toolbox
• (optional) MATLAB

Parallel Server

7 Deep Learning in Parallel and the Cloud

7-6



Resource trainNetwork
Workflows

Custom Training
Workflows

Required Products

Multiple GPUs Start a parallel pool in
the desired cluster with
as many workers as
available GPUs. For
more information, see
“Deep Learning with
MATLAB on Multiple
GPUs” on page 7-14.

Use parfor or
parfeval to
simultaneously execute
a network on each
worker. Specify the
ExecutionEnvironme
nt training option as
"gpu" for each
network.

For examples, see

• “Use parfor to Train
Multiple Deep
Learning Networks”
on page 7-52

• “Use parfeval to
Train Multiple Deep
Learning Networks”
on page 7-36

Start a parallel pool in
the desired cluster with
as many workers as
available GPUs. For
more information, see
“Deep Learning with
MATLAB on Multiple
GPUs” on page 7-14.

Use parfor or
parfeval to
simultaneously execute
training or inference on
each worker. For more
information, see “Run
Custom Training Loops
on a GPU and in
Parallel” on page 7-21.

Convert each mini-batch
of data to gpuArray.
Use minibatchqueue
and set
OutputEnvironment
property to 'gpu' to
automatically convert
data to gpuArray
objects.

Use Experiment Manager to Train Multiple Networks in Parallel

You can use Experiment Manager to run trials on multiple parallel workers simultaneously. Set up
your parallel environment and enable the Use Parallel option before running your experiment.
Experiment Manager runs as many simultaneous trials as there are workers in your parallel pool. For
more information, see “Use Experiment Manager to Train Networks in Parallel” on page 6-18.

Batch Deep Learning
You can offload deep learning computations to run in the background using the batch function. This
means that you can continue using MATLAB while your computation runs in the background, or you
can close your client MATLAB and fetch results later.

You can run batch jobs in a local or remote cluster. To offload your deep learning computations, use
batch to submit a script or function that runs in the cluster. You can perform any kind of deep
learning computation as a batch job, including parallel computations. For an example, see “Send
Deep Learning Batch Job to Cluster” on page 7-43.

When you submit a batch job as a script, by default, workspace variables are copied from the client to
the workers. To avoid copying workspace variables to the workers, submit batch jobs as functions.

 Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud

7-7



To run in parallel, use a script or function that contains the same code that you would use to run in
parallel locally or in a cluster. For example, your script or function can run trainNetwork with the
ExecutionEnvironment training option set to "parallel", or run a custom training loop in
parallel. Use batch to submit the script or function to the cluster and use the Pool option to specify
the number of workers you want to use. For more information on running parallel computations with
batch, see “Run Batch Parallel Jobs” (Parallel Computing Toolbox).

To run deep learning computation on multiple networks, it is recommended to submit a single batch
job for each network. Doing so avoids the overhead required to start a parallel pool in the cluster and
allows you to use the job monitor to observe the progress of each network computation individually.

You can submit multiple batch jobs. If the submitted jobs require more workers than are currently
available in the cluster, then later jobs are queued until earlier jobs have finished. Queued jobs start
when enough workers are available to run the job.

The default search paths of the workers might not be the same as that of your client MATLAB. To
ensure that workers in the cluster have access to the needed files, such as code files, data files, or
model files, specify paths to add to workers using the AdditionalPaths option.

To retrieve results after the job is finished, use the fetchOutputs function. fetchOutputs
retrieves all variables in the batch worker workspace. When you submit batch jobs as a script, by
default, workspace variables are copied from the client to workers. To avoid recursion of workspace
variables, submit batch jobs as functions instead of as scripts.

You can use the diary to capture command line output while running batch jobs. This can be useful
when executing the trainNetwork function with the Verbose option set to true.

Manage Cluster Profiles and Automatic Pool Creation
Parallel Computing Toolbox comes pre-configured with the cluster profile Processes for running
parallel code on your local desktop machine. By default, MATLAB starts all parallel pools using the
Processes cluster profile. If you want to run code on a remote cluster, you must start a parallel pool
using the remote cluster profile. You can manage cluster profiles using the Cluster Profile Manager.
For more information about managing cluster profiles, see “Discover Clusters and Use Cluster
Profiles” (Parallel Computing Toolbox).

Some functions, including trainNetwork, predict, classify, parfor, and parfeval can
automatically start a parallel pool. To take advantage of automatic parallel pool creation, set your
desired cluster as the default cluster profile in the Cluster Profile Manager. Alternatively, you can
create the pool manually and specify the desired cluster resource when you create the pool.

If you want to use multiple GPUs in a remote cluster to train multiple networks in parallel or for
custom training loops, best practice is to manually start a parallel pool in the desired cluster with as
many workers as available GPUs. For more information, see “Deep Learning with MATLAB on
Multiple GPUs” on page 7-14.

Deep Learning Precision
For best performance, it is recommended to use a GPU for all deep learning workflows. Because
single-precision and double-precision performance of GPUs can differ substantially, it is important to
know in which precision computations are performed. Typically, GPUs offer much better performance
for calculations in single precision.

7 Deep Learning in Parallel and the Cloud

7-8



If you only use a GPU for deep learning, then single-precision performance is one of the most
important characteristics of a GPU. If you also use a GPU for other computations using Parallel
Computing Toolbox, then high double-precision performance is important. This is because many
functions in MATLAB use double-precision arithmetic by default. For more information, see “Perform
Calculations in Single Precision” (Parallel Computing Toolbox)

When you train a neural network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train neural networks using both CPUs and GPUs.

For custom training workflows, it is recommended to convert data to single precision for training and
inference. If you use minibatchqueue to manage mini-batches, your data is converted to single
precision by default.

Reproducibility
To provide the best performance, deep learning using a GPU in MATLAB is not guaranteed to be
deterministic. Depending on your network architecture, under some conditions you might get
different results when using a GPU to train two identical networks or make two predictions using the
same network and data.

See Also
trainingOptions | minibatchqueue | trainNetwork | Deep Network Designer | Experiment
Manager

More About
• “Deep Learning with MATLAB on Multiple GPUs” on page 7-14
• “Deep Learning with Big Data” on page 7-18
• “Deep Learning in the Cloud” on page 7-10
• “Train Deep Learning Networks in Parallel” on page 5-187
• “Send Deep Learning Batch Job to Cluster” on page 7-43
• “Use parfeval to Train Multiple Deep Learning Networks” on page 7-36
• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61
• “Run Custom Training Loops on a GPU and in Parallel” on page 7-21
• “Use Experiment Manager to Train Networks in Parallel” on page 6-18

 Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud

7-9



Deep Learning in the Cloud
If you do not have a suitable GPU available for training your deep neural networks, you can speed up
your deep learning applications with one or more high-performance GPUs in the cloud. Working in
the cloud requires some initial setup, but using cloud resources can significantly reduce training time
or allow you to train more networks in the same amount of time.

You can accelerate training using one or more GPUs on a single machine or using a cluster of
machines with GPUs. You can train a single network using multiple GPUs, or train multiple networks
at once.

After you set up MATLAB or MATLAB Parallel Server in your chosen cloud platform, you can perform
deep learning with minimal changes to the code you run on your local machine. For more information
about adapting your deep learning code for different parallel environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud” on page 7-2.

Note If you run MATLAB on a single machine in the cloud and you connect via ssh or remote desktop
protocol (RDP), then network execution and training uses the same code as if you were running on
your local machine.

Using a GPU or parallel options requires Parallel Computing Toolbox. Using a GPU also requires a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). Using a remote cluster also requires MATLAB Parallel Server.

Access MATLAB in the Cloud
MathWorks® provides several ways of accessing MATLAB in public clouds such as Amazon® Web
Services (AWS®) and Azure® that are configurable depending on your needs. To utilize public cloud
offerings, you must have an account with your chosen cloud platform.

These cloud offerings make it easy for you to run MATLAB in the cloud by using pre-configured
machine templates. You do not have to install MATLAB yourself.

The following tables shows some of the options for accessing MATLAB in the cloud.

7 Deep Learning in Parallel and the Cloud

7-10



Cloud Solution Type of Resource Additional
Information

Learn More

MathWorks Cloud
Center

Single machine or
cluster

• Use Cloud Center
to create, manage,
and access single
machines or
clusters on AWS
with MATLAB
installed.

• Connect to Cloud
Center clusters in
MATLAB Online.
For more
information, see
“Use Parallel
Computing Toolbox
with Cloud Center
Cluster in MATLAB
Online” (Parallel
Computing
Toolbox).

MathWorks Cloud Center

MATLAB Deep
Learning
Container

Single machine • Run container
anywhere,
including in the
cloud or local
hardware.

• Customize and save
container image.

• Includes commonly
used toolboxes for
deep learning
applications and
workflows.

• MATLAB Deep Learning
Container on Docker Hub

• “Cloud AI Workflow Using the
Deep Learning Container” on
page 7-30

• MATLAB Deep Learning
Container on NVIDIA GPU Cloud
for Amazon Web Services

• MATLAB Deep Learning
Container on NVIDIA GPU Cloud
for NVIDIA DGX

Azure Marketplace Single machine or
cluster

• Fully customizable.
• Configure region

and network
settings.

• Deploy into existing
cloud
infrastructure.

• Run MATLAB from Azure
Marketplace

• “Run MATLAB Parallel Server
from Microsoft Azure
Marketplace” (MATLAB Parallel
Server)

 Deep Learning in the Cloud

7-11

https://www.mathworks.com/help/cloudcenter/mathworks-cloud-center.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-docker-hub.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-docker-hub.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-aws.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-aws.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-aws.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-dgx.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-dgx.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-dgx.html
https://www.mathworks.com/help/cloudcenter/ug/run-matlab-from-azure-marketplace.html
https://www.mathworks.com/help/cloudcenter/ug/run-matlab-from-azure-marketplace.html


Cloud Solution Type of Resource Additional
Information

Learn More

Reference
architecture
templates for AWS
and Azure

Single machine or
cluster

• Fully customizable.
• Configure region

and network
settings.

• Deploy into existing
cloud
infrastructure.

• Run MATLAB on Amazon Web
Services

• Run MATLAB on Microsoft Azure
using Reference Architecture

• “Run MATLAB Parallel Server on
Amazon Web Services” (MATLAB
Parallel Server)

• “Run MATLAB Parallel Server on
Microsoft Azure Using Reference
Architecture” (MATLAB Parallel
Server)

Work with Big Data in the Cloud
Storing data in the cloud can make it easier for you to access for cloud applications without needing
to upload or download large amounts of data each time you create cloud resources. Both AWS and
Azure offer data storage services, such as AWS S3 and Azure Blob Storage, respectively.

To avoid the time and cost associated with transferring large quantities of data, it is recommended
that you set up cloud resources for your deep learning applications using the same cloud provider
and region that you use to store your data in the cloud.

To access data stored in the cloud from MATLAB, you must configure your machine with your access
credentials. You can configure access from inside MATLAB using environment variables. For more
information on how to set environment variables to access cloud data from your client MATLAB, see
“Work with Remote Data”. For more information on how to set environment variables on parallel
workers in a remote cluster, see “Set Environment Variables on Workers” (Parallel Computing
Toolbox).

For examples showing how to upload data to the cloud and how to access that data from MATLAB,
see “Work with Deep Learning Data in AWS” on page 7-59 and “Work with Deep Learning Data in
Azure Blob Storage” on page 7-61.

See Also

More About
• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2
• “Deep Learning with MATLAB on Multiple GPUs” on page 7-14
• “Train Deep Learning Networks in Parallel” on page 5-187
• “Send Deep Learning Batch Job to Cluster” on page 7-43
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61

7 Deep Learning in Parallel and the Cloud

7-12

https://www.mathworks.com/help/cloudcenter/ug/run-matlab-on-amazon-web-services.html
https://www.mathworks.com/help/cloudcenter/ug/run-matlab-on-amazon-web-services.html
https://www.mathworks.com/help/cloudcenter/ug/run-matlab-on-microsoft-azure-using-reference-architecture.html
https://www.mathworks.com/help/cloudcenter/ug/run-matlab-on-microsoft-azure-using-reference-architecture.html


Work with Deep Learning Data in the Cloud
Storing data in the cloud can make it easier for you to access for cloud applications without needing
to upload or download large amounts of data each time you create cloud resources. Both AWS and
Azure offer data storage services, such as AWS S3 and Azure Blob Storage, respectively.

These examples show how to upload and download deep learning data sets to and from cloud storage.

• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61

See Also

Related Examples
• “Deep Learning in the Cloud” on page 7-10
• “Train Network on Amazon Web Services Using MATLAB Deep Learning Container” on page 7-

82
• “Use Amazon S3 Buckets with MATLAB Deep Learning Container” on page 7-86
• “Use Experiment Manager in the Cloud with MATLAB Deep Learning Container” on page 7-89

 Work with Deep Learning Data in the Cloud

7-13



Deep Learning with MATLAB on Multiple GPUs
MATLAB supports training a single deep neural network using multiple GPUs in parallel. By using
parallel workers with GPUs, you can train with multiple GPUs on your local machine, on a cluster, or
on the cloud. Using multiple GPUs can speed up training significantly. To decide if you expect multi-
GPU training to deliver a performance gain, consider the following factors:

• How long is the iteration on each GPU? If each GPU iteration is short, then the added overhead of
communication between GPUs can dominate. Try increasing the computation per iteration by
using a larger batch size.

• Are all the GPUs on a single machine? Communication between GPUs on different machines
introduces a significant communication delay. You can mitigate this if you have suitable hardware.
For more information, see “Advanced Support for Fast Multi-Node GPU Communication” on page
7-17.

Tip To train a single network using multiple GPUs on your local machine, you can simply specify the
ExecutionEnvironment option as "multi-gpu" without changing the rest of your code.
trainNetwork automatically uses your available GPUs for training computations.

When you train on a remote cluster, specify the ExecutionEnvironment option as "parallel". If
the cluster has access to one or more GPUs, then trainNetwork only uses the GPUs for training.
Workers without a unique GPU are never used for training computation.

If you want to use more resources, you can scale up deep learning training to clusters or the cloud. To
learn more about parallel options, see “Scale Up Deep Learning in Parallel, on GPUs, and in the
Cloud” on page 7-2. To try an example, see “Train Network in the Cloud Using Automatic Parallel
Support” on page 7-31.

Using a GPU or parallel options requires Parallel Computing Toolbox. Using a GPU also requires a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). Using a remote cluster also requires MATLAB Parallel Server.

Use Multiple GPUs in Local Machine

Note If you run MATLAB on a single machine in the cloud that you connect to via ssh or remote
desktop protocol (RDP), then network execution and training uses the same code as if you were
running on your local machine.

If you have access to a machine with multiple GPUs, you can simply specify the
ExecutionEnvironment option as "multi-gpu":

• For training using trainNetwork, use the trainingOptions function to set the
ExecutionEnvironment name-value option to "multi-gpu".

• For inference using classify and predict, set the ExecutionEnvironment name-value option
to "multi-gpu".

The "multi-gpu" option allows you to use multiple GPUs in a local parallel pool. If there is no
current parallel pool, trainNetwork, predict, and classify automatically start a local parallel

7 Deep Learning in Parallel and the Cloud

7-14



pool using your default cluster profile settings. The pool has as many workers as the number of
available GPUs.

For information on how to perform custom training using multiple GPUs in your local machine, see
“Run Custom Training Loops on a GPU and in Parallel” on page 7-21.

Use Multiple GPUs in Cluster
For training and inference with multiple GPUs in a remote cluster, use the "parallel" option:

• For training using trainNetwork, use the trainingOptions function to set the
ExecutionEnvironment name-value option to "parallel".

• For inference using classify and predict, set the ExecutionEnvironment name-value option
to "parallel".

If there is no current parallel pool, trainNetwork, predict, and classify automatically start a
parallel pool using your default cluster profile settings. If the pool has access to GPUs, then only
workers with a unique GPU perform training computation. If the pool does not have GPUs, then
training takes place on all available CPU workers instead.

For information on how to perform custom training using multiple GPUs in a remote cluster, see “Run
Custom Training Loops on a GPU and in Parallel” on page 7-21.

Optimize Mini-Batch Size and Learning Rate
Convolutional neural networks are typically trained iteratively using mini-batches of images. This is
because the whole dataset is usually too large to fit into GPU memory. For optimum performance, you
can experiment with the mini-batch size by changing the MiniBatchSize name-value option using
the trainingOptions function.

The optimal mini-batch size depends on your exact network, dataset, and GPU hardware. When
training with multiple GPUs, each image batch is distributed between the GPUs. This effectively
increases the total GPU memory available, allowing larger batch sizes. A recommended practice is to
scale up the mini-batch size linearly with the number of GPUs, in order to keep the workload on each
GPU constant. For example, if you are training on a single GPU using a mini-batch size of 64, and you
want to scale up to training with four GPUs of the same type, you can increase the mini-batch size to
256 so that each GPU processes 64 observations per iteration.

Because increasing the mini-batch size improves the significance of each iteration, you can increase
the learning rate. A good general guideline is to increase the learning rate proportionally to the
increase in mini-batch size. Depending on your application, a larger mini-batch size and learning rate
can speed up training without a decrease in accuracy, up to some limit.

Select Particular GPUs to Use for Training
If you do not want to use all of your GPUs, you can select the GPUs that you want to use for training
and inference directly. Doing so can be useful to avoid training on a poor-performance GPU, for
example, your display GPU.

If your GPUs are in your local machine, you can use the gpuDeviceTable and gpuDeviceCount
functions to examine your GPU resources and determine the index of the GPUs you want to use.

 Deep Learning with MATLAB on Multiple GPUs

7-15



For single GPU training with the "auto" or "gpu" options, by default, MATLAB uses the GPU device
with index 1. You can use a different GPU by selecting the device before you start training. Use
gpuDevice to select the desired GPU using its index:

gpuDevice(index)

trainNetwork, predict, and classify automatically use the selected GPU when you set the
ExecutionEnvironment option to "auto" or "gpu".

For multiple GPU training with the "multi-gpu" option, by default, MATLAB uses all available GPUs
in your local machine. If you want to exclude GPUs, you can start the parallel pool in advance and
select the devices manually.

For example, suppose you have three GPUs but you only want to use the devices with indices 1 and 3.
You can use the following code to start a parallel pool with two workers and select one GPU on each
worker.

useGPUs = [1 3];
parpool("Processes", numel(useGPUs));
spmd 
    gpuDevice(useGPUs(spmdIndex)); 
end

trainNetwork, predict, and classify automatically use the current parallel pool when you set
the ExecutionEnvironment option to "multi-gpu" (or "parallel" for the same result).

Another option is to select workers using the WorkerLoad name-value argument in
trainingOptions. For example:

parpool("Processes", 5);
opts = trainingOptions('sgdm', 'WorkerLoad', [1 1 1 0 1], ...)

In this case, the fourth worker is part of the pool but idle, which is not an ideal use of the parallel
resources. It is more efficient to select GPUs for training manually using gpuDevice.

Train Multiple Networks on Multiple GPUs
If you want to train multiple models in parallel with one GPU each, start a parallel pool with one
worker per available GPU, and train each network on a different worker. Use parfor or parfeval to
simultaneously execute a network on each worker. Use the trainingOptions function to set the
ExecutionEnvironment name-value option to "gpu" on each worker.

For example, use code of the following form to train multiple networks in parallel on all available
GPUs:

options = trainingOptions("sgdm","ExecutionEnvironment","gpu");

parfor i=1:gpuDeviceCount("available")
    trainNetwork(…,options); 
end

To run in the background without blocking your local MATLAB, use parfeval. For examples showing
how to train multiple networks using parfor and parfeval, see

• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52

7 Deep Learning in Parallel and the Cloud

7-16



• “Use parfeval to Train Multiple Deep Learning Networks” on page 7-36

Advanced Support for Fast Multi-Node GPU Communication
Some multi-GPU features in MATLAB, including trainNetwork, are optimized for direct
communication via fast interconnects for improved performance.

If you have appropriate hardware connections, then data transfer between multiple GPUs uses fast
peer-to-peer communication, including NVLink, if available.

If you are using a Linux compute cluster with fast interconnects between machines such as
Infiniband, or fast interconnects between GPUs on different machines, such as GPUDirect RDMA, you
might be able to take advantage of fast multi-node support in MATLAB. Enable this support on all the
workers in your pool by setting the environment variable
PARALLEL_SERVER_FAST_MULTINODE_GPU_COMMUNICATION to 1. Set this environment variable in
the Cluster Profile Manager.

This feature is part of the NVIDIA NCCL library for GPU communication. To configure it, you must set
additional environment variables to define the network interface protocol, especially
NCCL_SOCKET_IFNAME. For more information, see the NCCL documentation and in particular the
section on NCCL Environment Variables.

See Also
trainNetwork | trainingOptions | gpuDevice | spmd | imageDatastore

Related Examples
• “Train Deep Learning Networks in Parallel” on page 5-187
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61
• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52
• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2
• “Run Custom Training Loops on a GPU and in Parallel” on page 7-21

 Deep Learning with MATLAB on Multiple GPUs

7-17

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html


Deep Learning with Big Data
Typically, training deep neural networks requires large amounts of data that often do not fit in
memory. You do not need multiple computers to solve problems using data sets too large to fit in
memory. Instead, you can divide your training data into mini-batches that contain a portion of the
data set. By iterating over the mini-batches, networks can learn from large data sets without needing
to load all data into memory at once.

If your data is too large to fit in memory, use a datastore to work with mini-batches of data for
training and inference. MATLAB provides many different types of datastore tailored for different
applications. For more information about datastores for different applications, see “Datastores for
Deep Learning” on page 20-2.

augmentedImageDatastore is specifically designed to preprocess and augment batches of image
data for machine learning and computer vision applications. For an example showing how to use
augmentedImageDatastore to manage image data during training, see “Train Network with
Augmented Images”.

Work with Big Data in Parallel
If you want to use large amounts of data to train a network, it can be helpful to train in parallel.
Doing so can reduce the time it takes to train a network, because you can train using multiple mini-
batches at the same time.

It is recommended to train using a GPU or multiple GPUs. Only use single CPU or multiple CPUs if
you do not have a GPU. CPUs are normally much slower that GPUs for both training and inference.
Running on a single GPU typically offers much better performance than running on multiple CPU
cores.

For more information about training in parallel, see “Scale Up Deep Learning in Parallel, on GPUs,
and in the Cloud” on page 7-2.

Preprocess Data in Background
When you train in parallel, you can fetch and preprocess your data in the background. This can be
particularly useful if you want to preprocess your mini-batches during training, such as when using
the transform function to apply a mini-batch preprocessing function to your datastore.

When you train a network using the trainNetwork function, you can fetch and preprocess data in
the background by enabling background dispatch:

• Set the DispatchInBackground property of the datastore to true.
• Set the DispatchInBackground training option to true using the trainingOptions function.

During training, some workers are used for preprocessing data instead of network training
computations. You can fine-tune the training computation and data dispatch loads between workers
by specifying the WorkerLoad training option using the trainingOptions function. For advanced
options, you can try modifying the number of workers of the parallel pool.

You can use a built-in mini-batch datastore, such as augmentedImageDatastore,
denoisingImageDatastore, or pixelLabelImageDatastore. You can also use a custom mini-

7 Deep Learning in Parallel and the Cloud

7-18



batch datastore with background dispatch enabled. For more information on creating custom mini-
batch datastores, see “Develop Custom Mini-Batch Datastore” on page 20-38.

For more information about datastore requirement for background dispatching, see “Use Datastore
for Parallel Training and Background Dispatching” on page 20-8.

Work with Big Data in the Cloud
Storing data in the cloud can make it easier for you to access for cloud applications without needing
to upload or download large amounts of data each time you create cloud resources. Both AWS and
Azure offer data storage services, such as AWS S3 and Azure Blob Storage, respectively.

To avoid the time and cost associated with transferring large quantities of data, it is recommended
that you set up cloud resources for your deep learning applications using the same cloud provider
and region that you use to store your data in the cloud.

To access data stored in the cloud from MATLAB, you must configure your machine with your access
credentials. You can configure access from inside MATLAB using environment variables. For more
information on how to set environment variables to access cloud data from your client MATLAB, see
“Work with Remote Data”. For more information on how to set environment variables on parallel
workers in a remote cluster, see “Set Environment Variables on Workers” (Parallel Computing
Toolbox).

For examples showing how to upload data to the cloud and how to access that data from MATLAB,
see “Work with Deep Learning Data in AWS” on page 7-59 and “Work with Deep Learning Data in
Azure Blob Storage” on page 7-61.

For more information about deep learning in the cloud, see “Deep Learning in the Cloud” on page 7-
10.

Preprocess Data for Custom Training Loops
When you train a network using a custom training loop, you can process your data in the background
by using minibatchqueue and enabling background dispatch. A minibatchqueue object iterates
over a datastore to prepare mini-batches for custom training loops. Enable background dispatch
when your mini-batches require heavy preprocessing.

To enable background dispatch, you must:

• Set the DispatchInBackground property of the datastore to true.
• Set the DispatchInBackground property of the minibatchqueue to true.

When you use this option, MATLAB opens a local parallel pool to use for preprocessing your data.
Data preprocessing for custom training loops is supported when training using local resources only.
For example, use this option when training using a single GPU in your local machine.

For more information about datastore requirements for background dispatching, see “Use Datastore
for Parallel Training and Background Dispatching” on page 20-8.

See Also
trainingOptions | minibatchqueue | trainNetwork

 Deep Learning with Big Data

7-19



More About
• “Datastores for Deep Learning” on page 20-2
• “Data Sets for Deep Learning” on page 20-116
• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2
• “Deep Learning in the Cloud” on page 7-10
• “Deep Learning with MATLAB on Multiple GPUs” on page 7-14
• “Train Deep Learning Networks in Parallel” on page 5-187
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61

7 Deep Learning in Parallel and the Cloud

7-20



Run Custom Training Loops on a GPU and in Parallel
You can speed up your custom training loops by running them on a GPU, in parallel using multiple
GPUs, or on a cluster.

It is recommended to train using a GPU or multiple GPUs. Only use single CPU or multiple CPUs if
you do not have a GPU. CPUs are normally much slower that GPUs for both training and inference.
Running on a single GPU typically offers much better performance than running on multiple CPU
cores.

Note This topic shows how to perform custom training on GPUs, in parallel, and on the cloud. To
learn about parallel and GPU workflows using the simpler trainNetwork function, see these topics:

• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2
• “Deep Learning with MATLAB on Multiple GPUs” on page 7-14

Using a GPU or parallel options requires Parallel Computing Toolbox. Using a GPU also requires a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). Using a remote cluster also requires MATLAB Parallel Server.

Train Network on GPU
By default, custom training loops run on the CPU. You can perform automatic differentiation using
dlgradient and dlfeval on the GPU when your data is on the GPU. To run a custom training loop
on a GPU, convert your data to a gpuArray object during training.

You can use minibatchqueue to manage your data during training. minibatchqueue automatically
prepares data for training, including custom preprocessing and converting data to dlarray and
gpuArray objects. By default, minibatchqueue returns all mini-batch variables on the GPU if one is
available. You can choose which variables to return on the GPU using the OutputEnvironment
property.

For an example that shows how to use minibatchqueue to train on the GPU, see “Train Network
Using Custom Training Loop” on page 19-239.

Alternatively, you can manually convert your data to a gpuArray object within the training loop.

To easily specify the execution environment, create the variable executionEnvironment that
contains either "cpu", "gpu", or "auto".

executionEnvironment = "auto"

During training, after reading a mini-batch, check the execution environment option and convert the
data to a gpuArray if necessary. The canUseGPU function checks for useable GPUs.
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    X = gpuArray(X);
end

 Run Custom Training Loops on a GPU and in Parallel

7-21



Train Single Network in Parallel
When you train in parallel, each worker trains the network simultaneously using a portion of a mini-
batch. This behaviour means that you must combine the gradients, loss, and state parameters after
each iteration according to the proportion of the mini-batch processed by each worker.

You can train in parallel on your local machine or on a remote cluster, for example, in the cloud. Start
a parallel pool using the desired resources and partition your data between the workers. During
training, combine the gradients, loss, and state after each iteration so that the learnable parameters
on each worker update in synchronization. For an example that shows how to perform custom
training in parallel, see “Train Network in Parallel with Custom Training Loop” on page 7-64

Set Up Parallel Environment

It is recommended to train using a GPU or multiple GPUs. Only use single CPU or multiple CPUs if
you do not have a GPU. CPUs are normally much slower that GPUs for both training and inference.
Running on a single GPU typically offers much better performance than running on multiple CPU
cores.

Set up the parallel environment before training. Start a parallel pool using the desired resources. To
train using multiple GPUs, start a parallel pool with as many workers as available GPUs. MATLAB
assigns a different GPU to each worker.

If you are using your local machine, use canUseGPU or gpuDeviceCount to determine whether you
have GPUs available. For example, check the availability of your GPUs and start a parallel pool with
as many workers as available GPUs.

if canUseGPU
    executionEnvironment = "gpu";
    numberOfGPUs = gpuDeviceCount("available");
    pool = parpool(numberOfGPUs);
else
    executionEnvironment = "cpu";
    pool = parpool;
end

If you are running code using a remote cluster, for example, a cluster in the cloud, start a parallel
pool with as many workers as the number of GPUs per machine multiplied by the number of
machines.

For more information on selecting specific GPUs, see “Select Particular GPUs to Use for Training” on
page 7-15.

Specify Mini-Batch Size and Partition Data

Specify the mini-batch size to use during training. For GPU training, scale up the mini-batch size
linearly with the number of GPUs to keep the workload on each GPU constant. For example, if you are
training on a single GPU using a mini-batch size of 64 and you want to scale up to training with four
GPUs of the same type, increase the mini-batch size to 256 so that each GPU processes 64
observations per iteration.

Scale up the mini-batch size by the number of workers, where N is the number of workers in your
parallel pool.

7 Deep Learning in Parallel and the Cloud

7-22



if executionEnvironment == "gpu"
    miniBatchSize = miniBatchSize.*N
end

To use a mini-batch size that is not exactly divisible by the number of workers in your parallel pool,
distribute the remainder across the workers.

workerMiniBatchSize = floor(miniBatchSize./repmat(N,1,N));
remainder = miniBatchSize - sum(workerMiniBatchSize);
workerMiniBatchSize = workerMiniBatchSize + [ones(1,remainder) zeros(1,N-remainder)]

At the start of training, shuffle the data. Partition the data so that each worker has access to a portion
of the mini-batch. To partition a datastore, use the partition function.

Use minibatchqueue to manage the data on each worker during training. A minibatchqueue
object automatically prepares data for training, including custom preprocessing and converting data
to dlarray and gpuArray objects. Create a minibatchqueue object on each worker using the
partitioned datastore. Set the MiniBatchSize property to the mini-batch sizes calculated for each
worker.

At the start of each training iteration, use the spmdReduce function to check that all worker
minibatchqueue objects can return data. If any worker runs out of data, training stops. If the
overall mini-batch size is not exactly divisible by the number of workers and you do not discard
partial mini-batches, some workers might run out of data before others.

Write your training code inside an spmd block so that the training loop executes on each worker.

% Shuffle the datastore.
augimdsTrain = shuffle(augimdsTrain);

spmd
    % Partition the datastore.
    workerImds = partition(augimdsTrain,N,spmdIndex);

    % Create a minibatchqueue object using the partitioned datastore on each worker.
    workerMbq = minibatchqueue(workerImds,...
        MiniBatchSize = workerMiniBatchSize(spmdIndex),...
        MiniBatchFcn = @preprocessMiniBatch);

    ...

    for epoch = 1:numEpochs

        % Reset and shuffle the mini-batch queue on each worker.
        shuffle(workerMbq);
                
        % Loop over the mini-batches.
        while spmdReduce(@and,hasdata(workerMbq))

            % Custom training loop
            ...
            
        end
        ...
    end
end

 Run Custom Training Loops on a GPU and in Parallel

7-23



Aggregate Gradients

To ensure that the network on each worker learns from all the data and not just the data on that
worker, aggregate the gradients and use the aggregated gradients to update the network on each
worker.

For example, suppose you are training the network net using the model loss function modelLoss.
Your training loop contains the code for evaluating the loss, gradients, and statistics on each worker,
where workerX and workerT are the predictor and target response on each worker, respectively.

[workerLoss,workerGradients,workerState] = dlfeval(@modelLoss,net,workerX,workerT);

To aggregate the gradients, use a weighted sum. Define a helper function to sum the gradients.

function gradients = aggregateGradients(gradients,factor)
    gradients = extractdata(gradients);
    gradients = spmdPlus(factor*gradients);
end

Inside the training loop, use dlupdate to apply the function to the gradients of each learnable
parameter.

workerGradients.Value = dlupdate(@aggregateGradients,workerGradients.Value,{workerNormalizationFactor});

Aggregate Loss and Accuracy

To find the network loss and accuracy, for example, to plot them during training to monitor training
progress, aggregate the values of the loss and accuracy on all of the workers. Typically, the
aggregated value is the sum of the value on each worker weighted by the proportion of the mini-
batch that each worker uses. To aggregate the losses and accuracy each iteration, calculate the
weight factor for each worker and use spmdPlus to sum the values on each worker.

workerNormalizationFactor = workerMiniBatchSize(spmdIndex)./miniBatchSize;
loss = spmdPlus(workerNormalizationFactor*extractdata(dlworkerLoss));
accuracy = spmdPlus(workerNormalizationFactor*extractdata(dlworkerAccuracy));

Aggregate Statistics

If your network contains layers that track the statistics of your training data, such as batch
normalization layers, then you must aggregate the statistics across all workers after each training
iteration. Aggregating the statistics ensures that the network learns statistics that are representative
of the entire training set.

You can identify the layers that contain statistics before training. For example, find the relevant
layers using a dlnetwork object with batch normalization layers.

batchNormLayers = arrayfun(@(l)isa(l,'nnet.cnn.layer.BatchNormalizationLayer'),net.Layers);
batchNormLayersNames = string({net.Layers(batchNormLayers).Name});
state = net.State;
isBatchNormalizationStateMean = ismember(state.Layer,batchNormLayersNames) & state.Parameter == "TrainedMean";
isBatchNormalizationStateVariance = ismember(state.Layer,batchNormLayersNames) & state.Parameter == "TrainedVariance";

Define a helper function to aggregate the statistics. Batch normalization layers track the mean and
variance of the input data. You can aggregate the mean on all the workers using a weighted average.
To calculate the aggregated variance sc

2, use this equation.

7 Deep Learning in Parallel and the Cloud

7-24



sc
2 = 1

M ∑
j = 1

N
m j s j

2 + x j− xc
2 ,

where N is the total number of workers, M is the total number of observations in a mini-batch, mj is
the number of observations processed on the jth worker, x j and s j

2 are the mean and variance
statistics calculated on that worker, respectively, and xc is the aggregated mean across all workers.

function state = aggregateState(state,factor,...
    isBatchNormalizationStateMean,isBatchNormalizationStateVariance)

    stateMeans = state.Value(isBatchNormalizationStateMean);
    stateVariances = state.Value(isBatchNormalizationStateVariance);

    for j = 1:numel(stateMeans)
        meanVal = stateMeans{j};
        varVal = stateVariances{j};
        
        % Calculate combined mean.
        combinedMean = spmdPlus(factor*meanVal);
               
        % Calculate combined variance terms to sum.
        varTerm = factor.*(varVal + (meanVal - combinedMean).^2);        
        
        % Update state.
        stateMeans{j} = combinedMean;
        stateVariances{j} = spmdPlus(varTerm);
    end

    state.Value(isBatchNormalizationStateMean) = stateMeans;
    state.Value(isBatchNormalizationStateVariance) = stateVariances;
end

Inside the training loop, use the helper function to update the state of the batch normalization layers
with the combined mean and variance.

net.State = aggregateState(workerState,workerNormalizationFactor,...
                isBatchNormalizationStateMean,isBatchNormalizationStateVariance);

Plot Results During Training

To plot results during training, send data from the workers to the client using a DataQueue object.

To plot training progress, set plots to "training-progress". Otherwise, set plots to "none".

plots = "training-progress";

Before training perform these steps:

• Initialize the TrainingProgressMonitor object to track and plot the loss for the network.
Because the timer starts when you create the monitor, create the object immediately before the
training loop.

• Initialize a DataQueue object on the workers for sending a flag to stop training when you click the
Stop button.

• Initialize a DataQueue object on the client for receiving data from the workers during training.

 Run Custom Training Loops on a GPU and in Parallel

7-25



• Use afterEach to call the displayTrainingProgress function each time a worker sends data
to the client.

To plot training progress, create an animatedline object instead of initializing a
TrainingProgressMonitor object and use the addpoints function inside the
displayTrainingProgress function to update the animatedline.

if plots == "training-progress"

    % Initialize the training progress monitor.
    monitor = trainingProgressMonitor( ...
        Metrics="TrainingLoss", ...
        Info=["Epoch","Workers"], ...
        XLabel="Iteration");

    % Initialize a DataQueue object on the workers.
    spmd
        stopTrainingEventQueue = parallel.pool.DataQueue;
    end
    stopTrainingQueue = stopTrainingEventQueue{1};

    % Initialize a DataQueue object on the client.
    dataQueue = parallel.pool.DataQueue;

    % Call displayTrainingProgress each time a worker sends data to the client.
    displayFcn = @(x) displayTrainingProgress(x,numEpochs,numWorkers,monitor,stopTrainingQueue);
    afterEach(dataQueue,displayFcn)

end

The displayTrainingProgress helper function updates the Training Progress window and checks
whether the Stop button has been clicked. If you click the Stop button the DataQueue object
instructs the workers to stop training.

function displayTrainingProgress(data,numEpochs,numWorkers,monitor,stopTrainingQueue)

% Extract epoch, iteration, and loss data.
epoch = data(1);
iteration = data(2);
loss = data(3);

% Update the training progress monitor.
recordMetrics(monitor,iteration,TrainingLoss=loss);
updateInfo(monitor,Epoch=epoch + " of " + numEpochs,Workers=numWorkers);
monitor.Progress = 100*epoch/numEpochs;

% Send a flag to the workers if the Stop button has been clicked.
if monitor.Stop
    send(stopTrainingQueue,true);
end

end

Inside the training loop, at the end of each iteration or epoch, check whether the Stop button has
been clicked and use the DataQueue object to send the training data from the workers to the client.
At the end of each iteration, the aggregated loss is the same on each worker, so you can send data
from a single worker.

7 Deep Learning in Parallel and the Cloud

7-26



spmd
    epoch = 0;
    iteration = 0;
    stopRequest = false;

    % Prepare input data and mini-batches.
    ...

    % Loop over epochs.
    while epoch < numEpochs && ~stopRequest
        epoch = epoch + 1;

        % Reset and shuffle the mini-batch queue on each worker.
        ...

        % Loop over mini-batches.
        while spmdReduce(@and,hasdata(workerMbq)) && ~stopRequest
            iteration = iteration + 1;

            % Custom training loop.
            ...

            if plots == "training-progress"
                % Check whether the the Stop button has been clicked.
                stopRequest = spmdPlus(stopTrainingEventQueue.QueueLength);
    
                % Send training progress information to the client.
                if spmdIndex == 1
                    data = [epoch iteration loss];
                    send(dataQueue,gather(data));
                end

            end

        end

    end

end

 Run Custom Training Loops on a GPU and in Parallel

7-27



Train Multiple Networks in Parallel
To train multiple networks in parallel, start a parallel pool and use parfor to train a single network
on each worker.

You can run the training locally or on a remote cluster. Using a remote cluster requires a MATLAB
Parallel Server license. For more information about managing cluster resources, see “Discover
Clusters and Use Cluster Profiles” (Parallel Computing Toolbox). If you have multiple GPUs and want
to exclude some from training, you can choose to train on only some GPUs. For more information on
selecting specific GPUs, see “Select Particular GPUs to Use for Training” on page 7-15.

You can modify the network or training parameters on each worker to perform parameter sweeps in
parallel. For example, if networks is an array of dlnetwork objects, you can use this code to train
multiple different networks using the same data. After the parfor-loop finishes, trainedNetworks
contains the resulting networks trained by the workers.

parpool;

parfor idx = 1:numNetworks
    iteration = 0;  
    velocity = [];

    % Allocate one network per worker.
    net = networks(idx)

    % Loop over epochs.
    for epoch = 1:numEpochs
        % Shuffle data.
        shuffle(mbq);
    

7 Deep Learning in Parallel and the Cloud

7-28



        % Loop over mini-batches.
        while hasdata(mbq)
            iteration = iteration + 1;

            % Custom training loop.
            ...

        end     
        
    end

    % Send the trained networks back to the client.
    trainedNetworks{idx} = net;
end

Use Experiment Manager to Train in Parallel
You can use Experiment Manager to run your custom training loops in parallel. You can run multiple
trials simultaneously or run a single trial at a time using parallel resources.

To run multiple trials at the same time using one parallel worker for each trial, set up your custom
training experiment and set Mode to Simultaneous before running your experiment.

To run a single trial at a time using multiple parallel workers, define your parallel environment in
your experiment training function, use an spmd block to train the network in parallel, and set Mode
to Sequential. For more information on training a single network in parallel with a custom training
loop, see “Train Single Network in Parallel” on page 7-22 and “Custom Training with Multiple GPUs
in Experiment Manager” on page 6-117.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.

For more information about training in parallel using Experiment Manager, see “Use Experiment
Manager to Train Networks in Parallel” on page 6-18.

See Also
spmd | parfor | TrainingProgressMonitor | gpuArray | dlarray | dlnetwork

Related Examples
• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network in Parallel with Custom Training Loop” on page 7-64
• “Define Model Loss Function for Custom Training Loop” on page 19-256

 Run Custom Training Loops on a GPU and in Parallel

7-29



Cloud AI Workflow Using the Deep Learning Container
This example workflow demonstrates a method of training a deep neural network in the cloud using
the MATLAB Deep Learning Container, uploading and accessing neural networks and training data in
the cloud, and optimizing a neural network in the cloud:

1 “Train Network on Amazon Web Services Using MATLAB Deep Learning Container” on page 7-
82

2 “Use Amazon S3 Buckets with MATLAB Deep Learning Container” on page 7-86
3 “Use Experiment Manager in the Cloud with MATLAB Deep Learning Container” on page 7-89

See Also

Related Examples
• “Deep Learning in the Cloud” on page 7-10
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61

7 Deep Learning in Parallel and the Cloud

7-30



Train Network in the Cloud Using Automatic Parallel Support

This example shows how to train a convolutional neural network using MATLAB automatic support
for parallel training. Deep learning training often takes hours or days. With parallel computing, you
can speed up training using multiple graphical processing units (GPUs) locally or in a cluster in the
cloud. If you have access to a machine with multiple GPUs, then you can complete this example on a
local copy of the data. If you want to use more resources, then you can scale up deep learning
training to the cloud. To learn more about your options for parallel training, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud” on page 7-2. This example guides you through the
steps to train a deep learning network on a cluster in the cloud using MATLAB automatic parallel
support.

Requirements

Before you can run the example, you need to configure a cluster and upload data to the cloud. In
MATLAB, you can create clusters in the cloud directly from the MATLAB Desktop. On the Home tab,
in the Environment area, select Parallel > Create and Manage Clusters. In the Cluster Profile
Manager, click Create Cloud Cluster. Alternatively, you can use MathWorks Cloud Center to create
and access compute clusters. For more information, see Getting Started with Cloud Center. After
that, upload your data to an Amazon S3 bucket and access it directly from MATLAB. This example
uses a copy of the CIFAR-10 data set that is already stored in Amazon S3. For instructions, see “Work
with Deep Learning Data in AWS” on page 7-59.

Set Up Cluster

Select your cloud cluster and start a parallel pool, set the number of workers to the number of GPUs
in your cluster. If you specify more workers than GPUs, then the remaining workers are idle.

numberOfGPUs = 4;
cluster = parcluster("MyClusterInTheCloud");
pool = parpool(cluster,numberOfGPUs);

Starting parallel pool (parpool) using the 'MyClusterInTheCloud' profile ...
Connected to parallel pool with 4 workers.

If you do not specify a cluster, the default cluster profile is used. Check the default cluster profile on
the MATLAB Home tab, in the Environment area, select Parallel > Create and Manage Cluster.

Load Data Set from the Cloud

Load the training and test data sets from the cloud using imageDatastore. In this example, you use
a copy of the CIFAR-10 data set stored in Amazon S3. To ensure that the workers have access to the
datastore in the cloud, make sure that the environment variables for the AWS credentials are set
correctly. See “Work with Deep Learning Data in AWS” on page 7-59.

imdsTrain = imageDatastore("s3://cifar10cloud/cifar10/train", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

imdsTest = imageDatastore("s3://cifar10cloud/cifar10/test", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

 Train Network in the Cloud Using Automatic Parallel Support

7-31

https://www.mathworks.com/help/cloudcenter/ug/getting-started-with-cloud-center.html


Train the network with augmented image data by creating an augmentedImageDatastore object.
Use random translations and horizontal reflections. Data augmentation helps prevent the network
from overfitting and memorizing the exact details of the training images.

imageSize = [32 32 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);
augmentedImdsTrain = augmentedImageDatastore(imageSize,imdsTrain, ...
    DataAugmentation=imageAugmenter, ...
    OutputSizeMode="randcrop");

Define Network Architecture and Training Options

Define a network architecture for the CIFAR-10 data set. To simplify the code, use convolutional
blocks that convolve the input. The supporting function convolutionalBlock is provided at the end
of this example and creates repeating blocks of layers, each containing a convolution layer, a batch
normalization layer, and a ReLU layer. The pooling layers downsample the spatial dimensions.

blockDepth = 4;
netWidth = 32;

layers = [
    imageInputLayer(imageSize) 
    
    convolutionalBlock(netWidth,blockDepth)
    maxPooling2dLayer(2,Stride=2)
    convolutionalBlock(2*netWidth,blockDepth)
    maxPooling2dLayer(2,Stride=2)    
    convolutionalBlock(4*netWidth,blockDepth)
    averagePooling2dLayer(8) 
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
];

When you use multiple GPUs, you increase the available computational resources. Scale up the mini-
batch size with the number of GPUs to keep the workload on each GPU constant and scale the
learning rate according to the mini-batch size.

miniBatchSize = 256 * numberOfGPUs;
initialLearnRate = 1e-1 * miniBatchSize/256;

Specify the training options:

• Train a network using the SGDM solver for 50 epochs.
• Train the network in parallel using the current cluster by setting the execution environment to

parallel.
• Use a learning rate schedule to drop the learning rate as the training progresses.
• Use L2 regularization to prevent overfitting.
• Set the mini-batch size and shuffle the data every epoch.
• Validate the network using the validation data.

7 Deep Learning in Parallel and the Cloud

7-32



• Turn on the training progress plot to obtain visual feedback during training.
• Disable the verbose output.

options = trainingOptions("sgdm", ...
    MaxEpochs=50, ...
    ExecutionEnvironment="parallel", ...
    InitialLearnRate=initialLearnRate, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=45, ...
    L2Regularization=1e-10, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    ValidationData=imdsTest, ...
    ValidationFrequency=floor(numel(imdsTrain.Files)/miniBatchSize), ...
    Plots="training-progress", ...
    Verbose=false);

Train Network and Use for Classification

Train the network in the cluster. During training, the plot displays the progress.

net = trainNetwork(augmentedImdsTrain,layers,options);

 Train Network in the Cloud Using Automatic Parallel Support

7-33



Use the trained network to classify the test images on your local machine, then compare the
predicted labels to the actual labels.

YPredicted = classify(net,imdsTest);
accuracy = sum(YPredicted == imdsTest.Labels)/numel(imdsTest.Labels)

accuracy = 0.8968

Close the parallel pool if you do not intend to use it again.

delete(pool)

Supporting Functions

Convolutional Block Function

The convolutionalBlock function creates numConvBlocks convolutional blocks, each containing
a 2-D convolutional layer, a batch normmalization layer, and a ReLU layer. Each 2-D convolutional
layer has numFilters 3-by-3 filters.

7 Deep Learning in Parallel and the Cloud

7-34



function layers = convolutionalBlock(numFilters,numConvBlocks)
    layers = [
        convolution2dLayer(3,numFilters,Padding="same")
        batchNormalizationLayer
        reluLayer
    ];
    
    layers = repmat(layers,numConvBlocks,1);
end

See Also
trainNetwork | trainingOptions | imageDatastore

Related Examples
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61
• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52

 Train Network in the Cloud Using Automatic Parallel Support

7-35



Use parfeval to Train Multiple Deep Learning Networks

This example shows how to use parfeval to perform a parameter sweep on the depth of the network
architecture for a deep learning network and retrieve data during training.

Deep learning training often takes hours or days, and searching for good architectures can be
difficult. With parallel computing, you can speed up and automate your search for good models. If you
have access to a machine with multiple graphical processing units (GPUs), you can complete this
example on a local copy of the data set with a local parallel pool. If you want to use more resources,
you can scale up deep learning training to the cloud. This example shows how to use parfeval to
perform a parameter sweep on the depth of a network architecture in a cluster in the cloud. Using
parfeval allows you to train in the background without blocking MATLAB, and provides options to
stop early if results are satisfactory. You can modify the script to do a parameter sweep on any other
parameter. Also, this example shows how to obtain feedback from the workers during computation by
using DataQueue.

Requirements

Before you can run this example, you need to configure a cluster and upload your data to the Cloud.
In MATLAB, you can create clusters in the cloud directly from the MATLAB Desktop. On the Home
tab, in the Parallel menu, select Create and Manage Clusters. In the Cluster Profile Manager, click
Create Cloud Cluster. Alternatively, you can use MathWorks Cloud Center to create and access
compute clusters. For more information, see Getting Started with Cloud Center. For this example,
ensure that your cluster is set as default on the MATLAB Home tab, in Parallel > Select a Default
Cluster. After that, upload your data to an Amazon S3 bucket and use it directly from MATLAB. This
example uses a copy of the CIFAR-10 data set that is already stored in Amazon S3. For instructions,
see “Work with Deep Learning Data in AWS” on page 7-59.

Load Data Set from the Cloud

Load the training and test data sets from the cloud using imageDatastore. Split the training data
set into training and validation sets, and keep the test data set to test the best network from the
parameter sweep. In this example, you use a copy of the CIFAR-10 data set stored in Amazon S3. To
ensure that the workers have access to the datastore in the cloud, make sure that the environment
variables for the AWS credentials are set correctly. See “Work with Deep Learning Data in AWS” on
page 7-59.

imds = imageDatastore('s3://cifar10cloud/cifar10/train', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

imdsTest = imageDatastore('s3://cifar10cloud/cifar10/test', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9);

Train the network with augmented image data by creating an augmentedImageDatastore object.
Use random translations and horizontal reflections. Data augmentation helps prevent the network
from overfitting and memorizing the exact details of the training images.

imageSize = [32 32 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...

7 Deep Learning in Parallel and the Cloud

7-36

https://www.mathworks.com/help/cloudcenter/getting-started-with-cloud-center.html


    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augmentedImdsTrain = augmentedImageDatastore(imageSize,imdsTrain, ...
    'DataAugmentation',imageAugmenter, ...
    'OutputSizeMode','randcrop');

Train Several Networks Simultaneously

Define the training options. Set the mini-batch size and scale the initial learning rate linearly
according to the mini-batch size. Set the validation frequency so that trainNetwork validates the
network once per epoch.

miniBatchSize = 128;
initialLearnRate = 1e-1 * miniBatchSize/256;
validationFrequency = floor(numel(imdsTrain.Labels)/miniBatchSize);
options = trainingOptions('sgdm', ...
    'MiniBatchSize',miniBatchSize, ... % Set the mini-batch size
    'Verbose',false, ... % Do not send command line output.
    'InitialLearnRate',initialLearnRate, ... % Set the scaled learning rate.
    'L2Regularization',1e-10, ...
    'MaxEpochs',30, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency', validationFrequency);

Specify the depths for the network architecture on which to do a parameter sweep. Perform a parallel
parameter sweep training several networks simultaneously using parfeval. Use a loop to iterate
through the different network architectures in the sweep. Create the helper function
createNetworkArchitecture at the end of the script, which takes an input argument to control
the depth of the network and creates an architecture for CIFAR-10. Use parfeval to offload the
computations performed by trainNetwork to a worker in the cluster. parfeval returns a future
variable to hold the trained networks and training information when computations are done.

netDepths = 1:4;
for idx = 1:numel(netDepths)
    networksFuture(idx) = parfeval(@trainNetwork,2, ...
        augmentedImdsTrain,createNetworkArchitecture(netDepths(idx)),options);
end

Starting parallel pool (parpool) using the 'MyCluster' profile ...
Connected to the parallel pool (number of workers: 4).

parfeval does not block MATLAB, which means you can continue executing commands. In this case,
obtain the trained networks and their training information by using fetchOutputs on
networksFuture. The fetchOutputs function waits until the future variables finish.

[trainedNetworks,trainingInfo] = fetchOutputs(networksFuture);

Obtain the final validation accuracies of the networks by accessing the trainingInfo structure.

accuracies = [trainingInfo.FinalValidationAccuracy]

accuracies = 1×4

   72.5600   77.2600   79.4000   78.6800

 Use parfeval to Train Multiple Deep Learning Networks

7-37



Select the best network in terms of accuracy. Test its performance against the test data set.

[~, I] = max(accuracies);
bestNetwork = trainedNetworks(I(1));
YPredicted = classify(bestNetwork,imdsTest);
accuracy = sum(YPredicted == imdsTest.Labels)/numel(imdsTest.Labels)

accuracy = 0.7840

Calculate the confusion matrix for the test data.

figure('Units','normalized','Position',[0.2 0.2 0.4 0.4]);
confusionchart(imdsTest.Labels,YPredicted,'RowSummary','row-normalized','ColumnSummary','column-normalized');

Send Feedback Data During Training

Prepare and initialize plots that show the training progress in each of the workers. Use
animatedLine for a convenient way to show changing data.

f = figure;
f.Visible = true;
for i=1:4
    subplot(2,2,i)
    xlabel('Iteration');
    ylabel('Training accuracy');
    lines(i) = animatedline;
end

7 Deep Learning in Parallel and the Cloud

7-38



Send the training progress data from the workers to the client by using DataQueue, and then plot
the data. Update the plots each time the workers send training progress feedback by using
afterEach. The parameter opts contains information about the worker, training iteration, and
training accuracy.

D = parallel.pool.DataQueue;
afterEach(D, @(opts) updatePlot(lines, opts{:}));

Specify the depths for the network architecture on which to do a parameter sweep, and perform the
parallel parameter sweep using parfeval. Allow the workers to access any helper function in this
script, by adding the script to the current pool as an attached file. Define an output function in the
training options to send the training progress from the workers to the client. The training options
depend on the index of the worker and must be included inside the for loop.

netDepths = 1:4;
addAttachedFiles(gcp,mfilename);
for idx = 1:numel(netDepths)
    
    miniBatchSize = 128;
    initialLearnRate = 1e-1 * miniBatchSize/256; % Scale the learning rate according to the mini-batch size.
    validationFrequency = floor(numel(imdsTrain.Labels)/miniBatchSize);
    
    options = trainingOptions('sgdm', ...
        'OutputFcn',@(state) sendTrainingProgress(D,idx,state), ... % Set an output function to send intermediate results to the client.
        'MiniBatchSize',miniBatchSize, ... % Set the corresponding MiniBatchSize in the sweep.
        'Verbose',false, ... % Do not send command line output.
        'InitialLearnRate',initialLearnRate, ... % Set the scaled learning rate.

 Use parfeval to Train Multiple Deep Learning Networks

7-39



        'L2Regularization',1e-10, ...
        'MaxEpochs',30, ...
        'Shuffle','every-epoch', ...
        'ValidationData',imdsValidation, ...
        'ValidationFrequency', validationFrequency);
    
    networksFuture(idx) = parfeval(@trainNetwork,2, ...
        augmentedImdsTrain,createNetworkArchitecture(netDepths(idx)),options);
end

parfeval invokes trainNetwork on a worker in the cluster. Computations happen on the
background, so you can continue working in MATLAB. If you want to stop a parfeval computation,
you can call cancel on its corresponding future variable. For example, if you observe that a network
is underperforming, you can cancel its future. When you do so, the next queued future variable starts
its computations.

In this case, fetch the trained networks and their training information by invoking fetchOutputs on
the future variables.

[trainedNetworks,trainingInfo] = fetchOutputs(networksFuture);

Obtain the final validation accuracy for each network.

accuracies = [trainingInfo.FinalValidationAccuracy]

accuracies = 1×4

7 Deep Learning in Parallel and the Cloud

7-40



   72.9200   77.4800   76.9200   77.0400

Helper Functions

Define a network architecture for the CIFAR-10 data set with a function, and use an input argument
to adjust the depth of the network. To simplify the code, use convolutional blocks that convolve the
input. The pooling layers downsample the spatial dimensions.

function layers = createNetworkArchitecture(netDepth)
imageSize = [32 32 3];
netWidth = round(16/sqrt(netDepth)); % netWidth controls the number of filters in a convolutional block

layers = [
    imageInputLayer(imageSize)
    
    convolutionalBlock(netWidth,netDepth)
    maxPooling2dLayer(2,'Stride',2)
    convolutionalBlock(2*netWidth,netDepth)
    maxPooling2dLayer(2,'Stride',2)
    convolutionalBlock(4*netWidth,netDepth)
    averagePooling2dLayer(8)
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
    ];
end

Define a function to create a convolutional block in the network architecture.

function layers = convolutionalBlock(numFilters,numConvLayers)
layers = [
    convolution2dLayer(3,numFilters,'Padding','same')
    batchNormalizationLayer
    reluLayer
    ];

layers = repmat(layers,numConvLayers,1);
end

Define a function to send the training progress to the client through DataQueue.

function sendTrainingProgress(D,idx,info)
if info.State == "iteration"
    send(D,{idx,info.Iteration,info.TrainingAccuracy});
end
end

Define an update function to update the plots when a worker sends an intermediate result.

function updatePlot(lines,idx,iter,acc)
addpoints(lines(idx),iter,acc);
drawnow limitrate nocallbacks
end

See Also
parfeval | afterEach | trainNetwork | trainingOptions | imageDatastore

 Use parfeval to Train Multiple Deep Learning Networks

7-41



Related Examples
• “Train Network in the Cloud Using Automatic Parallel Support” on page 7-31
• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61

7 Deep Learning in Parallel and the Cloud

7-42



Send Deep Learning Batch Job to Cluster

This example shows how to send deep learning training batch jobs to a cluster so that you can
continue working or close MATLAB® during training.

Training deep neural networks often takes hours or days. To use time efficiently, you can train neural
networks as batch jobs and fetch the results from the cluster when they are ready. You can continue
working in MATLAB while computations take place or close MATLAB and obtain the results later
using the Job Monitor. You can optionally monitor the jobs during training and, after the job is
complete, you can fetch the trained networks and compare their accuracies.

Requirements

Before you can run this example, you need to configure a cluster and upload your data to the Cloud.
In MATLAB, you can create clusters in the cloud directly from the MATLAB Desktop. On the Home
tab, in the Parallel menu, select Create and Manage Clusters. In the Cluster Profile Manager, click
Create Cloud Cluster. Alternatively, you can use MathWorks Cloud Center to create and access
compute clusters. For more information, see Getting Started with Cloud Center. For this example,
ensure that your desired cloud cluster is set as the default parallel environment on the MATLAB
Home tab, in Parallel > Select Parallel Environment. After that, upload your data to an Amazon
S3 bucket and use it directly from MATLAB. This example uses a copy of the CIFAR-10 data set that is
already stored in Amazon S3. For instructions, see “Work with Deep Learning Data in AWS” on page
7-59.

Submit Batch Job

You can send a function or a script as a batch job to the cluster by using the batch (Parallel
Computing Toolbox) function. By default, the cluster allocates one worker to execute the contents of
the job. If the code in the job will benefit from extra workers, for example, it includes automatic
parallel support or a parfor-loop, you can specify more workers by using the Pool name-value
argument of the batch function.

When you submit a batch job as a script, by default, workspace variables are copied from the client to
the workers. To avoid copying workspace variables to the workers, submit batch jobs as functions.

The trainNetworkFcn is provided as a supporting file with this example. The function trains a
single network using a given mini-batch size and returns the trained network and its accuracy. To
perform a parameter sweep across mini-batch sizes, send the function as a batch job to the cluster
four times, specifying a different mini-batch sizes for each job. When sending a function as a batch
job, specify the number of outputs of the function and the input arguments.

c = parcluster;
miniBatchSize = [64 128 256 512];
numBatchJobs = numel(miniBatchSize);

for idx=1:numBatchJobs
    job(idx) = batch(c,"trainNetworkFcn",2,{idx,miniBatchSize(idx)});
end

Training each network in an individual batch job instead of using a single batch job that trains all of
the networks in parallel avoids the overhead required to start a parallel pool in the cluster and allows
you to use the job monitor to observe the progress of each network computation individually.

 Send Deep Learning Batch Job to Cluster

7-43

https://www.mathworks.com/help/cloudcenter/getting-started-with-cloud-center.html


You can submit additional jobs to the cluster. If the cluster is not available because it is running other
jobs, any new job you submit remains queued until the cluster becomes available.

Monitor Training Progress

You can see the current status of your job in the cluster by checking the Job Monitor. In the
Environment section on the Home tab, select Parallel > Monitor Jobs to open the Job Monitor.

You can optionally monitor the progress of training in detail by sending data from the workers
running the batch jobs to the MATLAB client. In the trainNetworkFcn, the output function
sendTrainingProgress is called after each iteration to add the current iteration and training
accuracy to a ValueStore (Parallel Computing Toolbox). A ValueStore stores data owned by a
specific job and each data entry consists of a value and a corresponding key.

function sendTrainingProgress(info)

    if info.State == "iteration"
        % Get the ValueStore object of the current job.
        store = getCurrentValueStore;
    
        % Store the training results in the job ValueStore object with a unique
        % key.
        key = idx;
        store(key) = struct(iteration=info.Iteration,accuracy=info.TrainingAccuracy);
    end

end

Create figure for displaying the training accuracy of the networks and, for each job submitted:

• Create a subplot to display the accuracy of the network being trained.
• Get the ValueStore object of the job.
• Specify a callback function to execute each time the job adds an entry to the ValueStore. The

callback function updatePlot is provided at the end of this example and plots the current
training accuracy of a network.

figure
for i=1:numBatchJobs

7 Deep Learning in Parallel and the Cloud

7-44



    subplot(2,2,i)
    xlabel("Iteration");
    ylabel("Accuracy (%)");
    ylim([0 100])
    lines(i) = animatedline;

    store{i} = job(i).ValueStore;
    store{i}.KeyUpdatedFcn = @(store,key) updatePlot(lines(i),store(key).iteration,store(key).accuracy);
end

Fetch Results Programmatically

After submitting jobs to the cluster, you can continue working in MATLAB while computations take
place. If the rest of your code depends on completion of a job, block MATLAB by using the wait
command. In this case, wait for the job to finish.

wait(job(1))

After the job finishes, fetch the results by using the fetchOutputs function. In this case, fetch the
trained networks and their accuracies.

for idx=1:numBatchJobs
    results{idx}=fetchOutputs(job(idx));
end
results{:}

 Send Deep Learning Batch Job to Cluster

7-45



ans=1×2 cell array
    {1×1 SeriesNetwork}    {[0.6644]}

ans=1×2 cell array
    {1×1 SeriesNetwork}    {[0.6824]}

ans=1×2 cell array
    {1×1 SeriesNetwork}    {[0.6482]}

ans=1×2 cell array
    {1×1 SeriesNetwork}    {[0.6398]}

If you close MATLAB, you can still recover the jobs in the cluster to fetch the results either while the
computation is taking place or after the computation is complete. Before closing MATLAB, make a
note of the job ID and then retrieve the job later by using the findJob function.

To retrieve a job, first create a cluster object for your cluster by using the parcluster function.
Then, provide the job ID to findJob. In this case, the job ID is 3.

c = parcluster("MyClusterInTheCloud");
job = findJob(c,ID=3);

Delete a job when you no longer need it. The job is removed from the Job Monitor.

delete(job(1));

To delete all jobs submitted to a particular cluster, pass all jobs associated with the cluster to the
delete function.

delete(c.Jobs);

Use Job Monitor to Fetch Results

When you submit batch jobs, all the computations happen in the cluster and you can safely close
MATLAB. You can check the status of your jobs by using the Job Monitor in another MATLAB session.

When a job is done, you can retrieve the results from the Job Monitor. In the Environment section on
the Home tab, select Parallel > Monitor Jobs to open the Job Monitor. Then right-click a job to
display the context menu. From this menu, you can:

• Load the job into the workspace by clicking Show Details
• Fetch the trained networks and their accuracies by clicking Fetch Outputs
• Delete the job when you are done by clicking Delete

7 Deep Learning in Parallel and the Cloud

7-46



Supporting Functions

The updatePlot function adds a point to one of the subplots indicating the current training accuracy
of a network. The function receives an animated line object, and the current iteration and accuracy of
a network.

function updatePlot(line,iteration,accuracy)

addpoints(line,iteration,accuracy);
drawnow limitrate nocallbacks

end

See Also
batch | ValueStore

Related Examples
• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61
• “Offload Experiments as Batch Jobs to Cluster” on page 6-21

More About
• “Batch Processing” (Parallel Computing Toolbox)

 Send Deep Learning Batch Job to Cluster

7-47



Train Network Using Automatic Multi-GPU Support

This example shows how to use multiple GPUs on your local machine for deep learning training using
automatic parallel support.

Training deep learning networks often takes hours or days. With parallel computing, you can speed
up training using multiple GPUs. To learn more about options for parallel training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2.

Requirements

Before you can run this example, you must download the CIFAR-10 data set to your local machine. To
download the CIFAR-10 data set, use the downloadCIFARToFolders function, attached to this
example as a supporting file. To access this file, open the example as a live script. The following code
downloads the data set to your current directory. If you already have a local copy of CIFAR-10, then
you can skip this section.

directory = pwd;
[locationCifar10Train,locationCifar10Test] = downloadCIFARToFolders(directory);

Downloading CIFAR-10 data set...done.
Copying CIFAR-10 to folders...done.

Load Data Set

Load the training and test data sets by using an imageDatastore object. In the following code,
ensure that the location of the datastores points to CIFAR-10 in your local machine.

imdsTrain = imageDatastore(locationCifar10Train, ...
 IncludeSubfolders=true, ...
 LabelSource="foldernames");

imdsTest = imageDatastore(locationCifar10Test, ...
 IncludeSubfolders=true, ...
 LabelSource="foldernames");

To train the network with augmented image data, create an augmentedImageDatastore object.
Use random translations and horizontal reflections. Data augmentation helps prevent the network
from overfitting and memorizing the exact details of the training images.

imageSize = [32 32 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);
augmentedImdsTrain = augmentedImageDatastore(imageSize,imdsTrain, ...
    DataAugmentation=imageAugmenter);

Define Network Architecture and Training Options

Define a network architecture for the CIFAR-10 data set. To simplify the code, use convolutional
blocks that convolve the input. The pooling layers downsample the spatial dimensions.

blockDepth = 4; % blockDepth controls the depth of a convolutional block.
netWidth = 32; % netWidth controls the number of filters in a convolutional block.

7 Deep Learning in Parallel and the Cloud

7-48



layers = [
    imageInputLayer(imageSize) 
    
    convolutionalBlock(netWidth,blockDepth)
    maxPooling2dLayer(2,Stride=2)
    convolutionalBlock(2*netWidth,blockDepth)
    maxPooling2dLayer(2,Stride=2)    
    convolutionalBlock(4*netWidth,blockDepth)
    averagePooling2dLayer(8) 
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
];

Define the training options. Train the network in parallel with multiple GPUs by setting the execution
environment to multi-gpu. When you use multiple GPUs, you increase the available computational
resources. Scale up the mini-batch size with the number of GPUs to keep the workload on each GPU
constant. In this example, the number of GPUs is four. Scale the learning rate according to the mini-
batch size. Use a learning rate schedule to drop the learning rate as the training progresses. Turn on
the training progress plot to obtain visual feedback during training.

numGPUs = gpuDeviceCount("available")

numGPUs = 4

miniBatchSize = 256*numGPUs;
initialLearnRate = 1e-1*miniBatchSize/256;

options = trainingOptions("sgdm", ...
    ExecutionEnvironment="multi-gpu", ... % Turn on automatic multi-gpu support.
    InitialLearnRate=initialLearnRate, ... % Set the initial learning rate.
    MiniBatchSize=miniBatchSize, ... % Set the MiniBatchSize.
    Verbose=false, ... % Do not send command line output.
    Plots="training-progress", ... % Turn on the training progress plot.
    L2Regularization=1e-10, ...
    MaxEpochs=60, ...
    Shuffle="every-epoch", ...
    ValidationData=imdsTest, ...
    ValidationFrequency=floor(numel(imdsTrain.Files)/miniBatchSize), ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=50);

Train Network and Use for Classification

Train the network. During training, the plot displays the progress.

net = trainNetwork(augmentedImdsTrain,layers,options)

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 4).

 Train Network Using Automatic Multi-GPU Support

7-49



net = 
  SeriesNetwork with properties:

         Layers: [43×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Determine the accuracy of the network by using the trained network to classify the test images on
your local machine. Then compare the predicted labels to the actual labels.

YPredicted = classify(net,imdsTest);
accuracy = sum(YPredicted == imdsTest.Labels)/numel(imdsTest.Labels)

accuracy = 0.8972

Automatic multi-GPU support can speed up network training by taking advantage of several GPUs.
The following plot shows the speedup in the overall training time with the number of GPUs on a Linux
machine with four NVIDIA© TITAN Xp GPUs.

7 Deep Learning in Parallel and the Cloud

7-50



Define Helper Function

Define a function to create a convolutional block in the network architecture.

function layers = convolutionalBlock(numFilters,numConvLayers)
    layers = [
        convolution2dLayer(3,numFilters,Padding="same")
        batchNormalizationLayer
        reluLayer];
    
    layers = repmat(layers,numConvLayers,1);
end

See Also
trainNetwork | trainingOptions | imageDatastore

Related Examples
• “Train Network in the Cloud Using Automatic Parallel Support” on page 7-31
• “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2

 Train Network Using Automatic Multi-GPU Support

7-51



Use parfor to Train Multiple Deep Learning Networks

This example shows how to use a parfor loop to perform a parameter sweep on a training option.

Deep learning training often takes hours or days, and searching for good training options can be
difficult. With parallel computing, you can speed up and automate your search for good models. If you
have access to a machine with multiple graphical processing units (GPUs), you can complete this
example on a local copy of the data set with a local parpool. If you want to use more resources, you
can scale up deep learning training to the cloud. This example shows how to use a parfor loop to
perform a parameter sweep on the training option MiniBatchSize in a cluster in the cloud. You can
modify the script to do a parameter sweep on any other training option. Also, this example shows how
to obtain feedback from the workers during computation using DataQueue. You can also send the
script as a batch job to the cluster, so you can continue working or close MATLAB and fetch the
results later. For more information, see “Send Deep Learning Batch Job to Cluster” on page 7-43.

Requirements

Before you can run this example, you need to configure a cluster and upload your data to the cloud.
In MATLAB, you can create clusters in the cloud directly from the MATLAB Desktop. On the Home
tab, in the Parallel menu, select Create and Manage Clusters. In the Cluster Profile Manager, click
Create Cloud Cluster. Alternatively, you can use MathWorks Cloud Center to create and access
compute clusters. For more information, see Getting Started with Cloud Center. For this example,
ensure that your cluster is set as default on the MATLAB Home tab, in Parallel > Select a Default
Cluster. After that, upload your data to an Amazon S3 bucket and use it directly from MATLAB. This
example uses a copy of the CIFAR-10 data set that is already stored in Amazon S3. For instructions,
see “Work with Deep Learning Data in AWS” on page 7-59.

Load the Data Set from the Cloud

Load the training and test data sets from the cloud using imageDatastore. Split the training data
set into training and validation sets, and keep the test data set to test the best network from the
parameter sweep. In this example you use a copy of the CIFAR-10 data set stored in Amazon S3. To
ensure that the workers have access to the datastore in the cloud, make sure that the environment
variables for the AWS credentials are set correctly. See “Work with Deep Learning Data in AWS” on
page 7-59.

imds = imageDatastore('s3://cifar10cloud/cifar10/train', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

imdsTest = imageDatastore('s3://cifar10cloud/cifar10/test', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9);

Train the network with augmented image data, by creating an augmentedImageDatastore object.
Use random translations and horizontal reflections. Data augmentation helps prevent the network
from overfitting and memorizing the exact details of the training images.

imageSize = [32 32 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...

7 Deep Learning in Parallel and the Cloud

7-52

https://www.mathworks.com/help/cloudcenter/getting-started-with-cloud-center.html


    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augmentedImdsTrain = augmentedImageDatastore(imageSize,imdsTrain, ...
    'DataAugmentation',imageAugmenter, ...
    'OutputSizeMode','randcrop');

Define Network Architecture

Define a network architecture for the CIFAR-10 data set. To simplify the code, use convolutional
blocks that convolve the input. The pooling layers downsample the spatial dimensions.

imageSize = [32 32 3];
netDepth = 2; % netDepth controls the depth of a convolutional block
netWidth = 16; % netWidth controls the number of filters in a convolutional block

layers = [
    imageInputLayer(imageSize)
    
    convolutionalBlock(netWidth,netDepth)
    maxPooling2dLayer(2,'Stride',2)
    convolutionalBlock(2*netWidth,netDepth)
    maxPooling2dLayer(2,'Stride',2)
    convolutionalBlock(4*netWidth,netDepth)
    averagePooling2dLayer(8)
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
    ];

Train Several Networks Simultaneously

Specify the mini-batch sizes on which to do a parameter sweep. Allocate variables for the resulting
networks and accuracy.

miniBatchSizes = [64 128 256 512];
numMiniBatchSizes = numel(miniBatchSizes);
trainedNetworks = cell(numMiniBatchSizes,1);
accuracies = zeros(numMiniBatchSizes,1);

Perform a parallel parameter sweep training several networks inside a parfor loop and varying the
mini-batch size. The workers in the cluster train the networks simultaneously and send the trained
networks and accuracies back when the training is complete. If you want to check that the training is
working, set Verbose to true in the training options. Note that the workers compute independently,
so the command line output is not in the same sequential order as the iterations.

parfor idx = 1:numMiniBatchSizes
    
    miniBatchSize = miniBatchSizes(idx);
    initialLearnRate = 1e-1 * miniBatchSize/256; % Scale the learning rate according to the mini-batch size.
    
    % Define the training options. Set the mini-batch size.
    options = trainingOptions('sgdm', ...
        'MiniBatchSize',miniBatchSize, ... % Set the corresponding MiniBatchSize in the sweep.
        'Verbose',false, ... % Do not send command line output.
        'InitialLearnRate',initialLearnRate, ... % Set the scaled learning rate.
        'L2Regularization',1e-10, ...
        'MaxEpochs',30, ...

 Use parfor to Train Multiple Deep Learning Networks

7-53



        'Shuffle','every-epoch', ...
        'ValidationData',imdsValidation, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropFactor',0.1, ...
        'LearnRateDropPeriod',25);
    
    % Train the network in a worker in the cluster.
    net = trainNetwork(augmentedImdsTrain,layers,options);
    
    % To obtain the accuracy of this network, use the trained network to
    % classify the validation images on the worker and compare the predicted labels to the
    % actual labels.
    YPredicted = classify(net,imdsValidation);
    accuracies(idx) = sum(YPredicted == imdsValidation.Labels)/numel(imdsValidation.Labels);
    
    % Send the trained network back to the client.
    trainedNetworks{idx} = net;
end

Starting parallel pool (parpool) using the 'MyClusterInTheCloud' profile ...
Connected to the parallel pool (number of workers: 4).

After parfor finishes, trainedNetworks contains the resulting networks trained by the workers.
Display the trained networks and their accuracies.

trainedNetworks

trainedNetworks = 4×1 cell array
    {1×1 SeriesNetwork}
    {1×1 SeriesNetwork}
    {1×1 SeriesNetwork}
    {1×1 SeriesNetwork}

accuracies

accuracies = 4×1

    0.8188
    0.8232
    0.8162
    0.8050

Select the best network in terms of accuracy. Test its performance against the test data set.

[~, I] = max(accuracies);
bestNetwork = trainedNetworks{I(1)};
YPredicted = classify(bestNetwork,imdsTest);
accuracy = sum(YPredicted == imdsTest.Labels)/numel(imdsTest.Labels)

accuracy = 0.8173

Send Feedback Data During Training

Prepare and initialize plots that show the training progress in each of the workers. Use
animatedLine for a convenient way to show changing data.

f = figure;
f.Visible = true;

7 Deep Learning in Parallel and the Cloud

7-54



for i=1:4
    subplot(2,2,i)
    xlabel('Iteration');
    ylabel('Training accuracy');
    lines(i) = animatedline;
end

Send the training progress data from the workers to the client by using DataQueue, and then plot
the data. Update the plots each time the workers send training progress feedback by using
afterEach. The parameter opts contains information about the worker, training iteration, and
training accuracy.

D = parallel.pool.DataQueue;
afterEach(D, @(opts) updatePlot(lines, opts{:}));

Perform a parallel parameter sweep training several networks inside a parfor loop with different mini-
batch sizes. Note the use of OutputFcn in the training options to send the training progress to the
client each iteration. This figure shows the training progress of four different workers during an
execution of the following code.

 Use parfor to Train Multiple Deep Learning Networks

7-55



parfor idx = 1:numel(miniBatchSizes)
    
    miniBatchSize = miniBatchSizes(idx);
    initialLearnRate = 1e-1 * miniBatchSize/256; % Scale the learning rate according to the miniBatchSize.
    
    % Define the training options. Set an output function to send data back
    % to the client each iteration.
    options = trainingOptions('sgdm', ...
        'MiniBatchSize',miniBatchSize, ... % Set the corresponding MiniBatchSize in the sweep.
        'Verbose',false, ... % Do not send command line output.
        'InitialLearnRate',initialLearnRate, ... % Set the scaled learning rate.
        'OutputFcn',@(state) sendTrainingProgress(D,idx,state), ... % Set an output function to send intermediate results to the client.
        'L2Regularization',1e-10, ...
        'MaxEpochs',30, ...
        'Shuffle','every-epoch', ...
        'ValidationData',imdsValidation, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropFactor',0.1, ...
        'LearnRateDropPeriod',25);
    
    % Train the network in a worker in the cluster. The workers send
    % training progress information during training to the client.

7 Deep Learning in Parallel and the Cloud

7-56



    net = trainNetwork(augmentedImdsTrain,layers,options);
    
    % To obtain the accuracy of this network, use the trained network to
    % classify the validation images on the worker and compare the predicted labels to the
    % actual labels.
    YPredicted = classify(net,imdsValidation);
    accuracies(idx) = sum(YPredicted == imdsValidation.Labels)/numel(imdsValidation.Labels);
    
    % Send the trained network back to the client.
    trainedNetworks{idx} = net;
end

Analyzing and transferring files to the workers ...done.

After parfor finishes, trainedNetworks contains the resulting networks trained by the workers.
Display the trained networks and their accuracies.

trainedNetworks

trainedNetworks = 4×1 cell array
    {1×1 SeriesNetwork}
    {1×1 SeriesNetwork}
    {1×1 SeriesNetwork}
    {1×1 SeriesNetwork}

accuracies

accuracies = 4×1

    0.8214
    0.8172
    0.8132
    0.8084

Select the best network in terms of accuracy. Test its performance against the test data set.

[~, I] = max(accuracies);
bestNetwork = trainedNetworks{I(1)};
YPredicted = classify(bestNetwork,imdsTest);
accuracy = sum(YPredicted == imdsTest.Labels)/numel(imdsTest.Labels)

accuracy = 0.8187

Helper Functions

Define a function to create a convolutional block in the network architecture.

function layers = convolutionalBlock(numFilters,numConvLayers)
layers = [
    convolution2dLayer(3,numFilters,'Padding','same')
    batchNormalizationLayer
    reluLayer
    ];

layers = repmat(layers,numConvLayers,1);
end

Define a function to send the training progress to the client through DataQueue.

 Use parfor to Train Multiple Deep Learning Networks

7-57



function sendTrainingProgress(D,idx,info)
if info.State == "iteration"
    send(D,{idx,info.Iteration,info.TrainingAccuracy});
end
end

Define an update function to update the plots when a worker sends an intermediate result.

function updatePlot(lines,idx,iter,acc)
addpoints(lines(idx),iter,acc);
drawnow limitrate nocallbacks
end

See Also
trainNetwork | parallel.pool.DataQueue | imageDatastore

Related Examples
• “Work with Deep Learning Data in AWS” on page 7-59
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61
• “Send Deep Learning Batch Job to Cluster” on page 7-43

More About
• “Parallel for-Loops (parfor)” (Parallel Computing Toolbox)

7 Deep Learning in Parallel and the Cloud

7-58



Work with Deep Learning Data in AWS

This example shows how to upload data to an Amazon S3 bucket.

Before you can perform deep learning training in the cloud, you need to upload your data to the
cloud. The example shows how to download the CIFAR-10 data set to your computer, and then upload
the data to an Amazon S3 bucket for later use in MATLAB. The CIFAR-10 data set is a labeled image
data set commonly used for benchmarking image classification algorithms. Before running this
example, you need access to an Amazon Web Services (AWS) account. After you upload the data set to
Amazon S3, you can try any of the examples in “Parallel and Cloud”.

Download CIFAR-10 to Local Machine

Specify a local directory in which to download the data set. The following code creates a folder in
your current directory containing all the images in the data set.

directory = pwd; 
[trainDirectory,testDirectory] = downloadCIFARToFolders(directory);

Downloading CIFAR-10 data set...done.
Copying CIFAR-10 to folders...done.

Upload Local Data Set to Amazon S3 Bucket

To work with data in the cloud, you can upload to Amazon S3 and then use datastores to access the
data in S3 from the workers in your cluster. The following steps describe how to upload the CIFAR-10
data set from your local machine to an Amazon S3 bucket.

1. For efficient file transfers to and from Amazon S3, download and install the AWS Command Line
Interface tool from https://aws.amazon.com/cli/.

2. Specify your AWS Access Key ID, Secret Access Key, and Region of the bucket as system
environment variables. Contact your AWS account administrator to obtain your keys.

For example, on Linux, macOS, or Unix, specify these variables:

export AWS_ACCESS_KEY_ID="YOUR_AWS_ACCESS_KEY_ID"
export AWS_SECRET_ACCESS_KEY="YOUR_AWS_SECRET_ACCESS_KEY" 
export AWS_DEFAULT_REGION="us-east-1" 

On Windows, specify these variables:

set AWS_ACCESS_KEY_ID="YOUR_AWS_ACCESS_KEY_ID"
set AWS_SECRET_ACCESS_KEY="YOUR_AWS_SECRET_ACCESS_KEY"
set AWS_DEFAULT_REGION="us-east-1"

To specify these environment variables permanently, set them in your user or system environment.

3. Create a bucket for your data by using either the AWS S3 web page or a command such as the
following:

aws s3 mb s3://mynewbucket

4. Upload your data using a command such as the following:

aws s3 cp mylocaldatapath s3://mynewbucket --recursive

 Work with Deep Learning Data in AWS

7-59



For example:

aws s3 cp path/to/CIFAR10/in/the/local/machine s3://MyExampleCloudData/cifar10/ --recursive

5. Copy your AWS credentials to your cluster workers by completing these steps in MATLAB:

a. In the Environment section on the Home tab, select Parallel > Create and Manage Clusters.

b. In the Cluster Profile pane of the Cluster Profile Manager, select your cloud cluster profile.

c. In the Properties tab, select the EnvironmentVariables property, scrolling as necessary to find
the property.

d. At the bottom right of the window, click Edit.

e. Click in the box to the right of EnvironmentVariables, and then type these three variables, each
on its own line: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_DEFAULT_REGION.

f. At the bottom right of the window, click Done.

For information on how to create a cloud cluster, see “Create Cloud Cluster” (Parallel Computing
Toolbox).

Use Data Set in MATLAB

After you store your data in Amazon S3, you can use datastores to access the data from your cluster
workers. Simply create a datastore pointing to the URL of the S3 bucket. The following sample code
shows how to use an imageDatastore to access an S3 bucket. Replace 's3://
MyExampleCloudData/cifar10/train' with the URL of your S3 bucket.

imds = imageDatastore('s3://MyExampleCloudData/cifar10/train', ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');

With the CIFAR-10 data set now stored in Amazon S3, you can try any of the examples in “Parallel
and Cloud” that show how to use CIFAR-10 in different use cases.

See Also
imageDatastore

Related Examples
• “Deep Learning in the Cloud” on page 7-10
• “Work with Deep Learning Data in Azure Blob Storage” on page 7-61
• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52

7 Deep Learning in Parallel and the Cloud

7-60



Work with Deep Learning Data in Azure Blob Storage

This example shows how to set up, write to, and read from Azure® Blob Storage.

Before you can train your deep neural network in the cloud, you need to upload your data to the
cloud. This example shows how to set up a cloud storage resource, upload a data set of labeled
images to the cloud, and read that data from the cloud into MATLAB®. The example uses the
CIFAR-10 data set, which is a labeled image data set commonly used for benchmarking image
classification networks.

Download Data Set to Local Machine

Specify a local directory in which to download the data set. The following code creates a folder in
your current directory containing all the images in the data set.

directory = pwd; 
[trainDirectory,testDirectory] = downloadCIFARToFolders(directory);

Downloading CIFAR-10 data set...done.
Copying CIFAR-10 to folders...done.

Upload Local Data Set to Azure Blob Storage

To work with data in the cloud, you can upload it to Azure Blob Storage and then access the data from
your local MATLAB session or from workers in your cluster. The following steps describe how to set
up cloud storage and upload the CIFAR-10 data set from your local machine to an Azure Blob
Container.

1. Sign up for a Microsoft® Azure account. See Microsoft Azure.

2. For efficient file transfers to and from Azure Blob Storage, download and install the Azure
Command Line Interface tool from How to install the Azure CLI.

3. Login to Azure at a Windows® Command Prompt (CMD) or Linux® terminal.

az login

4. Create a resource group, specifying the name of the resource group and the geographic location.

az group create --location <your storage location> --name <your resource group name>

A resource group is a container that holds resources for an Azure solution. To see a list of locations,
use the command az account list-locations.

5. Create a storage account in your resource group, specifying the name of the storage account.

az storage account create --name <your storage account name> --resource-group <your resource group name>

An Azure storage account contains all of your Azure storage data objects, including blobs, file shares,
queues, tables, and disks.

6. Create a storage container in your storage account, specifying the name of the storage container.

az storage container create --name <your storage container name> --account-name <your storage account name>

 Work with Deep Learning Data in Azure Blob Storage

7-61

https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli


7. Upload the CIFAR-10 data to the container, specifying the source directory. Use the --recursive
flag to upload files within subdirectories of the source directory.

az storage fs directory upload --file-system <your storage container name> --account-name <your storage account name> -source "path/to/CIFAR10/on/the/local/machine"--recursive

Access Data Set in MATLAB

By default, MATLAB does not have permission to access data stored in your Azure Blob Storage. You
can grant MATLAB access to the data by generating a shared access signature (SAS) token and
providing it to MATLAB.

At a Windows® Command Prompt (CMD) or Linux® terminal, generate an SAS token. You can vary
the permissions that the token provides and the expiry date of the token using the --permissions
and --expiry parameters.

az storage container generate-sas --account-name  <your storage account name> --name <your storage container name> --permissions rwl --expiry 2023-06-01

In MATLAB, set the environment variable MW_WASB_SAS_TOKEN as the generated SAS token.

SASToken = "<your generated SAS Token>";
setenv("MW_WASB_SAS_TOKEN",SASToken);

Changes to environment variables do not persist between MATLAB sessions. To specify an
environment variable permanently, set them in your user or system environment. When you offload to
workers in a cluster, the client MATLAB session and the workers have different environment
variables. For information on how to copy environment variables from the client to the workers so
that the workers can access cloud storage, see “Set Environment Variables on Workers” (Parallel
Computing Toolbox).

You can read or write data from cloud storage using MATLAB functions and objects, such as file I/O
functions and some datastore objects. When you specify the location of the data, you must specify the
full path to the files or folders using a uniform resource locator (URL) of the form wasbs://
container@account/path_to_file/file.ext.

URL = "wasbs://<your storage container name>@<your storage account name>.blob.core.windows.net/cifar10/train";

Create a datastore pointing to the URL of the container and show the number of images in each
category.

ds = datastore(URL, ...
    Type="image", ...
    IncludeSubfolders=true, ...
    LabelSourc="foldernames");

countEachLabel(ds)

ans=10×2 table
      Label       Count
    __________    _____

    airplane      5000 
    automobile    5000 
    bird          5000 
    cat           5000 
    deer          5000 
    dog           5000 
    frog          5000 

7 Deep Learning in Parallel and the Cloud

7-62



    horse         5000 
    ship          5000 
    truck         5000 

With the CIFAR-10 data set now stored in Azure Blob Storage, you can try any of the examples in
“Parallel and Cloud” that show how to use the data set in different situations. Note that training a
network is always faster if you have locally hosted training data.

See Also
setenv | datastore

Related Examples
• “Deep Learning in the Cloud” on page 7-10
• “Work with Deep Learning Data in AWS” on page 7-59
• “Use parfor to Train Multiple Deep Learning Networks” on page 7-52

 Work with Deep Learning Data in Azure Blob Storage

7-63



Train Network in Parallel with Custom Training Loop

This example shows how to set up a custom training loop to train a network in parallel. In this
example, parallel workers train on portions of the overall mini-batch. If you have a GPU, then training
happens on the GPU. During training, a DataQueue object sends training progress information back
to the MATLAB client.

Load Data Set

Load the digit data set and create an image datastore for the data set. Split the datastore into
training and test datastores in a randomized way. Create an augmentedImageDatastore containing
the training data and the shuffle the data with the shuffle function.

digitDatasetPath = fullfile(toolboxdir("nnet"),"nndemos", ...
    "nndatasets","DigitDataset");
imds = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsTest] = splitEachLabel(imds,0.9,"randomized");

inputSize = [28 28 1];
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTrain = shuffle(augimdsTrain);

Determine the different classes in the training set.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network

Define your network architecture. This network architecture includes batch normalization layers,
which track the mean and variance statistics of the data set. When training in parallel, combine the
statistics from all of the workers at the end of each iteration step, to ensure the network state reflects
the whole mini-batch. Otherwise, the network state can diverge across the workers. If you are
training stateful recurrent neural networks (RNNs), for example, using sequence data that has been
split into smaller sequences to train networks containing LSTM or GRU layers, you must also manage
the state between the workers.

layers = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array. dlnetwork objects allow for training with custom
loops.

7 Deep Learning in Parallel and the Cloud

7-64



net = dlnetwork(layers)

net = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [11×2 table]
     Learnables: [14×3 table]
          State: [6×3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Set Up Parallel Environment

Determine if GPUs are available for MATLAB to use with the canUseGPU function.

• If there are GPUs available, then train on the GPUs. Create a parallel pool with as many workers
as GPUs.

• If there are no GPUs available, then train on the CPUs. Create a parallel pool with the default
number of workers.

if canUseGPU
    executionEnvironment = "gpu";
    numberOfGPUs = gpuDeviceCount("available");
    pool = parpool(numberOfGPUs);
else
    executionEnvironment = "cpu";
    pool = parpool;
end

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 4 workers.

Get the number of workers in the parallel pool. Later in this example, you divide the workload
according to this number.

numWorkers = pool.NumWorkers;

Train Model

Specify the training options.

numEpochs = 20;
miniBatchSize = 128;
velocity = [];

For GPU training, a recommended practice is to scale up the mini-batch size linearly with the number
of GPUs, in order to keep the workload on each GPU constant. For more related advice, see “Deep
Learning with MATLAB on Multiple GPUs” on page 7-14.

if executionEnvironment == "gpu"
     miniBatchSize = miniBatchSize .* numWorkers
end

miniBatchSize = 512

 Train Network in Parallel with Custom Training Loop

7-65



Calculate the mini-batch size for each worker by dividing the overall mini-batch size evenly among
the workers. Distribute the remainder across the first workers.

workerMiniBatchSize = floor(miniBatchSize ./ repmat(numWorkers,1,numWorkers));
remainder = miniBatchSize - sum(workerMiniBatchSize);
workerMiniBatchSize = workerMiniBatchSize + [ones(1,remainder) zeros(1,numWorkers-remainder)]

workerMiniBatchSize = 1×4

   128   128   128   128

This network contains batch normalization layers that keep track of the mean and variance of the
data the network is trained on. Since each worker processes a portion of each mini-batch during each
iteration, the mean and variance must be aggregated across all the workers. Find the indices of the
mean and variance state parameters of the batch normalization layers in the network state property.

batchNormLayers = arrayfun(@(l)isa(l,"nnet.cnn.layer.BatchNormalizationLayer"),net.Layers);
batchNormLayersNames = string({net.Layers(batchNormLayers).Name});
state = net.State;
isBatchNormalizationStateMean = ismember(state.Layer,batchNormLayersNames) & state.Parameter == "TrainedMean";
isBatchNormalizationStateVariance = ismember(state.Layer,batchNormLayersNames) & state.Parameter == "TrainedVariance";

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics="TrainingLoss", ...
    Info=["Epoch" "Workers"], ...
    XLabel="Iteration");

7 Deep Learning in Parallel and the Cloud

7-66



Create a Dataqueue object on the workers to send a flag to stop training when the Stop button is
clicked.

spmd
    stopTrainingEventQueue = parallel.pool.DataQueue;
end
stopTrainingQueue = stopTrainingEventQueue{1};

To send data back from the workers during training, create a DataQueue object. Use afterEach to
set up a function, displayTrainingProgress, to call each time a worker sends data.
displayTrainingProgress is a supporting function, defined at the end of this example, that
displays updates the TrainingProgressMonitor object to show the training progress information
that comes from the workers and sends a flag to the workers if the Stop button has been clicked.

dataQueue = parallel.pool.DataQueue;
displayFcn = @(x) displayTrainingProgress(x,numEpochs,numWorkers,monitor,stopTrainingQueue);
afterEach(dataQueue,displayFcn)

Train the model using a custom parallel training loop, as detailed in the following steps. To execute
the code simultaneously on all the workers, use an spmd block. Within the spmd block, spmdIndex
gives the index of the worker currently executing the code.

Before training, partition the datastore for each worker by using the partition function. Use the
partitioned datastore to create a minibatchqueue on each worker. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to normalize the data, convert the target classes to one-hot encoded variables, and
determine the number of observations in the mini-batch.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the target classes or the number of observations.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox) (Parallel Computing Toolbox).

For each epoch, shuffle the datastore with the shuffle function. For each iteration in the epoch:

• Ensure that all workers have data available before beginning processing it in parallel, by
performing a global and operation using spmdreduce on the result of the hasdata function.

• Read a mini-batch from the minibatchqueue by using the next function.
• Compute the loss and the gradients of the network on each worker by calling dlfeval on the

modelLoss function. The dlfeval function evaluates the helper function modelLoss with
automatic differentiation enabled, so modelLoss can compute the gradients with respect to the
loss in an automatic way. modelLoss is defined at the end of the example and returns the loss and
gradients given a network, mini-batch of data, and targets.

• To obtain the overall loss, aggregate the losses on all workers. This example uses cross entropy for
the loss function, and the aggregated loss is the sum of all losses. Before aggregating, normalize
each loss by multiplying by the proportion of the overall mini-batch that the worker is working on.
Use spmdPlus to add all losses together and replicate the results across workers.

• To aggregate and update the gradients of all workers, use the dlupdate function with the
aggregateGradients function. aggregateGradients is a supporting function defined at the
end of this example. This function uses spmdPlus to add together and replicate gradients across

 Train Network in Parallel with Custom Training Loop

7-67



workers, following normalization according to the proportion of the overall mini-batch that each
worker is working on.

• Aggregate the state of the network on all workers using the aggregateState function.
aggregateState is a supporting function defined at the end of this example. The batch
normalization layers in the network track the mean and variance of the data. Since the complete
mini-batch is spread across multiple workers, aggregate the network state after each iteration to
compute the mean and variance of the whole minibatch.

• After computing the final gradients, update the network learnable parameters with the
sgdmupdate function.

After each epoch, check whether the Stop button has been clicked and send training progress
information back to the client using the send function with the Dataqueue object. You only need to
use one worker to send back data because all of the workers have the same loss information. To
ensure that data is on the CPU and a client machine without a GPU can access it, use gather on the
dlarray before sending it to the client. As communication between the workers occurs after each
epoch, click Stop to stop training at the end of the current epoch. If you want the Stop button to stop
training at the end of each iteration, you can check whether the Stop button has been clicked and
send training progress information back to the client each iteration at the cost of increased
communcation overhead.

spmd
    % Partition the datastore.
    workerImds = partition(augimdsTrain,numWorkers,spmdIndex);

    % Create minibatchqueue using partitioned datastore on each worker.
    workerMbq = minibatchqueue(workerImds,3,...
        MiniBatchSize=workerMiniBatchSize(spmdIndex),...
        MiniBatchFcn=@preprocessMiniBatch,...
        MiniBatchFormat=["SSCB" "" ""]);

    workerVelocity = velocity;
    epoch = 0;
    iteration = 0;
    stopRequest = false;

    while epoch < numEpochs && ~stopRequest
        epoch = epoch + 1;
        shuffle(workerMbq);

        % Loop over mini-batches.
        while spmdReduce(@and,hasdata(workerMbq)) && ~stopRequest
            iteration = iteration + 1;

            % Read a mini-batch of data.
            [workerX,workerT,workerNumObservations] = next(workerMbq);

            % Evaluate the model loss and gradients on the worker.
            [workerLoss,workerGradients,workerState] = dlfeval(@modelLoss,net,workerX,workerT);

            % Aggregate the losses on all workers.
            workerNormalizationFactor = workerMiniBatchSize(spmdIndex)./miniBatchSize;
            loss = spmdPlus(workerNormalizationFactor*extractdata(workerLoss));

            % Aggregate the network state on all workers.
            net.State = aggregateState(workerState,workerNormalizationFactor,...
                isBatchNormalizationStateMean,isBatchNormalizationStateVariance);

7 Deep Learning in Parallel and the Cloud

7-68



            % Aggregate the gradients on all workers.
            workerGradients.Value = dlupdate(@aggregateGradients,workerGradients.Value,{workerNormalizationFactor});

            % Update the network parameters using the SGDM optimizer.
            [net,workerVelocity] = sgdmupdate(net,workerGradients,workerVelocity);
        end

        % Stop training if the Stop button has been clicked.
        stopRequest = spmdPlus(stopTrainingEventQueue.QueueLength);

        % Send training progress information to the client.
        if spmdIndex == 1
            data = [epoch loss iteration];
            send(dataQueue,gather(data));
        end
    end

end

Test Model

After you train the network, you can test its accuracy.

Load the test images into memory by using readall on the test datastore, concatenate them, and
normalize them.

XTest = readall(imdsTest);
XTest = cat(4,XTest{:});
XTest = single(XTest) ./ 255;
TTest = imdsTest.Labels;

After the training is complete, all workers have the same complete trained network. Retrieve any of
them.

netFinal = net{1};

To classify images using a dlnetwork object, use the predict function on a dlarray.

YTest = predict(netFinal,dlarray(XTest,"SSCB"));

From the predicted scores, find the class with the highest score with the max function. Before you do
that, extract the data from the dlarray with the extractdata function.

[~,idx] = max(extractdata(YTest),[],1);
YTest = classes(idx);

To obtain the classification accuracy of the model, compare the predictions on the test set against the
true classes.

accuracy = mean(YTest==TTest)

accuracy = 0.9070

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and target classes
using the following steps:

 Train Network in Parallel with Custom Training Loop

7-69



1 Determine the number of observations in the mini-batch
2 Preprocess the images using the preprocessMiniBatchPredictors function.
3 Extract the target class data from the incoming cell array and concatenate into a categorical

array along the second dimension.
4 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,Y,numObs] = preprocessMiniBatch(XCell,YCell)

numObs = numel(YCell);

% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);

% Extract class data from cell and concatenate.
Y = cat(2,YCell{1:end});

% One-hot encode classes.
Y = onehotencode(Y,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenate into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension. The data are then normalized.

function X = preprocessMiniBatchPredictors(XCell)

% Concatenate.
X = cat(4,XCell{1:end});

% Normalize.
X =  X ./ 255;

end

Model Loss Function

Define a function, modelLoss, to compute the gradients of the loss with respect to the learnable
parameters of the network. This function computes the network outputs for a mini-batch X with
forward and calculates the loss, given the targets T, using cross entropy. When you call this function
with dlfeval, automatic differentiation is enabled, and dlgradient can compute the gradients of
the loss with respect to the learnables automatically.

function [loss,gradients,state] = modelLoss(net,X,T)

[Y,state] = forward(net,X);

loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

7 Deep Learning in Parallel and the Cloud

7-70



Display Training Progress Function

Define a function to display training progress information that comes from the workers and checks
whether the Stop button has been clicked. If the Stop button has been clicked, a flag is sent to the
workers to indicate that training should stop. The DataQueue in this example calls this function
every time a worker sends data.

function displayTrainingProgress(data,numEpochs,numWorkers,monitor,stopTrainingQueue)

epoch = data(1);
loss = data(2);
iteration = data(3);

recordMetrics(monitor,iteration,TrainingLoss=loss);
updateInfo(monitor,Epoch=epoch + " of " + numEpochs, Workers= numWorkers);
monitor.Progress = 100 * epoch/numEpochs;

if monitor.Stop
    send(stopTrainingQueue,true);
end

end

Aggregate Gradients Function

Define a function that aggregates the gradients on all workers by adding them together. spmdPlus
adds together and replicates all the gradients on the workers. Before adding them together,
normalize them by multiplying them by a factor that represents the proportion of the overall mini-
batch that the worker is working on. To retrieve the contents of a dlarray, use extractdata.

function gradients = aggregateGradients(gradients,factor)

gradients = extractdata(gradients);
gradients = spmdPlus(factor*gradients);

end

Aggregate State Function

Define a function that aggregates the network state on all workers. The network state contains the
trained batch normalization statistics of the data set. Since each worker only sees a portion of the
mini-batch, aggregate the network state so that the statistics are representative of the statistics
across all the data. For each mini-batch, the combined mean is calculated as a weighted average of
the mean across the workers for each iteration. The combined variance is calculated according to the
following formula:

sc
2 = 1

M ∑
j = 1

N
m j s j

2 + x‾ j− x‾c
2

where Nis the total number of workers, Mis the total number of observations in a mini-batch, m j is
the number of observations processed on the jth worker, x‾ j and s j

2 are the mean and variance
statistics calculated on that worker, and x‾c is the combined mean across all workers.

function state = aggregateState(state,factor,...
    isBatchNormalizationStateMean,isBatchNormalizationStateVariance)

 Train Network in Parallel with Custom Training Loop

7-71



stateMeans = state.Value(isBatchNormalizationStateMean);
stateVariances = state.Value(isBatchNormalizationStateVariance);

for j = 1:numel(stateMeans)
    meanVal = stateMeans{j};
    varVal = stateVariances{j};

    % Calculate combined mean.
    combinedMean = spmdPlus(factor*meanVal);

    % Calculate combined variance terms to sum.
    varTerm = factor.*(varVal + (meanVal - combinedMean).^2);

    % Update state.
    stateMeans{j} = combinedMean;
    stateVariances{j} = spmdPlus(varTerm);
end

state.Value(isBatchNormalizationStateMean) = stateMeans;
state.Value(isBatchNormalizationStateVariance) = stateVariances;

end

See Also
dlarray | dlnetwork | sgdmupdate | dlupdate | dlfeval | dlgradient | crossentropy |
softmax | forward | predict

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Train Network Using Federated Learning” on page 7-73
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Automatic Differentiation Background” on page 19-214

7 Deep Learning in Parallel and the Cloud

7-72



Train Network Using Federated Learning

This example shows how to train a network using federated learning. Federated learning is a
technique that enables you to train a network in a distributed, decentralized way [1].

Federated learning allows you to train a model using data from different sources without moving the
data to a central location, even if the individual data sources do not match the overall distribution of
the data set. This is known as non-independent and identically distributed (non-IID) data. Federated
learning can be especially useful when the training data is large, or when there are privacy concerns
about transferring the training data.

Instead of distributing data, the federated learning technique trains multiple models, each in the
same location as a data source. You can create a global model that has learned from all the data
sources by periodically collecting and combining the learnable parameters of the locally trained
models. In this way, you can train a global model without centrally processing any training data.

This example uses federated learning to train a classification model in parallel using a highly non-IID
dataset. The model is trained using the digits data set, which consists of 10000 handwritten images of
the numbers 0 to 9. The example runs in parallel using 10 workers, each processing images of a
single digit. By averaging the learnable parameters of the networks after each round of training, the
models on each worker improve performance across all classes, without ever processing data of the
other classes.

While data privacy is one of the applications of federated learning, this example does not deal with
the details of maintaining data privacy and security. This example demonstrates the basic federated
learning algorithm.

Set Up Parallel Environment

Create a parallel pool with the same number of workers as classes in the data set. For this example,
use a process-based, local parallel pool with 10 workers.

cluster = parcluster("Processes");
cluster.NumWorkers = 10;
pool = parpool(cluster);

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 10 workers.

numWorkers = pool.NumWorkers;

Load Data Set

All data used in this example is initially stored in a centralized location. To make this data highly non-
IID, you need to distribute the data among the workers according to class. To create validation and
test data sets, transfer a portion of data from the workers to the client. After the data is correctly set
up, with training data of individual classes on the workers and test and validation data of all classes
on the client, there is no further transfer of data during training.

Specify the folder containing the image data.

digitDatasetPath = fullfile(matlabroot,"toolbox","nnet","nndemos", ...
    "nndatasets","DigitDataset");

 Train Network Using Federated Learning

7-73



Distribute the data among the workers. Each worker receives images of only one digit, such that
worker 1 receives all the images of the number 0, worker 2 receives images of the number 1, etc.

Images of each digit are stored in a separate folder with the name of that digit. On each worker, use
the fullfile function to specify the path to a specific class folder. Then, create an
imageDatastore that contains all images of that digit. Next, use the splitEachLabel function to
randomly separate 30% of the data for use in validation and testing. Finally, create an
augmentedImageDatastore containing the training data.

inputSize = [28 28 1];
spmd   
    digitDatasetPath = fullfile(digitDatasetPath,num2str(spmdIndex - 1));
    imds = imageDatastore(digitDatasetPath, ...
        IncludeSubfolders=true, ...
        LabelSource="foldernames");
    [imdsTrain,imdsTestVal] = splitEachLabel(imds,0.7,"randomized");
    
    augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
end

To test the performance of the combined global model during and after training, create test and
validation datasets containing images from all classes. Combine the test and validation data from
each worker into a single datastore. Then, split this datastore into two datastores that each contain
15% of the overall data - one for validating the network during training and the other for testing the
network after training.

fileList = [];
labelList = [];

for i = 1:numWorkers
    tmp = imdsTestVal{i};
    
    fileList = cat(1,fileList,tmp.Files);
    labelList = cat(1,labelList,tmp.Labels);    
end

imdsGlobalTestVal = imageDatastore(fileList);
imdsGlobalTestVal.Labels = labelList;

[imdsGlobalTest,imdsGlobalVal] = splitEachLabel(imdsGlobalTestVal,0.5,"randomized");

augimdsGlobalTest = augmentedImageDatastore(inputSize(1:2),imdsGlobalTest);
augimdsGlobalVal = augmentedImageDatastore(inputSize(1:2),imdsGlobalVal);

The data is now arranged such that each worker has data from a single class to train on, and the
client holds validation and test data from all classes.

Define Network

Determine the number of classes in the data set.

classes = categories(imdsGlobalTest.Labels);
numClasses = numel(classes);

Define the network architecture.

layers = [
    imageInputLayer(inputSize,Normalization="none")

7 Deep Learning in Parallel and the Cloud

7-74



    convolution2dLayer(5,32)
    reluLayer
    maxPooling2dLayer(2)
    convolution2dLayer(5,64)
    reluLayer
    maxPooling2dLayer(2)
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layers.

net = dlnetwork(layers)

net = 
  dlnetwork with properties:

         Layers: [9×1 nnet.cnn.layer.Layer]
    Connections: [8×2 table]
     Learnables: [6×3 table]
          State: [0×3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 7-79 section of this
example, that takes a dlnetwork object and a mini-batch of input data with corresponding labels and
returns the loss and the gradients of the loss with respect to the learnable parameters in the network.

Define Federated Averaging Function

Create the function federatedAveraging, listed in the Federated Averaging Function on page 7-
80 section of this example, that takes the learnable parameters of the networks on each worker and
the normalization factor for each worker, and returns the averaged learnable parameters across all
the networks. Use the average learnable parameters to update the global network and the network
on each worker.

Define Compute Accuracy Function

Create the function computeAccuracy, listed in the Compute Accuracy Function on page 7-79
section of this example, that takes a dlnetwork object, a data set inside a minibatchqueue object,
and the list of classes, and returns the accuracy of the predictions across all observations in the data
set.

Specify Training Options

During training, the workers periodically communicate their network learnable parameters to the
client, so that the client can update the global model. The training is divided into rounds. At the end
of each round of training, the learnable parameters are averaged and the global model is updated.
The worker models are then replaced with the new global model, and training continues on the
workers.

 Train Network Using Federated Learning

7-75



Train for 300 rounds, with 5 epochs per round. Training for a small number of epochs per round
ensures that the networks on the workers do not diverge too far before they are averaged.

numRounds = 300;
numEpochsperRound = 5;
miniBatchSize = 100;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.001 and momentum 0.

learnRate = 0.001;
momentum = 0;

Train Model

Create a function handle to the custom mini-batch preprocessing function preprocessMiniBatch
(defined in the Mini-Batch Preprocessing Function on page 7-80 section of this example).

On each worker, find the total number of training observations processed locally on that worker. Use
this number to normalize the learnable parameters on each worker when you find the average
learnable parameters after each communication round. This helps to balance the average if there is a
difference between the amount of data on each worker.

On each worker, create a minibatchqueue object that processes and manages mini-batches of
images during training. For each mini-batch:

• Preprocess the data using the custom mini-batch preprocessing function preprocessMiniBatch
to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

preProcess = @(x,y)preprocessMiniBatch(x,y,classes);

spmd
    sizeOfLocalDataset = augimdsTrain.NumObservations;
    
    mbq = minibatchqueue(augimdsTrain, ...
        MiniBatchSize=miniBatchSize, ...
        MiniBatchFcn=preProcess, ...
        MiniBatchFormat=["SSCB",""]);
end

Create a minibatchqueue object that manages the validation data to use during training. Use the
same settings as the minibatchqueue on each worker.

mbqGlobalVal = minibatchqueue(augimdsGlobalVal, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=preProcess, ...
    MiniBatchFormat=["SSCB",""]);

Initialize the trainingProgressMonitor object. Because the timer starts when you create the
monitor, make sure that you create the object close to the training loop.

7 Deep Learning in Parallel and the Cloud

7-76



monitor = trainingProgressMonitor( ...
    Metrics="GlobalAccuracy", ...
    Info="CommunicationRound", ...
    XLabel="Communication Round");

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Initialize the global model. To start, the global model has the same initial parameters as the untrained
network on each worker.

globalModel = net;

Train the model using a custom training loop. For each communication round,

• Update the networks on the workers with the latest global network.
• Train the networks on the workers for five epochs.
• Find the average parameters of all the networks using the federatedAveraging function.
• Replace the global network parameters with the average value.
• Calculate the accuracy of the updated global network using the validation data.
• Update the global accuracy in the training progress monitor.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button.

For each epoch, shuffle the data and loop over mini-batches of data. For each mini-batch:

• Evaluate the model loss and gradients using the dlfeval and modelLoss functions.
• Update the local network parameters using the sgdmupdate function.

round = 0;
while round < numRounds && ~monitor.Stop

    round = round + 1;

    spmd
        % Send global updated parameters to each worker.
        net.Learnables.Value = globalModel.Learnables.Value;

        % Loop over epochs.
        for epoch = 1:numEpochsperRound
            % Shuffle data.
            shuffle(mbq);

            % Loop over mini-batches.
            while hasdata(mbq)

                % Read mini-batch of data.
                [X,T] = next(mbq);

                % Evaluate the model loss and gradients using dlfeval and the
                % modelLoss function.
                [loss,gradients] = dlfeval(@modelLoss,net,X,T);

                % Update the network parameters using the SGDM optimizer.

 Train Network Using Federated Learning

7-77



                [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);

            end
        end

        % Collect updated learnable parameters on each worker.
        workerLearnables = net.Learnables.Value;
    end

    % Find normalization factors for each worker based on ratio of data
    % processed on that worker.
    sizeOfAllDatasets = sum([sizeOfLocalDataset{:}]);
    normalizationFactor = [sizeOfLocalDataset{:}]/sizeOfAllDatasets;

    % Update the global model with new learnable parameters, normalized and
    % averaged across all workers.
    globalModel.Learnables.Value = federatedAveraging(workerLearnables,normalizationFactor);

    % Calculate the accuracy of the global model.
    accuracy = computeAccuracy(globalModel,mbqGlobalVal,classes);

    % Update the training progress monitor.
    recordMetrics(monitor,round,GlobalAccuracy=accuracy);
    updateInfo(monitor,CommunicationRound=round + " of " + numRounds);
    monitor.Progress = 100*round/numRounds;

end

After the final round of training, update the network on each worker with the final average learnable
parameters. This is important if you want to continue to use or train the network on the workers.

7 Deep Learning in Parallel and the Cloud

7-78



spmd
    net.Learnables.Value = globalModel.Learnables.Value;
end

Test Model

Test the classification accuracy of the model by comparing the predictions on the test set with the
true labels.

Create a minibatchqueue object that manages the test data. Use the same settings as the
minibatchqueue objects used during training and validation.

mbqGlobalTest = minibatchqueue(augimdsGlobalTest, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=preProcess, ...
    MiniBatchFormat="SSCB");

Use the computeAccuracy function to compute the predicted classes and calculate the accuracy of
the predictions across all the test data.

accuracy = computeAccuracy(globalModel,mbqGlobalTest,classes)

accuracy = single
    0.9827

After you are done with your computations, you can delete your parallel pool. The gcp function
returns the current parallel pool object so you can delete the pool.

delete(gcp("nocreate"));

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding labels T and returns the loss and the gradients of the loss with respect to the learnable
parameters in net. To compute the gradients automatically, use the dlgradient function. To
compute predictions of the network during training, use the forward function.

function [loss,gradients] = modelLoss(net,X,T)

    YPred = forward(net,X);
    
    loss = crossentropy(YPred,T);
    gradients = dlgradient(loss,net.Learnables);

end

Compute Accuracy Function

The computeAccuracy function takes a dlnetwork object net, a minibatchqueue object mbq, and
the list of classes, and returns the accuracy of all the predictions on the data set provided. To
compute predictions of the network during validation or after training is finished, use the predict
function.

function accuracy = computeAccuracy(net,mbq,classes)

    correctPredictions = [];
    
    shuffle(mbq);

 Train Network Using Federated Learning

7-79



    while hasdata(mbq)
        
        [XTest,TTest] = next(mbq);
        
        TTest = onehotdecode(TTest,classes,1)';
        
        YPred = predict(net,XTest);
        YPred = onehotdecode(YPred,classes,1)';
        
        correctPredictions = [correctPredictions; YPred == TTest];
    end
    
    predSum = sum(correctPredictions);
    accuracy = single(predSum./size(correctPredictions,1));

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
to be used as a singleton channel dimension.

2 Extract the label data from the incoming cell arrays and concatenate into a categorical array
along the second dimension.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,Y] = preprocessMiniBatch(XCell,YCell,classes)

    % Concatenate.
    X = cat(4,XCell{1:end});
    
    % Extract label data from cell and concatenate.
    Y = cat(2,YCell{1:end});
    
    % One-hot encode labels.
    Y = onehotencode(Y,1,ClassNames=classes);

end

Federated Averaging Function

The federatedAveraging function takes the learnable parameters of the networks on each worker
and the normalization factor for each worker, and returns the averaged learnable parameters across
all the networks. Use the average learnable parameters to update the global network and the
network on each worker.

function learnables = federatedAveraging(workerLearnables,normalizationFactor)

    numWorkers = size(normalizationFactor,2);
    
    % Initialize container for averaged learnables with same size as existing
    % learnables. Use learnables of first worker network as an example.
    exampleLearnables = workerLearnables{1};
    learnables = cell(height(exampleLearnables),1);

7 Deep Learning in Parallel and the Cloud

7-80



    
    for i = 1:height(learnables)   
        learnables{i} = zeros(size(exampleLearnables{i}),"like",(exampleLearnables{i}));
    end
    
    % Add the normalized learnable parameters of all workers to
    % calculate average values.
    for i = 1:numWorkers
        tmp = workerLearnables{i};
        for values = 1:numel(learnables)
            learnables{values} = learnables{values} + normalizationFactor(i).*tmp{values};
        end
    end
    
end

References

[1] McMahan, H. Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
"Communication-Efficient Learning of Deep Networks from Decentralized Data." Preprint, submitted.
February, 2017. https://arxiv.org/abs/1602.05629.

See Also
dlarray | dlnetwork | sgdmupdate | dlupdate | dlfeval | dlgradient | minibatchqueue

More About
• “Train Network in Parallel with Custom Training Loop” on page 7-64
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223

 Train Network Using Federated Learning

7-81

https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629


Train Network on Amazon Web Services Using MATLAB Deep
Learning Container

This example shows how to train a deep learning network in the cloud using MATLAB® on an
Amazon EC2® instance.

This workflow helps you speed up your deep learning applications by training neural networks in the
MATLAB Deep Learning Container on the cloud. Using MATLAB in the cloud allows you to choose
machines where you can take full advantage of high-performance NVIDIA® GPUs. You can access the
MATLAB Deep Learning Container remotely using a web browser or a VNC connection. Then you can
run MATLAB desktop in the cloud on an Amazon EC2 GPU-enabled instance to benefit from the
computing resources available.

To start training a deep learning model on AWS® using the MATLAB Deep Learning Container, you
must:

• Check the requirements to use the MATLAB Deep Learning Container.
• Prepare your AWS account.
• Launch the Docker host instance.
• Pull and run the container.
• Run MATLAB in the container.
• Test the container using the deep learning example, "MNISTExample.mlx", included in the default

folder of the container.

For step-by-step instructions for this workflow, see MATLAB Deep Learning Container on NVIDIA
GPU Cloud for Amazon Web Services.

To learn more and see screenshots of the same workflow, see the blog post https://
blogs.mathworks.com/deep-learning/2021/05/03/ai-with-matlab-ngc/.

Semantic Segmentation in the Cloud

To demonstrate the compute capability available in the cloud, results are shown for a semantic
segmentation network trained using the MATLAB Deep Learning Container cloud workflow. On AWS,
the training was verified on a p3.2xlarge EC2 GPU enabled instance on an NVIDIA Tesla® V100
SMX2 with 16 GB of GPU memory. Training took around 70 minutes to meet the validation criterion,
as shown in the training progress plot. To learn more about the semantic segmentation network
example, see Semantic Segmentation Using Deep Learning.

Note that to train the semantic segmentation network using the Live Script example, change
doTraining to true.

7 Deep Learning in Parallel and the Cloud

7-82

https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-dgx.html#mw_4ae65a85-bb0b-4447-9658-125f11e8ca1a
https://www.mathworks.com/help/deeplearning/ug/create-simple-deep-learning-network-for-classification.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-aws.html
https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-aws.html
https://blogs.mathworks.com/deep-learning/2021/05/03/ai-with-matlab-ngc/
https://blogs.mathworks.com/deep-learning/2021/05/03/ai-with-matlab-ngc/
https://www.mathworks.com/help/vision/ug/semantic-segmentation-using-deep-learning.html


Semantic Segmentation in the Cloud with Multiple GPUs

Train the network on a machine with multiple GPUs to improve performance.

When you train with multiple GPUs, each image batch is distributed between the GPUs. Distribution
between GPUs effectively increases the total GPU memory available, allowing larger batch sizes. A
recommended practice is to scale up the mini-batch size linearly with the number of GPUs to keep the
workload on each GPU constant. Because increasing the mini-batch size improves the significance of
each iteration, also increase the initial learning rate by an equivalent factor.

For example, to run this training on a machine with 4 GPUs:

1 In the semantic segmentation example, set ExecutionEnvironment to multi-gpu in the
training options.

2 Increase the mini-batch size by 4 to match the number of GPUs.
3 Increase the initial learning rate by 4 to match the number of GPUs.

The following training progress plot shows the improvement in performance when you use multiple
GPUs. The results show the semantic segmentation network trained on 4 NVIDIA Titan Xp GPUs with
12 GB of GPU memory. The example used the multi-gpu training option with the mini-batch size and
initial learning rate scaled by a factor of 4. This network trained for 20 epochs in around 20 minutes.

 Train Network on Amazon Web Services Using MATLAB Deep Learning Container

7-83



As shown in the following plot, using 4 GPUs and adjusting the training options as described above
results in a network that has the same validation accuracy but trains 3.5x faster.

7 Deep Learning in Parallel and the Cloud

7-84



See Also

More About
• MATLAB Deep Learning Container on NVIDIA GPU Cloud for NVIDIA DGX
• “Deep Learning with MATLAB on Multiple GPUs” on page 7-14

 Train Network on Amazon Web Services Using MATLAB Deep Learning Container

7-85

https://www.mathworks.com/help/cloudcenter/ug/matlab-deep-learning-container-on-dgx.html


Use Amazon S3 Buckets with MATLAB Deep Learning Container

This example shows how to train your deep learning model with training data stored in an Amazon
S3™ Bucket and save the trained model to the cloud.

You can scale up an existing deep learning workflow by moving data and training to the cloud, where
you can rent high performance GPUs and store large data files. One way to do this is to use S3
buckets. You can read and write directly to S3 buckets from MATLAB®. You can use this workflow to
access data in an S3 bucket from a MATLAB Deep Learning Container, and to get variables in and out
of the container. For example:

• If you have data locally, you can use the workflow on this page to upload that data to an S3 bucket
and access it from your MATLAB Deep Learning Container to train in the cloud, where you can
rent high performance GPUs.

• After training in the cloud in the container, you can save variables to the S3 bucket and access
them from anywhere after you stop running the container.

Create Amazon S3 Bucket

To upload a model from your local installation of MATLAB to the MATLAB session running in the
MATLAB Deep Learning Container on the Amazon EC2 GPU enabled instance, you can use an S3
bucket. You can use the save function to save a model (and other workspace variables) as MAT files
from your local installation of MATLAB to an S3 bucket. You can then use the load function to load
the model into the deep learning container. Similarly, you can save a trained model from the deep
learning container to an S3 bucket and load it into your local MATLAB session.

To get started using S3 buckets with MATLAB:

1 Download and install the AWS® Command Line Interface tool on your local machine.
2 Create AWS access keys on your local machine and set keys as environment variables.
3 Create an S3 bucket for your data.

For detailed step-by-step instructions, including how to create AWS access keys, export the keys, and
set up S3 buckets, see Transfer Data To Amazon S3 Buckets and Access Data Using MATLAB
Datastore.

Save and Load MATLAB Workspace Variables with Amazon S3

From your local installation of MATLAB, you can save an untrained neural network,
untrainedNetwork, for example, directly from your workspace to your S3 bucket, mynewbucket.
You must set your AWS access key ID and Secret Access Key (as well as your Session Token if you are
using an AWS temporary token) as environment variables in your local MATLAB installation.

setenv('AWS_ACCESS_KEY_ID','YOUR_AWS_ACCESS_KEY_ID'); 
setenv('AWS_SECRET_ACCESS_KEY','YOUR_AWS_SECRET_ACCESS_KEY');
setenv('AWS_SESSION_TOKEN','YOUR_AWS_SESSION_TOKEN'); % optional
setenv('AWS_DEFAULT_REGION','YOUR_AWS_DEFAULT_REGION'); % optional

save('s3://mynewbucket/untrainedNetwork.mat','untrainedNetwork','-v7.3');

Load this untrained model from the S3 bucket into the MATLAB session running in the deep learning
container on AWS. Again, you must set your AWS Access Key ID, Secret Access Key (and Session

7 Deep Learning in Parallel and the Cloud

7-86

https://www.mathworks.com/help/cloudcenter/ug/transfer-data-to-amazon-s3-buckets.html
https://www.mathworks.com/help/cloudcenter/ug/transfer-data-to-amazon-s3-buckets.html


Token if you are using an AWS temporary token) as environment variables in your container MATLAB
session.

setenv('AWS_ACCESS_KEY_ID','YOUR_AWS_ACCESS_KEY_ID'); 
setenv('AWS_SECRET_ACCESS_KEY','YOUR_AWS_SECRET_ACCESS_KEY');
setenv('AWS_SESSION_TOKEN','YOUR_AWS_SESSION_TOKEN'); % optional
setenv('AWS_DEFAULT_REGION','YOUR_AWS_DEFAULT_REGION'); % optional

load('s3://mynewbucket/untrainedNetwork.mat')

Note that saving and loading MAT files to and from remote file systems using the save and load
functions are supported from MATLAB releases R2021a and later, provided the MAT files are version
7.3. Ensure you are running MATLAB release R2021a or later on both your local machine and in the
deep learning container.

Save your training, testing, and validation data from your local MATLAB workspace to an S3 Bucket
and load it into into the MATLAB Deep Learning Container by following the same steps as above. You
can then train your model, save the trained network into the S3 Bucket and load the trained network
back into your local MATLAB installation.

Save and Access Training Data with Amazon S3

You can train your network using data hosted in an S3 bucket on both your local installation of
MATLAB or your MATLAB session running in the deep learning container. This method is useful if you
already have data in S3 or if you have very large datasets that you cannot download to your local
machine or into the container.

For an example of how to upload the CIFAR-10 data set from your local machine to an S3 bucket, see
“Work with Deep Learning Data in AWS” on page 7-59.

After you store your data in Amazon S3, you can use datastores to access the data from your MATLAB
session either on your local machine or from the deep learning container (ensure your appropriate
AWS access keys have been exported as environment variables). Simply create a datastore pointing to
the URL of the S3 bucket. The following sample code shows how to use an imageDatastore to
access an S3 bucket. Replace 's3://MyExampleCloudData/cifar10/train' with the URL of
your S3 bucket.

setenv('AWS_ACCESS_KEY_ID','YOUR_AWS_ACCESS_KEY_ID'); 
setenv('AWS_SECRET_ACCESS_KEY','YOUR_AWS_SECRET_ACCESS_KEY');
setenv('AWS_SESSION_TOKEN','YOUR_AWS_SESSION_TOKEN'); % optional
setenv('AWS_DEFAULT_REGION','YOUR_AWS_DEFAULT_REGION'); % optional

imds = imageDatastore('s3://MyExampleCloudData/cifar10/train', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

You can now use the CIFAR-10 data set stored in Amazon S3. For an example using the CIFAR-10 data
set, see “Train Residual Network for Image Classification” on page 3-13.

Note that training is always faster if you have locally hosted training data. Remote data use has
overheads especially if the data has many small files like the digits classification example. For
example, training time depends on network speed and the proximity of the S3 bucket to the machine

 Use Amazon S3 Buckets with MATLAB Deep Learning Container

7-87



running the MATLAB container. Larger data files make efficient use of bandwidth in EC2 (greater
than 200 kb per file). If you have sufficient memory, copy the data locally for best training speed.

See Also

More About
• “Work with Remote Data”

7 Deep Learning in Parallel and the Cloud

7-88



Use Experiment Manager in the Cloud with MATLAB Deep
Learning Container

This example shows how to fine-tune your deep learning network by using Experiment Manager in
the cloud. Make use of multiple NVIDIA® high-performance GPUs on an AWS® EC2 instance to run
multiple experiments in parallel. Tune the hyperparameters of your network and try different network
architectures. You can sweep through a range of hyperparameters automatically and save the results
for each variation. Compare the results of your experiments to find the best network.

Classification of CIFAR-10 Image Data with Experiment Manager in the Cloud

To get started with Experiment Manager for a classification network example, first download the
CIFAR-10 training data to the MATLAB® Deep Learning Container. A simple way to do so is to use
the downloadCIFARToFolders function, attached to this example as a supporting file. To access
this file, open the example as a live script. The following code downloads the data set to your current
directory.

directory = pwd;
[locationCifar10Train,locationCifar10Test] = downloadCIFARToFolders(directory);

Downloading CIFAR-10 data set...done.
Copying CIFAR-10 to folders...done.

Next, open Experiment Manager by running experimentManager in the MATLAB command window
or by opening the Experiment Manager App from the Apps tab.

experimentManager

Open an example as a starting point to edit. In the start page of Experiment Manager, select the
"Create a Deep Learning Experiment for Classification" example.

Hyperparameters

In the hyperparameters section, delete the existing two parameters and add two new parameters.
Name the first Momentum with values [0.01,0.1] and the second InitialLearningRate with values
[1e-3,4e-3].

 Use Experiment Manager in the Cloud with MATLAB Deep Learning Container

7-89



Setup Function

Click Edit on the setup function ClassificationExperiment_setup and delete the contents.
Copy the setup function ClassificationExperiment_setup and the supporting function
convolutionalBlock provided at the end of this example and paste them into the
ClassificationExperiment_setup.m function. As a final step to set up this function, you need to
set the path to the training and test data. Check the workspace variables locationCifar10Train
and locationCifar10Test created when you downloaded the data, and replace the paths in the
ClassificationExperiment_setup function with the values of these variables.

locationCifar10Train = "/path/to/train/data"; % replace with the path to the CIFAR-10 training data, see the locationCifar10Train workspace variable
locationCifar10Test = "/path/to/test/data"; % replace with the path to the CIFAR-10 test data, see the locationCifar10Test workspace variable

The function written in ClassificationExperimentSetupExample.m is an adaptation of the
Train Network Using Automatic Multi-GPU Support example. The setup of the deep learning network
is copied. The training options are modified to:

• Set ExecutionEnvironment to "gpu".
• Replace InitialLearnRate with params.InitialLearningRate, which will take the values

as specified in the hyperparameters section of Experiment Manager.
• Add a Momentum training option set to params.Momentum, also specified in the hyperparameters

table.

Run in Parallel

You are now ready to run the experiments. Determine the number of available GPUs and start a
parallel pool with a number of workers equal to the number of available GPUs by running:

Ngpus = gpuDeviceCount("available");
p = parpool(Ngpus);

7 Deep Learning in Parallel and the Cloud

7-90

https://www.mathworks.com/help/deeplearning/ug/train-network-using-automatic-multi-gpu-support.html


In Experiment Manager, if you are running the R2022a release or later of the MATLAB Deep Learning
Container, set mode to Simultaneous and then Run to run experiments in parallel on 1 GPU each
(you cannot select the multi-gpu training option when running trials in parallel). If you are running
the R2021a release of the MATLAB Deep Learning Container, select Use Parallel and then Run. You
can see your experiments running concurrently in the Experiment Manager results tab. This example
was ran on 4 NVIDIA™ Titan Xp GPUs, therefore 4 trials run concurrently.

Export Trial and Save to Cloud

Once the trials complete, compare the results to choose your preferred network. You can view the
training plot and confusion matrix for each trial to help with your comparisons.

 Use Experiment Manager in the Cloud with MATLAB Deep Learning Container

7-91



After you have selected your preferred trained network, export it to the MATLAB workspace by
clicking Export. Doing so creates the (default) variable trainedNetwork in the MATLAB workspace.
Following the procedure to create an S3 bucket and AWS access keys (if you have not done so
already) in “Use Amazon S3 Buckets with MATLAB Deep Learning Container” on page 7-86, save the
trainedNetwork directly to Amazon S3™.

setenv("AWS_ACCESS_KEY_ID","YOUR_AWS_ACCESS_KEY_ID"); 
setenv("AWS_SECRET_ACCESS_KEY","YOUR_AWS_SECRET_ACCESS_KEY");
setenv("AWS_SESSION_TOKEN","YOUR_AWS_SESSION_TOKEN"); % optional
setenv("AWS_DEFAULT_REGION","YOUR_AWS_DEFAULT_REGION"); % optional
save("s3://mynewbucket/trainedNetwork.mat","trainedNetwork","-v7.3");

For example, load this trained network to the local MATLAB session on your desktop. Note that
saving and loading MAT files to and from remote filesystems using the save and load functions is
supported in MATLAB releases R2021a and later, provided the MAT files are version 7.3. Ensure you
are running MATLAB release R2021a or later on both your local machine and in the MATLAB Deep
Learning Container.

setenv("AWS_ACCESS_KEY_ID","YOUR_AWS_ACCESS_KEY_ID"); 
setenv("AWS_SECRET_ACCESS_KEY","YOUR_AWS_SECRET_ACCESS_KEY");
setenv("AWS_SESSION_TOKEN","YOUR_AWS_SESSION_TOKEN"); % optional
setenv("AWS_DEFAULT_REGION","YOUR_AWS_DEFAULT_REGION"); % optional
load("s3://mynewbucket/trainedNetwork.mat")

Appendix - Setup Function for CIFAR-10 Classification Network

function [augmentedImdsTrain,layers,options] = ClassificationExperiment_setup(params)

7 Deep Learning in Parallel and the Cloud

7-92



locationCifar10Train = "/path/to/train/data"; % Replace with the path to the CIFAR-10 training data, see the locationCifar10Train workspace variable
locationCifar10Test = "/path/to/test/data"; % Replace with the path to the CIFAR-10 test data, see the locationCifar10Test workspace variable

imdsTrain = imageDatastore(locationCifar10Train, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

imdsTest = imageDatastore(locationCifar10Test, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

imageSize = [32 32 3];
pixelRange = [-4 4];

imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);

augmentedImdsTrain = augmentedImageDatastore(imageSize,imdsTrain, ...
    DataAugmentation=imageAugmenter, ...
    OutputSizeMode="randcrop");

blockDepth = 4; % blockDepth controls the depth of a convolutional block
netWidth = 32; % netWidth controls the number of filters in a convolutional block

layers = [
    imageInputLayer(imageSize) 
    
    convolutionalBlock(netWidth,blockDepth)
    maxPooling2dLayer(2,Stride=2)
    convolutionalBlock(2*netWidth,blockDepth)
    maxPooling2dLayer(2,Stride=2)    
    convolutionalBlock(4*netWidth,blockDepth)
    averagePooling2dLayer(8) 
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
    ];

miniBatchSize = 256;

options = trainingOptions("sgdm", ...
    ExecutionEnvironment="gpu", ... 
    InitialLearnRate=params.InitialLearningRate, ... % hyperparameter 'InitialLearningRate'
    Momentum=params.Momentum, ... % hyperparameter 'Momentum'
    MiniBatchSize=miniBatchSize, ... 
    Verbose=false, ... 
    Plots="training-progress", ... 
    L2Regularization=1e-10, ...
    MaxEpochs=50, ...
    Shuffle="every-epoch", ...
    ValidationData=imdsTest, ...
    ValidationFrequency=floor(numel(imdsTrain.Files)/miniBatchSize), ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=45);

 Use Experiment Manager in the Cloud with MATLAB Deep Learning Container

7-93



end

function layers = convolutionalBlock(numFilters,numConvLayers)
layers = [
    convolution2dLayer(3,numFilters,Padding="same")
    batchNormalizationLayer
    reluLayer];

layers = repmat(layers,numConvLayers,1);
end

See Also

More About
• Experiment Manager
• “Create a Deep Learning Experiment for Classification” on page 6-2
• “Discover Clusters and Use Cluster Profiles” (Parallel Computing Toolbox)

7 Deep Learning in Parallel and the Cloud

7-94



Computer Vision Examples

8



Gesture Recognition using Videos and Deep Learning

This example first shows how to perform gesture recognition using a pretrained SlowFast [1] on page
8-22 video classifier and then shows how to use transfer learning to train a classifier on a custom
gesture recognition data set.

Overview

Vision-based human gesture recognition involves predicting a gesture, such as waving hello, sign
language gestures, or clapping, using a set of video frames. One of the appealing features of gesture
recognition is that they make it possible for humans to communicate with computers and devices
without the need for an external input equipment such as a mouse or a remote control. Gesture
recognition from videos has many applications, such as control of consumer electronics and
mechanical systems, robot learning, and computer games. For example, online prediction of multiple
actions for incoming videos from multiple cameras can be important for robot learning. Compared to
image classification, human gesture recognition using videos is challenging to model because of the
inaccurate ground truth data for video data sets, the variety of gestures that actors in a video can
perform, the heavily class imbalanced data sets, and the large amount of data required to train a
robust classifier from scratch. Deep learning techniques, such as SlowFast two pathway convolutional
networks [1] on page 8-22, have shown improved performance on smaller data sets using transfer
learning with networks pretrained on large video activity recognition data sets.

Note: This example requires the Computer Vision Toolbox™ Model for SlowFast Video Classification.
You can install the Computer Vision Toolbox Model for SlowFast Video Classification from Add-On
Explorer. For more information about installing add-ons, see “Get and Manage Add-Ons”.

Perform Gesture Recognition Using a Pretrained Video Classifier

Download the pretrained SlowFast video classifier along with a video file on which to perform gesture
recognition. The size of the downloaded zip file is around 245 MB.

downloadFolder = fullfile(tempdir,"gesture");
if ~isfolder(downloadFolder)
    mkdir(downloadFolder);
end

zipFile = "slowFastPretrained_fourClasses.zip";

if ~isfile(fullfile(downloadFolder,zipFile))
    disp('Downloading the pretrained network...');
    downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + zipFile;    
    zipFile = fullfile(downloadFolder,zipFile);
    websave(zipFile,downloadURL);
    unzip(zipFile,downloadFolder);
    disp("Downloaded.")
end

Downloading the pretrained network...

Downloaded.

Load the pretrained SlowFast video classifier.

8 Computer Vision Examples

8-2



pretrainedDataFile = fullfile(downloadFolder,"slowFastPretrained_fourClasses.mat");
pretrained = load(pretrainedDataFile);
slowFastClassifier = pretrained.data.slowFast;

Display the class label names of the pretrained video classifier.

classes = slowFastClassifier.Classes

classes = 4×1 categorical
     clapping 
     noAction 
     somethingElse 
     wavingHello 

Read and display the video waving-hello.avi using VideoReader and vision.VideoPlayer.

videoFilename = fullfile(downloadFolder,"waving-hello.avi");

videoReader = VideoReader(videoFilename);
videoPlayer = vision.VideoPlayer;
videoPlayer.Name = "waving-hello";

while hasFrame(videoReader)
   frame = readFrame(videoReader);
   step(videoPlayer,frame);
end
release(videoPlayer);

 Gesture Recognition using Videos and Deep Learning

8-3



Choose 10 randomly selected video sequences to classify the video, to uniformly cover the entirety of
the file to find the action class that is predominant in the video.

numSequences = 10;

Classify the video file using the classifyVideoFile function.

[gestureLabel,score] = classifyVideoFile(slowFastClassifier,videoFilename,NumSequences=numSequences)

gestureLabel = categorical
     wavingHello 

8 Computer Vision Examples

8-4



score = single
    0.4753

The classification can also be applied to a streaming video. To learn how to classify a streaming
webcam video, see “Classify Streaming Webcam Video Using SlowFast Video Classifier” (Computer
Vision Toolbox).

Train a Video Classifier for Gesture Recognition

This section of the example shows how the video classifier shown above is trained using transfer
learning. Set the doTraining variable to false to use the pretrained video classifier without having
to wait for training to complete. Alternatively, if you want to train the video classifier, set the
doTraining variable to true.

doTraining = false;

Download Ground Truth Training Data

This example trains a SlowFast video classification network using downloadable gesture data set that
contains four gestures: "clapping","wavingHello","somethingElse", and "noAction".
The data set contains videos that are labeled using a Video Labeler and the corresponding ground
truth data.

Create directories to store the ground truth training data.

groundTruthFolder = fullfile(downloadFolder,"groundTruthFolder");
if ~isfolder(groundTruthFolder)
    mkdir(groundTruthFolder);
end

Download the data set and extract the zip archive into the downloadFolder.

zipFile = 'videoClipsAndSceneLabels.zip';

if ~isfile(fullfile(groundTruthFolder,zipFile))
    disp('Downloading the ground truth training data...');
    downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + zipFile;
    zipFile = fullfile(groundTruthFolder,zipFile);
    websave(zipFile,downloadURL);
    unzip(zipFile,groundTruthFolder);
end

Extract Training Video Sequences

To train a video classifier, you need a collection of videos and its corresponding collection of scene
labels. Use the helper function extractVideoScenes, defined at the end of this example, to extract
labeled video scenes from the ground truth data and write them to disk as separate video files. To
learn more about extracting training data from videos, see “Extract Training Data for Video
Classification” (Computer Vision Toolbox).

groundTruthFolder = fullfile(downloadFolder,"groundTruthFolder");
trainingFolder = fullfile(downloadFolder,"videoScenes");

extractVideoScenes(groundTruthFolder,trainingFolder,classes);

A total of 40 video scenes are extracted from the downloaded ground truth data.

 Gesture Recognition using Videos and Deep Learning

8-5



Load data set

This example uses a datastore to read the videos scenes and labels extracted from the ground truth
data.

Specify the number of video frames the datastore should be configured to output for each time data is
read from the datastore.

numFrames = 16;

A value of 16 is used here to balance memory usage and classification time. Common values to
consider are 8, 16, 32, 64, or 128. Using more frames helps capture additional temporal information,
but requires more memory. Empirical analysis is required to determine the optimal number of frames.

Next, specify the height and width of the frames the datastore should be configured to output. The
datastore automatically resizes the raw video frames to the specified size to enable batch processing
of multiple video sequences.

frameSize = [112,112];

A value of [112 112] is used to capture longer temporal relationships in the video scene which help
classify gestures with long time durations. Common values for the size are [112 112], [224 224], or
[256 256]. Smaller sizes enable the use of more video frames at the cost of memory usage, processing
time, and spatial resolution. As with the number of frames, empirical analysis is required to
determine the optimal values.

Specify the number of channels as 3, as the videos are RGB.

numChannels = 3;

Use the helper function, createFileDatastore, to configure a FileDatastore for loading the
data. The helper function is listed at the end of this example.

isDataForTraining = true;
dsTrain = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining);

Configure SlowFast Video Classifier for Transfer Learning

Create a SlowFast video classifier for transfer learning by using the slowFastVideoClassifier
function. The slowFastVideoClassifier function creates a SlowFast video classifier object that is
pretrained on the Kinetics-400 data set [2 on page 8-22].

Specify ResNet-50 as the base network convolution neural network 3D architecture for the SlowFast
classifier.

baseNetwork = "resnet50-3d";

Specify the input size for the SlowFast video classifier.

inputSize = [frameSize,numChannels,numFrames];

Create a SlowFast video classifier by specifying the classes for the gesture data set and the network
input size.

slowFast = slowFastVideoClassifier(baseNetwork,string(classes),InputSize=inputSize);

Specify a model name for the video classifier.

8 Computer Vision Examples

8-6



slowFast.ModelName = "Gesture Recognizer Using Deep Learning";

Augment and Preprocess Training Data

Data augmentation provides a way to use limited data sets for training. Augmentation on video data
must be the same for a collection of frames based on the network input size. Minor changes, such as
translation, cropping, or transforming an image, provide, new, distinct, and unique images that you
can use to train a robust video classifier. Datastores are a convenient way to read and augment
collections of data. Augment the training video data by using the augmentVideo supporting function,
defined at the end of this example.

dsTrain = transform(dsTrain,@augmentVideo);

Preprocess the training video data to resize to the SlowFast video classifier input size, by using the
preprocessVideoClips, defined at the end of this example. Specify the
InputNormalizationStatistics property of the video classifier and input size to the
preprocessing function as field values in a struct, preprocessInfo. The
InputNormalizationStatistics property is used to rescale the video frames between 0 and 1,
and then normalize the rescaled data using mean and standard deviation. The input size is used to
resize the video frames using imresize based on the SizingOption value in the info struct.
Alternatively, you could use "randomcrop" or "centercrop" as values for SizingOption to
random crop or center crop the input data to the input size of the video classifier.

preprocessInfo.Statistics   = slowFast.InputNormalizationStatistics;
preprocessInfo.InputSize    = inputSize;
preprocessInfo.SizingOption = "resize";

dsTrain = transform(dsTrain,@(data)preprocessVideoClips(data,preprocessInfo));

Define Model Gradients Function

The modelGradients function, listed at the end of this example, takes as input the SlowFast video
classifier slowFast, a mini-batch of input data dlRGB, and a mini-batch of ground truth label data
dlY. The function returns the training loss value, the gradients of the loss with respect to the
learnable parameters of the classifier, and the mini-batch accuracy of the classifier.

The loss is calculated by computing the cross-entropy loss of the predictions from video classifier. The
output predictions of the network are probabilities between 0 and 1 for each of the classes.

predictions = f orward(slowFast, dlRGB);

loss = crossentropy(predictions)

The accuracy of the classifier is calculated by comparing the classifier predictions to the ground
truth label of the inputs, dlY.

Specify Training Options

Train with a mini-batch size of 5 for 600 iterations. Specify the iteration after which to save the model
with the best mini-batch loss by using the SaveBestAfterIteration parameter.

Specify the cosine-annealing learning rate schedule [3 on page 8-22] parameters:

• A minimum learning rate of 1e-4.
• A maximum learning rate of 1e-3.

 Gesture Recognition using Videos and Deep Learning

8-7



• Cosine number of iterations of 200, 300, and 400, after which the learning rate schedule cycle
restarts. The option CosineNumIterations defines the width of each cosine cycle.

Specify the parameters for SGDM optimization. Initialize the SGDM optimization parameters at the
beginning of the training:

• A momentum of 0.9.
• An initial velocity parameter initialized as [].
• An L2 regularization factor of 0.0005.

Specify to dispatch the data in the background using a parallel pool. If DispatchInBackground is
set to true, open a parallel pool with the specified number of parallel workers, and create a
DispatchInBackgroundDatastore, provided as part of this example, that dispatches the data in
the background to speed up training using asynchronous data loading and preprocessing. By default,
this example uses a GPU if one is available. Otherwise, it uses a CPU. Using a GPU requires Parallel
Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU. For information about the supported
compute capabilities, see “GPU Computing Requirements” (Parallel Computing Toolbox).

params.Classes = classes;
params.MiniBatchSize = 5;
params.NumIterations = 600;
params.CosineNumIterations = [100 200 300];
params.SaveBestAfterIteration = 400;
params.MinLearningRate = 1e-4;
params.MaxLearningRate = 1e-3;
params.Momentum = 0.9;
params.Velocity = [];
params.L2Regularization = 0.0005;
params.ProgressPlot = false;
params.Verbose = true;
params.DispatchInBackground = true;
params.NumWorkers = 12;

Train Video Classifier

Train the SlowFast video classifier using the video data.

For each epoch:

• Shuffle the data before looping over mini-batches of data.
• Use minibatchqueue to loop over the mini-batches. The supporting function

createMiniBatchQueue, listed at the end of this example, uses the given training datastore to
create a minibatchqueue.

• Display the loss and accuracy results for each epoch using the supporting function
displayVerboseOutputEveryEpoch, listed at the end of this example.

For each mini-batch:

• Convert the video data and the labels to dlarray objects with the underlying type single.
• To enable processing the time dimension of the the video data using the SlowFast video classifier

specify the temporal sequence dimension, "T". Specify the dimension labels "SSCTB" (spatial,
spatial, channel, temporal, batch) for the video data, and "CB" for the label data.

The minibatchqueue object uses the supporting function batchVideo, listed at the end of this
example, to batch the RGB video data.

8 Computer Vision Examples

8-8



params.ModelFilename = "slowFastPretrained_fourClasses.mat";
if doTraining
    epoch = 1;
    bestLoss = realmax;
    accTrain = [];
    lossTrain = [];

    iteration = 1;
    start = tic;
    trainTime = start;
    shuffled = shuffleTrainDs(dsTrain);

    % Number of outputs is two: One for RGB frames, and one for ground truth labels.
    numOutputs = 2;
    mbq = createMiniBatchQueue(shuffled, numOutputs, params);
    
    % Use the initializeTrainingProgressPlot and initializeVerboseOutput
    % supporting functions, listed at the end of the example, to initialize
    % the training progress plot and verbose output to display the training
    % loss, training accuracy, and validation accuracy.
    plotters = initializeTrainingProgressPlot(params);
    initializeVerboseOutput(params);

    while iteration <= params.NumIterations

        % Iterate through the data set.
        [dlX1,dlY] = next(mbq);

        % Evaluate the model gradients and loss using dlfeval.
        [gradients,loss,acc,state] = ...
            dlfeval(@modelGradients,slowFast,dlX1,dlY);

        % Accumulate the loss and accuracies.
        lossTrain = [lossTrain, loss];
        accTrain = [accTrain, acc];

        % Update the network state.
        slowFast.State = state;

        % Update the gradients and parameters for the video classifier
        % using the SGDM optimizer.
        [slowFast,params.Velocity,learnRate] = ...
            updateLearnables(slowFast,gradients,params,params.Velocity,iteration);

        if ~hasdata(mbq) || iteration == params.NumIterations
            % Current epoch is complete. Do validation and update progress.
            trainTime = toc(trainTime);

            accTrain = mean(accTrain);
            lossTrain = mean(lossTrain);

            % Update the training progress.
            displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
                accTrain,lossTrain,trainTime);
            updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accTrain);

            % Save the trained video classifier and the parameters, that gave 
            % the best training loss so far. Use the saveData supporting function,

 Gesture Recognition using Videos and Deep Learning

8-9



            % listed at the end of this example.
            bestLoss = saveData(slowFast,bestLoss,iteration,lossTrain,params);
        end

        if ~hasdata(mbq) && iteration < params.NumIterations
            % Current epoch is complete. Initialize the training loss, accuracy
            % values, and minibatchqueue for the next epoch.
            accTrain = [];
            lossTrain = [];
            
            epoch = epoch + 1;
            trainTime = tic;
            shuffled = shuffleTrainDs(dsTrain);
            mbq = createMiniBatchQueue(shuffled, numOutputs, params);            
        end

        iteration = iteration + 1;
    end

    % Display a message when training is complete.
    endVerboseOutput(params);

    disp("Model saved to: " + params.ModelFilename);
end

Evaluate the Trained Video Classifier

To evaluate the accuracy of the trained SlowFast video classifier, set the isDataForTraining
variable to false and create a fileDatastore. Note that data augmentation is not applied to the
evaluation data. Ideally, test and evaluation data should be representative of the original data and is
left unmodified for unbiased evaluation.

isDataForTraining = false;
dsEval = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining);
dsEval = transform(dsEval,@(data)preprocessVideoClips(data,preprocessInfo));

Load the best model saved during training or use the pretrained model.

if doTraining
    transferLearned = load(params.ModelFilename);
    slowFastClassifier = transferLearned.data.slowFast;
end

Create a minibatchqueue object to load batches of the test data.

numOutputs = 2;
mbq = createMiniBatchQueue(dsEval,numOutputs,params);

For each batch of evaluation data, make predictions using the SlowFast video classifier, and compute
the prediction accuracy using a confusion matrix.

numClasses = numel(params.Classes);
cmat = sparse(numClasses,numClasses);

while hasdata(mbq)
    [dlVideo,dlY] = next(mbq);

    % Computer the predictions of the trained SlowFast 

8 Computer Vision Examples

8-10



    % video classifier.
    dlYPred = predict(slowFastClassifier,dlVideo);
    dlYPred = squeezeIfNeeded(dlYPred,dlY);

    % Aggregate the confusion matrix by using the maximum
    % values of the prediction scores and the ground truth labels.
    [~,YTest] = max(dlY,[],1);
    [~,YPred] = max(dlYPred,[],1);
    cmat = aggregateConfusionMetric(cmat,YTest,YPred);
end

Compute the average clip classification accuracy for the trained SlowFast video classifier.

evalClipAccuracy = sum(diag(cmat))./sum(cmat,"all")

evalClipAccuracy = 0.9847

Display the confusion matrix.

figure
chart = confusionchart(cmat,classes);

 Gesture Recognition using Videos and Deep Learning

8-11



The SlowFast video classifier that is pretrained on the Kinetics-400 data set [2 on page 8-22],
provides strong performance for human gesture recognition on transfer learning. The above training
was run on 24GB Titan-X GPU for about 60 minutes. When training from scratch on a small gesture
recognition video data set, the training time and convergence takes much longer than the pretrained
video classifier. Transer learning using the Kinetics-400 pretrained SlowFast video classifier also
avoids overfitting the classifier when ran for larger number of epochs on such a small gesture
recognition video data set. To learn more about video recognition using deep learning, see “Getting
Started with Video Classification Using Deep Learning” (Computer Vision Toolbox).

Supporting Functions

createFileDatastore

The createFileDatastore function creates a FileDatastore object using the given folder name.
The FileDatastore object reads the data in 'partialfile' mode, so every read can return
partially read frames from videos. This feature helps with reading large video files, if all of the frames
do not fit in memory.

function datastore = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining)
    readFcn = @(f,u)readVideo(f,u,numFrames,numChannels,classes,isDataForTraining);
    datastore = fileDatastore(trainingFolder,...
        'IncludeSubfolders',true,...
        'FileExtensions','.avi',...
        'ReadFcn',readFcn,...
        'ReadMode','partialfile');
end

shuffleTrainDs

The shuffleTrainDs function shuffles the files present in the training datastore, dsTrain.

function shuffled = shuffleTrainDs(dsTrain)
shuffled = copy(dsTrain);
transformed = isa(shuffled, 'matlab.io.datastore.TransformedDatastore');
if transformed
    files = shuffled.UnderlyingDatastores{1}.Files;
else 
    files = shuffled.Files;
end
n = numel(files);
shuffledIndices = randperm(n);  
if transformed
    shuffled.UnderlyingDatastores{1}.Files = files(shuffledIndices);
else
    shuffled.Files = files(shuffledIndices);
end

reset(shuffled);

end

readVideo

The readVideo function reads video frames, and the corresponding label values for a given video
file. During training, the read function reads the specific number of frames as per the network input
size, with a randomly chosen starting frame. During testing, all the frames are sequentially read. The

8 Computer Vision Examples

8-12



video frames are resized to the required classifier network input size for training, and for testing and
validation.

function [data,userdata,done] = readVideo(filename,userdata,numFrames,numChannels,classes,isDataForTraining)
    if isempty(userdata)
        userdata.reader      = VideoReader(filename);
        userdata.batchesRead = 0;
        
        userdata.label = getLabel(filename,classes);

        totalFrames = floor(userdata.reader.Duration * userdata.reader.FrameRate);
        totalFrames = min(totalFrames, userdata.reader.NumFrames);
        userdata.totalFrames = totalFrames;
        userdata.datatype = class(read(userdata.reader,1));
    end
    reader      = userdata.reader;
    totalFrames = userdata.totalFrames;
    label       = userdata.label;
    batchesRead = userdata.batchesRead;

    if isDataForTraining
        video = readForTraining(reader,numFrames,totalFrames);
    else
        video = readForEvaluation(reader,userdata.datatype,numChannels,numFrames,totalFrames);
    end   

    data = {video, label};

    batchesRead = batchesRead + 1;

    userdata.batchesRead = batchesRead;

    if numFrames > totalFrames
        numBatches = 1;
    else
        numBatches = floor(totalFrames/numFrames);
    end
    % Set the done flag to true, if the reader has read all the frames or
    % if it is training.
    done = batchesRead == numBatches || isDataForTraining;
end

readForTraining

The readForTraining function reads the video frames for training the video classifier. The function
reads the specific number of frames as per the network input size, with a randomly chosen starting
frame. If there are not enough frames left over, the video sequence is repeated to pad the required
number of frames.

function video = readForTraining(reader,numFrames,totalFrames)
    if numFrames >= totalFrames
        startIdx = 1;
        endIdx = totalFrames;
    else
        startIdx = randperm(totalFrames - numFrames + 1);
        startIdx = startIdx(1);
        endIdx = startIdx + numFrames - 1;
    end

 Gesture Recognition using Videos and Deep Learning

8-13



    video = read(reader,[startIdx,endIdx]);
    if numFrames > totalFrames
        % Add more frames to fill in the network input size.
        additional = ceil(numFrames/totalFrames);
        video = repmat(video,1,1,1,additional);
        video = video(:,:,:,1:numFrames);
    end
end

readForEvaluation

The readForEvaluation function reads the video frames for evaluating the trained video classifier.
The function reads the specific number of frames sequentially as per the network input size. If there
are not enough frames left over, the video sequence is repeated to pad the required number of
frames.

function video = readForEvaluation(reader,datatype,numChannels,numFrames,totalFrames)
    H = reader.Height;
    W = reader.Width;
    toRead = min([numFrames,totalFrames]);
    video = zeros([H,W,numChannels,toRead],datatype);
    frameIndex = 0;
    while hasFrame(reader) && frameIndex < numFrames
        frame = readFrame(reader);
        frameIndex = frameIndex + 1;
        video(:,:,:,frameIndex) = frame;
    end
    
    if frameIndex < numFrames
        video = video(:,:,:,1:frameIndex);    
        additional = ceil(numFrames/frameIndex);
        video = repmat(video,1,1,1,additional);
        video = video(:,:,:,1:numFrames);       
    end
end

getLabel

The getLabel function obtains the label name from the full path of a filename. The label for a file is
the folder in which it exists. For example, for a file path such as "/path/to/data set/clapping/
video_0001.avi", the label name is "clapping".

function label = getLabel(filename,classes)
    folder = fileparts(string(filename));
    [~,label] = fileparts(folder);
    label = categorical(string(label),string(classes));
end

augmentVideo

The augmentVideo function augments the video frames for training the video classifier. The function
augments a video sequence with the same augmentation technique provided by the
augmentTransform function.

function data = augmentVideo(data)
    numClips = size(data,1);
    for ii = 1:numClips
        video = data{ii,1};

8 Computer Vision Examples

8-14



        % HxWxC
        sz = size(video,[1,2,3]);
        % One augment fcn per clip
        augmentFcn = augmentTransform(sz);
        data{ii,1} = augmentFcn(video);
    end
end

augmentTransform

The augmentTransform function creates an augmentation method with random left-right flipping
and scaling factors.

function augmentFcn = augmentTransform(sz)
% Randomly flip and scale the image.
tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
rout = affineOutputView(sz,tform,'BoundsStyle','CenterOutput');

augmentFcn = @(data)augmentData(data,tform,rout);

    function data = augmentData(data,tform,rout)
        data = imwarp(data,tform,'OutputView',rout);
    end
end

preprocessVideoClips

The preprocessVideoClips function preprocesses the training video data to resize to the SlowFast
video classifier input size. It takes the InputNormalizationStatistics and the InputSize
properties of the video classifier in a struct, info. The InputNormalizationStatistics property
is used to rescale the video frames between 0 and 1, and then normalize the rescaled data using
mean and standard deviation. The input size is used to resize the video frames using imresize based
on the SizingOption value in the info struct. Alternatively, you could use "randomcrop" or
"centercrop" as values for SizingOption to random crop or center crop the input data to the
input size of the video classifier.

function data = preprocessVideoClips(data, info)
    inputSize = info.InputSize(1:2);
    sizingOption = info.SizingOption;
    switch sizingOption
        case "resize"
            sizingFcn = @(x)imresize(x,inputSize);
        case "randomcrop"
            sizingFcn = @(x)cropVideo(x,@randomCropWindow2d,inputSize);
        case "centercrop"
            sizingFcn = @(x)cropVideo(x,@centerCropWindow2d,inputSize);
    end
    numClips = size(data,1);

    minValue  = info.Statistics.Min;
    maxValue  = info.Statistics.Max;
    meanValue = info.Statistics.Mean;
    stdValue  = info.Statistics.StandardDeviation;

    minValue  = reshape(minValue,1,1,3);
    maxValue  = reshape(maxValue,1,1,3);
    meanValue = reshape(meanValue,1,1,3);

 Gesture Recognition using Videos and Deep Learning

8-15



    stdValue  = reshape(stdValue,1,1,3);

    for ii = 1:numClips
        video = data{ii,1};
        resized = sizingFcn(video);

        % Cast the input to single.
        resized = single(resized);

        % Rescale the input between 0 and 1.
        resized = rescale(resized,0,1,InputMin=minValue,InputMax=maxValue);

        % Normalize using mean and standard deviation.
        resized = resized - meanValue;
        resized = resized./stdValue;
        data{ii,1} = resized;
    end

    function outData = cropVideo(data,cropFcn,inputSize)
        imsz = size(data,[1,2]);
        cropWindow = cropFcn(imsz,inputSize);
        numBatches = size(data,4);
        sz = [inputSize, size(data,3),numBatches];
        outData = zeros(sz,'like',data);
        for b = 1:numBatches
            outData(:,:,:,b) = imcrop(data(:,:,:,b),cropWindow);
        end
    end
end

createMiniBatchQueue

The createMiniBatchQueue function creates a minibatchqueue object that provides
miniBatchSize amount of data from the given datastore. It also creates a
DispatchInBackgroundDatastore if a parallel pool is open.

function mbq = createMiniBatchQueue(datastore, numOutputs, params)
if params.DispatchInBackground && isempty(gcp('nocreate'))
    % Start a parallel pool, if DispatchInBackground is true, to dispatch
    % data in the background using the parallel pool.
    c = parcluster('local');
    c.NumWorkers = params.NumWorkers;
    parpool('local',params.NumWorkers);
end
p = gcp('nocreate');
if ~isempty(p)
    datastore = DispatchInBackgroundDatastore(datastore, p.NumWorkers);
end

inputFormat(1:numOutputs-1) = "SSCTB";
outputFormat = "CB";
mbq = minibatchqueue(datastore, numOutputs, ...
    "MiniBatchSize", params.MiniBatchSize, ...
    "MiniBatchFcn", @batchVideo, ...
    "MiniBatchFormat", [inputFormat,outputFormat]);
end

8 Computer Vision Examples

8-16



batchVideo

The batchVideo function batches the video, and the label data from cell arrays. It uses
onehotencode function to encode ground truth categorical labels into one-hot arrays. The one-hot
encoded array contains a 1 in the position corresponding to the class of the label, and 0 in every
other position.

function [video,labels] = batchVideo(video,labels)
% Batch dimension: 5
video = cat(5,video{:});

% Batch dimension: 2
labels = cat(2,labels{:});

% Feature dimension: 1
labels = onehotencode(labels,1);
end

modelGradients

The modelGradients function takes as input a mini-batch of RGB data dlRGB, and the
corresponding target dlY, and returns the corresponding loss, the gradients of the loss with respect
to the learnable parameters, and the training accuracy. To compute the gradients, evaluate the
modelGradients function using the dlfeval function in the training loop.

function [gradientsRGB,loss,acc,stateRGB] = modelGradients(slowFast,dlRGB,dlY)
[dlYPredRGB,stateRGB] = forward(slowFast,dlRGB);
dlYPred = squeezeIfNeeded(dlYPredRGB,dlY);

loss = crossentropy(dlYPred,dlY);

gradientsRGB = dlgradient(loss,slowFast.Learnables);

% Calculate the accuracy of the predictions.
[~,YTest] = max(dlY,[],1);
[~,YPred] = max(dlYPred,[],1);

acc = gather(extractdata(sum(YTest == YPred)./numel(YTest)));
end

squeezeIfNeeded

The squeezeIfNeeded function takes as the predicted scores, dlYPred and corresponding target Y,
and returns the predicted scores dlYPred, after squeezing the singleton dimensions, if there are any.

function dlYPred = squeezeIfNeeded(dlYPred,Y)
if ~isequal(size(Y),size(dlYPred))
    dlYPred = squeeze(dlYPred);
    dlYPred = dlarray(dlYPred,dims(Y));
end
end

updateLearnables

The updateLearnables function updates the learnable parameters of the SlowFast video classifier
with gradients and other parameters using SGDM optimization function sgdmupdate.

function [slowFast,velocity,learnRate] = updateLearnables(slowFast,gradients,params,velocity,iteration)
    % Determine the learning rate using the cosine-annealing learning rate schedule.

 Gesture Recognition using Videos and Deep Learning

8-17



    learnRate = cosineAnnealingLearnRate(iteration, params);

    % Apply L2 regularization to the weights.
    learnables = slowFast.Learnables;
    idx = learnables.Parameter == "Weights";
    gradients(idx,:) = dlupdate(@(g,w) g + params.L2Regularization*w,gradients(idx,:),learnables(idx,:));

    % Update the network parameters using the SGDM optimizer.
    [slowFast, velocity] = sgdmupdate(slowFast,gradients,velocity,learnRate,params.Momentum);
end

cosineAnnealingLearnRate

The cosineAnnealingLearnRate function computes the learning rate based on the current
iteration number, minimum learning rate, maximum learning rate, and number of iterations for
annealing [3 on page 8-22].

function lr = cosineAnnealingLearnRate(iteration,params)
    if iteration == params.NumIterations
        lr = params.MinLearningRate;
        return;
    end
    cosineNumIter = [0, params.CosineNumIterations];
    csum = cumsum(cosineNumIter);
    block = find(csum >= iteration, 1,'first');
    cosineIter = iteration - csum(block - 1);
    annealingIteration = mod(cosineIter,cosineNumIter(block));
    cosineIteration = cosineNumIter(block);
    minR = params.MinLearningRate;
    maxR = params.MaxLearningRate;
    cosMult = 1 + cos(pi * annealingIteration / cosineIteration);
    lr = minR + ((maxR - minR) *  cosMult / 2);
end

aggregateConfusionMetric

The aggregateConfusionMetric function incrementally fills a confusion matrix based on the
predicted results YPred and the expected results YTest.

function cmat = aggregateConfusionMetric(cmat,YTest,YPred)
YTest = gather(extractdata(YTest));
YPred = gather(extractdata(YPred));
[m,n] = size(cmat);
cmat = cmat + full(sparse(YTest,YPred,1,m,n));
end

saveData

The saveData function saves the given SlowFast video classifier, loss, and other training parameters
to a MAT-file.

function bestLoss = saveData(slowFast,bestLoss,iteration,lossTrain,params)
if iteration >= params.SaveBestAfterIteration
    trainingLoss = extractdata(gather(lossTrain));
    if trainingLoss < bestLoss
        bestLoss = trainingLoss;
        slowFast = gatherFromGPUToSave(slowFast);
        data.BestLoss = bestLoss;

8 Computer Vision Examples

8-18



        data.slowFast = slowFast;
        data.Params = params;
        save(params.ModelFilename,'data');
    end
end
end

gatherFromGPUToSave

The gatherFromGPUToSave function gathers data from the GPU in order to save the model to disk.

function slowfast = gatherFromGPUToSave(slowfast)
if ~canUseGPU
    return;
end
slowfast.Learnables = gatherValues(slowfast.Learnables);
slowfast.State = gatherValues(slowfast.State);
    function tbl = gatherValues(tbl)
        for ii = 1:height(tbl)
            tbl.Value{ii} = gather(tbl.Value{ii});
        end
    end
end

extractVideoScenes

The extractVideoScenes function extracts training video data from a collection of videos and its
corresponding collection of scene labels, by using the functions sceneTimeRanges and
writeVideoScenes.

function extractVideoScenes(groundTruthFolder,trainingFolder,classes)
% If the video scenes are already extracted, no need to download
% the data set and extract video scenes.
if isfolder(trainingFolder)
    classFolders = fullfile(trainingFolder,string(classes));
    allClassFoldersFound = true;
    for ii = 1:numel(classFolders)
        if ~isfolder(classFolders(ii))
            allClassFoldersFound = false;
            break;
        end
    end
    if allClassFoldersFound
        return;
    end
end
if ~isfolder(groundTruthFolder)
    mkdir(groundTruthFolder);
end
downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/videoClipsAndSceneLabels.zip";

filename = fullfile(groundTruthFolder,"videoClipsAndSceneLabels.zip");
if ~exist(filename,'file')
    disp("Downloading the video clips and the corresponding scene labels to " + groundTruthFolder);
    websave(filename,downloadURL);    
end
% Unzip the contents to the download folder.
unzip(filename,groundTruthFolder);

 Gesture Recognition using Videos and Deep Learning

8-19



labelDataFiles = dir(fullfile(groundTruthFolder,"*_labelData.mat"));
labelDataFiles = fullfile(groundTruthFolder,{labelDataFiles.name}');
numGtruth = numel(labelDataFiles);
% Load the label data information and create ground truth objects.
gTruth = groundTruth.empty(numGtruth,0);
for ii = 1:numGtruth
    ld = load(labelDataFiles{ii});
    videoFilename = fullfile(groundTruthFolder,ld.videoFilename);
    gds = groundTruthDataSource(videoFilename);
    gTruth(ii) = groundTruth(gds,ld.labelDefs,ld.labelData);
end
% Gather all the scene time ranges and the corresponding scene labels 
% using the sceneTimeRanges function.
[timeRanges, sceneLabels] = sceneTimeRanges(gTruth);
% Specify the subfolder names for each duration as the scene label names. 
foldernames = sceneLabels;
% Delete the folder if it already exists.
if isfolder(trainingFolder)
    rmdir(trainingFolder,'s');
end
% Video files are written to the folders specified by the folderNames input.
writeVideoScenes(gTruth,timeRanges,trainingFolder,foldernames);
end

initializeTrainingProgressPlot

The initializeTrainingProgressPlot function configures two plots for displaying the training
loss, and the training accuracy.

function plotters = initializeTrainingProgressPlot(params)
if params.ProgressPlot
    % Plot the loss, training accuracy, and validation accuracy.
    figure
    
    % Loss plot
    subplot(2,1,1)
    plotters.LossPlotter = animatedline;
    xlabel("Iteration")
    ylabel("Loss")
    
    % Accuracy plot
    subplot(2,1,2)
    plotters.TrainAccPlotter = animatedline('Color','b');
    legend('Training Accuracy','Location','northwest');
    xlabel("Iteration")
    ylabel("Accuracy")
else
    plotters = [];
end
end

updateProgressPlot

The updateProgressPlot function updates the progress plot with loss and accuracy information
during training.

function updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accuracyTrain)
if params.ProgressPlot

8 Computer Vision Examples

8-20



    
    % Update the training progress.
    D = duration(0,0,toc(start),"Format","hh:mm:ss");
    title(plotters.LossPlotter.Parent,"Epoch: " + epoch + ", Elapsed: " + string(D));
    addpoints(plotters.LossPlotter,iteration,double(gather(extractdata(lossTrain))));
    addpoints(plotters.TrainAccPlotter,iteration,accuracyTrain);
    drawnow
end
end

initializeVerboseOutput

The initializeVerboseOutput function displays the column headings for the table of training
values, which shows the epoch, mini-batch accuracy, and other training values.

function initializeVerboseOutput(params)
if params.Verbose
    disp(" ")
    if canUseGPU
        disp("Training on GPU.")
    else
        disp("Training on CPU.")
    end
    p = gcp('nocreate');
    if ~isempty(p)
        disp("Training on parallel cluster '" + p.Cluster.Profile + "'. ")
    end
    disp("NumIterations:" + string(params.NumIterations));
    disp("MiniBatchSize:" + string(params.MiniBatchSize));
    disp("Classes:" + join(string(params.Classes),","));
    disp("|===========================================================================================|")
    disp("| Epoch | Iteration | Time Elapsed | Mini-Batch | Mini-Batch |  Base Learning  | Train Time |")
    disp("|       |           |  (hh:mm:ss)  |  Accuracy  |    Loss    |      Rate       | (hh:mm:ss) |")
    disp("|===========================================================================================|")
end
end

displayVerboseOutputEveryEpoch

The displayVerboseOutputEveryEpoch function displays the verbose output of the training
values, such as the epoch, mini-batch accuracy, and mini-batch loss.

function displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
                accTrain,lossTrain,trainTime)
    if params.Verbose
        D = duration(0,0,toc(start),'Format','hh:mm:ss');
        trainTime = duration(0,0,trainTime,'Format','hh:mm:ss');
        
        lossTrain = gather(extractdata(lossTrain));
        lossTrain = compose('%.4f',lossTrain);

        accTrain = composePadAccuracy(accTrain);

        learnRate = compose('%.13f',learnRate);

        disp("| " + ...
            pad(string(epoch),5,'both') + " | " + ...
            pad(string(iteration),9,'both') + " | " + ...

 Gesture Recognition using Videos and Deep Learning

8-21



            pad(string(D),12,'both') + " | " + ...
            pad(string(accTrain),10,'both') + " | " + ...
            pad(string(lossTrain),10,'both') + " | " + ...
            pad(string(learnRate),13,'both') + " | " + ...
            pad(string(trainTime),10,'both') + " |")
    end

    function acc = composePadAccuracy(acc)
        acc = compose('%.2f',acc*100) + "%";
        acc = pad(string(acc),6,'left');
    end

end

endVerboseOutput

The endVerboseOutput function displays the end of verbose output during training.

function endVerboseOutput(params)
if params.Verbose
    disp("|===========================================================================================|")
end
end

References

[1] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. "SlowFast Networks for
Video Recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[2] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, Andrew
Zisserman. "The Kinetics Human Action Video data set." arXiv preprint arXiv:1705.06950, 2017.

[3] Loshchilov, Ilya, and Frank Hutter. "SGDR: Stochastic Gradient Descent with Warm Restarts."
International Conferencee on Learning Representations 2017. Toulon, France: ICLR, 2017.

8 Computer Vision Examples

8-22



Code Generation for Object Detection by Using Single Shot
Multibox Detector

This example shows how to generate CUDA® code for an SSD network (ssdObjectDetector object)
and take advantage of the NVIDIA® cuDNN and TensorRT libraries. An SSD network is based on a
feed-forward convolutional neural network that detect multiple objects within the image in a single
shot. SSD network can be thought of as having two sub-networks. A feature extraction network,
followed by a detection network.

This example generates code for the network trained in the Object Detection Using SSD Deep
Learning example from Computer Vision Toolbox™. For more information, see “Object Detection
Using SSD Deep Learning” (Computer Vision Toolbox). The Object Detection Using SSD Deep
Learning example uses ResNet-50 for feature extraction. The detection sub-network is a small CNN
compared to the feature extraction network and is composed of a few convolutional layers and layers
specific to SSD.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get Pretrained DAG Network

This example uses the ssdResNet50VehicleExample_20a MAT-file containing the pretrained SSD
network. This file is approximately 44 MB size. Download the file from the MathWorks website.

ssdNetFile = matlab.internal.examples.downloadSupportFile('vision/data','ssdResNet50VehicleExample_20a.mat');

 Code Generation for Object Detection by Using Single Shot Multibox Detector

8-23



The DAG network contains 180 layers including convolution, ReLU, and batch normalization layers,
anchor box, SSD merge, focal loss, and other layers. To display an interactive visualization of the
deep learning network architecture, use the analyzeNetwork function.

load(ssdNetFile);
analyzeNetwork(detector.Network);

The ssdObj_detect Entry-Point Function

The ssdObj_detect.m entry-point function takes an image input and runs the detector on the image
using the deep learning network saved in the ssdResNet50VehicleExample_20a.mat file. The
function loads the network object from the ssdResNet50VehicleExample_20a.mat file into a
persistent variable ssdObj and reuses the persistent object on subsequent detection calls.

type('ssdObj_detect.m')

function outImg = ssdObj_detect(in,matFile)

%   Copyright 2019-2022 The MathWorks, Inc.

persistent ssdObj;

if isempty(ssdObj)
    ssdObj = coder.loadDeepLearningNetwork(matFile);
end

% Pass in input
[bboxes,~,labels] = detect(ssdObj,in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors for 
% execution
labels = cellstr(labels);

% Annotate detections in the image.
if ~isempty(labels)
    outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);
else
    outImg = in;
end

Run MEX Code Generation

To generate CUDA code for the ssdObj_detect.m entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command specifying an input size of 300-by-300-by-3. This value corresponds to the
input layer size of SSD Network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(300,300,3,'uint8'),coder.Constant(ssdNetFile)};
codegen -config cfg ssdObj_detect -args inputArgs -report

Code generation successful: View report

8 Computer Vision Examples

8-24



Run Generated MEX

To test the generated MEX, the example uses a small vehicle data set that contains 295 images. Many
of these images come from the Caltech Cars 1999 and 2001 data sets, available at the Caltech
Research Data Respository website, created by Pietro Perona and used with permission.

Load the vehicle data set and randomly select 10 images to test the generated code.

unzip vehicleDatasetImages.zip
imageNames = dir(fullfile(pwd,'vehicleImages','*.jpg'));
imageNames = {imageNames.name}';
rng(0);
imageIndices = randi(length(imageNames),1,10);

Read the video input frame-by-frame and detect the vehicles in the video using the detector.

for idx = 1:10
    testImage = imread(fullfile(pwd,'vehicleImages',imageNames{imageIndices(idx)}));
    resizedImage = imresize(testImage,[300,300]);
    detectorOutput = ssdObj_detect_mex(resizedImage,ssdNetFile);
    imshow(detectorOutput);
    pause(0.5)
end

References

[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang Fu, and
Alexander C. Berg. "SSD: Single shot multibox detector." In 14th European Conference on Computer
Vision, ECCV 2016. Springer Verlag, 2016.

 Code Generation for Object Detection by Using Single Shot Multibox Detector

8-25

https://data.caltech.edu/


Point Cloud Classification Using PointNet Deep Learning

This example shows how to train a PointNet network for point cloud classification.

Point cloud data is acquired by a variety of sensors, such as lidar, radar, and depth cameras. These
sensors capture 3-D position information about objects in a scene, which is useful for many
applications in autonomous driving and augmented reality. For example, discriminating vehicles from
pedestrians is critical for planning the path of an autonomous vehicle. However, training robust
classifiers with point cloud data is challenging because of the sparsity of data per object, object
occlusions, and sensor noise. Deep learning techniques have been shown to address many of these
challenges by learning robust feature representations directly from point cloud data. One of the
seminal deep learning techniques for point cloud classification is PointNet [1 on page 8-47].

This example trains a PointNet classifier on the Sydney Urban Objects data set created by the
University of Sydney [2 on page 8-47]. This data set provides a collection of point cloud data
acquired from an urban environment using a lidar sensor. The data set has 100 labeled objects from
14 different categories, such as car, pedestrian, and bus.

Load data set

Download and extract the Sydney Urban Objects data set to a temporary directory.

downloadDirectory = tempdir;
datapath = downloadSydneyUrbanObjects(downloadDirectory);

Load the downloaded training and validation data set using the loadSydneyUrbanObjectsData
helper function listed at the end of this example. Use the first three data folds for training and the
fourth for validation.

foldsTrain = 1:3;
foldsVal = 4;
dsTrain = loadSydneyUrbanObjectsData(datapath,foldsTrain);
dsVal = loadSydneyUrbanObjectsData(datapath,foldsVal);

Read one of the training samples and visualize it using pcshow.

data = read(dsTrain);
ptCloud = data{1,1};
label = data{1,2};

figure
pcshow(ptCloud.Location,[0 1 0],"MarkerSize",40,"VerticalAxisDir","down")
xlabel("X")
ylabel("Y")
zlabel("Z")
title(label)

8 Computer Vision Examples

8-26



Read the labels and count the number of points assigned to each label to better understand the
distribution of labels within the data set.

dsLabelCounts = transform(dsTrain,@(data){data{2} data{1}.Count});
labelCounts = readall(dsLabelCounts);
labels = vertcat(labelCounts{:,1});
counts = vertcat(labelCounts{:,2});

Next, use a histogram to visualize the class distribution.

figure
histogram(labels)

 Point Cloud Classification Using PointNet Deep Learning

8-27



The label histogram shows that the data set is imbalanced and biased towards cars and pedestrians,
which can prevent the training of a robust classifier. You can address class imbalance by
oversampling the infrequent classes. For the Sydney Urban Objects data set, duplicating files
corresponding to the infrequent classes is a simple method to address the class imbalance.

Group the files by label, count the number of observations per class, and use the
randReplicateFiles helper function, listed at the end of this example, to randomly oversample the
files to the desired number of observations per class.

rng(0)
[G,classes] = findgroups(labels);
numObservations = splitapply(@numel,labels,G);
desiredNumObservationsPerClass = max(numObservations);
files = splitapply(@(x){randReplicateFiles(x,desiredNumObservationsPerClass)},dsTrain.Files,G);
files = vertcat(files{:});
dsTrain.Files = files;

Data Augmentation

Duplicating the files to address class imbalance increases the likelihood of overfitting the network
because much of the training data is identical. To offset this effect, apply data augmentation to the
training data using the transform and augmentPointCloud helper function, which randomly
rotates the point cloud, randomly removes points, and randomly jitters points with Gaussian noise.

dsTrain = transform(dsTrain,@augmentPointCloud);

Preview one of the augmented training samples.

8 Computer Vision Examples

8-28



data = preview(dsTrain);
ptCloud = data{1,1};
label = data{1,2};

figure
pcshow(ptCloud.Location,[0 1 0],"MarkerSize",40,"VerticalAxisDir","down")
xlabel("X")
ylabel("Y")
zlabel("Z")
title(label)

Note that because the data for measuring the performance of the trained network must be
representative of the original data set, data augmentation is not applied to validation or test data.

Data Preprocessing

Two preprocessing steps are required to prepare the point cloud data for training and prediction.

First, to enable batch processing during training, select a fixed number of points from each point
cloud. The optimal number of points depends on the data set and the number of points required to
accurately capture the shape of the object. To help select the appropriate number of points, compute
the minimum, maximum, and mean number of points per class.

minPointCount = splitapply(@min,counts,G);
maxPointCount = splitapply(@max,counts,G);
meanPointCount = splitapply(@(x)round(mean(x)),counts,G);

stats = table(classes,numObservations,minPointCount,maxPointCount,meanPointCount)

 Point Cloud Classification Using PointNet Deep Learning

8-29



stats=14×5 table
       classes        numObservations    minPointCount    maxPointCount    meanPointCount
    ______________    _______________    _____________    _____________    ______________

    4wd                      15               140              1955              751     
    building                 15               193              8455             2708     
    bus                      11               126             11767             2190     
    car                      64                52              2377              528     
    pedestrian              107                20               297              110     
    pillar                   15                80               751              357     
    pole                     15                13               253               90     
    traffic lights           36                38               352              161     
    traffic sign             40                18               736              126     
    tree                     24                53              2953              470     
    truck                     9               445              3013             1376     
    trunk                    42                32               766              241     
    ute                      12                90              1380              580     
    van                      28                91              5809             1125     

Because of the large amount of intra-class and inter-class variability in the number of points per
class, choosing a value that fits all classes is difficult. One heuristic is to choose enough points to
adequately capture the shape of the objects while not increasing the computational cost by
processing too many points. A value of 1024 provides a good tradeoff between these two facets. You
can also select the optimal number of points based on empirical analysis. However, that is beyond the
scope of this example. Use the transform function to select 1024 points in the training and
validation sets.

numPoints = 1024;
dsTrain = transform(dsTrain,@(data)selectPoints(data,numPoints));
dsVal = transform(dsVal,@(data)selectPoints(data,numPoints));

The last preprocessing step is to normalize the point cloud data between 0 and 1 to account for large
differences in the range of data values. For example, objects closer to the lidar sensor have smaller
values compared to objects that are further away. These differences can hinder the convergence of
the network during training. Use transform to normalize the point cloud data in the training and
validation sets.

dsTrain = transform(dsTrain,@preprocessPointCloud);
dsVal = transform(dsVal,@preprocessPointCloud);

Preview the augmented and preprocessed training data.

data = preview(dsTrain);
figure
pcshow(data{1,1},[0 1 0],"MarkerSize",40,"VerticalAxisDir","down");
xlabel("X")
ylabel("Y")
zlabel("Z")
title(data{1,2})

8 Computer Vision Examples

8-30



Define PointNet Model

The PointNet classification model consists of two components. The first component is a point cloud
encoder that learns to encode sparse point cloud data into a dense feature vector. The second
component is a classifier that predicts the categorical class of each encoded point cloud.

The PointNet encoder model is further composed of four models followed by a max operation.

1 Input transform model
2 Shared MLP model
3 Feature transform model
4 Shared MLP model

The shared MLP model is implemented using a series of convolution, batch normalization, and ReLU
operations. The convolution operation is configured such that the weights are shared across the input
point cloud. The transform model is composed of a shared MLP and a learnable transform matrix that
is applied to each point cloud. The shared MLP and the max operation make the PointNet encoder
invariant to the order in which the points are processed, while the transform model provides
invariance to orientation changes.

Define PointNet Encoder Model Parameters

The shared MLP and transform models are parameterized by the number of input channels and the
hidden channel sizes. The values chosen in this example are selected by tuning these
hyperparameters on the Sydney Urban Objects data set. Note that if you want to apply PointNet to a
different data set, you must perform additional hyperparameter tuning.

 Point Cloud Classification Using PointNet Deep Learning

8-31



Set the input transform model input channel size to three and the hidden channel sizes to 64, 128,
and 256 and use the initializeTransform helper function, listed at the end of this example, to
initialize the model parameters.

inputChannelSize = 3;
hiddenChannelSize1 = [64,128];
hiddenChannelSize2 = 256;
[parameters.InputTransform, state.InputTransform] = initializeTransform(inputChannelSize,hiddenChannelSize1,hiddenChannelSize2);

Set the first shared MLP model input channel size to three and the hidden channel size to 64 and use
the initializeSharedMLP helper function, listed at the end of this example, to initialize the model
parameters.

inputChannelSize = 3;
hiddenChannelSize = [64 64];
[parameters.SharedMLP1,state.SharedMLP1] = initializeSharedMLP(inputChannelSize,hiddenChannelSize);

Set the feature transformation model input channel size to 64 and hidden channel sizes to 64, 128,
and 256 and use the initializeTransform helper function, listed at the end of this example, to
initialize the model parameters.

inputChannelSize = 64;
hiddenChannelSize1 = [64,128];
hiddenChannelSize2 = 256;
[parameters.FeatureTransform, state.FeatureTransform] = initializeTransform(inputChannelSize,hiddenChannelSize,hiddenChannelSize2);

Set the second shared MLP model input channel size to 64 and the hidden channel size to 64 and use
the initializeSharedMLP function, listed at the end of this example, to initialize the model
parameters.

inputChannelSize = 64;
hiddenChannelSize = 64;
[parameters.SharedMLP2,state.SharedMLP2] = initializeSharedMLP(inputChannelSize,hiddenChannelSize);

Define PointNet Classifier Model Parameters

The PointNet classifier model consists of a shared MLP, a fully connected operation, and a softmax
activation. Set the classifier model input size to 64 and the hidden channel size to 512 and 256 and
use the initalizeClassifier helper function, listed at the end of this example, to initialize the
model parameters.

inputChannelSize = 64;
hiddenChannelSize = [512,256];
numClasses = numel(classes);
[parameters.ClassificationMLP, state.ClassificationMLP] = initializeClassificationMLP(inputChannelSize,hiddenChannelSize,numClasses);

Define PointNet Function

Create the function pointnetClassifier, listed in the Model Function section at the end of the
example, to compute the outputs of the PointNet model. The function model takes as input the point
cloud data, the learnable model parameters, the model state, and a flag that specifies whether the
model returns outputs for training or prediction. The network returns the predictions for classifying
the input point cloud.

Define Model Gradients Function

Create the function modelGradients, listed in the Model Gradients Function section of the example,
that takes as input the model parameters, the model state, and a mini-batch of input data, and

8 Computer Vision Examples

8-32



returns the gradients of the loss with respect to the learnable parameters in the models and the
corresponding loss.

Specify Training Options

Train for 10 epochs and load data in batches of 128. Set the initial learning rate to 0.002 and the L2
regularization factor to 0.01.

numEpochs = 10;
learnRate = 0.002;
miniBatchSize = 128;
l2Regularization = 0.01;
learnRateDropPeriod = 15;
learnRateDropFactor = 0.5;

Initialize the options for Adam optimization.

gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Train PointNet

Train the model using a custom training loop.

Shuffle the data at the beginning of training.

For each iteration:

• Read a batch of data.
• Evaluate the model gradients.
• Apply L2 weight regularization.
• Use adamupdate to update the model parameters.
• Update the training progress plot.

At the end of each epoch, evaluate the model against the validation data set and collect confusion
metrics to measure classification accuracy as training progresses.

After completing learnRateDropPeriod epochs, reduce the learning rate by a factor of
learnRateDropFactor.

Initialize the moving average of the parameter gradients and the element-wise squares of the
gradients used by the Adam optimizer.

avgGradients = [];
avgSquaredGradients = [];

Train the model if doTraining is true. Otherwise, load a pretrained network.

Note that training was verified on an NVIDIA Titan X with 12 GB of GPU memory. If your GPU has
less memory, you may run out of memory during training. If this happens, lower the miniBatchSize.
Training this network takes about 5 minutes. Depending on your GPU hardware, it can take longer.

doTraining = false;

if doTraining
    

 Point Cloud Classification Using PointNet Deep Learning

8-33



    % Create a minibatchqueue to batch data from training and validation
    % datastores. Use the batchData function, listed at the end of the
    % example, to batch the point cloud data and one-hot encode the label 
    % data.
    numOutputsFromDSRead = 2;
    mbqTrain = minibatchqueue(dsTrain,numOutputsFromDSRead,...
        "MiniBatchSize", miniBatchSize,...
        "MiniBatchFcn",@batchData,...
        "MiniBatchFormat",["SCSB" "BC"]);
    
    mbqVal = minibatchqueue(dsVal,numOutputsFromDSRead,...
        "MiniBatchSize", miniBatchSize,... 
        "MiniBatchFcn",@batchData,...
        "MiniBatchFormat",["SCSB" "BC"]);
 
    % Use the configureTrainingProgressPlot function, listed at the end of the
    % example, to initialize the training progress plot to display the training
    % loss, training accuracy, and validation accuracy.
    [lossPlotter, trainAccPlotter,valAccPlotter] = initializeTrainingProgressPlot;
    
    numClasses = numel(classes);
    iteration = 0;
    start = tic;
    for epoch = 1:numEpochs
        
        % Shuffle data every epoch.
        shuffle(mbqTrain);
      
        % Iterate through data set.
        while hasdata(mbqTrain)
            iteration = iteration + 1;
            
            % Read next batch of training data.
            [XTrain, YTrain] = next(mbqTrain);            
            
            % Evaluate the model gradients and loss using dlfeval and the
            % modelGradients function.
            [gradients, loss, state, acc] = dlfeval(@modelGradients,XTrain,YTrain,parameters,state);
            
            % L2 regularization.
            gradients = dlupdate(@(g,p) g + l2Regularization*p,gradients,parameters);
            
            % Update the network parameters using the Adam optimizer.
            [parameters, avgGradients, avgSquaredGradients] = adamupdate(parameters, gradients, ...
                avgGradients, avgSquaredGradients, iteration,...
                learnRate,gradientDecayFactor, squaredGradientDecayFactor);
            
            % Update the training progress.
            D = duration(0,0,toc(start),"Format","hh:mm:ss");
            title(lossPlotter.Parent,"Epoch: " + epoch + ", Elapsed: " + string(D))
            addpoints(lossPlotter,iteration,double(gather(extractdata(loss))))
            addpoints(trainAccPlotter,iteration,acc);
            drawnow
        end
        
        % Evaluate the model on validation data.
        cmat = sparse(numClasses,numClasses);
        while hasdata(mbqVal)

8 Computer Vision Examples

8-34



            
            % Read next batch of validation data.
            [XVal, YVal] = next(mbqVal);

            % Compute label predictions.
            isTraining = false;
            YPred = pointnetClassifier(XVal,parameters,state,isTraining);
            
            % Choose prediction with highest score as the class label for
            % XTest.
            [~,YValLabel] = max(YVal,[],1);
            [~,YPredLabel] = max(YPred,[],1);
            
            % Collect confusion metrics.
            cmat = aggreateConfusionMetric(cmat,YValLabel,YPredLabel);
        end
        
        % Update training progress plot with average classification accuracy.
        acc = sum(diag(cmat))./sum(cmat,"all");
        addpoints(valAccPlotter,iteration,acc);
        
        % Upate the learning rate.
        if mod(epoch,learnRateDropPeriod) == 0
            learnRate = learnRate * learnRateDropFactor;
        end
        
        % Reset training and validation data queues.
        reset(mbqTrain);
        reset(mbqVal);
    end

else
    % Download pretrained model parameters, model state, and validation
    % results.
    pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/data/pointnetSydneyUrbanObjects.zip'; 
    pretrainedResults = downloadPretrainedPointNet(pretrainedURL);
   
    parameters = pretrainedResults.parameters;
    state = pretrainedResults.state;
    cmat = pretrainedResults.cmat;
    
    % Move model parameters to the GPU if possible and convert to a dlarray.
    parameters = prepareForPrediction(parameters,@(x)dlarray(toDevice(x,canUseGPU)));
    
    % Move model state to the GPU if possible.
    state = prepareForPrediction(state,@(x)toDevice(x,canUseGPU));
end

Display the validation confusion matrix.

figure
chart = confusionchart(cmat,classes);

 Point Cloud Classification Using PointNet Deep Learning

8-35



Compute the mean training and validation accuracy.

acc = sum(diag(cmat))./sum(cmat,"all")

acc = 0.5742

Due to the limited number of training samples in the Sydney Urban Objects data set, increasing the
validation accuracy beyond 60% is challenging. The model easily overfits the training data in the
absence of the augmentation defined in the augmentPointCloudData helper function. To improve
the robustness of the PointNet classifier, additional training is required.

Classify Point Cloud Data Using PointNet

Load point cloud data with pcread, preprocess the point cloud using the same function used during
training, and convert the result to a dlarray.

ptCloud = pcread("car.pcd");
X = preprocessPointCloud(ptCloud);
dlX = dlarray(X{1},"SCSB");

Predict point cloud labels with the pointnetClassifier model function.

YPred = pointnetClassifier(dlX,parameters,state,false);
[~,classIdx] = max(YPred,[],1);

Display the point cloud and the predicted label with the highest score.

8 Computer Vision Examples

8-36



figure
pcshow(ptCloud.Location,[0 1 0],"MarkerSize",40,"VerticalAxisDir","down")
title(classes(classIdx))

Model Gradients Function

The modelGradients function takes as input a mini-batch of data dlX, the corresponding target dlY,
and the learnable parameters, and returns the gradients of the loss with respect to the learnable
parameters and the corresponding loss. The loss includes a regularization term designed to ensure
the feature transformation matrix predicted by the PointNet encoder is approximately orthogonal. To
compute the gradients, evaluate the modelGradients function using the dlfeval function in the
training loop.

function [gradients, loss, state, acc] = modelGradients(X,Y,parameters,state)

% Execute the model function.
isTraining = true;
[YPred,state,dlT] = pointnetClassifier(X,parameters,state,isTraining);

% Add regularization term to ensure feature transform matrix is
% approximately orthogonal.
K = size(dlT,1);
B = size(dlT, 4);
I = repelem(eye(K),1,1,1,B);
dlI = dlarray(I,"SSCB");
treg = mse(dlI,pagemtimes(dlT,permute(dlT,[2 1 3 4])));
factor = 0.001;

 Point Cloud Classification Using PointNet Deep Learning

8-37



% Compute the loss.
loss = crossentropy(YPred,Y) + factor*treg;

% Compute the parameter gradients with respect to the loss. 
gradients = dlgradient(loss, parameters);

% Compute training accuracy metric.
[~,YTest] = max(Y,[],1);
[~,YPred] = max(YPred,[],1);
acc = gather(extractdata(sum(YTest == YPred)./numel(YTest)));

end

PointNet Classifier Function

The pointnetClassifier function takes as input the point cloud data dlX, the learnable model
parameters, the model state, and the flag isTraining, which specifies whether the model returns
outputs for training or prediction. Then, the function invokes the PointNet encoder and a multilayer
perceptron to extract classification features. During training, dropout is applied after each
perceptron operation. After the last perceptron, a fullyconnect operation maps the classification
features to the number of classes and a softmax activation is used to normalize the output into a
probability distribution of labels. The probability distribution, the updated model state, and the
feature transformation matrix predicted by the PointNet encoder are returned as outputs.

function [dlY,state,dlT] = pointnetClassifier(dlX,parameters,state,isTraining)

% Invoke the PointNet encoder.
[dlY,state,dlT] = pointnetEncoder(dlX,parameters,state,isTraining);

% Invoke the classifier.
p = parameters.ClassificationMLP.Perceptron;
s = state.ClassificationMLP.Perceptron;
for k = 1:numel(p) 
     
    [dlY, s(k)] = perceptron(dlY,p(k),s(k),isTraining);
      
    % If training, apply inverted dropout with a probability of 0.3.
    if isTraining
        probability = 0.3; 
        dropoutScaleFactor = 1 - probability;
        dropoutMask = ( rand(size(dlY), "like", dlY) > probability ) / dropoutScaleFactor;
        dlY = dlY.*dropoutMask;
    end
    
end
state.ClassificationMLP.Perceptron = s;

% Apply final fully connected and softmax operations.
weights = parameters.ClassificationMLP.FC.Weights;
bias = parameters.ClassificationMLP.FC.Bias;
dlY = fullyconnect(dlY,weights,bias);
dlY = softmax(dlY);
end

8 Computer Vision Examples

8-38



PointNet Encoder Function

The pointnetEncoder function processes the input dlX using an input transform, a shared MLP, a
feature transform, a second shared MLP, and a max operation, and returns the result of the max
operation.

function [dlY,state,T] = pointnetEncoder(dlX,parameters,state,isTraining)
% Input transform.
[dlY,state.InputTransform] = dataTransform(dlX,parameters.InputTransform,state.InputTransform,isTraining);

% Shared MLP.
[dlY,state.SharedMLP1.Perceptron] = sharedMLP(dlY,parameters.SharedMLP1.Perceptron,state.SharedMLP1.Perceptron,isTraining);

% Feature transform.
[dlY,state.FeatureTransform,T] = dataTransform(dlY,parameters.FeatureTransform,state.FeatureTransform,isTraining);

% Shared MLP.
[dlY,state.SharedMLP2.Perceptron] = sharedMLP(dlY,parameters.SharedMLP2.Perceptron,state.SharedMLP2.Perceptron,isTraining);

% Max operation.
dlY = max(dlY,[],1);
end

Shared Multilayer Perceptron Function

The shared multilayer perceptron function processes the input dlX using a series of perceptron
operations and returns the result of the last perceptron.

function [dlY,state] = sharedMLP(dlX,parameters,state,isTraining)
dlY = dlX;
for k = 1:numel(parameters) 
    [dlY, state(k)] = perceptron(dlY,parameters(k),state(k),isTraining);
end
end

Perceptron Function

The perceptron function processes the input dlX using a convolution, a batch normalization, and a
relu operation and returns the output of the ReLU operation.

function [dlY,state] = perceptron(dlX,parameters,state,isTraining)
% Convolution.
W = parameters.Conv.Weights;
B = parameters.Conv.Bias;
dlY = dlconv(dlX,W,B);

% Batch normalization. Update batch normalization state when training.
offset = parameters.BatchNorm.Offset;
scale = parameters.BatchNorm.Scale;
trainedMean = state.BatchNorm.TrainedMean;
trainedVariance = state.BatchNorm.TrainedVariance;
if isTraining
    [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
    
    % Update state.
    state.BatchNorm.TrainedMean = trainedMean;
    state.BatchNorm.TrainedVariance = trainedVariance;
else

 Point Cloud Classification Using PointNet Deep Learning

8-39



    dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end

% ReLU.
dlY = relu(dlY);
end

Data Transform Function

The dataTransform function processes the input dlX using a shared MLP, a max operation, and
another shared MLP to predict a transformation matrix T. The transformation matrix is applied to the
input dlX using a batched matrix multiply operation. The function returns the result of the batched
matrix multiply and the transformation matrix.

function [dlY,state,T] = dataTransform(dlX,parameters,state,isTraining)

% Shared MLP.
[dlY,state.Block1.Perceptron] = sharedMLP(dlX,parameters.Block1.Perceptron,state.Block1.Perceptron,isTraining);

% Max operation.
dlY = max(dlY,[],1);

% Shared MLP.
[dlY,state.Block2.Perceptron] = sharedMLP(dlY,parameters.Block2.Perceptron,state.Block2.Perceptron,isTraining);

% Transform net (T-Net). Apply last fully connected operation as W*X to
% predict tranformation matrix T.
dlY = squeeze(dlY); % N-by-B
T = parameters.Transform * stripdims(dlY); % K^2-by-B

% Reshape T into a square matrix.
K = sqrt(size(T,1));
T = reshape(T,K,K,1,[]); % [K K 1 B]
T = T + eye(K);

% Apply to input dlX using batch matrix multiply. 
[C,B] = size(dlX,[3 4]);  % [M 1 K B]
dlX = reshape(dlX,[],C,1,B); % [M K 1 B]
Y = pagemtimes(dlX,T);
dlY = dlarray(Y,"SCSB");
end

Model Parameter Initialization Functions

initializeTransform Function

The initializeTransform function takes as input the channel size and the number of hidden
channels for the two shared MLPs, and returns the initialized parameters in a struct. The parameters
are initialized using He weight initialization [3 on page 8-47].

function [params,state] = initializeTransform(inputChannelSize,block1,block2)
[params.Block1,state.Block1] = initializeSharedMLP(inputChannelSize,block1);
[params.Block2,state.Block2] = initializeSharedMLP(block1(end),block2);

% Parameters for the transform matrix.
params.Transform = dlarray(zeros(inputChannelSize^2,block2(end)));
end

8 Computer Vision Examples

8-40



initializeSharedMLP Function

The initializeSharedMLP function takes as input the channel size and the hidden channel size, and
returns the initialized parameters in a struct. The parameters are initialized using He weight
initialization.

function [params,state] = initializeSharedMLP(inputChannelSize,hiddenChannelSize)
weights = initializeWeightsHe([1 1 inputChannelSize hiddenChannelSize(1)]);
bias = zeros(hiddenChannelSize(1),1,"single");
p.Conv.Weights = dlarray(weights);
p.Conv.Bias = dlarray(bias);

p.BatchNorm.Offset = dlarray(zeros(hiddenChannelSize(1),1,"single"));
p.BatchNorm.Scale = dlarray(ones(hiddenChannelSize(1),1,"single"));

s.BatchNorm.TrainedMean = zeros(hiddenChannelSize(1),1,"single");
s.BatchNorm.TrainedVariance = ones(hiddenChannelSize(1),1,"single");

params.Perceptron(1) = p;
state.Perceptron(1) = s;

for k = 2:numel(hiddenChannelSize)
    weights = initializeWeightsHe([1 1 hiddenChannelSize(k-1) hiddenChannelSize(k)]);
    bias = zeros(hiddenChannelSize(k),1,"single");
    p.Conv.Weights = dlarray(weights);
    p.Conv.Bias = dlarray(bias);
    
    p.BatchNorm.Offset = dlarray(zeros(hiddenChannelSize(k),1,"single"));
    p.BatchNorm.Scale = dlarray(ones(hiddenChannelSize(k),1,"single"));
    
    s.BatchNorm.TrainedMean = zeros(hiddenChannelSize(k),1,"single");
    s.BatchNorm.TrainedVariance = ones(hiddenChannelSize(k),1,"single");

    params.Perceptron(k) = p;
    state.Perceptron(k) = s;
end
end

initializeClassificationMLP Function

The initializeClassificationMLP function takes as input the channel size, the hidden channel
size, and the number of classes and returns the initialized parameters in a struct. The shared MLP is
initialized using He weight initialization and the final fully connected operation is initialized using
random Gaussian values.

function [params,state] = initializeClassificationMLP(inputChannelSize,hiddenChannelSize,numClasses)
[params,state] = initializeSharedMLP(inputChannelSize,hiddenChannelSize);

weights = initializeWeightsGaussian([numClasses hiddenChannelSize(end)]);
bias = zeros(numClasses,1,"single");
params.FC.Weights = dlarray(weights);
params.FC.Bias = dlarray(bias);
end

initializeWeightsHe Function

The initializeWeightsHe function initializes parameters using He initialization.

 Point Cloud Classification Using PointNet Deep Learning

8-41



function x = initializeWeightsHe(sz)
fanIn = prod(sz(1:3));
stddev = sqrt(2/fanIn);
x = stddev .* randn(sz);
end

initializeWeightsGaussian Function

The initializeWeightsGaussian function initializes parameters using Gaussian initialization with
a standard deviation of 0.01.

function x = initializeWeightsGaussian(sz)
x = randn(sz,"single") .* 0.01;
end

Data Preprocessing Functions

preprocessPointCloudData Function

The preprocessPointCloudData function extracts the X, Y, Z point data from the input data and
normalizes the data between 0 and 1. The function returns the normalized X, Y, Z data.

function data = preprocessPointCloud(data)

if ~iscell(data)
    data = {data};
end

numObservations = size(data,1);
for i = 1:numObservations
    % Scale points between 0 and 1.
    xlim = data{i,1}.XLimits;
    ylim = data{i,1}.YLimits;
    zlim = data{i,1}.ZLimits;
    
    xyzMin = [xlim(1) ylim(1) zlim(1)];
    xyzDiff = [diff(xlim) diff(ylim) diff(zlim)];
    
    data{i,1} = (data{i,1}.Location - xyzMin) ./ xyzDiff;
end
end

selectPoints Function

The selectPoints function samples the desired number of points. When the point cloud contains
more than the desired number of points, the function uses pcdownsample to randomly select points.
Otherwise, the function replicates data to produce the desired number of points.

function data = selectPoints(data,numPoints) 
% Select the desired number of points by downsampling or replicating
% point cloud data.
numObservations = size(data,1);
for i = 1:numObservations    
    ptCloud = data{i,1};
    if ptCloud.Count > numPoints
        percentage = numPoints/ptCloud.Count;
        data{i,1} = pcdownsample(ptCloud,"random",percentage);   
    else    

8 Computer Vision Examples

8-42



        replicationFactor = ceil(numPoints/ptCloud.Count);
        ind = repmat(1:ptCloud.Count,1,replicationFactor);
        data{i,1} = select(ptCloud,ind(1:numPoints));
    end 
end
end

Data Augmentation Functions

The augmentPointCloudData function randomly rotates a point cloud about the z-axis, randomly
drops 30% of the points, and randomly jitters the point location with Gaussian noise.

function data = augmentPointCloud(data)
   
numObservations = size(data,1);
for i = 1:numObservations
    
    ptCloud = data{i,1};
    
    % Rotate the point cloud about "up axis", which is Z for this data set.
    tform = randomAffine3d(...
        "XReflection", true,...
        "YReflection", true,...
        "Rotation",@randomRotationAboutZ);
    
    ptCloud = pctransform(ptCloud,tform);
    
    % Randomly drop out 30% of the points.
    if rand > 0.5
        ptCloud = pcdownsample(ptCloud,'random',0.3);
    end
    
    if rand > 0.5
        % Jitter the point locations with Gaussian noise with a mean of 0 and 
        % a standard deviation of 0.02 by creating a random displacement field.
        D = 0.02 * randn(size(ptCloud.Location));
        ptCloud = pctransform(ptCloud,D);   
    end
    
    data{i,1} = ptCloud;
end
end

function [rotationAxis,theta] = randomRotationAboutZ()
rotationAxis = [0 0 1];
theta = 360*rand;
end

Supporting Functions

aggregateConfusionMetric Function

The aggregateConfusionMetric function incrementally fills a confusion matrix based on the
predicted results YPred and the expected results YTest.

function cmat = aggreateConfusionMetric(cmat,YTest,YPred)
YTest = gather(extractdata(YTest));
YPred = gather(extractdata(YPred));

 Point Cloud Classification Using PointNet Deep Learning

8-43



[m,n] = size(cmat);
cmat = cmat + full(sparse(YTest,YPred,1,m,n));
end

initializeTrainingProgressPlot Function

The initializeTrainingProgressPlot function configures two plots for displaying the training
loss, training accuracy, and validation accuracy.

function [plotter,trainAccPlotter,valAccPlotter] = initializeTrainingProgressPlot()
% Plot the loss, training accuracy, and validation accuracy.
figure

% Loss plot
subplot(2,1,1)
plotter = animatedline;
xlabel("Iteration")
ylabel("Loss")

% Accuracy plot
subplot(2,1,2)
trainAccPlotter = animatedline('Color','b');
valAccPlotter = animatedline('Color','g');
legend('Training Accuracy','Validation Accuracy','Location','northwest');
xlabel("Iteration")
ylabel("Accuracy")
end

replicateFiles Function

The replicateFiles function randomly oversamples a set of files and returns a set of files with
numDesired elements.

function files = randReplicateFiles(files,numDesired)
n = numel(files);
ind = randi(n,numDesired,1);
files = files(ind);
end

downloadSydneyUrbanObjects Function

The downloadSydneyUrbanObjects function downloads the data set and saves it to a temporary
directory.

function datapath = downloadSydneyUrbanObjects(dataLoc)

if nargin == 0
    dataLoc = pwd;
end

dataLoc = string(dataLoc);

url = "http://www.acfr.usyd.edu.au/papers/data/";
name = "sydney-urban-objects-dataset.tar.gz";

datapath = fullfile(dataLoc,'sydney-urban-objects-dataset');
if ~exist(datapath,'dir')
    disp('Downloading Sydney Urban Objects data set...');

8 Computer Vision Examples

8-44



    untar(url+name,dataLoc);
end

end

loadSydneyUrbanObjectsData Function

The loadSydneyUrbanObjectsData function creates a datastore for loading point cloud and label
data from the Sydney Urban Objects data set.

function ds = loadSydneyUrbanObjectsData(datapath,folds)

if nargin == 0
    return;
end

if nargin < 2
    folds = 1:4;
end

datapath = string(datapath);
path = fullfile(datapath,'objects',filesep);

% Add folds to datastore.
foldNames{1} = importdata(fullfile(datapath,'folds','fold0.txt'));
foldNames{2} = importdata(fullfile(datapath,'folds','fold1.txt'));
foldNames{3} = importdata(fullfile(datapath,'folds','fold2.txt'));
foldNames{4} = importdata(fullfile(datapath,'folds','fold3.txt'));
names = foldNames(folds);
names = vertcat(names{:});

fullFilenames = append(path,names);
ds = fileDatastore(fullFilenames,'ReadFcn',@extractTrainingData,'FileExtensions','.bin');
end

batchData Function

The batchData function collates data into batches and moves data to the GPU for processing.

function [X,Y] = batchData(ptCloud,labels)
X = cat(4,ptCloud{:});
labels = cat(1,labels{:});
Y = onehotencode(labels,2);
end

extractTrainingData Function

The extractTrainingData function extracts point cloud and label data from the Sydney Urban Objects
data set.

function dataOut = extractTrainingData(fname)

[pointData,intensity] = readbin(fname);

[~,name] = fileparts(fname);
name = string(name);
name = extractBefore(name,'.');
name = replace(name,'_',' ');

 Point Cloud Classification Using PointNet Deep Learning

8-45



labelNames = ["4wd","building","bus","car","pedestrian","pillar",...
    "pole","traffic lights","traffic sign","tree","truck","trunk","ute","van"];

label = categorical(name,labelNames);

dataOut = {pointCloud(pointData,'Intensity',intensity),label};

end

readbin Function

The readbin function reads the point cloud data from Sydney Urban Object binary files.

function [pointData,intensity] = readbin(fname)
% readbin Read point and intensity data from Sydney Urban Object binary
% files.

% names = ['t','intensity','id',...
%          'x','y','z',...
%          'azimuth','range','pid']
% 
% formats = ['int64', 'uint8', 'uint8',...
%            'float32', 'float32', 'float32',...
%            'float32', 'float32', 'int32']

fid = fopen(fname, 'r');
c = onCleanup(@() fclose(fid));

fseek(fid,10,-1); % Move to the first X point location 10 bytes from beginning
X = fread(fid,inf,'single',30);
fseek(fid,14,-1);
Y = fread(fid,inf,'single',30);
fseek(fid,18,-1);
Z = fread(fid,inf,'single',30);

fseek(fid,8,-1);
intensity = fread(fid,inf,'uint8',33);

pointData = [X,Y,Z];
end

downloadPretrainedPointNet Function

The downloadPretrainedPointNet function downloads a pretrained pointnet model.

function data = downloadPretrainedPointNet(pretrainedURL)
% Download and load a pretrained pointnet model.
if ~exist('pointnetSydneyUrbanObjects.mat', 'file')
    if ~exist('pointnetSydneyUrbanObjects.zip', 'file')
        disp('Downloading pretrained detector (5 MB)...');
        websave('pointnetSydneyUrbanObjects.zip', pretrainedURL);
    end
    unzip('pointnetSydneyUrbanObjects.zip');
end
data = load("pointnetSydneyUrbanObjects.mat");
end

8 Computer Vision Examples

8-46



prepareForPrediction Function

The prepareForPrediction function is used to apply a user-defined function to nested structure
data. It is a used to move model parameter and state data to the GPU.

function p = prepareForPrediction(p,fcn)

for i = 1:numel(p)
    p(i) = structfun(@(x)invoke(fcn,x),p(i),'UniformOutput',0);
end

    function data = invoke(fcn,data)
        if isstruct(data)
            data = prepareForPrediction(data,fcn);
        else
            data = fcn(data);
        end
    end
end

% Move data to the GPU.
function x = toDevice(x,useGPU)
if useGPU
    x = gpuArray(x);
end
end

References

[1] Charles, R. Qi, Hao Su, Mo Kaichun, and Leonidas J. Guibas. “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation.” In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 77–85. Honolulu, HI: IEEE, 2017. https://doi.org/10.1109/CVPR.2017.16.

[2] de Deuge, Mark, Alastair Quadras, Calvin Hung, and Bertrand Douillard. "Unsupervised Feature
Learning for Classification of Outdoor 3D Scans." In Australasian Conference on Robotics and
Automation 2013 (ACRA 13). Sydney, Australia: ACRA, 2013.

[3] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification.” In 2015 IEEE International
Conference on Computer Vision (ICCV), 1026–34. Santiago, Chile: IEEE, 2015. https://doi.org/
10.1109/ICCV.2015.123.

See Also

More About
• “Getting Started with Point Clouds Using Deep Learning” (Computer Vision Toolbox)
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239

 Point Cloud Classification Using PointNet Deep Learning

8-47



• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87
• “Automatic Differentiation Background” on page 19-214

8 Computer Vision Examples

8-48



Activity Recognition from Video and Optical Flow Data Using
Deep Learning

This example first shows how to perform activity recognition using a pretrained Inflated 3-D (I3D)
two-stream convolutional neural network based video classifier and then shows how to use transfer
learning to train such a video classifier using RGB and optical flow data from videos [1] on page 8-
75.

Overview

Vision-based activity recognition involves predicting the action of an object, such as walking,
swimming, or sitting, using a set of video frames. Activity recognition from video has many
applications, such as human-computer interaction, robot learning, anomaly detection, surveillance,
and object detection. For example, online prediction of multiple actions for incoming videos from
multiple cameras can be important for robot learning. Compared to image classification, action
recognition using videos is challenging to model because of the inaccurate ground truth data for
video data sets, the variety of gestures that actors in a video can perform, the heavily class
imbalanced datasets, and the large amount of data required to train a robust classifier from scratch.
Deep learning techniques, such as I3D two-stream convolutional networks [1] on page 8-75,
R(2+1)D [4 on page 8-76], and SlowFast [5 on page 8-76] have shown improved performance on
smaller datasets using transfer learning with networks pretrained on large video activity recognition
datasets, such as Kinetics-400 [6 on page 8-76].

Note: This example requires the Computer Vision Toolbox™ Model for Inflated-3D Video
Classification. You can install the Computer Vision Toolbox Model for Inflated-3D Video Classification
from Add-On Explorer. For more information about installing add-ons, see “Get and Manage Add-
Ons”.

Perform Activity Recognition Using a Pretrained Inflated-3D Video Classifier

Download the pretrained Inflated-3D video classifier along with a video file on which to perform
activity recognition. The size of the downloaded zip file is around 89 MB.

downloadFolder = fullfile(tempdir,"hmdb51","pretrained","I3D");
if ~isfolder(downloadFolder)
    mkdir(downloadFolder);
end

filename = "activityRecognition-I3D-HMDB51-21b.zip";

zipFile = fullfile(downloadFolder,filename);
if ~isfile(zipFile)
    disp('Downloading the pretrained network...');
    downloadURL = "https://ssd.mathworks.com/supportfiles/vision/data/" + filename;
    websave(zipFile,downloadURL);
    unzip(zipFile,downloadFolder);
end

Load the pretrained Inflated-3D video classifier.

pretrainedDataFile = fullfile(downloadFolder,"inflated3d-FiveClasses-hmdb51.mat");
pretrained = load(pretrainedDataFile);
inflated3dPretrained = pretrained.data.inflated3d;

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-49



Display the class label names of the pretrained video classifier.

classes = inflated3dPretrained.Classes

classes = 5×1 categorical
     kiss 
     laugh 
     pick 
     pour 
     pushup 

Read and display the video pour.avi using VideoReader and vision.VideoPlayer.

videoFilename = fullfile(downloadFolder, "pour.avi");

videoReader = VideoReader(videoFilename);
videoPlayer = vision.VideoPlayer;
videoPlayer.Name = "pour";

while hasFrame(videoReader)
   frame = readFrame(videoReader);
   % Resize the frame for display.
   frame = imresize(frame, 1.5);
   step(videoPlayer,frame);
end
release(videoPlayer);

Choose 10 randomly selected video sequences to classify the video, to uniformly cover the entirety of
the file to find the action class that is predominant in the video.

numSequences = 10;

Classify the video file using the classifyVideoFile function.

[actionLabel,score] = classifyVideoFile(inflated3dPretrained, videoFilename, "NumSequences", numSequences)

8 Computer Vision Examples

8-50



actionLabel = categorical
     pour 

score = single
    0.4482

Train a Video Classifier for Gesture Recognition

This section of the example shows how the video classifier shown above is trained using transfer
learning. Set the doTraining variable to false to use the pretrained video classifier without having

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-51



to wait for training to complete. Alternatively, if you want to train the video classifier, set the
doTraining variable to true.

doTraining = false;

Download Training and Validation Data

This example trains an Inflated-3D (I3D) Video Classifier using the HMDB51 data set. Use the
downloadHMDB51 supporting function, listed at the end of this example, to download the HMDB51
data set to a folder named hmdb51.

downloadFolder = fullfile(tempdir,"hmdb51");
downloadHMDB51(downloadFolder);

After the download is complete, extract the RAR file hmdb51_org.rar to the hmdb51 folder. Next,
use the checkForHMDB51Folder supporting function, listed at the end of this example, to confirm
that the downloaded and extracted files are in place.

allClasses = checkForHMDB51Folder(downloadFolder);

The data set contains about 2 GB of video data for 7000 clips over 51 classes, such as drink, run, and
shake hands. Each video frame has a height of 240 pixels and a minimum width of 176 pixels. The
number of frames ranges from 18 to approximately 1000.

To reduce training time, this example trains an activity recognition network to classify 5 action
classes instead of all 51 classes in the data set. Set useAllData to true to train with all 51 classes.

useAllData = false;

if useAllData
    classes = allClasses;
end
dataFolder = fullfile(downloadFolder, "hmdb51_org");

Split the data set into a training set for training the classifier, and a test set for evaluating the
classifier. Use 80% of the data for the training set and the rest for the test set. Use folders2labels
and splitlabels to create label information from folders and split the data based on each label
into training and test data sets by randomly selecting a proportion of files from each label.

[labels,files] = folders2labels(fullfile(dataFolder,string(classes)),...
    "IncludeSubfolders",true,...
    "FileExtensions",'.avi');

indices = splitlabels(labels,0.8,'randomized');

trainFilenames = files(indices{1});
testFilenames  = files(indices{2});

To normalize the input data for the network, the minimum and maximum values for the data set are
provided in the MAT file inputStatistics.mat, attached to this example. To find the minimum and
maximum values for a different data set, use the inputStatistics supporting function, listed at the
end of this example.

inputStatsFilename = 'inputStatistics.mat';
if ~exist(inputStatsFilename, 'file')
    disp("Reading all the training data for input statistics...")
    inputStats = inputStatistics(dataFolder);

8 Computer Vision Examples

8-52

https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/


else
    d = load(inputStatsFilename);
    inputStats = d.inputStats;    
end

Load Dataset

This example uses a datastore to read the videos scenes, the corresponding optical flow data, and the
corresponding labels from the video files.

Specify the number of video frames the datastore should be configured to output for each time data is
read from the datastore.

numFrames = 64;

A value of 64 is used here to balance memory usage and classification time. Common values to
consider are 16, 32, 64, or 128. Using more frames helps capture additional temporal information,
but requires more memory. You might need to lower this value depending on your system resources.
Empirical analysis is required to determine the optimal number of frames.

Next, specify the height and width of the frames the datastore should be configured to output. The
datastore automatically resizes the raw video frames to the specified size to enable batch processing
of multiple video sequences.

frameSize = [112,112];

A value of [112 112] is used to capture longer temporal relationships in the video scene which help
classify activities with long time durations. Common values for the size are [112 112], [224 224], or
[256 256]. Smaller sizes enable the use of more video frames at the cost of memory usage, processing
time, and spatial resolution. The minimum height and width of the video frames in the HMDB51 data
set are 240 and 176, respectively. If you want to specify a frame size for the datastore to read that is
larger than the minimum values, such as [256, 256], first resize the frames using imresize. As with
the number of frames, empirical analysis is required to determine the optimal values.

Specify the number of channels as 3 for the RGB video subnetwork, and 2 for the optical flow
subnetwork of the I3D video classifier. The two channels for optical flow data are the x and y
components of velocity, Vx and Vy, respectively.

rgbChannels = 3;
flowChannels = 2;

Use the helper function, createFileDatastore, to configure two FileDatastore objects for
loading the data, one for training and another for validation. The helper function is listed at the end
of this example. Each datastore reads a video file to provide RGB data and the corresponding label
information.

isDataForTraining = true;
dsTrain = createFileDatastore(trainFilenames,numFrames,rgbChannels,classes,isDataForTraining);

isDataForTraining = false;
dsVal = createFileDatastore(testFilenames,numFrames,rgbChannels,classes,isDataForTraining);

Define Network Architecture

I3D network

Using a 3-D CNN is a natural approach to extracting spatio-temporal features from videos. You can
create an I3D network from a pretrained 2-D image classification network such as Inception v1 or

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-53



ResNet-50 by expanding 2-D filters and pooling kernels into 3-D. This procedure reuses the weights
learned from the image classification task to bootstrap the video recognition task.

The following figure is a sample showing how to inflate a 2-D convolution layer to a 3-D convolution
layer. The inflation involves expanding the filter size, weights, and bias by adding a third dimension
(the temporal dimension).

Two-Stream I3D Network

Video data can be considered to have two parts: a spatial component and a temporal component.

• The spatial component comprises information about the shape, texture, and color of objects in
video. RGB data contains this information.

• The temporal component comprises information about the motion of objects across the frames and
depicts important movements between the camera and the objects in a scene. Computing optical
flow is a common technique for extracting temporal information from video.

A two-stream CNN incorporates a spatial subnetwork and a temporal subnetwork [2] on page 8-75.
A convolutional neural network trained on dense optical flow and a video data stream can achieve
better performance with limited training data than with raw stacked RGB frames. The following
illustration shows a typical two-stream I3D network.

Configure Inflated-3D (I3D) Video Classifier for Transfer Learning

In this example, you create an I3D video classifier based on the GoogLeNet architecture, a 3D
Convolution Neural Network Video Classifier pretrained on the Kinetics-400 dataset.

Specify GoogLeNet as the backbone convolution neural network architecture for the I3D video
classifier that contains two subnetworks, one for video data and another for optical flow data.

8 Computer Vision Examples

8-54



baseNetwork = "googlenet-video-flow";

Specify the input size for the Inflated-3D Video Classifier.

inputSize = [frameSize, rgbChannels, numFrames];

Obtain the minimum and maximum values for the RGB and optical flow data from the inputStats
structure loaded from the inputStatistics.mat file. These values are needed to normalize the
input data.

oflowMin = squeeze(inputStats.oflowMin)';
oflowMax = squeeze(inputStats.oflowMax)';
rgbMin   = squeeze(inputStats.rgbMin)';
rgbMax   = squeeze(inputStats.rgbMax)';

stats.Video.Min               = rgbMin;
stats.Video.Max               = rgbMax;
stats.Video.Mean              = [];
stats.Video.StandardDeviation = [];

stats.OpticalFlow.Min               = oflowMin(1:flowChannels);
stats.OpticalFlow.Max               = oflowMax(1:flowChannels);
stats.OpticalFlow.Mean              = [];
stats.OpticalFlow.StandardDeviation = [];

Create the I3D Video Classifier by using the inflated3dVideoClassifier function.

i3d = inflated3dVideoClassifier(baseNetwork,string(classes),...
    "InputSize",inputSize,...
    "InputNormalizationStatistics",stats);

Specify a model name for the video classifier.

i3d.ModelName = "Inflated-3D Activity Recognizer Using Video and Optical Flow";

Augment and Preprocess Training Data

Data augmentation provides a way to use limited data sets for training. Augmentation on video data
must be the same for a collection of frames, i.e. a video sequence, based on the network input size.
Minor changes, such as translation, cropping, or transforming an image, provide, new, distinct, and
unique images that you can use to train a robust video classifier. Datastores are a convenient way to
read and augment collections of data. Augment the training video data by using the augmentVideo
supporting function, defined at the end of this example.

dsTrain = transform(dsTrain, @augmentVideo);

Preprocess the training video data to resize to the Inflated-3D Video Classifier input size, by using the
preprocessVideoClips, defined at the end of this example. Specify the
InputNormalizationStatistics property of the video classifier and input size to the
preprocessing function as field values in a struct, preprocessInfo. The
InputNormalizationStatistics property is used to rescale the video frames and optical flow
data between -1 and 1. The input size is used to resize the video frames using imresize based on the
SizingOption value in the info struct. Alternatively, you could use "randomcrop" or
"centercrop" to random crop or center crop the input data to the input size of the video classifier.
Note that data augmentation is not applied to the test and validation data. Ideally, test and validation
data should be representative of the original data and is left unmodified for unbiased evaluation.

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-55



preprocessInfo.Statistics = i3d.InputNormalizationStatistics;
preprocessInfo.InputSize = inputSize;
preprocessInfo.SizingOption = "resize";
dsTrain = transform(dsTrain, @(data)preprocessVideoClips(data, preprocessInfo));
dsVal = transform(dsVal, @(data)preprocessVideoClips(data, preprocessInfo));

Define Model Gradients Function

Create the supporting function modelGradients, listed at the end of this example. The
modelGradients function takes as input the I3D video classifier i3d, a mini-batch of input data
dlRGB and dlFlow, and a mini-batch of ground truth label data dlY. The function returns the
training loss value, the gradients of the loss with respect to the learnable parameters of the classifier,
and the mini-batch accuracy of the classifier.

The loss is calculated by computing the average of the cross-entropy losses of the predictions from
each of the subnetworks. The output predictions of the network are probabilities between 0 and 1 for
each of the classes.

rgbLoss = crossentropy(rgbPrediction)

f lowLoss = crossentropy(f lowPrediction)

loss = mean([rgbLoss, f lowLoss])

The accuracy of each of the classifier is calculated by taking the average of the RGB and optical flow
predictions, and comparing it to the ground truth label of the inputs.

Specify Training Options

Train with a mini-batch size of 20 for 600 iterations. Specify the iteration after which to save the
video classifier with the best validation accuracy by using the SaveBestAfterIteration
parameter.

Specify the cosine-annealing learning rate schedule [3 on page 8-76] parameters:

• A minimum learning rate of 1e-4.
• A maximum learning rate of 1e-3.
• Cosine number of iterations of 100, 200, and 300, after which the learning rate schedule cycle

restarts. The option CosineNumIterations defines the width of each cosine cycle.

Specify the parameters for SGDM optimization. Initialize the SGDM optimization parameters at the
beginning of the training:

• A momentum of 0.9.
• An initial velocity parameter initialized as [].
• An L2 regularization factor of 0.0005.

Specify to dispatch the data in the background using a parallel pool. If DispatchInBackground is
set to true, open a parallel pool with the specified number of parallel workers, and create a
DispatchInBackgroundDatastore, provided as part of this example, that dispatches the data in
the background to speed up training using asynchronous data loading and preprocessing. By default,
this example uses a GPU if one is available. Otherwise, it uses a CPU. Using a GPU requires Parallel
Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU. For information about the supported
compute capabilities, see “GPU Computing Requirements” (Parallel Computing Toolbox).

8 Computer Vision Examples

8-56



params.Classes = classes;
params.MiniBatchSize = 20;
params.NumIterations = 600;
params.SaveBestAfterIteration = 400;
params.CosineNumIterations = [100, 200, 300];
params.MinLearningRate = 1e-4;
params.MaxLearningRate = 1e-3;
params.Momentum = 0.9;
params.VelocityRGB = [];
params.VelocityFlow = [];
params.L2Regularization = 0.0005;
params.ProgressPlot = true;
params.Verbose = true;
params.ValidationData = dsVal;
params.DispatchInBackground = false;
params.NumWorkers = 4;

Train I3D Video Classifier

Train the I3D video classifier using the RGB video data and optical flow data.

For each epoch:

• Shuffle the data before looping over mini-batches of data.
• Use minibatchqueue to loop over the mini-batches. The supporting function

createMiniBatchQueue, listed at the end of this example, uses the given training datastore to
create a minibatchqueue.

• Use the validation data dsVal to validate the networks.
• Display the loss and accuracy results for each epoch using the supporting function

displayVerboseOutputEveryEpoch, listed at the end of this example.

For each mini-batch:

• Convert the video data or optical flow data and the labels to dlarray objects with the underlying
type single.

• To enable processing the time dimension of the the video data using the I3D Video Classifier
specify the temporal sequence dimension, "T". Specify the dimension labels "SSCTB" (spatial,
spatial, channel, temporal, batch) for the video data, and "CB" for the label data.

The minibatchqueue object uses the supporting function batchVideoAndFlow, listed at the end of
this example, to batch the RGB video and optical flow data.

params.ModelFilename = "inflated3d-FiveClasses-hmdb51.mat";
if doTraining
    epoch     = 1;
    bestLoss  = realmax;

    accTrain     = [];
    accTrainRGB  = [];
    accTrainFlow = [];
    lossTrain    = [];

    iteration = 1;
    start     = tic;
    trainTime = start;

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-57



    shuffled  = shuffleTrainDs(dsTrain);

    % Number of outputs is three: One for RGB frames, one for optical flow
    % data, and one for ground truth labels.
    numOutputs = 3;
    mbq        = createMiniBatchQueue(shuffled, numOutputs, params);
    
    % Use the initializeTrainingProgressPlot and initializeVerboseOutput
    % supporting functions, listed at the end of the example, to initialize
    % the training progress plot and verbose output to display the training
    % loss, training accuracy, and validation accuracy.
    plotters = initializeTrainingProgressPlot(params);
    initializeVerboseOutput(params);

    while iteration <= params.NumIterations

        % Iterate through the data set.
        [dlVideo,dlFlow,dlY] = next(mbq);

        % Evaluate the model gradients and loss using dlfeval.
        [gradRGB,gradFlow,loss,acc,accRGB,accFlow,stateRGB,stateFlow] = ...
            dlfeval(@modelGradients,i3d,dlVideo,dlFlow,dlY);

        % Accumulate the loss and accuracies.
        lossTrain    = [lossTrain, loss];
        accTrain     = [accTrain, acc];
        accTrainRGB  = [accTrainRGB, accRGB];
        accTrainFlow = [accTrainFlow, accFlow];

        % Update the network state.
        i3d.VideoState       = stateRGB;
        i3d.OpticalFlowState = stateFlow;
        
        % Update the gradients and parameters for the RGB and optical flow
        % subnetworks using the SGDM optimizer.
        [i3d.VideoLearnables,params.VelocityRGB] = ...
            updateLearnables(i3d.VideoLearnables,gradRGB,params,params.VelocityRGB,iteration);
        [i3d.OpticalFlowLearnables,params.VelocityFlow,learnRate] = ...
            updateLearnables(i3d.OpticalFlowLearnables,gradFlow,params,params.VelocityFlow,iteration);
        
        if ~hasdata(mbq) || iteration == params.NumIterations
            % Current epoch is complete. Do validation and update progress.
            trainTime = toc(trainTime);

            [validationTime,cmat,lossValidation,accValidation,accValidationRGB,accValidationFlow] = ...
                doValidation(params, i3d);

            accTrain     = mean(accTrain);
            accTrainRGB  = mean(accTrainRGB);
            accTrainFlow = mean(accTrainFlow);
            lossTrain    = mean(lossTrain);

            % Update the training progress.
            displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
                accTrain,accTrainRGB,accTrainFlow,...
                accValidation,accValidationRGB,accValidationFlow,...
                lossTrain,lossValidation,trainTime,validationTime);
            updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accTrain,accValidation);

8 Computer Vision Examples

8-58



            
            % Save the trained video classifier and the parameters, that gave 
            % the best validation loss so far. Use the saveData supporting function,
            % listed at the end of this example.
            bestLoss = saveData(i3d,bestLoss,iteration,cmat,lossTrain,lossValidation,...
                accTrain,accValidation,params);
        end
        
        if ~hasdata(mbq) && iteration < params.NumIterations
            % Current epoch is complete. Initialize the training loss, accuracy
            % values, and minibatchqueue for the next epoch.
            accTrain     = [];
            accTrainRGB  = [];
            accTrainFlow = [];
            lossTrain    = [];
        
            trainTime  = tic;
            epoch      = epoch + 1;
            shuffled   = shuffleTrainDs(dsTrain);
            numOutputs = 3;
            mbq        = createMiniBatchQueue(shuffled, numOutputs, params);
            
        end 
        
        iteration = iteration + 1;
    end
    
    % Display a message when training is complete.
    endVerboseOutput(params);
    
    disp("Model saved to: " + params.ModelFilename);
end

Evaluate Trained Network

Use the test data set to evaluate the accuracy of the trained video classifier.

Load the best model saved during training or use the pretrained model.

if doTraining
    transferLearned = load(params.ModelFilename);
    inflated3dPretrained = transferLearned.data.inflated3d;
end

Create a minibatchqueue object to load batches of the test data.

numOutputs = 3;
mbq = createMiniBatchQueue(params.ValidationData, numOutputs, params);

For each batch of test data, make predictions using the RGB and optical flow networks, take the
average of the predictions, and compute the prediction accuracy using a confusion matrix.

numClasses = numel(classes);
cmat = sparse(numClasses,numClasses);
while hasdata(mbq)
    [dlRGB, dlFlow, dlY] = next(mbq);
    
    % Pass the video input as RGB and optical flow data through the

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-59



    % two-stream I3D Video Classifier to get the separate predictions.
    [dlYPredRGB,dlYPredFlow] = predict(inflated3dPretrained,dlRGB,dlFlow);

    % Fuse the predictions by calculating the average of the predictions.
    dlYPred = (dlYPredRGB + dlYPredFlow)/2;
    
    % Calculate the accuracy of the predictions.
    [~,YTest] = max(dlY,[],1);
    [~,YPred] = max(dlYPred,[],1);

    cmat = aggregateConfusionMetric(cmat,YTest,YPred);
end

Compute the average classification accuracy for the trained networks.

accuracyEval = sum(diag(cmat))./sum(cmat,"all")

accuracyEval = 0.8850

Display the confusion matrix.

figure
chart = confusionchart(cmat,classes);

8 Computer Vision Examples

8-60



The Inflated-3D video classifier that is pretrained on the Kinetics-400 dataset, provides better
performance for human activity recognition on transfer learning. The above training was run on 24GB
Titan-X GPU for about 100 minutes. When training from scratch on a small activity recognition video
dataset, the training time and convergence takes much longer than the pretrained video classifier.
Transer learning using the Kinetics-400 pretrained Inflated-3D video classifier also avoids overfitting
the classifier when ran for larger number of epochs. However, the SlowFast Video Classifier and
R(2+1)D Video Classifier that are pretrained on the Kinetics-400 dataset provide better performance
and faster convergence during training compared to the Inflated-3D Video Classifier. To learn more
about video recognition using deep learning, see “Getting Started with Video Classification Using
Deep Learning” (Computer Vision Toolbox).

Supporting Functions

inputStatistics

The inputStatistics function takes as input the name of the folder containing the HMDB51 data,
and calculates the minimum and maximum values for the RGB data and the optical flow data. The
minimum and maximum values are used as normalization inputs to the input layer of the networks.
This function also obtains the number of frames in each of the video files to use later during training

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-61



and testing the network. In order to find the minimum and maximum values for a different data set,
use this function with a folder name containing the data set.

function inputStats = inputStatistics(dataFolder)
    ds = createDatastore(dataFolder);
    ds.ReadFcn = @getMinMax;

    tic;
    tt = tall(ds);
    varnames = {'rgbMax','rgbMin','oflowMax','oflowMin'};
    stats = gather(groupsummary(tt,[],{'max','min'}, varnames));
    inputStats.Filename = gather(tt.Filename);
    inputStats.NumFrames = gather(tt.NumFrames);
    inputStats.rgbMax = stats.max_rgbMax;
    inputStats.rgbMin = stats.min_rgbMin;
    inputStats.oflowMax = stats.max_oflowMax;
    inputStats.oflowMin = stats.min_oflowMin;
    save('inputStatistics.mat','inputStats');
    toc;
end

function data = getMinMax(filename)
    reader = VideoReader(filename);
    opticFlow = opticalFlowFarneback;
    data = [];
    while hasFrame(reader)
        frame = readFrame(reader);
        [rgb,oflow] = findMinMax(frame,opticFlow);
        data = assignMinMax(data, rgb, oflow);
    end

    totalFrames = floor(reader.Duration * reader.FrameRate);
    totalFrames = min(totalFrames, reader.NumFrames);
    
    [labelName, filename] = getLabelFilename(filename);
    data.Filename = fullfile(labelName, filename);
    data.NumFrames = totalFrames;

    data = struct2table(data,'AsArray',true);
end

function [labelName, filename] = getLabelFilename(filename) 
    fileNameSplit = split(filename,'/'); 
    labelName = fileNameSplit{end-1}; 
    filename = fileNameSplit{end};
end

function data = assignMinMax(data, rgb, oflow)
    if isempty(data)
        data.rgbMax = rgb.Max;
        data.rgbMin = rgb.Min;
        data.oflowMax = oflow.Max;
        data.oflowMin = oflow.Min;
        return;
    end
    data.rgbMax = max(data.rgbMax, rgb.Max);
    data.rgbMin = min(data.rgbMin, rgb.Min);

8 Computer Vision Examples

8-62



    data.oflowMax = max(data.oflowMax, oflow.Max);
    data.oflowMin = min(data.oflowMin, oflow.Min);
end

function [rgbMinMax,oflowMinMax] = findMinMax(rgb, opticFlow)
    rgbMinMax.Max = max(rgb,[],[1,2]);
    rgbMinMax.Min = min(rgb,[],[1,2]);

    gray = rgb2gray(rgb);
    flow = estimateFlow(opticFlow,gray);
    oflow = cat(3,flow.Vx,flow.Vy,flow.Magnitude);

    oflowMinMax.Max = max(oflow,[],[1,2]);
    oflowMinMax.Min = min(oflow,[],[1,2]);
end

function ds = createDatastore(folder)    
    ds = fileDatastore(folder,...
        'IncludeSubfolders', true,...
        'FileExtensions', '.avi',...
        'UniformRead', true,...
        'ReadFcn', @getMinMax);
    disp("NumFiles: " + numel(ds.Files));
end

createFileDatastore

The createFileDatastore function creates a FileDatastore object using the given file names.
The FileDatastore object reads the data in 'partialfile' mode, so every read can return
partially read frames from videos. This feature helps with reading large video files, if all of the frames
do not fit in memory.

function datastore = createFileDatastore(trainingFolder,numFrames,numChannels,classes,isDataForTraining)
    readFcn = @(f,u)readVideo(f,u,numFrames,numChannels,classes,isDataForTraining);
    datastore = fileDatastore(trainingFolder,...
        'IncludeSubfolders',true,...
        'FileExtensions','.avi',...
        'ReadFcn',readFcn,...
        'ReadMode','partialfile');
end

shuffleTrainDs

The shuffleTrainDs function shuffles the files present in the training datastore dsTrain.

function shuffled = shuffleTrainDs(dsTrain)
shuffled = copy(dsTrain);
transformed = isa(shuffled, 'matlab.io.datastore.TransformedDatastore');
if transformed
    files = shuffled.UnderlyingDatastores{1}.Files;
else 
    files = shuffled.Files;
end
n = numel(files);
shuffledIndices = randperm(n);  
if transformed
    shuffled.UnderlyingDatastores{1}.Files = files(shuffledIndices);
else

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-63



    shuffled.Files = files(shuffledIndices);
end

reset(shuffled);
end

readVideo

The readVideo function reads video frames, and the corresponding label values for a given video
file. During training, the read function reads the specific number of frames as per the network input
size, with a randomly chosen starting frame. During testing, all the frames are sequentially read. The
video frames are resized to the required classifier network input size for training, and for testing and
validation.

function [data,userdata,done] = readVideo(filename,userdata,numFrames,numChannels,classes,isDataForTraining)
    if isempty(userdata)
        userdata.reader      = VideoReader(filename);
        userdata.batchesRead = 0;
        
        userdata.label = getLabel(filename,classes);

        totalFrames = floor(userdata.reader.Duration * userdata.reader.FrameRate);
        totalFrames = min(totalFrames, userdata.reader.NumFrames);
        userdata.totalFrames = totalFrames;
        userdata.datatype = class(read(userdata.reader,1));
    end
    reader      = userdata.reader;
    totalFrames = userdata.totalFrames;
    label       = userdata.label;
    batchesRead = userdata.batchesRead;

    if isDataForTraining
        video = readForTraining(reader, numFrames, totalFrames);
    else
        video = readForValidation(reader, userdata.datatype, numChannels, numFrames, totalFrames);
    end   

    data = {video, label};

    batchesRead = batchesRead + 1;

    userdata.batchesRead = batchesRead;

    if numFrames > totalFrames
        numBatches = 1;
    else
        numBatches = floor(totalFrames/numFrames);
    end
    % Set the done flag to true, if the reader has read all the frames or
    % if it is training.
    done = batchesRead == numBatches || isDataForTraining;
end

readForTraining

The readForTraining function reads the video frames for training the video classifier. The function
reads the specific number of frames as per the network input size, with a randomly chosen starting

8 Computer Vision Examples

8-64



frame. If there are not enough frames left over, the video sequence is repeated to pad the required
number of frames.

function video = readForTraining(reader, numFrames, totalFrames)
    if numFrames >= totalFrames
        startIdx = 1;
        endIdx = totalFrames;
    else
        startIdx = randperm(totalFrames - numFrames + 1);
        startIdx = startIdx(1);
        endIdx = startIdx + numFrames - 1;
    end
    video = read(reader,[startIdx,endIdx]);
    if numFrames > totalFrames
        % Add more frames to fill in the network input size.
        additional = ceil(numFrames/totalFrames);
        video = repmat(video,1,1,1,additional);
        video = video(:,:,:,1:numFrames);
    end
end

readForValidation

The readForValidation function reads the video frames for evaluating the trained video classifier.
The function reads the specific number of frames sequentially as per the network input size. If there
are not enough frames left over, the video sequence is repeated to pad the required number of
frames.

function video = readForValidation(reader, datatype, numChannels, numFrames, totalFrames)
    H = reader.Height;
    W = reader.Width;
    toRead = min([numFrames,totalFrames]);
    video = zeros([H,W,numChannels,toRead], datatype);
    frameIndex = 0;
    while hasFrame(reader) && frameIndex < numFrames
        frame = readFrame(reader);
        frameIndex = frameIndex + 1;
        video(:,:,:,frameIndex) = frame;
    end
    
    if frameIndex < numFrames
        video = video(:,:,:,1:frameIndex);
        additional = ceil(numFrames/frameIndex);
        video = repmat(video,1,1,1,additional);
        video = video(:,:,:,1:numFrames);       
    end
end

getLabel

The getLabel function obtains the label name from the full path of a filename. The label for a file is
the folder in which it exists. For example, for a file path such as "/path/to/dataset/clapping/
video_0001.avi", the label name is "clapping".

function label = getLabel(filename,classes)
    folder = fileparts(string(filename));
    [~,label] = fileparts(folder);

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-65



    label = categorical(string(label), string(classes));
end

augmentVideo

The augmentVideo function uses the augment transform function provided by the
augmentTransform supporting function to apply the same augmentation across a video sequence.

function data = augmentVideo(data)
    numSequences = size(data,1);
    for ii = 1:numSequences
        video = data{ii,1};
        % HxWxC
        sz = size(video,[1,2,3]);
        % One augmentation per sequence
        augmentFcn = augmentTransform(sz);
        data{ii,1} = augmentFcn(video);
    end
end

augmentTransform

The augmentTransform function creates an augmentation method with random left-right flipping
and scaling factors.

function augmentFcn = augmentTransform(sz)
% Randomly flip and scale the image.
tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
rout = affineOutputView(sz,tform,'BoundsStyle','CenterOutput');

augmentFcn = @(data)augmentData(data,tform,rout);

    function data = augmentData(data,tform,rout)
        data = imwarp(data,tform,'OutputView',rout);
    end
end

preprocessVideoClips

The preprocessVideoClips function preprocesses the training video data to resize to the
Inflated-3D Video Classifier input size. It takes the InputNormalizationStatistics and the
InputSize properties of the video classifier in a struct, info. The
InputNormalizationStatistics property is used to rescale the video frames and optical flow
data between -1 and 1. The input size is used to resize the video frames using imresize based on the
SizingOption value in the info struct. Alternatively, you could use "randomcrop" or
"centercrop" as values for SizingOption to random crop or center crop the input data to the
input size of the video classifier.

function preprocessed = preprocessVideoClips(data, info)
inputSize = info.InputSize(1:2);
sizingOption = info.SizingOption;
switch sizingOption
    case "resize"
        sizingFcn = @(x)imresize(x,inputSize);
    case "randomcrop"
        sizingFcn = @(x)cropVideo(x,@randomCropWindow2d,inputSize);
    case "centercrop"
        sizingFcn = @(x)cropVideo(x,@centerCropWindow2d,inputSize);

8 Computer Vision Examples

8-66



end
numClips = size(data,1);

rgbMin   = info.Statistics.Video.Min;
rgbMax   = info.Statistics.Video.Max;
oflowMin = info.Statistics.OpticalFlow.Min;
oflowMax = info.Statistics.OpticalFlow.Max;

numChannels = length(rgbMin);
rgbMin   = reshape(rgbMin, 1, 1, numChannels);
rgbMax   = reshape(rgbMax, 1, 1, numChannels);

numChannels = length(oflowMin);
oflowMin = reshape(oflowMin, 1, 1, numChannels);
oflowMax = reshape(oflowMax, 1, 1, numChannels);

preprocessed = cell(numClips, 3);
for ii = 1:numClips
    video   = data{ii,1};
    resized = sizingFcn(video);
    oflow   = computeFlow(resized,inputSize);

    % Cast the input to single.
    resized = single(resized);
    oflow   = single(oflow);

    % Rescale the input between -1 and 1.
    resized = rescale(resized,-1,1,"InputMin",rgbMin,"InputMax",rgbMax);
    oflow   = rescale(oflow,-1,1,"InputMin",oflowMin,"InputMax",oflowMax);

    preprocessed{ii,1} = resized;
    preprocessed{ii,2} = oflow;
    preprocessed{ii,3} = data{ii,2};
end    
end

function outData = cropVideo(data, cropFcn, inputSize)
imsz = size(data,[1,2]);
cropWindow = cropFcn(imsz, inputSize);
numFrames = size(data,4);
sz = [inputSize, size(data,3), numFrames];
outData = zeros(sz, 'like', data);
for f = 1:numFrames
    outData(:,:,:,f) = imcrop(data(:,:,:,f), cropWindow);
end
end

computeFlow

The computeFlow function takes as input a video sequence, videoFrames, and computes the the
corresponding optical flow data opticalFlowData using opticalFlowFarneback. The optical flow
data contains two channels, which correspond to the x- and y- components of velocity.

function opticalFlowData = computeFlow(videoFrames, inputSize)
opticalFlow = opticalFlowFarneback;
numFrames = size(videoFrames,4);
sz = [inputSize, 2, numFrames];
opticalFlowData = zeros(sz, 'like', videoFrames);

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-67



for f = 1:numFrames
    gray = rgb2gray(videoFrames(:,:,:,f));
    flow = estimateFlow(opticalFlow,gray);

    opticalFlowData(:,:,:,f) = cat(3,flow.Vx,flow.Vy);
end
end

createMiniBatchQueue

The createMiniBatchQueue function creates a minibatchqueue object that provides
miniBatchSize amount of data from the given datastore. It also creates a
DispatchInBackgroundDatastore if a parallel pool is open.

function mbq = createMiniBatchQueue(datastore, numOutputs, params)
if params.DispatchInBackground && isempty(gcp('nocreate'))
    % Start a parallel pool, if DispatchInBackground is true, to dispatch
    % data in the background using the parallel pool.
    c = parcluster('local');
    c.NumWorkers = params.NumWorkers;
    parpool('local',params.NumWorkers);
end
p = gcp('nocreate');
if ~isempty(p)
    datastore = DispatchInBackgroundDatastore(datastore, p.NumWorkers);
end
inputFormat(1:numOutputs-1) = "SSCTB";
outputFormat = "CB";
mbq = minibatchqueue(datastore, numOutputs, ...
    "MiniBatchSize", params.MiniBatchSize, ...
    "MiniBatchFcn", @batchVideoAndFlow, ...
    "MiniBatchFormat", [inputFormat,outputFormat]);
end

batchVideoAndFlow

The batchVideoAndFlow function batches the video, optical flow, and label data from cell arrays. It
uses onehotencode function to encode ground truth categorical labels into one-hot arrays. The one-
hot encoded array contains a 1 in the position corresponding to the class of the label, and 0 in every
other position.

function [video,flow,labels] = batchVideoAndFlow(video, flow, labels)
% Batch dimension: 5
video = cat(5,video{:});
flow = cat(5,flow{:});

% Batch dimension: 2
labels = cat(2,labels{:});

% Feature dimension: 1
labels = onehotencode(labels,1);
end

modelGradients

The modelGradients function takes as input a mini-batch of RGB data dlRGB, the corresponding
optical flow data dlFlow, and the corresponding target dlY, and returns the corresponding loss, the
gradients of the loss with respect to the learnable parameters, and the training accuracy. To compute

8 Computer Vision Examples

8-68



the gradients, evaluate the modelGradients function using the dlfeval function in the training
loop.

function [gradientsRGB,gradientsFlow,loss,acc,accRGB,accFlow,stateRGB,stateFlow] = modelGradients(i3d,dlRGB,dlFlow,Y)

% Pass video input as RGB and optical flow data through the two-stream
% network.
[dlYPredRGB,dlYPredFlow,stateRGB,stateFlow] = forward(i3d,dlRGB,dlFlow);

% Calculate fused loss, gradients, and accuracy for the two-stream
% predictions.
rgbLoss = crossentropy(dlYPredRGB,Y);
flowLoss = crossentropy(dlYPredFlow,Y);
% Fuse the losses.
loss = mean([rgbLoss,flowLoss]);

gradientsRGB = dlgradient(rgbLoss,i3d.VideoLearnables);
gradientsFlow = dlgradient(flowLoss,i3d.OpticalFlowLearnables);

% Fuse the predictions by calculating the average of the predictions.
dlYPred = (dlYPredRGB + dlYPredFlow)/2;

% Calculate the accuracy of the predictions.
[~,YTest] = max(Y,[],1);
[~,YPred] = max(dlYPred,[],1);

acc = gather(extractdata(sum(YTest == YPred)./numel(YTest)));

% Calculate the accuracy of the RGB and flow predictions.
[~,YTest] = max(Y,[],1);
[~,YPredRGB] = max(dlYPredRGB,[],1);
[~,YPredFlow] = max(dlYPredFlow,[],1);

accRGB = gather(extractdata(sum(YTest == YPredRGB)./numel(YTest)));
accFlow = gather(extractdata(sum(YTest == YPredFlow)./numel(YTest)));
end

updateLearnables

The updateLearnables function updates the provided learnables with gradients and other
parameters using SGDM optimization function sgdmupdate.

function [learnables,velocity,learnRate] = updateLearnables(learnables,gradients,params,velocity,iteration)
    % Determine the learning rate using the cosine-annealing learning rate schedule.
    learnRate = cosineAnnealingLearnRate(iteration, params);

    % Apply L2 regularization to the weights.
    idx = learnables.Parameter == "Weights";
    gradients(idx,:) = dlupdate(@(g,w) g + params.L2Regularization*w, gradients(idx,:), learnables(idx,:));

    % Update the network parameters using the SGDM optimizer.
    [learnables, velocity] = sgdmupdate(learnables, gradients, velocity, learnRate, params.Momentum);
end

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-69



cosineAnnealingLearnRate

The cosineAnnealingLearnRate function computes the learning rate based on the current
iteration number, minimum learning rate, maximum learning rate, and number of iterations for
annealing [3 on page 8-76].

function lr = cosineAnnealingLearnRate(iteration, params)
    if iteration == params.NumIterations
        lr = params.MinLearningRate;
        return;
    end
    cosineNumIter = [0, params.CosineNumIterations];
    csum = cumsum(cosineNumIter);
    block = find(csum >= iteration, 1,'first');
    cosineIter = iteration - csum(block - 1);
    annealingIteration = mod(cosineIter, cosineNumIter(block));
    cosineIteration = cosineNumIter(block);
    minR = params.MinLearningRate;
    maxR = params.MaxLearningRate;
    cosMult = 1 + cos(pi * annealingIteration / cosineIteration);
    lr = minR + ((maxR - minR) *  cosMult / 2);
end

aggregateConfusionMetric

The aggregateConfusionMetric function incrementally fills a confusion matrix based on the
predicted results YPred and the expected results YTest.

function cmat = aggregateConfusionMetric(cmat,YTest,YPred)
YTest = gather(extractdata(YTest));
YPred = gather(extractdata(YPred));
[m,n] = size(cmat);
cmat = cmat + full(sparse(YTest,YPred,1,m,n));
end

doValidation

The doValidation function validates the video classifier using the validation data.

function [validationTime, cmat, lossValidation, accValidation, accValidationRGB, accValidationFlow] = doValidation(params, i3d)

validationTime = tic;

numOutputs = 3;
mbq = createMiniBatchQueue(params.ValidationData, numOutputs, params);

lossValidation = [];
numClasses = numel(params.Classes);
cmat = sparse(numClasses,numClasses);
cmatRGB = sparse(numClasses,numClasses);
cmatFlow = sparse(numClasses,numClasses);
while hasdata(mbq)

    [dlX1,dlX2,dlY] = next(mbq);

    [loss,YTest,YPred,YPredRGB,YPredFlow] = predictValidation(i3d,dlX1,dlX2,dlY);

    lossValidation = [lossValidation,loss];

8 Computer Vision Examples

8-70



    cmat = aggregateConfusionMetric(cmat,YTest,YPred);
    cmatRGB = aggregateConfusionMetric(cmatRGB,YTest,YPredRGB);
    cmatFlow = aggregateConfusionMetric(cmatFlow,YTest,YPredFlow);
end
lossValidation = mean(lossValidation);
accValidation = sum(diag(cmat))./sum(cmat,"all");
accValidationRGB = sum(diag(cmatRGB))./sum(cmatRGB,"all");
accValidationFlow = sum(diag(cmatFlow))./sum(cmatFlow,"all");

validationTime = toc(validationTime);
end

predictValidation

The predictValidation function calculates the loss and prediction values using the provided video
classifier for RGB and optical flow data.

function [loss,YTest,YPred,YPredRGB,YPredFlow] = predictValidation(i3d,dlRGB,dlFlow,Y)

% Pass the video input through the two-stream Inflated-3D video classifier.
[dlYPredRGB,dlYPredFlow] = predict(i3d,dlRGB,dlFlow);

% Calculate the cross-entropy separately for the two-stream outputs.
rgbLoss = crossentropy(dlYPredRGB,Y);
flowLoss = crossentropy(dlYPredFlow,Y);

% Fuse the losses.
loss = mean([rgbLoss,flowLoss]);

% Fuse the predictions by calculating the average of the predictions.
dlYPred = (dlYPredRGB + dlYPredFlow)/2;

% Calculate the accuracy of the predictions.
[~,YTest] = max(Y,[],1);
[~,YPred] = max(dlYPred,[],1);

[~,YPredRGB] = max(dlYPredRGB,[],1);
[~,YPredFlow] = max(dlYPredFlow,[],1);

end

saveData

The saveData function saves the given Inflated-3d Video Classifier, accuracy, loss, and other training
parameters to a MAT-file.

function bestLoss = saveData(inflated3d,bestLoss,iteration,cmat,lossTrain,lossValidation,...
                accTrain,accValidation,params)
if iteration >= params.SaveBestAfterIteration
    lossValidtion = extractdata(gather(lossValidation));
    if lossValidtion < bestLoss
        params = rmfield(params, 'VelocityRGB');
        params = rmfield(params, 'VelocityFlow');
        bestLoss = lossValidtion;
        inflated3d = gatherFromGPUToSave(inflated3d);
        data.BestLoss = bestLoss;
        data.TrainingLoss = extractdata(gather(lossTrain));
        data.TrainingAccuracy = accTrain;

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-71



        data.ValidationAccuracy = accValidation;
        data.ValidationConfmat= cmat;
        data.inflated3d = inflated3d;
        data.Params = params;
        save(params.ModelFilename, 'data');
    end
end
end

gatherFromGPUToSave

The gatherFromGPUToSave function gathers data from the GPU in order to save the video classifier
to disk.

function classifier = gatherFromGPUToSave(classifier)
if ~canUseGPU
    return;
end
p = string(properties(classifier));
p = p(endsWith(p, ["Learnables","State"]));
for jj = 1:numel(p)
    prop = p(jj);
    classifier.(prop) = gatherValues(classifier.(prop));
end
    function tbl = gatherValues(tbl)
        for ii = 1:height(tbl)
            tbl.Value{ii} = gather(tbl.Value{ii});
        end
    end
end

checkForHMDB51Folder

The checkForHMDB51Folder function checks for the downloaded data in the download folder.

function classes = checkForHMDB51Folder(dataLoc)
hmdbFolder = fullfile(dataLoc, "hmdb51_org");
if ~isfolder(hmdbFolder)
    error("Download 'hmdb51_org.rar' file using the supporting function 'downloadHMDB51' before running the example and extract the RAR file.");    
end

classes = ["brush_hair","cartwheel","catch","chew","clap","climb","climb_stairs",...
    "dive","draw_sword","dribble","drink","eat","fall_floor","fencing",...
    "flic_flac","golf","handstand","hit","hug","jump","kick","kick_ball",...
    "kiss","laugh","pick","pour","pullup","punch","push","pushup","ride_bike",...
    "ride_horse","run","shake_hands","shoot_ball","shoot_bow","shoot_gun",...
    "sit","situp","smile","smoke","somersault","stand","swing_baseball","sword",...
    "sword_exercise","talk","throw","turn","walk","wave"];
expectFolders = fullfile(hmdbFolder, classes);
if ~all(arrayfun(@(x)exist(x,'dir'),expectFolders))
    error("Download hmdb51_org.rar using the supporting function 'downloadHMDB51' before running the example and extract the RAR file.");
end
end

downloadHMDB51

The downloadHMDB51 function downloads the data set and saves it to a directory.

8 Computer Vision Examples

8-72



function downloadHMDB51(dataLoc)

if nargin == 0
    dataLoc = pwd;
end
dataLoc = string(dataLoc);

if ~isfolder(dataLoc)
    mkdir(dataLoc);
end

dataUrl     = "http://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar";
options     = weboptions('Timeout', Inf);
rarFileName = fullfile(dataLoc, 'hmdb51_org.rar');

% Download the RAR file and save it to the download folder.
if ~isfile(rarFileName)
    disp("Downloading hmdb51_org.rar (2 GB) to the folder:")
    disp(dataLoc)
    disp("This download can take a few minutes...") 
    websave(rarFileName, dataUrl, options); 
    disp("Download complete.")
    disp("Extract the hmdb51_org.rar file contents to the folder: ") 
    disp(dataLoc)
end
end

initializeTrainingProgressPlot

The initializeTrainingProgressPlot function configures two plots for displaying the training
loss, training accuracy, and validation accuracy.

function plotters = initializeTrainingProgressPlot(params)
if params.ProgressPlot
    % Plot the loss, training accuracy, and validation accuracy.
    figure
    
    % Loss plot
    subplot(2,1,1)
    plotters.LossPlotter = animatedline;
    xlabel("Iteration")
    ylabel("Loss")
    
    % Accuracy plot
    subplot(2,1,2)
    plotters.TrainAccPlotter = animatedline('Color','b');
    plotters.ValAccPlotter = animatedline('Color','g');
    legend('Training Accuracy','Validation Accuracy','Location','northwest');
    xlabel("Iteration")
    ylabel("Accuracy")
else
    plotters = [];
end
end

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-73



updateProgressPlot

The updateProgressPlot function updates the progress plot with loss and accuracy information
during training.

function updateProgressPlot(params,plotters,epoch,iteration,start,lossTrain,accuracyTrain,accuracyValidation)
if params.ProgressPlot
    
    % Update the training progress.
    D = duration(0,0,toc(start),"Format","hh:mm:ss");
    title(plotters.LossPlotter.Parent,"Epoch: " + epoch + ", Elapsed: " + string(D));
    addpoints(plotters.LossPlotter,iteration,double(gather(extractdata(lossTrain))));
    addpoints(plotters.TrainAccPlotter,iteration,accuracyTrain);
    addpoints(plotters.ValAccPlotter,iteration,accuracyValidation);
    drawnow
end
end

initializeVerboseOutput

The initializeVerboseOutput function displays the column headings for the table of training
values, which shows the epoch, mini-batch accuracy, and other training values.

function initializeVerboseOutput(params)
if params.Verbose
    disp(" ")
    if canUseGPU
        disp("Training on GPU.")
    else
        disp("Training on CPU.")
    end
    p = gcp('nocreate');
    if ~isempty(p)
        disp("Training on parallel cluster '" + p.Cluster.Profile + "'. ")
    end
    disp("NumIterations:" + string(params.NumIterations));
    disp("MiniBatchSize:" + string(params.MiniBatchSize));
    disp("Classes:" + join(string(params.Classes), ","));    
    disp("|=======================================================================================================================================================================|")
    disp("| Epoch | Iteration | Time Elapsed |     Mini-Batch Accuracy    |    Validation Accuracy     | Mini-Batch | Validation |  Base Learning  | Train Time | Validation Time |")
    disp("|       |           |  (hh:mm:ss)  |       (Avg:RGB:Flow)       |       (Avg:RGB:Flow)       |    Loss    |    Loss    |      Rate       | (hh:mm:ss) |   (hh:mm:ss)    |")
    disp("|=======================================================================================================================================================================|")
end
end

displayVerboseOutputEveryEpoch

The displayVerboseOutputEveryEpoch function displays the verbose output of the training
values, such as the epoch, mini-batch accuracy, validation accuracy, and mini-batch loss.

function displayVerboseOutputEveryEpoch(params,start,learnRate,epoch,iteration,...
    accTrain,accTrainRGB,accTrainFlow,accValidation,accValidationRGB,accValidationFlow,lossTrain,lossValidation,trainTime,validationTime)
if params.Verbose
    D = duration(0,0,toc(start),'Format','hh:mm:ss');
    trainTime = duration(0,0,trainTime,'Format','hh:mm:ss');
    validationTime = duration(0,0,validationTime,'Format','hh:mm:ss');

    lossValidation = gather(extractdata(lossValidation));

8 Computer Vision Examples

8-74



    lossValidation = compose('%.4f',lossValidation);

    accValidation = composePadAccuracy(accValidation);
    accValidationRGB = composePadAccuracy(accValidationRGB);
    accValidationFlow = composePadAccuracy(accValidationFlow);

    accVal = join([accValidation,accValidationRGB,accValidationFlow], " : ");

    lossTrain = gather(extractdata(lossTrain));
    lossTrain = compose('%.4f',lossTrain);

    accTrain = composePadAccuracy(accTrain);
    accTrainRGB = composePadAccuracy(accTrainRGB);
    accTrainFlow = composePadAccuracy(accTrainFlow);

    accTrain = join([accTrain,accTrainRGB,accTrainFlow], " : ");
    learnRate = compose('%.13f',learnRate);

    disp("| " + ...
        pad(string(epoch),5,'both') + " | " + ...
        pad(string(iteration),9,'both') + " | " + ...
        pad(string(D),12,'both') + " | " + ...
        pad(string(accTrain),26,'both') + " | " + ...
        pad(string(accVal),26,'both') + " | " + ...
        pad(string(lossTrain),10,'both') + " | " + ...
        pad(string(lossValidation),10,'both') + " | " + ...
        pad(string(learnRate),13,'both') + " | " + ...
        pad(string(trainTime),10,'both') + " | " + ...
        pad(string(validationTime),15,'both') + " |")
end

    function acc = composePadAccuracy(acc)
        acc = compose('%.2f',acc*100) + "%";
        acc = pad(string(acc),6,'left');
    end

end

endVerboseOutput

The endVerboseOutput function displays the end of verbose output during training.

function endVerboseOutput(params)
if params.Verbose
    disp("|=======================================================================================================================================================================|")        
end
end

References

[1] Carreira, Joao, and Andrew Zisserman. "Quo Vadis, Action Recognition? A New Model and the
Kinetics Dataset." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR): 6299??6308. Honolulu, HI: IEEE, 2017.

 Activity Recognition from Video and Optical Flow Data Using Deep Learning

8-75



[2] Simonyan, Karen, and Andrew Zisserman. "Two-Stream Convolutional Networks for Action
Recognition in Videos." Advances in Neural Information Processing Systems 27, Long Beach, CA:
NIPS, 2017.

[3] Loshchilov, Ilya, and Frank Hutter. "SGDR: Stochastic Gradient Descent with Warm Restarts."
International Conferencee on Learning Representations 2017. Toulon, France: ICLR, 2017.

[4] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, Manohar Paluri. "A Closer Look
at Spatiotemporal Convolutions for Action Recognition". Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6450-6459.

[5] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. "SlowFast Networks for
Video Recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[6] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, Andrew
Zisserman. "The Kinetics Human Action Video Dataset." arXiv preprint arXiv:1705.06950, 2017.

8 Computer Vision Examples

8-76



Import Pretrained ONNX YOLO v2 Object Detector

This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) you only
look once (YOLO) v2 [1] on page 8-82 object detection network and use it to detect objects. After
you import the network, you can deploy it to embedded platforms using GPU Coder™ or retrain it on
custom data using transfer learning with trainYOLOv2ObjectDetector.

Download ONNX YOLO v2 Network

Download files related to the pretrained Tiny YOLO v2 network.

pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/deeplearning/models/yolov2/tiny_yolov2.tar';
pretrainedNetTar = 'yolov2Tiny.tar';
if ~exist(pretrainedNetTar,'file')
    disp('Downloading pretrained network (58 MB)...');
    websave(pretrainedNetTar,pretrainedURL);
end

Extract YOLO v2 Network

Untar the downloaded file to extract the Tiny YOLO v2 network. Load the 'Model.onnx' model from
tiny_yolov2 folder, which is an ONNX YOLO v2 network pretrained on the PASCAL VOC data set
[2] on page 8-82. The network can detect objects from 20 different classes [3] on page 8-83.

onnxfiles = untar(pretrainedNetTar);
pretrainedNet = fullfile('tiny_yolov2','Model.onnx');

Import ONNX YOLO v2 Layers

Use the importONNXLayers function to import the downloaded network.

lgraph = importONNXLayers(pretrainedNet,'ImportWeights',true);

importONNXLayers adds regression layer at the end by default. Remove the last regression layer
added by importONNXLayers as yolov2ObjectDetector expects YOLO v2 detection network to
end with yolov2OutputLayer. For more information on YOLO v2 detection network, see “Getting
Started with YOLO v2” (Computer Vision Toolbox).

lgraph = removeLayers(lgraph,'RegressionLayer_grid');

The Add YOLO v2 Transform and Output Layers on page 8-80 section shows how to add YOLO v2
output layer along with YOLO v2 Transform layer to the imported layers.

The network in this example contains no unsupported layers. Note that if the network you want to
import has unsupported layers, the function imports them as placeholder layers. Before you can use
your imported network, you must replace these layers. For more information on replacing
placeholder layers, see findPlaceholderLayers.

Define YOLO v2 Anchor Boxes

YOLO v2 uses predefined anchor boxes to predict object location. The anchor boxes used in the
imported network are defined in the Tiny YOLO v2 network configuration file [4] on page 8-83. The
ONNX anchors are defined with respect to the output size of the final convolution layer, which is 13-
by-13. To use the anchors with yolov2ObjectDetector, resize the anchor boxes to the network

 Import Pretrained ONNX YOLO v2 Object Detector

8-77



input size, which is 416-by-416. The anchor boxes for yolov2ObjectDetector must be specified in
the form [height, width].

onnxAnchors = [1.08,1.19; 3.42,4.41; 6.63,11.38; 9.42,5.11; 16.62,10.52];

inputSize = lgraph.Layers(1,1).InputSize(1:2);
lastActivationSize = [13,13];
upScaleFactor = inputSize./lastActivationSize;
anchorBoxesTmp = upScaleFactor.* onnxAnchors;
anchorBoxes = [anchorBoxesTmp(:,2),anchorBoxesTmp(:,1)];

Reorder Detection Layer Weights

For efficient processing, you must reorder the weights and biases of the last convolution layer in the
imported network to obtain the activations in the arrangement that yolov2ObjectDetector
requires. yolov2ObjectDetector expects the 125 channels of the feature map of the last
convolution layer in the following arrangement:

• Channels 1 to 5 - IoU values for five anchors
• Channels 6 to 10 - X values for five anchors
• Channels 11 to 15 - Y values for five anchors
• Channels 16 to 20 - Width values for five anchors
• Channels 21 to 25 - Height values for five anchors
• Channels 26 to 30 - Class 1 probability values for five anchors
• Channels 31 to 35 - Class 2 probability values for five anchors
• Channels 121 to 125 - Class 20 probability values for five anchors

However, in the last convolution layer, which is of size 13-by-13, the activations are arranged
differently. Each of the 25 channels in the feature map corresponds to:

• Channel 1 - X values
• Channel 2 - Y values
• Channel 3 - Width values

8 Computer Vision Examples

8-78



• Channel 4 - Height values
• Channel 5 - IoU values
• Channel 6 - Class 1 probability values
• Channel 7 - Class 2 probability values
• Channel 25 - Class 20 probability values

Use the supporting function rearrangeONNXWeights, listed at the end of this example, to reorder
the weights and biases of the last convolution layer in the imported network and obtain the
activations in the format required by yolov2ObjectDetector.

weights = lgraph.Layers(end,1).Weights;
bias = lgraph.Layers(end,1).Bias;
layerName = lgraph.Layers(end,1).Name;

numAnchorBoxes = size(onnxAnchors,1);
[modWeights,modBias] = rearrangeONNXWeights(weights,bias,numAnchorBoxes);

 Import Pretrained ONNX YOLO v2 Object Detector

8-79



Replace the weights and biases of the last convolution layer in the imported network with the new
convolution layer using the reordered weights and biases.

filterSize = size(modWeights,[1 2]);
numFilters = size(modWeights,4);
modConvolution8 = convolution2dLayer(filterSize,numFilters,...
    'Name',layerName,'Bias',modBias,'Weights',modWeights);
lgraph = replaceLayer(lgraph,'convolution8',modConvolution8);

Add YOLO v2 Transform and Output Layers

A YOLO v2 detection network requires the YOLO v2 transform and YOLO v2 output layers. Create
both of these layers, stack them in series, and attach the YOLO v2 transform layer to the last
convolution layer.

classNames = tinyYOLOv2Classes;

layersToAdd = [
    yolov2TransformLayer(numAnchorBoxes,'Name','yolov2Transform');
    yolov2OutputLayer(anchorBoxes,'Classes',classNames,'Name','yolov2Output');
    ];

lgraph = addLayers(lgraph, layersToAdd);
lgraph = connectLayers(lgraph,layerName,'yolov2Transform');

The ElementwiseAffineLayer in the imported network duplicates the preprocessing step
performed by yolov2ObjectDetector. Hence, remove the ElementwiseAffineLayer from the
imported network.

yoloScaleLayerIdx = find(...
    arrayfun( @(x)isa(x,'nnet.onnx.layer.ElementwiseAffineLayer'), ...
    lgraph.Layers));

if ~isempty(yoloScaleLayerIdx)
    for i = 1:size(yoloScaleLayerIdx,1)
        layerNames {i} = lgraph.Layers(yoloScaleLayerIdx(i,1),1).Name;
    end
    lgraph = removeLayers(lgraph,layerNames);
    lgraph = connectLayers(lgraph,'image','convolution');
end

Create YOLO v2 Object Detector

Assemble the layer graph using the assembleNetwork function and create a YOLO v2 object
detector using the yolov2ObjectDetector function.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [34×1 nnet.cnn.layer.Layer]
    Connections: [33×2 table]
     InputNames: {'image'}
    OutputNames: {'yolov2Output'}

yolov2Detector = yolov2ObjectDetector(net)

8 Computer Vision Examples

8-80



yolov2Detector = 
  yolov2ObjectDetector with properties:

            ModelName: 'importedNetwork'
              Network: [1×1 DAGNetwork]
    TrainingImageSize: [416 416]
          AnchorBoxes: [5×2 double]
           ClassNames: [aeroplane    bicycle    bird    boat    bottle    bus    car    cat    chair    cow    diningtable    dog    horse    motorbike    person    pottedplant    sheep    sofa    train    tvmonitor]

Detect Objects Using Imported YOLO v2 Detector

Use the imported detector to detect objects in a test image. Display the results.

I = imread('highway.png');
% Convert image to BGR format.
Ibgr = cat(3,I(:,:,3),I(:,:,2),I(:,:,1));
[bboxes, scores, labels] = detect(yolov2Detector, Ibgr);
detectedImg = insertObjectAnnotation(I, 'rectangle', bboxes, scores);
figure
imshow(detectedImg);

Supporting Functions

function [modWeights,modBias] = rearrangeONNXWeights(weights,bias,numAnchorBoxes)
%rearrangeONNXWeights rearranges the weights and biases of an imported YOLO
%v2 network as required by yolov2ObjectDetector. numAnchorBoxes is a scalar
%value containing the number of anchors that are used to reorder the weights and
%biases. This function performs the following operations:
%   * Extract the weights and biases related to IoU, boxes, and classes.
%   * Reorder the extracted weights and biases as expected by yolov2ObjectDetector.
%   * Combine and reshape them back to the original dimensions.

weightsSize = size(weights);

 Import Pretrained ONNX YOLO v2 Object Detector

8-81



biasSize = size(bias);
sizeOfPredictions = biasSize(3)/numAnchorBoxes;

% Reshape the weights with regard to the size of the predictions and anchors.
reshapedWeights = reshape(weights,prod(weightsSize(1:3)),sizeOfPredictions,numAnchorBoxes);

% Extract the weights related to IoU, boxes, and classes.
weightsIou = reshapedWeights(:,5,:);
weightsBoxes = reshapedWeights(:,1:4,:);
weightsClasses = reshapedWeights(:,6:end,:);

% Combine the weights of the extracted parameters as required by
% yolov2ObjectDetector.
reorderedWeights = cat(2,weightsIou,weightsBoxes,weightsClasses);
permutedWeights = permute(reorderedWeights,[1 3 2]);

% Reshape the new weights to the original size.
modWeights = reshape(permutedWeights,weightsSize);

% Reshape the biases with regared to the size of the predictions and anchors.
reshapedBias = reshape(bias,sizeOfPredictions,numAnchorBoxes);

% Extract the biases related to IoU, boxes, and classes.
biasIou = reshapedBias(5,:);
biasBoxes = reshapedBias(1:4,:);
biasClasses = reshapedBias(6:end,:);

% Combine the biases of the extracted parameters as required by yolov2ObjectDetector.
reorderedBias = cat(1,biasIou,biasBoxes,biasClasses);
permutedBias = permute(reorderedBias,[2 1]);

% Reshape the new biases to the original size.
modBias = reshape(permutedBias,biasSize);
end

function classes = tinyYOLOv2Classes()
% Return the class names corresponding to the pretrained ONNX tiny YOLO v2
% network.
%
% The tiny YOLO v2 network is pretrained on the Pascal VOC data set,
% which contains images from 20 different classes.

classes = [ ...
    " aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car",...
    "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike",...
    "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"];
end

References

[1] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517-25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690.

8 Computer Vision Examples

8-82

https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690


[2] "Tiny YOLO v2 Model License." https://github.com/onnx/onnx/blob/master/LICENSE.

[3] Everingham, Mark, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.
"The Pascal Visual Object Classes (VOC) Challenge." International Journal of Computer Vision 88, no.
2 (June 2010): 303-38. https://doi.org/10.1007/s11263-009-0275-4.

[4] "yolov2-tiny-voc.cfg" https://github.com/pjreddie/darknet/blob/master/cfg/yolov2-tiny-voc.cfg.

See Also
Functions
importONNXNetwork | assembleNetwork | convolution2dLayer | replaceLayer |
removeLayers | connectLayers | findPlaceholderLayers | detect |
trainYOLOv2ObjectDetector | addLayers

Objects
yolov2ObjectDetector

More About
• “Pretrained Deep Neural Networks” on page 1-11

 Import Pretrained ONNX YOLO v2 Object Detector

8-83

https://github.com/onnx/onnx/blob/master/LICENSE
https://doi.org/10.1007/s11263-009-0275-4
https://github.com/pjreddie/darknet/blob/master/cfg/yolov2-tiny-voc.cfg


Export YOLO v2 Object Detector to ONNX

This example shows how to export a YOLO v2 object detection network to ONNX™ (Open Neural
Network Exchange) model format. After exporting the YOLO v2 network, you can import the network
into other deep learning frameworks for inference. This example also presents the workflow that you
can follow to perform inference using the imported ONNX model.

Export YOLO v2 Network

Export the detection network to ONNX and gather the metadata required to generate object
detection results.

First, load a pretrained YOLO v2 object detector into the workspace.

input = load('yolov2VehicleDetector.mat');
net = input.detector.Network;

Next, obtain the YOLO v2 detector metadata to use for inference. The detector metadata includes the
network input image size, anchor boxes, and activation size of last convolution layer.

Read the network input image size from the input YOLO v2 network.

inputImageSize = net.Layers(1,1).InputSize;

Read the anchor boxes used for training from the input detector.

anchorBoxes = input.detector.AnchorBoxes;

Get the activation size of the last convolution layer in the input network by using the
analyzeNetwork function.

analyzeNetwork(net);

8 Computer Vision Examples

8-84



finalActivationSize = [16 16 24];

Export to ONNX Model Format

Export the YOLO v2 object detection network as an ONNX format file by using the
exportONNXNetwork function. Specify the file name as yolov2.onnx. The function saves the
exported ONNX file to the current working folder.

filename = 'yolov2.onnx';
exportONNXNetwork(net,filename);

The exportONNXNetwork function maps the yolov2TransformLayer (Computer Vision Toolbox)
and yolov2OutputLayer (Computer Vision Toolbox) in the input YOLO v2 network to the basic
ONNX operator and identity operator, respectively. After you export the network, you can import the
yolov2.onnx file into any deep learning framework that supports ONNX import.

Using the exportONNXNetwork, requires Deep Learning Toolbox™ and the Deep Learning Toolbox
Converter for ONNX Model Format support package. If this support package is not installed, then the
function provides a download link.

Object Detection Using Exported YOLO v2 Network

When exporting is complete, you can import the ONNX model into any deep learning framework and
use the following workflow to perform object detection. Along with the ONNX network, this workflow

 Export YOLO v2 Object Detector to ONNX

8-85



also requires the YOLO v2 detector metadata inputImageSize, anchorBoxes, and
finalActivationSize obtained from the MATLAB workspace. The following code is a MATLAB
implementation of the workflow that you must translate into the equivalent code for the framework of
your choice.

Preprocess Input Image

Preprocess the image to use for inference. The image must be an RGB image and must be resized to
the network input image size, and its pixel values must lie in the interval [0 1].

I = imread('highway.png');
resizedI = imresize(I,inputImageSize(1:2));
rescaledI = rescale(resizedI);

Pass Input and Run ONNX Model

Run the ONNX model in the deep learning framework of your choice with the preprocessed image as
input to the imported ONNX model.

Extract Predictions from Output of ONNX Model

The model predicts the following:

• Intersection over union (IoU) with ground truth boxes
• x, y, w, and h bounding box parameters for each anchor box
• Class probabilities for each anchor box

The output of the ONNX model is a feature map that contains the predictions and is of size
predictionsPerAnchor-by-numAnchors-by-numGrids.

• numAnchors is the number of anchor boxes.
• numGrids is the number of grids calculated as the product of the height and width of the last

convolution layer.
• predictionsPerAnchor is the output predictions in the form [IoU;x;y;w;h;class

probabilities].

8 Computer Vision Examples

8-86



• The first row in the feature map contains IoU predictions for each anchor box.
• The second and third rows in the feature map contain predictions for the centroid coordinates

(x,y) of each anchor box.
• The fourth and fifth rows in the feature map contain the predictions for the width and height of

each anchor box.
• The sixth row in the feature map contains the predictions for class probabilities of each anchor

box.

Compute Final Detections

To compute final detections for the preprocessed test image, you must:

• Rescale the bounding box parameters with respect to the size of the input layer of the network.
• Compute object confidence scores from the predictions.
• Obtain predictions with high object confidence scores.
• Perform nonmaximum suppression.

As an implementation guide, use the code for yolov2PostProcess on page 8-88 function in
Postprocessing Functions on page 8-88.

[bboxes,scores,labels] = yolov2PostProcess(featureMap,inputImageSize,finalActivationsSize,anchorBoxes);

Display Detection Results

Idisp = insertObjectAnnotation(resizedI,'rectangle',bboxes,scores);
figure
imshow(Idisp)

 Export YOLO v2 Object Detector to ONNX

8-87



References

[1] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690.

Postprocessing Functions

function  [bboxes,scores,labels] = yolov2PostProcess(featureMap,inputImageSize,finalActivationsSize,anchorBoxes)

% Extract prediction values from the feature map.
iouPred = featureMap(1,:,:);
xyPred = featureMap(2:3,:,:);
whPred = featureMap(4:5,:,:);
probPred = featureMap(6,:,:);

% Rescale the bounding box parameters.
bBoxes = rescaleBbox(xyPred,whPred,anchorBoxes,finalActivationsSize,inputImageSize);

% Rearrange the feature map as a two-dimensional matrix for efficient processing.
predVal = [bBoxes;iouPred;probPred];
predVal = reshape(predVal,size(predVal,1),[]);

% Compute object confidence scores from the rearranged prediction values.
[confScore,idx] = computeObjectScore(predVal);

% Obtain predictions with high object confidence scores.
[bboxPred,scorePred,classPred] = selectMaximumPredictions(confScore,idx,predVal);

% To get the final detections, perform nonmaximum suppression with an overlap threshold of 0.5.
[bboxes,scores,labels] = selectStrongestBboxMulticlass(bboxPred', scorePred', classPred','RatioType','Union','OverlapThreshold',0.5);

end

function bBoxes = rescaleBbox(xyPred,whPred,anchorBoxes,finalActivationsSize,inputImageSize)

% To rescale the bounding box parameters, compute the scaling factor by using the network parameters inputImageSize and finalActivationSize.
scaleY = inputImageSize(1)/finalActivationsSize(1); 
scaleX = inputImageSize(2)/finalActivationsSize(2);
scaleFactor = [scaleY scaleX];

bBoxes = zeros(size(xyPred,1)+size(whPred,1),size(anchors,1),size(xyPred,3),'like',xyPred);
for rowIdx=0:finalActivationsSize(1,1)-1
    for colIdx=0:finalActivationsSize(1,2)-1
        ind = rowIdx*finalActivationsSize(1,2)+colIdx+1;
        for anchorIdx = 1 : size(anchorBoxes,1)
              
            % Compute the center with respect to image.
            cx = (xyPred(1,anchorIdx,ind)+colIdx)* scaleFactor(1,2);
            cy = (xyPred(2,anchorIdx,ind)+rowIdx)* scaleFactor(1,1);
              
            % Compute the width and height with respect to the image.
            bw = whPred(1,anchorIdx,ind)* anchorBoxes(anchorIdx,1);
            bh = whPred(2,anchorIdx,ind)* anchorBoxes(anchorIdx,2);
              
            bBoxes(1,anchorIdx,ind) = (cx-bw/2);

8 Computer Vision Examples

8-88



            bBoxes(2,anchorIdx,ind) = (cy-bh/2);
            bBoxes(3,anchorIdx,ind) = bw;
            bBoxes(4,anchorIdx,ind) = bh;
        end
    end
end
end

function [confScore,idx] = computeObjectScore(predVal)
iouPred = predVal(5,:); 
probPred = predVal(6:end,:); 
[imax,idx] = max(probPred,[],1); 
confScore = iouPred.*imax;
end

function [bboxPred,scorePred,classPred] = selectMaximumPredictions(confScore,idx,predVal)
% Specify the threshold for confidence scores.
confScoreId = confScore >= 0.5;
% Obtain the confidence scores greater than or equal to 0.5.
scorePred = confScore(:,confScoreId);
% Obtain the class IDs for predictions with confidence scores greater than
% or equal to 0.5.
classPred = idx(:,confScoreId);
% Obtain the bounding box parameters for predictions with confidence scores
% greater than or equal to 0.5.
bboxesXYWH = predVal(1:4,:);
bboxPred = bboxesXYWH(:,confScoreId);
end

See Also
Functions
exportONNXNetwork | analyzeNetwork

More About
• “Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX” on page 19-

464

 Export YOLO v2 Object Detector to ONNX

8-89



Object Detection Using SSD Deep Learning

This example shows how to train a Single Shot Detector (SSD).

Overview

Deep learning is a powerful machine learning technique that automatically learns image features
required for detection tasks. There are several techniques for object detection using deep learning
such as Faster R-CNN, You Only Look Once (YOLO v2), and SSD. This example trains an SSD vehicle
detector using the trainSSDObjectDetector function. For more information, see “Object
Detection” (Computer Vision Toolbox).

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('ssdResNet50VehicleExample_22b.mat','file')
    disp('Downloading pretrained detector (44 MB)...');
    pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/ssdResNet50VehicleExample_22b.mat';
    websave('ssdResNet50VehicleExample_22b.mat',pretrainedURL);
end

Load Dataset

This example uses a small vehicle data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission.
Each image contains one or two labeled instances of a vehicle. A small data set is useful for exploring
the SSD training procedure, but in practice, more labeled images are needed to train a robust
detector.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The training data is stored in a table. The first column contains the path to the image files. The
remaining columns contain the ROI labels for vehicles. Display the first few rows of the data.

vehicleDataset(1:4,:)

ans=4×2 table
              imageFilename                   vehicle     
    _________________________________    _________________

    {'vehicleImages/image_00001.jpg'}    {[220 136 35 28]}
    {'vehicleImages/image_00002.jpg'}    {[175 126 61 45]}
    {'vehicleImages/image_00003.jpg'}    {[108 120 45 33]}
    {'vehicleImages/image_00004.jpg'}    {[124 112 38 36]}

Split the data set into a training set for training the detector and a test set for evaluating the
detector. Select 60% of the data for training. Use the rest for evaluation.

rng(0);
shuffledIndices = randperm(height(vehicleDataset));

8 Computer Vision Examples

8-90



idx = floor(0.6 * length(shuffledIndices) );
trainingData = vehicleDataset(shuffledIndices(1:idx),:);
testData = vehicleDataset(shuffledIndices(idx+1:end),:);

Use imageDatastore and boxLabelDatastore to load the image and label data during training
and evaluation.

imdsTrain = imageDatastore(trainingData{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingData(:,'vehicle'));

imdsTest = imageDatastore(testData{:,'imageFilename'});
bldsTest = boxLabelDatastore(testData(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest, bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Object Detection Using SSD Deep Learning

8-91



Create a SSD Object Detection Network

Use the ssdObjectDetector function to automatically create a SSD object detector.
ssdObjectDetector requires you to specify several inputs that parameterize the SSD Object
detector, including the base network also known as feature extraction network, input size, class
names, anchor boxes and detection network sources. Use the specific layers from input base network
to specify the detection network source. Detection network will be automatically connected to input
base network by ssdObjectDetector function.

The feature extraction network is typically a pretrained CNN (see “Pretrained Deep Neural
Networks” on page 1-11 for more details). This example uses ResNet-50 for feature extraction. Other
pretrained networks such as MobileNet v2 or ResNet-18 can also be used depending on application
requirements. The detection sub-network is a small CNN compared to the feature extraction network
and is composed of a few convolutional layers and layers specific to SSD.

net = resnet50();
lgraph = layerGraph(net);

When choosing the network input size, consider the size of the training images, and the
computational cost incurred by processing data at the selected size. When feasible, choose a network
input size that is close to the size of the training image. However, to reduce the computational cost of
running this example, the network input size is chosen to be [300 300 3]. During training,
trainSSDObjectDetector automatically resizes the training images to the network input size.

inputSize = [300 300 3];

Define object classes to detect.

classNames = {'vehicle'};

To use the pretrained ResNet-50 network as a backbone network, you must do these steps.

Step 1: Remove the layers in pretrained ResNet-50 network present after the "activation_40_relu"
layer. This also removes the classification and the fully connected layers.

Step 2: Add seven convolutional layers after the "activation_40_relu" layer to make the backbone
network more robust.

% Find layer index of 'activation_40_relu'
idx = find(ismember({lgraph.Layers.Name},'activation_40_relu'));

% Remove all layers after 'activation_40_relu' layer
removedLayers = {lgraph.Layers(idx+1:end).Name};
ssdLayerGraph = removeLayers(lgraph,removedLayers);

weightsInitializerValue = 'glorot';
biasInitializerValue = 'zeros';

% Append Extra layers on top of a base network.
extraLayers = [];

% Add conv6_1 and corresponding reLU
filterSize = 1;
numFilters = 256;
numChannels = 1024;
conv6_1 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
    Name = 'conv6_1', ...

8 Computer Vision Examples

8-92



    WeightsInitializer = weightsInitializerValue, ...
    BiasInitializer = biasInitializerValue);
relu6_1 = reluLayer(Name = 'relu6_1');
extraLayers = [extraLayers; conv6_1; relu6_1];

% Add conv6_2 and corresponding reLU
filterSize = 3;
numFilters = 512;
numChannels = 256;
conv6_2 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
    Padding = iSamePadding(filterSize), ...
    Stride = [2, 2], ...
    Name = 'conv6_2', ...
    WeightsInitializer = weightsInitializerValue, ...
    BiasInitializer = biasInitializerValue);
relu6_2 = reluLayer(Name = 'relu6_2');
extraLayers = [extraLayers; conv6_2; relu6_2];

% Add conv7_1 and corresponding reLU
filterSize = 1;
numFilters = 128;
numChannels = 512;
conv7_1 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
    Name = 'conv7_1', ...
    WeightsInitializer = weightsInitializerValue, ...
    BiasInitializer = biasInitializerValue);
relu7_1 = reluLayer(Name = 'relu7_1');
extraLayers = [extraLayers; conv7_1; relu7_1];

% Add conv7_2 and corresponding reLU
filterSize = 3;
numFilters = 256;
numChannels = 128;
conv7_2 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
    Padding = iSamePadding(filterSize), ...
    Stride = [2, 2], ...
    Name = 'conv7_2', ...
    WeightsInitializer = weightsInitializerValue, ...
    BiasInitializer = biasInitializerValue);
relu7_2 = reluLayer(Name = 'relu7_2');
extraLayers = [extraLayers; conv7_2; relu7_2];

% Add conv8_1 and corresponding reLU
filterSize = 1;
numFilters = 128;
numChannels = 256;
conv8_1 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
    Name = 'conv8_1', ...
    WeightsInitializer = weightsInitializerValue, ...
    BiasInitializer = biasInitializerValue);
relu8_1 = reluLayer(Name = 'relu8_1');
extraLayers = [extraLayers; conv8_1; relu8_1];

% Add conv8_2 and corresponding reLU
filterSize = 3;
numFilters = 256;
numChannels = 128;
conv8_2 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...

 Object Detection Using SSD Deep Learning

8-93



    Name = 'conv8_2', ...
    WeightsInitializer = weightsInitializerValue, ...
    BiasInitializer = biasInitializerValue);
relu8_2 = reluLayer(Name ='relu8_2');
extraLayers = [extraLayers; conv8_2; relu8_2];

% Add conv9_1 and corresponding reLU
filterSize = 1;
numFilters = 128;
numChannels = 256;
conv9_1 = convolution2dLayer(filterSize, numFilters, NumChannels = numChannels, ...
    Padding = iSamePadding(filterSize), ...
    Name = 'conv9_1', ...
    WeightsInitializer = weightsInitializerValue, ...
    BiasInitializer = biasInitializerValue);
relu9_1 = reluLayer('Name', 'relu9_1');
extraLayers = [extraLayers; conv9_1; relu9_1];

if ~isempty(extraLayers)
    lastLayerName = ssdLayerGraph.Layers(end).Name;
    ssdLayerGraph = addLayers(ssdLayerGraph, extraLayers);
    ssdLayerGraph = connectLayers(ssdLayerGraph, lastLayerName, extraLayers(1).Name);
end

Specify the layers name from the network to which detection network source will be added.

detNetworkSource = ["activation_22_relu", "activation_40_relu", "relu6_2", "relu7_2", "relu8_2"];

Specify the anchor Boxes. Anchor boxes (M-by-1 cell array) count (M) must be same as detection
network source count.

anchorBoxes = {[60,30;30,60;60,21;42,30];...
               [111,60;60,111;111,35;64,60;111,42;78,60];...
               [162,111;111,162;162,64;94,111;162,78;115,111];...
               [213,162;162,213;213,94;123,162;213,115;151,162];...
               [264,213;213,264;264,151;187,213]};

Create the SSD object detector object.

detector = ssdObjectDetector(ssdLayerGraph,classNames,anchorBoxes,DetectionNetworkSource=detNetworkSource,InputSize=inputSize,ModelName='ssdVehicle'); 

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples. Use transform to augment the
training data by

• Randomly flipping the image and associated box labels horizontally.
• Randomly scale the image, associated box labels.
• Jitter image color.

Note that data augmentation is not applied to the test data. Ideally, test data should be representative
of the original data and is left unmodified for unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Visualize augmented training data by reading the same image multiple times.

8 Computer Vision Examples

8-94



augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedTrainingData);
    augmentedData{k} = insertShape(data{1},rectangle = data{2});
    reset(augmentedTrainingData);
end

figure
montage(augmentedData,BorderSize = 10)

Preprocess Training Data

Preprocess the augmented training data to prepare for training.

preprocessedTrainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));

Read the preprocessed training data.

data = read(preprocessedTrainingData);

Display the image and bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);

 Object Detection Using SSD Deep Learning

8-95



figure
imshow(annotatedImage)

Train SSD Object Detector

Use trainingOptions to specify network training options. Set 'CheckpointPath' to a temporary
location. This enables the saving of partially trained detectors during the training process. If training
is interrupted, such as by a power outage or system failure, you can resume training from the saved
checkpoint.

options = trainingOptions('sgdm', ...
        MiniBatchSize = 16, ....
        InitialLearnRate = 1e-3, ...
        LearnRateSchedule = 'piecewise', ...

8 Computer Vision Examples

8-96



        LearnRateDropPeriod = 30, ...
        LearnRateDropFactor =  0.8, ...
        MaxEpochs = 20, ...
        VerboseFrequency = 50, ...        
        CheckpointPath = tempdir, ...
        Shuffle = 'every-epoch');

Use trainSSDObjectDetector (Computer Vision Toolbox) function to train SSD object detector if
doTraining to true. Otherwise, load a pretrained network.

if doTraining
    % Train the SSD detector.
    [detector, info] = trainSSDObjectDetector(preprocessedTrainingData,detector,options);
else
    % Load pretrained detector for the example.
    pretrained = load('ssdResNet50VehicleExample_22b.mat');
    detector = pretrained.detector;
end

This example is verified on an NVIDIA™ Titan X GPU with 12 GB of memory. If your GPU has less
memory, you may run out of memory. If this happens, lower the 'MiniBatchSize' using the
trainingOptions function. Training this network took approximately 2 hours using this setup.
Training time varies depending on the hardware you use.

As a quick test, run the detector on one test image.

data = read(testData);
I = data{1,1};
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

 Object Detection Using SSD Deep Learning

8-97



Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all
relevant objects (recall).

Apply the same preprocessing transform to the test data as for the training data. Note that data
augmentation is not applied to the test data. Test data should be representative of the original data
and be left unmodified for unbiased evaluation.

preprocessedTestData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector, preprocessedTestData, MiniBatchSize = 32);

Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults, preprocessedTestData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. Ideally,
the precision would be 1 at all recall levels. The use of more data can help improve the average
precision, but might require more training time Plot the PR curve.

figure
plot(recall,precision)

8 Computer Vision Examples

8-98



xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f',ap))

Code Generation

Once the detector is trained and evaluated, you can generate code for the ssdObjectDetector
using GPU Coder™. For more details, see “Code Generation for Object Detection by Using Single
Shot Multibox Detector” (Computer Vision Toolbox) example.

Supporting Functions
function B = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.
B = cell(size(A));
I = A{1};
sz = size(I);
if numel(sz)==3 && sz(3) == 3
    I = jitterColorHSV(I,...
        Contrast = 0.2,...
        Hue = 0,...
        Saturation = 0.1,...
        Brightness = 0.2);
end
% Randomly flip and scale image.

 Object Detection Using SSD Deep Learning

8-99



tform = randomAffine2d(XReflection = true, Scale = [1 1.1]);  
rout = affineOutputView(sz,tform, BoundsStyle = 'CenterOutput');    
B{1} = imwarp(I,tform,OutputView = rout);
% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to access this function.
A{2} = helperSanitizeBoxes(A{2});    
% Apply same transform to boxes.
[B{2},indices] = bboxwarp(A{2},tform,rout,OverlapThreshold = 0.25);    
B{3} = A{3}(indices);  
% Return original data only when all boxes are removed by warping.
if isempty(indices)
    B = A;
end
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to the targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));
% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to access this function.
data{2} = helperSanitizeBoxes(data{2});
% Resize boxes.
data{2} = bboxresize(data{2},scale);
end

function p = iSamePadding(FilterSize)
    p = floor(FilterSize / 2);
end

References

[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang Fu, and
Alexander C. Berg. "SSD: Single shot multibox detector." In 14th European Conference on Computer
Vision, ECCV 2016. Springer Verlag, 2016.

See Also
Apps
Deep Network Designer

Functions
trainSSDObjectDetector | analyzeNetwork | combine | transform |
evaluateDetectionPrecision | ssdLayers | trainingOptions | detect | read

Objects
ssdObjectDetector | boxLabelDatastore | imageDatastore

More About
• “Code Generation for Object Detection by Using Single Shot Multibox Detector” (Computer

Vision Toolbox)
• “Create SSD Object Detection Network” (Computer Vision Toolbox)

8 Computer Vision Examples

8-100



• “Getting Started with SSD Multibox Detection” (Computer Vision Toolbox)

 Object Detection Using SSD Deep Learning

8-101



Object Detection Using YOLO v3 Deep Learning

This example shows how to train a YOLO v3 on page 8-115 object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several techniques for object detection exist, including Faster R-CNN, you only look once
(YOLO) v2, and single shot detector (SSD). This example shows how to train a YOLO v3 object
detector. YOLO v3 improves upon YOLO v2 by adding detection at multiple scales to help detect
smaller objects. The loss function used for training is separated into mean squared error for bounding
box regression and binary cross-entropy for object classification to help improve detection accuracy.

Note: This example requires the Computer Vision Toolbox™ Model for YOLO v3 Object Detection.
You can install the Computer Vision Toolbox Model for YOLO v3 Object Detection from Add-On
Explorer. For more information about installing add-ons, see “Get and Manage Add-Ons”.

Download Pretrained Network

Download a pretrained network by using the helper function
downloadPretrainedYOLOv3Detector to avoid having to wait for training to complete. If you
want to train the network with a new set of data, set the doTraining variable to true.

doTraining = false;

if ~doTraining
    preTrainedDetector = downloadPretrainedYOLOv3Detector();    
end

Load Data

This example uses a small labeled data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission.
Each image contains one or two labeled instances of a vehicle. A small data set is useful for exploring
the YOLO v3 training procedure, but in practice, more labeled images are needed to train a robust
network.

Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

% Add the full path to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd, vehicleDataset.imageFilename);

Note: In case of multiple classes, the data can also be organized as three columns where the first
column contains the image file names with paths, the second column contains the bounding boxes
and the third column must be a cell vector that contains the label names corresponding to each
bounding box. For more information on how to arrange the bounding boxes and labels, see
boxLabelDatastore (Computer Vision Toolbox).

All the bounding boxes must be in the form [x y width height]. This vector specifies the upper
left corner and the size of the bounding box in pixels.

Split the data set into a training set for training the network, and a test set for evaluating the
network. Use 60% of the data for training set and the rest for the test set.

8 Computer Vision Examples

8-102



rng(0);
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices));
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx), :);
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end), :);

Create an image datastore for loading the images.

imdsTrain = imageDatastore(trainingDataTbl.imageFilename);
imdsTest = imageDatastore(testDataTbl.imageFilename);

Create a datastore for the ground truth bounding boxes.

bldsTrain = boxLabelDatastore(trainingDataTbl(:, 2:end));
bldsTest = boxLabelDatastore(testDataTbl(:, 2:end));

Combine the image and box label datastores.

trainingData = combine(imdsTrain, bldsTrain);
testData = combine(imdsTest, bldsTest);

Use validateInputData to detect invalid images, bounding boxes or labels i.e.,

• Samples with invalid image format or containing NaNs
• Bounding boxes containing zeros/NaNs/Infs/empty
• Missing/non-categorical labels.

The values of the bounding boxes should be finite, positive, non-fractional, non-NaN and should be
within the image boundary with a positive height and width. Any invalid samples must either be
discarded or fixed for proper training.

validateInputData(trainingData);
validateInputData(testData);

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform function to apply custom data augmentations to the training data. The augmentData
helper function, listed at the end of the example, applies the following augmentations to the input
data.

• Color jitter augmentation in HSV space
• Random horizontal flip
• Random scaling by 10 percent

augmentedTrainingData = transform(trainingData, @augmentData);

Read the same image four times and display the augmented training data.

% Visualize the augmented images.
augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedTrainingData);

 Object Detection Using YOLO v3 Deep Learning

8-103



    augmentedData{k} = insertShape(data{1,1}, 'Rectangle', data{1,2});
    reset(augmentedTrainingData);
end
figure
montage(augmentedData, 'BorderSize', 10)

Define YOLO v3 Object Detector

The YOLO v3 detector in this example is based on SqueezeNet, and uses the feature extraction
network in SqueezeNet with the addition of two detection heads at the end. The second detection
head is twice the size of the first detection head, so it is better able to detect small objects. Note that
you can specify any number of detection heads of different sizes based on the size of the objects that
you want to detect. The YOLO v3 detector uses anchor boxes estimated using training data to have
better initial priors corresponding to the type of data set and to help the detector learn to predict the
boxes accurately. For information about anchor boxes, see “Anchor Boxes for Object Detection”
(Computer Vision Toolbox).

The YOLO v3 network present in the YOLO v3 detector is illustrated in the following diagram.

You can use Deep Network Designer to create the network shown in the diagram.

8 Computer Vision Examples

8-104



Specify the network input size. When choosing the network input size, consider the minimum size
required to run the network itself, the size of the training images, and the computational cost
incurred by processing data at the selected size. When feasible, choose a network input size that is
close to the size of the training image and larger than the input size required for the network. To
reduce the computational cost of running the example, specify a network input size of [227 227 3].

networkInputSize = [227 227 3];

First, use transform to preprocess the training data for computing the anchor boxes, as the training
images used in this example are bigger than 227-by-227 and vary in size. Specify the number of
anchors as 6 to achieve a good tradeoff between number of anchors and mean IoU. Use the
estimateAnchorBoxes function to estimate the anchor boxes. For details on estimating anchor
boxes, see “Estimate Anchor Boxes From Training Data” (Computer Vision Toolbox). In case of using
a pretrained YOLOv3 object detector, the anchor boxes calculated on that particular training dataset
need to be specified. Note that the estimation process is not deterministic. To prevent the estimated
anchor boxes from changing while tuning other hyperparameters, set the random seed prior to
estimation using rng.

rng(0)
trainingDataForEstimation = transform(trainingData, @(data)preprocessData(data, networkInputSize));
numAnchors = 6;
[anchors, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

anchors = 6×2

    41    34
   163   130
    98    93
   144   125
    33    24
    69    66

meanIoU = 0.8507

Specify anchorBoxes to use in both the detection heads. anchorBoxes is a cell array of [Mx1],
where M denotes the number of detection heads. Each detection head consists of a [Nx2] matrix of
anchors, where N is the number of anchors to use. Select anchorBoxes for each detection head
based on the feature map size. Use larger anchors at lower scale and smaller anchors at higher
scale. To do so, sort the anchors with the larger anchor boxes first and assign the first three to the
first detection head and the next three to the second detection head.

 Object Detection Using YOLO v3 Deep Learning

8-105



area = anchors(:, 1).*anchors(:, 2);
[~, idx] = sort(area, 'descend');
anchors = anchors(idx, :);
anchorBoxes = {anchors(1:3,:)
    anchors(4:6,:)
    };

Load the SqueezeNet network pretrained on Imagenet data set and then specify the class names. You
can also choose to load a different pretrained network trained on COCO data set such as tiny-
yolov3-coco or darknet53-coco or Imagenet data set such as MobileNet-v2 or ResNet-18. YOLO
v3 performs better and trains faster when you use a pretrained network.

baseNetwork = squeezenet;
classNames = trainingDataTbl.Properties.VariableNames(2:end);

Next, create the yolov3ObjectDetector object by adding the detection network source. Choosing
the optimal detection network source requires trial and error, and you can use analyzeNetwork to
find the names of potential detection network source within a network. For this example, use the
fire9-concat and fire5-concat layers as DetectionNetworkSource.

yolov3Detector = yolov3ObjectDetector(baseNetwork, classNames, anchorBoxes, 'DetectionNetworkSource', {'fire9-concat', 'fire5-concat'}, InputSize = networkInputSize);

Alternatively, instead of the network created above using SqueezeNet, other pretrained YOLOv3
architectures trained using larger datasets like MS-COCO can be used to transfer learn the detector
on custom object detection task. Transfer learning can be realized by changing the classNames and
anchorBoxes.

Preprocess Training Data

Preprocess the augmented training data to prepare for training. The preprocess (Computer Vision
Toolbox) method in yolov3ObjectDetector (Computer Vision Toolbox), applies the following
preprocessing operations to the input data.

• Resize the images to the network input size by maintaining the aspect ratio.
• Scale the image pixels in the range [0 1].

preprocessedTrainingData = transform(augmentedTrainingData, @(data)preprocess(yolov3Detector, data));

Read the preprocessed training data.

data = read(preprocessedTrainingData);

Display the image with the bounding boxes.

I = data{1,1};
bbox = data{1,2};
annotatedImage = insertShape(I, 'Rectangle', bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

8 Computer Vision Examples

8-106



Reset the datastore.

reset(preprocessedTrainingData);

Specify Training Options

Specify these training options.

• Set the number of epochs to be 80.
• Set the mini batch size as 8. Stable training can be possible with higher learning rates when

higher mini batch size is used. Although, this should be set depending on the available memory.
• Set the learning rate to 0.001.
• Set the warmup period as 1000 iterations. This parameter denotes the number of iterations to

increase the learning rate exponentially based on the formula learningRate × iteration
warmupPeriod

4
. It

helps in stabilizing the gradients at higher learning rates.

 Object Detection Using YOLO v3 Deep Learning

8-107



• Set the L2 regularization factor to 0.0005.
• Specify the penalty threshold as 0.5. Detections that overlap less than 0.5 with the ground truth

are penalized.
• Initialize the velocity of gradient as []. This is used by SGDM to store the velocity of gradients.

numEpochs = 80;
miniBatchSize = 8;
learningRate = 0.001;
warmupPeriod = 1000;
l2Regularization = 0.0005;
penaltyThreshold = 0.5;
velocity = [];

Train Model

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For information about the supported compute capabilities, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

Use the minibatchqueue function to split the preprocessed training data into batches with the
supporting function createBatchData which returns the batched images and bounding boxes
combined with the respective class IDs. For faster extraction of the batch data for training,
dispatchInBackground should be set to "true" which ensures the usage of parallel pool.

minibatchqueue automatically detects the availability of a GPU. If you do not have a GPU, or do not
want to use one for training, set the OutputEnvironment parameter to "cpu".

if canUseParallelPool
   dispatchInBackground = true;
else
   dispatchInBackground = false;
end

mbqTrain = minibatchqueue(preprocessedTrainingData, 2,...
        "MiniBatchSize", miniBatchSize,...
        "MiniBatchFcn", @(images, boxes, labels) createBatchData(images, boxes, labels, classNames), ...
        "MiniBatchFormat", ["SSCB", ""],...
        "DispatchInBackground", dispatchInBackground,...
        "OutputCast", ["", "double"]);

Create the training progress plotter using supporting function
configureTrainingProgressPlotter to see the plot while training the detector object with a
custom training loop.

Finally, specify the custom training loop. For each iteration:

• Read data from the minibatchqueue. If it doesn't have any more data, reset the
minibatchqueue and shuffle.

• Evaluate the model gradients using dlfeval and the modelGradients function. The function
modelGradients, listed as a supporting function, returns the gradients of the loss with respect
to the learnable parameters in net, the corresponding mini-batch loss, and the state of the
current batch.

• Apply a weight decay factor to the gradients to regularization for more robust training.
• Determine the learning rate based on the iterations using the

piecewiseLearningRateWithWarmup supporting function.

8 Computer Vision Examples

8-108



• Update the detector parameters using the sgdmupdate function.
• Update the state parameters of detector with the moving average.
• Display the learning rate, total loss, and the individual losses (box loss, object loss and class loss)

for every iteration. These can be used to interpret how the respective losses are changing in each
iteration. For example, a sudden spike in the box loss after few iterations implies that there are Inf
or NaNs in the predictions.

• Update the training progress plot.

The training can also be terminated if the loss has saturated for few epochs.

if doTraining
    
    % Create subplots for the learning rate and mini-batch loss.
    fig = figure;
    [lossPlotter, learningRatePlotter] = configureTrainingProgressPlotter(fig);

    iteration = 0;
    % Custom training loop.
    for epoch = 1:numEpochs
          
        reset(mbqTrain);
        shuffle(mbqTrain);
        
        while(hasdata(mbqTrain))
            iteration = iteration + 1;
           
            [XTrain, YTrain] = next(mbqTrain);
            
            % Evaluate the model gradients and loss using dlfeval and the
            % modelGradients function.
            [gradients, state, lossInfo] = dlfeval(@modelGradients, yolov3Detector, XTrain, YTrain, penaltyThreshold);
    
            % Apply L2 regularization.
            gradients = dlupdate(@(g,w) g + l2Regularization*w, gradients, yolov3Detector.Learnables);
    
            % Determine the current learning rate value.
            currentLR = piecewiseLearningRateWithWarmup(iteration, epoch, learningRate, warmupPeriod, numEpochs);
    
            % Update the detector learnable parameters using the SGDM optimizer.
            [yolov3Detector.Learnables, velocity] = sgdmupdate(yolov3Detector.Learnables, gradients, velocity, currentLR);
    
            % Update the state parameters of dlnetwork.
            yolov3Detector.State = state;
              
            % Display progress.
            displayLossInfo(epoch, iteration, currentLR, lossInfo);  
                
            % Update training plot with new points.
            updatePlots(lossPlotter, learningRatePlotter, iteration, currentLR, lossInfo.totalLoss);
        end        
    end
else
    yolov3Detector = preTrainedDetector;
end

 Object Detection Using YOLO v3 Deep Learning

8-109



Evaluate Model

Computer Vision Toolbox™ provides object detector evaluation functions to measure common metrics
such as average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). In this example, the average precision metric is used. The average
precision provides a single number that incorporates the ability of the detector to make correct
classifications (precision) and the ability of the detector to find all relevant objects (recall).

results = detect(yolov3Detector,testData,'MiniBatchSize',8);

% Evaluate the object detector using Average Precision metric.
[ap,recall,precision] = evaluateDetectionPrecision(results,testData);

The precision-recall (PR) curve shows how precise a detector is at varying levels of recall. Ideally, the
precision is 1 at all recall levels.

% Plot precision-recall curve.
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))

Detect Objects Using YOLO v3

Use the detector for object detection.

8 Computer Vision Examples

8-110



% Read the datastore.
data = read(testData);

% Get the image.
I = data{1};

[bboxes,scores,labels] = detect(yolov3Detector,I);

% Display the detections on image.
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);

figure
imshow(I)

Supporting Functions

Model Gradients Function

The function modelGradients takes the yolov3ObjectDetector object, a mini-batch of input data
XTrain with corresponding ground truth boxes YTrain, the specified penalty threshold as input
arguments and returns the gradients of the loss with respect to the learnable parameters in
yolov3ObjectDetector, the corresponding mini-batch loss information, and the state of the
current batch.

The model gradients function computes the total loss and gradients by performing these operations.

• Generate predictions from the input batch of images using the forward method.
• Collect predictions on the CPU for postprocessing.
• Convert the predictions from the YOLO v3 grid cell coordinates to bounding box coordinates to

allow easy comparison with the ground truth data by using the anchorBoxGenerator method of
yolov3ObjectDetector.

 Object Detection Using YOLO v3 Deep Learning

8-111



• Generate targets for loss computation by using the converted predictions and ground truth data.
These targets are generated for bounding box positions (x, y, width, height), object confidence,
and class probabilities. See the supporting function generateTargets.

• Calculates the mean squared error of the predicted bounding box coordinates with target boxes.
See the supporting function bboxOffsetLoss.

• Determines the binary cross-entropy of the predicted object confidence score with target object
confidence score. See the supporting function objectnessLoss.

• Determines the binary cross-entropy of the predicted class of object with the target. See the
supporting function classConfidenceLoss.

• Computes the total loss as the sum of all losses.
• Computes the gradients of learnables with respect to the total loss.

function [gradients, state, info] = modelGradients(detector, XTrain, YTrain, penaltyThreshold)
inputImageSize = size(XTrain,1:2);

% Gather the ground truths in the CPU for post processing
YTrain = gather(extractdata(YTrain));

% Extract the predictions from the detector.
[gatheredPredictions, YPredCell, state] = forward(detector, XTrain);

% Generate target for predictions from the ground truth data.
[boxTarget, objectnessTarget, classTarget, objectMaskTarget, boxErrorScale] = generateTargets(gatheredPredictions,...
    YTrain, inputImageSize, detector.AnchorBoxes, penaltyThreshold);

% Compute the loss.
boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 7 8]),boxTarget,objectMaskTarget,boxErrorScale);
objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
clsLoss = classConfidenceLoss(YPredCell(:,6),classTarget,objectMaskTarget);
totalLoss = boxLoss + objLoss + clsLoss;

info.boxLoss = boxLoss;
info.objLoss = objLoss;
info.clsLoss = clsLoss;
info.totalLoss = totalLoss;

% Compute gradients of learnables with regard to loss.
gradients = dlgradient(totalLoss, detector.Learnables);
end

function boxLoss = bboxOffsetLoss(boxPredCell, boxDeltaTarget, boxMaskTarget, boxErrorScaleTarget)
% Mean squared error for bounding box position.
lossX = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,1),boxDeltaTarget(:,1),boxMaskTarget(:,1),boxErrorScaleTarget));
lossY = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,2),boxDeltaTarget(:,2),boxMaskTarget(:,1),boxErrorScaleTarget));
lossW = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,3),boxDeltaTarget(:,3),boxMaskTarget(:,1),boxErrorScaleTarget));
lossH = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,4),boxDeltaTarget(:,4),boxMaskTarget(:,1),boxErrorScaleTarget));
boxLoss = lossX+lossY+lossW+lossH;
end

function objLoss = objectnessLoss(objectnessPredCell, objectnessDeltaTarget, boxMaskTarget)
% Binary cross-entropy loss for objectness score.
objLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),objectnessPredCell,objectnessDeltaTarget,boxMaskTarget(:,2)));
end

function clsLoss = classConfidenceLoss(classPredCell, classTarget, boxMaskTarget)

8 Computer Vision Examples

8-112



% Binary cross-entropy loss for class confidence score.
clsLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),classPredCell,classTarget,boxMaskTarget(:,3)));
end

Augmentation and Data Processing Functions

function data = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.

data = cell(size(A));
for ii = 1:size(A,1)
    I = A{ii,1};
    bboxes = A{ii,2};
    labels = A{ii,3};
    sz = size(I);

    if numel(sz) == 3 && sz(3) == 3
        I = jitterColorHSV(I,...
            'Contrast',0.0,...
            'Hue',0.1,...
            'Saturation',0.2,...
            'Brightness',0.2);
    end
    
    % Randomly flip image.
    tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
    rout = affineOutputView(sz,tform,'BoundsStyle','centerOutput');
    I = imwarp(I,tform,'OutputView',rout);
    
    % Apply same transform to boxes.
    [bboxes,indices] = bboxwarp(bboxes,tform,rout,'OverlapThreshold',0.25);
    bboxes = round(bboxes);
    labels = labels(indices);
    
    % Return original data only when all boxes are removed by warping.
    if isempty(indices)
        data(ii,:) = A(ii,:);
    else
        data(ii,:) = {I, bboxes, labels};
    end
end
end

function data = preprocessData(data, targetSize)
% Resize the images and scale the pixels to between 0 and 1. Also scale the
% corresponding bounding boxes.

for ii = 1:size(data,1)
    I = data{ii,1};
    imgSize = size(I);
    
    % Convert an input image with single channel to 3 channels.
    if numel(imgSize) < 3 
        I = repmat(I,1,1,3);
    end

 Object Detection Using YOLO v3 Deep Learning

8-113



    bboxes = data{ii,2};

    I = im2single(imresize(I,targetSize(1:2)));
    scale = targetSize(1:2)./imgSize(1:2);
    bboxes = bboxresize(bboxes,scale);
    
    data(ii, 1:2) = {I, bboxes};
end
end

function [XTrain, YTrain] = createBatchData(data, groundTruthBoxes, groundTruthClasses, classNames)
% Returns images combined along the batch dimension in XTrain and
% normalized bounding boxes concatenated with classIDs in YTrain

% Concatenate images along the batch dimension.
XTrain = cat(4, data{:,1});

% Get class IDs from the class names.
classNames = repmat({categorical(classNames')}, size(groundTruthClasses));
[~, classIndices] = cellfun(@(a,b)ismember(a,b), groundTruthClasses, classNames, 'UniformOutput', false);

% Append the label indexes and training image size to scaled bounding boxes
% and create a single cell array of responses.
combinedResponses = cellfun(@(bbox, classid)[bbox, classid], groundTruthBoxes, classIndices, 'UniformOutput', false);
len = max( cellfun(@(x)size(x,1), combinedResponses ) );
paddedBBoxes = cellfun( @(v) padarray(v,[len-size(v,1),0],0,'post'), combinedResponses, 'UniformOutput',false);
YTrain = cat(4, paddedBBoxes{:,1});
end

Learning Rate Schedule Function

function currentLR = piecewiseLearningRateWithWarmup(iteration, epoch, learningRate, warmupPeriod, numEpochs)
% The piecewiseLearningRateWithWarmup function computes the current
% learning rate based on the iteration number.
persistent warmUpEpoch;

if iteration <= warmupPeriod
    % Increase the learning rate for number of iterations in warmup period.
    currentLR = learningRate * ((iteration/warmupPeriod)^4);
    warmUpEpoch = epoch;
elseif iteration >= warmupPeriod && epoch < warmUpEpoch+floor(0.6*(numEpochs-warmUpEpoch))
    % After warm up period, keep the learning rate constant if the remaining number of epochs is less than 60 percent. 
    currentLR = learningRate;
    
elseif epoch >= warmUpEpoch + floor(0.6*(numEpochs-warmUpEpoch)) && epoch < warmUpEpoch+floor(0.9*(numEpochs-warmUpEpoch))
    % If the remaining number of epochs is more than 60 percent but less
    % than 90 percent multiply the learning rate by 0.1.
    currentLR = learningRate*0.1;
    
else
    % If remaining epochs are more than 90 percent multiply the learning
    % rate by 0.01.
    currentLR = learningRate*0.01;
end

end

8 Computer Vision Examples

8-114



Utility Functions

function [lossPlotter, learningRatePlotter] = configureTrainingProgressPlotter(f)
% Create the subplots to display the loss and learning rate.
figure(f);
clf
subplot(2,1,1);
ylabel('Learning Rate');
xlabel('Iteration');
learningRatePlotter = animatedline;
subplot(2,1,2);
ylabel('Total Loss');
xlabel('Iteration');
lossPlotter = animatedline;
end

function displayLossInfo(epoch, iteration, currentLR, lossInfo)
% Display loss information for each iteration.
disp("Epoch : " + epoch + " | Iteration : " + iteration + " | Learning Rate : " + currentLR + ...
   " | Total Loss : " + double(gather(extractdata(lossInfo.totalLoss))) + ...
   " | Box Loss : " + double(gather(extractdata(lossInfo.boxLoss))) + ...
   " | Object Loss : " + double(gather(extractdata(lossInfo.objLoss))) + ...
   " | Class Loss : " + double(gather(extractdata(lossInfo.clsLoss))));
end

function updatePlots(lossPlotter, learningRatePlotter, iteration, currentLR, totalLoss)
% Update loss and learning rate plots.
addpoints(lossPlotter, iteration, double(extractdata(gather(totalLoss))));
addpoints(learningRatePlotter, iteration, currentLR);
drawnow
end

function detector = downloadPretrainedYOLOv3Detector()
% Download a pretrained yolov3 detector.
if ~exist('yolov3SqueezeNetVehicleExample_21aSPKG.mat', 'file')
    if ~exist('yolov3SqueezeNetVehicleExample_21aSPKG.zip', 'file')
        disp('Downloading pretrained detector...');
        pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/data/yolov3SqueezeNetVehicleExample_21aSPKG.zip';
        websave('yolov3SqueezeNetVehicleExample_21aSPKG.zip', pretrainedURL);
    end
    unzip('yolov3SqueezeNetVehicleExample_21aSPKG.zip');
end
pretrained = load("yolov3SqueezeNetVehicleExample_21aSPKG.mat");
detector = pretrained.detector;
end

References

[1] Redmon, Joseph, and Ali Farhadi. “YOLOv3: An Incremental Improvement.” Preprint, submitted
April 8, 2018. https://arxiv.org/abs/1804.02767.

See Also
Apps
Deep Network Designer

 Object Detection Using YOLO v3 Deep Learning

8-115



Functions
estimateAnchorBoxes | analyzeNetwork | combine | transform | dlfeval | read |
evaluateDetectionPrecision | sgdmupdate | dlupdate

Objects
boxLabelDatastore | imageDatastore | dlnetwork | dlarray

More About
• “Anchor Boxes for Object Detection” (Computer Vision Toolbox)
• “Estimate Anchor Boxes From Training Data” (Computer Vision Toolbox)
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Getting Started with Object Detection Using Deep Learning” (Computer Vision Toolbox)

8 Computer Vision Examples

8-116



Object Detection Using YOLO v4 Deep Learning

This example shows how to detect objects in images using you only look once version 4 (YOLO v4)
deep learning network. In this example, you will

• Configure a dataset for training, validation, and testing of YOLO v4 object detection network. You
will also perform data augmentation on the training dataset to improve the network efficiency.

• Compute anchor boxes from the training data to use for training the YOLO v4 object detection
network.

• Create a YOLO v4 object detector by using the yolov4ObjectDetector function and train the
detector using trainYOLOv4ObjectDetector function.

This example also provides a pretrained YOLO v4 object detector to use for detecting vehicles in an
image. The pretrained network uses CSPDarkNet-53 as the backbone network and is trained on a
vehicle dataset. For information about YOLO v4 object detection network, see “Getting Started with
YOLO v4” (Computer Vision Toolbox).

Load Dataset

This example uses a small vehicle dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 datasets, available at the Caltech Computational Vision website
created by Pietro Perona and used with permission. Each image contain one or two labeled instances
of a vehicle. A small dataset is useful for exploring the YOLO v4 training procedure, but in practice,
more labeled images are needed to train a robust detector.

Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load("vehicleDatasetGroundTruth.mat");
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table. The first column contain the image file paths and the
second column contain the bounding boxes.

% Display first few rows of the data set.
vehicleDataset(1:4,:)

ans=4×2 table
              imageFilename                   vehicle     
    _________________________________    _________________

    {'vehicleImages/image_00001.jpg'}    {[220 136 35 28]}
    {'vehicleImages/image_00002.jpg'}    {[175 126 61 45]}
    {'vehicleImages/image_00003.jpg'}    {[108 120 45 33]}
    {'vehicleImages/image_00004.jpg'}    {[124 112 38 36]}

% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

Split the dataset into training, validation, and test sets. Select 60% of the data for training, 10% for
validation, and the rest for testing the trained detector.

rng("default");
shuffledIndices = randperm(height(vehicleDataset));

 Object Detection Using YOLO v4 Deep Learning

8-117



idx = floor(0.6 * length(shuffledIndices) );

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) );
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

testIdx = validationIdx(end)+1 : length(shuffledIndices);
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,"imageFilename"});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,"vehicle"));

imdsValidation = imageDatastore(validationDataTbl{:,"imageFilename"});
bldsValidation = boxLabelDatastore(validationDataTbl(:,"vehicle"));

imdsTest = imageDatastore(testDataTbl{:,"imageFilename"});
bldsTest = boxLabelDatastore(testDataTbl(:,"vehicle"));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

Use validateInputData to detect invalid images, bounding boxes or labels i.e.,

• Samples with invalid image format or containing NaNs
• Bounding boxes containing zeros/NaNs/Infs/empty
• Missing/non-categorical labels.

The values of the bounding boxes must be finite positive integers and must not be NaN. The height
and the width of the bounding box values must be positive and lie within the image boundary.

validateInputData(trainingData);
validateInputData(validationData);
validateInputData(testData);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,"Rectangle",bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

8 Computer Vision Examples

8-118



reset(trainingData);

Create a YOLO v4 Object Detector Network

Specify the network input size to be used for training.

inputSize = [608 608 3];

Specify the name of the object class to detect.

className = "vehicle";

Use the estimateAnchorBoxes (Computer Vision Toolbox) function to estimate anchor boxes based
on the size of objects in the training data. To account for the resizing of the images prior to training,
resize the training data for estimating anchor boxes. Use transform to preprocess the training data,
then define the number of anchor boxes and estimate the anchor boxes. Resize the training data to
the input size of the network by using the preprocessData helper function.

rng("default")
trainingDataForEstimation = transform(trainingData,@(data)preprocessData(data,inputSize));
numAnchors = 9;
[anchors,meanIoU] = estimateAnchorBoxes(trainingDataForEstimation,numAnchors);

area = anchors(:, 1).*anchors(:,2);
[~,idx] = sort(area,"descend");

 Object Detection Using YOLO v4 Deep Learning

8-119



anchors = anchors(idx,:);
anchorBoxes = {anchors(1:3,:)
    anchors(4:6,:)
    anchors(7:9,:)
    };

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data”
(Computer Vision Toolbox) (Computer Vision Toolbox™) and “Anchor Boxes for Object Detection”
(Computer Vision Toolbox).

Create the YOLO v4 object detector by using the yolov4ObjectDetector function. specify the
name of the pretrained YOLO v4 detection network trained on COCO dataset. Specify the class name
and the estimated anchor boxes.

detector = yolov4ObjectDetector("csp-darknet53-coco",className,anchorBoxes,InputSize=inputSize);

Perform Data Augmentation

Perform data augmentation to improve training accuracy. Use the transform function to apply
custom data augmentations to the training data. The augmentData helper function applies the
following augmentations to the input data:

• Color jitter augmentation in HSV space
• Random horizontal flip
• Random scaling by 10 percent

Note that data augmentation is not applied to the test and validation data. Ideally, test and validation
data should be representative of the original data and is left unmodified for unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read and display samples of augmented training data.

augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedTrainingData);
    augmentedData{k} = insertShape(data{1},"rectangle",data{2});
    reset(augmentedTrainingData);
end
figure
montage(augmentedData,BorderSize=10)

8 Computer Vision Examples

8-120



Specify Training Options

Use trainingOptions to specify network training options. Train the object detector using the Adam
solver for 70 epochs with a constant learning rate 0.001. "ResetInputNormalization" should be
set to false and "BatchNormalizationStatistics" should be set to "moving". Set
"ValidationData" to the validation data and "ValidationFrequency" to 1000. To validate the
data more often, you can reduce the “ValidationFrequency” which also increases the training
time. Use "ExecutionEnvironment" to determine what hardware resources will be used to train
the network. Default value for this is "auto" which selects a GPU if it is available, otherwise selects
the CPU. Set "CheckpointPath" to a temporary location. This enables the saving of partially trained
detectors during the training process. If training is interrupted, such as by a power outage or system
failure, you can resume training from the saved checkpoint.

options = trainingOptions("adam",...
    GradientDecayFactor=0.9,...
    SquaredGradientDecayFactor=0.999,...
    InitialLearnRate=0.001,...
    LearnRateSchedule="none",...
    MiniBatchSize=4,...
    L2Regularization=0.0005,...
    MaxEpochs=70,...
    BatchNormalizationStatistics="moving",...
    DispatchInBackground=true,...
    ResetInputNormalization=false,...
    Shuffle="every-epoch",...

 Object Detection Using YOLO v4 Deep Learning

8-121



    VerboseFrequency=20,...
    ValidationFrequency=1000,...
    CheckpointPath=tempdir,...
    ValidationData=validationData);

Train YOLO v4 Object Detector

Use the trainYOLOv4ObjectDetector function to train YOLO v4 object detector. This example is
run on an NVIDIA™ Titan RTX GPU with 24 GB of memory. Training this network took approximately
6 hours using this setup. The training time will vary depending on the hardware you use. Instead of
training the network, you can also use a pretrained YOLO v4 object detector in the Computer Vision
Toolbox ™.

Download the pretrained detector by using the downloadPretrainedYOLOv4Detector helper
function. Set the doTraining value to false. If you want to train the detector on the augmented
training data, set the doTraining value to true.

doTraining = false;
if doTraining       
    % Train the YOLO v4 detector.
    [detector,info] = trainYOLOv4ObjectDetector(augmentedTrainingData,detector,options);
else
    % Load pretrained detector for the example.
    detector = downloadPretrainedYOLOv4Detector();
end

Run the detector on a test image.

I = imread("highway.png");
[bboxes,scores,labels] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,"rectangle",bboxes,scores);
figure
imshow(I)

8 Computer Vision Examples

8-122



Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Run the detector on all the test images.

detectionResults = detect(detector,testData);

Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults,testData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel("Recall")
ylabel("Precision")
grid on
title(sprintf("Average Precision = %.2f",ap))

 Object Detection Using YOLO v4 Deep Learning

8-123



Supporting Functions

Helper function for performing data augmentation.

function data = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.

data = cell(size(A));
for ii = 1:size(A,1)
    I = A{ii,1};
    bboxes = A{ii,2};
    labels = A{ii,3};
    sz = size(I);

    if numel(sz) == 3 && sz(3) == 3
        I = jitterColorHSV(I,...
            contrast=0.0,...
            Hue=0.1,...
            Saturation=0.2,...
            Brightness=0.2);
    end
    
    % Randomly flip image.
    tform = randomAffine2d(XReflection=true,Scale=[1 1.1]);
    rout = affineOutputView(sz,tform,BoundsStyle="centerOutput");
    I = imwarp(I,tform,OutputView=rout);

8 Computer Vision Examples

8-124



    
    % Apply same transform to boxes.
    [bboxes,indices] = bboxwarp(bboxes,tform,rout,OverlapThreshold=0.25);
    labels = labels(indices);
    
    % Return original data only when all boxes are removed by warping.
    if isempty(indices)
        data(ii,:) = A(ii,:);
    else
        data(ii,:) = {I,bboxes,labels};
    end
end
end

function data = preprocessData(data,targetSize)
% Resize the images and scale the pixels to between 0 and 1. Also scale the
% corresponding bounding boxes.

for ii = 1:size(data,1)
    I = data{ii,1};
    imgSize = size(I);
    
    bboxes = data{ii,2};

    I = im2single(imresize(I,targetSize(1:2)));
    scale = targetSize(1:2)./imgSize(1:2);
    bboxes = bboxresize(bboxes,scale);
    
    data(ii,1:2) = {I,bboxes};
end
end

Helper function for downloading the pretrained YOLO v4 object detector.

function detector = downloadPretrainedYOLOv4Detector()
% Download a pretrained yolov4 detector.
if ~exist("yolov4CSPDarknet53VehicleExample_22a.mat", "file")
    if ~exist("yolov4CSPDarknet53VehicleExample_22a.zip", "file")
        disp("Downloading pretrained detector...");
        pretrainedURL = "https://ssd.mathworks.com/supportfiles/vision/data/yolov4CSPDarknet53VehicleExample_22a.zip";
        websave("yolov4CSPDarknet53VehicleExample_22a.zip", pretrainedURL);
    end
    unzip("yolov4CSPDarknet53VehicleExample_22a.zip");
end
pretrained = load("yolov4CSPDarknet53VehicleExample_22a.mat");
detector = pretrained.detector;
end

See Also
Apps
Deep Network Designer

Functions
trainYOLOv4ObjectDetector | estimateAnchorBoxes | analyzeNetwork | combine |
transform | dlfeval | read | evaluateDetectionPrecision | sgdmupdate | dlupdate

 Object Detection Using YOLO v4 Deep Learning

8-125



Objects
yolov4ObjectDetector | boxLabelDatastore | imageDatastore | dlnetwork | dlarray

More About
• “Anchor Boxes for Object Detection” (Computer Vision Toolbox)
• “Estimate Anchor Boxes From Training Data” (Computer Vision Toolbox)
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Getting Started with Object Detection Using Deep Learning” (Computer Vision Toolbox)

8 Computer Vision Examples

8-126



Object Detection Using YOLO v2 Deep Learning

This example shows how to train a you only look once (YOLO) v2 object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several techniques for object detection exist, including Faster R-CNN and you only look
once (YOLO) v2. This example trains a YOLO v2 vehicle detector using the
trainYOLOv2ObjectDetector function. For more information, see “Getting Started with YOLO v2”
(Computer Vision Toolbox).

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('yolov2ResNet50VehicleExample_19b.mat','file')    
    disp('Downloading pretrained detector (98 MB)...');
    pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/yolov2ResNet50VehicleExample_19b.mat';
    websave('yolov2ResNet50VehicleExample_19b.mat',pretrainedURL);
end

Load Dataset

This example uses a small vehicle dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission. Each
image contains one or two labeled instances of a vehicle. A small dataset is useful for exploring the
YOLO v2 training procedure, but in practice, more labeled images are needed to train a robust
detector. Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

% Display first few rows of the data set.
vehicleDataset(1:4,:)

ans=4×2 table
              imageFilename                vehicle   
    _________________________________    ____________

    {'vehicleImages/image_00001.jpg'}    {1×4 double}
    {'vehicleImages/image_00002.jpg'}    {1×4 double}
    {'vehicleImages/image_00003.jpg'}    {1×4 double}
    {'vehicleImages/image_00004.jpg'}    {1×4 double}

% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

Split the dataset into training, validation, and test sets. Select 60% of the data for training, 10% for
validation, and the rest for testing the trained detector.

 Object Detection Using YOLO v2 Deep Learning

8-127



rng(0);
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices) );

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) );
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

testIdx = validationIdx(end)+1 : length(shuffledIndices);
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(validationDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

8 Computer Vision Examples

8-128



Create a YOLO v2 Object Detection Network

A YOLO v2 object detection network is composed of two subnetworks. A feature extraction network
followed by a detection network. The feature extraction network is typically a pretrained CNN (for
details, see “Pretrained Deep Neural Networks” on page 1-11). This example uses ResNet-50 for
feature extraction. You can also use other pretrained networks such as MobileNet v2 or ResNet-18
can also be used depending on application requirements. The detection sub-network is a small CNN
compared to the feature extraction network and is composed of a few convolutional layers and layers
specific for YOLO v2.

Use the yolov2Layers (Computer Vision Toolbox) function to create a YOLO v2 object detection
network automatically given a pretrained ResNet-50 feature extraction network. yolov2Layers
requires you to specify several inputs that parameterize a YOLO v2 network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size and the number of classes. When choosing the network input
size, consider the minimum size required by the network itself, the size of the training images, and
the computational cost incurred by processing data at the selected size. When feasible, choose a
network input size that is close to the size of the training image and larger than the input size
required for the network. To reduce the computational cost of running the example, specify a network
input size of [224 224 3], which is the minimum size required to run the network.

 Object Detection Using YOLO v2 Deep Learning

8-129



inputSize = [224 224 3];

Define the number of object classes to detect.

numClasses = width(vehicleDataset)-1;

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes (Computer Vision Toolbox) to estimate anchor boxes based on the
size of objects in the training data. To account for the resizing of the images prior to training, resize
the training data for estimating anchor boxes. Use transform to preprocess the training data, then
define the number of anchor boxes and estimate the anchor boxes. Resize the training data to the
input image size of the network using the supporting function preprocessData.

trainingDataForEstimation = transform(trainingData,@(data)preprocessData(data,inputSize));
numAnchors = 7;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

anchorBoxes = 7×2

   162   136
    85    80
   149   123
    43    32
    65    63
   117   105
    33    27

meanIoU = 0.8472

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data”
(Computer Vision Toolbox) (Computer Vision Toolbox™) and “Anchor Boxes for Object Detection”
(Computer Vision Toolbox).

Now, use resnet50 to load a pretrained ResNet-50 model.

featureExtractionNetwork = resnet50;

Select 'activation_40_relu' as the feature extraction layer to replace the layers after
'activation_40_relu' with the detection subnetwork. This feature extraction layer outputs
feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-
off between spatial resolution and the strength of the extracted features, as features extracted
further down the network encode stronger image features at the cost of spatial resolution. Choosing
the optimal feature extraction layer requires empirical analysis.

featureLayer = 'activation_40_relu';

Create the YOLO v2 object detection network.

lgraph = yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

8 Computer Vision Examples

8-130



If more control is required over the YOLO v2 network architecture, use Deep Network Designer to
design the YOLO v2 detection network manually. For more information, see “Design a YOLO v2
Detection Network” (Computer Vision Toolbox).

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to the test and validation data. Ideally,
test and validation data should be representative of the original data and is left unmodified for
unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read the same image multiple times and display the augmented training data.

% Visualize the augmented images.
augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedTrainingData);
    augmentedData{k} = insertShape(data{1},'rectangle',data{2});
    reset(augmentedTrainingData);
end
figure
montage(augmentedData,'BorderSize',10)

 Object Detection Using YOLO v2 Deep Learning

8-131



Preprocess Training Data

Preprocess the augmented training data, and the validation data to prepare for training.

preprocessedTrainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));
preprocessedValidationData = transform(validationData,@(data)preprocessData(data,inputSize));

Read the preprocessed training data.

data = read(preprocessedTrainingData);

Display the image and bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

8 Computer Vision Examples

8-132



Train YOLO v2 Object Detector

Use trainingOptions to specify network training options. Set 'ValidationData' to the
preprocessed validation data. Set 'CheckpointPath' to a temporary location. This enables the
saving of partially trained detectors during the training process. If training is interrupted, such as by
a power outage or system failure, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm', ...
        'MiniBatchSize',16, ....
        'InitialLearnRate',1e-3, ...
        'MaxEpochs',20, ... 
        'CheckpointPath',tempdir, ...
        'ValidationData',preprocessedValidationData);

Use trainYOLOv2ObjectDetector (Computer Vision Toolbox) function to train YOLO v2 object
detector if doTraining is true. Otherwise, load the pretrained network.

if doTraining       
    % Train the YOLO v2 detector.

 Object Detection Using YOLO v2 Deep Learning

8-133



    [detector,info] = trainYOLOv2ObjectDetector(preprocessedTrainingData,lgraph,options);
else
    % Load pretrained detector for the example.
    pretrained = load('yolov2ResNet50VehicleExample_19b.mat');
    detector = pretrained.detector;
end

This example was verified on an NVIDIA™ Titan X GPU with 12 GB of memory. If your GPU has less
memory, you may run out of memory. If this happens, lower the 'MiniBatchSize' using the
trainingOptions function. Training this network took approximately 7 minutes using this setup.
Training time varies depending on the hardware you use.

As a quick test, run the detector on a test image. Make sure you resize the image to the same size as
the training images.

I = imread('highway.png');
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

8 Computer Vision Examples

8-134



Apply the same preprocessing transform to the test data as for the training data. Note that data
augmentation is not applied to the test data. Test data should be representative of the original data
and be left unmodified for unbiased evaluation.

preprocessedTestData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector, preprocessedTestData);

Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults, preprocessedTestData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f',ap))

 Object Detection Using YOLO v2 Deep Learning

8-135



Code Generation

Once the detector is trained and evaluated, you can generate code for the yolov2ObjectDetector
using GPU Coder™. See “Code Generation for Object Detection by Using YOLO v2” (GPU Coder)
example for more details.

Supporting Functions

function B = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.

B = cell(size(A));

I = A{1};
sz = size(I);
if numel(sz)==3 && sz(3) == 3
    I = jitterColorHSV(I,...
        'Contrast',0.2,...
        'Hue',0,...
        'Saturation',0.1,...
        'Brightness',0.2);
end

% Randomly flip and scale image.
tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
rout = affineOutputView(sz,tform,'BoundsStyle','CenterOutput');
B{1} = imwarp(I,tform,'OutputView',rout);

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to access this function.
A{2} = helperSanitizeBoxes(A{2});

% Apply same transform to boxes.
[B{2},indices] = bboxwarp(A{2},tform,rout,'OverlapThreshold',0.25);
B{3} = A{3}(indices);

% Return original data only when all boxes are removed by warping.
if isempty(indices)
    B = A;
end
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to the targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to access this function.
data{2} = helperSanitizeBoxes(data{2});

% Resize boxes to new image size.
data{2} = bboxresize(data{2},scale);
end

8 Computer Vision Examples

8-136



References

[1] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690.

 Object Detection Using YOLO v2 Deep Learning

8-137



Semantic Segmentation Using Deep Learning

This example shows how to segment an image using a semantic segmentation network.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see “Getting
Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox).

This example first shows you how to segment an image using a pretrained Deeplab v3+ [1] network,
which is one type of convolutional neural network (CNN) designed for semantic image segmentation.
Other types of networks for semantic segmentation include fully convolutional networks (FCN),
SegNet, and U-Net. Then, you can optionally download a dataset to train Deeplab v3 network using
transfer learning. The training procedure shown here can be applied to other types of semantic
segmentation networks.

To illustrate the training procedure, this example uses the CamVid dataset [2] from the University of
Cambridge. This dataset is a collection of images containing street-level views obtained while driving.
The dataset provides pixel-level labels for 32 semantic classes including car, pedestrian, and road.

A CUDA-capable NVIDIA™ GPU is highly recommended for running this example. Use of a GPU
requires Parallel Computing Toolbox™. For information about the supported compute capabilities, see
“GPU Computing Requirements” (Parallel Computing Toolbox).

Download Pretrained Semantic Segmentation Network

Download a pretrained version of DeepLab v3+ trained on the CamVid dataset.

pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/data/deeplabv3plusResnet18CamVid.zip';
pretrainedFolder = fullfile(tempdir,'pretrainedNetwork');
pretrainedNetworkZip = fullfile(pretrainedFolder,'deeplabv3plusResnet18CamVid.zip'); 
if ~exist(pretrainedNetworkZip,'file')
    mkdir(pretrainedFolder);
    disp('Downloading pretrained network (58 MB)...');
    websave(pretrainedNetworkZip,pretrainedURL);
end
unzip(pretrainedNetworkZip, pretrainedFolder)

Load the pretrained network.

pretrainedNetwork = fullfile(pretrainedFolder,'deeplabv3plusResnet18CamVid.mat');  
data = load(pretrainedNetwork);
net = data.net;

List the classes this network is trained to classify.

classes = string(net.Layers(end).Classes)

classes = 11×1 string
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"

8 Computer Vision Examples

8-138

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/


    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"

Perform Semantic Image Segmentation

Read an image that contains classes the network is trained to classify.

I = imread('highway.png');

Resize the image to the input size of the network.

inputSize = net.Layers(1).InputSize;
I = imresize(I,inputSize(1:2));

Perform semantic segmentation using the semanticseg function and the pretrained network.

C = semanticseg(I,net);

Overlay the segmentation results on top of the image with labeloverlay. Set the overlay color map
to the color map values defined by the CamVid dataset [2].

cmap = camvidColorMap;
B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.4);
figure
imshow(B)
pixelLabelColorbar(cmap, classes);

 Semantic Segmentation Using Deep Learning

8-139



Although the network is pretrained on images of city driving, it produces a reasonable result on a
highway driving scene. To improve the segmentation results, the network should be retrained with
additional images that contain highway driving scenes. The remainder of this example shows you how
to train a semantic segmentation network using transfer learning.

Train a Semantic Segmentation Network

This example trains a Deeplab v3+ network with weights initialized from a pre-trained Resnet-18
network. ResNet-18 is an efficient network that is well suited for applications with limited processing
resources. Other pretrained networks such as MobileNet v2 or ResNet-50 can also be used depending
on application requirements. For more details, see “Pretrained Deep Neural Networks” on page 1-11.

To get a pretrained Resnet-18, install resnet18. After installation is complete, run the following code
to verify that the installation is correct.

resnet18();

Download CamVid Dataset

Download the CamVid dataset from the following URLs.

imageURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip';
labelURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip';

8 Computer Vision Examples

8-140



 
outputFolder = fullfile(tempdir,'CamVid'); 
labelsZip = fullfile(outputFolder,'labels.zip');
imagesZip = fullfile(outputFolder,'images.zip');

if ~exist(labelsZip, 'file') || ~exist(imagesZip,'file')   
    mkdir(outputFolder)
       
    disp('Downloading 16 MB CamVid dataset labels...'); 
    websave(labelsZip, labelURL);
    unzip(labelsZip, fullfile(outputFolder,'labels'));
    
    disp('Downloading 557 MB CamVid dataset images...');  
    websave(imagesZip, imageURL);       
    unzip(imagesZip, fullfile(outputFolder,'images'));    
end

Note: Download time of the data depends on your Internet connection. The commands used above
block MATLAB until the download is complete. Alternatively, you can use your web browser to first
download the dataset to your local disk. To use the file you downloaded from the web, change the
outputFolder variable above to the location of the downloaded file.

Load CamVid Images

Use imageDatastore to load CamVid images. The imageDatastore enables you to efficiently load
a large collection of images on disk.

imgDir = fullfile(outputFolder,'images','701_StillsRaw_full');
imds = imageDatastore(imgDir);

Display one of the images.

I = readimage(imds,559);
I = histeq(I);
imshow(I)

 Semantic Segmentation Using Deep Learning

8-141



Load CamVid Pixel-Labeled Images

Use pixelLabelDatastore (Computer Vision Toolbox) to load CamVid pixel label image data. A
pixelLabelDatastore encapsulates the pixel label data and the label ID to a class name mapping.

To make training easier, group the 32 original classes in CamVid to 11 classes.

classes = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];

To reduce 32 classes into 11, multiple classes from the original dataset are grouped together. For
example, "Car" is a combination of "Car", "SUVPickupTruck", "Truck_Bus", "Train", and

8 Computer Vision Examples

8-142



"OtherMoving". Return the grouped label IDs by using the supporting function
camvidPixelLabelIDs, which is listed at the end of this example.

labelIDs = camvidPixelLabelIDs();

Use the classes and label IDs to create the pixelLabelDatastore.

labelDir = fullfile(outputFolder,'labels');
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);

Read and display one of the pixel-labeled images by overlaying it on top of an image.

C = readimage(pxds,559);
cmap = camvidColorMap;
B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
pixelLabelColorbar(cmap,classes);

Areas with no color overlay do not have pixel labels and are not used during training.

 Semantic Segmentation Using Deep Learning

8-143



Analyze Dataset Statistics

To see the distribution of class labels in the CamVid dataset, use countEachLabel (Computer Vision
Toolbox). This function counts the number of pixels by class label.

tbl = countEachLabel(pxds)

tbl=11×3 table
         Name         PixelCount    ImagePixelCount
    ______________    __________    _______________

    {'Sky'       }    7.6801e+07      4.8315e+08   
    {'Building'  }    1.1737e+08      4.8315e+08   
    {'Pole'      }    4.7987e+06      4.8315e+08   
    {'Road'      }    1.4054e+08      4.8453e+08   
    {'Pavement'  }    3.3614e+07      4.7209e+08   
    {'Tree'      }    5.4259e+07       4.479e+08   
    {'SignSymbol'}    5.2242e+06      4.6863e+08   
    {'Fence'     }    6.9211e+06       2.516e+08   
    {'Car'       }    2.4437e+07      4.8315e+08   
    {'Pedestrian'}    3.4029e+06      4.4444e+08   
    {'Bicyclist' }    2.5912e+06      2.6196e+08   

Visualize the pixel counts by class.

frequency = tbl.PixelCount/sum(tbl.PixelCount);

bar(1:numel(classes),frequency)
xticks(1:numel(classes)) 
xticklabels(tbl.Name)
xtickangle(45)
ylabel('Frequency')

8 Computer Vision Examples

8-144



Ideally, all classes would have an equal number of observations. However, the classes in CamVid are
imbalanced, which is a common issue in automotive data-sets of street scenes. Such scenes have
more sky, building, and road pixels than pedestrian and bicyclist pixels because sky, buildings and
roads cover more area in the image. If not handled correctly, this imbalance can be detrimental to the
learning process because the learning is biased in favor of the dominant classes. Later on in this
example, you will use class weighting to handle this issue.

The images in the CamVid data set are 720 by 960 in size. Image size is chosen such that a large
enough batch of images can fit in memory during training on an NVIDIA™ Titan X with 12 GB of
memory. You may need to resize the images to smaller sizes if your GPU does not have sufficient
memory or reduce the training batch size.

Prepare Training, Validation, and Test Sets

Deeplab v3+ is trained using 60% of the images from the dataset. The rest of the images are split
evenly in 20% and 20% for validation and testing respectively. The following code randomly splits the
image and pixel label data into a training, validation and test set.

[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = partitionCamVidData(imds,pxds);

The 60/20/20 split results in the following number of training, validation and test images:

 Semantic Segmentation Using Deep Learning

8-145



numTrainingImages = numel(imdsTrain.Files)

numTrainingImages = 421

numValImages = numel(imdsVal.Files)

numValImages = 140

numTestingImages = numel(imdsTest.Files)

numTestingImages = 140

Create the Network

Use the deeplabv3plusLayers function to create a DeepLab v3+ network based on ResNet-18.
Choosing the best network for your application requires empirical analysis and is another level of
hyperparameter tuning. For example, you can experiment with different base networks such as
ResNet-50 or MobileNet v2, or you can try other semantic segmentation network architectures such
as SegNet, fully convolutional networks (FCN), or U-Net.

% Specify the network image size. This is typically the same as the traing image sizes.
imageSize = [720 960 3];

% Specify the number of classes.
numClasses = numel(classes);

% Create DeepLab v3+.
lgraph = deeplabv3plusLayers(imageSize, numClasses, "resnet18");

Balance Classes Using Class Weighting

As shown earlier, the classes in CamVid are not balanced. To improve training, you can use class
weighting to balance the classes. Use the pixel label counts computed earlier with countEachLabel
(Computer Vision Toolbox) and calculate the median frequency class weights.

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq

classWeights = 11×1

    0.3182
    0.2082
    5.0924
    0.1744
    0.7103
    0.4175
    4.5371
    1.8386
    1.0000
    6.6059
      ⋮

Specify the class weights using a pixelClassificationLayer (Computer Vision Toolbox).

pxLayer = pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights',classWeights);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

8 Computer Vision Examples

8-146



Select Training Options

The optimization algorithm used for training is stochastic gradient descent with momentum (SGDM).
Use trainingOptions to specify the hyper-parameters used for SGDM.

% Define validation data.
dsVal = combine(imdsVal,pxdsVal);

% Define training options. 
options = trainingOptions('sgdm', ...
    'LearnRateSchedule','piecewise',...
    'LearnRateDropPeriod',10,...
    'LearnRateDropFactor',0.3,...
    'Momentum',0.9, ...
    'InitialLearnRate',1e-3, ...
    'L2Regularization',0.005, ...
    'ValidationData',dsVal,...
    'MaxEpochs',30, ...  
    'MiniBatchSize',8, ...
    'Shuffle','every-epoch', ...
    'CheckpointPath', tempdir, ...
    'VerboseFrequency',2,...
    'Plots','training-progress',...
    'ValidationPatience', 4);

The learning rate uses a piecewise schedule. The learning rate is reduced by a factor of 0.3 every 10
epochs. This allows the network to learn quickly with a higher initial learning rate, while being able
to find a solution close to the local optimum once the learning rate drops.

The network is tested against the validation data every epoch by setting the 'ValidationData'
parameter. The 'ValidationPatience' is set to 4 to stop training early when the validation
accuracy converges. This prevents the network from overfitting on the training dataset.

A mini-batch size of 8 is used to reduce memory usage while training. You can increase or decrease
this value based on the amount of GPU memory you have on your system.

In addition, 'CheckpointPath' is set to a temporary location. This name-value pair enables the
saving of network checkpoints at the end of every training epoch. If training is interrupted due to a
system failure or power outage, you can resume training from the saved checkpoint. Make sure that
the location specified by 'CheckpointPath' has enough space to store the network checkpoints.
For example, saving 100 Deeplab v3+ checkpoints requires ~6 GB of disk space because each
checkpoint is 61 MB.

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
increasing the number of labeled training samples. To apply the same random transformation to both
image and pixel label data use datastore combine and transform. First, combine imdsTrain and
pxdsTrain.

dsTrain = combine(imdsTrain, pxdsTrain);

Next, use datastore transform to apply the desired data augmentation defined in the supporting
function augmentImageAndLabel. Here, random left/right reflection and random X/Y translation of
+/- 10 pixels is used for data augmentation.

 Semantic Segmentation Using Deep Learning

8-147



xTrans = [-10 10];
yTrans = [-10 10];
dsTrain = transform(dsTrain, @(data)augmentImageAndLabel(data,xTrans,yTrans));

Note that data augmentation is not applied to the test and validation data. Ideally, test and validation
data should be representative of the original data and is left unmodified for unbiased evaluation.

Start Training

Start training using trainNetwork if the doTraining flag is true. Otherwise, load a pretrained
network.

Note: The training was verified on an NVIDIA™ Titan X with 12 GB of GPU memory. If your GPU has
less memory, you may run out of memory during training. If this happens, try setting
'MiniBatchSize' to 1 in trainingOptions, or reducing the network input and resizing the
training data. Training this network takes about 70 minutes. Depending on your GPU hardware, it
may take longer.

doTraining = false;
if doTraining    
    [net, info] = trainNetwork(dsTrain,lgraph,options);
end

Test Network on One Image

As a quick sanity check, run the trained network on one test image.

I = readimage(imdsTest,35);
C = semanticseg(I, net);

Display the results.

B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.4);
imshow(B)
pixelLabelColorbar(cmap, classes);

8 Computer Vision Examples

8-148



Compare the results in C with the expected ground truth stored in pxdsTest. The green and
magenta regions highlight areas where the segmentation results differ from the expected ground
truth.

expectedResult = readimage(pxdsTest,35);
actual = uint8(C);
expected = uint8(expectedResult);
imshowpair(actual, expected)

 Semantic Segmentation Using Deep Learning

8-149



Visually, the semantic segmentation results overlap well for classes such as road, sky, and building.
However, smaller objects like pedestrians and cars are not as accurate. The amount of overlap per
class can be measured using the intersection-over-union (IoU) metric, also known as the Jaccard
index. Use the jaccard (Image Processing Toolbox) function to measure IoU.

iou = jaccard(C,expectedResult);
table(classes,iou)

ans=11×2 table
      classes         iou  
    ____________    _______

    "Sky"           0.93418
    "Building"      0.86604
    "Pole"          0.37524
    "Road"          0.94517
    "Pavement"      0.85422
    "Tree"          0.91563
    "SignSymbol"    0.62075
    "Fence"         0.81075
    "Car"           0.71446
    "Pedestrian"    0.37249

8 Computer Vision Examples

8-150



    "Bicyclist"     0.69775

The IoU metric confirms the visual results. Road, sky, and building classes have high IoU scores,
while classes such as pedestrian and car have low scores. Other common segmentation metrics
include the dice (Image Processing Toolbox) and the bfscore (Image Processing Toolbox) contour
matching score.

Evaluate Trained Network

To measure accuracy for multiple test images, runsemanticseg (Computer Vision Toolbox) on the
entire test set. A mini-batch size of 4 is used to reduce memory usage while segmenting images. You
can increase or decrease this value based on the amount of GPU memory you have on your system.

pxdsResults = semanticseg(imdsTest,net, ...
    'MiniBatchSize',4, ...
    'WriteLocation',tempdir, ...
    'Verbose',false);

semanticseg returns the results for the test set as a pixelLabelDatastore object. The actual
pixel label data for each test image in imdsTest is written to disk in the location specified by the
'WriteLocation' parameter. Use evaluateSemanticSegmentation (Computer Vision Toolbox)
to measure semantic segmentation metrics on the test set results.

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest,'Verbose',false);

evaluateSemanticSegmentation returns various metrics for the entire dataset, for individual
classes, and for each test image. To see the dataset level metrics, inspect
metrics.DataSetMetrics .

metrics.DataSetMetrics

ans=1×5 table
    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.89244           0.8657       0.66347      0.82837        0.69324  

The dataset metrics provide a high-level overview of the network performance. To see the impact
each class has on the overall performance, inspect the per-class metrics using
metrics.ClassMetrics.

metrics.ClassMetrics

ans=11×3 table
                  Accuracy      IoU      MeanBFScore
                  ________    _______    ___________

    Sky           0.94272     0.90979      0.90853  
    Building      0.81488     0.79161      0.63963  
    Pole          0.75997     0.24632      0.58505  
    Road          0.93955     0.92638      0.80615  
    Pavement      0.90048     0.73874      0.74538  
    Tree          0.88173      0.7746      0.72892  
    SignSymbol    0.76491     0.42338      0.53707  
    Fence         0.83661     0.57442       0.5567  
    Car           0.92588     0.79441      0.74331  

 Semantic Segmentation Using Deep Learning

8-151



    Pedestrian    0.86718     0.47077      0.64356  
    Bicyclist     0.88881      0.6478      0.59473  

Although the overall dataset performance is quite high, the class metrics show that underrepresented
classes such as Pedestrian, Bicyclist, and Car are not segmented as well as classes such as
Road, Sky, and Building. Additional data that includes more samples of the underrepresented
classes might help improve the results.

Supporting Functions
function labelIDs = camvidPixelLabelIDs()
% Return the label IDs corresponding to each class.
%
% The CamVid dataset has 32 classes. Group them into 11 classes following
% the original SegNet training methodology [1].
%
% The 11 classes are:
%   "Sky" "Building", "Pole", "Road", "Pavement", "Tree", "SignSymbol",
%   "Fence", "Car", "Pedestrian",  and "Bicyclist".
%
% CamVid pixel label IDs are provided as RGB color values. Group them into
% 11 classes and return them as a cell array of M-by-3 matrices. The
% original CamVid class names are listed alongside each RGB value. Note
% that the Other/Void class are excluded below.
labelIDs = { ...
    
    % "Sky"
    [
    128 128 128; ... % "Sky"
    ]
    
    % "Building" 
    [
    000 128 064; ... % "Bridge"
    128 000 000; ... % "Building"
    064 192 000; ... % "Wall"
    064 000 064; ... % "Tunnel"
    192 000 128; ... % "Archway"
    ]
    
    % "Pole"
    [
    192 192 128; ... % "Column_Pole"
    000 000 064; ... % "TrafficCone"
    ]
    
    % Road
    [
    128 064 128; ... % "Road"
    128 000 192; ... % "LaneMkgsDriv"
    192 000 064; ... % "LaneMkgsNonDriv"
    ]
    
    % "Pavement"
    [
    000 000 192; ... % "Sidewalk" 
    064 192 128; ... % "ParkingBlock"

8 Computer Vision Examples

8-152



    128 128 192; ... % "RoadShoulder"
    ]
        
    % "Tree"
    [
    128 128 000; ... % "Tree"
    192 192 000; ... % "VegetationMisc"
    ]
    
    % "SignSymbol"
    [
    192 128 128; ... % "SignSymbol"
    128 128 064; ... % "Misc_Text"
    000 064 064; ... % "TrafficLight"
    ]
    
    % "Fence"
    [
    064 064 128; ... % "Fence"
    ]
    
    % "Car"
    [
    064 000 128; ... % "Car"
    064 128 192; ... % "SUVPickupTruck"
    192 128 192; ... % "Truck_Bus"
    192 064 128; ... % "Train"
    128 064 064; ... % "OtherMoving"
    ]
    
    % "Pedestrian"
    [
    064 064 000; ... % "Pedestrian"
    192 128 064; ... % "Child"
    064 000 192; ... % "CartLuggagePram"
    064 128 064; ... % "Animal"
    ]
    
    % "Bicyclist"
    [
    000 128 192; ... % "Bicyclist"
    192 000 192; ... % "MotorcycleScooter"
    ]
    
    };
end

function pixelLabelColorbar(cmap, classNames)
% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca,cmap)

% Add colorbar to current figure.
c = colorbar('peer', gca);

% Use class names for tick marks.

 Semantic Segmentation Using Deep Learning

8-153



c.TickLabels = classNames;
numClasses = size(cmap,1);

% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick mark.
c.TickLength = 0;
end

function cmap = camvidColorMap()
% Define the colormap used by CamVid dataset.

cmap = [
    128 128 128   % Sky
    128 0 0       % Building
    192 192 192   % Pole
    128 64 128    % Road
    60 40 222     % Pavement
    128 128 0     % Tree
    192 128 128   % SignSymbol
    64 64 128     % Fence
    64 0 128      % Car
    64 64 0       % Pedestrian
    0 128 192     % Bicyclist
    ];

% Normalize between [0 1].
cmap = cmap ./ 255;
end

function [imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = partitionCamVidData(imds,pxds)
% Partition CamVid data by randomly selecting 60% of the data for training. The
% rest is used for testing.
    
% Set initial random state for example reproducibility.
rng(0); 
numFiles = numel(imds.Files);
shuffledIndices = randperm(numFiles);

% Use 60% of the images for training.
numTrain = round(0.60 * numFiles);
trainingIdx = shuffledIndices(1:numTrain);

% Use 20% of the images for validation
numVal = round(0.20 * numFiles);
valIdx = shuffledIndices(numTrain+1:numTrain+numVal);

% Use the rest for testing.
testIdx = shuffledIndices(numTrain+numVal+1:end);

% Create image datastores for training and test.
trainingImages = imds.Files(trainingIdx);
valImages = imds.Files(valIdx);
testImages = imds.Files(testIdx);

imdsTrain = imageDatastore(trainingImages);
imdsVal = imageDatastore(valImages);

8 Computer Vision Examples

8-154



imdsTest = imageDatastore(testImages);

% Extract class and label IDs info.
classes = pxds.ClassNames;
labelIDs = camvidPixelLabelIDs();

% Create pixel label datastores for training and test.
trainingLabels = pxds.Files(trainingIdx);
valLabels = pxds.Files(valIdx);
testLabels = pxds.Files(testIdx);

pxdsTrain = pixelLabelDatastore(trainingLabels, classes, labelIDs);
pxdsVal = pixelLabelDatastore(valLabels, classes, labelIDs);
pxdsTest = pixelLabelDatastore(testLabels, classes, labelIDs);
end

function data = augmentImageAndLabel(data, xTrans, yTrans)
% Augment images and pixel label images using random reflection and
% translation.

for i = 1:size(data,1)
    
    tform = randomAffine2d(...
        'XReflection',true,...
        'XTranslation', xTrans, ...
        'YTranslation', yTrans);
    
    % Center the view at the center of image in the output space while
    % allowing translation to move the output image out of view.
    rout = affineOutputView(size(data{i,1}), tform, 'BoundsStyle', 'centerOutput');
    
    % Warp the image and pixel labels using the same transform.
    data{i,1} = imwarp(data{i,1}, tform, 'OutputView', rout);
    data{i,2} = imwarp(data{i,2}, tform, 'OutputView', rout);
    
end
end

References

[1] Chen, Liang-Chieh et al. “Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation.” ECCV (2018).

[2] Brostow, G. J., J. Fauqueur, and R. Cipolla. "Semantic object classes in video: A high-definition
ground truth database." Pattern Recognition Letters. Vol. 30, Issue 2, 2009, pp 88-97.

See Also
pixelLabelDatastore | pixelLabelImageDatastore | semanticseg | labeloverlay |
countEachLabel | segnetLayers | pixelClassificationLayer | trainingOptions |
imageDataAugmenter | trainNetwork | evaluateSemanticSegmentation

More About
• “Semantic Segmentation of Multispectral Images Using Deep Learning” on page 8-167
• “Semantic Segmentation Using Dilated Convolutions” on page 8-157

 Semantic Segmentation Using Deep Learning

8-155



• “Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
• “Label Pixels for Semantic Segmentation” (Computer Vision Toolbox)
• “Pretrained Deep Neural Networks” on page 1-11

8 Computer Vision Examples

8-156



Semantic Segmentation Using Dilated Convolutions

Train a semantic segmentation network using dilated convolutions.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see “Getting
Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox).

Semantic segmentation networks like DeepLab [1] make extensive use of dilated convolutions (also
known as atrous convolutions) because they can increase the receptive field of the layer (the area of
the input which the layers can see) without increasing the number of parameters or computations.

Load Training Data

The example uses a simple dataset of 32-by-32 triangle images for illustration purposes. The dataset
includes accompanying pixel label ground truth data. Load the training data using an
imageDatastore and a pixelLabelDatastore.

dataFolder = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageFolderTrain = fullfile(dataFolder,'trainingImages');
labelFolderTrain = fullfile(dataFolder,'trainingLabels');

Create an imageDatastore for the images.

imdsTrain = imageDatastore(imageFolderTrain);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixelLabelDatastore(labelFolderTrain,classNames,labels)

pxdsTrain = 
  PixelLabelDatastore with properties:

                       Files: {200x1 cell}
                  ClassNames: {2x1 cell}
                    ReadSize: 1
                     ReadFcn: @readDatastoreImage
    AlternateFileSystemRoots: {}

Create Semantic Segmentation Network

This example uses a simple semantic segmentation network based on dilated convolutions.

Create a data source for training data and get the pixel counts for each label.

ds = combine(imdsTrain,pxdsTrain);
tbl = countEachLabel(pxdsTrain)

tbl=2×3 table
         Name         PixelCount    ImagePixelCount
    ______________    __________    _______________

 Semantic Segmentation Using Dilated Convolutions

8-157



    {'triangle'  }         10326       2.048e+05   
    {'background'}    1.9447e+05       2.048e+05   

The majority of pixel labels are for background. This class imbalance biases the learning process in
favor of the dominant class. To fix this, use class weighting to balance the classes. You can use several
methods to compute class weights. One common method is inverse frequency weighting where the
class weights are the inverse of the class frequencies. This method increases the weight given to
under represented classes. Calculate the class weights using inverse frequency weighting.

numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;

Create a network for pixel classification by using an image input layer with an input size
corresponding to the size of the input images. Next, specify three blocks of convolution, batch
normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3 filters with increasing
dilation factors and pad the inputs so they are the same size as the outputs by setting the 'Padding'
option to 'same'. To classify the pixels, include a convolutional layer with K 1-by-1 convolutions,
where K is the number of classes, followed by a softmax layer and a pixelClassificationLayer
with the inverse class weights.

inputSize = [32 32 1];
filterSize = 3;
numFilters = 32;
numClasses = numel(classNames);

layers = [
    imageInputLayer(inputSize)
    
    convolution2dLayer(filterSize,numFilters,'DilationFactor',1,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(filterSize,numFilters,'DilationFactor',2,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(filterSize,numFilters,'DilationFactor',4,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(1,numClasses)
    softmaxLayer
    pixelClassificationLayer('Classes',classNames,'ClassWeights',classWeights)];

Train Network

Specify the training options.

options = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 64, ... 
    'InitialLearnRate', 1e-3);

Train the network using trainNetwork.

net = trainNetwork(ds,layers,options);

8 Computer Vision Examples

8-158



Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:01 |       91.62% |       1.6825 |          0.0010 |
|      17 |          50 |       00:00:22 |       88.56% |       0.2393 |          0.0010 |
|      34 |         100 |       00:00:47 |       92.08% |       0.1672 |          0.0010 |
|      50 |         150 |       00:01:09 |       93.17% |       0.1472 |          0.0010 |
|      67 |         200 |       00:01:32 |       94.15% |       0.1313 |          0.0010 |
|      84 |         250 |       00:02:03 |       94.47% |       0.1167 |          0.0010 |
|     100 |         300 |       00:02:32 |       95.04% |       0.1100 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.

Test Network

Load the test data. Create an imageDatastore for the images. Create a pixelLabelDatastore for
the ground truth pixel labels.

imageFolderTest = fullfile(dataFolder,'testImages');
imdsTest = imageDatastore(imageFolderTest);
labelFolderTest = fullfile(dataFolder,'testLabels');
pxdsTest = pixelLabelDatastore(labelFolderTest,classNames,labels);

Make predictions using the test data and trained network.

pxdsPred = semanticseg(imdsTest,net,'MiniBatchSize',32,'WriteLocation',tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 100 images.

Evaluate the prediction accuracy using evaluateSemanticSegmentation.

metrics = evaluateSemanticSegmentation(pxdsPred,pxdsTest);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.95237          0.97352       0.72081      0.92889        0.46416  

For more information on evaluating semantic segmentation networks, see
evaluateSemanticSegmentation (Computer Vision Toolbox).

Segment New Image

Read and display the test image triangleTest.jpg.

 Semantic Segmentation Using Dilated Convolutions

8-159



imgTest = imread('triangleTest.jpg');
figure
imshow(imgTest)

Segment the test image using semanticseg and display the results using labeloverlay.

C = semanticseg(imgTest,net);
B = labeloverlay(imgTest,C);
figure
imshow(B)

8 Computer Vision Examples

8-160



See Also
pixelLabelDatastore | pixelLabelImageDatastore | semanticseg | labeloverlay |
countEachLabel | pixelClassificationLayer | trainingOptions | trainNetwork |
evaluateSemanticSegmentation | convolution2dLayer

More About
• “Semantic Segmentation Using Deep Learning” on page 8-138
• “Semantic Segmentation of Multispectral Images Using Deep Learning” on page 8-167
• “Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
• “Label Pixels for Semantic Segmentation” (Computer Vision Toolbox)
• “Pretrained Deep Neural Networks” on page 1-11

 Semantic Segmentation Using Dilated Convolutions

8-161



Train Simple Semantic Segmentation Network in Deep Network
Designer

This example shows how to create and train a simple semantic segmentation network using Deep
Network Designer.

Semantic segmentation describes the process of associating each pixel of an image with a class label
(such as flower, person, road, sky, ocean, or car). Applications for semantic segmentation include
road segmentation for autonomous driving and cancer cell segmentation for medical diagnosis. To
learn more, see “Getting Started with Semantic Segmentation Using Deep Learning” (Computer
Vision Toolbox).

Preprocess Training Data

To train a semantic segmentation network, you need a collection of images and its corresponding
collection of pixel-labeled images. A pixel-labeled image is an image where every pixel value
represents the categorical label of that pixel. This example uses a simple data set of 32-by-32 images
of triangles for illustration purposes. You can interactively label pixels and export the label data for
computer vision applications using Image Labeler (Computer Vision Toolbox). For more information
on creating training data for semantic segmentation applications, see “Label Pixels for Semantic
Segmentation” (Computer Vision Toolbox).

Load the training data.

dataFolder  = fullfile(toolboxdir('vision'), ...
'visiondata','triangleImages');

imageDir = fullfile(dataFolder,'trainingImages');
labelDir = fullfile(dataFolder,'trainingLabels');

Create an ImageDatastore containing the images.

imds = imageDatastore(imageDir);

Create a PixelLabelDatastore containing the ground truth pixel labels. This data set has two
classes: "triangle" and "background".

classNames = ["triangle","background"];
labelIDs   = [255 0];

pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);

Combine the image datastore and the pixel label datastore into a CombinedDatastore object using
the combine function. A combined datastore maintains parity between the pair of images in the
underlying datastores.

cds = combine(imds,pxds);

Build Network

Open Deep Network Designer.

deepNetworkDesigner

8 Computer Vision Examples

8-162



In Deep Network Designer, you can build, edit, and train deep learning networks. Pause on Blank
Network and click New.

Create a semantic segmentation network by dragging layers from the Layer Library to the Designer
pane.

Connect the layers in this order:

1 imageInputLayer with InputSize set to 32,32,1
2 convolution2dLayer with FilterSize set to 3,3, NumFilters set to 64, and Padding set

to 1,1,1,1
3 reluLayer
4 maxPooling2dLayer with PoolSize set to 2,2, Stride set to 2,2, and Padding set to

0,0,0,0
5 convolution2dLayer with FilterSize set to 3,3, NumFilters set to 64, and Padding set

to 1,1,1,1
6 reluLayer
7 transposedConv2dLayer with FilterSize set to 4,4, NumFilters set to 64, Stride set to

2,2, and Cropping set to 1,1,1,1
8 convolution2dLayer with FilterSize set to 1,1, NumFilters set to 2, and Padding set to

0,0,0,0
9 softmaxLayer
10 pixelClassificationLayer

You can also create this network at the command line and then import the network into Deep
Network Designer using deepNetworkDesigner(layers).

layers = [
    imageInputLayer([32 32 1])
    convolution2dLayer([3,3],64,'Padding',[1,1,1,1])
    reluLayer
    maxPooling2dLayer([2,2],'Stride',[2,2])

 Train Simple Semantic Segmentation Network in Deep Network Designer

8-163



    convolution2dLayer([3,3],64,'Padding',[1,1,1,1])
    reluLayer
    transposedConv2dLayer([4,4],64,'Stride',[2,2],'Cropping',[1,1,1,1])
    convolution2dLayer([1,1],2)
    softmaxLayer
    pixelClassificationLayer
    ];

This network is a simple semantic segmentation network based on a downsampling and upsampling
design. For more information on constructing a semantic segmentation network, see “Create a
Semantic Segmentation Network” (Computer Vision Toolbox).

Import Data

To import the training datastore, on the Data tab, select Import Data > Import Custom Data.
Select the CombinedDatastore object cds as the training data. For the validation data, select None.
Import the training data by clicking Import.

Deep Network Designer displays a preview of the imported semantic segmentation data. The preview
displays the training images and the ground truth pixel labels. The network requires input images
(left) and returns a classification for each pixel as either triangle or background (right).

Train Network

Set the training options and train the network.

On the Training tab, click Training Options. Set InitialLearnRate to 0.001, MiniBatchSize to
64, and MaxEpochs to 100. Set the training options by clicking OK.

8 Computer Vision Examples

8-164



Train the network by clicking Train.

Once training is complete, click Export to export the trained network to the workspace. The trained
network is stored in the variable trainedNetwork_1.

Test Network

Make predictions using test data and the trained network.

Segment the test image using semanticseg. Display the labels over the image by using the
labeloverlay function.

imgTest = imread('triangleTest.jpg');
testSeg = semanticseg(imgTest,trainedNetwork_1);
testImageSeg = labeloverlay(imgTest,testSeg);

Display the results.

 Train Simple Semantic Segmentation Network in Deep Network Designer

8-165



figure
imshow(testImageSeg)

The network successfully labels the triangles in the test image.

The semantic segmentation network trained in this example is very simple. To construct more
complex semantic segmentation networks, you can use the Computer Vision Toolbox functions
segnetLayers (Computer Vision Toolbox), deeplabv3plusLayers (Computer Vision Toolbox), and
unetLayers (Computer Vision Toolbox). For an example showing how to use the
deeplabv3plusLayers function to create a DeepLab v3+ network, see “Semantic Segmentation
With Deep Learning” (Computer Vision Toolbox).

See Also
Deep Network Designer | Image Labeler | pixelLabelDatastore | semanticseg |
labeloverlay | pixelClassificationLayer | trainingOptions | deeplabv3plusLayers |
segnetLayers | unetLayers

More About
• “Semantic Segmentation Using Deep Learning” on page 8-138
• “Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
• “Label Pixels for Semantic Segmentation” (Computer Vision Toolbox)
• “Pretrained Deep Neural Networks” on page 1-11
• “Get Started with Deep Network Designer”

8 Computer Vision Examples

8-166



Semantic Segmentation of Multispectral Images Using Deep
Learning

This example shows how to perform semantic segmentation of a multispectral image with seven
channels using U-Net.

Semantic segmentation involves labeling each pixel in an image with a class. One application of
semantic segmentation is tracking deforestation, which is the change in forest cover over time.
Environmental agencies track deforestation to assess and quantify the environmental and ecological
health of a region.

Deep learning based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One challenge is differentiating classes with similar visual
characteristics, such as trying to classify a green pixel as grass, shrubbery, or tree. To increase
classification accuracy, some data sets contain multispectral images that provide additional
information about each pixel. For example, the Hamlin Beach State Park data set supplements the
color images with three near-infrared channels that provide a clearer separation of the classes.

This example first shows you how to perform semantic segmentation using a pretrained U-Net and
then use the segmentation results to calculate the extent of vegetation cover. Then, you can optionally
train a U-Net network on the Hamlin Beach State Parck data set using a patch-based training
methodology.

 Semantic Segmentation of Multispectral Images Using Deep Learning

8-167



Download Dataset

This example uses a high-resolution multispectral data set to train the network [1 on page 8-184]. The
image set was captured using a drone over the Hamlin Beach State Park, NY. The data contains
labeled training, validation, and test sets, with 18 object class labels. The size of the data file is 3.0
GB.

Download the MAT-file version of the data set using the downloadHamlinBeachMSIData helper
function. This function is attached to the example as a supporting file. Specify dataDir as the
desired location of the data.

dataDir = fullfile(tempdir,"rit18_data"); 
downloadHamlinBeachMSIData(dataDir);

Load the dataset.

load(fullfile(dataDir,"rit18_data.mat"));
whos train_data val_data test_data

  Name            Size                         Bytes  Class     Attributes

  test_data       7x12446x7654            1333663576  uint16              
  train_data      7x9393x5642              741934284  uint16              
  val_data        7x8833x6918              855493716  uint16              

The multispectral image data is arranged as numChannels-by-width-by-height arrays. However, in
MATLAB®, multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape
the data so that the channels are in the third dimension, use the switchChannelsToThirdPlane
helper function. This function is attached to the example as a supporting file.

train_data = switchChannelsToThirdPlane(train_data);
val_data   = switchChannelsToThirdPlane(val_data);
test_data  = switchChannelsToThirdPlane(test_data);

Confirm that the data has the correct structure.

whos train_data val_data test_data

  Name                Size                     Bytes  Class     Attributes

  test_data       12446x7654x7            1333663576  uint16              
  train_data       9393x5642x7             741934284  uint16              
  val_data         8833x6918x7             855493716  uint16              

Save the training data as a MAT file and the training labels as a PNG file. This facilitates loading the
training data using an imageDatastore and a pixelLabelDatastore during training.

save("train_data.mat","train_data");
imwrite(train_labels,"train_labels.png");

Visualize Multispectral Data

In this dataset, the RGB color channels are the 3rd, 2nd, and 1st image channels. Display the color
component of the training, validation, and test images as a montage. To make the images appear
brighter on the screen, equalize their histograms by using the histeq (Image Processing Toolbox)
function.

figure
montage(...

8 Computer Vision Examples

8-168



    {histeq(train_data(:,:,[3 2 1])), ...
    histeq(val_data(:,:,[3 2 1])), ...
    histeq(test_data(:,:,[3 2 1]))}, ...
    BorderSize=10,BackgroundColor="white")
title("RGB Component of Training, Validation, and Test Image (Left to Right)")

Display the last three histogram-equalized channels of the training data as a montage. These
channels correspond to the near-infrared bands and highlight different components of the image
based on their heat signatures. For example, the trees near the center of the second channel image
show more detail than the trees in the other two channels.

figure
montage(...
    {histeq(train_data(:,:,4)),histeq(train_data(:,:,5)),histeq(train_data(:,:,6))}, ...
    BorderSize=10,BackgroundColor="white")
title("Training Image IR Channels 1, 2, and 3 (Left to Right)")

 Semantic Segmentation of Multispectral Images Using Deep Learning

8-169



Channel 7 is a mask that indicates the valid segmentation region. Display the mask for the training,
validation, and test images.

figure
montage(...
    {train_data(:,:,7),val_data(:,:,7),test_data(:,:,7)}, ...
    BorderSize=10,BackgroundColor="white")
title("Mask of Training, Validation, and Test Image (Left to Right)")

8 Computer Vision Examples

8-170



Visualize Ground Truth Labels

The labeled images contain the ground truth data for the segmentation, with each pixel assigned to
one of the 18 classes. Get a list of the classes with their corresponding IDs.

disp(classes)

0. Other Class/Image Border      
1. Road Markings                 
2. Tree                          
3. Building                      
4. Vehicle (Car, Truck, or Bus)  
5. Person                        
6. Lifeguard Chair               
7. Picnic Table                  
8. Black Wood Panel              
9. White Wood Panel              
10. Orange Landing Pad           
11. Water Buoy                   
12. Rocks                        
13. Other Vegetation             
14. Grass                        
15. Sand                         
16. Water (Lake)                 
17. Water (Pond)                 
18. Asphalt (Parking Lot/Walkway)

Create a vector of class names.

classNames = [ "RoadMarkings","Tree","Building","Vehicle","Person", ...
               "LifeguardChair","PicnicTable","BlackWoodPanel",...

 Semantic Segmentation of Multispectral Images Using Deep Learning

8-171



               "WhiteWoodPanel","OrangeLandingPad","Buoy","Rocks",...
               "LowLevelVegetation","Grass_Lawn","Sand_Beach",...
               "Water_Lake","Water_Pond","Asphalt"]; 

Overlay the labels on the histogram-equalized RGB training image. Add a color bar to the image.

cmap = jet(numel(classNames));
B = labeloverlay(histeq(train_data(:,:,4:6)),train_labels,Transparency=0.8,Colormap=cmap);

figure
imshow(B)
title("Training Labels")
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar(TickLabels=cellstr(classNames),Ticks=ticks,TickLength=0,TickLabelInterpreter="none");
colormap(cmap)

8 Computer Vision Examples

8-172



 Semantic Segmentation of Multispectral Images Using Deep Learning

8-173



Perform Semantic Segmentation

Download a pretrained U-Net network.

trainedUnet_url = "https://www.mathworks.com/supportfiles/vision/data/multispectralUnet.mat";
downloadTrainedNetwork(trainedUnet_url,dataDir);
load(fullfile(dataDir,"multispectralUnet.mat"));

To perform the semantic segmentation on the trained network, use the
segmentMultispectralImage helper function with the validation data. This function is attached to
the example as a supporting file. The segmentMultispectralImage function performs
segmentation on image patches using the semanticseg (Computer Vision Toolbox) function.
Processing patches is required because the size of the image prevents processing the entire image at
once.

predictPatchSize = [1024 1024];
segmentedImage = segmentMultispectralImage(val_data,net,predictPatchSize);

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the validation data.

segmentedImage = uint8(val_data(:,:,7)~=0) .* segmentedImage;

figure
imshow(segmentedImage,[])
title("Segmented Image")

8 Computer Vision Examples

8-174



 Semantic Segmentation of Multispectral Images Using Deep Learning

8-175



The output of semantic segmentation is noisy. Perform post image processing to remove noise and
stray pixels. Use the medfilt2 (Image Processing Toolbox) function to remove salt-and-pepper noise
from the segmentation. Visualize the segmented image with the noise removed.

segmentedImage = medfilt2(segmentedImage,[7,7]);
imshow(segmentedImage,[]);
title("Segmented Image with Noise Removed")

8 Computer Vision Examples

8-176



Overlay the segmented image on the histogram-equalized RGB validation image.

 Semantic Segmentation of Multispectral Images Using Deep Learning

8-177



B = labeloverlay(histeq(val_data(:,:,[3 2 1])),segmentedImage,Transparency=0.8,Colormap=cmap);

figure
imshow(B)
title("Labeled Segmented Image")
colorbar(TickLabels=cellstr(classNames),Ticks=ticks,TickLength=0,TickLabelInterpreter="none");
colormap(cmap)

8 Computer Vision Examples

8-178



 Semantic Segmentation of Multispectral Images Using Deep Learning

8-179



Calculate Extent of Vegetation Cover

The semantic segmentation results can be used to answer pertinent ecological questions. For
example, what percentage of land area is covered by vegetation? To answer this question, find the
number of pixels labeled vegetation. The label IDs 2 ("Trees"), 13 ("LowLevelVegetation"), and 14
("Grass_Lawn") are the vegetation classes. Also find the total number of valid pixels by summing the
pixels in the ROI of the mask image.

vegetationClassIds = uint8([2,13,14]);
vegetationPixels = ismember(segmentedImage(:),vegetationClassIds);
validPixels = (segmentedImage~=0);

numVegetationPixels = sum(vegetationPixels(:));
numValidPixels = sum(validPixels(:));

Calculate the percentage of vegetation cover by dividing the number of vegetation pixels by the
number of valid pixels.

percentVegetationCover = (numVegetationPixels/numValidPixels)*100;
fprintf("The percentage of vegetation cover is %3.2f%%.",percentVegetationCover);

The percentage of vegetation cover is 51.72%.

The rest of the example shows you how to train U-Net on the Hamlin Beach dataset.

Create Random Patch Extraction Datastore for Training

Use a random patch extraction datastore to feed the training data to the network. This datastore
extracts multiple corresponding random patches from an image datastore and pixel label datastore
that contain ground truth images and pixel label data. Patching is a common technique to prevent
running out of memory for large images and to effectively increase the amount of available training
data.

Begin by loading the training images from "train_data.mat" in an imageDatastore. Because the
MAT file format is a nonstandard image format, you must use a MAT file reader to enable reading the
image data. You can use the helper MAT file reader, matRead6Channels, that extracts the first six
channels from the training data and omits the last channel containing the mask. This function is
attached to the example as a supporting file.

imds = imageDatastore("train_data.mat",FileExtensions=".mat",ReadFcn=@matRead6Channels);

Create a pixelLabelDatastore (Computer Vision Toolbox) to store the label patches containing
the 18 labeled regions.

pixelLabelIds = 1:18;
pxds = pixelLabelDatastore("train_labels.png",classNames,pixelLabelIds);

Create a randomPatchExtractionDatastore (Image Processing Toolbox) from the image
datastore and the pixel label datastore. Each mini-batch contains 16 patches of size 256-by-256
pixels. One thousand mini-batches are extracted at each iteration of the epoch.

dsTrain = randomPatchExtractionDatastore(imds,pxds,[256,256],PatchesPerImage=16000);

The random patch extraction datastore dsTrain provides mini-batches of data to the network at
each iteration of the epoch. Preview the datastore to explore the data.

8 Computer Vision Examples

8-180



inputBatch = preview(dsTrain);
disp(inputBatch)

        InputImage        ResponsePixelLabelImage
    __________________    _______________________

    {256×256×6 uint16}     {256×256 categorical} 
    {256×256×6 uint16}     {256×256 categorical} 
    {256×256×6 uint16}     {256×256 categorical} 
    {256×256×6 uint16}     {256×256 categorical} 
    {256×256×6 uint16}     {256×256 categorical} 
    {256×256×6 uint16}     {256×256 categorical} 
    {256×256×6 uint16}     {256×256 categorical} 
    {256×256×6 uint16}     {256×256 categorical} 

Create U-Net Network Layers

This example uses a variation of the U-Net network. In U-Net, the initial series of convolutional layers
are interspersed with max pooling layers, successively decreasing the resolution of the input image.
These layers are followed by a series of convolutional layers interspersed with upsampling operators,
successively increasing the resolution of the input image [2 on page 8-184]. The name U-Net comes
from the fact that the network can be drawn with a symmetric shape like the letter U.

This example modifies the U-Net to use zero-padding in the convolutions, so that the input and the
output to the convolutions have the same size. Use the helper function, createUnet, to create a U-
Net with a few preselected hyperparameters. This function is attached to the example as a supporting
file.

inputTileSize = [256,256,6];
lgraph = createUnet(inputTileSize);
disp(lgraph.Layers)

  58×1 Layer array with layers:

     1   'ImageInputLayer'                        Image Input                  256×256×6 images with 'zerocenter' normalization
     2   'Encoder-Section-1-Conv-1'               2-D Convolution              64 3×3×6 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'Encoder-Section-1-ReLU-1'               ReLU                         ReLU
     4   'Encoder-Section-1-Conv-2'               2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
     5   'Encoder-Section-1-ReLU-2'               ReLU                         ReLU
     6   'Encoder-Section-1-MaxPool'              2-D Max Pooling              2×2 max pooling with stride [2  2] and padding [0  0  0  0]
     7   'Encoder-Section-2-Conv-1'               2-D Convolution              128 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
     8   'Encoder-Section-2-ReLU-1'               ReLU                         ReLU
     9   'Encoder-Section-2-Conv-2'               2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'Encoder-Section-2-ReLU-2'               ReLU                         ReLU
    11   'Encoder-Section-2-MaxPool'              2-D Max Pooling              2×2 max pooling with stride [2  2] and padding [0  0  0  0]
    12   'Encoder-Section-3-Conv-1'               2-D Convolution              256 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'Encoder-Section-3-ReLU-1'               ReLU                         ReLU
    14   'Encoder-Section-3-Conv-2'               2-D Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'Encoder-Section-3-ReLU-2'               ReLU                         ReLU
    16   'Encoder-Section-3-MaxPool'              2-D Max Pooling              2×2 max pooling with stride [2  2] and padding [0  0  0  0]
    17   'Encoder-Section-4-Conv-1'               2-D Convolution              512 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]
    18   'Encoder-Section-4-ReLU-1'               ReLU                         ReLU
    19   'Encoder-Section-4-Conv-2'               2-D Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]
    20   'Encoder-Section-4-ReLU-2'               ReLU                         ReLU
    21   'Encoder-Section-4-DropOut'              Dropout                      50% dropout
    22   'Encoder-Section-4-MaxPool'              2-D Max Pooling              2×2 max pooling with stride [2  2] and padding [0  0  0  0]
    23   'Mid-Conv-1'                             2-D Convolution              1024 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]
    24   'Mid-ReLU-1'                             ReLU                         ReLU

 Semantic Segmentation of Multispectral Images Using Deep Learning

8-181



    25   'Mid-Conv-2'                             2-D Convolution              1024 3×3×1024 convolutions with stride [1  1] and padding [1  1  1  1]
    26   'Mid-ReLU-2'                             ReLU                         ReLU
    27   'Mid-DropOut'                            Dropout                      50% dropout
    28   'Decoder-Section-1-UpConv'               2-D Transposed Convolution   512 2×2×1024 transposed convolutions with stride [2  2] and cropping [0  0  0  0]
    29   'Decoder-Section-1-UpReLU'               ReLU                         ReLU
    30   'Decoder-Section-1-DepthConcatenation'   Depth concatenation          Depth concatenation of 2 inputs
    31   'Decoder-Section-1-Conv-1'               2-D Convolution              512 3×3×1024 convolutions with stride [1  1] and padding [1  1  1  1]
    32   'Decoder-Section-1-ReLU-1'               ReLU                         ReLU
    33   'Decoder-Section-1-Conv-2'               2-D Convolution              512 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]
    34   'Decoder-Section-1-ReLU-2'               ReLU                         ReLU
    35   'Decoder-Section-2-UpConv'               2-D Transposed Convolution   256 2×2×512 transposed convolutions with stride [2  2] and cropping [0  0  0  0]
    36   'Decoder-Section-2-UpReLU'               ReLU                         ReLU
    37   'Decoder-Section-2-DepthConcatenation'   Depth concatenation          Depth concatenation of 2 inputs
    38   'Decoder-Section-2-Conv-1'               2-D Convolution              256 3×3×512 convolutions with stride [1  1] and padding [1  1  1  1]
    39   'Decoder-Section-2-ReLU-1'               ReLU                         ReLU
    40   'Decoder-Section-2-Conv-2'               2-D Convolution              256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]
    41   'Decoder-Section-2-ReLU-2'               ReLU                         ReLU
    42   'Decoder-Section-3-UpConv'               2-D Transposed Convolution   128 2×2×256 transposed convolutions with stride [2  2] and cropping [0  0  0  0]
    43   'Decoder-Section-3-UpReLU'               ReLU                         ReLU
    44   'Decoder-Section-3-DepthConcatenation'   Depth concatenation          Depth concatenation of 2 inputs
    45   'Decoder-Section-3-Conv-1'               2-D Convolution              128 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1]
    46   'Decoder-Section-3-ReLU-1'               ReLU                         ReLU
    47   'Decoder-Section-3-Conv-2'               2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]
    48   'Decoder-Section-3-ReLU-2'               ReLU                         ReLU
    49   'Decoder-Section-4-UpConv'               2-D Transposed Convolution   64 2×2×128 transposed convolutions with stride [2  2] and cropping [0  0  0  0]
    50   'Decoder-Section-4-UpReLU'               ReLU                         ReLU
    51   'Decoder-Section-4-DepthConcatenation'   Depth concatenation          Depth concatenation of 2 inputs
    52   'Decoder-Section-4-Conv-1'               2-D Convolution              64 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]
    53   'Decoder-Section-4-ReLU-1'               ReLU                         ReLU
    54   'Decoder-Section-4-Conv-2'               2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    55   'Decoder-Section-4-ReLU-2'               ReLU                         ReLU
    56   'Final-ConvolutionLayer'                 2-D Convolution              18 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]
    57   'Softmax-Layer'                          Softmax                      softmax
    58   'Segmentation-Layer'                     Pixel Classification Layer   Cross-entropy loss 

Select Training Options

Train the network using stochastic gradient descent with momentum (SGDM) optimization. Specify
the hyperparameter settings for SGDM by using the trainingOptions function.

Training a deep network is time-consuming. Accelerate the training by specifying a high learning
rate. However, this can cause the gradients of the network to explode or grow uncontrollably,
preventing the network from training successfully. To keep the gradients in a meaningful range,
enable gradient clipping by specifying "GradientThreshold" as 0.05, and specify
"GradientThresholdMethod" to use the L2-norm of the gradients.

initialLearningRate = 0.05;
maxEpochs = 150;
minibatchSize = 16;
l2reg = 0.0001;

options = trainingOptions("sgdm",...
    InitialLearnRate=initialLearningRate, ...
    Momentum=0.9,...
    L2Regularization=l2reg,...
    MaxEpochs=maxEpochs,...
    MiniBatchSize=minibatchSize,...
    LearnRateSchedule="piecewise",...    

8 Computer Vision Examples

8-182



    Shuffle="every-epoch",...
    GradientThresholdMethod="l2norm",...
    GradientThreshold=0.05, ...
    Plots="training-progress", ...
    VerboseFrequency=20);

Train the Network or Download Pretrained Network

To train the network, set the doTraining variable in the following code to true. Train the model by
using the trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 20 hours on an NVIDIA Titan X.

doTraining = false; 
if doTraining
    net = trainNetwork(dsTrain,lgraph,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(dataDir,"multispectralUnet-"+modelDateTime+".mat"),"net");
end

Evaluate Segmentation Accuracy

Segment the validation data.

segmentedImage = segmentMultispectralImage(val_data,net,predictPatchSize);

Save the segmented image and ground truth labels as PNG files. The example uses these files to
calculate accuracy metrics.

imwrite(segmentedImage,"results.png");
imwrite(val_labels,"gtruth.png");

Load the segmentation results and ground truth using pixelLabelDatastore (Computer Vision
Toolbox).

pxdsResults = pixelLabelDatastore("results.png",classNames,pixelLabelIds);
pxdsTruth = pixelLabelDatastore("gtruth.png",classNames,pixelLabelIds);

Measure the global accuracy of the semantic segmentation by using the
evaluateSemanticSegmentation (Computer Vision Toolbox) function.

ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,Metrics="global-accuracy");

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy.
* Processed 1 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy
    ______________

       0.90411    

The global accuracy score indicates that just over 90% of the pixels are classified correctly.

 Semantic Segmentation of Multispectral Images Using Deep Learning

8-183



References

[1] Kemker, R., C. Salvaggio, and C. Kanan. "High-Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918. 2017.

[2] Ronneberger, O., P. Fischer, and T. Brox. "U-Net: Convolutional Networks for Biomedical Image
Segmentation." CoRR, abs/1505.04597. 2015.

[3] Kemker, Ronald, Carl Salvaggio, and Christopher Kanan. "Algorithms for Semantic Segmentation
of Multispectral Remote Sensing Imagery Using Deep Learning." ISPRS Journal of Photogrammetry
and Remote Sensing, Deep Learning RS Data, 145 (November 1, 2018): 60-77. https://doi.org/
10.1016/j.isprsjprs.2018.04.014.

See Also
trainingOptions | trainNetwork | randomPatchExtractionDatastore |
pixelLabelDatastore | semanticseg | evaluateSemanticSegmentation | imageDatastore |
histeq | unetLayers

More About
• “Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
• “Semantic Segmentation Using Deep Learning” on page 8-138
• “Semantic Segmentation Using Dilated Convolutions” on page 8-157
• “Datastores for Deep Learning” on page 20-2

External Websites
• https://github.com/rmkemker/RIT-18

8 Computer Vision Examples

8-184

https://github.com/rmkemker/RIT-18


3-D Brain Tumor Segmentation Using Deep Learning

This example shows how to perform semantic segmentation of brain tumors from 3-D medical images.

Semantic segmentation involves labeling each pixel in an image or voxel of a 3-D volume with a class.
This example illustrates the use of a 3-D U-Net deep learning network to perform binary semantic
segmentation of brain tumors in magnetic resonance imaging (MRI) scans. U-Net is a fast, efficient
and simple network that has become popular in the semantic segmentation domain [1 on page 8-193].

One challenge of medical image segmentation is the amount of memory needed to store and process
3-D volumes. Training a network and performing segmentation on the full input volume is impractical
due to GPU resource constraints. This example solves the problem by dividing the image into smaller
patches, or blocks, for training and segmentation.

A second challenge of medical image segmentation is class imbalance in the data that hampers
training when using conventional cross entropy loss. This example solves the problem by using a
weighted multiclass Dice loss function [4 on page 8-194]. Weighting the classes helps to counter the
influence of larger regions on the Dice score, making it easier for the network to learn how to
segment smaller regions.

This example shows how to perform brain tumor segmentation using a pretrained 3-D U-Net
architecture, and how to evaluate the network performance using a set of test images. You can
optionally train a 3-D U-Net on the BraTS data set [2 on page 8-193].

Perform Brain Tumor Segmentation Using Pretrained 3-D U-Net

Download Pretrained 3-D U-Net

Download a pretrained 3-D U-Net into a variable called net.

dataDir = fullfile(tempdir,"BraTS");
if ~exist(dataDir,'dir')
    mkdir(dataDir);
end
trained3DUnetURL = "https://www.mathworks.com/supportfiles/"+ ...
    "vision/data/brainTumor3DUNetValid.mat";
downloadTrainedNetwork(trained3DUnetURL,dataDir);
load(dataDir+filesep+"brainTumor3DUNetValid.mat");

Download BraTS Sample Data

Download five sample test volumes and their corresponding labels from the BraTS data set using the
downloadBraTSSampleTestData helper function [3 on page 8-194]. The helper function is attached
to the example as a supporting file. The sample data enables you to perform segmentation on test
data without downloading the full data set.

downloadBraTSSampleTestData(dataDir);

Load one of the volume samples along with its pixel label ground truth.

testDir = dataDir+filesep+"sampleBraTSTestSetValid";
data = load(fullfile(testDir,"imagesTest","BraTS446.mat"));
labels = load(fullfile(testDir,"labelsTest","BraTS446.mat"));
volTest = data.cropVol;
volTestLabels = labels.cropLabel;

 3-D Brain Tumor Segmentation Using Deep Learning

8-185



Perform Semantic Segmentation

The example uses an overlap-tile strategy to process the large volume. The overlap-tile strategy
selects overlapping blocks, predicts the labels for each block by using the semanticseg (Computer
Vision Toolbox) function, and then recombines the blocks into a complete segmented test volume. The
strategy enables efficient processing on the GPU, which has limited memory resources. The strategy
also reduces border artifacts by using the valid part of the convolution in the neural network [5 on
page 8-194].

Implement the overlap-tile strategy by storing the volume data as a blockedImage (Image
Processing Toolbox) object and processing blocks using the apply (Image Processing Toolbox)
function.

Create a blockedImage object for the sample volume downloaded in the previous section.

bim = blockedImage(volTest);

The apply function executes a custom function for each block within the blockedImage. Define
semanticsegBlock as the function to execute for each block.

semanticsegBlock = @(bstruct)semanticseg(bstruct.Data,net);

Specify the block size as the network output size. To create overlapping blocks, specify a nonzero
border size. This example uses a border size such that the block plus the border match the network
input size.

networkInputSize = net.Layers(1).InputSize;
networkOutputSize = net.Layers(end).OutputSize;
blockSize = [networkOutputSize(1:3) networkInputSize(end)];
borderSize = (networkInputSize(1:3) - blockSize(1:3))/2;

Perform semantic segmentation using blockedImage apply with partial block padding set to true.
The default padding method, "replicate", is appropriate because the volume data contains
multiple modalities. The batch size is specified as 1 to prevent out-of-memory errors on GPUs with
constrained memory resources. However, if your GPU has sufficient memory, then you can increase
the processessing speed by increasing the block size.

batchSize = 1;
results = apply(bim, ...
    semanticsegBlock, ...
    BlockSize=blockSize, ...
    BorderSize=borderSize,...
    PadPartialBlocks=true, ...
    BatchSize=batchSize);
predictedLabels = results.Source;

Display a montage showing the center slice of the ground truth and predicted labels along the depth
direction.

zID = size(volTest,3)/2;
zSliceGT = labeloverlay(volTest(:,:,zID),volTestLabels(:,:,zID));
zSlicePred = labeloverlay(volTest(:,:,zID),predictedLabels(:,:,zID));

figure
montage({zSliceGT,zSlicePred},Size=[1 2],BorderSize=5) 
title("Labeled Ground Truth (Left) vs. Network Prediction (Right)")

8 Computer Vision Examples

8-186



The following image shows the result of displaying slices sequentially across the one of the volumes.
The labeled ground truth is on the left and the network prediction is on the right.

Train 3-D U-Net

This part of the example shows how to train a 3-D U-Net. If you do not want to download the training
data set or train the network, then you can skip to the Evaluate Network Performance on page 8-191
section of this example.

Download BraTS Data Set

This example uses the BraTS data set [2 on page 8-193]. The BraTS data set contains MRI scans of
brain tumors, namely gliomas, which are the most common primary brain malignancies. The size of
the data file is ~7 GB.

To download the BraTS data, go to the Medical Segmentation Decathlon website and click the
"Download Data" link. Download the "Task01_BrainTumour.tar" file [3 on page 8-194]. Unzip the TAR
file into the directory specified by the imageDir variable. When unzipped successfully, imageDir

 3-D Brain Tumor Segmentation Using Deep Learning

8-187

http://medicaldecathlon.com/


will contain a directory named Task01_BrainTumour that has three subdirectories: imagesTr,
imagesTs, and labelsTr.

The data set contains 750 4-D volumes, each representing a stack of 3-D images. Each 4-D volume
has size 240-by-240-by-155-by-4, where the first three dimensions correspond to height, width, and
depth of a 3-D volumetric image. The fourth dimension corresponds to different scan modalities. The
data set is divided into 484 training volumes with voxel labels and 266 test volumes. The test volumes
do not have labels so this example does not use the test data. Instead, the example splits the 484
training volumes into three independent sets that are used for training, validation, and testing.

Preprocess Training and Validation Data

To train the 3-D U-Net network more efficiently, preprocess the MRI data using the helper function
preprocessBraTSDataset. This function is attached to the example as a supporting file. The helper
function performs these operations:

• Crop the data to a region containing primarily the brain and tumor. Cropping the data reduces the
size of data while retaining the most critical part of each MRI volume and its corresponding labels.

• Normalize each modality of each volume independently by subtracting the mean and dividing by
the standard deviation of the cropped brain region.

• Split the 484 training volumes into 400 training, 29 validation, and 55 test sets.

Preprocessing the data can take about 30 minutes to complete.

sourceDataLoc = dataDir+filesep+"Task01_BrainTumour";
preprocessDataLoc = dataDir+filesep+"preprocessedDataset";
preprocessBraTSDataset(preprocessDataLoc,sourceDataLoc);

Create Random Patch Extraction Datastore for Training and Validation

Create an imageDatastore to store the 3-D image data. Because the MAT file format is a
nonstandard image format, you must use a MAT file reader to enable reading the image data. You can
use the helper MAT file reader, matRead. This function is attached to the example as a supporting
file.

volLoc = fullfile(preprocessDataLoc,"imagesTr");
volds = imageDatastore(volLoc,FileExtensions=".mat",ReadFcn=@matRead);

Create a pixelLabelDatastore (Computer Vision Toolbox) to store the labels.

lblLoc = fullfile(preprocessDataLoc,"labelsTr");
classNames = ["background","tumor"];
pixelLabelID = [0 1];
pxds = pixelLabelDatastore(lblLoc,classNames,pixelLabelID, ...
    FileExtensions=".mat",ReadFcn=@matRead);

Create a randomPatchExtractionDatastore (Image Processing Toolbox) that extracts random
patches from ground truth images and corresponding pixel label data. Specify a patch size of 132-
by-132-by-132 voxels. Specify "PatchesPerImage" to extract 16 randomly positioned patches from
each pair of volumes and labels during training. Specify a mini-batch size of 8.

patchSize = [132 132 132];
patchPerImage = 16;
miniBatchSize = 8;
patchds = randomPatchExtractionDatastore(volds,pxds,patchSize, ...

8 Computer Vision Examples

8-188



    PatchesPerImage=patchPerImage);
patchds.MiniBatchSize = miniBatchSize;

Create a randomPatchExtractionDatastore that extracts patches from the validation image and
pixel label data. You can use validation data to evaluate whether the network is continuously learning,
underfitting, or overfitting as time progresses.

volLocVal = fullfile(preprocessDataLoc,"imagesVal");
voldsVal = imageDatastore(volLocVal,FileExtensions=".mat", ...
    ReadFcn=@matRead);

lblLocVal = fullfile(preprocessDataLoc,"labelsVal");
pxdsVal = pixelLabelDatastore(lblLocVal,classNames,pixelLabelID, ...
    FileExtensions=".mat",ReadFcn=@matRead);

dsVal = randomPatchExtractionDatastore(voldsVal,pxdsVal,patchSize, ...
    PatchesPerImage=patchPerImage);
dsVal.MiniBatchSize = miniBatchSize;

Set Up 3-D U-Net Layers

This example uses the 3-D U-Net network [1 on page 8-193]. In U-Net, the initial series of
convolutional layers are interspersed with max pooling layers, successively decreasing the resolution
of the input image. These layers are followed by a series of convolutional layers interspersed with
upsampling operators, successively increasing the resolution of the input image. A batch
normalization layer is introduced before each ReLU layer. The name U-Net comes from the fact that
the network can be drawn with a symmetric shape like the letter U.

Create a default 3-D U-Net network by using the unetLayers (Computer Vision Toolbox) function.
Specify two class segmentation. Also specify valid convolution padding to avoid border artifacts when
using the overlap-tile strategy for prediction of the test volumes.

numChannels = 4;
inputPatchSize = [patchSize numChannels];
numClasses = 2;
[lgraph,outPatchSize] = unet3dLayers(inputPatchSize, ...
    numClasses,ConvolutionPadding="valid");

Augment the training and validation data by using the transform function with custom
preprocessing operations specified by the helper function augmentAndCrop3dPatch. This function
is attached to the example as a supporting file. The augmentAndCrop3dPatch function performs
these operations:

1 Randomly rotate and reflect training data to make the training more robust. The function does
not rotate or reflect validation data.

2 Crop response patches to the output size of the network, 44-by-44-by-44 voxels.

dsTrain = transform(patchds, ...
    @(patchIn)augmentAndCrop3dPatch(patchIn,outPatchSize,"Training"));
dsVal = transform(dsVal, ...
    @(patchIn)augmentAndCrop3dPatch(patchIn,outPatchSize,"Validation"));

To better segment smaller tumor regions and reduce the influence of larger background regions, this
example uses a dicePixelClassificationLayer (Computer Vision Toolbox). Replace the pixel
classification layer with the Dice pixel classification layer.

 3-D Brain Tumor Segmentation Using Deep Learning

8-189



outputLayer = dicePixelClassificationLayer(Name="Output");
lgraph = replaceLayer(lgraph,"Segmentation-Layer",outputLayer);

The data has already been normalized in the Preprocess Training and Validation Data on page 8-188
section of this example. Data normalization in the image3dInputLayer is unnecessary, so replace
the input layer with an input layer that does not have data normalization.

inputLayer = image3dInputLayer(inputPatchSize, ...
    Normalization="none",Name="ImageInputLayer");
lgraph = replaceLayer(lgraph,"ImageInputLayer",inputLayer);

Alternatively, you can modify the 3-D U-Net network by using the Deep Network Designer app.

deepNetworkDesigner(lgraph)

Specify Training Options

Train the network using the adam optimization solver. Specify the hyperparameter settings using the
trainingOptions function. The initial learning rate is set to 5e-4 and gradually decreases over the
span of training. You can experiment with the MiniBatchSize property based on your GPU memory.
To maximize GPU memory utilization, favor large input patches over a large batch size. Note that
batch normalization layers are less effective for smaller values of MiniBatchSize. Tune the initial
learning rate based on the MiniBatchSize.

options = trainingOptions("adam", ...
    MaxEpochs=50, ...

8 Computer Vision Examples

8-190



    InitialLearnRate=5e-4, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=5, ...
    LearnRateDropFactor=0.95, ...
    ValidationData=dsVal, ...
    ValidationFrequency=400, ...
    Plots="training-progress", ...
    Verbose=false, ...
    MiniBatchSize=miniBatchSize);

Train Network

By default, the example uses the downloaded pretrained 3-D U-Net network. The pretrained network
enables you to perform semantic segmentation and evaluate the segmentation results without waiting
for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the network
using the trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 30 hours on a multi-GPU system with 4 NVIDIA™ Titan Xp
GPUs and can take even longer depending on your GPU hardware.

doTraining = ;
if doTraining
    [net,info] = trainNetwork(dsTrain,lgraph,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save("trained3DUNet-"+modelDateTime+".mat","net");
end

Evaluate Network Performance

Select the source of test data that contains ground truth volumes and labels for testing. If you keep
the useFullTestSet variable in the following code as false, then the example uses five sample
volumes for testing. If you set the useFullTestSet variable to true, then the example uses 55 test
images selected from the full data set.

useFullTestSet = ;
if useFullTestSet
    volLocTest = fullfile(preprocessDataLoc,"imagesTest");
    lblLocTest = fullfile(preprocessDataLoc,"labelsTest");
else
    volLocTest = fullfile(testDir,"imagesTest");
    lblLocTest = fullfile(testDir,"labelsTest");
end

The voldsTest variable stores the ground truth test images. The pxdsTest variable stores the
ground truth labels.

voldsTest = imageDatastore(volLocTest,FileExtensions=".mat", ...
    ReadFcn=@matRead);
pxdsTest = pixelLabelDatastore(lblLocTest,classNames,pixelLabelID, ...
    FileExtensions=".mat",ReadFcn=@matRead);

For each test volume, process each block using the apply (Image Processing Toolbox) function. The
apply function performs the operations specified by the helper function calculateBlockMetrics,

 3-D Brain Tumor Segmentation Using Deep Learning

8-191



which is defined at the end of this example. The calculateBlockMetrics function performs
semantic segmentation of each block and calculates the confusion matrix between the predicted and
ground truth labels.

imageIdx = 1;
datasetConfMat = table;
while hasdata(voldsTest)

    % Read volume and label data
    vol = read(voldsTest);
    volLabels = read(pxdsTest);

    % Create blockedImage for volume and label data
    testVolume = blockedImage(vol);
    testLabels = blockedImage(volLabels{1});

    % Calculate block metrics
    blockConfMatOneImage = apply(testVolume, ...
        @(block,labeledBlock) ...
            calculateBlockMetrics(block,labeledBlock,net), ...
        ExtraImages=testLabels, ...
        PadPartialBlocks=true, ...
        BlockSize=blockSize, ...
        BorderSize=borderSize, ...
        UseParallel=false);

    % Read all the block results of an image and update the image number
    blockConfMatOneImageDS = blockedImageDatastore(blockConfMatOneImage);
    blockConfMat = readall(blockConfMatOneImageDS);
    blockConfMat = struct2table([blockConfMat{:}]);
    blockConfMat.ImageNumber = imageIdx.*ones(height(blockConfMat),1);
    datasetConfMat = [datasetConfMat;blockConfMat];

    imageIdx = imageIdx + 1;
end

Evaluate the data set metrics and block metrics for the segmentation using the
evaluateSemanticSegmentation (Computer Vision Toolbox) function.

[metrics,blockMetrics] = evaluateSemanticSegmentation( ...
    datasetConfMat,classNames,Metrics="all");

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU.
* Processed 5 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU
    ______________    ____________    _______    ___________

       0.99902          0.97955       0.95978      0.99808  

Display the Jaccard score calculated for each image.

metrics.ImageMetrics.MeanIoU

8 Computer Vision Examples

8-192



ans = 5×1

    0.9613
    0.9570
    0.9551
    0.9656
    0.9594

Supporting Function

The calculateBlockMetrics helper function performs semantic segmentation of a block and
calculates the confusion matrix between the predicted and ground truth labels. The function returns
a structure with fields containing the confusion matrix and metadata about the block. You can use the
structure with the evaluateSemanticSegmentation function to calculate metrics and aggregate
block-based results.

function blockMetrics = calculateBlockMetrics(bstruct,gtBlockLabels,net)

% Segment block
predBlockLabels = semanticseg(bstruct.Data,net);

% Trim away border region from gtBlockLabels 
blockStart = bstruct.BorderSize + 1;
blockEnd = blockStart + bstruct.BlockSize - 1;
gtBlockLabels = gtBlockLabels( ...
    blockStart(1):blockEnd(1), ...
    blockStart(2):blockEnd(2), ...
    blockStart(3):blockEnd(3));

% Evaluate segmentation results against ground truth
confusionMat = segmentationConfusionMatrix(predBlockLabels,gtBlockLabels);

% blockMetrics is a struct with confusion matrices, image number,
% and block information. 
blockMetrics.ConfusionMatrix = confusionMat;
blockMetrics.ImageNumber = bstruct.ImageNumber;
blockInfo.Start = bstruct.Start;
blockInfo.End = bstruct.End;
blockMetrics.BlockInfo = blockInfo;

end

References

[1] Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. "3D U-Net: Learning Dense
Volumetric Segmentation from Sparse Annotation." In Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. Athens, Greece, Oct.
2016, pp. 424-432.

[2] Isensee, F., P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein. "Brain Tumor
Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge." In
Proceedings of BrainLes: International MICCAI Brainlesion Workshop. Quebec City, Canada, Sept.
2017, pp. 287-297.

 3-D Brain Tumor Segmentation Using Deep Learning

8-193



[3] "Brain Tumours". Medical Segmentation Decathlon. http://medicaldecathlon.com/

The BraTS dataset is provided by Medical Segmentation Decathlon under the CC-BY-SA 4.0 license.
All warranties and representations are disclaimed; see the license for details. MathWorks® has
modified the data set linked in the Download BraTS Sample Data on page 8-185 section of this
example. The modified sample data set has been cropped to a region containing primarily the brain
and tumor and each channel has been normalized independently by subtracting the mean and
dividing by the standard deviation of the cropped brain region.

[4] Sudre, C. H., W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso. "Generalised Dice Overlap as a
Deep Learning Loss Function for Highly Unbalanced Segmentations." Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop.
Quebec City, Canada, Sept. 2017, pp. 240-248.

[5] Ronneberger, O., P. Fischer, and T. Brox. "U-Net:Convolutional Networks for Biomedical Image
Segmentation." In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015. Munich, Germany, Oct. 2015, pp. 234-241. Available
at arXiv:1505.04597.

See Also
randomPatchExtractionDatastore | trainNetwork | trainingOptions | transform |
pixelLabelDatastore | imageDatastore | semanticseg | dicePixelClassificationLayer

More About
• “Preprocess Volumes for Deep Learning” on page 20-20
• “Datastores for Deep Learning” on page 20-2
• “List of Deep Learning Layers” on page 1-43

8 Computer Vision Examples

8-194

https://creativecommons.org/licenses/by-sa/4.0/


Define Custom Pixel Classification Layer with Tversky Loss

This example shows how to define and create a custom pixel classification layer that uses Tversky
loss.

This layer can be used to train semantic segmentation networks. To learn more about creating custom
deep learning layers, see “Define Custom Deep Learning Layers” on page 19-9.

Tversky Loss

The Tversky loss is based on the Tversky index for measuring overlap between two segmented images
[1 on page 8-201]. The Tversky index TIc between one image Y and the corresponding ground truth T
is given by

TIc =
∑m = 1

M YcmTcm
∑m = 1

M YcmTcm + α∑m = 1
M YcmTc‾m + β∑m = 1

M Yc‾mTcm

• c corresponds to the class and c‾ corresponds to not being in class c.
• M is the number of elements along the first two dimensions of Y.
• α and β are weighting factors that control the contribution that false positives and false negatives

for each class make to the loss.

The loss L over the number of classes C is given by

L = ∑
c = 1

C
1− TIc

Classification Layer Template

Copy the classification layer template into a new file in MATLAB®. This template outlines the
structure of a classification layer and includes the functions that define the layer behavior. The rest of
the example shows how to complete the tverskyPixelClassificationLayer.

classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer

   properties
      % Optional properties
   end

   methods

        function loss = forwardLoss(layer, Y, T)
            % Layer forward loss function goes here
        end
        
    end
end

Declare Layer Properties

By default, custom output layers have the following properties:

 Define Custom Pixel Classification Layer with Tversky Loss

8-195



• Name – Layer name, specified as a character vector or a string scalar. To include this layer in a
layer graph, you must specify a nonempty unique layer name. If you train a series network with
this layer and Name is set to '', then the software automatically assigns a name at training time.

• Description – One-line description of the layer, specified as a character vector or a string scalar.
This description appears when the layer is displayed in a Layer array. If you do not specify a layer
description, then the software displays the layer class name.

• Type – Type of the layer, specified as a character vector or a string scalar. The value of Type
appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the
software displays 'Classification layer' or 'Regression layer'.

Custom classification layers also have the following property:

• Classes – Classes of the output layer, specified as a categorical vector, string array, cell array of
character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the
classes at training time. If you specify a string array or cell array of character vectors str, then
the software sets the classes of the output layer to categorical(str,str). The default value is
'auto'.

If the layer has no other properties, then you can omit the properties section.

The Tversky loss requires a small constant value to prevent division by zero. Specify the property,
Epsilon, to hold this value. It also requires two variable properties Alpha and Beta that control the
weighting of false positives and false negatives, respectively.

classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer

    properties(Constant)
       % Small constant to prevent division by zero. 
       Epsilon = 1e-8;
    end

    properties
       % Default weighting coefficients for false positives and false negatives 
       Alpha = 0.5;
       Beta = 0.5;  
    end

    ...
end

Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

function layer = tverskyPixelClassificationLayer(name, alpha, beta)
    % layer =  tverskyPixelClassificationLayer(name) creates a Tversky
    % pixel classification layer with the specified name.
           
    % Set layer name          
    layer.Name = name;

    % Set layer properties
    layer.Alpha = alpha;

8 Computer Vision Examples

8-196



    layer.Beta = beta;

    % Set layer description
    layer.Description = 'Tversky loss';
end

Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss between the
predictions made by the network and the training targets. The syntax for forwardLoss is loss =
forwardLoss(layer,Y,T), where Y is the output of the previous layer and T represents the
training targets.

For semantic segmentation problems, the dimensions of T match the dimension of Y, where Y is a 4-D
array of size H-by-W-by-K-by-N, where K is the number of classes, and N is the mini-batch size.

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T, you
must include a layer that outputs the correct size before the output layer. For example, to ensure that
Y is a 4-D array of prediction scores for K classes, you can include a fully connected layer of size K or
a convolutional layer with K filters followed by a softmax layer before the output layer.

function loss = forwardLoss(layer, Y, T)
    % loss = forwardLoss(layer, Y, T) returns the Tversky loss between
    % the predictions Y and the training targets T.

    Pcnot = 1-Y;
    Gcnot = 1-T;
    TP = sum(sum(Y.*T,1),2);
    FP = sum(sum(Y.*Gcnot,1),2);
    FN = sum(sum(Pcnot.*T,1),2);

    numer = TP + layer.Epsilon;
    denom = TP + layer.Alpha*FP + layer.Beta*FN + layer.Epsilon;
    
    % Compute Tversky index
    lossTIc = 1 - numer./denom;
    lossTI = sum(lossTIc,3);
    
    % Return average Tversky index loss
    N = size(Y,4);
    loss = sum(lossTI)/N;

end

Backward Loss Function

As the forwardLoss function fully supports automatic differentiation, there is no need to create a
function for the backward loss.

For a list of functions that support automatic differentiation, see “List of Functions with dlarray
Support” on page 19-504.

Completed Layer

The completed layer is provided in tverskyPixelClassificationLayer.m, which is attached to
the example as a supporting file.

 Define Custom Pixel Classification Layer with Tversky Loss

8-197



classdef tverskyPixelClassificationLayer < nnet.layer.ClassificationLayer
    % This layer implements the Tversky loss function for training
    % semantic segmentation networks.
    
    % References
    % Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour.
    % "Tversky loss function for image segmentation using 3D fully
    % convolutional deep networks." International Workshop on Machine
    % Learning in Medical Imaging. Springer, Cham, 2017.
    % ----------
    
    
    properties(Constant)
        % Small constant to prevent division by zero.
        Epsilon = 1e-8;
    end
    
    properties
        % Default weighting coefficients for False Positives and False
        % Negatives
        Alpha = 0.5;
        Beta = 0.5;
    end

    
    methods
        
        function layer = tverskyPixelClassificationLayer(name, alpha, beta)
            % layer =  tverskyPixelClassificationLayer(name, alpha, beta) creates a Tversky
            % pixel classification layer with the specified name and properties alpha and beta.
            
            % Set layer name.          
            layer.Name = name;
            
            layer.Alpha = alpha;
            layer.Beta = beta;
            
            % Set layer description.
            layer.Description = 'Tversky loss';
        end
        
        
        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the Tversky loss between
            % the predictions Y and the training targets T.   

            Pcnot = 1-Y;
            Gcnot = 1-T;
            TP = sum(sum(Y.*T,1),2);
            FP = sum(sum(Y.*Gcnot,1),2);
            FN = sum(sum(Pcnot.*T,1),2); 
            
            numer = TP + layer.Epsilon;
            denom = TP + layer.Alpha*FP + layer.Beta*FN + layer.Epsilon;
            
            % Compute tversky index
            lossTIc = 1 - numer./denom;
            lossTI = sum(lossTIc,3);

8 Computer Vision Examples

8-198



            
            % Return average tversky index loss.
            N = size(Y,4);
            loss = sum(lossTI)/N;
            
        end     
    end
end

GPU Compatibility

The MATLAB functions used in forwardLoss in tverskyPixelClassificationLayer all support
gpuArray inputs, so the layer is GPU compatible.

Check Output Layer Validity

Create an instance of the layer.

layer = tverskyPixelClassificationLayer('tversky',0.7,0.3);

Check the validity of the layer by using checkLayer. Specify the valid input size to be the size of a
single observation of typical input to the layer. The layer expects a H-by-W-by-K-by-N array inputs,
where K is the number of classes, and N is the number of observations in the mini-batch.

numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestOutputLayerWithoutBackward
........
Done nnet.checklayer.TestOutputLayerWithoutBackward
__________

Test Summary:
     8 Passed, 0 Failed, 0 Incomplete, 2 Skipped.
     Time elapsed: 0.55747 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.

Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the tverskyPixelClassificationLayer.

layers = [
    imageInputLayer([32 32 1])
    convolution2dLayer(3,64,'Padding',1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,64,'Padding',1)
    reluLayer
    transposedConv2dLayer(4,64,'Stride',2,'Cropping',1)
    convolution2dLayer(1,2)

 Define Custom Pixel Classification Layer with Tversky Loss

8-199



    softmaxLayer
    tverskyPixelClassificationLayer('tversky',0.3,0.7)];

Load training data for semantic segmentation using imageDatastore and pixelLabelDatastore.

dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');

imds = imageDatastore(imageDir);

classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);

Associate the image and pixel label data by using datastore combine.

ds = combine(imds,pxds);

Set the training options and train the network.

options = trainingOptions('adam', ...
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',100, ...
    'LearnRateDropFactor',5e-1, ...
    'LearnRateDropPeriod',20, ...
    'LearnRateSchedule','piecewise', ...
    'MiniBatchSize',50);

net = trainNetwork(ds,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:01 |       50.32% |       1.2933 |          0.0010 |
|      13 |          50 |       00:00:18 |       98.82% |       0.0986 |          0.0010 |
|      25 |         100 |       00:00:35 |       99.33% |       0.0548 |          0.0005 |
|      38 |         150 |       00:00:53 |       99.37% |       0.0473 |          0.0005 |
|      50 |         200 |       00:01:11 |       99.48% |       0.0399 |          0.0003 |
|      63 |         250 |       00:01:28 |       99.48% |       0.0381 |          0.0001 |
|      75 |         300 |       00:01:45 |       99.54% |       0.0348 |          0.0001 |
|      88 |         350 |       00:02:02 |       99.51% |       0.0350 |      6.2500e-05 |
|     100 |         400 |       00:02:20 |       99.56% |       0.0331 |      6.2500e-05 |
|========================================================================================|
Training finished: Max epochs completed.

Evaluate the trained network by segmenting a test image and displaying the segmentation result.

I = imread('triangleTest.jpg');
[C,scores] = semanticseg(I,net);

B = labeloverlay(I,C);
montage({I,B})

8 Computer Vision Examples

8-200



References

[1] Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. "Tversky loss function for
image segmentation using 3D fully convolutional deep networks." International Workshop on Machine
Learning in Medical Imaging. Springer, Cham, 2017.

See Also
checkLayer | trainingOptions | trainNetwork | pixelLabelDatastore | semanticseg

More About
• “Define Custom Deep Learning Layers” on page 19-9
• “Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
• “Semantic Segmentation Using Deep Learning” on page 8-138

 Define Custom Pixel Classification Layer with Tversky Loss

8-201



Train Object Detector Using R-CNN Deep Learning

This example shows how to train an object detector using deep learning and R-CNN (Regions with
Convolutional Neural Networks).

Overview

This example shows how to train an R-CNN object detector for detecting stop signs. R-CNN is an
object detection framework, which uses a convolutional neural network (CNN) to classify image
regions within an image [1]. Instead of classifying every region using a sliding window, the R-CNN
detector only processes those regions that are likely to contain an object. This greatly reduces the
computational cost incurred when running a CNN.

To illustrate how to train an R-CNN stop sign detector, this example follows the transfer learning
workflow that is commonly used in deep learning applications. In transfer learning, a network trained
on a large collection of images, such as ImageNet [2], is used as the starting point to solve a new
classification or detection task. The advantage of using this approach is that the pretrained network
has already learned a rich set of image features that are applicable to a wide range of images. This
learning is transferable to the new task by fine-tuning the network. A network is fine-tuned by making
small adjustments to the weights such that the feature representations learned for the original task
are slightly adjusted to support the new task.

The advantage of transfer learning is that the number of images required for training and the training
time are reduced. To illustrate these advantages, this example trains a stop sign detector using the
transfer learning workflow. First a CNN is pretrained using the CIFAR-10 data set, which has 50,000
training images. Then this pretrained CNN is fine-tuned for stop sign detection using just 41 training
images. Without pretraining the CNN, training the stop sign detector would require many more
images.

Note: This example requires Computer Vision Toolbox™, Image Processing Toolbox™, Deep Learning
Toolbox™, and Statistics and Machine Learning Toolbox™.

Using a CUDA-capable NVIDIA™ GPU is highly recommended for running this example. Use of a GPU
requires the Parallel Computing Toolbox™. For information about the supported compute capabilities,
see “GPU Computing Requirements” (Parallel Computing Toolbox).

Download CIFAR-10 Image Data

Download the CIFAR-10 data set [3]. This dataset contains 50,000 training images that will be used to
train a CNN.

Download CIFAR-10 data to a temporary directory

cifar10Data = tempdir;

url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';

helperCIFAR10Data.download(url,cifar10Data);

Load the CIFAR-10 training and test data.

[trainingImages,trainingLabels,testImages,testLabels] = helperCIFAR10Data.load(cifar10Data);

Each image is a 32x32 RGB image and there are 50,000 training samples.

8 Computer Vision Examples

8-202



size(trainingImages)

ans = 1×4

          32          32           3       50000

CIFAR-10 has 10 image categories. List the image categories:

numImageCategories = 10;
categories(trainingLabels)

ans = 10×1 cell
    {'airplane'  }
    {'automobile'}
    {'bird'      }
    {'cat'       }
    {'deer'      }
    {'dog'       }
    {'frog'      }
    {'horse'     }
    {'ship'      }
    {'truck'     }

You can display a few of the training images using the following code.

figure
thumbnails = trainingImages(:,:,:,1:100);
montage(thumbnails)

Create A Convolutional Neural Network (CNN)

A CNN is composed of a series of layers, where each layer defines a specific computation. The Deep
Learning Toolbox™ provides functionality to easily design a CNN layer-by-layer. In this example, the
following layers are used to create a CNN:

• imageInputLayer - Image input layer
• convolution2dLayer - 2D convolution layer for Convolutional Neural Networks
• reluLayer - Rectified linear unit (ReLU) layer
• maxPooling2dLayer - Max pooling layer
• fullyConnectedLayer - Fully connected layer
• softmaxLayer - Softmax layer
• classificationLayer - Classification output layer for a neural network

The network defined here is similar to the one described in [4] and starts with an imageInputLayer.
The input layer defines the type and size of data the CNN can process. In this example, the CNN is
used to process CIFAR-10 images, which are 32x32 RGB images:

% Create the image input layer for 32x32x3 CIFAR-10 images.
[height,width,numChannels, ~] = size(trainingImages);

imageSize = [height width numChannels];
inputLayer = imageInputLayer(imageSize)

inputLayer = 
  ImageInputLayer with properties:

 Train Object Detector Using R-CNN Deep Learning

8-203



                      Name: ''
                 InputSize: [32 32 3]
   Hyperparameters
          DataAugmentation: 'none'
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
                      Mean: []

Next, define the middle layers of the network. The middle layers are made up of repeated blocks of
convolutional, ReLU (rectified linear units), and pooling layers. These 3 layers form the core building
blocks of convolutional neural networks. The convolutional layers define sets of filter weights, which
are updated during network training. The ReLU layer adds non-linearity to the network, which allow
the network to approximate non-linear functions that map image pixels to the semantic content of the
image. The pooling layers downsample data as it flows through the network. In a network with lots of
layers, pooling layers should be used sparingly to avoid downsampling the data too early in the
network.

% Convolutional layer parameters
filterSize = [5 5];
numFilters = 32;

middleLayers = [
    
% The first convolutional layer has a bank of 32 5x5x3 filters. A
% symmetric padding of 2 pixels is added to ensure that image borders
% are included in the processing. This is important to avoid
% information at the borders being washed away too early in the
% network.
convolution2dLayer(filterSize,numFilters,'Padding',2)

% Note that the third dimension of the filter can be omitted because it
% is automatically deduced based on the connectivity of the network. In
% this case because this layer follows the image layer, the third
% dimension must be 3 to match the number of channels in the input
% image.

% Next add the ReLU layer:
reluLayer()

% Follow it with a max pooling layer that has a 3x3 spatial pooling area
% and a stride of 2 pixels. This down-samples the data dimensions from
% 32x32 to 15x15.
maxPooling2dLayer(3,'Stride',2)

% Repeat the 3 core layers to complete the middle of the network.
convolution2dLayer(filterSize,numFilters,'Padding',2)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)

convolution2dLayer(filterSize,2 * numFilters,'Padding',2)
reluLayer()
maxPooling2dLayer(3,'Stride',2)

]

middleLayers = 
  9x1 Layer array with layers:

8 Computer Vision Examples

8-204



     1   ''   Convolution   32 5x5 convolutions with stride [1  1] and padding [2  2  2  2]
     2   ''   ReLU          ReLU
     3   ''   Max Pooling   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     4   ''   Convolution   32 5x5 convolutions with stride [1  1] and padding [2  2  2  2]
     5   ''   ReLU          ReLU
     6   ''   Max Pooling   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     7   ''   Convolution   64 5x5 convolutions with stride [1  1] and padding [2  2  2  2]
     8   ''   ReLU          ReLU
     9   ''   Max Pooling   3x3 max pooling with stride [2  2] and padding [0  0  0  0]

A deeper network may be created by repeating these 3 basic layers. However, the number of pooling
layers should be reduced to avoid downsampling the data prematurely. Downsampling early in the
network discards image information that is useful for learning.

The final layers of a CNN are typically composed of fully connected layers and a softmax loss layer.

finalLayers = [
    
% Add a fully connected layer with 64 output neurons. The output size of
% this layer will be an array with a length of 64.
fullyConnectedLayer(64)

% Add an ReLU non-linearity.
reluLayer

% Add the last fully connected layer. At this point, the network must
% produce 10 signals that can be used to measure whether the input image
% belongs to one category or another. This measurement is made using the
% subsequent loss layers.
fullyConnectedLayer(numImageCategories)

% Add the softmax loss layer and classification layer. The final layers use
% the output of the fully connected layer to compute the categorical
% probability distribution over the image classes. During the training
% process, all the network weights are tuned to minimize the loss over this
% categorical distribution.
softmaxLayer
classificationLayer
]

finalLayers = 
  5x1 Layer array with layers:

     1   ''   Fully Connected         64 fully connected layer
     2   ''   ReLU                    ReLU
     3   ''   Fully Connected         10 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Combine the input, middle, and final layers.

layers = [
    inputLayer
    middleLayers
    finalLayers
    ]

 Train Object Detector Using R-CNN Deep Learning

8-205



layers = 
  15x1 Layer array with layers:

     1   ''   Image Input             32x32x3 images with 'zerocenter' normalization
     2   ''   Convolution             32 5x5 convolutions with stride [1  1] and padding [2  2  2  2]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Convolution             32 5x5 convolutions with stride [1  1] and padding [2  2  2  2]
     6   ''   ReLU                    ReLU
     7   ''   Max Pooling             3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     8   ''   Convolution             64 5x5 convolutions with stride [1  1] and padding [2  2  2  2]
     9   ''   ReLU                    ReLU
    10   ''   Max Pooling             3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    11   ''   Fully Connected         64 fully connected layer
    12   ''   ReLU                    ReLU
    13   ''   Fully Connected         10 fully connected layer
    14   ''   Softmax                 softmax
    15   ''   Classification Output   crossentropyex

Initialize the first convolutional layer weights using normally distributed random numbers with
standard deviation of 0.0001. This helps improve the convergence of training.

layers(2).Weights = 0.0001 * randn([filterSize numChannels numFilters]);

Train CNN Using CIFAR-10 Data

Now that the network architecture is defined, it can be trained using the CIFAR-10 training data.
First, set up the network training algorithm using the trainingOptions function. The network
training algorithm uses Stochastic Gradient Descent with Momentum (SGDM) with an initial learning
rate of 0.001. During training, the initial learning rate is reduced every 8 epochs (1 epoch is defined
as one complete pass through the entire training data set). The training algorithm is run for 40
epochs.

Note that the training algorithm uses a mini-batch size of 128 images. If using a GPU for training, this
size may need to be lowered due to memory constraints on the GPU.

% Set the network training options
opts = trainingOptions('sgdm', ...
    'Momentum', 0.9, ...
    'InitialLearnRate', 0.001, ...
    'LearnRateSchedule', 'piecewise', ...
    'LearnRateDropFactor', 0.1, ...
    'LearnRateDropPeriod', 8, ...
    'L2Regularization', 0.004, ...
    'MaxEpochs', 40, ...
    'MiniBatchSize', 128, ...
    'Verbose', true);

Train the network using the trainNetwork function. This is a computationally intensive process that
takes 20-30 minutes to complete. To save time while running this example, a pretrained network is
loaded from disk. If you wish to train the network yourself, set the doTraining variable shown below
to true.

Note that a CUDA-capable NVIDIA™ GPU is highly recommended for training.

% A trained network is loaded from disk to save time when running the
% example. Set this flag to true to train the network.

8 Computer Vision Examples

8-206



doTraining = false;

if doTraining    
    % Train a network.
    cifar10Net = trainNetwork(trainingImages, trainingLabels, layers, opts);
else
    % Load pre-trained detector for the example.
    load('rcnnStopSigns.mat','cifar10Net')       
end

Validate CIFAR-10 Network Training

After the network is trained, it should be validated to ensure that training was successful. First, a
quick visualization of the first convolutional layer's filter weights can help identify any immediate
issues with training.

% Extract the first convolutional layer weights
w = cifar10Net.Layers(2).Weights;

% rescale the weights to the range [0, 1] for better visualization
w = rescale(w);

figure
montage(w)

 Train Object Detector Using R-CNN Deep Learning

8-207



The first layer weights should have some well defined structure. If the weights still look random, then
that is an indication that the network may require additional training. In this case, as shown above,
the first layer filters have learned edge-like features from the CIFAR-10 training data.

To completely validate the training results, use the CIFAR-10 test data to measure the classification
accuracy of the network. A low accuracy score indicates additional training or additional training
data is required. The goal of this example is not necessarily to achieve 100% accuracy on the test set,
but to sufficiently train a network for use in training an object detector.

% Run the network on the test set.
YTest = classify(cifar10Net, testImages);

8 Computer Vision Examples

8-208



% Calculate the accuracy.
accuracy = sum(YTest == testLabels)/numel(testLabels)

accuracy = 0.7456

Further training will improve the accuracy, but that is not necessary for the purpose of training the R-
CNN object detector.

Load Training Data

Now that the network is working well for the CIFAR-10 classification task, the transfer learning
approach can be used to fine-tune the network for stop sign detection.

Start by loading the ground truth data for stop signs.

% Load the ground truth data
data = load('stopSignsAndCars.mat', 'stopSignsAndCars');
stopSignsAndCars = data.stopSignsAndCars;

% Update the path to the image files to match the local file system
visiondata = fullfile(toolboxdir('vision'),'visiondata');
stopSignsAndCars.imageFilename = fullfile(visiondata, stopSignsAndCars.imageFilename);

% Display a summary of the ground truth data
summary(stopSignsAndCars)

Variables:
    imageFilename: 41×1 cell array of character vectors
    stopSign: 41×1 cell
    carRear: 41×1 cell
    carFront: 41×1 cell

The training data is contained within a table that contains the image filename and ROI labels for stop
signs, car fronts, and rears. Each ROI label is a bounding box around objects of interest within an
image. For training the stop sign detector, only the stop sign ROI labels are needed. The ROI labels
for car front and rear must be removed:

% Only keep the image file names and the stop sign ROI labels
stopSigns = stopSignsAndCars(:, {'imageFilename','stopSign'});

% Display one training image and the ground truth bounding boxes
I = imread(stopSigns.imageFilename{1});
I = insertObjectAnnotation(I,'Rectangle',stopSigns.stopSign{1},'stop sign','LineWidth',8);

figure
imshow(I)

 Train Object Detector Using R-CNN Deep Learning

8-209



Note that there are only 41 training images within this data set. Training an R-CNN object detector
from scratch using only 41 images is not practical and would not produce a reliable stop sign
detector. Because the stop sign detector is trained by fine-tuning a network that has been pre-trained
on a larger dataset (CIFAR-10 has 50,000 training images), using a much smaller dataset is feasible.

Train R-CNN Stop Sign Detector

Finally, train the R-CNN object detector using trainRCNNObjectDetector (Computer Vision
Toolbox). The input to this function is the ground truth table which contains labeled stop sign images,
the pre-trained CIFAR-10 network, and the training options. The training function automatically
modifies the original CIFAR-10 network, which classified images into 10 categories, into a network
that can classify images into 2 classes: stop signs and a generic background class.

During training, the input network weights are fine-tuned using image patches extracted from the
ground truth data. The 'PositiveOverlapRange' and 'NegativeOverlapRange' parameters control which
image patches are used for training. Positive training samples are those that overlap with the ground
truth boxes by 0.5 to 1.0, as measured by the bounding box intersection over union metric. Negative
training samples are those that overlap by 0 to 0.3. The best values for these parameters should be
chosen by testing the trained detector on a validation set.

For R-CNN training, the use of a parallel pool of MATLAB workers is highly recommended to
reduce training time. trainRCNNObjectDetector automatically creates and uses a parallel pool
based on your “Computer Vision Toolbox Preferences” (Computer Vision Toolbox). Ensure that the
use of the parallel pool is enabled prior to training.

To save time while running this example, a pretrained network is loaded from disk. If you wish to
train the network yourself, set the doTraining variable shown below to true.

Note that a CUDA-capable NVIDIA™ GPU is highly recommended for training.

8 Computer Vision Examples

8-210



% A trained detector is loaded from disk to save time when running the
% example. Set this flag to true to train the detector.
doTraining = false;

if doTraining
    
    % Set training options
    options = trainingOptions('sgdm', ...
        'MiniBatchSize', 128, ...
        'InitialLearnRate', 1e-3, ...
        'LearnRateSchedule', 'piecewise', ...
        'LearnRateDropFactor', 0.1, ...
        'LearnRateDropPeriod', 100, ...
        'MaxEpochs', 100, ...
        'Verbose', true);
    
    % Train an R-CNN object detector. This will take several minutes.    
    rcnn = trainRCNNObjectDetector(stopSigns, cifar10Net, options, ...
    'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.5 1])
else
    % Load pre-trained network for the example.
    load('rcnnStopSigns.mat','rcnn')       
end

Test R-CNN Stop Sign Detector

The R-CNN object detector can now be used to detect stop signs in images. Try it out on a test image:

% Read test image
testImage = imread('stopSignTest.jpg');

% Detect stop signs
[bboxes,score,label] = detect(rcnn,testImage,'MiniBatchSize',128)

bboxes = 1×4

   419   147    31    20

score = single
    0.9955

label = categorical categorical
     stopSign 

The R-CNN object detect (Computer Vision Toolbox) method returns the object bounding boxes, a
detection score, and a class label for each detection. The labels are useful when detecting multiple
objects, e.g. stop, yield, or speed limit signs. The scores, which range between 0 and 1, indicate the
confidence in the detection and can be used to ignore low scoring detections.

% Display the detection results
[score, idx] = max(score);

bbox = bboxes(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

outputImage = insertObjectAnnotation(testImage, 'rectangle', bbox, annotation);

 Train Object Detector Using R-CNN Deep Learning

8-211



figure
imshow(outputImage)

Debugging Tips

The network used within the R-CNN detector can also be used to process the entire test image. By
directly processing the entire image, which is larger than the network's input size, a 2-D heat-map of
classification scores can be generated. This is a useful debugging tool because it helps identify items
in the image that are confusing the network, and may help provide insight into improving training.

% The trained network is stored within the R-CNN detector
rcnn.Network

ans = 
  SeriesNetwork with properties:

    Layers: [15×1 nnet.cnn.layer.Layer]

Extract the activations from the softmax layer, which is the 14th layer in the network. These are
the classification scores produced by the network as it scans the image.

featureMap = activations(rcnn.Network, testImage, 14);

% The softmax activations are stored in a 3-D array.
size(featureMap)

ans = 1×3

    43    78     2

8 Computer Vision Examples

8-212



The 3rd dimension in featureMap corresponds to the object classes.

rcnn.ClassNames

ans = 2×1 cell
    {'stopSign'  }
    {'Background'}

The stop sign feature map is stored in the first channel.

stopSignMap = featureMap(:, :, 1);

The size of the activations output is smaller than the input image due to the downsampling operations
in the network. To generate a nicer visualization, resize stopSignMap to the size of the input image.
This is a very crude approximation that maps activations to image pixels and should only be used for
illustrative purposes.

% Resize stopSignMap for visualization
[height, width, ~] = size(testImage);
stopSignMap = imresize(stopSignMap, [height, width]);

% Visualize the feature map superimposed on the test image. 
featureMapOnImage = imfuse(testImage, stopSignMap); 

figure
imshow(featureMapOnImage)

The stop sign in the test image corresponds nicely with the largest peak in the network activations.
This helps verify that the CNN used within the R-CNN detector has effectively learned to identify stop

 Train Object Detector Using R-CNN Deep Learning

8-213



signs. Had there been other peaks, this may indicate that the training requires additional negative
data to help prevent false positives. If that's the case, then you can increase 'MaxEpochs' in the
trainingOptions and re-train.

Summary

This example showed how to train an R-CNN stop sign object detector using a network trained with
CIFAR-10 data. Similar steps may be followed to train other object detectors using deep learning.

See Also
rcnnObjectDetector | trainingOptions | trainNetwork | trainRCNNObjectDetector |
fastRCNNObjectDetector | fasterRCNNObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector | classify | detect | activations

More About
• “Object Detection Using Faster R-CNN Deep Learning” on page 8-215
• “Getting Started with Object Detection Using Deep Learning” (Computer Vision Toolbox)

8 Computer Vision Examples

8-214



Object Detection Using Faster R-CNN Deep Learning

This example shows how to train a Faster R-CNN (regions with convolutional neural networks) object
detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several deep learning techniques for object detection exist, including Faster R-CNN and
you only look once (YOLO) v2. This example trains a Faster R-CNN vehicle detector using the
trainFasterRCNNObjectDetector function. For more information, see “Object Detection”
(Computer Vision Toolbox).

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('fasterRCNNResNet50EndToEndVehicleExample.mat','file')
    disp('Downloading pretrained detector (118 MB)...');
    pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResNet50EndToEndVehicleExample.mat';
    websave('fasterRCNNResNet50EndToEndVehicleExample.mat',pretrainedURL);
end

Load Data Set

This example uses a small labeled dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission. Each
image contains one or two labeled instances of a vehicle. A small dataset is useful for exploring the
Faster R-CNN training procedure, but in practice, more labeled images are needed to train a robust
detector. Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

Split the dataset into training, validation, and test sets. Select 60% of the data for training, 10% for
validation, and the rest for testing the trained detector.

rng(0)
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * height(vehicleDataset));

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) );
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

testIdx = validationIdx(end)+1 : length(shuffledIndices);
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

 Object Detection Using Faster R-CNN Deep Learning

8-215



imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(validationDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

8 Computer Vision Examples

8-216



Create Faster R-CNN Detection Network

A Faster R-CNN object detection network is composed of a feature extraction network followed by
two subnetworks. The feature extraction network is typically a pretrained CNN, such as ResNet-50 or
Inception v3. The first subnetwork following the feature extraction network is a region proposal
network (RPN) trained to generate object proposals - areas in the image where objects are likely to
exist. The second subnetwork is trained to predict the actual class of each object proposal.

The feature extraction network is typically a pretrained CNN (for details, see “Pretrained Deep
Neural Networks” on page 1-11). This example uses ResNet-50 for feature extraction. You can also
use other pretrained networks such as MobileNet v2 or ResNet-18, depending on your application
requirements.

Use fasterRCNNLayers to create a Faster R-CNN network automatically given a pretrained feature
extraction network. fasterRCNNLayers requires you to specify several inputs that parameterize a
Faster R-CNN network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size. When choosing the network input size, consider the minimum
size required to run the network itself, the size of the training images, and the computational cost
incurred by processing data at the selected size. When feasible, choose a network input size that is
close to the size of the training image and larger than the input size required for the network. To
reduce the computational cost of running the example, specify a network input size of [224 224 3],
which is the minimum size required to run the network.

inputSize = [224 224 3];

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the
training data. To account for the resizing of the images prior to training, resize the training data for
estimating anchor boxes. Use transform to preprocess the training data, then define the number of
anchor boxes and estimate the anchor boxes.

preprocessedTrainingData = transform(trainingData, @(data)preprocessData(data,inputSize));
numAnchors = 3;
anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData,numAnchors)

anchorBoxes = 3×2

    29    17
    46    39
   136   116

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data”
(Computer Vision Toolbox) (Computer Vision Toolbox™) and “Anchor Boxes for Object Detection”
(Computer Vision Toolbox).

Now, use resnet50 to load a pretrained ResNet-50 model.

featureExtractionNetwork = resnet50;

 Object Detection Using Faster R-CNN Deep Learning

8-217



Select 'activation_40_relu' as the feature extraction layer. This feature extraction layer outputs
feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-
off between spatial resolution and the strength of the extracted features, as features extracted
further down the network encode stronger image features at the cost of spatial resolution. Choosing
the optimal feature extraction layer requires empirical analysis. You can use analyzeNetwork to
find the names of other potential feature extraction layers within a network.

featureLayer = 'activation_40_relu';

Define the number of classes to detect.

numClasses = width(vehicleDataset)-1;

Create the Faster R-CNN object detection network.

lgraph = fasterRCNNLayers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the Faster R-CNN network architecture, use Deep Network Designer
to design the Faster R-CNN detection network manually. For more information, see “Getting Started
with R-CNN, Fast R-CNN, and Faster R-CNN” (Computer Vision Toolbox).

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to test and validation data. Ideally, test
and validation data are representative of the original data and are left unmodified for unbiased
evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read the same image multiple times and display the augmented training data.

augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedTrainingData);
    augmentedData{k} = insertShape(data{1},'rectangle',data{2});
    reset(augmentedTrainingData);
end
figure
montage(augmentedData,'BorderSize',10)

8 Computer Vision Examples

8-218



Preprocess Training Data

Preprocess the augmented training data, and the validation data to prepare for training.

trainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));
validationData = transform(validationData,@(data)preprocessData(data,inputSize));

Read the preprocessed data.

data = read(trainingData);

Display the image and box bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Object Detection Using Faster R-CNN Deep Learning

8-219



Train Faster R-CNN

Use trainingOptions to specify network training options. Set 'ValidationData' to the
preprocessed validation data. Set 'CheckpointPath' to a temporary location. This enables the
saving of partially trained detectors during the training process. If training is interrupted, such as by
a power outage or system failure, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm',...
    'MaxEpochs',10,...
    'MiniBatchSize',2,...
    'InitialLearnRate',1e-3,...
    'CheckpointPath',tempdir,...
    'ValidationData',validationData);

Use trainFasterRCNNObjectDetector to train Faster R-CNN object detector if doTraining is
true. Otherwise, load the pretrained network.

if doTraining
    % Train the Faster R-CNN detector.

8 Computer Vision Examples

8-220



    % * Adjust NegativeOverlapRange and PositiveOverlapRange to ensure
    %   that training samples tightly overlap with ground truth.
    [detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options, ...
        'NegativeOverlapRange',[0 0.3], ...
        'PositiveOverlapRange',[0.6 1]);
else
    % Load pretrained detector for the example.
    pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
    detector = pretrained.detector;
end

This example was verified on an Nvidia(TM) Titan X GPU with 12 GB of memory. Training the network
took approximately 20 minutes. The training time varies depending on the hardware you use.

As a quick check, run the detector on one test image. Make sure you resize the image to the same
size as the training images.

I = imread(testDataTbl.imageFilename{3});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the

 Object Detection Using Faster R-CNN Deep Learning

8-221



detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Apply the same preprocessing transform to the test data as for the training data.

testData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector,testData,'MinibatchSize',4);   

Evaluate the object detector using the average precision metric.

[ap, recall, precision] = evaluateDetectionPrecision(detectionResults,testData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))

8 Computer Vision Examples

8-222



Supporting Functions

function data = augmentData(data)
% Randomly flip images and bounding boxes horizontally.
tform = randomAffine2d('XReflection',true);
sz = size(data{1});
rout = affineOutputView(sz,tform);
data{1} = imwarp(data{1},tform,'OutputView',rout);

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to open this function.
data{2} = helperSanitizeBoxes(data{2});

% Warp boxes.
data{2} = bboxwarp(data{2},tform,rout);
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to open this function.
data{2} = helperSanitizeBoxes(data{2});

% Resize boxes.
data{2} = bboxresize(data{2},scale);
end

References

[1] Ren, S., K. He, R. Gershick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks." IEEE Transactions of Pattern Analysis and Machine Intelligence. Vol. 39,
Issue 6, June 2017, pp. 1137-1149.

[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition. Columbus, OH, June 2014, pp. 580-587.

[3] Girshick, R. "Fast R-CNN." Proceedings of the 2015 IEEE International Conference on Computer
Vision. Santiago, Chile, Dec. 2015, pp. 1440-1448.

[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." European
Conference on Computer Vision. Zurich, Switzerland, Sept. 2014, pp. 391-405.

[5] Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. "Selective Search for
Object Recognition." International Journal of Computer Vision. Vol. 104, Number 2, Sept. 2013, pp.
154-171.

See Also
rcnnObjectDetector | trainingOptions | trainNetwork | trainRCNNObjectDetector |
fastRCNNObjectDetector | fasterRCNNObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector | detect | insertObjectAnnotation |
evaluateDetectionMissRate | evaluateDetectionPrecision

 Object Detection Using Faster R-CNN Deep Learning

8-223



More About
• “Getting Started with Object Detection Using Deep Learning” (Computer Vision Toolbox)

8 Computer Vision Examples

8-224



Perform Instance Segmentation Using Mask R-CNN

This example shows how to segment individual instances of people and cars using a multiclass mask
region-based convolutional neural network (R-CNN).

Instance segmentation is a computer vision technique in which you detect and localize objects while
simultaneously generating a segmentation map for each of the detected instances.

This example first shows how to perform instance segmentation using a pretrained Mask R-CNN that
detects two classes. Then, you can optionally download a data set and train a multiclass Mask R-CNN
using transfer learning.

Perform Instance Segmentation Using Pretrained Mask R-CNN

Specify dataFolder as the desired location of the pretrained network and data.

dataFolder = fullfile(tempdir,"coco");

Download the pretrained Mask R-CNN. The network is stored as a maskrcnn (Computer Vision
Toolbox) object.

trainedMaskRCNN_url = "https://www.mathworks.com/supportfiles/vision/data/maskrcnn_object_person_car_v2.mat";
downloadTrainedMaskRCNN(trainedMaskRCNN_url,dataFolder);
load(fullfile(dataFolder,"maskrcnn_object_person_car_v2.mat"));

Read a test image that contains objects of the target classes.

imTest = imread("visionteam.jpg");

Segment the objects and their masks using the segmentObjects (Computer Vision Toolbox)
function. The segmentObjects function performs these preprocessing steps on the input image
before performing prediction.

1 Zero center the images using the COCO data set mean.
2 Resize the image to the input size of the network, while maintaining the aspect ratio (letter

boxing).

[masks,labels,scores,boxes] = segmentObjects(net,imTest,Threshold=0.98);

Visualize the predictions by overlaying the detected masks on the image using the
insertObjectMask (Computer Vision Toolbox) function.

overlayedImage = insertObjectMask(imTest,masks);
imshow(overlayedImage)

Show the bounding boxes and labels on the objects.

showShape("rectangle",gather(boxes),Label=labels,LineColor="r")

 Perform Instance Segmentation Using Mask R-CNN

8-225



Download Training Data

Create directories to store the COCO training images and annotation data.

imageFolder = fullfile(dataFolder,"images");
captionsFolder = fullfile(dataFolder,"annotations");
if ~exist(imageFolder,"dir")
    mkdir(imageFolder)
    mkdir(captionsFolder)
end

The COCO 2014 training images data set [2] on page 8-229 consists of 82,783 images. The
annotations data contains at least five captions corresponding to each image. Download the COCO
2014 training images and captions from https://cocodataset.org/#download by clicking the "2014
Train images" and "2014 Train/Val annotations" links, respectively. Extract the image files into the
folder specified by imageFolder. Extract the annotation files into the folder specified by
captionsFolder.

annotationFile = fullfile(captionsFolder,"instances_train2014.json");
str = fileread(annotationFile);

Read and Preprocess Training Data

To train a Mask R-CNN, you need this data.

• RGB images that serve as input to the network, specified as H-by-W-by-3 numeric arrays.
• Bounding boxes for objects in the RGB images, specified as NumObjects-by-4 matrices, with rows

in the format [x y w h]).
• Instance labels, specified as NumObjects-by-1 string vectors.
• Instance masks. Each mask is the segmentation of one instance in the image. The COCO data set
specifies object instances using polygon coordinates formatted as NumObjects-by-2 cell arrays.
Each row of the array contains the (x,y) coordinates of a polygon along the boundary of one
instance in the image. However, the Mask R-CNN in this example requires binary masks specified
as logical arrays of size H-by-W-by-NumObjects.

8 Computer Vision Examples

8-226

https://cocodataset.org/#download


Initialize Training Data Parameters
trainClassNames = ["person","car"];
numClasses = length(trainClassNames);
imageSizeTrain = [800 800 3];

Format COCO Annotation Data as MAT Files

The COCO API for MATLAB enables you to access the annotation data. Download the COCO API for
MATLAB from https://github.com/cocodataset/cocoapi by clicking the "Code" button and selecting
"Download ZIP." Extract the cocoapi-master directory and its contents to the folder specified by
dataFolder. If needed for your operating system, compile the gason parser by following the
instructions in the gason.m file within the MatlabAPI subdirectory.

Specify the directory location for the COCO API for MATLAB and add the directory to the path.

cocoAPIDir = fullfile(dataFolder,"cocoapi-master","MatlabAPI");
addpath(cocoAPIDir);

Specify the folder in which to store the MAT files.

unpackAnnotationDir = fullfile(dataFolder,"annotations_unpacked","matFiles");
if ~exist(unpackAnnotationDir,'dir')
    mkdir(unpackAnnotationDir)
end

Extract the COCO annotations to MAT files using the unpackAnnotations helper function, which is
attached to this example as a supporting file. Each MAT file corresponds to a single training image
and contains the file name, bounding boxes, instance labels, and instance masks for each training
image. The function converts object instances specified as polygon coordinates to binary masks using
the poly2mask (Image Processing Toolbox) function.

unpackAnnotations(trainClassNames,annotationFile,imageFolder,unpackAnnotationDir);

Create Datastore

The Mask R-CNN expects input data as a 1-by-4 cell array containing the RGB training image,
bounding boxes, instance labels, and instance masks.

Create a file datastore with a custom read function, cocoAnnotationMATReader, that reads the
content of the unpacked annotation MAT files, converts grayscale training images to RGB, and
returns the data as a 1-by-4 cell array in the required format. The custom read function is attached to
this example as a supporting file.

ds = fileDatastore(unpackAnnotationDir, ...
    ReadFcn=@(x)cocoAnnotationMATReader(x,imageFolder));

Preview the data returned by the transformed datastore.

data = preview(ds)

data=1×4 cell array
    {428×640×3 uint8}    {16×4 double}    {16×1 categorical}    {428×640×16 logical}

Create Mask R-CNN Network Layers

The Mask R-CNN builds upon a Faster R-CNN with a ResNet-50 base network. To transfer learn on
the pretrained Mask R-CNN network, use the maskrcnn object to load the pretrained network and

 Perform Instance Segmentation Using Mask R-CNN

8-227

https://github.com/cocodataset/cocoapi


customize the network for the new set of classes and input size. By default, the maskrcnn object uses
the same anchor boxes as used for training with COCO data set.

net = maskrcnn("resnet50-coco",trainClassNames,InputSize=imageSizeTrain)

net = 
  maskrcnn with properties:

      ModelName: 'maskrcnn'
     ClassNames: {'person'  'car'}
      InputSize: [800 800 3]
    AnchorBoxes: [15×2 double]

If you want to use custom anchor boxes specific to the training data set, you can estimate the anchor
boxes using the estimateAnchorBoxes (Computer Vision Toolbox) function. Then, specify the
anchor boxes using the AnchorBoxes name-value argument when you create the maskrcnn object.

Train Network

Specify the options for SGDM optimization and train the network for 10 epochs.

Specify the ExecutionEnvironment name-value argument as "gpu" to train on a GPU. It is
recommended to train on a GPU with at least 12 GB of available memory. Using a GPU requires
Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU. For more information, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

options = trainingOptions("sgdm", ...
    InitialLearnRate=0.001, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=1, ...
    LearnRateDropFactor=0.95, ...
    Plot="none", ...
    Momentum=0.9, ...
    MaxEpochs=10, ...
    MiniBatchSize=2, ...
    BatchNormalizationStatistics="moving", ...
    ResetInputNormalization=false, ...
    ExecutionEnvironment="gpu", ...
    VerboseFrequency=50);

To train the Mask R-CNN network, set the doTraining variable in the following code to true. Train
the network using the trainMaskRCNN (Computer Vision Toolbox) function. Because the training
data set is similar to the data that the pretrained network is trained on, you can freeze the weights of
the feature extraction backbone using the FreezeSubNetwork name-value argument.

doTraining = true;
if doTraining
    [net,info] = trainMaskRCNN(ds,net,options,FreezeSubNetwork="backbone");
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save("trainedMaskRCNN-"+modelDateTime+".mat","net");
end

Using the trained network, you can perform instance segmentation on test images, such as
demonstrated in the section Perform Instance Segmentation Using Pretrained Mask R-CNN on page
8-225.

8 Computer Vision Examples

8-228



References

[1] He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask R-CNN.” Preprint,
submitted January 24, 2018. https://arxiv.org/abs/1703.06870.

[2] Lin, Tsung-Yi, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. “Microsoft COCO: Common Objects in
Context,” May 1, 2014. https://arxiv.org/abs/1405.0312v3.

See Also
maskrcnn | trainMaskRCNN | segmentObjects | transform | insertObjectMask

More About
• “Getting Started with Mask R-CNN for Instance Segmentation” (Computer Vision Toolbox)
• “Datastores for Deep Learning” on page 20-2

External Websites
• Multiclass Instance Segmentation using Mask R-CNN

 Perform Instance Segmentation Using Mask R-CNN

8-229

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1405.0312v3
https://github.com/matlab-deep-learning/mask-rcnn


Estimate Body Pose Using Deep Learning

This example shows how to estimate the body pose of one or more people using the OpenPose
algorithm and a pretrained network.

The goal of body pose estimation is to identify the location of people in an image and the orientation
of their body parts. When multiple people are present in a scene, pose estimation can be more
difficult because of occlusion, body contact, and proximity of similar body parts.

There are two strategies to estimating body pose. A top-down strategy first identifies individual
people using object detection and then estimates the pose of each person. A bottom-up strategy first
identifies body parts in an image, such as noses and left elbows, and then assembles individuals
based on likely pairings of body parts. The bottom-up strategy is more robust to occlusion and body
contact, but the strategy is more difficult to implement. OpenPose is a multi-person human pose
estimation algorithm that uses a bottom-up strategy [1 on page 8-237].

To identify body parts in an image, OpenPose uses a pretrained neural network that predicts
heatmaps and part affinity fields (PAFs) for body parts in an input image [2 on page 8-237]. Each
heatmap shows the probability that a particular type of body part is located at each pixel in the
image. The PAFs are vector fields that indicate whether two body parts are connected. For each
defined type of body part pairing, such as neck to left shoulder, there are two PAFs that show the x-
and y-component of the vector field between instances of the body parts.

To assemble body parts into individual people, the OpenPose algorithm performs a series of post-
processing operations. The first operation identifies and localized body parts using the heatmaps
returned by the network. Subsequent operations identify actual connections between body parts,
resulting in the individual poses. For more details about the algorithm, see Identify Poses from
Heatmaps and PAFs on page 8-235.

Import the Network

Import a pretrained network from an ONNX file.

dataDir = fullfile(tempdir,'OpenPose');
trainedOpenPoseNet_url = 'https://ssd.mathworks.com/supportfiles/vision/data/human-pose-estimation.zip';
downloadTrainedOpenPoseNet(trainedOpenPoseNet_url,dataDir)

Pretrained OpenPose network already exists.

unzip(fullfile(dataDir,'human-pose-estimation.zip'),dataDir);

Download and install the Deep Learning Toolbox™ Converter for ONNX Model Format support
package.

If Deep Learning Toolbox Converter™ for ONNX Model Format is not installed, then the function
provides a link to the required support package in the Add-On Explorer. To install the support
package, click the link, and then click Install. If the support package is installed, then the
importONNXLayers function returns a LayerGraph object.

modelfile = fullfile(dataDir,'human-pose-estimation.onnx');
layers = importONNXLayers(modelfile,"ImportWeights",true);

Remove the unused output layers.

8 Computer Vision Examples

8-230



layers = removeLayers(layers,layers.OutputNames);
net = dlnetwork(layers);

Predict Heatmaps and PAFs of Test Image

Read and display a test image.

im = imread("visionteam.jpg");
imshow(im)

The network expects image data of data type single in the range [-0.5, 0.5]. Shift and rescale the
data to this range.

netInput = im2single(im)-0.5;

The network expects the color channels in the order blue, green, red. Switch the order of the image
color channels.

netInput = netInput(:,:,[3 2 1]);

Store the image data as a dlarray.

 Estimate Body Pose Using Deep Learning

8-231



netInput = dlarray(netInput,"SSC");

Predict the heatmaps and part affinity fields (PAFs) , which are output from the 2-D output
convolutional layers.

[heatmaps,pafs] = predict(net,netInput);

Get the numeric heatmap data stored in the dlarray. The data has 19 channels. Each channel
corresponds to a heatmap for a unique body part, with one additional heatmap for the background.

heatmaps = extractdata(heatmaps);

Display the heatmaps in a montage, rescaling the data to the range [0, 1] expected of images of data
type single. The scene has six people, and there are six bright spots in each heatmap.

montage(rescale(heatmaps),"BackgroundColor","b","BorderSize",3)

To visualize the correspondence of bright spots with the bodies, display the first heatmap in falsecolor
over the test image.

idx = 1;
hmap = heatmaps(:,:,idx);

8 Computer Vision Examples

8-232



hmap = imresize(hmap,size(im,[1 2]));
imshowpair(hmap,im);

The OpenPose algorithm does not use the background heatmap to determine the location of body
parts. Remove the background heatmap.

heatmaps = heatmaps(:,:,1:end-1);

Get the numeric PAF data stored in the dlarray. The data has 38 channels. There are two channels
for each type of body part pairing, which represent the x- and y-component of the vector field.

pafs = extractdata(pafs);

Display the PAFs in a montage, rescaling the data to the range [0, 1] expected of images of data type
single. The two columns show the x- and y-components of the vector field, respectively. The body
part pairings are in the order determined by the params.PAF_INDEX value.

• Pairs of body parts with a mostly vertical connection have large magnitudes for the y-component
pairings and negligible values for the x-component pairings. One example is the right hip to right
knee connection, which appears in the second row. Note that the PAFs depend on the actual poses

 Estimate Body Pose Using Deep Learning

8-233



in the image. An image with a body in a different orientation, such as lying down, will not
necessarily have a large y-component magnitude for the right hip to right knee connection.

• Pairs of body parts with a mostly horizontal connection have large magnitudes for the x-
component pairings and negligible values for the y-component pairings. One example is the neck
to left shoulder connection, which appears in the seventh row.

• Pairs of body part at an angle have values for both x- and y-components of the vector field. One
example is the neck to left hip, which appears in the first row.

montage(rescale(pafs),"Size",[19 2],"BackgroundColor","b","BorderSize",3)

To visualize the correspondence of the PAFs with the bodies, display the x- and y-component of the
first type of body part pair in falsecolor over the test image.

idx = 1;
impair = horzcat(im,im);
pafpair = horzcat(pafs(:,:,2*idx-1),pafs(:,:,2*idx));
pafpair = imresize(pafpair,size(impair,[1 2]));
imshowpair(pafpair,impair);

8 Computer Vision Examples

8-234



Identify Poses from Heatmaps and PAFs

The post-processing part of the algorithm identifies the individual poses of the people in the image
using the heatmaps and PAFs returned by the neural network.

Get parameters of the OpenPose algorithm using the getBodyPoseParameters helper function. The
function is attached to the example as a supporting file. The function returns a struct with
parameters such as the number of body parts and connections between body part types to consider.
The parameters also include thresholds that you can adjust to improve the performance of the
algorithm.

params = getBodyPoseParameters;

Identify individual people and their poses by using the getBodyPoses helper function. This function
is attached to the example as a supporting file. The helper function performs all post-processing steps
for pose estimation:

1 Detect the precise body part locations from the heatmaps using nonmaximum suppression.

 Estimate Body Pose Using Deep Learning

8-235



2 For each type of body part pairing, generate all possible pairs between detected body parts. For
instance, generate all possible pairs between the six necks and the six left shoulders. The result
is a bipartite graph.

3 Score the pairs by computing the line integral of the straight line connecting the two detected
body parts through the PAF vector field. A large score indicates a strong connection between
detected body parts.

4 Sort the possible pairs by their scores and find the valid pairs. Valid body part pairs are pairs that
connect two body parts that belong to the same person. Typically, pairs with the largest score are
considered first because they are most likely to be a valid pair. However, the algorithm
compensates for occlusion and proximity using additional constraints. For example, the same
person cannot have duplicate pairs of body parts, and one body part cannot belong to two
different people.

5 Knowing which body parts are connected, assemble the body parts into separate poses for each
individual person.

The helper function returns a 3-D matrix. The first dimension represents the number of identified
people in the image. The second dimension represents the number of body part types. The third
dimension indicates the x- and y-coordinates for each body part of each person. If a body part is not
detected in the image, then the coordinates for that part are [NaN NaN].

poses = getBodyPoses(heatmaps,pafs,params);

Display the body poses using the renderBodyPoses helper function. This function is attached to the
example as a supporting file.

renderBodyPoses(im,poses,size(heatmaps,1),size(heatmaps,2),params);

8 Computer Vision Examples

8-236



References

[1] Cao, Zhe, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. “OpenPose: Realtime
Multi-Person 2D Pose Estimation Using Part Affinity Fields.” ArXiv:1812.08008 [Cs], May 30, 2019.
https://arxiv.org/abs/1812.08008.

[2] Osokin, Daniil. “Real-Time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose.”
ArXiv:1811.12004 [Cs], November 29, 2018. https://arxiv.org/abs/1811.12004.

See Also
importONNXLayers | dlnetwork | predict

 Estimate Body Pose Using Deep Learning

8-237

https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/1811.12004


Generate Image from Segmentation Map Using Deep Learning

This example shows how to generate a synthetic image of a scene from a semantic segmentation map
using a pix2pixHD conditional generative adversarial network (CGAN).

Pix2pixHD [1 on page 8-251] consists of two networks that are trained simultaneously to maximize
the performance of both.

1 The generator is an encoder-decoder style neural network that generates a scene image from a
semantic segmentation map. A CGAN network trains the generator to generate a scene image
that the discriminator misclassifies as real.

2 The discriminator is a fully convolutional neural network that compares a generated scene image
and the corresponding real image and attempts to classify them as fake and real, respectively. A
CGAN network trains the discriminator to correctly distinguish between generated and real
image.

The generator and discriminator networks compete against each other during training. The training
converges when neither network can improve further.

Download CamVid Data Set

This example uses the CamVid data set [2 on page 8-251] from the University of Cambridge for
training. This data set is a collection of 701 images containing street-level views obtained while
driving. The data set provides pixel labels for 32 semantic classes including car, pedestrian, and road.

Download the CamVid data set from these URLs. The download time depends on your internet
connection.

imageURL = "http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip";
labelURL = "http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip";

dataDir = fullfile(tempdir,"CamVid"); 
downloadCamVidData(dataDir,imageURL,labelURL);
imgDir = fullfile(dataDir,"images","701_StillsRaw_full");
labelDir = fullfile(dataDir,"labels");

Preprocess Training Data

Create an imageDatastore to store the images in the CamVid data set.

imds = imageDatastore(imgDir);
imageSize = [576 768];

Define the class names and pixel label IDs of the 32 classes in the CamVid data set using the helper
function defineCamVid32ClassesAndPixelLabelIDs. Get a standard colormap for the CamVid
data set using the helper function camvid32ColorMap. The helper functions are attached to the
example as supporting files.

numClasses = 32;
[classes,labelIDs] = defineCamVid32ClassesAndPixelLabelIDs;
cmap = camvid32ColorMap;

Create a pixelLabelDatastore (Computer Vision Toolbox) to store the pixel label images.

pxds = pixelLabelDatastore(labelDir,classes,labelIDs);

8 Computer Vision Examples

8-238

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/


Preview a pixel label image and the corresponding ground truth scene image. Convert the labels from
categorical labels to RGB colors by using the label2rgb (Image Processing Toolbox) function, then
display the pixel label image and ground truth image in a montage.

im = preview(imds);
px = preview(pxds);
px = label2rgb(px,cmap);
montage({px,im})

Partition the data into training and test sets using the helper function
partitionCamVidForPix2PixHD. This function is attached to the example as a supporting file. The
helper function splits the data into 648 training files and 32 test files.

[imdsTrain,imdsTest,pxdsTrain,pxdsTest] = partitionCamVidForPix2PixHD(imds,pxds,classes,labelIDs);

Use the combine function to combine the pixel label images and ground truth scene images into a
single datastore.

dsTrain = combine(pxdsTrain,imdsTrain);

Augment the training data by using the transform function with custom preprocessing operations
specified by the helper function preprocessCamVidForPix2PixHD. This helper function is attached
to the example as a supporting file.

The preprocessCamVidForPix2PixHD function performs these operations:

1 Scale the ground truth data to the range [-1, 1]. This range matches the range of the final
tanhLayer in the generator network.

2 Resize the image and labels to the output size of the network, 576-by-768 pixels, using bicubic
and nearest neighbor downsampling, respectively.

3 Convert the single channel segmentation map to a 32-channel one-hot encoded segmentation
map using the onehotencode function.

4 Randomly flip image and pixel label pairs in the horizontal direction.

dsTrain = transform(dsTrain,@(x) preprocessCamVidForPix2PixHD(x,imageSize));

 Generate Image from Segmentation Map Using Deep Learning

8-239



Preview the channels of a one-hot encoded segmentation map in a montage. Each channel represents
a one-hot map corresponding to pixels of a unique class.

map = preview(dsTrain);
montage(map{1},"Size",[4 8],"Bordersize",5,"BackgroundColor","b")

Create Generator Network

Define a pix2pixHD generator network that generates a scene image from a depth-wise one-hot
encoded segmentation map. This input has same height and width as the original segmentation map
and the same number of channels as classes.

generatorInputSize = [imageSize numClasses];

Create the pix2pixHD generator network using the pix2pixHDGlobalGenerator (Image
Processing Toolbox) function.

dlnetGenerator = pix2pixHDGlobalGenerator(generatorInputSize);

Display the network architecture.

analyzeNetwork(dlnetGenerator)

Note that this example shows the use of pix2pixHD global generator for generating images of size
576-by-768 pixels. To create local enhancer networks that generate images at higher resolution such
as 1152-by-1536 pixels or even higher, you can use the addPix2PixHDLocalEnhancer (Image
Processing Toolbox) function. The local enhancer networks help generate fine level details at very
high resolutions.

Create Discriminator Network

Define the patch GAN discriminator networks that classifies an input image as either real (1) or fake
(0). This example uses two discriminator networks at different input scales, also known as multiscale
discriminators. The first scale is the same size as the image size, and the second scale is half the size
of image size.

8 Computer Vision Examples

8-240



The input to the discriminator is the depth-wise concatenation of the one-hot encoded segmentation
maps and the scene image to be classified. Specify the number of channels input to the discriminator
as the total number of labeled classes and image color channels.

numImageChannels = 3;
numChannelsDiscriminator = numClasses + numImageChannels;

Specify the input size of the first discriminator. Create the patch GAN discriminator with instance
normalization using the patchGANDiscriminator (Image Processing Toolbox) function.

discriminatorInputSizeScale1 = [imageSize numChannelsDiscriminator];
dlnetDiscriminatorScale1 = patchGANDiscriminator(discriminatorInputSizeScale1,NormalizationLayer="instance");

Specify the input size of the second discriminator as half the image size, then create the second patch
GAN discriminator.

discriminatorInputSizeScale2 = [floor(imageSize)./2 numChannelsDiscriminator];
dlnetDiscriminatorScale2 = patchGANDiscriminator(discriminatorInputSizeScale2,NormalizationLayer="instance");

Visualize the networks.

analyzeNetwork(dlnetDiscriminatorScale1);
analyzeNetwork(dlnetDiscriminatorScale2);

Define Model Gradients and Loss Functions

The helper function modelGradients calculates the gradients and adversarial loss for the generator
and discriminator. The function also calculates the feature matching loss and VGG loss for the
generator. This function is defined in Supporting Functions on page 8-248 section of this example.

Generator Loss

The objective of the generator is to generate images that the discriminator classifies as real (1). The
generator loss consists of three losses.

• The adversarial loss is computed as the squared difference between a vector of ones and the
discriminator predictions on the generated image. Ygenerated are discriminator predictions on the
image generated by the generator. This loss is implemented using part of the
pix2pixhdAdversarialLoss helper function defined in the Supporting Functions on page 8-
248 section of this example.

lossAdversarialGenerator = (1− Ygenerated)2

• The feature matching loss penalises the L1 distance between the real and generated feature maps
obtained as predictions from the discriminator network. T is total number of discriminator feature
layers. Yreal and Ygenerated are the ground truth images and generated images, respectively. This
loss is implemented using the pix2pixhdFeatureMatchingLoss helper function defined in the
Supporting Functions on page 8-248 section of this example

lossFeatureMatching = ∑
i = 1

T
| |Yreal− Ygenerated | |1

• The perceptual loss penalises the L1 distance between real and generated feature maps obtained
as predictions from a feature extraction network. T is total number of feature layers. YVggReal and

 Generate Image from Segmentation Map Using Deep Learning

8-241



YVggGenerated are network predictions for ground truth images and generated images, respectively.
This loss is implemented using the pix2pixhdVggLoss helper function defined in the Supporting
Functions on page 8-248 section of this example. The feature extraction network is created in
Load Feature Extraction Network on page 8-242.

lossVgg = ∑
i = 1

T
| |YVggReal− YVggGenerated | |1

The overall generator loss is a weighted sum of all three losses. λ1, λ2, and λ3 are the weight factors
for adversarial loss, feature matching loss, and perceptual loss, respectively.

lossGenerator = λ1 * lossAdversarialGenerator + λ2 * lossFeatureMatching + λ3 * lossPerceptual

Note that the adversarial loss and feature matching loss for the generator are computed for two
different scales.

Discriminator Loss

The objective of the discriminator is to correctly distinguish between ground truth images and
generated images. The discriminator loss is a sum of two components:

• The squared difference between a vector of ones and the predictions of the discriminator on real
images

• The squared difference between a vector of zeros and the predictions of the discriminator on
generated images

lossDiscriminator = (1− Yreal)2 + (0− Ygenerated)2

The discriminator loss is implemented using part of the pix2pixhdAdversarialLoss helper
function defined in the Supporting Functions on page 8-248 section of this example. Note that
adversarial loss for the discriminator is computed for two different discriminator scales.

Load Feature Extraction Network

This example modifies a pretrained VGG-19 deep neural network to extract the features of the real
and generated images at various layers. These multilayer features are used to compute the
perceptual loss of the generator.

To get a pretrained VGG-19 network, install vgg19. If you do not have the required support packages
installed, then the software provides a download link.

netVGG = vgg19;

Visualize the network architecture using the Deep Network Designer app.

deepNetworkDesigner(netVGG)

To make the VGG-19 network suitable for feature extraction, keep the layers up to "pool5" and
remove all of the fully connected layers from the network. The resulting network is a fully
convolutional network.

netVGG = layerGraph(netVGG.Layers(1:38));

8 Computer Vision Examples

8-242



Create a new image input layer with no normalization. Replace the original image input layer with
the new layer.

inp = imageInputLayer([imageSize 3],Normalization="None",Name="Input");
netVGG = replaceLayer(netVGG,"input",inp);
netVGG = dlnetwork(netVGG);

Specify Training Options

Specify the options for Adam optimization. Train for 60 epochs. Specify identical options for the
generator and discriminator networks.

• Specify an equal learning rate of 0.0002.
• Initialize the trailing average gradient and trailing average gradient-square decay rates with [].
• Use a gradient decay factor of 0.5 and a squared gradient decay factor of 0.999.
• Use a mini-batch size of 1 for training.

numEpochs = 60;
learningRate = 0.0002;
trailingAvgGenerator = [];
trailingAvgSqGenerator = [];
trailingAvgDiscriminatorScale1 = [];
trailingAvgSqDiscriminatorScale1 = [];
trailingAvgDiscriminatorScale2 = [];
trailingAvgSqDiscriminatorScale2 = [];
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;
miniBatchSize = 1;

Create a minibatchqueue object that manages the mini-batching of observations in a custom
training loop. The minibatchqueue object also casts data to a dlarray object that enables auto
differentiation in deep learning applications.

Specify the mini-batch data extraction format as SSCB (spatial, spatial, channel, batch). Set the
DispatchInBackground name-value pair argument as the boolean returned by canUseGPU. If a
supported GPU is available for computation, then the minibatchqueue object preprocesses mini-
batches in the background in a parallel pool during training.

mbqTrain = minibatchqueue(dsTrain,MiniBatchSiz=miniBatchSize, ...
   MiniBatchFormat="SSCB",DispatchInBackground=canUseGPU);

Train the Network

By default, the example downloads a pretrained version of the pix2pixHD generator network for the
CamVid data set by using the helper function downloadTrainedPix2PixHDNet. The helper function
is attached to the example as a supporting file. The pretrained network enables you to run the entire
example without waiting for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the model in
a custom training loop. For each iteration:

• Read the data for current mini-batch using the next function.
• Evaluate the model gradients using the dlfeval function and the modelGradients helper

function.

 Generate Image from Segmentation Map Using Deep Learning

8-243



• Update the network parameters using the adamupdate function.
• Update the training progress plot for every iteration and display various computed losses.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

Training takes about 22 hours on an NVIDIA™ Titan RTX and can take even longer depending on your
GPU hardware. If your GPU device has less memory, try reducing the size of the input images by
specifying the imageSize variable as [480 640] in the Preprocess Training Data on page 8-238
section of the example.

doTraining = false;
if doTraining
    fig = figure;    
    
    lossPlotter = configureTrainingProgressPlotter(fig);
    iteration = 0;

    % Loop over epochs
    for epoch = 1:numEpochs
        
        % Reset and shuffle the data
        reset(mbqTrain);
        shuffle(mbqTrain);
 
        % Loop over each image
        while hasdata(mbqTrain)
            iteration = iteration + 1;
            
            % Read data from current mini-batch
            [dlInputSegMap,dlRealImage] = next(mbqTrain);
            
            % Evaluate the model gradients and the generator state using
            % dlfeval and the GANLoss function listed at the end of the
            % example
            [gradParamsG,gradParamsDScale1,gradParamsDScale2,lossGGAN,lossGFM,lossGVGG,lossD] = dlfeval( ...
                @modelGradients,dlInputSegMap,dlRealImage,dlnetGenerator,dlnetDiscriminatorScale1,dlnetDiscriminatorScale2,netVGG);
            
            % Update the generator parameters
            [dlnetGenerator,trailingAvgGenerator,trailingAvgSqGenerator] = adamupdate( ...
                dlnetGenerator,gradParamsG, ...
                trailingAvgGenerator,trailingAvgSqGenerator,iteration, ...
                learningRate,gradientDecayFactor,squaredGradientDecayFactor);
            
            % Update the discriminator scale1 parameters
            [dlnetDiscriminatorScale1,trailingAvgDiscriminatorScale1,trailingAvgSqDiscriminatorScale1] = adamupdate( ...
                dlnetDiscriminatorScale1,gradParamsDScale1, ...
                trailingAvgDiscriminatorScale1,trailingAvgSqDiscriminatorScale1,iteration, ...
                learningRate,gradientDecayFactor,squaredGradientDecayFactor);
            
            % Update the discriminator scale2 parameters
            [dlnetDiscriminatorScale2,trailingAvgDiscriminatorScale2,trailingAvgSqDiscriminatorScale2] = adamupdate( ...
                dlnetDiscriminatorScale2,gradParamsDScale2, ...
                trailingAvgDiscriminatorScale2,trailingAvgSqDiscriminatorScale2,iteration, ...
                learningRate,gradientDecayFactor,squaredGradientDecayFactor);
            

8 Computer Vision Examples

8-244



            % Plot and display various losses
            lossPlotter = updateTrainingProgressPlotter(lossPlotter,iteration, ...
                epoch,numEpochs,lossD,lossGGAN,lossGFM,lossGVGG);
        end
    end
    save("trainedPix2PixHDNet.mat","dlnetGenerator");
    
else    
    trainedPix2PixHDNet_url = "https://ssd.mathworks.com/supportfiles/vision/data/trainedPix2PixHDv2.zip";
    netDir = fullfile(tempdir,"CamVid");
    downloadTrainedPix2PixHDNet(trainedPix2PixHDNet_url,netDir);
    load(fullfile(netDir,"trainedPix2PixHDv2.mat"));
end

Evaluate Generated Images from Test Data

The performance of this trained Pix2PixHD network is limited because the number of CamVid
training images is relatively small. Additionally, some images belong to an image sequence and
therefore are correlated with other images in the training set. To improve the effectiveness of the
Pix2PixHD network, train the network using a different data set that has a larger number of training
images without correlation.

Because of the limitations, this Pix2PixHD network generates more realistic images for some test
images than for others. To demonstrate the difference in results, compare the generated images for
the first and third test image. The camera angle of the first test image has an uncommon vantage
point that faces more perpendicular to the road than the typical training image. In contrast, the
camera angle of the third test image has a typical vantage point that faces along the road and shows
two lanes with lane markers. The network has significantly better performance generating a realistic
image for the third test image than for the first test image.

Get the first ground truth scene image from the test data. Resize the image using bicubic
interpolation.

idxToTest = 1;
gtImage = readimage(imdsTest,idxToTest);
gtImage = imresize(gtImage,imageSize,"bicubic");

Get the corresponding pixel label image from the test data. Resize the pixel label image using nearest
neighbor interpolation.

segMap = readimage(pxdsTest,idxToTest);
segMap = imresize(segMap,imageSize,"nearest");

Convert the pixel label image to a multichannel one-hot segmentation map by using the
onehotencode function.

segMapOneHot = onehotencode(segMap,3,"single");

Create dlarray objects that inputs data to the generator. If a supported GPU is available for
computation, then perform inference on a GPU by converting the data to a gpuArray object.

dlSegMap = dlarray(segMapOneHot,"SSCB"); 
if canUseGPU
    dlSegMap = gpuArray(dlSegMap);
end

 Generate Image from Segmentation Map Using Deep Learning

8-245



Generate a scene image from the generator and one-hot segmentation map using the predict
function.

dlGeneratedImage = predict(dlnetGenerator,dlSegMap);
generatedImage = extractdata(gather(dlGeneratedImage));

The final layer of the generator network produces activations in the range [-1, 1]. For display, rescale
the activations to the range [0, 1].

generatedImage = rescale(generatedImage);

For display, convert the labels from categorical labels to RGB colors by using the label2rgb (Image
Processing Toolbox) function.

coloredSegMap = label2rgb(segMap,cmap);

Display the RGB pixel label image, generated scene image, and ground truth scene image in a
montage.

figure
montage({coloredSegMap generatedImage gtImage},Size=[1 3])
title("Test Pixel Label Image " + idxToTest + " with Generated and Ground Truth Scene Images")

Get the third ground truth scene image from the test data. Resize the image using bicubic
interpolation.

idxToTest = 3;  
gtImage = readimage(imdsTest,idxToTest);
gtImage = imresize(gtImage,imageSize,"bicubic");

To get the third pixel label image from the test data and to generate the corresponding scene image,
you can use the helper function evaluatePix2PixHD. This helper function is attached to the
example as a supporting file.

The evaluatePix2PixHD function performs the same operations as the evaluation of the first test
image:

• Get a pixel label image from the test data. Resize the pixel label image using nearest neighbor
interpolation.

• Convert the pixel label image to a multichannel one-hot segmentation map using the
onehotencode function.

8 Computer Vision Examples

8-246



• Create a dlarray object to input data to the generator. For GPU inference, convert the data to a
gpuArray object.

• Generate a scene image from the generator and one-hot segmentation map using the predict
function.

• Rescale the activations to the range [0, 1].

[generatedImage,segMap] = evaluatePix2PixHD(pxdsTest,idxToTest,imageSize,dlnetGenerator);

For display, convert the labels from categorical labels to RGB colors by using the label2rgb (Image
Processing Toolbox) function.

coloredSegMap = label2rgb(segMap,cmap);

Display the RGB pixel label image, generated scene image, and ground truth scene image in a
montage.

figure
montage({coloredSegMap generatedImage gtImage},Size=[1 3])
title("Test Pixel Label Image " + idxToTest + " with Generated and Ground Truth Scene Images")

Evaluate Generated Images from Custom Pixel Label Images

To evaluate how well the network generalizes to pixel label images outside the CamVid data set,
generate scene images from custom pixel label images. This example uses pixel label images that
were created using the Image Labeler (Computer Vision Toolbox) app. The pixel label images are
attached to the example as supporting files. No ground truth images are available.

Create a pixel label datastore that reads and processes the pixel label images in the current example
directory.

cpxds = pixelLabelDatastore(pwd,classes,labelIDs);

For each pixel label image in the datastore, generate a scene image using the helper function
evaluatePix2PixHD.

for idx = 1:length(cpxds.Files)

    % Get the pixel label image and generated scene image
    [generatedImage,segMap] = evaluatePix2PixHD(cpxds,idx,imageSize,dlnetGenerator);
    
    % For display, convert the labels from categorical labels to RGB colors
    coloredSegMap = label2rgb(segMap);

 Generate Image from Segmentation Map Using Deep Learning

8-247



    
    % Display the pixel label image and generated scene image in a montage
    figure
    montage({coloredSegMap generatedImage})
    title("Custom Pixel Label Image " + num2str(idx) + " and Generated Scene Image")

end

Supporting Functions

Model Gradients Function

The modelGradients helper function calculates the gradients and adversarial loss for the generator
and discriminator. The function also calculates the feature matching loss and VGG loss for the
generator.

8 Computer Vision Examples

8-248



function [gradParamsG,gradParamsDScale1,gradParamsDScale2,lossGGAN,lossGFM,lossGVGG,lossD] = modelGradients(inputSegMap,realImage,generator,discriminatorScale1,discriminatorScale2,netVGG)
              
    % Compute the image generated by the generator given the input semantic
    % map.
    generatedImage = forward(generator,inputSegMap);
    
    % Define the loss weights
    lambdaDiscriminator = 1;
    lambdaGenerator = 1;
    lambdaFeatureMatching = 5;
    lambdaVGG = 5;
    
    % Concatenate the image to be classified and the semantic map
    inpDiscriminatorReal = cat(3,inputSegMap,realImage);
    inpDiscriminatorGenerated = cat(3,inputSegMap,generatedImage);
    
    % Compute the adversarial loss for the discriminator and the generator
    % for first scale.
    [DLossScale1,GLossScale1,realPredScale1D,fakePredScale1G] = pix2pixHDAdverserialLoss(inpDiscriminatorReal,inpDiscriminatorGenerated,discriminatorScale1);
    
    % Scale the generated image, the real image, and the input semantic map to
    % half size
    resizedRealImage = dlresize(realImage,Scale=0.5,Method="linear");
    resizedGeneratedImage = dlresize(generatedImage,Scale=0.5,Method="linear");
    resizedinputSegMap = dlresize(inputSegMap,Scale=0.5,Method="nearest");
    
    % Concatenate the image to be classified and the semantic map
    inpDiscriminatorReal = cat(3,resizedinputSegMap,resizedRealImage);
    inpDiscriminatorGenerated = cat(3,resizedinputSegMap,resizedGeneratedImage);
    
    % Compute the adversarial loss for the discriminator and the generator
    % for second scale.
    [DLossScale2,GLossScale2,realPredScale2D,fakePredScale2G] = pix2pixHDAdverserialLoss(inpDiscriminatorReal,inpDiscriminatorGenerated,discriminatorScale2);
    
    % Compute the feature matching loss for first scale.
    FMLossScale1 = pix2pixHDFeatureMatchingLoss(realPredScale1D,fakePredScale1G);
    FMLossScale1 = FMLossScale1 * lambdaFeatureMatching;
    
    % Compute the feature matching loss for second scale.
    FMLossScale2 = pix2pixHDFeatureMatchingLoss(realPredScale2D,fakePredScale2G);
    FMLossScale2 = FMLossScale2 * lambdaFeatureMatching;
    
    % Compute the VGG loss
    VGGLoss = pix2pixHDVGGLoss(realImage,generatedImage,netVGG);
    VGGLoss = VGGLoss * lambdaVGG;
    
    % Compute the combined generator loss
    lossGCombined = GLossScale1 + GLossScale2 + FMLossScale1 + FMLossScale2 + VGGLoss;
    lossGCombined = lossGCombined * lambdaGenerator;
    
    % Compute gradients for the generator
    gradParamsG = dlgradient(lossGCombined,generator.Learnables,RetainData=true);
    
    % Compute the combined discriminator loss
    lossDCombined = (DLossScale1 + DLossScale2)/2 * lambdaDiscriminator;
    
    % Compute gradients for the discriminator scale1
    gradParamsDScale1 = dlgradient(lossDCombined,discriminatorScale1.Learnables,RetainData=true);

 Generate Image from Segmentation Map Using Deep Learning

8-249



    
    % Compute gradients for the discriminator scale2
    gradParamsDScale2 = dlgradient(lossDCombined,discriminatorScale2.Learnables);
    
    % Log the values for displaying later
    lossD = gather(extractdata(lossDCombined));
    lossGGAN = gather(extractdata(GLossScale1 + GLossScale2));
    lossGFM  = gather(extractdata(FMLossScale1 + FMLossScale2));
    lossGVGG = gather(extractdata(VGGLoss));
end

Adversarial Loss Function

The helper function pix2pixHDAdverserialLoss computes the adversarial loss gradients for the
generator and the discriminator. The function also returns feature maps of the real image and
synthetic images.

function [DLoss,GLoss,realPredFtrsD,genPredFtrsD] = pix2pixHDAdverserialLoss(inpReal,inpGenerated,discriminator)

    % Discriminator layer names containing feature maps
    featureNames = {"act_top","act_mid_1","act_mid_2","act_tail","conv2d_final"};
    
    % Get the feature maps for the real image from the discriminator    
    realPredFtrsD = cell(size(featureNames));
    [realPredFtrsD{:}] = forward(discriminator,inpReal,Outputs=featureNames);
    
    % Get the feature maps for the generated image from the discriminator    
    genPredFtrsD = cell(size(featureNames));
    [genPredFtrsD{:}] = forward(discriminator,inpGenerated,Outputs=featureNames);
    
    % Get the feature map from the final layer to compute the loss
    realPredD = realPredFtrsD{end};
    genPredD = genPredFtrsD{end};
    
    % Compute the discriminator loss
    DLoss = (1 - realPredD).^2 + (genPredD).^2;
    DLoss = mean(DLoss,"all");
    
    % Compute the generator loss
    GLoss = (1 - genPredD).^2;
    GLoss = mean(GLoss,"all");
end

Feature Matching Loss Function

The helper function pix2pixHDFeatureMatchingLoss computes the feature matching loss
between a real image and a synthetic image generated by the generator.

function featureMatchingLoss = pix2pixHDFeatureMatchingLoss(realPredFtrs,genPredFtrs)

    % Number of features
    numFtrsMaps = numel(realPredFtrs);
    
    % Initialize the feature matching loss
    featureMatchingLoss = 0;
    
    for i = 1:numFtrsMaps
        % Get the feature maps of the real image

8 Computer Vision Examples

8-250



        a = extractdata(realPredFtrs{i});
        % Get the feature maps of the synthetic image
        b = genPredFtrs{i};
        
        % Compute the feature matching loss
        featureMatchingLoss = featureMatchingLoss + mean(abs(a - b),"all");
    end
end

Perceptual VGG Loss Function

The helper function pix2pixHDVGGLoss computes the perceptual VGG loss between a real image
and a synthetic image generated by the generator.

function vggLoss = pix2pixHDVGGLoss(realImage,generatedImage,netVGG)

    featureWeights = [1.0/32 1.0/16 1.0/8 1.0/4 1.0];
    
    % Initialize the VGG loss
    vggLoss = 0;
    
    % Specify the names of the layers with desired feature maps
    featureNames = ["relu1_1","relu2_1","relu3_1","relu4_1","relu5_1"];
    
    % Extract the feature maps for the real image
    activReal = cell(size(featureNames));
    [activReal{:}] = forward(netVGG,realImage,Outputs=featureNames);
    
    % Extract the feature maps for the synthetic image
    activGenerated = cell(size(featureNames));
    [activGenerated{:}] = forward(netVGG,generatedImage,Outputs=featureNames);
    
    % Compute the VGG loss
    for i = 1:numel(featureNames)
        vggLoss = vggLoss + featureWeights(i)*mean(abs(activReal{i} - activGenerated{i}),"all");
    end
end

References

[1] Wang, Ting-Chun, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-
Resolution Image Synthesis and Semantic Manipulation with Conditional GANs." In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 8798–8807, 2018. https://doi.org/10.1109/
CVPR.2018.00917.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object Classes in Video: A
High-Definition Ground Truth Database." Pattern Recognition Letters. Vol. 30, Issue 2, 2009, pp
88-97.

See Also
vgg19 | imageDatastore | pixelLabelDatastore | trainNetwork | transform | combine |
minibatchqueue | adamupdate | predict | dlfeval

More About
• “Preprocess Images for Deep Learning” on page 20-16

 Generate Image from Segmentation Map Using Deep Learning

8-251



• “Datastores for Deep Learning” on page 20-2
• “List of Deep Learning Layers” on page 1-43
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)

8 Computer Vision Examples

8-252



Classify Defects on Wafer Maps Using Deep Learning

This example shows how to classify eight types of manufacturing defects on wafer maps using a
simple convolutional neural network (CNN).

Wafers are thin disks of semiconducting material, typically silicon, that serve as the foundation for
integrated circuits. Each wafer yields several individual circuits (ICs), separated into dies. Automated
inspection machines test the performance of ICs on the wafer. The machines produce images, called
wafer maps, that indicate which dies perform correctly (pass) and which dies do not meet
performance standards (fail).

The spatial pattern of the passing and failing dies on a wafer map can indicate specific issues in the
manufacturing process. Deep learning approaches can efficiently classify the defect pattern on a
large number of wafers. Therefore, by using deep learning, you can quickly identify manufacturing
issues, enabling prompt repair of the manufacturing process and reducing waste.

This example shows how to train a classification network that detects and classifies eight types of
manufacturing defect patterns. The example also shows how to evaluate the performance of the
network.

Download WM-811K Wafer Defect Map Data

This example uses the WM-811K Wafer Defect Map data set [1 on page 8-267] [2 on page 8-267]. The
data set consists of 811,457 wafer maps images, including 172,950 labeled images. Each image has
only three pixel values. The value 0 indicates the background, the value 1 represents correctly
behaving dies, and the value 2 represents defective dies. The labeled images have one of nine labels
based on the spatial pattern of the defective dies. The size of the data set is 3.5 GB.

Set dataDir as the desired location of the data set. Download the data set using the
downloadWaferMapData helper function. This function is attached to the example as a supporting
file.

dataDir = fullfile(tempdir,"WaferDefects");
downloadWaferMapData(dataDir)

Preprocess and Augment Data

The data is stored in a MAT file as an array of structures. Load the data set into the workspace.

dataMatFile = fullfile(dataDir,"MIR-WM811K","MATLAB","WM811K.mat");
waferData = load(dataMatFile);
waferData = waferData.data;

Explore the data by displaying the first element of the structure. The waferMap field contains the
image data. The failureType field contains the label of the defect.

disp(waferData(1))

          waferMap: [45×48 uint8]
           dieSize: 1683
           lotName: 'lot1'
        waferIndex: 1
    trainTestLabel: 'Training'
       failureType: 'none'

 Classify Defects on Wafer Maps Using Deep Learning

8-253



Reformat Data

This example uses only labeled images. Remove the unlabeled images from the structure.

unlabeledImages = zeros(size(waferData),"logical");
for idx = 1:size(unlabeledImages,1)
    unlabeledImages(idx) = isempty(waferData(idx).trainTestLabel);
end
waferData(unlabeledImages) = [];

The dieSize, lotName, and waferIndex fields are not relevant to the classification of the images.
The example partitions data into training, validation, and test sets using a different convention than
specified by trainTestLabel field. Remove these fields from the structure using the rmfield
function.

fieldsToRemove = ["dieSize","lotName","waferIndex","trainTestLabel"];
waferData = rmfield(waferData,fieldsToRemove);

Specify the image classes.

defectClasses = ["Center","Donut","Edge-Loc","Edge-Ring","Loc","Near-full","Random","Scratch","none"];
numClasses = numel(defectClasses);

To apply additional preprocessing operations on the data, such as resizing the image to match the
network input size or applying random train the network for classification, you can use an augmented
image datastore. You cannot create an augmented image datastore from data in a structure, but you
can create the datastore from data in a table. Convert the data into a table with two variables:

• WaferImage - Wafer defect map images
• FailureType - Categorical label for each image

waferData = struct2table(waferData);
waferData.Properties.VariableNames = ["WaferImage","FailureType"];
waferData.FailureType = categorical(waferData.FailureType,defectClasses);

Display a sample image from each input image class using the displaySampleWaferMaps helper
function. This function is attached to the example as a supporting file.

displaySampleWaferMaps(waferData)

8 Computer Vision Examples

8-254



Balance Data By Oversampling

Display the number of images of each class. The data set is heavily unbalanced, with significantly
fewer images of each defect class than the number of images without defects.

summary(waferData.FailureType)

     Center           4294 
     Donut             555 
     Edge-Loc         5189 
     Edge-Ring        9680 
     Loc              3593 
     Near-full         149 
     Random            866 
     Scratch          1193 
     none           147431 

To improve the class balancing, oversample the defect classes using the
oversampleWaferDefectClasses helper function. This function is attached to the example as a
supporting file. The helper function appends the data set with five modified copies of each defect
image. Each copy has one of these modifications: horizontal reflection, vertical reflection, or rotation
by a multiple of 90 degrees.

waferData = oversampleWaferDefectClasses(waferData);

 Classify Defects on Wafer Maps Using Deep Learning

8-255



Display the number of images of each class after class balancing.

summary(waferData.FailureType)

     Center          25764 
     Donut            3330 
     Edge-Loc        31134 
     Edge-Ring       58080 
     Loc             21558 
     Near-full         894 
     Random           5196 
     Scratch          7158 
     none           147431 

Partition Data into Training, Validation, and Test Sets

Split the oversampled data set into training, validation, and test sets using the splitlabels
(Computer Vision Toolbox) function. Approximately 90% of the data is used for training, 5% is used
for validation, and 5% is used for testing.

labelIdx = splitlabels(waferData,[0.9 0.05 0.05],"randomized",TableVariable="FailureType");
trainingData = waferData(labelIdx{1},:);
validationData = waferData(labelIdx{2},:);
testingData = waferData(labelIdx{3},:);

Augment Training Data

Specify a set of random augmentations to apply to the training data using an imageDataAugmenter
object. Adding random augmentations to the training images can avoid the network from overfitting
to the training data.

aug = imageDataAugmenter(FillValue=0,RandXReflection=true,RandYReflection=true,RandRotation=[0 360]);

Specify the input size for the network. Create an augmentedImageDatastore that reads the
training data, resizes the data to the network input size, and applies random augmentations.

inputSize = [48 48];
dsTrain = augmentedImageDatastore(inputSize,trainingData,"FailureType",DataAugmentation=aug);

Create datastores that read validation and test data and resize the data to the network input size. You
do not need to apply random augmentations to validation or test data.

dsVal = augmentedImageDatastore(inputSize,validationData,"FailureType");
dsVal.MiniBatchSize = 64;
dsTest = augmentedImageDatastore(inputSize,testingData,"FailureType");

Create Network

Define the convolutional neural network architecture. The range of the image input layer reflects the
fact that the wafer maps have only three levels.

layers = [
    imageInputLayer([inputSize 1], ...
        Normalization="rescale-zero-one",Min=0,Max=2);
    
    convolution2dLayer(3,8,Padding="same")
    batchNormalizationLayer
    reluLayer

8 Computer Vision Examples

8-256



    
    maxPooling2dLayer(2,Stride=2) 

    convolution2dLayer(3,16,Padding="same") 
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,Stride=2) 
    
    convolution2dLayer(3,32,Padding="same") 
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2,Stride=2) 
    
    convolution2dLayer(3,64,Padding="same") 
    batchNormalizationLayer
    reluLayer
    
    dropoutLayer

    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify Training Options

Specify the training options for Adam optimization. Train the network for 30 epochs.

options = trainingOptions("adam", ...
    ResetInputNormalization=true, ... 
    MaxEpochs=30, ...
    InitialLearnRate=0.001, ...
    L2Regularization=0.001, ...
    MiniBatchSize=64, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    Plots="training-progress", ...
    ValidationData=dsVal, ...
    ValidationFrequency=20);

Train Network or Download Pretrained Network

By default, the example loads a pretrained wafer defect classification network. The pretrained
network enables you to run the entire example without waiting for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the model
using the trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

doTraining = ;
if doTraining
    trainedNet = trainNetwork(dsTrain,layers,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));

 Classify Defects on Wafer Maps Using Deep Learning

8-257



    save(fullfile(dataDir,"trained-WM811K-"+modelDateTime+".mat"),"trainedNet");

else
    downloadTrainedWaferNet(dataDir);
    trainedNet = load(fullfile(dataDir,"CNN-WM811K.mat"));
    trainedNet = trainedNet.preTrainedNetwork;
end

Quantify Network Performance on Test Data

Classify each of test image using the classify function.

defectPredicted = classify(trainedNet,dsTest);

Calculate the performance of the network compared to the ground truth classifications as a confusion
matrix using the confusionmat function. Visualize the confusion matrix using the confusionchart
function. The values across the diagonal of this matrix indicate correct classifications. The confusion
matrix for a perfect classifier has values only on the diagonal.

defectTruth = testingData.FailureType;

cmTest = confusionmat(defectTruth,defectPredicted);
figure
confusionchart(cmTest,categories(defectTruth),Normalization="row-normalized", ...
    Title="Test Data Confusion Matrix");

8 Computer Vision Examples

8-258



Precision, Recall, and F1 Scores

This example evaluates the network performance using several metrics: precision, recall, and F1
scores. These metrics are defined for a binary classification. To overcome the limitation for this
multiclass problem, you can consider the prediction as a set of binary classifications, one for each
class.

Precision is the proportion of images that are correctly predicted to belong to a class. Given the count
of true positive (TP) and false positive (FP) classifications, you can calculate precision as:

precision = TP
TP + FP

Recall is the proportion of images belonging to a specific class that were predicted to belong the
class. Given the count of TP and false negative (FN) classifications, you can calculate recall as:

recall = TP
TP + FN

F1 scores are the harmonic mean of the precision and recall values:

F1 = 2 * precision * recall
precision + recall

For each class, calculate the precision, recall, and F1 score using the counts of TP, FP, and FN results
available in the confusion matrix.

prTable = table(Size=[numClasses 3],VariableTypes=["cell","cell","double"], ...
    VariableNames=["Recall","Precision","F1"],RowNames=defectClasses);

for idx = 1:numClasses
    numTP = cmTest(idx,idx);
    numFP = sum(cmTest(:,idx)) - numTP;
    numFN = sum(cmTest(idx,:),2) - numTP;

    precision = numTP / (numTP + numFP);
    recall = numTP / (numTP + numFN);

    defectClass = defectClasses(idx);
    prTable.Recall{defectClass} = recall;
    prTable.Precision{defectClass} = precision;
    prTable.F1(defectClass) = 2*precision*recall/(precision + recall);
end

Display the metrics for each class. Scores closer to 1 indicate better network performance.

prTable

prTable=9×3 table
                   Recall      Precision       F1   
                 __________    __________    _______

    Center       {[0.9169]}    {[0.9578]}    0.93693
    Donut        {[0.8193]}    {[0.9067]}    0.86076
    Edge-Loc     {[0.7900]}    {[0.8384]}    0.81349
    Edge-Ring    {[0.9859]}    {[0.9060]}    0.94426
    Loc          {[0.6642]}    {[0.8775]}    0.75607

 Classify Defects on Wafer Maps Using Deep Learning

8-259



    Near-full    {[0.7556]}    {[     1]}    0.86076
    Random       {[0.9692]}    {[0.7683]}    0.85714
    Scratch      {[0.4609]}    {[0.8639]}    0.60109
    none         {[0.9696]}    {[0.9345]}    0.95173

Precision-Recall Curves and Area-Under-Curve (AUC)

In addition to returning a classification of each test image, the network can also predict the
probability that a test image is each of the defect classes. In this case, precision-recall curves provide
an alternative way to evaluate the network performance.

To calculate precision-recall curves, start by performing a binary classification for each defect class
by comparing the probability against an arbitrary threshold. When the probability exceeds the
threshold, you can assign the image to the target class. The choice of threshold impacts the number
of TP, FP, and FN results and the precision and recall scores. To evaluate the network performance,
you must consider the performance at a range of thresholds. Precision-recall curves plot the tradeoff
between precision and recall values as you adjust the threshold for the binary classification. The AUC
metric summarizes the precision-recall curve for a class as a single number in the range [0, 1], where
1 indicates a perfect classification regardless of threshold.

Calculate the probability that each test image belongs to each of the defect classes using the
predict function.

defectProbabilities = predict(trainedNet,dsTest);

Use the rocmetrics function to calculate the precision, recall, and AUC for each class over a range
of thresholds. Plot the precision-recall curves.

roc = rocmetrics(defectTruth,defectProbabilities,defectClasses,AdditionalMetrics="prec");
figure
plot(roc,XAxisMetric="reca",YAxisMetric="prec");
xlabel("Recall")
ylabel("Precision")
grid on
title("Precision-Recall Curves for All Classes")

8 Computer Vision Examples

8-260



The precision-recall curve for an ideal classifier passes through the point (1, 1). The classes that have
precision-recall curves that tend towards (1, 1), such as Edge-Ring and Center, are the classes for
which the network has the best performance. The network has the worst performance for the
Scratch class.

Compute and display the AUC values of the precision/recall curves for each class.

prAUC = zeros(numClasses, 1);
for idx = 1:numClasses
    defectClass = defectClasses(idx);
    currClassIdx = strcmpi(roc.Metrics.ClassName, defectClass);
    reca = roc.Metrics.TruePositiveRate(currClassIdx);
    prec = roc.Metrics.PositivePredictiveValue(currClassIdx);
    prAUC(idx) = trapz(reca(2:end),prec(2:end)); % prec(1) is always NaN
end
prTable.AUC = prAUC;
prTable

prTable=9×4 table
                   Recall      Precision       F1         AUC  
                 __________    __________    _______    _______

    Center       {[0.9169]}    {[0.9578]}    0.93693    0.97314
    Donut        {[0.8193]}    {[0.9067]}    0.86076    0.89514
    Edge-Loc     {[0.7900]}    {[0.8384]}    0.81349    0.88453

 Classify Defects on Wafer Maps Using Deep Learning

8-261



    Edge-Ring    {[0.9859]}    {[0.9060]}    0.94426    0.73498
    Loc          {[0.6642]}    {[0.8775]}    0.75607    0.82643
    Near-full    {[0.7556]}    {[     1]}    0.86076    0.79863
    Random       {[0.9692]}    {[0.7683]}    0.85714    0.95798
    Scratch      {[0.4609]}    {[0.8639]}    0.60109    0.65661
    none         {[0.9696]}    {[0.9345]}    0.95173    0.99031

Visualize Network Decisions Using GradCAM

Gradient-weighted class activation mapping (Grad-CAM) produces a visual explanation of decisions
made by the network. You can use the gradCAM function to identify parts of the image that most
influenced the network prediction.

Donut Defect Class

The Donut defect is characterized by an image having defective pixels clustered in a concentric circle
around the center of the die. Most images of the Donut defect class do not have defective pixels
around the edge of the die.

These two images both show data with the Donut defect. The network correctly classified the image
on the left as a Donut defect. The network misclassified the image on the right as an Edge-Ring
defect. The images have a color overlay that corresponds to the output of the gradCAM function. The
regions of the image that most influenced the network classification appear with bright colors on the
overlay. For the image classified as an Edge-Ring defect, the defects at the boundary at the die were
treated as important. A possible reason for this could be there are far more Edge-Ring images in the
training set as compared to Donut images.

8 Computer Vision Examples

8-262



 Classify Defects on Wafer Maps Using Deep Learning

8-263



Loc Defect Class

The Loc defect is characterized by an image having defective pixels clustered in a blob away from the
edges of the die. These two images both show data with the Loc defect. The network correctly
classified the image on the left as a Loc defect. The network misclassified the image on the right and
classified the defect as an Edge-Loc defect. For the image classified as an Edge-Loc defect, the
defects at the boundary at the die are most influential in the network prediction. The Edge-Loc
defect differs from the Loc defect primarily in the location of the cluster of defects.

8 Computer Vision Examples

8-264



 Classify Defects on Wafer Maps Using Deep Learning

8-265



Compare Correct Classifications and Misclassifications

You can explore other instances of correctly classified and misclassified images. Specify a class to
evaluate.

defectClass = ;

Find the index of all images with the specified defect type as the ground truth or predicted label.

idxTrue = find(testingData.FailureType == defectClass);
idxPred = find(defectPredicted == defectClass);

Find the indices of correctly classified images. Then, select one of the images to evaluate. By default,
this example evaluates the first correctly classified image.

idxCorrect = intersect(idxTrue,idxPred);

idxToEvaluateCorrect = ;
imCorrect = testingData.WaferImage{idxCorrect(idxToEvaluateCorrect)};

Find the indices of misclassified images. Then, select one of the images to evaluate and get the
predicted class of that image. By default, this example evaluates the first misclassified image.

idxIncorrect = setdiff(idxTrue,idxPred);

idxToEvaluateIncorrect = ;
imIncorrect = testingData.WaferImage{idxIncorrect(idxToEvaluateIncorrect)};
labelIncorrect = defectPredicted(idxIncorrect(idxToEvaluateIncorrect));

Resize the test images to match the input size of the network.

imCorrect = imresize(imCorrect,inputSize);
imIncorrect = imresize(imIncorrect,inputSize);

Generate the score maps using the gradCAM function.

scoreCorrect = gradCAM(trainedNet,imCorrect,defectClass);
scoreIncorrect = gradCAM(trainedNet,imIncorrect,labelIncorrect);

Display the score maps over the original wafer maps using the displayWaferScoreMap helper
function. This function is attached to the example as a supporting file.

figure
tiledlayout(1,2)
t = nexttile;
displayWaferScoreMap(imCorrect,scoreCorrect,t)
title("Correct Classification ("+defectClass+")")
t = nexttile;
displayWaferScoreMap(imIncorrect,scoreIncorrect,t)
title("Misclassification ("+string(labelIncorrect)+")")

8 Computer Vision Examples

8-266



References

[1] Wu, Ming-Ju, Jyh-Shing R. Jang, and Jui-Long Chen. “Wafer Map Failure Pattern Recognition and
Similarity Ranking for Large-Scale Data Sets.” IEEE Transactions on Semiconductor Manufacturing
28, no. 1 (February 2015): 1–12. https://doi.org/10.1109/TSM.2014.2364237.

[2] Jang, Roger. "MIR Corpora." http://mirlab.org/dataset/public/.

[3] Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization.” In 2017 IEEE International Conference on Computer Vision (ICCV), 618–26. Venice:
IEEE, 2017. https://doi.org/10.1109/ICCV.2017.74.

[4] T., Bex. “Comprehensive Guide on Multiclass Classification Metrics.” October 14, 2021. https://
towardsdatascience.com/comprehensive-guide-on-multiclass-classification-metrics-af94cfb83fbd.

See Also
trainingOptions | trainNetwork | augmentedImageDatastore | imageDataAugmenter |
imageDatastore | classify | predict | confusionmat | confusionchart

 Classify Defects on Wafer Maps Using Deep Learning

8-267

https://doi.org/10.1109/TSM.2014.2364237
https://doi.org/10.1109/ICCV.2017.74


Related Examples
• “Detect Image Anomalies Using Explainable FCDD Network” on page 8-275
• “Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings” on page 8-288

More About
• “Datastores for Deep Learning” on page 20-2
• “Preprocess Images for Deep Learning” on page 20-16
• “List of Deep Learning Layers” on page 1-43

8 Computer Vision Examples

8-268



Detect Defects on Printed Circuit Boards Using YOLO v4
Network

This example shows how to detect, localize, and classify defects in printed circuit boards (PCBs) using
a you only look once version 4 (YOLO v4) deep neural network.

PCBs contain individual electronic devices and their connections. Defects in PCBs can result in poor
performance or product failures. By detecting defects in PCBs, production lines can remove faulty
PCBs and ensure that electronic devices are of high quality.

Download Pretrained YOLOv4 Detector

By default, this example downloads a pretrained version of the YOLOv4 object detector using the
helper function downloadTrainedNetwork. The helper function is attached to this example as a
supporting file. You can use the pretrained network to run the entire example without waiting for
training to complete.

trainedPCBDefectDetectorNet_url = "https://ssd.mathworks.com/supportfiles/"+ ...
    "vision/data/trainedPCBDefectDetectorYOLOv4.zip";
downloadTrainedNetwork(trainedPCBDefectDetectorNet_url,pwd);
load("trainedPCBDefectDetectorYOLOv4.mat");

List the classes that this network is trained to classify.

classNamesStr = ["missing hole","mouse bite","open circuit", ...
    "short","spur","spurious copper"];

Download PCB Defect Data Set

This example uses the PCB defect data set [1 on page 8-274] [2 on page 8-274]. The data set contains
1,386 images of PCB elements with synthesized defects. The data has six types of defect: missing
hole, mouse bite, open circuit, short, spur, and spurious copper. Each image contains multiple defects
of the same category in different locations. The data set contains bounding box and coordinate
information for every defect in every image. The size of the data set is 1.87 GB.

Specify dataDir as the desired location of the data set. Download the data set using the
downloadPCBDefectData helper function. This function is attached to the example as a supporting
file.

dataDir = fullfile(tempdir,"PCBDefects");
downloadPCBDefectData(dataDir)

Perform Object Detection

Read a sample image from the data set.

sampleImage = imread(fullfile(dataDir,"PCB-DATASET-master","images", ...
    "Missing_hole","01_missing_hole_01.jpg"));

Predict the bounding boxes, labels, and class-specific confidence scores for each bounding box by
using the detect (Computer Vision Toolbox) function.

[bboxes,scores,labels] = detect(detector,sampleImage);

Display the results.

 Detect Defects on Printed Circuit Boards Using YOLO v4 Network

8-269



imshow(sampleImage)
showShape("rectangle",bboxes,Label=labels);
title("Predicted Defects")

Prepare Data for Training

Create an image datastore that reads and manages the image data.

imageDir = fullfile(dataDir,"PCB-DATASET-master","images");
imds = imageDatastore(imageDir,FileExtensions=".jpg",IncludeSubfolders=true);

Create a file datastore that reads the annotation data from XML files. Specify a custom read function
that parses the XML files and extracts the bounding box information. The custom read function,
readPCBDefectAnnotations, is attached to the example as a supporting file.

annoDir = fullfile(dataDir,"PCB-DATASET-master","Annotations");
fds = fileDatastore(annoDir,ReadFcn=@readPCBDefectAnnotations, ...
    FileExtensions=".xml",IncludeSubfolders=true);

Save the labeled bounding box data as a box label datastore.

annotations = readall(fds);
tbl = struct2table(vertcat(annotations{:}));
blds = boxLabelDatastore(tbl);

Get the names of the object classes as a categorial vector.

classNames = categories(blds.LabelData{1,2})

classNames = 6×1 cell
    {'missing_hole'   }
    {'mouse_bite'     }

8 Computer Vision Examples

8-270



    {'open_circuit'   }
    {'short'          }
    {'spur'           }
    {'spurious_copper'}

Combine the image and box label datastores.

ds = combine(imds,blds);

Analyze Object Class Distribution

Measure the distribution of class labels in the data set by using the countEachLabel (Computer
Vision Toolbox) function. The classes in this data set are balanced.

countEachLabel(blds)

ans=6×3 table
         Label         Count    ImageCount
    _______________    _____    __________

    missing_hole        497        115    
    mouse_bite          492        115    
    open_circuit        482        116    
    short               491        116    
    spur                488        115    
    spurious_copper     503        116    

Partition Data

Split the data set into training, validation, and test sets. Because the total number of images is
relatively small, allocate a relatively large percentage (80%) of the data for training. Allocate 10% for
validation and the rest for testing.

numImages = ds.numpartitions;
numTrain = floor(0.8*numImages);
numVal = floor(0.1*numImages);

shuffledIndices = randperm(numImages);
dsTrain = subset(ds,shuffledIndices(1:numTrain));
dsVal = subset(ds,shuffledIndices(numTrain+1:numTrain+numVal));
dsTest = subset(ds,shuffledIndices(numTrain+numVal+1:end));

Preprocess Training Data

Specify the network input size.

inputSize = [800 960 3];

Resize the training data by using the transform function with custom resizing operations specified
by the preprocessPCBDefectData helper function. The helper function is attached to the example
as a supporting file. The preprocessPCBDefectData helper function resizes the images and the
bounding boxes to the size of the network input.

dsTrain = transform(dsTrain,@(data)preprocessPCBDefectData(data,inputSize));

 Detect Defects on Printed Circuit Boards Using YOLO v4 Network

8-271



Estimate Anchor Boxes

Estimate ten anchor boxes based on the size of objects in the preprocessed training data by using the
estimateAnchorBoxes (Computer Vision Toolbox) function. This example uses a YOLO v4 deep
learning network with two output feature maps, so split the anchor boxes into two sets with five
anchor boxes each.

anchorBoxes = estimateAnchorBoxes(dsTrain,10);
anchorBoxes = {anchorBoxes(1:5,:); anchorBoxes(6:end,:)};

Augment Training Data

Augment the training data by using the transform function with custom preprocessing operations
specified by the augmentDataForPCBDefectDetection helper function. The helper function is
attached to the example as a supporting file. The augmentDataForPCBDefectDetection function
applies these augmentations to the input data:

• Random horizontal flip
• Resizing by a random scale factor in the range [1, 1.1]

dsTrain = transform(dsTrain,@augmentDataForPCBDefectDetection);

Create YOLO v4 Object Detector Network

Create the YOLO v4 object detector by using the yolov4ObjectDetector (Computer Vision
Toolbox) function. Specify the name of the pretrained YOLO v4 detection network trained on COCO
data set [3 on page 8-274]. Specify the class names, the estimated anchor boxes, and the network
input size.

detectorToTrain = yolov4ObjectDetector("tiny-yolov4-coco",classNames,anchorBoxes, ...
    InputSize=inputSize);

Specify Training Options

Specify network training options using the trainingOptions function. Train the object detector
using the Adam solver for 500 epochs. Specify the ValidationData name-value argument as the
validation data.

options = trainingOptions("adam", ...
    MiniBatchSize=32, ...
    MaxEpochs=500, ...
    BatchNormalizationStatistics="moving", ...
    Shuffle="every-epoch", ...
    VerboseFrequency=250, ...
    ValidationFrequency=250, ...
    CheckpointPath=dataDir, ...
    ValidationData=dsVal, ...
    ResetInputNormalization=false, ...
    DispatchInBackground=true);

Train Detector

To train the detector, set the doTraining variable in the following code to true. Train the detector
by using the trainYOLOv4ObjectDetector (Computer Vision Toolbox) function.

8 Computer Vision Examples

8-272



Train on one or more GPUs, if available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 24 hours on an NVIDIA Titan RTX™ with 24 GB of memory.

doTraining = ;
if doTraining       
    [detector,info] = trainYOLOv4ObjectDetector(dsTrain,detectorToTrain,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(tempdir+filesep+"trainedPCBDefectDetector-"+modelDateTime+".mat", ...
        "detector");
end

Evaluate Detector

Evaluate the trained object detector by measuring the average precision. Precision quantifies the
ability of the detector to correctly classify objects.

Detect the bounding boxes for all test images.

detectionResults = detect(detector,dsTest);

Calculate the average precision score for each class by using the evaluateDetectionPrecision
(Computer Vision Toolbox) function. Also calculate the recall and precision values from each detected
defect. Recall quantifies the ability of the detector to detect all relevant objects for a class.

[averagePrecision,recall,precision] = evaluateDetectionPrecision(detectionResults,dsTest);

Display the average precision score for each class.

table(classNames,averagePrecision)

ans=6×2 table
        classNames         averagePrecision
    ___________________    ________________

    {'missing_hole'   }        0.93464     
    {'mouse_bite'     }        0.75237     
    {'open_circuit'   }        0.85178     
    {'short'          }        0.97002     
    {'spur'           }        0.96218     
    {'spurious_copper'}        0.83631     

A precision/recall (PR) curve highlights how the precision of a detector at varying levels of recall. The
ideal precision is 1 at all recall levels. Plot the PR curve for the test data.

class = ;
plot(recall{class},precision{class})
title("Average Precision for '"+classNamesStr(class)+ ...
    "' Defect: "+num2str(averagePrecision(class),"%0.2f"))
xlabel("Recall")
ylabel("Precision")
grid on

 Detect Defects on Printed Circuit Boards Using YOLO v4 Network

8-273



References

[1] Huang, Weibo, and Peng Wei. "A PCB Dataset for Defects Detection and Classification." arXiv,
January 23, 2019. https://arxiv.org/abs/1901.08204.

[2] PCB-DATASET. Accessed December 20, 2022. https://github.com/Ironbrotherstyle/PCB-DATASET.

[3] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed and
Accuracy of Object Detection.” arXiv, April 22, 2020. https://arxiv.org/abs/2004.10934.

See Also
yolov4ObjectDetector | trainYOLOv4ObjectDetector | detect |
evaluateDetectionPrecision | trainingOptions | transform

More About
• “Getting Started with YOLO v4” (Computer Vision Toolbox)
• “Anchor Boxes for Object Detection” (Computer Vision Toolbox)
• “Deep Learning in MATLAB” on page 1-2
• “Pretrained Deep Neural Networks” on page 1-11

8 Computer Vision Examples

8-274

https://arxiv.org/abs/1901.08204
https://github.com/Ironbrotherstyle/PCB-DATASET
https://arxiv.org/abs/2004.10934


Detect Image Anomalies Using Explainable FCDD Network

This example shows how to detect defects on pill images using a one-class fully convolutional data
description (FCDD) anomaly detection network.

A crucial goal of anomaly detection is for a human observer to be able to understand why a trained
network classifies images as anomalies. FCDD enables explainable classification, which supplements
the class prediction with information that justifies how the neural network reached its classification
decision [1 on page 8-287]. The FCDD network returns a heatmap with the probability that each pixel
is anomalous. The classifier labels images as normal or anomalous based on the mean value of the
anomaly score heatmap.

Download Pill Images for Classification Data Set

This example uses the PillQC data set. The data set contains images from three classes: normal
images without defects, chip images with chip defects in the pills, and dirt images with dirt
contamination. The data set provides 149 normal images, 43 chip images, and 138 dirt images.
The size of the data set is 3.57 MB.

Set dataDir as the desired location of the data set. Download the data set using the
downloadPillQCData helper function. This function is attached to the example as a supporting file.
The function downloads a ZIP file and extracts the data into the subdirectories chip, dirt, and
normal.

dataDir = fullfile(tempdir,"PillDefects");
downloadPillQCData(dataDir)

This image shows an example image from each class. A normal pill with no defects is on the left, a pill
contaminated with dirt is in the middle, and a pill with a chip defect is on the right. While the images
in this data set contain instances of shadows, focus blurring, and background color variation, the
approach used in this example is robust to these image acquisition artifacts.

 Detect Image Anomalies Using Explainable FCDD Network

8-275



Load and Preprocess Data

Create an imageDatastore that reads and manages the image data. Label each image as chip,
dirt, or normal according to the name of its directory.

imageDir = fullfile(dataDir,"pillQC-main","images");
imds = imageDatastore(imageDir,IncludeSubfolders=true,LabelSource="foldernames");

Partition Data into Training, Calibration, and Test Sets

Create training, calibration, and test sets using the splitAnomalyData (Computer Vision Toolbox)
function. This example implements an FCDD approach that uses outlier exposure, in which the
training data consists primarily of normal images with the addition of a small number of anomalous
images. Despite training primarily on samples only of normal scenes, the model learns how to
distinguish between normal and anomalous scenes.

Allocate 50% of the normal images and a small percentage (5%) of each anomaly class in the training
data set. Allocate 10% of the normal images and 20% of each anomaly class to the calibration set.
Allocate the remaining images to the test set.

normalTrainRatio  = 0.5;
anomalyTrainRatio = 0.05;
normalCalRatio  = 0.10;
anomalyCalRatio = 0.20;
normalTestRatio  = 1 - (normalTrainRatio + normalCalRatio);
anomalyTestRatio = 1 - (anomalyTrainRatio + anomalyCalRatio);

anomalyClasses = ["chip","dirt"];
[imdsTrain,imdsCal,imdsTest] = splitAnomalyData(imds,anomalyClasses, ...
    NormalLabelsRatio=[normalTrainRatio normalCalRatio normalTestRatio], ...
    AnomalyLabelsRatio=[anomalyTrainRatio anomalyCalRatio anomalyTestRatio]);

Splitting anomaly dataset
-------------------------
* Finalizing... Done.
* Number of files and proportions per class in all the datasets:

                     Input                  Train                Validation                Test        
              NumFiles     Ratio     NumFiles     Ratio      NumFiles     Ratio     NumFiles     Ratio 
              ___________________    ____________________    ___________________    ___________________

    chip         43        0.1303        2        0.02381        9       0.17647       32        0.1641

8 Computer Vision Examples

8-276



    dirt        138       0.41818        7       0.083333       28       0.54902      103       0.52821
    normal      149       0.45152       75        0.89286       14       0.27451       60       0.30769

Further split the training data into two datastores, one containing only normal data and another
containing only anomaly data.

[imdsNormalTrain,imdsAnomalyTrain] = splitAnomalyData(imdsTrain,anomalyClasses, ...
    NormalLabelsRatio=[1 0 0],AnomalyLabelsRatio=[0 1 0],Verbose=false);

Augment Training Data

Augment the training data by using the transform function with custom preprocessing operations
specified by the helper function augmentDataForPillAnomalyDetector. The helper function is
attached to the example as supporting files.

The augmentDataForPillAnomalyDetector function randomly applies 90 degree rotation and
horizontal and vertical reflection to each input image.

imdsNormalTrain = transform(imdsNormalTrain,@augmentDataForPillAnomalyDetector);
imdsAnomalyTrain = transform(imdsAnomalyTrain,@augmentDataForPillAnomalyDetector);

Add binary labels to the calibration and test data sets by using the transform function with the
operations specified by the addLabelData helper function. The helper function is defined at the end
of this example, and assigns images in the normal class a binary label 0 and images in the chip or
dirt classes a binary label 1.

dsCal = transform(imdsCal,@addLabelData,IncludeInfo=true);
dsTest = transform(imdsTest,@addLabelData,IncludeInfo=true);

Visualize a sample of nine augmented training images.

exampleData = readall(subset(imdsNormalTrain,1:9));
montage(exampleData(:,1));

 Detect Image Anomalies Using Explainable FCDD Network

8-277



Create FCDD Model

This example uses a fully convolutional data description (FCDD) model [1 on page 8-287]. The basic
idea of FCDD is to train a network to produce an anomaly score map that describes the probability
that each region in the input image contains anomaly content.

The pretrainedEncoderNetwork (Image Processing Toolbox) function returns the first three
downsampling stages of an ImageNet pretrained Inception-v3 network for use as a pretrained
backbone.

backbone = pretrainedEncoderNetwork("inceptionv3",3);

8 Computer Vision Examples

8-278



Create an FCDD anomaly detector network by using the fcddAnomalyDetector (Computer Vision
Toolbox) function with the Inception-v3 backbone.

net = fcddAnomalyDetector(backbone);

Train Network or Download Pretrained Network

By default, this example downloads a pretrained version of the FCDD anomaly detector using the
helper function downloadTrainedNetwork. The helper function is attached to this example as a
supporting file. You can use the pretrained network to run the entire example without waiting for
training to complete.

To train the network, set the doTraining variable in the following code to true. Specify the number
of epochs to use for training numEpochs by entering a value in the field. Train the model by using the
trainFCDDAnomalyDetector (Computer Vision Toolbox) function.

Train on one or more GPUs, if available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 3 minutes on an NVIDIA Titan RTX™.

doTraining = 

numEpochs = ;
if doTraining
    options = trainingOptions("adam", ...
        Shuffle="every-epoch",...
        MaxEpochs=numEpochs,InitialLearnRate=1e-4, ...
        MiniBatchSize=32,...
        BatchNormalizationStatistics="moving");
    detector = trainFCDDAnomalyDetector(imdsNormalTrain,imdsAnomalyTrain,net,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(dataDir,"trainedPillAnomalyDetector-"+modelDateTime+".mat"),"detector");
else
    trainedPillAnomalyDetectorNet_url = "https://ssd.mathworks.com/supportfiles/"+ ...
        "vision/data/trainedFCDDPillAnomalyDetectorSpkg.zip";
    downloadTrainedNetwork(trainedPillAnomalyDetectorNet_url,dataDir);
    load(fullfile(dataDir,"folderForSupportFilesInceptionModel", ...
        "trainedPillFCDDNet.mat"));
end

Set Anomaly Threshold

Select an anomaly score threshold for the anomaly detector, which classifies images based on
whether their scores are above or below the threshold value. This example uses a calibration data set
that contains both normal and anomalous images to select the threshold.

Obtain the mean anomaly score and ground truth label for each image in the calibration set.

scores = predict(detector,dsCal);
labels = imdsCal.Labels ~= "normal";

Plot a histogram of the mean anomaly scores for the normal and anomaly classes. The distributions
are well separated by the model-predicted anomaly score.

numBins = 20;
[~,edges] = histcounts(scores,numBins);

 Detect Image Anomalies Using Explainable FCDD Network

8-279



figure
hold on
hNormal = histogram(scores(labels==0),edges);
hAnomaly = histogram(scores(labels==1),edges);
hold off
legend([hNormal,hAnomaly],"Normal","Anomaly")
xlabel("Mean Anomaly Score")
ylabel("Counts")

Calculate the optimal anomaly threshold by using the anomalyThreshold (Computer Vision
Toolbox) function. Specify the first two input arguments as the ground truth labels, labels, and
predicted anomaly scores, scores, for the calibration data set. Specify the third input argument as
true because true positive anomaly images have a labels value of true. The anomalyThreshold
function returns the optimal threshold and the receiver operating characteristic (ROC) curve for the
detector, stored as an rocmetrics object.

[thresh,roc] = anomalyThreshold(labels,scores,true);

Set the Threshold property of the anomaly detector to the optimal value.

detector.Threshold = thresh;

8 Computer Vision Examples

8-280



Plot the ROC by using the plot object function of rocmetrics. The ROC curve illustrates the
performance of the classifier for a range of possible threshold values. Each point on the ROC curve
represents the false positive rate (x-coordinate) and true positive rate (y-coordinate) when the
calibration set images are classified using a different threshold value. The solid blue line represents
the ROC curve. The red dashed line represents a no-skill classifier corresponding to a 50% success
rate. The ROC area under the curve (AUC) metric indicates classifier performance, and the maximum
ROC AUC corresponding to a perfect classifier is 1.0.

plot(roc)
title("ROC AUC: "+ roc.AUC)

Evaluate Classification Model

Classify each image in the test set as either normal or anomalous.

testSetOutputLabels = classify(detector,dsTest);

Get the ground truth labels of each test image.

testSetTargetLabels = dsTest.UnderlyingDatastores{1}.Labels;

 Detect Image Anomalies Using Explainable FCDD Network

8-281



Evaluate the anomaly detector by calculating performance metrics by using the
evaluateAnomalyDetection (Computer Vision Toolbox) function. The function calculates several
metrics that evaluate the accuracy, precision, sensitivity, and specificity of the detector for the test
data set.

metrics = evaluateAnomalyDetection(testSetOutputLabels,testSetTargetLabels,anomalyClasses);

Evaluating anomaly detection results
------------------------------------
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    Precision    Recall     Specificity    F1Score    FalsePositiveRate    FalseNegativeRate
    ______________    ____________    _________    _______    ___________    _______    _________________    _________________

       0.96923          0.97778           1        0.95556         1         0.97727            0                0.044444     

The ConfusionMatrix property of metrics contains the confusion matrix for the test set. Extract
the confusion matrix and display a confusion plot. The classification model in this example is very
accurate and predicts a small percentage of false positives and false negatives.

M = metrics.ConfusionMatrix{:,:};
confusionchart(M,["Normal","Anomaly"])
acc = sum(diag(M)) / sum(M,"all");
title("Accuracy: "+acc)

8 Computer Vision Examples

8-282



If you specify multiple anomaly class labels, such as dirt and chip in this example, the
evaluateAnomalyDetection function calculates metrics for the whole data set and for each
anomaly class. The per-class metrics are returned in the ClassMetrics property of the
anomalyDetectionMetrics (Computer Vision Toolbox) object, metrics.

metrics.ClassMetrics

ans=2×2 table
               Accuracy    AccuracyPerSubClass
               ________    ___________________

    Normal           1         {1×1 table}    
    Anomaly    0.95556         {2×1 table}    

metrics.ClassMetrics(2,"AccuracyPerSubClass").AccuracyPerSubClass{1}

ans=2×1 table
            AccuracyPerSubClass
            ___________________

    chip          0.84375      
    dirt          0.99029      

Explain Classification Decisions

You can use the anomaly heatmap predicted by the anomaly detector to help explain why an image is
classified as normal or anomalous. This approach is useful for identifying patterns in false negatives
and false positives. You can use these patterns to identify strategies for increasing class balancing of
the training data or improving the network performance.

Calculate Anomaly Heat Map Display Range

Calculate a display range that reflects the range of anomaly scores observed across the entire
calibration set, including normal and anomalous images. Using the same display range across images
allows you to compare images more easily than if you scale each image to its own minimum and
maximum. Apply the display range for all heatmaps in this example.

minMapVal = inf;
maxMapVal = -inf;
reset(dsCal)
while hasdata(dsCal)
    img = read(dsCal);
    map = anomalyMap(detector,img{1});
    minMapVal = min(min(map,[],"all"),minMapVal);
    maxMapVal = max(max(map,[],"all"),maxMapVal);
end
displayRange = [minMapVal,maxMapVal];

View Heatmap of Anomaly Image

Select an image of a correctly classified anomaly. This result is a true positive classification. Display
the image.

testSetAnomalyLabels = testSetTargetLabels ~= "normal";
idxTruePositive = find(testSetAnomalyLabels' & testSetOutputLabels,1,"last");
dsExample = subset(dsTest,idxTruePositive);

 Detect Image Anomalies Using Explainable FCDD Network

8-283



img = read(dsExample);
img = img{1};
map = anomalyMap(detector,img);
imshow(anomalyMapOverlay(img,map,MapRange=displayRange,Blend="equal"))

View Heatmap of Normal Image

Select and display an image of a correctly classified normal image. This result is a true negative
classification.

idxTrueNegative = find(~(testSetAnomalyLabels' | testSetOutputLabels));
dsExample = subset(dsTest,idxTrueNegative);
img = read(dsExample);
img = img{1};
map = anomalyMap(detector,img);
imshow(anomalyMapOverlay(img,map,MapRange=displayRange,Blend="equal"))

8 Computer Vision Examples

8-284



View Heatmaps of False Negative Images

False negatives are images with pill defect anomalies that the network classifies as normal. Use the
explanation from the network to gain insights into the misclassifications.

Find any false negative images from the test set. Obtain heatmap overlays of the false negative
images by using the transform function. The operations of the transform are specified by an
anonymous function that applies the anomalyMapOverlay (Computer Vision Toolbox) function to
obtain heatmap overlays for each false negative in the test set.

falseNegativeIdx = find(testSetAnomalyLabels' & ~testSetOutputLabels);
if ~isempty(falseNegativeIdx)
    fnExamples = subset(dsTest,falseNegativeIdx);
    fnExamplesWithHeatmapOverlays = transform(fnExamples,@(x) {...
        anomalyMapOverlay(x{1},anomalyMap(detector,x{1}), ...
        MapRange=displayRange,Blend="equal")});
    fnExamples = readall(fnExamples);
    fnExamples = fnExamples(:,1);
    fnExamplesWithHeatmapOverlays = readall(fnExamplesWithHeatmapOverlays);
    montage(fnExamples)
    montage(fnExamplesWithHeatmapOverlays)
else
    disp("No false negatives detected.")
end

 Detect Image Anomalies Using Explainable FCDD Network

8-285



View Heatmaps of False Positive Images

False positives are images without pill defect anomalies that the network classifies as anomalous.
Find any false positives in the test set. Use the explanation from the network to gain insights into the
misclassifications. For example, if anomalous scores are localized to the image background, you can
explore suppressing the background during preprocessing.

falsePositiveIdx = find(~testSetAnomalyLabels' & testSetOutputLabels);
if ~isempty(falsePositiveIdx)
    fpExamples = subset(dsTest,falsePositiveIdx);
    fpExamplesWithHeatmapOverlays = transform(fpExamples,@(x) { ...
        anomalyMapOverlay(x{1},anomalyMap(detector,x{1}), ...
        MapRange=displayRange,Blend="equal")});
    fpExamples = readall(fpExamples);
    fpExamples = fpExamples(:,1);
    fpExamplesWithHeatmapOverlays = readall(fpExamplesWithHeatmapOverlays);
    montage(fpExamples)
    montage(fpExamplesWithHeatmapOverlays)
else
    disp("No false positives detected.")
end

No false positives detected.

8 Computer Vision Examples

8-286



Supporting Functions

The addLabelData helper function creates a one-hot encoded representation of label information in
data.

function [data,info] = addLabelData(data,info)
    if info.Label == categorical("normal")
        onehotencoding = 0;
    else
        onehotencoding = 1;
    end
    data = {data,onehotencoding};
end

References

[1] Liznerski, Philipp, Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Marius Kloft, and Klaus-
Robert Müller. "Explainable Deep One-Class Classification." Preprint, submitted March 18, 2021.
https://arxiv.org/abs/2007.01760.

[2] Ruff, Lukas, Robert A. Vandermeulen, Billy Joe Franks, Klaus-Robert Müller, and Marius Kloft.
"Rethinking Assumptions in Deep Anomaly Detection." Preprint, submitted May 30, 2020. https://
arxiv.org/abs/2006.00339.

[3] Simonyan, Karen, and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale
Image Recognition." Preprint, submitted April 10, 2015. https://arxiv.org/abs/1409.1556.

[4] ImageNet. https://www.image-net.org.

See Also
transform | rocmetrics | confusionchart | pretrainedEncoderNetwork |
fcddAnomalyDetector | trainFCDDAnomalyDetector | predict | anomalyThreshold |
anomalyMapOverlay | evaluateAnomalyDetection | anomalyDetectionMetrics

Related Examples
• “Classify Defects on Wafer Maps Using Deep Learning” on page 8-253
• “Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings” on page 8-288

More About
• “Getting Started with Anomaly Detection Using Deep Learning” (Computer Vision Toolbox)
• “Datastores for Deep Learning” on page 20-2

 Detect Image Anomalies Using Explainable FCDD Network

8-287

https://arxiv.org/abs/2007.01760
https://arxiv.org/abs/2006.00339
https://arxiv.org/abs/2006.00339
https://arxiv.org/abs/1409.1556
https://www.image-net.org


Detect Image Anomalies Using Pretrained ResNet-18 Feature
Embeddings

This example shows how to train a similarity-based anomaly detector using one-class learning of
feature embeddings extracted from a pretrained ResNet-18 convolutional neural network.

This example applies patch distribution modeling (PaDiM) [1 on page 8-307] to train an anomaly
detection classifier. During training, you fit a Gaussian distribution that models the mean and
covariance of normal image features. During testing, the classifier labels images whose features
deviate from the Gaussian distribution by more than a certain threshold as anomalous. PaDiM is a
similarity-based method because the similarity between test images and the normal image
distribution drives classification. The PaDiM method has several practical advantages.

• PaDiM extracts features from a pretrained CNN without requiring that you retrain the network.
Therefore, you can run the example efficiently without special hardware requirements such as a
GPU.

• PaDiM is a one-class learning approach. The classification model is trained using only normal
images. Training does not require images with anomalies, which can be rare, expensive, or unsafe
to obtain for certain applications.

• PaDiM is an explainable classification method. The PaDiM classifier generates an anomaly score
for each spatial patch. You can visualize the scores as a heatmap to localize anomalies and gain
insight into the model.

The PaDiM method is suitable for image data sets that can be cropped to match the input size of the
pretrained CNN. The input size of the CNN depends on the data used to train the network. For
applications requiring more flexibility in image size, an alternative approach might be more
appropriate. For an example of such an approach, see “Detect Image Anomalies Using Explainable
FCDD Network” (Image Processing Toolbox).

Download Concrete Crack Images for Classification Data Set

This example uses the Concrete Crack Images for Classification data set [4 on page 8-307] [5 on page
8-307]. The data set contains images of two classes: Negative images (or normal images) without
cracks present in the road and Positive images (or anomaly images) with cracks. The data set
provides 20,000 images of each class. The size of the data set is 235 MB.

8 Computer Vision Examples

8-288

https://data.mendeley.com/datasets/5y9wdsg2zt/2


Set dataDir as the desired location of the data set.

dataDir = fullfile(tempdir,"ConcreteCrackDataset");
if ~exist(dataDir,"dir")
    mkdir(dataDir);
end

To download the data set, go to this link: https://prod-dcd-datasets-cache-zipfiles.s3.eu-
west-1.amazonaws.com/5y9wdsg2zt-2.zip. Extract the ZIP file to obtain a RAR file, then extract the
contents of the RAR file into the directory specified by the dataDir variable. When extracted
successfully, dataDir contains two subdirectories: Negative and Positive.

Load and Preprocess Data

Create an imageDatastore that reads and manages the image data. Label each image as Positive
or Negative according to the name of its directory.

imdsPositive = imageDatastore(fullfile(dataDir,"Positive"),LabelSource="foldernames");
imdsNegative = imageDatastore(fullfile(dataDir,"Negative"),LabelSource="foldernames");

Display an example of each class. Display a negative, or good, image without crack anomalies on the
left. In the good image, imperfections and deviations in texture are small. Display a positive, or
anomalous, image on the right. The anomalous image shows a large black crack oriented vertically.

samplePositive = preview(imdsPositive);
sampleNegative = preview(imdsNegative);
montage({sampleNegative,samplePositive})
title("Road Images Without (Left) and with (Right) Cracks")

Partition Data into Training, Calibration, and Test Sets

To simulate a more typical semisupervised workflow, create a training set of 250 images from the
Negative class only. Allocate 100 Negative images and 100 Positive images to a calibration set.

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-289

https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5y9wdsg2zt-2.zip
https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5y9wdsg2zt-2.zip


This example uses a calibration set to pick a threshold for the classifier. The classifier labels images
with anomaly scores above the threshold as anomalous. Using separate calibration and test sets
avoids information leaking from the test set into the design of the classifier. Allocate 1000 Negative
images and 1000 Positive images to a test set.

numTrainNormal = 250;
numCal = 100;
numTest = 1000;

[imdsTestPos,imdsCalPos] = splitEachLabel(imdsPositive,numTest,numCal);
[imdsTrainNeg,imdsTestNeg,imdsCalNeg] = splitEachLabel(imdsNegative,numTrainNormal,numTest,numCal,"randomized");

trainFiles = imdsTrainNeg.Files;
calibrationFiles = cat(1,imdsCalPos.Files,imdsCalNeg.Files);
testFiles = cat(1,imdsTestPos.Files,imdsTestNeg.Files);

imdsTrain = imageDatastore(trainFiles,LabelSource="foldernames");
imdsCal = imageDatastore(calibrationFiles,LabelSource="foldernames");
imdsTest = imageDatastore(testFiles,LabelSource="foldernames");

Define an anonymous function, addLabelFcn, that creates a one-hot encoded representation of label
information from an input image. Then, transform the datastores by using the transform function
such that the datastores return a cell array of image data and a corresponding one-hot encoded array.
The transform function applies the operations specified by addLabelFcn.

addLabelFcn = @(x,info) deal({x,onehotencode(info.Label,1)},info);
tdsTrain = transform(imdsTrain,addLabelFcn,IncludeInfo=true);
tdsCal = transform(imdsCal,addLabelFcn,IncludeInfo=true);
tdsTest = transform(imdsTest,addLabelFcn,IncludeInfo=true);

Resize and Crop Images

Define an anonymous function, resizeAndCropImageFcn, that applies the
resizeAndCropForConcreteAnomalyDetector helper function to the input images. The
resizeAndCropForConcreteAnomalyDetector helper function resizes and center crops input
images, and is attached to the example as a supporting file. Transform the datastores by using the
transform function with the operations specified by resizeAndCropImageFcn. This operation
crops each image in the training, calibration, and test datastores to a size of 244-by-224 to match the
input size of the pretrained CNN.

resizeImageSize = [256 256];
targetImageSize = [224 224];
resizeAndCropImageFcn = @(x,info) deal({resizeAndCropForConcreteAnomalyDetector(x{1},resizeImageSize,targetImageSize),x{2}});
tdsTrain = transform(tdsTrain,resizeAndCropImageFcn);
tdsCal = transform(tdsCal,resizeAndCropImageFcn);
tdsTest = transform(tdsTest,resizeAndCropImageFcn);

Batch Training Data

Create a minibatchqueue object that manages the mini-batches of training data. The
minibatchqueue object automatically converts data to a dlarray object that enables automatic
differentiation in deep learning applications.

Specify the mini-batch data extraction format as "SSCB" (spatial, spatial, channel, batch).

minibatchSize = 128;
trainQueue = minibatchqueue(tdsTrain, ...

8 Computer Vision Examples

8-290



    PartialMiniBatch="return", ...
    MiniBatchFormat=["SSCB","CB"], ...
    MiniBatchSize=minibatchSize);

Create PaDiM Model

This example applies the PaDiM method described in [1 on page 8-307]. The basic idea of PaDiM is to
simplify 2-D images into a lower resolution grid of embedding vectors that encode features extracted
from a subset of layers of a pretrained CNN. Each embedding vector generated from the lower
resolution CNN layers corresponds to a spatial patch of pixels in the original resolution image. The
training step generates feature embedding vectors for all training set images and fits a statistical
Gaussian distribution to the training data. A trained PaDiM classifier model consists of the mean and
covariance matrix describing the learned Gaussian distribution for normal training images.

Extract Image Features from Pretrained CNN

This example uses the ResNet-18 network [2 on page 8-307] to extract features of input images.
ResNet-18 is a convolutional neural network with 18 layers and is pretrained on ImageNet [3 on page
8-307].

Extract features from three layers of ResNet-18 located at the end of the first, second, and third
blocks. For an input image of size 224-by-224, these layers correspond to activations with spatial
resolutions of 56-by-56, 28-by-28, and 14-by-14, respectively. For example, the XTrainFeatures1
variable contains 56-by-56 feature vectors from the bn2b_branch2b layer for each training set
image. The layer activations with higher and lower spatial resolutions provide a balance between
greater visual detail and global context, respectively.

net = resnet18("Weights","imagenet");

feature1LayerName = "bn2b_branch2b";
feature2LayerName = "bn3b_branch2b";
feature3LayerName = "bn4b_branch2b";

XTrainFeatures1 = []; %#ok<*UNRCH>
XTrainFeatures2 = [];
XTrainFeatures3 = [];

reset(trainQueue);
shuffle(trainQueue);
idx = 1;
while hasdata(trainQueue)
    [X,T] = next(trainQueue);

    XTrainFeatures1 = cat(4,XTrainFeatures1,activations(net,extractdata(X),feature1LayerName));
    XTrainFeatures2 = cat(4,XTrainFeatures2,activations(net,extractdata(X),feature2LayerName));
    XTrainFeatures3 = cat(4,XTrainFeatures3,activations(net,extractdata(X),feature3LayerName));
    idx = idx+size(X,4);
end

Concatenate Feature Embeddings

Combine the features extracted from the three ResNet-18 layers by using the
formAlignedEmbeddings helper function defined at the end of this example. The
formAlignedEmbeddings helper function upsamples the feature vectors extracted from the second
and third blocks of ResNet-18 to match the spatial resolution of the first block and concatenates the
three feature vectors.

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-291



XTrainEmbeddings = concatenateEmbeddings(XTrainFeatures1,XTrainFeatures2,XTrainFeatures3);

The variable XTrainEmbeddings is a numeric array containing feature embedding vectors for the
training image set. The first two spatial dimensions correspond to the number of spatial patches in
each image. The 56-by-56 spatial patches match the size of the bn2b_branch2b layer of ResNet-18.
The third dimension corresponds to the channel data, or the length of the feature embedding vector
for each patch. The fourth dimension corresponds to the number of training images.

whos XTrainEmbeddings

  Name                   Size                         Bytes  Class     Attributes

  XTrainEmbeddings      56x56x448x250            1404928000  single              

Randomly Downsample Feature Embedding Channel Dimension

Reduce the dimensionality of the embedding vector by randomly selecting a subset of 100 out of 448
elements in the channel dimension to keep. As shown in [1 on page 8-307], this random
dimensionality reduction step increases classification efficiency without decreasing accuracy.

selectedChannels = 100;
totalChannels = 448;
rIdx = randi(totalChannels,[1 selectedChannels]);
XTrainEmbeddings = XTrainEmbeddings(:,:,rIdx,:);

Compute Mean and Covariance of Gaussian Distribution

Model the training image patch embedding vectors as a Gaussian distribution by calculating the
mean and covariance matrix across training images.

Reshape the embedding vector to have a single spatial dimension of length H*W.

[H, W, C, B] = size(XTrainEmbeddings);
XTrainEmbeddings = reshape(XTrainEmbeddings,[H*W C B]);

Calculate the mean of the embedding vector along the third dimension, corresponding to the average
of the 250 training set images. In this example, the means variable is a 3136-by-100 matrix, with
average feature values for each of the 56-by-56 spatial patches and 100 channel elements.

means = mean(XTrainEmbeddings,3);

For each embedding vector, calculate the covariance matrix between the 100 channel elements.
Include a regularization constant based on the identity matrix to make covars a full rank and
invertible matrix. In this example, the covars variable is a 3136-by-100-by-100 matrix.

covars = zeros([H*W C C]);
identityMatrix = eye(C);
for idx = 1:H*W
    covars(idx,:,:) = cov(squeeze(XTrainEmbeddings(idx,:,:))') + 0.01* identityMatrix;
end

Choose Anomaly Score Threshold for Classification

An important part of the semisupervised anomaly detection workflow is deciding on an anomaly score
threshold for separating normal images from anomaly images. This example uses the calibration set
to calculate the threshold.

8 Computer Vision Examples

8-292



In this example, the anomaly score metric is the Mahalanobis distance between the feature
embedding vector and the learned Gaussian distribution for normal images. The anomaly score for
each calibration image patch forms an anomaly score map that localizes predicted anomalies.

Calculate Anomaly Scores for Calibration Set

Calculate feature embedding vectors for the calibration set images. First, create a minibatchqueue
object to manage the mini-batches of calibration observations. Specify the mini-batch data extraction
format as "SSCB" (spatial, spatial, channel, batch).

minibatchSize = 20;
calibrationQueue = minibatchqueue(tdsCal, ...
    MiniBatchFormat=["SSCB","CB"], ...
    MiniBatchSize=minibatchSize, ...
    OutputEnvironment="auto");

Perform the following steps to compute the anomaly scores for the calibration set images.

• Extract features of the calibration images from the same three layers of ResNet-18 used in
training.

• Combine the features from the three layers into an overall embedding variable XCalEmbeddings
by using the formAlignedEmbeddings helper function. The helper function is defined at the end
of this example.

• Downsample the embedding vectors to the same 100 channel elements used during training,
specified by rIdx.

• Reshape the embedding vectors into an H*W-by-C-by-B array, where B is the number of images in
the mini-batch.

• Calculate the Mahalanobis distance between each embedding feature vector and the learned
Gaussian distribution by using the calculateDistance helper function. The helper function is
defined at the end of this example.

• Create an anomaly score map for each image by using the createAnomalyScoreMap helper
function. The helper function is defined at the end of this example.

maxScoresCal = zeros(tdsCal.numpartitions,1);
minScoresCal = zeros(tdsCal.numpartitions,1);
meanScoresCal = zeros(tdsCal.numpartitions,1);
idx = 1;

while hasdata(calibrationQueue)
    XCal = next(calibrationQueue);
    
    XCalFeatures1 = activations(net,extractdata(XCal),feature1LayerName);
    XCalFeatures2 = activations(net,extractdata(XCal),feature2LayerName);
    XCalFeatures3 = activations(net,extractdata(XCal),feature3LayerName);

    XCalEmbeddings = concatenateEmbeddings(XCalFeatures1,XCalFeatures2,XCalFeatures3);

    XCalEmbeddings = XCalEmbeddings(:,:,rIdx,:);
    [H, W, C, B] = size(XCalEmbeddings);
    XCalEmbeddings = reshape(permute(XCalEmbeddings,[1 2 3 4]),[H*W C B]);

    distances = calculateDistance(XCalEmbeddings,H,W,B,means,covars);

    anomalyScoreMap = createAnomalyScoreMap(distances,H,W,B,targetImageSize);

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-293



    % Calculate max, min, and mean values of the anomaly score map
    maxScoresCal(idx:idx+size(XCal,4)-1) = squeeze(max(anomalyScoreMap,[],[1 2 3]));
    minScoresCal(idx:idx+size(XCal,4)-1) = squeeze(min(anomalyScoreMap,[],[1 2 3]));
    meanScoresCal(idx:idx+size(XCal,4)-1) = squeeze(mean(anomalyScoreMap,[1 2 3]));
    
    idx = idx+size(XCal,4);
    clear XCalFeatures1 XCalFeatures2 XCalFeatures3 anomalyScoreMap distances XCalEmbeddings XCal
end

Create Anomaly Score Histograms

Assign the known ground truth labels "Positive" and "Negative" to the calibration set images.

labelsCal = tdsCal.UnderlyingDatastores{1}.Labels ~= "Negative";

Use the minimum and maximum values of the calibration data set to normalize the mean scores to the
range [0, 1].

maxScore = max(maxScoresCal,[],"all");
minScore = min(minScoresCal,[],"all");

scoresCal =  mat2gray(meanScoresCal, [minScore maxScore]);

Plot a histogram of the mean anomaly scores for the normal and anomaly classes. The distributions
are well separated by the model-predicted anomaly score.

[~,edges] = histcounts(scoresCal,20);
hGood = histogram(scoresCal(labelsCal==0),edges);
hold on
hBad = histogram(scoresCal(labelsCal==1),edges);
hold off
legend([hGood,hBad],"Normal (Negative)","Anomaly (Positive)")
xlabel("Mean Anomaly Score");
ylabel("Counts");

8 Computer Vision Examples

8-294



Calculate Threshold Value

Create a receiver operating characteristic (ROC) curve to calculate the anomaly threshold. Each point
on the ROC curve represents the false positive rate (x-coordinate) and true positive rate (y-
coordinate) when the calibration set images are classified using a different threshold value. An
optimal threshold maximizes the true positive rate and minimizes the false positive rate. Using ROC
curves and related metrics allows you to select a threshold based on the tradeoff between false
positives and false negatives. These tradeoffs depend on the application-specific implications of
misclassifying images as false positives versus false negatives.

Create the ROC curve by using the perfcurve (Statistics and Machine Learning Toolbox) function.
The solid blue line represents the ROC curve. The red dashed line represents a random classifier
corresponding to a 50% success rate. Display the area under the curve (AUC) metric for the
calibration set in the title of the figure. A perfect classifier has an ROC curve with a maximum AUC of
1.

[xroc,yroc,troc,auc] = perfcurve(labelsCal,scoresCal,true);
figure
lroc = plot(xroc,yroc);
hold on
lchance = plot([0 1],[0 1],"r--");
hold off
xlabel("False Positive Rate") 
ylabel("True Positive Rate")
title("ROC Curve AUC: "+auc);
legend([lroc,lchance],"ROC curve","Random Chance")

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-295



This example uses the maximum Youden Index metric to select the anomaly score threshold from the
ROC curve. This corresponds to the threshold value that maximizes the distance between the blue
model ROC curve and the red random chance ROC curve.

[~,ind] = max(yroc-xroc);
anomalyThreshold = troc(ind)

anomalyThreshold = 0.2082

Evaluate Classification Model

Calculate Anomaly Score Map for Test Set

Calculate feature embedding vectors for the test set images. First, create a minibatchqueue object
to manage the mini-batches of test observations. Specify the mini-batch data extraction format as
"SSCB" (spatial, spatial, channel, batch).

testQueue = minibatchqueue(tdsTest, ...
    MiniBatchFormat=["SSCB","CB"], ...
    MiniBatchSize=minibatchSize, ...
    OutputEnvironment="auto");

8 Computer Vision Examples

8-296



Perform the following steps to compute the anomaly scores for the test set images.

• Extract features of the test images from the same three layers of ResNet-18 used in training.
• Combine the features from the three layers into an overall embedding variable

XTestEmbeddings by using the formAlignedEmbeddings helper function. The helper function
is defined at the end of this example.

• Downsample the embedding vectors to the same 100 channel elements used during training,
specified by rIdx.

• Reshape the embedding vectors into an H*W-by-C-by-B array, where B is the number of images in
the mini-batch.

• Calculate the Mahalanobis distance between each embedding feature vector and the learned
Gaussian distribution by using the calculateDistance helper function. The helper function is
defined at the end of this example.

• Create an anomaly score map for each image by using the createAnomalyScoreMap helper
function. The helper function is defined at the end of this example.

• Concatenate the anomaly score maps across mini-batches. The anomalyScoreMapsTest variable
specifies score maps for all test set images.

idx = 1;

XTestImages = [];
anomalyScoreMapsTest = [];

while hasdata(testQueue)
    XTest = next(testQueue);
    
    XTestFeatures1 = activations(net,extractdata(XTest),feature1LayerName);
    XTestFeatures2 = activations(net,extractdata(XTest),feature2LayerName);
    XTestFeatures3 = activations(net,extractdata(XTest),feature3LayerName);

    XTestEmbeddings = concatenateEmbeddings(XTestFeatures1,XTestFeatures2,XTestFeatures3);
    
    XTestEmbeddings = XTestEmbeddings(:,:,rIdx,:);
    [H, W, C, B] = size(XTestEmbeddings);
    XTestEmbeddings = reshape(XTestEmbeddings,[H*W C B]);

    distances = calculateDistance(XTestEmbeddings,H,W,B,means,covars);

    anomalyScoreMap = createAnomalyScoreMap(distances,H,W,B,targetImageSize);
    XTestImages = cat(4,XTestImages,gather(XTest));
    anomalyScoreMapsTest = cat(4,anomalyScoreMapsTest,gather(anomalyScoreMap));
    
    idx = idx+size(XTest,4);
    clear XTestFeatures1 XTestFeatures2 XTestFeatures3 anomalyScoreMap distances XTestEmbeddings XTest
end

Classify Test Images

Calculate an overall mean anomaly score for each test image. Normalize the anomaly scores to the
same range used to pick the threshold, defined by minScore and maxScore.

scoresTest = squeeze(mean(anomalyScoreMapsTest,[1 2 3]));
scoresTest = mat2gray(scoresTest, [minScore maxScore]);

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-297



Predict class labels for each test set image by comparing the mean anomaly score map value to the
anomalyThreshold value.

predictedLabels = scoresTest > anomalyThreshold;

Calculate Classification Accuracy

Assign the known ground truth labels "Positive" or "Negative" to the test set images.

labelsTest = tdsTest.UnderlyingDatastores{1}.Labels ~= "Negative";

Calculate the confusion matrix and the classification accuracy for the test set. The classification
model in this example is accurate and predicts a small percentage of false positives and false
negatives.

targetLabels = logical(labelsTest);
M = confusionmat(targetLabels,predictedLabels);
confusionchart(M,["Negative","Positive"])
acc = sum(diag(M)) / sum(M,"all");
title("Accuracy: "+acc);

8 Computer Vision Examples

8-298



Explain Classification Decisions

You can visualize the anomaly score map predicted by the PaDiM model as a heatmap overlaid on the
image. You can use this localization of predicted anomalies to help explain why an image is classified
as normal or anomalous. This approach is useful for identifying patterns in false negatives and false
positives. You can use these patterns to identify strategies to improve the classifier performance.

Calculate Heatmap Display Range

Instead of scaling the heatmap for each image individually, visualize heatmap data using the same
display range for all images in a data set. Doing so yields uniformly cool heatmaps for normal images
and warm colors in anomalous regions for anomaly images.

Calculate a display range that reflects the range of anomaly score values observed in the calibration
set. Apply the display range for all heatmaps in this example. Set the minimum value of the
displayRange to 0. Set the maximum value of the display range by calculating the maximum score
for each of the 200 calibration images, then selecting the 80th percentile of the maximums. Calculate
the percentile value by using the prctile function.

maxScoresCal = mat2gray(maxScoresCal);
scoreMapRange = [0 prctile(maxScoresCal,80,"all")];

View Heatmap of Anomaly

Select an image of a correctly classified anomaly. This result is a true positive classification. Display
the image.

idxTruePositive = find(targetLabels & predictedLabels);
dsTruePositive = subset(tdsTest,idxTruePositive);
dataTruePositive = preview(dsTruePositive);
imgTruePositive = dataTruePositive{1};
imshow(imgTruePositive)
title("True Positive Test Image")

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-299



Obtain an anomaly score map of the true positive anomaly image. Normalize the anomaly scores to
the minimum and maximum values of the calibration data set to match the range used to pick the
threshold.

anomalyTestMapsRescaled = mat2gray(anomalyScoreMapsTest, [minScore maxScore]);
scoreMapTruePositive = anomalyTestMapsRescaled(:,:,1,idxTruePositive(1));

Display the heatmap as an overlay over the image by using the
anomalyMapOverlayForConcreteAnomalyDetector helper function. This function is attached to
the example as a supporting file.

imshow(anomalyMapOverlayForConcreteAnomalyDetector(imgTruePositive,scoreMapTruePositive,ScoreMapRange=scoreMapRange));
title("Heatmap Overlay of True Positive Result")

8 Computer Vision Examples

8-300



To quantitatively confirm the result, display the mean anomaly score of the true positive test image as
predicted by the classifier. The value is greater than the anomaly score threshold.

disp("Mean anomaly score of test image: "+scoresTest(idxTruePositive(1)))

Mean anomaly score of test image: 0.25415

View Heatmap of Normal Image

Select and display an image of a correctly classified normal image. This result is a true negative
classification.

idxTrueNegative = find(~(targetLabels | predictedLabels));
dsTrueNegative = subset(tdsTest,idxTrueNegative);
dataTrueNegative = preview(dsTrueNegative);
imgTrueNegative = dataTrueNegative{1};
imshow(imgTrueNegative)
title("True Negative Test Image")

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-301



Obtain a heatmap of the normal image. Display the heatmap as an overlay over the image by using
the anomalyMapOverlayForConcreteAnomalyDetector helper function. This function is attached
to the example as a supporting file. Many true negative test images, such as this test image, have
either small anomaly scores across the entire image or large anomaly scores in a localized portion of
the image.

scoreMapTrueNegative = anomalyTestMapsRescaled(:,:,1,idxTrueNegative(1));
imshow(anomalyMapOverlayForConcreteAnomalyDetector(imgTrueNegative,scoreMapTrueNegative,ScoreMapRange=scoreMapRange))
title("Heatmap Overlay of True Negative Result")

8 Computer Vision Examples

8-302



To quantitatively confirm the result, display the mean anomaly score of the true positive test image as
predicted by the classifier. The value is less than the anomaly score threshold.

disp("Mean anomaly score of test image: "+scoresTest(idxTrueNegative(1)))

Mean anomaly score of test image: 0.12314

View Heatmaps of False Positive Images

False positives are images without crack anomalies that the network classifies as anomalous. Use the
explanation from the PaDiM model to gain insight into the misclassifications.

Find false positive images from the test set. Display three false positive images as a montage.

idxFalsePositive = find(~targetLabels & predictedLabels);
dataFalsePositive = readall(subset(tdsTest,idxFalsePositive));
numelFalsePositive = length(idxFalsePositive);    
numImages = min(numelFalsePositive,3);
if numelFalsePositive>0
    montage(dataFalsePositive(1:numImages,1),Size=[1,numImages],BorderSize=10);
    title("False Positives in Test Set")
end

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-303



Obtain heatmaps of the false positive images.

hmapOverlay = cell(1,numImages);
for idx = 1:numImages
    img = dataFalsePositive{idx,1};
    scoreMapFalsePositive = anomalyTestMapsRescaled(:,:,1,idxFalsePositive(idx));
    hmapOverlay{idx} = anomalyMapOverlayForConcreteAnomalyDetector(img,scoreMapFalsePositive,ScoreMapRange=scoreMapRange);
end

Display the heatmap overlays as a montage. The false positive images show features such as rocks
that have similar visual characteristics to cracks. The anomaly scores are high in these localized
regions. However, the training data set only labels images with cracks as anomalous, so the ground
truth label for these images is Negative. Training a classifier that recognizes rocks and other non-
crack defects as anomalous requires training data with non-crack defects labeled as anomalous.

if numelFalsePositive>0
    montage(hmapOverlay,Size=[1,numImages],BorderSize=10)
    title("Heatmap Overlays of False Positive Results")
end

8 Computer Vision Examples

8-304



Display the mean anomaly scores of the false positive test images as predicted by the PaDiM model.
The mean scores are greater than the anomaly score threshold, resulting in misclassifications.

disp("Mean anomaly scores:"); scoresTest(idxFalsePositive(1:numImages))

Mean anomaly scores:

ans = 3×1

    0.2125
    0.2395
    0.2651

View Heatmaps of False Negative Images

False negatives are images with crack anomalies that the network classifies as normal. Use the
explanation from the PaDiM model to gain insights into the misclassifications.

Find any false negative images from the test set. Display three false negative images as a montage.

idxFalseNegative = find(targetLabels & ~predictedLabels);
dataFalseNegative = readall(subset(tdsTest,idxFalseNegative));
numelFalseNegative = length(idxFalseNegative);
numImages = min(numelFalseNegative,3);
if numelFalseNegative>0
    montage(dataFalseNegative(1:numImages,1),Size=[1,numImages],BorderSize=10);
    title("False Negatives in Test Set")
end

Obtain heatmaps of the false negative images.

hmapOverlay = cell(1,numImages);
for idx = 1:numImages
    img = dataFalseNegative{idx,1};
    scoreMapFalseNegative = anomalyTestMapsRescaled(:,:,1,idxFalseNegative(idx));
    hmapOverlay{idx} = anomalyMapOverlayForConcreteAnomalyDetector(img,scoreMapFalseNegative,ScoreMapRange=scoreMapRange);
end

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-305



Display the heatmap overlays as a montage. The PaDiM model predicts large anomaly scores around
cracks, as expected.

if numelFalseNegative>0
    montage(hmapOverlay,Size=[1,numImages],BorderSize=10)
    title("Heatmap Overlays of False Negative Results")
end

Display the mean anomaly scores of the false negative test images as predicted by the PaDiM model.
The mean scores are less than the anomaly score threshold, resulting in misclassifications.

disp("Mean anomaly scores:"); scoresTest(idxFalsePositive(1:numImages))

Mean anomaly scores:

ans = 3×1

    0.2125
    0.2395
    0.2651

Supporting Functions

The concatenateEmbeddings helper function combines features extracted from three layers of
ResNet-18 into one feature embedding vector. The features from the second and third blocks of
ResNet-18 are resized to match the spatial resolution of the first block.

function XEmbeddings = concatenateEmbeddings(XFeatures1,XFeatures2,XFeatures3)
    XFeatures2Resize = imresize(XFeatures2,2,"nearest");
    XFeatures3Resize = imresize(XFeatures3,4,"nearest");
    XEmbeddings = cat(3,XFeatures1,XFeatures2Resize,XFeatures3Resize);
end

The calculateDistance helper function calculates the Mahalanobis distance between each
embedding feature vector specified by XEmbeddings and the learned Gaussian distribution for the
corresponding patch with mean specified by means and covariance matrix specified by covars.

function distances = calculateDistance(XEmbeddings,H,W,B,means,covars)
    distances = zeros([H*W 1 B]);

8 Computer Vision Examples

8-306



    for dIdx = 1:H*W
        distances(dIdx,1,:) = pdist2((squeeze(means(dIdx,:))),(squeeze(XEmbeddings(dIdx,:,:))'),"mahal",(squeeze(covars(dIdx,:,:))));
    end
end

The createAnomalyScoreMap helper function creates an anomaly score map for each image with
embeddings vectors specified by XEmbeddings. The createAnomalyScoreMap function reshapes
and resizes the anomaly score map to match the size and resolution of the original input images.

function anomalyScoreMap = createAnomalyScoreMap(distances,H,W,B,targetImageSize)
    anomalyScoreMap = reshape(distances,[H W 1 B]);
    anomalyScoreMap = imresize(anomalyScoreMap,targetImageSize,"bilinear");
    for mIdx = 1:size(anomalyScoreMap,4)
        anomalyScoreMap(:,:,1,mIdx) = imgaussfilt(anomalyScoreMap(:,:,1,mIdx),4,FilterSize=33);
    end
end

References

[1] Defard, Thomas, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. “PaDiM: A Patch
Distribution Modeling Framework for Anomaly Detection and Localization.” In Pattern Recognition.
ICPR International Workshops and Challenges, 475–89. Lecture Notes in Computer Science. Cham,
Switzerland: Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-68799-1_35.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image
Recognition.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–78.
Las Vegas, NV, USA: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.90.

[3] ImageNet. https://www.image-net.org.

[4] Özgenel, Ç. F., and Arzu Gönenç Sorguç. “Performance Comparison of Pretrained Convolutional
Neural Networks on Crack Detection in Buildings.” Taipei, Taiwan, 2018. https://doi.org/10.22260/
ISARC2018/0094.

[5] Zhang, Lei, Fan Yang, Yimin Daniel Zhang, and Ying Julie Zhu. “Road Crack Detection Using Deep
Convolutional Neural Network.” In 2016 IEEE International Conference on Image Processing (ICIP),
3708–12. Phoenix, AZ, USA: IEEE, 2016. https://doi.org/10.1109/ICIP.2016.7533052.

See Also
imageDatastore | activations | resnet18 | perfcurve | confusionmat | confusionchart

Related Examples
• “Detect Image Anomalies Using Explainable FCDD Network” on page 8-275
• “Classify Defects on Wafer Maps Using Deep Learning” on page 8-253

 Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

8-307

https://doi.org/10.1007/978-3-030-68799-1_35
https://doi.org/10.1109/CVPR.2016.90
https://www.image-net.org
https://doi.org/10.22260/ISARC2018/0094
https://doi.org/10.22260/ISARC2018/0094
https://doi.org/10.1109/ICIP.2016.7533052


More About
• “Datastores for Deep Learning” on page 20-2
• “Preprocess Images for Deep Learning” on page 20-16

8 Computer Vision Examples

8-308



Image Processing Examples

9



Remove Noise from Color Image Using Pretrained Neural
Network

This example shows how to remove Gaussian noise from an RGB image using a denoising
convolutional neural network.

Read a color image into the workspace and convert the data to data type double. Display the pristine
color image.

pristineRGB = imread("lighthouse.png");
pristineRGB = im2double(pristineRGB);
imshow(pristineRGB)
title("Pristine Image")

9 Image Processing Examples

9-2



Add zero-mean Gaussian white noise with a variance of 0.01 to the image. The imnoise function
adds noise to each color channel independently. Display the noisy color image.

noisyRGB = imnoise(pristineRGB,"gaussian",0,0.01);
imshow(noisyRGB)
title("Noisy Image")

 Remove Noise from Color Image Using Pretrained Neural Network

9-3



The pretrained denoising convolutional neural network, DnCNN, operates on single-channel images.
Split the noisy RGB image into its three individual color channels.

[noisyR,noisyG,noisyB] = imsplit(noisyRGB);

Load the pretrained DnCNN network.

9 Image Processing Examples

9-4



net = denoisingNetwork("dncnn");

Use the DnCNN network to remove noise from each color channel.

denoisedR = denoiseImage(noisyR,net);
denoisedG = denoiseImage(noisyG,net);
denoisedB = denoiseImage(noisyB,net);

Recombine the denoised color channels to form the denoised RGB image. Display the denoised color
image.

denoisedRGB = cat(3,denoisedR,denoisedG,denoisedB);
imshow(denoisedRGB)
title("Denoised Image")

 Remove Noise from Color Image Using Pretrained Neural Network

9-5



Calculate the peak signal-to-noise ratio (PSNR) for the noisy and denoised images. A larger PSNR
indicates that noise has a smaller relative signal, and is associated with higher image quality.

noisyPSNR = psnr(noisyRGB,pristineRGB);
fprintf("\n The PSNR value of the noisy image is %0.4f.",noisyPSNR);

 The PSNR value of the noisy image is 20.6395.

9 Image Processing Examples

9-6



denoisedPSNR = psnr(denoisedRGB,pristineRGB);
fprintf("\n The PSNR value of the denoised image is %0.4f.",denoisedPSNR);

 The PSNR value of the denoised image is 29.6857.

Calculate the structural similarity (SSIM) index for the noisy and denoised images. An SSIM index
close to 1 indicates good agreement with the reference image, and higher image quality.

noisySSIM = ssim(noisyRGB,pristineRGB);
fprintf("\n The SSIM value of the noisy image is %0.4f.",noisySSIM);

 The SSIM value of the noisy image is 0.7393.

denoisedSSIM = ssim(denoisedRGB,pristineRGB);
fprintf("\n The SSIM value of the denoised image is %0.4f.",denoisedSSIM);

 The SSIM value of the denoised image is 0.9507.

In practice, image color channels frequently have correlated noise. To remove correlated image noise,
first convert the RGB image to a color space with a luminance channel, such as the L*a*b* color
space. Remove noise on the luminance channel only, then convert the denoised image back to the
RGB color space.

See Also
denoisingNetwork | denoiseImage | rgb2lab | lab2rgb | psnr | ssim | imnoise

More About
• “Train and Apply Denoising Neural Networks” (Image Processing Toolbox)

 Remove Noise from Color Image Using Pretrained Neural Network

9-7



Increase Image Resolution Using Deep Learning

This example shows how to create a high-resolution image from a low-resolution image using a very-
deep super-resolution (VDSR) neural network.

Super-resolution is the process of creating high-resolution images from low-resolution images. This
example considers single image super-resolution (SISR), where the goal is to recover one high-
resolution image from one low-resolution image. SISR is challenging because high-frequency image
content typically cannot be recovered from the low-resolution image. Without high-frequency
information, the quality of the high-resolution image is limited. Further, SISR is an ill-posed problem
because one low-resolution image can yield several possible high-resolution images.

Several techniques, including deep learning algorithms, have been proposed to perform SISR. This
example explores one deep learning algorithm for SISR, called very-deep super-resolution (VDSR) [1
on page 9-22].

The VDSR Network

VDSR is a convolutional neural network architecture designed to perform single image super-
resolution [1 on page 9-22]. The VDSR network learns the mapping between low- and high-
resolution images. This mapping is possible because low-resolution and high-resolution images have
similar image content and differ primarily in high-frequency details.

VDSR employs a residual learning strategy, meaning that the network learns to estimate a residual
image. In the context of super-resolution, a residual image is the difference between a high-resolution
reference image and a low-resolution image that has been upscaled using bicubic interpolation to
match the size of the reference image. A residual image contains information about the high-
frequency details of an image.

The VDSR network detects the residual image from the luminance of a color image. The luminance
channel of an image, Y, represents the brightness of each pixel through a linear combination of the
red, green, and blue pixel values. In contrast, the two chrominance channels of an image, Cb and Cr,

9 Image Processing Examples

9-8



are different linear combinations of the red, green, and blue pixel values that represent color-
difference information. VDSR is trained using only the luminance channel because human perception
is more sensitive to changes in brightness than to changes in color.

If Yhighres is the luminance of the high-resolution image and Ylowres is the luminance a low-resolution
image that has been upscaled using bicubic interpolation, then the input to the VDSR network is
Ylowres and the network learns to predict Yresidual = Yhighres− Ylowres from the training data.

After the VDSR network learns to estimate the residual image, you can reconstruct high-resolution
images by adding the estimated residual image to the upsampled low-resolution image, then
converting the image back to the RGB color space.

A scale factor relates the size of the reference image to the size of the low-resolution image. As the
scale factor increases, SISR becomes more ill-posed because the low-resolution image loses more
information about the high-frequency image content. VDSR solves this problem by using a large
receptive field. This example trains a VDSR network with multiple scale factors using scale
augmentation. Scale augmentation improves the results at larger scale factors because the network
can take advantage of the image context from smaller scale factors. Additionally, the VDSR network
can generalize to accept images with noninteger scale factors.

Download Training and Test Data

Download the IAPR TC-12 Benchmark, which consists of 20,000 still natural images [2 on page 9-
22]. The data set includes photos of people, animals, cities, and more. The size of the data file is
~1.8 GB. If you do not want to download the training data set, then you can load the pretrained VDSR
network by typing load("trainedVDSRNet.mat"); at the command line. Then, go directly to the
Perform Single Image Super-Resolution Using VDSR Network on page 9-13 section in this example.

Use the helper function, downloadIAPRTC12Data, to download the data. This function is attached to
the example as a supporting file. Specify dataDir as the desired location of the data.

 Increase Image Resolution Using Deep Learning

9-9



dataDir = ;
downloadIAPRTC12Data(dataDir);

This example will train the network with a small subset of the IAPR TC-12 Benchmark data. Load the
imageCLEF training data. All images are 32-bit JPEG color images.

trainImagesDir = fullfile(dataDir,"iaprtc12","images","02");
exts = [".jpg",".bmp",".png"];
pristineImages = imageDatastore(trainImagesDir,FileExtensions=exts);

List the number of training images.

numel(pristineImages.Files)

ans = 616

Prepare Training Data

To create a training data set, generate pairs of images consisting of upsampled images and the
corresponding residual images.

The upsampled images are stored on disk as MAT files in the directory upsampledDirName. The
computed residual images representing the network responses are stored on disk as MAT files in the
directory residualDirName. The MAT files are stored as data type double for greater precision
when training the network.

upsampledDirName = trainImagesDir+filesep+"upsampledImages";
residualDirName = trainImagesDir+filesep+"residualImages";

Use the helper function createVDSRTrainingSet to preprocess the training data. This function is
attached to the example as a supporting file.

The helper function performs these operations for each pristine image in trainImages:

• Convert the image to the YCbCr color space
• Downsize the luminance (Y) channel by different scale factors to create sample low-resolution

images, then resize the images to the original size using bicubic interpolation
• Calculate the difference between the pristine and resized images.
• Save the resized and residual images to disk.

scaleFactors = [2 3 4];
createVDSRTrainingSet(pristineImages,scaleFactors,upsampledDirName,residualDirName);

Define Preprocessing Pipeline for Training Set

In this example, the network inputs are low-resolution images that have been upsampled using
bicubic interpolation. The desired network responses are the residual images. Create an image
datastore called upsampledImages from the collection of input image files. Create an image
datastore called residualImages from the collection of computed residual image files. Both
datastores require a helper function, matRead, to read the image data from the image files. This
function is attached to the example as a supporting file.

upsampledImages = imageDatastore(upsampledDirName,FileExtensions=".mat",ReadFcn=@matRead);
residualImages = imageDatastore(residualDirName,FileExtensions=".mat",ReadFcn=@matRead);

9 Image Processing Examples

9-10



Create an imageDataAugmenter that specifies the parameters of data augmentation. Use data
augmentation during training to vary the training data, which effectively increases the amount of
available training data. Here, the augmenter specifies random rotation by 90 degrees and random
reflections in the x-direction.

augmenter = imageDataAugmenter( ...
    RandRotatio=@()randi([0,1],1)*90, ...
    RandXReflection=true);

Create a randomPatchExtractionDatastore (Image Processing Toolbox) that performs
randomized patch extraction from the upsampled and residual image datastores. Patch extraction is
the process of extracting a large set of small image patches, or tiles, from a single larger image. This
type of data augmentation is frequently used in image-to-image regression problems, where many
network architectures can be trained on very small input image sizes. This means that a large
number of patches can be extracted from each full-sized image in the original training set, which
greatly increases the size of the training set.

patchSize = [41 41];
patchesPerImage = 64;
dsTrain = randomPatchExtractionDatastore(upsampledImages,residualImages,patchSize, ...
    DataAugmentation=augmenter,PatchesPerImage=patchesPerImage);

The resulting datastore, dsTrain, provides mini-batches of data to the network at each iteration of
the epoch. Preview the result of reading from the datastore.

inputBatch = preview(dsTrain);
disp(inputBatch)

      InputImage      ResponseImage 
    ______________    ______________

    {41×41 double}    {41×41 double}
    {41×41 double}    {41×41 double}
    {41×41 double}    {41×41 double}
    {41×41 double}    {41×41 double}
    {41×41 double}    {41×41 double}
    {41×41 double}    {41×41 double}
    {41×41 double}    {41×41 double}
    {41×41 double}    {41×41 double}

Set Up VDSR Layers

This example defines the VDSR network using 41 individual layers from Deep Learning Toolbox™,
including:

• imageInputLayer - Image input layer
• convolution2dLayer - 2-D convolution layer for convolutional neural networks
• reluLayer - Rectified linear unit (ReLU) layer
• regressionLayer - Regression output layer for a neural network

The first layer, imageInputLayer, operates on image patches. The patch size is based on the
network receptive field, which is the spatial image region that affects the response of the top-most
layer in the network. Ideally, the network receptive field is the same as the image size so that the field
can see all the high-level features in the image. In this case, for a network with D convolutional
layers, the receptive field is (2D+1)-by-(2D+1).

 Increase Image Resolution Using Deep Learning

9-11



VDSR has 20 convolutional layers so the receptive field and the image patch size are 41-by-41. The
image input layer accepts images with one channel because VDSR is trained using only the luminance
channel.

networkDepth = 20;
firstLayer = imageInputLayer([41 41 1],Name="InputLayer",Normalization="none");

The image input layer is followed by a 2-D convolutional layer that contains 64 filters of size 3-by-3.
The mini-batch size determines the number of filters. Zero-pad the inputs to each convolutional layer
so that the feature maps remain the same size as the input after each convolution. He's method [3 on
page 9-22] initializes the weights to random values so that there is asymmetry in neuron learning.
Each convolutional layer is followed by a ReLU layer, which introduces nonlinearity in the network.

convLayer = convolution2dLayer(3,64,Padding=1, ...
    WeightsInitializer="he",BiasInitializer="zeros",Name="Conv1");

Specify a ReLU layer.

relLayer = reluLayer(Name="ReLU1");

The middle layers contain 18 alternating convolutional and rectified linear unit layers. Every
convolutional layer contains 64 filters of size 3-by-3-by-64, where a filter operates on a 3-by-3 spatial
region across 64 channels. As before, a ReLU layer follows every convolutional layer.

middleLayers = [convLayer relLayer];
for layerNumber = 2:networkDepth-1
    convLayer = convolution2dLayer(3,64,Padding=[1 1], ...
        WeightsInitializer="he",BiasInitializer="zeros", ...
        Name="Conv"+num2str(layerNumber));
    
    relLayer = reluLayer(Name="ReLU"+num2str(layerNumber));
    middleLayers = [middleLayers convLayer relLayer];    
end

The penultimate layer is a convolutional layer with a single filter of size 3-by-3-by-64 that
reconstructs the image.

convLayer = convolution2dLayer(3,1,Padding=[1 1], ...
    WeightsInitializer="he",BiasInitializer="zeros", ...
    NumChannels=64,Name="Conv"+num2str(networkDepth));

The last layer is a regression layer instead of a ReLU layer. The regression layer computes the mean-
squared error between the residual image and network prediction.

finalLayers = [convLayer regressionLayer(Name="FinalRegressionLayer")];

Concatenate all the layers to form the VDSR network.

layers = [firstLayer middleLayers finalLayers];

Specify Training Options

Train the network using stochastic gradient descent with momentum (SGDM) optimization. Specify
the hyperparameter settings for SGDM by using the trainingOptions function. The learning rate is
initially 0.1 and decreased by a factor of 10 every 10 epochs. Train for 100 epochs.

Training a deep network is time-consuming. Accelerate the training by specifying a high learning
rate. However, this can cause the gradients of the network to explode or grow uncontrollably,

9 Image Processing Examples

9-12



preventing the network from training successfully. To keep the gradients in a meaningful range,
enable gradient clipping by specifying "GradientThreshold" as 0.01, and specify
"GradientThresholdMethod" to use the L2-norm of the gradients.

maxEpochs = 100;
epochIntervals = 1;
initLearningRate = 0.1;
learningRateFactor = 0.1;
l2reg = 0.0001;
miniBatchSize = 64;
options = trainingOptions("sgdm", ...
    Momentum=0.9, ...
    InitialLearnRate=initLearningRate, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=10, ...
    LearnRateDropFactor=learningRateFactor, ...
    L2Regularization=l2reg, ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    GradientThresholdMethod="l2norm", ...
    GradientThreshold=0.01, ...
    Plots="training-progress", ...
    Verbose=false);

Train the Network

By default, the example loads a pretrained version of the VDSR network that has been trained to
super-resolve images for scale factors 2, 3 and 4. The pretrained network enables you to perform
super-resolution of test images without waiting for training to complete.

To train the VDSR network, set the doTraining variable in the following code to true. Train the
network using the trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 6 hours on an NVIDIA Titan X.

doTraining = ;
if doTraining
    net = trainNetwork(dsTrain,layers,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save("trainedVDSR-"+modelDateTime+".mat","net");
else
    load("trainedVDSRNet.mat");
end

Perform Single Image Super-Resolution Using VDSR Network

To perform single image super-resolution (SISR) using the VDSR network, follow the remaining steps
of this example:

• Create a sample low-resolution image from a high-resolution reference image.
• Perform SISR on the low-resolution image using bicubic interpolation, a traditional image

processing solution that does not rely on deep learning.
• Perform SISR on the low-resolution image using the VDSR neural network.

 Increase Image Resolution Using Deep Learning

9-13



• Visually compare the reconstructed high-resolution images using bicubic interpolation and VDSR.
• Evaluate the quality of the super-resolved images by quantifying the similarity of the images to the

high-resolution reference image.

Create Sample Low-Resolution Image

The test data set, testImages, contains 20 undistorted images shipped in Image Processing
Toolbox™. Load the images into an imageDatastore and display the images in a montage.

fileNames = ["sherlock.jpg","peacock.jpg","fabric.png","greens.jpg", ...
    "hands1.jpg","kobi.png","lighthouse.png","office_4.jpg", ...
    "onion.png","pears.png","yellowlily.jpg","indiancorn.jpg", ...
    "flamingos.jpg","sevilla.jpg","llama.jpg","parkavenue.jpg", ...
    "strawberries.jpg","trailer.jpg","wagon.jpg","football.jpg"];
filePath = fullfile(matlabroot,"toolbox","images","imdata")+filesep;
filePathNames = strcat(filePath,fileNames);
testImages = imageDatastore(filePathNames);

Display the test images as a montage.

montage(testImages)

9 Image Processing Examples

9-14



Select one of the test images to use for testing the super-resolution network.

testImage = ;
Ireference = imread(testImage);
Ireference = im2double(Ireference);
imshow(Ireference)
title("High-Resolution Reference Image")

 Increase Image Resolution Using Deep Learning

9-15



Create a low-resolution version of the high-resolution reference image by using imresize with a
scaling factor of 0.25. The high-frequency components of the image are lost during the downscaling.

scaleFactor = 0.25;
Ilowres = imresize(Ireference,scaleFactor,"bicubic");
imshow(Ilowres)
title("Low-Resolution Image")

9 Image Processing Examples

9-16



Improve Image Resolution Using Bicubic Interpolation

A standard way to increase image resolution without deep learning is to use bicubic interpolation.
Upscale the low-resolution image using bicubic interpolation so that the resulting high-resolution
image is the same size as the reference image.

[nrows,ncols,np] = size(Ireference);
Ibicubic = imresize(Ilowres,[nrows ncols],"bicubic");
imshow(Ibicubic)
title("High-Resolution Image Obtained Using Bicubic Interpolation")

 Increase Image Resolution Using Deep Learning

9-17



Improve Image Resolution Using Pretrained VDSR Network

Recall that VDSR is trained using only the luminance channel of an image because human perception
is more sensitive to changes in brightness than to changes in color.

Convert the low-resolution image from the RGB color space to luminance (Iy) and chrominance (Icb
and Icr) channels by using the rgb2ycbcr (Image Processing Toolbox) function.

Iycbcr = rgb2ycbcr(Ilowres);
Iy = Iycbcr(:,:,1);
Icb = Iycbcr(:,:,2);
Icr = Iycbcr(:,:,3);

Upscale the luminance and two chrominance channels using bicubic interpolation. The upsampled
chrominance channels, Icb_bicubic and Icr_bicubic, require no further processing.

Iy_bicubic = imresize(Iy,[nrows ncols],"bicubic");
Icb_bicubic = imresize(Icb,[nrows ncols],"bicubic");
Icr_bicubic = imresize(Icr,[nrows ncols],"bicubic");

Pass the upscaled luminance component, Iy_bicubic, through the trained VDSR network. Observe
the activations from the final layer (a regression layer). The output of the network is the desired
residual image.

Iresidual = activations(net,Iy_bicubic,41);
Iresidual = double(Iresidual);

9 Image Processing Examples

9-18



imshow(Iresidual,[])
title("Residual Image from VDSR")

Add the residual image to the upscaled luminance component to get the high-resolution VDSR
luminance component.

Isr = Iy_bicubic + Iresidual;

Concatenate the high-resolution VDSR luminance component with the upscaled color components.
Convert the image to the RGB color space by using the ycbcr2rgb (Image Processing Toolbox)
function. The result is the final high-resolution color image using VDSR.

Ivdsr = ycbcr2rgb(cat(3,Isr,Icb_bicubic,Icr_bicubic));
imshow(Ivdsr)
title("High-Resolution Image Obtained Using VDSR")

 Increase Image Resolution Using Deep Learning

9-19



Visual and Quantitative Comparison

To get a better visual understanding of the high-resolution images, examine a small region inside
each image. Specify a region of interest (ROI) using vector roi in the format [x y width height]. The
elements define the x- and y-coordinate of the top left corner, and the width and height of the ROI.

roi = [360 50 400 350];

Crop the high-resolution images to this ROI, and display the result as a montage. The VDSR image
has clearer details and sharper edges than the high-resolution image created using bicubic
interpolation.

montage({imcrop(Ibicubic,roi),imcrop(Ivdsr,roi)})
title("High-Resolution Results Using Bicubic Interpolation (Left) vs. VDSR (Right)");

9 Image Processing Examples

9-20



Use image quality metrics to quantitatively compare the high-resolution image using bicubic
interpolation to the VDSR image. The reference image is the original high-resolution image,
Ireference, before preparing the sample low-resolution image.

Measure the peak signal-to-noise ratio (PSNR) of each image against the reference image. Larger
PSNR values generally indicate better image quality. See psnr (Image Processing Toolbox) for more
information about this metric.

bicubicPSNR = psnr(Ibicubic,Ireference)

bicubicPSNR = 38.4747

vdsrPSNR = psnr(Ivdsr,Ireference)

vdsrPSNR = 39.2346

Measure the structural similarity index (SSIM) of each image. SSIM assesses the visual impact of
three characteristics of an image: luminance, contrast and structure, against a reference image. The
closer the SSIM value is to 1, the better the test image agrees with the reference image. See ssim
(Image Processing Toolbox) for more information about this metric.

bicubicSSIM = ssim(Ibicubic,Ireference)

bicubicSSIM = 0.9861

vdsrSSIM = ssim(Ivdsr,Ireference)

vdsrSSIM = 0.9874

Measure perceptual image quality using the Naturalness Image Quality Evaluator (NIQE). Smaller
NIQE scores indicate better perceptual quality. See niqe (Image Processing Toolbox) for more
information about this metric.

bicubicNIQE = niqe(Ibicubic)

 Increase Image Resolution Using Deep Learning

9-21



bicubicNIQE = 5.1721

vdsrNIQE = niqe(Ivdsr)

vdsrNIQE = 4.7612

Calculate the average PSNR and SSIM of the entire set of test images for the scale factors 2, 3, and
4. For simplicity, you can use the helper function, vdsrMetrics, to compute the average metrics.
This function is attached to the example as a supporting file.

scaleFactors = [2 3 4];
vdsrMetrics(net,testImages,scaleFactors);

Results for Scale factor 2

Average PSNR for Bicubic = 31.467070
Average PSNR for VDSR = 31.481973
Average SSIM for Bicubic = 0.935820
Average SSIM for VDSR = 0.947057

Results for Scale factor 3

Average PSNR for Bicubic = 28.107057
Average PSNR for VDSR = 28.430546
Average SSIM for Bicubic = 0.883927
Average SSIM for VDSR = 0.894634

Results for Scale factor 4

Average PSNR for Bicubic = 27.066129
Average PSNR for VDSR = 27.846590
Average SSIM for Bicubic = 0.863270
Average SSIM for VDSR = 0.878101

VDSR has better metric scores than bicubic interpolation for each scale factor.

References

[1] Kim, J., J. K. Lee, and K. M. Lee. "Accurate Image Super-Resolution Using Very Deep Convolutional
Networks." Proceedings of the IEEE® Conference on Computer Vision and Pattern Recognition.
2016, pp. 1646-1654.

[2] Grubinger, M., P. Clough, H. Müller, and T. Deselaers. "The IAPR TC-12 Benchmark: A New
Evaluation Resource for Visual Information Systems." Proceedings of the OntoImage 2006 Language
Resources For Content-Based Image Retrieval. Genoa, Italy. Vol. 5, May 2006, p. 10.

[3] He, K., X. Zhang, S. Ren, and J. Sun. "Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification." Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 1026-1034.

See Also
trainingOptions | trainNetwork | transform | combine | activations |
imageDataAugmenter | imageDatastore

9 Image Processing Examples

9-22



More About
• “Datastores for Deep Learning” on page 20-2
• “Preprocess Images for Deep Learning” on page 20-16
• “List of Deep Learning Layers” on page 1-43

 Increase Image Resolution Using Deep Learning

9-23



JPEG Image Deblocking Using Deep Learning

This example shows how to reduce JPEG compression artifacts in an image using a denoising
convolutional neural network (DnCNN).

Image compression is used to reduce the memory footprint of an image. One popular and powerful
compression method is employed by the JPEG image format, which uses a quality factor to specify the
amount of compression. Reducing the quality value results in higher compression and a smaller
memory footprint, at the expense of visual quality of the image.

JPEG compression is lossy, meaning that the compression process causes the image to lose
information. For JPEG images, this information loss appears as blocking artifacts in the image. As
shown in the figure, more compression results in more information loss and stronger artifacts.
Textured regions with high-frequency content, such as the grass and clouds, look blurry. Sharp edges,
such as the roof of the house and the guardrails atop the lighthouse, exhibit ringing.

JPEG deblocking is the process of reducing the effects of compression artifacts in JPEG images.
Several JPEG deblocking methods exist, including more effective methods that use deep learning.
This example implements one such deep learning-based method that attempts to minimize the effect
of JPEG compression artifacts.

The DnCNN Network

This example uses a built-in deep feed-forward convolutional neural network, called DnCNN. The
network was primarily designed to remove noise from images. However, the DnCNN architecture can
also be trained to remove JPEG compression artifacts or increase image resolution.

The reference paper [1 on page 9-36] employs a residual learning strategy, meaning that the DnCNN
network learns to estimate the residual image. A residual image is the difference between a pristine
image and a distorted copy of the image. The residual image contains information about the image
distortion. For this example, distortion appears as JPEG blocking artifacts.

The DnCNN network is trained to detect the residual image from the luminance of a color image. The
luminance channel of an image, Y, represents the brightness of each pixel through a linear

9 Image Processing Examples

9-24



combination of the red, green, and blue pixel values. In contrast, the two chrominance channels of an
image, Cb and Cr, are different linear combinations of the red, green, and blue pixel values that
represent color-difference information. DnCNN is trained using only the luminance channel because
human perception is more sensitive to changes in brightness than changes in color.

If YOriginal is the luminance of the pristine image and YCompressed is the luminance of the image
containing JPEG compression artifacts, then the input to the DnCNN network is YCompressed and the
network learns to predict YResidual = YCompressed− YOriginal from the training data.

Once the DnCNN network learns how to estimate a residual image, it can reconstruct an undistorted
version of a compressed JPEG image by adding the residual image to the compressed luminance
channel, then converting the image back to the RGB color space.

Download Training Data

Download the IAPR TC-12 Benchmark, which consists of 20,000 still natural images [2 on page 9-
36]. The data set includes photos of people, animals, cities, and more. The size of the data file is
~1.8 GB. If you do not want to download the training data or train the network, then you can load the
pretrained DnCNN network by typing load("trainedJPEGDnCNN.mat") at the command line.
Then, go directly to the Perform JPEG Deblocking Using DnCNN Network on page 9-29 section in
this example.

Use the helper function, downloadIAPRTC12Data, to download the data. This function is attached to
the example as a supporting file. Specify dataDir as the desired location of the data.

dataDir = ;
downloadIAPRTC12Data(dataDir);

This example will train the network with a small subset of the IAPR TC-12 Benchmark data. Load the
imageCLEF training data. All images are 32-bit JPEG color images.

 JPEG Image Deblocking Using Deep Learning

9-25



trainImagesDir = fullfile(dataDir,"iaprtc12","images","00");
exts = [".jpg",".bmp",".png"];
imdsPristine = imageDatastore(trainImagesDir,FileExtensions=exts);

List the number of training images.

numel(imdsPristine.Files)

ans = 251

Prepare Training Data

To create a training data set, read in pristine images and write out images in the JPEG file format
with various levels of compression.

Specify the JPEG image quality values used to render image compression artifacts. Quality values
must be in the range [0, 100]. Small quality values result in more compression and stronger
compression artifacts. Use a denser sampling of small quality values so the training data has a broad
range of compression artifacts.

JPEGQuality = [5:5:40 50 60 70 80];

The compressed images are stored on disk as MAT files in the directory compressedImagesDir. The
computed residual images are stored on disk as MAT files in the directory residualImagesDir. The
MAT files are stored as data type double for greater precision when training the network.

compressedImagesDir = fullfile(dataDir,"iaprtc12","JPEGDeblockingData","compressedImages");
residualImagesDir = fullfile(dataDir,"iaprtc12","JPEGDeblockingData","residualImages");

Use the helper function createJPEGDeblockingTrainingSet to preprocess the training data. This
function is attached to the example as a supporting file.

For each pristine training image, the helper function writes a copy of the image with quality factor
100 to use as a reference image and copies of the image with each quality factor to use as the
network inputs. The function computes the luminance (Y) channel of the reference and compressed
images in data type double for greater precision when calculating the residual images. The
compressed images are stored on disk as .MAT files in the directory compressedDirName. The
computed residual images are stored on disk as .MAT files in the directory residualDirName.

[compressedDirName,residualDirName] = createJPEGDeblockingTrainingSet(imdsPristine,JPEGQuality);

Create Random Patch Extraction Datastore for Training

Use a random patch extraction datastore to feed the training data to the network. This datastore
extracts random corresponding patches from two image datastores that contain the network inputs
and desired network responses.

In this example, the network inputs are the compressed images. The desired network responses are
the residual images. Create an image datastore called imdsCompressed from the collection of
compressed image files. Create an image datastore called imdsResidual from the collection of
computed residual image files. Both datastores require a helper function, matRead, to read the image
data from the image files. This function is attached to the example as a supporting file.

imdsCompressed = imageDatastore(compressedDirName,FileExtensions=".mat",ReadFcn=@matRead);
imdsResidual = imageDatastore(residualDirName,FileExtensions=".mat",ReadFcn=@matRead);

Create an imageDataAugmenter that specifies the parameters of data augmentation. Use data
augmentation during training to vary the training data, which effectively increases the amount of

9 Image Processing Examples

9-26



available training data. Here, the augmenter specifies random rotation by 90 degrees and random
reflections in the x-direction.

augmenter = imageDataAugmenter( ...
    RandRotation=@()randi([0,1],1)*90, ...
    RandXReflection=true);

Create the randomPatchExtractionDatastore (Image Processing Toolbox) from the two image
datastores. Specify a patch size of 50-by-50 pixels. Each image generates 128 random patches of size
50-by-50 pixels. Specify a mini-batch size of 128.

patchSize = 50;
patchesPerImage = 128;
dsTrain = randomPatchExtractionDatastore(imdsCompressed,imdsResidual,patchSize, ...
    PatchesPerImage=patchesPerImage, ...
    DataAugmentation=augmenter);
dsTrain.MiniBatchSize = patchesPerImage;

The random patch extraction datastore dsTrain provides mini-batches of data to the network at
iteration of the epoch. Preview the result of reading from the datastore.

inputBatch = preview(dsTrain);
disp(inputBatch)

      InputImage      ResponseImage 
    ______________    ______________

    {50×50 double}    {50×50 double}
    {50×50 double}    {50×50 double}
    {50×50 double}    {50×50 double}
    {50×50 double}    {50×50 double}
    {50×50 double}    {50×50 double}
    {50×50 double}    {50×50 double}
    {50×50 double}    {50×50 double}
    {50×50 double}    {50×50 double}

Set up DnCNN Layers

Create the layers of the built-in DnCNN network by using the dnCNNLayers (Image Processing
Toolbox) function. By default, the network depth (the number of convolution layers) is 20.

layers = dnCNNLayers

layers = 
  1×59 Layer array with layers:

     1   'InputLayer'             Image Input           50×50×1 images
     2   'Conv1'                  Convolution           64 3×3×1 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'ReLU1'                  ReLU                  ReLU
     4   'Conv2'                  Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
     5   'BNorm2'                 Batch Normalization   Batch normalization with 64 channels
     6   'ReLU2'                  ReLU                  ReLU
     7   'Conv3'                  Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
     8   'BNorm3'                 Batch Normalization   Batch normalization with 64 channels
     9   'ReLU3'                  ReLU                  ReLU
    10   'Conv4'                  Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    11   'BNorm4'                 Batch Normalization   Batch normalization with 64 channels
    12   'ReLU4'                  ReLU                  ReLU

 JPEG Image Deblocking Using Deep Learning

9-27



    13   'Conv5'                  Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    14   'BNorm5'                 Batch Normalization   Batch normalization with 64 channels
    15   'ReLU5'                  ReLU                  ReLU
    16   'Conv6'                  Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    17   'BNorm6'                 Batch Normalization   Batch normalization with 64 channels
    18   'ReLU6'                  ReLU                  ReLU
    19   'Conv7'                  Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    20   'BNorm7'                 Batch Normalization   Batch normalization with 64 channels
    21   'ReLU7'                  ReLU                  ReLU
    22   'Conv8'                  Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    23   'BNorm8'                 Batch Normalization   Batch normalization with 64 channels
    24   'ReLU8'                  ReLU                  ReLU
    25   'Conv9'                  Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    26   'BNorm9'                 Batch Normalization   Batch normalization with 64 channels
    27   'ReLU9'                  ReLU                  ReLU
    28   'Conv10'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    29   'BNorm10'                Batch Normalization   Batch normalization with 64 channels
    30   'ReLU10'                 ReLU                  ReLU
    31   'Conv11'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    32   'BNorm11'                Batch Normalization   Batch normalization with 64 channels
    33   'ReLU11'                 ReLU                  ReLU
    34   'Conv12'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    35   'BNorm12'                Batch Normalization   Batch normalization with 64 channels
    36   'ReLU12'                 ReLU                  ReLU
    37   'Conv13'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    38   'BNorm13'                Batch Normalization   Batch normalization with 64 channels
    39   'ReLU13'                 ReLU                  ReLU
    40   'Conv14'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    41   'BNorm14'                Batch Normalization   Batch normalization with 64 channels
    42   'ReLU14'                 ReLU                  ReLU
    43   'Conv15'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    44   'BNorm15'                Batch Normalization   Batch normalization with 64 channels
    45   'ReLU15'                 ReLU                  ReLU
    46   'Conv16'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    47   'BNorm16'                Batch Normalization   Batch normalization with 64 channels
    48   'ReLU16'                 ReLU                  ReLU
    49   'Conv17'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    50   'BNorm17'                Batch Normalization   Batch normalization with 64 channels
    51   'ReLU17'                 ReLU                  ReLU
    52   'Conv18'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    53   'BNorm18'                Batch Normalization   Batch normalization with 64 channels
    54   'ReLU18'                 ReLU                  ReLU
    55   'Conv19'                 Convolution           64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    56   'BNorm19'                Batch Normalization   Batch normalization with 64 channels
    57   'ReLU19'                 ReLU                  ReLU
    58   'Conv20'                 Convolution           1 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
    59   'FinalRegressionLayer'   Regression Output     mean-squared-error

Select Training Options

Train the network using stochastic gradient descent with momentum (SGDM) optimization. Specify
the hyperparameter settings for SGDM by using the trainingOptions function.

Training a deep network is time-consuming. Accelerate the training by specifying a high learning
rate. However, this can cause the gradients of the network to explode or grow uncontrollably,
preventing the network from training successfully. To keep the gradients in a meaningful range,

9 Image Processing Examples

9-28



enable gradient clipping by setting "GradientThreshold" to 0.005, and specify
"GradientThresholdMethod" to use the absolute value of the gradients.

maxEpochs = 30;
initLearningRate = 0.1;
l2reg = 0.0001;
batchSize = 64;

options = trainingOptions("sgdm", ...
    Momentum=0.9, ...
    InitialLearnRate=initLearningRate, ...
    LearnRateSchedule="piecewise", ...
    GradientThresholdMethod="absolute-value", ...
    GradientThreshold=0.005, ...
    L2Regularization=l2reg, ...
    MiniBatchSize=batchSize, ...
    MaxEpochs=maxEpochs, ...
    Plots="training-progress", ...
    Verbose=false);

Train the Network

By default, the example loads a pretrained DnCNN network. The pretrained network enables you to
perform JPEG deblocking without waiting for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the DnCNN
network using the trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 40 hours on an NVIDIA™ Titan X.

doTraining = ; 
if doTraining  
    [net,info] = trainNetwork(dsTrain,layers,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save("trainedJPEGDnCNN-"+modelDateTime+".mat","net");
else 
    load("trainedJPEGDnCNN.mat"); 
end

You can now use the DnCNN network to remove JPEG compression artifacts from images.

Perform JPEG Deblocking Using DnCNN Network

To perform JPEG deblocking using DnCNN, follow the remaining steps of this example:

• Create sample test images with JPEG compression artifacts at three different quality levels.
• Remove the compression artifacts using the DnCNN network.
• Visually compare the images before and after deblocking.
• Evaluate the quality of the compressed and deblocked images by quantifying their similarity to the

undistorted reference image.

 JPEG Image Deblocking Using Deep Learning

9-29



Create Sample Images with Blocking Artifacts

The test data set, testImages, contains 20 undistorted images shipped in Image Processing
Toolbox™. Load the images into an imageDatastore.

fileNames = ["sherlock.jpg","peacock.jpg","fabric.png","greens.jpg", ...
    "hands1.jpg","kobi.png","lighthouse.png","office_4.jpg", ...
    "onion.png","pears.png","yellowlily.jpg","indiancorn.jpg", ...
    "flamingos.jpg","sevilla.jpg","llama.jpg","parkavenue.jpg", ...
    "strawberries.jpg","trailer.jpg","wagon.jpg","football.jpg"];
filePath = fullfile(matlabroot,"toolbox","images","imdata")+filesep;
filePathNames = strcat(filePath,fileNames);
testImages = imageDatastore(filePathNames);

Display the test images as a montage.

montage(testImages)

Select one of the test images to use for testing the JPEG deblocking network.

9 Image Processing Examples

9-30



testImage = ;
Ireference = imread(testImage);
imshow(Ireference)
title("Uncompressed Reference Image")

 JPEG Image Deblocking Using Deep Learning

9-31



Create three compressed test images with the JPEG Quality values of 10, 20, and 50.

9 Image Processing Examples

9-32



imwrite(Ireference,fullfile(tempdir,"testQuality10.jpg"),"Quality",10);
imwrite(Ireference,fullfile(tempdir,"testQuality20.jpg"),"Quality",20);
imwrite(Ireference,fullfile(tempdir,"testQuality50.jpg"),"Quality",50);

Preprocess Compressed Images

Read the compressed versions of the image into the workspace.

I10 = imread(fullfile(tempdir,"testQuality10.jpg"));
I20 = imread(fullfile(tempdir,"testQuality20.jpg"));
I50 = imread(fullfile(tempdir,"testQuality50.jpg"));

Display the compressed images as a montage.

montage({I50,I20,I10},Size=[1 3])
title("JPEG-Compressed Images with Quality Factor: 50, 20 and 10 (left to right)")

Recall that DnCNN is trained using only the luminance channel of an image because human
perception is more sensitive to changes in brightness than changes in color. Convert the JPEG-
compressed images from the RGB color space to the YCbCr color space using the rgb2ycbcr (Image
Processing Toolbox) function.

I10ycbcr = rgb2ycbcr(I10);
I20ycbcr = rgb2ycbcr(I20);
I50ycbcr = rgb2ycbcr(I50);

Apply the DnCNN Network

In order to perform the forward pass of the network, use the denoiseImage (Image Processing
Toolbox) function. This function uses exactly the same training and testing procedures for denoising
an image. You can think of the JPEG compression artifacts as a type of image noise.

I10y_predicted = denoiseImage(I10ycbcr(:,:,1),net);
I20y_predicted = denoiseImage(I20ycbcr(:,:,1),net);
I50y_predicted = denoiseImage(I50ycbcr(:,:,1),net);

 JPEG Image Deblocking Using Deep Learning

9-33



The chrominance channels do not need processing. Concatenate the deblocked luminance channel
with the original chrominance channels to obtain the deblocked image in the YCbCr color space.

I10ycbcr_predicted = cat(3,I10y_predicted,I10ycbcr(:,:,2:3));
I20ycbcr_predicted = cat(3,I20y_predicted,I20ycbcr(:,:,2:3));
I50ycbcr_predicted = cat(3,I50y_predicted,I50ycbcr(:,:,2:3));

Convert the deblocked YCbCr image to the RGB color space by using the ycbcr2rgb (Image
Processing Toolbox) function.

I10_predicted = ycbcr2rgb(I10ycbcr_predicted);
I20_predicted = ycbcr2rgb(I20ycbcr_predicted);
I50_predicted = ycbcr2rgb(I50ycbcr_predicted);

Display the deblocked images as a montage.

montage({I50_predicted,I20_predicted,I10_predicted},Size=[1 3])
title("Deblocked Images with Quality Factor 50, 20 and 10 (Left to Right)")

To get a better visual understanding of the improvements, examine a smaller region inside each
image. Specify a region of interest (ROI) using vector roi in the format [x y width height]. The
elements define the x- and y-coordinate of the top left corner, and the width and height of the ROI.

roi = [30 440 100 80];

Crop the compressed images to this ROI, and display the result as a montage.

i10 = imcrop(I10,roi);
i20 = imcrop(I20,roi);
i50 = imcrop(I50,roi);
montage({i50 i20 i10},Size=[1 3])
title("Patches from JPEG-Compressed Images with Quality Factor 50, 20 and 10 (Left to Right)")

9 Image Processing Examples

9-34



Crop the deblocked images to this ROI, and display the result as a montage.

i10predicted = imcrop(I10_predicted,roi);
i20predicted = imcrop(I20_predicted,roi);
i50predicted = imcrop(I50_predicted,roi);
montage({i50predicted,i20predicted,i10predicted},Size=[1 3])
title("Patches from Deblocked Images with Quality Factor 50, 20 and 10 (Left to Right)")

Quantitative Comparison

Quantify the quality of the deblocked images through four metrics. You can use the
jpegDeblockingMetrics helper function to compute these metrics for compressed and deblocked
images at the quality factors 10, 20, and 50. This function is attached to the example as a supporting
file.

• Structural Similarity Index (SSIM). SSIM assesses the visual impact of three characteristics of an
image: luminance, contrast and structure, against a reference image. The closer the SSIM value is
to 1, the better the test image agrees with the reference image. Here, the reference image is the
undistorted original image, Ireference, before JPEG compression. See ssim (Image Processing
Toolbox) for more information about this metric.

• Peak signal-to-noise ratio (PSNR). The larger the PSNR value, the stronger the signal compared to
the distortion. See psnr (Image Processing Toolbox) for more information about this metric.

• Naturalness Image Quality Evaluator (NIQE). NIQE measures perceptual image quality using a
model trained from natural scenes. Smaller NIQE scores indicate better perceptual quality. See
niqe (Image Processing Toolbox) for more information about this metric.

 JPEG Image Deblocking Using Deep Learning

9-35



• Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). BRISQUE measures perceptual
image quality using a model trained from natural scenes with image distortion. Smaller BRISQUE
scores indicate better perceptual quality. See brisque (Image Processing Toolbox) for more
information about this metric.

jpegDeblockingMetrics(Ireference,I10,I20,I50,I10_predicted,I20_predicted,I50_predicted)

------------------------------------------
SSIM Comparison
===============
I10: 0.90624    I10_predicted: 0.91286
I20: 0.94904    I20_predicted: 0.95444
I50: 0.97238    I50_predicted: 0.97482
------------------------------------------
PSNR Comparison
===============
I10: 26.6046    I10_predicted: 27.0793
I20: 28.8015    I20_predicted: 29.3378
I50: 31.4512    I50_predicted: 31.8584
------------------------------------------
NIQE Comparison
===============
I10: 7.2194    I10_predicted: 3.9469
I20: 4.5158    I20_predicted: 3.0681
I50: 2.8874    I50_predicted: 2.4107
NOTE: Smaller NIQE score signifies better perceptual quality
------------------------------------------
BRISQUE Comparison
==================
I10: 52.372    I10_predicted: 38.9272
I20: 45.3772    I20_predicted: 30.8993
I50: 27.7093    I50_predicted: 24.3847
NOTE: Smaller BRISQUE score signifies better perceptual quality

References

[1] Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a Gaussian Denoiser: Residual
Learning of Deep CNN for Image Denoising." IEEE® Transactions on Image Processing. Feb 2017.

[2] Grubinger, M., P. Clough, H. Müller, and T. Deselaers. "The IAPR TC-12 Benchmark: A New
Evaluation Resource for Visual Information Systems." Proceedings of the OntoImage 2006 Language
Resources For Content-Based Image Retrieval. Genoa, Italy. Vol. 5, May 2006, p. 10.

See Also
rgb2ycbcr | ycbcr2rgb | dnCNNLayers | denoiseImage | trainingOptions | trainNetwork |
randomPatchExtractionDatastore

More About
• “Preprocess Images for Deep Learning” on page 20-16
• “Datastores for Deep Learning” on page 20-2
• “List of Deep Learning Layers” on page 1-43

9 Image Processing Examples

9-36



Image Processing Operator Approximation Using Deep
Learning

This example shows how to approximate an image filtering operation using a multiscale context
aggregation network (CAN).

Operator approximation finds alternative ways to process images such that the result resembles the
output from a conventional image processing operation or pipeline. The goal of operator
approximation is often to reduce the time required to process an image.

Several classical and deep learning techniques have been proposed to perform operator
approximation. Some classical techniques improve the efficiency of a single algorithm but cannot be
generalized to other operations. Another common technique approximates a wide range of operations
by applying the operator to a low resolution copy of an image, but the loss of high-frequency content
limits the accuracy of the approximation.

Deep learning solutions enable the approximation of more general and complex operations. For
example, the multiscale context aggregation network (CAN) presented by Q. Chen [1 on page 9-50]
can approximate multiscale tone mapping, photographic style transfer, nonlocal dehazing, and pencil
drawing. Multiscale CAN trains on full-resolution images for greater accuracy in processing high-
frequency details. After the network is trained, the network can bypass the conventional processing
operation and process images directly.

This example explores how to train a multiscale CAN to approximate a bilateral image filtering
operation, which reduces image noise while preserving edge sharpness. The example presents the
complete training and inference workflow, which includes the process of creating a training
datastore, selecting training options, training the network, and using the network to process test
images.

The Operator Approximation Network

The multiscale CAN is trained to minimize the l2 loss between the conventional output of an image
processing operation and the network response after processing the input image using multiscale
context aggregation. Multiscale context aggregation looks for information about each pixel from
across the entire image, rather than limiting the search to a small neighborhood surrounding the
pixel.

 Image Processing Operator Approximation Using Deep Learning

9-37



To help the network learn global image properties, the multiscale CAN architecture has a large
receptive field. The first and last layers have the same size because the operator should not change
the size of the image. Successive intermediate layers are dilated by exponentially increasing scale
factors (hence the "multiscale" nature of the CAN). Dilation enables the network to look for spatially
separated features at various spatial frequencies, without reducing the resolution of the image. After
each convolution layer, the network uses adaptive normalization to balance the impact of batch
normalization and the identity mapping on the approximated operator.

Download Training and Test Data

Download the IAPR TC-12 Benchmark, which consists of 20,000 still natural images [2 on page 9-
50]. The data set includes photos of people, animals, cities, and more. The size of the data file is
~1.8 GB. If you do not want to download the training data set needed to train the network, then you
can load the pretrained CAN by typing load("trainedBilateralFilterNet.mat"); at the
command line. Then, go directly to the Perform Bilateral Filtering Approximation Using Multiscale
CAN on page 9-43 section in this example.

Use the helper function, downloadIAPRTC12Data, to download the data. This function is attached to
the example as a supporting file. Specify dataDir as the desired location of the data.

dataDir = ;
downloadIAPRTC12Data(dataDir);

This example trains the network with small subset of the IAPRTC-12 Benchmark data.

trainImagesDir = fullfile(dataDir,"iaprtc12","images","39");
exts = [".jpg",".bmp",".png"];
pristineImages = imageDatastore(trainImagesDir,FileExtensions=exts);

List the number of training images.

9 Image Processing Examples

9-38



numel(pristineImages.Files)

ans = 916

Prepare Training Data

To create a training data set, read in pristine images and write out images that have been bilateral
filtered. The filtered images are stored on disk in the directory specified by preprocessDataDir.

preprocessDataDir = trainImagesDir+filesep+"preprocessedDataset";

Use the helper function bilateralFilterDataset to preprocess the training data. This function is
attached to the example as a supporting file. The helper function performs these operations for each
pristine image in inputImages:

• Calculate the degree of smoothing for bilateral filtering. Smoothing the filtered image reduces
image noise.

• Perform bilateral filtering using imbilatfilt (Image Processing Toolbox).
• Save the filtered image to disk using imwrite.

bilateralFilterDataset(pristineImages,preprocessDataDir);

Define Random Patch Extraction Datastore for Training

Use a random patch extraction datastore to feed the training data to the network. This datastore
extracts random corresponding patches from two image datastores that contain the network inputs
and desired network responses.

In this example, the network inputs are the pristine images in pristineImages. The desired
network responses are the processed images after bilateral filtering. Create an image datastore
called bilatFilteredImages from the collection of bilateral filtered image files.

bilatFilteredImages = imageDatastore(preprocessDataDir,FileExtensions=exts);

Create a randomPatchExtractionDatastore (Image Processing Toolbox) from the two image
datastores. Specify a patch size of 256-by-256 pixels. Specify "PatchesPerImage" to extract one
randomly-positioned patch from each pair of images during training. Specify a mini-batch size of one.

miniBatchSize = 1;
patchSize = [256 256];
dsTrain = randomPatchExtractionDatastore(pristineImages,bilatFilteredImages, ...
    patchSize,PatchesPerImage=1);
dsTrain.MiniBatchSize = miniBatchSize;

The randomPatchExtractionDatastore provides mini-batches of data to the network at each
iteration of the epoch. Perform a read operation on the datastore to explore the data.

inputBatch = read(dsTrain);
disp(inputBatch)

       InputImage          ResponseImage  
    _________________    _________________

    {256×256×3 uint8}    {256×256×3 uint8}

Set Up Multiscale CAN Layers

This example defines the multiscale CAN using layers from Deep Learning Toolbox™, including:

 Image Processing Operator Approximation Using Deep Learning

9-39



• imageInputLayer — Image input layer
• convolution2dLayer — 2D convolution layer for convolutional neural networks
• batchNormalizationLayer — Batch normalization layer
• leakyReluLayer — Leaky rectified linear unit layer
• regressionLayer — Regression output layer for a neural network

Two custom scale layers are added to implement an adaptive batch normalization layer. These layers
are attached as supporting files to this example.

• adaptiveNormalizationMu — Scale layer that adjusts the strengths of the batch-normalization
branch

• adaptiveNormalizationLambda — Scale layer that adjusts the strengths of the identity branch

The first layer, imageInputLayer, operates on image patches. The patch size is based on the
network receptive field, which is the spatial image region that affects the response of top-most layer
in the network. Ideally, the network receptive field is the same as the image size so that it can see all
the high level features in the image. For a bilateral filter, the approximation image patch size is fixed
to 256-by-256.

networkDepth = 10;
numberOfFilters = 32;
firstLayer = imageInputLayer([256 256 3],Name="InputLayer",Normalization="none");

The image input layer is followed by a 2-D convolution layer that contains 32 filters of size 3-by-3.
Zero-pad the inputs to each convolution layer so that feature maps remain the same size as the input
after each convolution. Initialize the weights to the identity matrix.

Wgts = zeros(3,3,3,numberOfFilters); 
for ii = 1:3
    Wgts(2,2,ii,ii) = 1;
end
convolutionLayer = convolution2dLayer(3,numberOfFilters,Padding=1, ...
    Weights=Wgts,Name="Conv1");

Each convolution layer is followed by a batch normalization layer and an adaptive normalization scale
layer that adjusts the strengths of the batch-normalization branch. Later, this example will create the
corresponding adaptive normalization scale layer that adjusts the strength of the identity branch. For
now, follow the adaptiveNormalizationMu layer with an addition layer. Finally, specify a leaky
ReLU layer with a scalar multiplier of 0.2 for negative inputs.

batchNorm = batchNormalizationLayer(Name="BN1");
adaptiveMu = adaptiveNormalizationMu(numberOfFilters,"Mu1");
addLayer = additionLayer(2,Name="add1");
leakyrelLayer = leakyReluLayer(0.2,Name="Leaky1");

Specify the middle layers of the network following the same pattern. Successive convolution layers
have a dilation factor that scales exponentially with the network depth.

midLayers = [convolutionLayer batchNorm adaptiveMu addLayer leakyrelLayer];
    
Wgts = zeros(3,3,numberOfFilters,numberOfFilters);
for ii = 1:numberOfFilters
    Wgts(2,2,ii,ii) = 1;
end
    

9 Image Processing Examples

9-40



for layerNumber = 2:networkDepth-2
    dilationFactor = 2^(layerNumber-1);
    padding = dilationFactor;
    conv2dLayer = convolution2dLayer(3,numberOfFilters, ...
        Padding=padding,DilationFactor=dilationFactor, ...
        Weights=Wgts,Name="Conv"+num2str(layerNumber));
    batchNorm = batchNormalizationLayer(Name="BN"+num2str(layerNumber));
    adaptiveMu = adaptiveNormalizationMu(numberOfFilters,"Mu"+num2str(layerNumber));
    addLayer = additionLayer(2,Name="add"+num2str(layerNumber));
    leakyrelLayer = leakyReluLayer(0.2,Name="Leaky"+num2str(layerNumber));
    midLayers = [midLayers conv2dLayer batchNorm adaptiveMu addLayer leakyrelLayer];    
end

Do not apply a dilation factor to the second-to-last convolution layer.

conv2dLayer = convolution2dLayer(3,numberOfFilters, ...
    Padding=1,Weights=Wgts,Name="Conv9");

batchNorm = batchNormalizationLayer(Name="AN9");
adaptiveMu = adaptiveNormalizationMu(numberOfFilters,"Mu9");
addLayer = additionLayer(2,Name="add9");
leakyrelLayer = leakyReluLayer(0.2,Name="Leaky9");
midLayers = [midLayers conv2dLayer batchNorm adaptiveMu addLayer leakyrelLayer];

The last convolution layer has a single filter of size 1-by-1-by-32-by-3 that reconstructs the image.

Wgts = sqrt(2/(9*numberOfFilters))*randn(1,1,numberOfFilters,3);
conv2dLayer = convolution2dLayer(1,3,NumChannels=numberOfFilters, ...
    Weights=Wgts,Name="Conv10");

The last layer is a regression layer instead of a leaky ReLU layer. The regression layer computes the
mean-squared error between the bilateral-filtered image and the network prediction.

finalLayers = [conv2dLayer 
    regressionLayer(Name="FinalRegressionLayer")
];

Concatenate all the layers.

layers = [firstLayer midLayers finalLayers'];
lgraph = layerGraph(layers);

Create skip connections, which act as the identity branch for the adaptive normalization equation.
Connect the skip connections to the addition layers.

skipConv1 = adaptiveNormalizationLambda(numberOfFilters,"Lambda1");
skipConv2 = adaptiveNormalizationLambda(numberOfFilters,"Lambda2");
skipConv3 = adaptiveNormalizationLambda(numberOfFilters,"Lambda3");
skipConv4 = adaptiveNormalizationLambda(numberOfFilters,"Lambda4");
skipConv5 = adaptiveNormalizationLambda(numberOfFilters,"Lambda5");
skipConv6 = adaptiveNormalizationLambda(numberOfFilters,"Lambda6");
skipConv7 = adaptiveNormalizationLambda(numberOfFilters,"Lambda7");
skipConv8 = adaptiveNormalizationLambda(numberOfFilters,"Lambda8");
skipConv9 = adaptiveNormalizationLambda(numberOfFilters,"Lambda9");

lgraph = addLayers(lgraph,skipConv1);
lgraph = connectLayers(lgraph,"Conv1","Lambda1");
lgraph = connectLayers(lgraph,"Lambda1","add1/in2");

 Image Processing Operator Approximation Using Deep Learning

9-41



lgraph = addLayers(lgraph,skipConv2);
lgraph = connectLayers(lgraph,"Conv2","Lambda2");
lgraph = connectLayers(lgraph,"Lambda2","add2/in2");

lgraph = addLayers(lgraph,skipConv3);
lgraph = connectLayers(lgraph,"Conv3","Lambda3");
lgraph = connectLayers(lgraph,"Lambda3","add3/in2");

lgraph = addLayers(lgraph,skipConv4);
lgraph = connectLayers(lgraph,"Conv4","Lambda4");
lgraph = connectLayers(lgraph,"Lambda4","add4/in2");

lgraph = addLayers(lgraph,skipConv5);
lgraph = connectLayers(lgraph,"Conv5","Lambda5");
lgraph = connectLayers(lgraph,"Lambda5","add5/in2");

lgraph = addLayers(lgraph,skipConv6);
lgraph = connectLayers(lgraph,"Conv6","Lambda6");
lgraph = connectLayers(lgraph,"Lambda6","add6/in2");

lgraph = addLayers(lgraph,skipConv7);
lgraph = connectLayers(lgraph,"Conv7","Lambda7");
lgraph = connectLayers(lgraph,"Lambda7","add7/in2");

lgraph = addLayers(lgraph,skipConv8);
lgraph = connectLayers(lgraph,"Conv8","Lambda8");
lgraph = connectLayers(lgraph,"Lambda8","add8/in2");

lgraph = addLayers(lgraph,skipConv9);
lgraph = connectLayers(lgraph,"Conv9","Lambda9");
lgraph = connectLayers(lgraph,"Lambda9","add9/in2");

Visualize the network using the Deep Network Designer app.

deepNetworkDesigner(lgraph)

Specify Training Options

Train the network using the Adam optimizer. Specify the hyperparameter settings by using the
trainingOptions function. Use the default values of 0.9 for "Momentum" and 0.0001 for
"L2Regularization" (weight decay). Specify a constant learning rate of 0.0001. Train for 181
epochs.

maxEpochs = 181;
initLearningRate = 0.0001;
miniBatchSize = 1;

options = trainingOptions("adam", ...
    InitialLearnRate=initLearningRate, ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    Plots="training-progress", ...
    Verbose=false);

9 Image Processing Examples

9-42



Train the Network

By default, the example loads a pretrained multiscale CAN that approximates a bilateral filter. The
pretrained network enables you to perform an approximation of bilateral filtering without waiting for
training to complete.

To train the network, set the doTraining variable in the following code to true. Train the multiscale
CAN using the trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 15 hours on an NVIDIA™ Titan X.

doTraining = ;
if doTraining
    net = trainNetwork(dsTrain,lgraph,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save("trainedBilateralFilterNet-"+modelDateTime+".mat","net");
else
    load("trainedBilateralFilterNet.mat");
end

Perform Bilateral Filtering Approximation Using Multiscale CAN

To process an image using a trained multiscale CAN network that approximates a bilateral filter,
follow the remaining steps of this example. The remainder of the example shows how to:

• Create a sample noisy input image from a reference image.
• Perform conventional bilateral filtering of the noisy image using the imbilatfilt (Image

Processing Toolbox) function.
• Perform an approximation to bilateral filtering on the noisy image using the CAN.
• Visually compare the denoised images from operator approximation and conventional bilateral
filtering.

• Evaluate the quality of the denoised images by quantifying the similarity of the images to the
pristine reference image.

Create Sample Noisy Image

Create a sample noisy image that will be used to compare the results of operator approximation to
conventional bilateral filtering.

The test data set, testImages, contains 20 undistorted images shipped in Image Processing
Toolbox™. Load the images into an imageDatastore and display the images in a montage.

fileNames = ["sherlock.jpg","peacock.jpg","fabric.png","greens.jpg", ...
    "hands1.jpg","kobi.png","lighthouse.png","office_4.jpg", ...
    "onion.png","pears.png","yellowlily.jpg","indiancorn.jpg", ...
    "flamingos.jpg","sevilla.jpg","llama.jpg","parkavenue.jpg", ...
    "strawberries.jpg","trailer.jpg","wagon.jpg","football.jpg"];
filePath = fullfile(matlabroot,"toolbox","images","imdata")+filesep;
filePathNames = strcat(filePath,fileNames);
testImages = imageDatastore(filePathNames);

Display the test images as a montage.

 Image Processing Operator Approximation Using Deep Learning

9-43



montage(testImages)

Select one of the images to use as the reference image for bilateral filtering. Convert the image to
data type uint8.

testImage = ;
Ireference = imread(testImage);
Ireference = im2uint8(Ireference);

You can optionally use your own image as the reference image. Note that the size of the test image
must be at least 256-by-256. If the test image is smaller than 256-by-256, then increase the image
size by using the imresize function. The network also requires an RGB test image. If the test image
is grayscale, then convert the image to RGB by using the cat function to concatenate three copies of
the original image along the third dimension.

Display the reference image.

9 Image Processing Examples

9-44



imshow(Ireference)
title("Pristine Reference Image")

Use the imnoise (Image Processing Toolbox) function to add zero-mean Gaussian white noise with a
variance of 0.00001 to the reference image.

Inoisy = imnoise(Ireference,"gaussian",0.00001);
imshow(Inoisy)
title("Noisy Image")

 Image Processing Operator Approximation Using Deep Learning

9-45



Filter Image Using Bilateral Filtering

Conventional bilateral filtering is a standard way to reduce image noise while preserving edge
sharpness. Use the imbilatfilt (Image Processing Toolbox) function to apply a bilateral filter to
the noisy image. Specify a degree of smoothing equal to the variance of pixel values.

degreeOfSmoothing = var(double(Inoisy(:)));
Ibilat = imbilatfilt(Inoisy,degreeOfSmoothing);
imshow(Ibilat)
title("Denoised Image Obtained Using Bilateral Filtering")

9 Image Processing Examples

9-46



Process Image Using Trained Network

Pass the normalized input image through the trained network and observe the activations from
the final layer (a regression layer). The output of the network is the desired denoised image.

Iapprox = activations(net,Inoisy,"FinalRegressionLayer");

Image Processing Toolbox™ requires floating point images to have pixel values in the range [0, 1].
Use the rescale function to scale the pixel values to this range, then convert the image to uint8.

Iapprox = rescale(Iapprox);
Iapprox = im2uint8(Iapprox);
imshow(Iapprox)
title("Denoised Image Obtained Using Multiscale CAN")

 Image Processing Operator Approximation Using Deep Learning

9-47



Visual and Quantitative Comparison

To get a better visual understanding of the denoised images, examine a small region inside each
image. Specify a region of interest (ROI) using vector roi in the format [x y width height]. The
elements define the x- and y-coordinate of the top left corner, and the width and height of the ROI.

roi = [300 30 50 50];

Crop the images to this ROI, and display the result as a montage. The CAN removes more noise than
conventional bilateral filtering. Both techniques preserve edge sharpness.

montage({imcrop(Ireference,roi),imcrop(Inoisy,roi), ...
    imcrop(Ibilat,roi),imcrop(Iapprox,roi)}, ...
    Size=[1 4]);
title("Reference Image | Noisy Image | Bilateral-Filtered Image | CAN Prediction");

9 Image Processing Examples

9-48



Use image quality metrics to quantitatively compare the noisy input image, the bilateral-filtered
image, and the operator-approximated image. The reference image is the original reference image,
Ireference, before adding noise.

Measure the peak signal-to-noise ratio (PSNR) of each image against the reference image. Larger
PSNR values generally indicate better image quality. See psnr (Image Processing Toolbox) for more
information about this metric.

noisyPSNR = psnr(Inoisy,Ireference);
bilatPSNR = psnr(Ibilat,Ireference);
approxPSNR = psnr(Iapprox,Ireference);
PSNR_Score = [noisyPSNR bilatPSNR approxPSNR]';

Measure the structural similarity index (SSIM) of each image. SSIM assesses the visual impact of
three characteristics of an image: luminance, contrast and structure, against a reference image. The
closer the SSIM value is to 1, the better the test image agrees with the reference image. See ssim
(Image Processing Toolbox) for more information about this metric.

noisySSIM = ssim(Inoisy,Ireference);
bilatSSIM = ssim(Ibilat,Ireference);
approxSSIM = ssim(Iapprox,Ireference);
SSIM_Score = [noisySSIM bilatSSIM approxSSIM]';

Measure perceptual image quality using the Naturalness Image Quality Evaluator (NIQE). Smaller
NIQE scores indicate better perceptual quality. See niqe (Image Processing Toolbox) for more
information about this metric.

noisyNIQE = niqe(Inoisy);
bilatNIQE = niqe(Ibilat);
approxNIQE = niqe(Iapprox);
NIQE_Score = [noisyNIQE bilatNIQE approxNIQE]';

Display the metrics in a table.

table(PSNR_Score,SSIM_Score,NIQE_Score, ...
    RowNames=["Noisy Image","Bilateral Filtering","Operator Approximation"])

ans=3×3 table
                              PSNR_Score    SSIM_Score    NIQE_Score
                              __________    __________    __________

    Noisy Image                 20.283       0.76238        11.611  

 Image Processing Operator Approximation Using Deep Learning

9-49



    Bilateral Filtering         25.774       0.91549        7.4163  
    Operator Approximation      26.181       0.92601        6.1291  

References

[1] Chen, Q. J. Xu, and V. Koltun. "Fast Image Processing with Fully-Convolutional Networks." In
Proceedings of the 2017 IEEE Conference on Computer Vision. Venice, Italy, Oct. 2017, pp.
2516-2525.

[2] Grubinger, M., P. Clough, H. Müller, and T. Deselaers. "The IAPR TC-12 Benchmark: A New
Evaluation Resource for Visual Information Systems." Proceedings of the OntoImage 2006 Language
Resources For Content-Based Image Retrieval. Genoa, Italy. Vol. 5, May 2006, p. 10.

See Also
randomPatchExtractionDatastore | trainNetwork | trainingOptions | layerGraph |
activations | imbilatfilt | imageDatastore

More About
• “Preprocess Images for Deep Learning” on page 20-16
• “Datastores for Deep Learning” on page 20-2
• “List of Deep Learning Layers” on page 1-43

9 Image Processing Examples

9-50



Develop Camera Processing Pipeline Using Deep Learning

This example shows how to convert RAW camera data to an aesthetically pleasing color image using a
U-Net.

DSLRs and many modern phone cameras offer the ability to save data collected directly from the
camera sensor as a RAW file. Each pixel of RAW data corresponds directly to the amount of light
captured by a corresponding camera photosensor. The data depends on fixed characteristics of the
camera hardware, such as the sensitivity of each photosensor to a particular range of wavelengths of
the electromagnetic spectrum. The data also depends on camera acquisition settings such as
exposure time, and factors of the scene such as the light source.

Demosaicing is the only required operation to convert single-channel RAW data to a three-channel
RGB image. However, without additional image processing operations, the resulting RGB image has
subjectively poor visual quality.

A traditional image processing pipeline performs a combination of additional operations including
denoising, linearization, white-balancing, color correction, brightness adjustment, and contrast
adjustment [1 on page 9-71]. The challenge of designing a pipeline lies in refining algorithms to
optimize the subjective appearance of the final RGB image regardless of variations in the scene and
acquisition settings.

Deep learning techniques enable direct RAW to RGB conversion without the necessity of developing a
traditional processing pipeline. For instance, one technique compensates for underexposure when
converting RAW images to RGB [2 on page 9-71]. This example shows how to convert RAW images
from a lower end phone camera to RGB images that approximate the quality of a higher end DSLR
camera.

Download Zurich RAW to RGB Data Set

This example uses the Zurich RAW to RGB data set [3 on page 9-71]. The size of the data set is 22
GB. The data set contains 48,043 spatially registered pairs of RAW and RGB training image patches
of size 448-by-448. The data set contains two separate test sets. One test set consists of 1,204

 Develop Camera Processing Pipeline Using Deep Learning

9-51



spatially registered pairs of RAW and RGB image patches of size 448-by-448. The other test set
consists of unregistered full-resolution RAW and RGB images.

Specify dataDir as the desired location of the data.

dataDir = fullfile(tempdir,"ZurichRAWToRGB");

To download the data set, request access using the Zurich RAW to RGB dataset form. Extract the data
into the directory specified by the dataDir variable. When extracted successfully, dataDir contains
three directories named full_resolution, test, and train.

Create Datastores for Training, Validation, and Testing

Create Datastore for RGB Image Patch Training Data

Create an imageDatastore that reads the target RGB training image patches acquired using a high-
end Canon DSLR.

trainImageDir = fullfile(dataDir,"train");
dsTrainRGB = imageDatastore(fullfile(trainImageDir,"canon"),ReadSize=16);

Preview an RGB training image patch.

groundTruthPatch = preview(dsTrainRGB);
imshow(groundTruthPatch)

9 Image Processing Examples

9-52

https://docs.google.com/forms/d/e/1FAIpQLSdH6Pqdlu0pk2vGZlazqoRYwWsxN3nsLFwYY6Zc5-RUjw3SdQ/viewform


Create Datastore for RAW Image Patch Training Data

Create an imageDatastore that reads the input RAW training image patches acquired using a
Huawei phone camera. The RAW images are captured with 10-bit precision and are represented as
both 8-bit and 16-bit PNG files. The 8-bit files provide a compact representation of patches with data
in the range [0, 255]. No scaling has been done on any of the RAW data.

dsTrainRAW = imageDatastore(fullfile(trainImageDir,"huawei_raw"),ReadSize=16);

Preview an input RAW training image patch. The datastore reads this patch as an 8-bit uint8 image
because the sensor counts are in the range [0, 255]. To simulate the 10-bit dynamic range of the
training data, divide the image intensity values by 4. If you zoom in on the image, then you can see
the RGGB Bayer pattern.

inputPatch = preview(dsTrainRAW);
inputPatchRAW = inputPatch/4;
imshow(inputPatchRAW)

 Develop Camera Processing Pipeline Using Deep Learning

9-53



To simulate the minimal traditional processing pipeline, demosaic the RGGB Bayer pattern of the
RAW data using the demosaic (Image Processing Toolbox) function. Display the processed image and
brighten the display. Compared to the target RGB image, the minimally-processed RGB image is dark
and has imbalanced colors and noticeable artifacts. A trained RAW-to-RGB network performs
preprocessing operations so that the output RGB image resembles the target image.

inputPatchRGB = demosaic(inputPatch,"rggb");
imshow(rescale(inputPatchRGB))

9 Image Processing Examples

9-54



Partition Test Images into Validation and Test Sets

The test data contains RAW and RGB image patches and full-sized images. This example partitions
the test image patches into a validation set and test set. The example uses the full-sized test images
for qualitative testing only. See Evaluate Trained Image Processing Pipeline on Full-Sized Images on
page 9-65.

Create image datastores that read the RAW and RGB test image patches.

testImageDir = fullfile(dataDir,"test");
dsTestRAW = imageDatastore(fullfile(testImageDir,"huawei_raw"),ReadSize=16);
dsTestRGB = imageDatastore(fullfile(testImageDir,"canon"),ReadSize=16);

Randomly split the test data into two sets for validation and training. The validation data set contains
200 images. The test set contains the remaining images.

numTestImages = dsTestRAW.numpartitions;
numValImages = 200;

 Develop Camera Processing Pipeline Using Deep Learning

9-55



testIdx = randperm(numTestImages);
validationIdx = testIdx(1:numValImages);
testIdx = testIdx(numValImages+1:numTestImages);

dsValRAW = subset(dsTestRAW,validationIdx);
dsValRGB = subset(dsTestRGB,validationIdx);

dsTestRAW = subset(dsTestRAW,testIdx);
dsTestRGB = subset(dsTestRGB,testIdx);

Preprocess and Augment Data

The sensor acquires color data in a repeating Bayer pattern that includes one red, two green, and one
blue photosensor. Preprocess the data into a four-channel image expected of the network using the
transform function. The transform function processes the data using the operations specified in
the preprocessRAWDataForRAWToRGB helper function. The helper function is attached to the
example as a supporting file.

The preprocessRAWDataForRAWToRGB helper function converts an H-by-W-by-1 RAW image to an
H/2-by-W/2-by-4 multichannel image consisting of one red, two green, and one blue channel.

The function also casts the data to data type single scaled to the range [0, 1].

dsTrainRAW = transform(dsTrainRAW,@preprocessRAWDataForRAWToRGB);
dsValRAW = transform(dsValRAW,@preprocessRAWDataForRAWToRGB);
dsTestRAW = transform(dsTestRAW,@preprocessRAWDataForRAWToRGB);

The target RGB images are stored on disk as unsigned 8-bit data. To make the computation of metrics
and the network design more convenient, preprocess the target RGB training images using the
transform function and the preprocessRGBDataForRAWToRGB helper function. The helper
function is attached to the example as a supporting file.

The preprocessRGBDataForRAWToRGB helper function casts images to data type single scaled to
the range [0, 1].

dsTrainRGB = transform(dsTrainRGB,@preprocessRGBDataForRAWToRGB);
dsValRGB = transform(dsValRGB,@preprocessRGBDataForRAWToRGB);

Combine the input RAW and target RGB data for the training, validation, and test image sets by using
the combine function.

dsTrain = combine(dsTrainRAW,dsTrainRGB);
dsVal = combine(dsValRAW,dsValRGB);
dsTest = combine(dsTestRAW,dsTestRGB);

Randomly augment the training data using the transform function and the
augmentDataForRAWToRGB helper function. The helper function is attached to the example as a
supporting file.

9 Image Processing Examples

9-56



The augmentDataForRAWToRGB helper function randomly applies 90 degree rotation and horizontal
reflection to pairs of input RAW and target RGB training images.

dsTrainAug = transform(dsTrain,@augmentDataForRAWToRGB);

Preview the augmented training data.

exampleAug = preview(dsTrainAug)

exampleAug=8×2 cell array
    {224×224×4 single}    {448×448×3 single}
    {224×224×4 single}    {448×448×3 single}
    {224×224×4 single}    {448×448×3 single}
    {224×224×4 single}    {448×448×3 single}
    {224×224×4 single}    {448×448×3 single}
    {224×224×4 single}    {448×448×3 single}
    {224×224×4 single}    {448×448×3 single}
    {224×224×4 single}    {448×448×3 single}

Display the network input and target image in a montage. The network input has four channels, so
display the first channel rescaled to the range [0, 1]. The input RAW and target RGB images have
identical augmentation.

exampleInput = exampleAug{1,1};
exampleOutput = exampleAug{1,2};
montage({rescale(exampleInput(:,:,1)),exampleOutput})

Batch Training and Validation Data During Training

This example uses a custom training loop. The minibatchqueue object is useful for managing the
mini-batching of observations in custom training loops. The minibatchqueue object also casts data
to a dlarray object that enables auto differentiation in deep learning applications.

 Develop Camera Processing Pipeline Using Deep Learning

9-57



miniBatchSize = 2;
valBatchSize = 10;
trainingQueue = minibatchqueue(dsTrainAug,MiniBatchSize=miniBatchSize, ...
    PartialMiniBatch="discard",MiniBatchFormat="SSCB");
validationQueue = minibatchqueue(dsVal,MiniBatchSize=valBatchSize,MiniBatchFormat="SSCB");

The next function of minibatchqueue yields the next mini-batch of data. Preview the outputs from
one call to the next function. The outputs have data type dlarray. The data is already cast to
gpuArray, on the GPU, and ready for training.

[inputRAW,targetRGB] = next(trainingQueue);
whos inputRAW

  Name            Size                   Bytes  Class      Attributes

  inputRAW      224x224x4x2            1605640  dlarray              

whos targetRGB

  Name             Size                   Bytes  Class      Attributes

  targetRGB      448x448x3x2            4816904  dlarray              

Set Up U-Net Network Layers

This example uses a variation of the U-Net network. In U-Net, the initial series of convolutional layers
are interspersed with max pooling layers, successively decreasing the resolution of the input image.
These layers are followed by a series of convolutional layers interspersed with upsampling operators,
successively increasing the resolution of the input image. The name U-Net comes from the fact that
the network can be drawn with a symmetric shape like the letter U.

This example uses a simple U-Net architecture with two modifications. First, the network replaces the
final transposed convolution operation with a custom pixel shuffle upsampling (also known as a
depth-to-space) operation. Second, the network uses a custom hyperbolic tangent activation layer as
the final layer in the network.

Pixel Shuffle Upsampling

Convolution followed by pixel shuffle upsampling can define subpixel convolution for super resolution
applications. Subpixel convolution prevents the checkboard artifacts that can arise from transposed
convolution [6 on page 9-72]. Because the model needs to map H/2-by-W/2-by-4 RAW inputs to W-by-
H-by-3 RGB outputs, the final upsampling stage of the model can be thought of similarly to super
resolution where the number of spatial samples grows from the input to the output.

The figure shows how pixel shuffle upsampling works for a 2-by-2-by-4 input. The first two dimensions
are spatial dimensions and the third dimension is a channel dimension. In general, pixel shuffle
upsampling by a factor of S takes an H-by-W-by-C input and yields an S*H-by-S*W-by- C

S2  output.

9 Image Processing Examples

9-58



The pixel shuffle function grows the spatial dimensions of the output by mapping information from
channel dimensions at a given spatial location into S-by-S spatial blocks in the output in which each
channel contributes to a consistent spatial position relative to its neighbors during upsampling.

Scaled and Hyperbolic Tangent Activation

A hyperbolic tangent activation layer applies the tanh function on the layer inputs. This example uses
a scaled and shifted version of the tanh function, which encourages but does not strictly enforce that
the RGB network outputs are in the range [0, 1].

f x = 0 . 58 * tanh x + 0 . 5

Calculate Training Set Statistics for Input Normalization

Use tall to compute per-channel mean reduction across the training data set. The input layer of the
network performs mean centering of inputs during training and testing using the mean statistics.

dsIn = copy(dsTrainRAW);
dsIn.UnderlyingDatastore.ReadSize = 1;
t = tall(dsIn);
perChannelMean = gather(mean(t,[1 2]));

Create U-Net

Create layers of the initial subnetwork, specifying the per-channel mean.

inputSize = [256 256 4];
initialLayer = imageInputLayer(inputSize,Normalization="zerocenter", ...
    Mean=perChannelMean,Name="ImageInputLayer");

Add layers of the first encoding subnetwork. The first encoder has 32 convolutional filters.

numEncoderStages = 4;
numFiltersFirstEncoder = 32;
encoderNamePrefix = "Encoder-Stage-";

encoderLayers = [
    convolution2dLayer([3 3],numFiltersFirstEncoder,Padding="same", ...
        WeightsInitializer="narrow-normal",Name=encoderNamePrefix+"1-Conv-1")

 Develop Camera Processing Pipeline Using Deep Learning

9-59



    leakyReluLayer(0.2,Name=encoderNamePrefix+"1-ReLU-1")
    convolution2dLayer([3 3],numFiltersFirstEncoder,Padding="same", ...
        WeightsInitializer="narrow-normal",Name=encoderNamePrefix+"1-Conv-2")
    leakyReluLayer(0.2,Name=encoderNamePrefix+"1-ReLU-2")
    maxPooling2dLayer([2 2],Stride=[2 2],Name=encoderNamePrefix+"1-MaxPool")  
    ];

Add layers of additional encoding subnetworks. These subnetworks add channel-wise instance
normalization after each convolutional layer using a groupNormalizationLayer. Each encoder
subnetwork has twice the number of filters as the previous encoder subnetwork.

cnIdx = 1;
for stage = 2:numEncoderStages
    
    numFilters = numFiltersFirstEncoder*2^(stage-1);
    layerNamePrefix = encoderNamePrefix+num2str(stage);
    
    encoderLayers = [
        encoderLayers
        convolution2dLayer([3 3],numFilters,Padding="same", ...
            WeightsInitializer="narrow-normal",Name=layerNamePrefix+"-Conv-1")
        groupNormalizationLayer("channel-wise",Name="cn"+num2str(cnIdx))
        leakyReluLayer(0.2,Name=layerNamePrefix+"-ReLU-1")
        convolution2dLayer([3 3],numFilters,Padding="same", ...
            WeightsInitializer="narrow-normal",Name=layerNamePrefix+"-Conv-2")
        groupNormalizationLayer("channel-wise",Name="cn"+num2str(cnIdx+1))
        leakyReluLayer(0.2,Name=layerNamePrefix+"-ReLU-2")
        maxPooling2dLayer([2 2],Stride=[2 2],Name=layerNamePrefix+"-MaxPool")
        ];     
    
    cnIdx = cnIdx + 2;
end

Add bridge layers. The bridge subnetwork has twice the number of filters as the final encoder
subnetwork and first decoder subnetwork.

numFilters = numFiltersFirstEncoder*2^numEncoderStages;
bridgeLayers = [
    convolution2dLayer([3 3],numFilters,Padding="same", ...
        WeightsInitializer="narrow-normal",Name="Bridge-Conv-1")
    groupNormalizationLayer("channel-wise",Name="cn7")
    leakyReluLayer(0.2,Name="Bridge-ReLU-1")
    convolution2dLayer([3 3],numFilters,Padding="same", ...
        WeightsInitializer="narrow-normal",Name="Bridge-Conv-2")
    groupNormalizationLayer("channel-wise",Name="cn8")
    leakyReluLayer(0.2,Name="Bridge-ReLU-2")];

Add layers of the first three decoder subnetworks.

numDecoderStages = 4;
cnIdx = 9;
decoderNamePrefix = "Decoder-Stage-";

decoderLayers = [];
for stage = 1:numDecoderStages-1
    
    numFilters = numFiltersFirstEncoder*2^(numDecoderStages-stage);
    layerNamePrefix = decoderNamePrefix+num2str(stage);  

9 Image Processing Examples

9-60



    
    decoderLayers = [
        decoderLayers
        transposedConv2dLayer([3 3],numFilters,Stride=[2 2],Cropping="same", ...
            WeightsInitializer="narrow-normal",Name=layerNamePrefix+"-UpConv")
        leakyReluLayer(0.2,Name=layerNamePrefix+"-UpReLU")
        depthConcatenationLayer(2,Name=layerNamePrefix+"-DepthConcatenation")
        convolution2dLayer([3 3],numFilters,Padding="same", ...
            WeightsInitializer="narrow-normal",Name=layerNamePrefix+"-Conv-1")
        groupNormalizationLayer("channel-wise",Name="cn"+num2str(cnIdx))
        leakyReluLayer(0.2,Name=layerNamePrefix+"-ReLU-1")
        convolution2dLayer([3 3],numFilters,Padding="same", ...
            WeightsInitializer="narrow-normal",Name=layerNamePrefix+"-Conv-2")
        groupNormalizationLayer("channel-wise",Name="cn"+num2str(cnIdx+1))
        leakyReluLayer(0.2,Name=layerNamePrefix+"-ReLU-2")
        ];        
    
    cnIdx = cnIdx + 2;    
end

Add layers of the last decoder subnetwork. This subnetwork excludes the channel-wise instance
normalization performed by the other decoder subnetworks. Each decoder subnetwork has half the
number of filters as the previous subnetwork.

numFilters = numFiltersFirstEncoder;
layerNamePrefix = decoderNamePrefix+num2str(stage+1); 

decoderLayers = [
    decoderLayers
    transposedConv2dLayer([3 3],numFilters,Stride=[2 2],Cropping="same", ...
       WeightsInitializer="narrow-normal",Name=layerNamePrefix+"-UpConv")
    leakyReluLayer(0.2,Name=layerNamePrefix+"-UpReLU")
    depthConcatenationLayer(2,Name=layerNamePrefix+"-DepthConcatenation")
    convolution2dLayer([3 3],numFilters,Padding="same", ...
        WeightsInitializer="narrow-normal",Name=layerNamePrefix+"-Conv-1")
    leakyReluLayer(0.2,Name=layerNamePrefix+"-ReLU-1")
    convolution2dLayer([3 3],numFilters,Padding="same", ...
        WeightsInitializer="narrow-normal",Name=layerNamePrefix+"-Conv-2")
    leakyReluLayer(0.2,Name=layerNamePrefix+"-ReLU-2")];

Add the final layers of the U-Net. The pixel shuffle layer moves from the H/2-by-W/2-by-12 channel
size of the activations from the final convolution to H-by-W-by-3 channel activations using pixel
shuffle upsampling. The final layer encourages outputs to the desired range [0, 1] using a hyperbolic
tangent function.

finalLayers = [
    convolution2dLayer([3 3],12,Padding="same",WeightsInitializer="narrow-normal", ...
       Name="Decoder-Stage-4-Conv-3")
    pixelShuffleLayer("pixelShuffle",2)
    tanhScaledAndShiftedLayer("tanhActivation")];

layers = [initialLayer;encoderLayers;bridgeLayers;decoderLayers;finalLayers];
lgraph = layerGraph(layers);

Connect layers of the encoding and decoding subnetworks.

lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2", ...
    "Decoder-Stage-4-DepthConcatenation/in2");

 Develop Camera Processing Pipeline Using Deep Learning

9-61



lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2", ...
    "Decoder-Stage-3-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2", ...
    "Decoder-Stage-2-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-4-ReLU-2", ...
    "Decoder-Stage-1-DepthConcatenation/in2");
net = dlnetwork(lgraph);

Visualize the network architecture using the Deep Network Designer app.

deepNetworkDesigner(lgraph)

Load the Feature Extraction Network

This function modifies a pretrained VGG-16 deep neural network to extract image features at various
layers. These multilayer features are used to compute content loss.

To get a pretrained VGG-16 network, install vgg16. If you do not have the required support package
installed, then the software provides a download link.

vggNet = vgg16;

To make the VGG-16 network suitable for feature extraction, use the layers up to "relu5_3".

vggNet = vggNet.Layers(1:31);
vggNet = dlnetwork(layerGraph(vggNet));

Define Model Gradients and Loss Functions

The helper function modelGradients calculates the gradients and overall loss for batches of
training data. This function is defined in the Supporting Functions on page 9-70 section of this
example.

The overall loss is a weighted sum of two losses: mean of absolute error (MAE) loss and content loss.
The content loss is weighted such that the MAE loss and content loss contribute approximately
equally to the overall loss:

lossOverall = lossMAE + weightFactor * lossContent

The MAE loss penalises the L1 distance between samples of the network predictions and samples of
the target image. L1 is often a better choice than L2 for image processing applications because it can
help reduce blurring artifacts [4 on page 9-71]. This loss is implemented using the maeLoss helper
function defined in the Supporting Functions on page 9-70 section of this example.

The content loss helps the network learn both high-level structural content and low-level edge and
color information. The loss function calculates a weighted sum of the mean square error (MSE)
between predictions and targets for each activation layer. This loss is implemented using the
contentLoss helper function defined in the Supporting Functions on page 9-70 section of this
example.

Calculate Content Loss Weight Factor

The modelGradients helper function requires the content loss weight factor as an input argument.
Calculate the weight factor for a sample batch of training data such that the MAE loss is equal to the
weighted content loss.

9 Image Processing Examples

9-62



Preview a batch of training data, which consists of pairs of RAW network inputs and RGB target
outputs.

trainingBatch = preview(dsTrainAug);
networkInput = dlarray((trainingBatch{1,1}),"SSC");
targetOutput = dlarray((trainingBatch{1,2}),"SSC");

Predict the response of the untrained U-Net network using the forward function.

predictedOutput = forward(net,networkInput);

Calculate the MAE and content losses between the predicted and target RGB images.

sampleMAELoss = maeLoss(predictedOutput,targetOutput);
sampleContentLoss = contentLoss(vggNet,predictedOutput,targetOutput);

Calculate the weight factor.

weightContent = sampleMAELoss/sampleContentLoss;

Specify Training Options

Define the training options that are used within the custom training loop to control aspects of Adam
optimization. Train for 20 epochs.

learnRate = 5e-5;
numEpochs = 20;

Train Network or Download Pretrained Network

By default, the example downloads a pretrained version of the RAW-to-RGB network by using the
downloadTrainedNetwork helper function. The pretrained network enables you to run the entire
example without waiting for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the model in
a custom training loop. For each iteration:

• Read the data for current mini-batch using the next function.
• Evaluate the model gradients using the dlfeval function and the modelGradients helper

function.
• Update the network parameters using the adamupdate function and the gradient information.
• Update the training progress plot for every iteration and display various computed losses.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 88 hours on an NVIDIA™ Titan RTX and can take even
longer depending on your GPU hardware.

doTraining = false;
if doTraining
    
    % Create a directory to store checkpoints
    checkpointDir = fullfile(dataDir,"checkpoints",filesep);
    if ~exist(checkpointDir,"dir")
        mkdir(checkpointDir);
    end

 Develop Camera Processing Pipeline Using Deep Learning

9-63



    
    % Initialize training plot
    [hFig,batchLine,validationLine] = initializeTrainingPlotRAWToRGB;
    
    % Initialize Adam solver state
    [averageGrad,averageSqGrad] = deal([]);
    iteration = 0;
    
    start = tic;
    for epoch = 1:numEpochs
        reset(trainingQueue);
        shuffle(trainingQueue);
        while hasdata(trainingQueue)
            [inputRAW,targetRGB] = next(trainingQueue);  
            
            [grad,loss] = dlfeval(@modelGradients, ...
                net,vggNet,inputRAW,targetRGB,weightContent);
            
            iteration = iteration + 1;
            
            [net,averageGrad,averageSqGrad] = adamupdate(net, ...
                grad,averageGrad,averageSqGrad,iteration,learnRate);
              
            updateTrainingPlotRAWToRGB(batchLine,validationLine,iteration, ...
                loss,start,epoch,validationQueue,numValImages,valBatchSize, ...
                net,vggNet,weightContent);
        end
        % Save checkpoint of network state
        save(checkpointDir+"epoch"+epoch,"net");
    end

    % Save the final network state
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(dataDir,"trainedRAWToRGBNet-"+modelDateTime+".mat"),"net");    

else
    trainedNet_url = "https://ssd.mathworks.com/supportfiles"+ ...
        "/vision/data/trainedRAWToRGBNet.mat";
    downloadTrainedNetwork(trainedNet_url,dataDir);
    load(fullfile(dataDir,"trainedRAWToRGBNet.mat"));
end

Calculate Image Quality Metrics

Reference-based quality metrics such as MSSIM or PSNR enable a quantitative measure of image
quality. You can calculate the MSSIM and PSNR of the patched test images because they are spatially
registered and the same size.

Iterate through the test set of patched images using a minibatchqueue object.

patchTestSet = combine(dsTestRAW,dsTestRGB);
testPatchQueue = minibatchqueue(patchTestSet, ...
    MiniBatchSize=16,MiniBatchFormat="SSCB");

Iterate through the test set and calculate the MSSIM and PSNR for each test image using the
multissim (Image Processing Toolbox) and psnr (Image Processing Toolbox) functions. Calculate
MSSIM for color images by using a mean of the metric for each color channel as an approximation
because the metric is not well defined for multi-channel inputs.

9 Image Processing Examples

9-64



totalMSSIM = 0;
totalPSNR = 0;
while hasdata(testPatchQueue)
    [inputRAW,targetRGB] = next(testPatchQueue);
    outputRGB = forward(net,inputRAW);
    targetRGB = targetRGB ./ 255; 
    mssimOut = sum(mean(multissim(outputRGB,targetRGB),3),4);
    psnrOut = sum(psnr(outputRGB,targetRGB),4);
    totalMSSIM = totalMSSIM + mssimOut;
    totalPSNR = totalPSNR + psnrOut;
end

Calculate the mean MSSIM and mean PSNR over the test set. This result is consistent with the
similar U-Net approach from [3 on page 9-71] for mean MSSIM and competitive with the PyNet
approach in [3 on page 9-71] in mean PSNR. The differences in loss functions and use of pixel
shuffle upsampling compared to [3 on page 9-71] likely account for these differences.

numObservations = dsTestRGB.numpartitions;
meanMSSIM = totalMSSIM / numObservations

meanMSSIM = 
  1(S) × 1(S) × 1(C) × 1(B) single gpuArray dlarray

    0.8401

meanPSNR = totalPSNR / numObservations

meanPSNR = 
  1(S) × 1(S) × 1(C) × 1(B) single gpuArray dlarray

   21.0730

Evaluate Trained Image Processing Pipeline on Full-Sized Images

Because of sensor differences between the phone camera and DSLR used to acquire the full-
resolution test images, the scenes are not registered and are not the same size. Reference-based
comparison of the full-resolution images from the network and the DSLR ISP is difficult. However, a
qualitative comparison of the images is useful because a goal of image processing is to create an
aesthetically pleasing image.

Create an image datastore that contains full-sized RAW images acquired by a phone camera.

testImageDir = fullfile(dataDir,"test");
testImageDirRAW = "huawei_full_resolution";
dsTestFullRAW = imageDatastore(fullfile(testImageDir,testImageDirRAW));

Get the names of the image files in the full-sized RAW test set.

targetFilesToInclude = extractAfter(string(dsTestFullRAW.Files), ...
    fullfile(testImageDirRAW,filesep));
targetFilesToInclude = extractBefore(targetFilesToInclude,".png");

Preprocess the RAW data by converting the data to the form expected by the network using the
transform function. The transform function processes the data using the operations specified in
the preprocessRAWDataForRAWToRGB helper function. The helper function is attached to the
example as a supporting file.

 Develop Camera Processing Pipeline Using Deep Learning

9-65



dsTestFullRAW = transform(dsTestFullRAW,@preprocessRAWDataForRAWToRGB);

Create an image datastore that contains full-sized RGB test images captured from the high-end DSLR.
The Zurich RAW-to-RGB data set contains more full-sized RGB images than RAW images, so include
only the RGB images with a corresponding RAW image.

dsTestFullRGB = imageDatastore(fullfile(dataDir,"full_resolution","canon"));
dsTestFullRGB.Files = dsTestFullRGB.Files( ...
    contains(dsTestFullRGB.Files,targetFilesToInclude));

Read in the target RGB images, then display a montage of the first few images.

targetRGB = readall(dsTestFullRGB);
montage(targetRGB,Size=[5 2],Interpolation="bilinear")

9 Image Processing Examples

9-66



 Develop Camera Processing Pipeline Using Deep Learning

9-67



Iterate through the test set of full-sized images using a minibatchqueue object. If you have a GPU
device with sufficient memory to process full-resolution images, then you can run prediction on a GPU
by specifying the output environment as "gpu".

testQueue = minibatchqueue(dsTestFullRAW,MiniBatchSize=1, ...
    MiniBatchFormat="SSCB",OutputEnvironment="cpu");

For each full-sized RAW test image, predict the output RGB image by calling forward on the
network.

outputSize = 2*size(preview(dsTestFullRAW),[1 2]);
outputImages = zeros([outputSize,3,dsTestFullRAW.numpartitions],"uint8");

idx = 1;
while hasdata(testQueue)
    inputRAW = next(testQueue);
    rgbOut = forward(net,inputRAW);
    rgbOut = gather(extractdata(rgbOut));    
    outputImages(:,:,:,idx) = im2uint8(rgbOut);
    idx = idx+1;
end

Get a sense of the overall output by looking at a montage view. The network produces images that are
aesthetically pleasing, with similar characteristics.

montage(outputImages,Size=[5 2],Interpolation="bilinear")

9 Image Processing Examples

9-68



 Develop Camera Processing Pipeline Using Deep Learning

9-69



Compare one target RGB image with the corresponding image predicted by the network. The network
produces colors which are more saturated than the target DSLR images. Although the colors from the
simple U-Net architecture are not the same as the DSLR targets, the images are still qualitatively
pleasing in many cases.

imgIdx = 1;
imTarget = targetRGB{imgIdx};
imPredicted = outputImages(:,:,:,imgIdx);
montage({imTarget,imPredicted},Interpolation="bilinear")

To improve the performance of the RAW-to-RGB network, a network architecture would learn detailed
localized spatial features using multiple scales from global features that describe color and contrast
[3 on page 9-71].

Supporting Functions

Model Gradients Function

The modelGradients helper function calculates the gradients and overall loss. The gradient
information is returned as a table which includes the layer, parameter name and value for each
learnable parameter in the model.

function [gradients,loss] = modelGradients(dlnet,vggNet,X,T,weightContent)
    Y = forward(dlnet,X);
    lossMAE = maeLoss(Y,T);
    lossContent = contentLoss(vggNet,Y,T);
    loss = lossMAE + weightContent.*lossContent;
    gradients = dlgradient(loss,dlnet.Learnables);
end

Mean Absolute Error Loss Function

The helper function maeLoss computes the mean absolute error between network predictions, Y, and
target images, T.

function loss = maeLoss(Y,T)
    loss = mean(abs(Y-T),"all");
end

9 Image Processing Examples

9-70



Content Loss Function

The helper function contentLoss calculates a weighted sum of the MSE between network
predictions, Y, and target images, T, for each activation layer. The contentLoss helper function
calculates the MSE for each activation layer using the mseLoss helper function. Weights are selected
such that the loss from each activation layers contributes roughly equally to the overall content loss.

function loss = contentLoss(net,Y,T)

    layers = ["relu1_1","relu1_2","relu2_1","relu2_2", ...
        "relu3_1","relu3_2","relu3_3","relu4_1"];
    [T1,T2,T3,T4,T5,T6,T7,T8] = forward(net,T,Outputs=layers);
    [X1,X2,X3,X4,X5,X6,X7,X8] = forward(net,Y,Outputs=layers);
    
    l1 = mseLoss(X1,T1);
    l2 = mseLoss(X2,T2);
    l3 = mseLoss(X3,T3);
    l4 = mseLoss(X4,T4);
    l5 = mseLoss(X5,T5);
    l6 = mseLoss(X6,T6);
    l7 = mseLoss(X7,T7);
    l8 = mseLoss(X8,T8);
    
    layerLosses = [l1 l2 l3 l4 l5 l6 l7 l8];
    weights = [1 0.0449 0.0107 0.0023 6.9445e-04 2.0787e-04 2.0118e-04 6.4759e-04];
    loss = sum(layerLosses.*weights);  
end

Mean Square Error Loss Function

The helper function mseLoss computes the MSE between network predictions, Y, and target images,
T.

function loss = mseLoss(Y,T)
    loss = mean((Y-T).^2,"all");
end

References

1) Sumner, Rob. "Processing RAW Images in MATLAB". May 19, 2014. https://rcsumner.net/
raw_guide/RAWguide.pdf.

2) Chen, Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. “Learning to See in the Dark.”
ArXiv:1805.01934 [Cs], May 4, 2018. http://arxiv.org/abs/1805.01934.

3) Ignatov, Andrey, Luc Van Gool, and Radu Timofte. “Replacing Mobile Camera ISP with a Single
Deep Learning Model.” ArXiv:2002.05509 [Cs, Eess], February 13, 2020. http://arxiv.org/abs/
2002.05509. Project Website.

4) Zhao, Hang, Orazio Gallo, Iuri Frosio, and Jan Kautz. “Loss Functions for Neural Networks for
Image Processing.” ArXiv:1511.08861 [Cs], April 20, 2018. http://arxiv.org/abs/1511.08861.

 Develop Camera Processing Pipeline Using Deep Learning

9-71

http://people.ee.ethz.ch/~ihnatova/pynet.html


5) Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. “Perceptual Losses for Real-Time Style Transfer
and Super-Resolution.” ArXiv:1603.08155 [Cs], March 26, 2016. http://arxiv.org/abs/1603.08155.

6) Shi, Wenzhe, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. “Real-Time Single Image and Video Super-Resolution Using an Efficient
Sub-Pixel Convolutional Neural Network.” ArXiv:1609.05158 [Cs, Stat], September 23, 2016. http://
arxiv.org/abs/1609.05158.

See Also
trainingOptions | trainNetwork | imageDatastore | transform | combine

Related Examples
• “Brighten Extremely Dark Images Using Deep Learning” on page 9-73

More About
• “Preprocess Images for Deep Learning” on page 20-16
• “Datastores for Deep Learning” on page 20-2
• “List of Deep Learning Layers” on page 1-43

9 Image Processing Examples

9-72



Brighten Extremely Dark Images Using Deep Learning

This example shows how to recover brightened RGB images from RAW camera data collected in
extreme low-light conditions using a U-Net.

Low-light image recovery in cameras is a challenging problem. A typical solution is to increase the
exposure time, which allows more light in the scene to hit the sensor and increases the brightness of
the image. However, longer exposure times can result in motion blur artifacts when objects in the
scene move or when the camera is perturbed during acquisition.

Deep learning offers solutions that recover reasonable images for RAW data collected from DSLRs
and many modern phone cameras despite low light conditions and short exposure times. These
solutions take advantage of the full information present in RAW data to outperform brightening
techniques performed in postprocessed RGB data [1 on page 9-83].

Low Light Image (Left) and Recovered Image (Right)

This example shows how to train a network to implement a low-light camera pipeline using data from
a particular camera sensor. This example shows how to recover well exposed RGB images from very
low light, underexposed RAW data from the same type of camera sensor.

Download See-in-the-Dark Data Set

This example uses the Sony camera data from the See-in-the-Dark (SID) data set [1 on page 9-83].
The SID data set provides registered pairs of RAW images of the same scene. In each pair, one image
has a short exposure time and is underexposed, and the other image has a longer exposure time and
is well exposed. The size of the Sony camera data from the SID data set is 25 GB.

Set dataDir as the desired location of the data set.

dataDir = fullfile(tempdir,"SID");

To download the data set, go to this link: https://storage.googleapis.com/isl-datasets/SID/Sony.zip.
Extract the data into the directory specified by the dataDir variable. When extraction is successful,
dataDir contains the directory Sony with two subdirectories: long and short. The files in the long
subdirectory have a long exposure and are well exposed. The files in the short subdirectory have a
short exposure and are quite underexposed and dark.

 Brighten Extremely Dark Images Using Deep Learning

9-73

https://storage.googleapis.com/isl-datasets/SID/Sony.zip


The data set also provides text files that describe how to partition the files into training, validation,
and test data sets. Move the files Sony_train_list.txt, Sony_val_list.txt, and
Sony_test_list.txt to the directory specified by the dataDir variable.

Create Datastores for Training, Validation, and Testing

Import the list of files to include in the training, validation, and test data sets using the
importSonyFileInfo helper function. This function is attached to the example as a supporting file.

trainInfo = importSonyFileInfo(fullfile(dataDir,"Sony_train_list.txt"));
valInfo = importSonyFileInfo(fullfile(dataDir,"Sony_val_list.txt"));
testInfo = importSonyFileInfo(fullfile(dataDir,"Sony_test_list.txt"));

Combine and Preprocess RAW and RGB Data Using Datastores

Create combined datastores that read and preprocess pairs of underexposed and well exposed RAW
images using the createCombinedDatastoreForLowLightRecovery helper function. This
function is attached to the example as a supporting file.

The createCombinedDatastoreForLowLightRecovery helper function performs these
operations:

• Create an imageDatastore that reads the short exposure RAW images using a custom read
function. The read function reads a RAW image using the rawread (Image Processing Toolbox)
function, then separates the RAW Bayer pattern into separate channels for each of the four
sensors using the raw2planar (Image Processing Toolbox) function. Normalize the data to the
range [0, 1] by transforming the imageDatastore object.

• Create an imageDatastore object that reads long-exposure RAW images and converts the data
to an RGB image in one step using the raw2rgb (Image Processing Toolbox) function. Normalize
the data to the range [0, 1] by transforming the imageDatastore object.

• Combine the imageDatastore objects using the combine function.
• Apply a simple multiplicative gain to the pairs of images. The gain corrects for the exposure time
difference between the shorter exposure time of the dark inputs and the longer exposure time of
the output images. This gain is defined by taking the ratio of the long and short exposure times
provided in the image file names.

• Associate the images with metadata such as exposure time, ISO, and aperture.

dsTrainFull = createCombinedDatastoreForLowLightRecovery(dataDir,trainInfo);
dsValFull = createCombinedDatastoreForLowLightRecovery(dataDir,valInfo);
dsTestFull = createCombinedDatastoreForLowLightRecovery(dataDir,testInfo);

Use a subset of the validation images to make computation of validation metrics quicker. Do not apply
additional augmentation.

numVal = 30;
dsValFull = shuffle(dsValFull);
dsVal = subset(dsValFull,1:numVal);

Preprocess Training and Validation Data

Preprocess the training data set using the transform function and the extractRandomPatch
helper function. The helper function is defined at the end of this example. The
extractRandomPatch helper function crops multiple random patches of size 512-by-512-by-4 pixels
from a planar RAW image and corresponding patches of size 1024-by-1024-by-3 pixels from an RGB
image. The scene content in the patches matches. Extract 12 patches per training image.

9 Image Processing Examples

9-74



inputSize = [512,512,4];
patchesPerImage = 12;
dsTrain = transform(dsTrainFull, ...
    @(data) extractRandomPatch(data,inputSize,patchesPerImage));

Preview an original full-sized image and a random training patch.

previewFull = preview(dsTrainFull);
previewPatch = preview(dsTrain);
montage({previewFull{1,2},previewPatch{1,2}},BackgroundColor="w");

Preprocess the validation data set using the transform function and the extractCenterPatch
helper function. The helper function is defined at the end of this example. The
extractCenterPatch helper function crops a single patch of size 512-by-512-by-4 pixels from the
center of a planar RAW image and corresponding patches of size 1024-by-1024-by-3 pixels from an
RGB image. The scene content in the patches matches.

dsVal = transform(dsVal,@(data) extractCenterPatch(data,inputSize));

The testing data set does not require preprocessing. Test images are fed at full size into the network.

Augment Training Data

Augment the training data set using the transform function and the
augmentPatchesForLowLightRecovery helper function. The helper function is included at the
end of this example. The augmentPatchesForLowLightRecovery helper function adds random
horizontal and vertical reflection and randomized 90-degree rotations to pairs of training image
patches.

dsTrain = transform(dsTrain,@(data) augmentPatchesForLowLightRecovery(data));

Verify that the preprocessing and augmentation operations work as expected by previewing one
channel from the planar RAW image patch and the corresponding RGB decoded patch. The planar
RAW data and the target RGB data depict patches of the same scene, randomly extracted from the
original source image. Significant noise is visible in the RAW patch because of the short acquisition
time of the RAW data, causing a low signal-to-noise ratio.

imagePairs = read(dsTrain);
rawImage = imagePairs{1,1};

 Brighten Extremely Dark Images Using Deep Learning

9-75



rgbPatch = imagePairs{1,2};
montage({rawImage(:,:,1),rgbPatch});

Define Network

Use a network architecture similar to U-Net. The example creates the encoder and decoder
subnetworks using the blockedNetwork (Image Processing Toolbox) function. This function creates
the encoder and decoder subnetworks programmatically using the buildEncoderBlock and
buildDecoderBlock helper functions, respectively. The helper functions are defined at the end of
this example. The example uses instance normalization between convolution and activation layers in
all network blocks except the first and last, and uses a leaky ReLU layer as the activation layer.

Create an encoder subnetwork that consists of four encoder modules. The first encoder module has
32 channels, or feature maps. Each subsequent module doubles the number of feature maps from the
previous encoder module.

numModules = 4;
numChannelsEncoder = 2.^(5:8);
encoder = blockedNetwork(@(block) buildEncoderBlock(block,numChannelsEncoder), ...
    numModules,NamePrefix="encoder");

Create a decoder subnetwork that consists of four decoder modules. The first decoder module has
256 channels, or feature maps. Each subsequent decoder module halves the number of feature maps
from the previous decoder module.

numChannelsDecoder = fliplr(numChannelsEncoder);
decoder = blockedNetwork(@(block) buildDecoderBlock(block,numChannelsDecoder), ...
    numModules,NamePrefix="decoder");

Specify the bridge layers that connect the encoder and decoder subnetworks.

9 Image Processing Examples

9-76



bridgeLayers = [
    convolution2dLayer(3,512,Padding="same",PaddingValue="replicate")
    groupNormalizationLayer("channel-wise")
    leakyReluLayer(0.2)
    convolution2dLayer(3,512,Padding="same",PaddingValue="replicate")
    groupNormalizationLayer("channel-wise")
    leakyReluLayer(0.2)];

Specify the final layers of the network.

finalLayers = [
    convolution2dLayer(1,12)
    depthToSpace2dLayer(2)];

Combine the encoder subnetwork, bridge layers, decoder subnetwork, and final layers using the
encoderDecoderNetwork (Image Processing Toolbox) function.

net = encoderDecoderNetwork(inputSize,encoder,decoder, ...
    LatentNetwork=bridgeLayers, ...
    SkipConnections="concatenate", ...
    FinalNetwork=finalLayers);
net = layerGraph(net);

Use mean centering normalization on the input as part of training.

net = replaceLayer(net,"encoderImageInputLayer", ...
    imageInputLayer(inputSize,Normalization="zerocenter"));

Define the overall loss using the custom layer ssimLossLayerGray. This layer definition is attached
to this example as a supporting file. The ssimLossLayerGray layer uses a loss of the form

lossOverall = α × lossSSIM + 1− α × lossL1

The layer calculates a multiscale structural similarity (SSIM) loss for the grayscale representations of
the predicted and target RGB images using the multissim (Image Processing Toolbox) function. The
layer specifies the weighting factor α as 7/8 and uses five scales.

finalLayerName = net.Layers(end).Name;
lossLayer = ssimLossLayerGray;
net = addLayers(net,lossLayer);
net = connectLayers(net,finalLayerName,lossLayer.Name);

Specify Training Options

For training, use the Adam solver with an initial learning rate of 1e-3. Train for 30 epochs.

miniBatchSize = 12;
maxEpochs = 30;
options = trainingOptions("adam", ...
    Plots="training-progress", ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate=1e-3, ...
    MaxEpochs=maxEpochs, ...
    ValidationFrequency=400);

Train Network or Download Pretrained Network

By default, the example loads a pretrained version of the low-light recovery network. The pretrained
network enables you to run the entire example without waiting for training to complete.

 Brighten Extremely Dark Images Using Deep Learning

9-77



To train the network, set the doTraining variable in the following code to true. Train the model
using the trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

doTraining = false;

if doTraining  
    checkpointsDir = fullfile(dataDir,"checkpoints");
    if ~exist(checkpointsDir,"dir")
        mkdir(checkpointsDir);
    end
    options.CheckpointPath=checkpointsDir;

    netTrained = trainNetwork(dsTrain,net,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(dataDir,"trainedLowLightCameraPipelineNet-"+modelDateTime+".mat"), ...
        "netTrained");

else
    trainedNet_url = "https://ssd.mathworks.com/supportfiles/"+ ...
        "vision/data/trainedLowLightCameraPipelineNet.zip";
    downloadTrainedNetwork(trainedNet_url,dataDir);
    load(fullfile(dataDir,"trainedLowLightCameraPipelineNet.mat"));
end

Examine Results from Trained Network

Visually examine the results of the trained low-light camera pipeline network.

Read a pair of images and accompanying metadata from the test set. Get the file names of the short
and long exposure images from the metadata.

[testPair,info] = read(dsTestFull);
testShortFilename = info.ShortExposureFilename;
testLongFilename = info.LongExposureFilename;

Convert the original underexposed RAW image to an RGB image in one step using the raw2rgb
(Image Processing Toolbox) function. Display the result, scaling the display range to the range of
pixel values. The image looks almost completely black, with only a few bright pixels.

testShortImage = raw2rgb(testShortFilename);
testShortTime = info.ShortExposureTime;
imshow(testShortImage,[])
title(["Short Exposure Test Image";"Exposure Time = "+num2str(testShortTime)]+" s")

9 Image Processing Examples

9-78



Convert the original well exposed RAW image to an RGB image in one step using the raw2rgb (Image
Processing Toolbox) function. Display the result.

testLongImage = raw2rgb(testLongFilename);
testLongTime = info.LongExposureTime;
imshow(testLongImage)
title(["Long Exposure Target Image";"Exposure Time = "+num2str(testLongTime)]+" s")

 Brighten Extremely Dark Images Using Deep Learning

9-79



Display the network prediction. The trained network recovers an impressive image under challenging
acquisition conditions with very little noise or other visual artifacts. The colors of the network
prediction are less saturated and vibrant than in the ground truth long-exposure image of the scene.

outputFromNetwork = im2uint8(activations(netTrained,testPair{1},"FinalNetworkLayer2"));
imshow(outputFromNetwork)
title("Low-Light Recovery Network Prediction")

9 Image Processing Examples

9-80



Supporting Functions

The extractRandomPatch helper function crops multiple random patches from a planar RAW image
and corresponding patches from an RGB image. The RAW data patch has size m-by-n-by-4 and the
RGB image patch has size 2m-by-2n-by-3, where [m n] is the value of the targetRAWSize input
argument. Both patches have the same scene content.

function dataOut = extractRandomPatch(data,targetRAWSize,patchesPerImage)
    dataOut = cell(patchesPerImage,2);
    raw = data{1};
    rgb = data{2};
    for idx = 1:patchesPerImage
        windowRAW = randomCropWindow3d(size(raw),targetRAWSize);
        windowRGB = images.spatialref.Rectangle( ...
            2*windowRAW.XLimits+[-1,0],2*windowRAW.YLimits+[-1,0]);
        dataOut(idx,:) = {imcrop3(raw,windowRAW),imcrop(rgb,windowRGB)};
    end
end

The extractCenterPatch helper function crops a single patch from the center of a planar RAW
image and the corresponding patch from an RGB image. The RAW data patch has size m-by-n-by-4
and the RGB image patch has size 2m-by-2n-by-3, where [m n] is the value of the targetRAWSize
input argument. Both patches have the same scene content.

 Brighten Extremely Dark Images Using Deep Learning

9-81



function dataOut = extractCenterPatch(data,targetRAWSize)
    raw = data{1};
    rgb = data{2};
    windowRAW = centerCropWindow3d(size(raw),targetRAWSize);
    windowRGB = images.spatialref.Rectangle( ...
        2*windowRAW.XLimits+[-1,0],2*windowRAW.YLimits+[-1,0]);
    dataOut = {imcrop3(raw,windowRAW),imcrop(rgb,windowRGB)};
end

The buildEncoderBlock helper function defines the layers of a single encoder module within the
encoder subnetwork.

function block = buildEncoderBlock(blockIdx,numChannelsEncoder)

    if blockIdx < 2
        instanceNorm = [];
    else
        instanceNorm = instanceNormalizationLayer;
    end
    
    filterSize = 3;
    numFilters = numChannelsEncoder(blockIdx);
    block = [
        convolution2dLayer(filterSize,numFilters,Padding="same", ...
            PaddingValue="replicate",WeightsInitializer="he")
        instanceNorm
        leakyReluLayer(0.2)
        convolution2dLayer(filterSize,numFilters,Padding="same", ...
            PaddingValue="replicate",WeightsInitializer="he")
        instanceNorm
        leakyReluLayer(0.2)
        maxPooling2dLayer(2,Stride=2,Padding="same")];
end

The buildDecoderBlock helper function defines the layers of a single encoder module within the
decoder subnetwork.

function block = buildDecoderBlock(blockIdx,numChannelsDecoder)

    if blockIdx < 4
        instanceNorm = instanceNormalizationLayer;
    else
        instanceNorm = [];
    end
    
    filterSize = 3;
    numFilters = numChannelsDecoder(blockIdx);
    block = [
        transposedConv2dLayer(filterSize,numFilters,Stride=2, ...
            WeightsInitializer="he",Cropping="same")
        convolution2dLayer(filterSize,numFilters,Padding="same", ...
            PaddingValue="replicate",WeightsInitializer="he")
        instanceNorm
        leakyReluLayer(0.2)
        convolution2dLayer(filterSize,numFilters,Padding="same", ...
            PaddingValue="replicate",WeightsInitializer="he")
        instanceNorm

9 Image Processing Examples

9-82



        leakyReluLayer(0.2)];
end

References

[1] Chen, Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. "Learning to See in the Dark." Preprint,
submitted May 4, 2018. https://arxiv.org/abs/1805.01934.

See Also
imageDatastore | trainingOptions | trainNetwork | transform | combine

Related Examples
• “Develop Camera Processing Pipeline Using Deep Learning” on page 9-51

More About
• “Datastores for Deep Learning” on page 20-2
• “List of Deep Learning Layers” on page 1-43

 Brighten Extremely Dark Images Using Deep Learning

9-83

https://arxiv.org/abs/1805.01934


Classify Tumors in Multiresolution Blocked Images

This example shows how to classify multiresolution whole slide images (WSIs) that might not fit in
memory using an Inception-v3 deep neural network.

Deep learning methods for tumor classification rely on digital pathology, in which whole tissue slides
are imaged and digitized. The resulting WSIs have high resolution, on the order of 200,000-
by-100,000 pixels. WSIs are frequently stored in a multiresolution format to facilitate efficient display,
navigation, and processing of images.

The example outlines an architecture to use block based processing to train large WSIs. The example
trains an Inception-v3 based network using transfer learning techniques to classify individual blocks
as normal or tumor.

If you do not want to download the training data and train the network, then continue to the Train
Network or Download Pretrained Network on page 9-85 section of this example.

Prepare Training Data

Prepare the training and validation data by following the instructions in “Preprocess Multiresolution
Images for Training Classification Network” (Image Processing Toolbox). The preprocessing example
saves the preprocessed training and validation datastores in the a file called
trainingAndValidationDatastores.mat.

Set the value of the dataDir variable as the location where the
trainingAndValidationDatastores.mat file is located. Load the training and validation
datastores into variables called dsTrainLabeled and dsValLabeled.

dataDir = fullfile(tempdir,"Camelyon16");
load(fullfile(dataDir,"trainingAndValidationDatastores.mat"))

Set Up Inception-v3 Network Layers For Transfer Learning

This example uses an Inception-v3 network [2], a convolutional neural network that is trained on
more than a million images from the ImageNet database [3]. The network is 48 layers deep and can
classify images into 1,000 object categories, such as keyboard, mouse, pencil, and many animals.

The inceptionv3 function returns a pretrained Inception-v3 network. Inception-v3 requires the
Deep Learning Toolbox™ Model for Inception-v3 Network support package. If this support package is
not installed, then the function provides a download link.

net = inceptionv3;
lgraph = layerGraph(net);

The convolutional layers of the network extract image features. The last learnable layer and the final
classification layer classify an input image using the image features. These two layers contain
information on how to combine the features into class probabilities, a loss value, and predicted labels.
To retrain a pretrained network to classify new images, replace these two layers with new layers
adapted to the new data set. For more information, see “Train Deep Learning Network to Classify
New Images” on page 3-6.

Find the names of the two layers to replace using the helper function findLayersToReplace. This
function is attached to the example as a supporting file. In Inception-v3, these two layers are named
"predictions" and "ClassificationLayer_predictions".

9 Image Processing Examples

9-84



[learnableLayer,classLayer] = findLayersToReplace(lgraph);

The goal of this example is to perform binary segmentation between two classes, tumor and normal.
Create a new fully connected layer for two classes. Replace the final fully connected layer with the
new layer.

numClasses = 2;
newLearnableLayer = fullyConnectedLayer(numClasses,Name="predictions");
lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);

Create a new classification layer for two classes. Replace the final classification layer with the new
layer.

newClassLayer = classificationLayer(Name="ClassificationLayer_predictions");
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);

Specify Training Options

Train the network using root mean squared propagation (RMSProp) optimization. Specify the
hyperparameter settings for RMSProp by using the trainingOptions function.

Reduce MaxEpochs to a small number because the large amount of training data enables the network
to reach convergence sooner. Specify a MiniBatchSize according to your available GPU memory.
While larger mini-batch sizes can make the training faster, larger sizes can reduce the ability of the
network to generalize. Set ResetInputNormalization to false to prevent a full read of the
training data to compute normalization stats.

options = trainingOptions("rmsprop", ...
    MaxEpochs=1, ...
    MiniBatchSize=256, ...
    Shuffle="every-epoch", ...
    ValidationFrequency=250, ...
    InitialLearnRate=1e-4, ...
    SquaredGradientDecayFactor=0.99, ...
    ResetInputNormalization=false, ...
    Plots="training-progress");

Train Network or Download Pretrained Network

By default, this example downloads a pretrained version of the trained classification network using
the helper function downloadTrainedCamelyonNet. The pretrained network can be used to run the
entire example without waiting for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the network
using the trainNetwork function.

Train on one or more GPUs, if available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

doTraining = ;
if doTraining
    checkpointsDir = fullfile(dataDir,"checkpoints");
    if ~exist(checkpointsDir,"dir")
        mkdir(checkpointsDir);
    end

 Classify Tumors in Multiresolution Blocked Images

9-85



    options.CheckpointPath=checkpointsDir;
    options.ValidationData=dsValLabeled;
    trainedNet = trainNetwork(dsTrainLabeled,lgraph,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(dataDir+"trainedCamelyonNet-"+modelDateTime+".mat","trainedNet");

else
    trainedCamelyonNet_url = "https://www.mathworks.com/supportfiles/vision/data/trainedCamelyonNet.mat";
    dataDir = fullfile(tempdir,"Camelyon16");
    downloadTrainedNetwork(trainedCamelyonNet_url,dataDir);
    load(fullfile(dataDir,"trainedCamelyonNet.mat"));
end

Download Test Data

The Camelyon16 test data set consists of 130 WSIs. These images have both normal and tumor tissue.
The size of each file is approximately 2 GB.

To download the test data, go to the Camelyon17 website and click the first "CAMELYON16 data set"
link. Open the "testing" directory, then follow these steps.

• Download the "lesion_annotations.zip" file. Extract all files to the directory specified by the
testAnnotationDir variable.

• Open the "images" directory. Download the files to the directory specified by the testImageDir
variable.

testDir = fullfile(dataDir,"testing");
testImageDir = fullfile(testDir,"images");
testAnnotationDir = fullfile(testDir,"lesion_annotations");
if ~exist(testDir,"dir")
    mkdir(testDir);
    mkdir(fullfile(testDir,"images"));
    mkdir(fullfile(testDir,"lesion_annotations"));
end

Preprocess Test Data

Create blockedImage Objects to Manage Test Images

Get the file names of the test images. Then, create an array of blockedImage (Image Processing
Toolbox) objects that manage the test images. Each blockedImage object points to the
corresponding image file on disk.

testFileSet = matlab.io.datastore.FileSet(testImageDir+filesep+"test*");
testImages = blockedImage(testFileSet);

Set the spatial referencing for all training data by using the
setSpatialReferencingForCamelyon16 helper function. This function is attached to the example
as a supporting file. The setSpatialReferencingForCamelyon16 function sets the WorldStart
and WorldEnd properties of each blockedImage object using the spatial referencing information
from the TIF file metadata.

testImages = setSpatialReferencingForCamelyon16(testImages);

9 Image Processing Examples

9-86

https://camelyon17.grand-challenge.org/Data/


Create Tissue Masks

To process the WSI data efficiently, create a tissue mask for each test image. This process is the same
as the one used for the preprocessing the normal training images. For more information, see
“Preprocess Multiresolution Images for Training Classification Network” (Image Processing Toolbox).

normalMaskLevel = 8;
testDir = fullfile(dataDir,"testing");
testTissueMaskDir = fullfile(testDir,"test_tissue_mask_level"+num2str(normalMaskLevel));

if ~isfolder(testTissueMaskDir)
    testTissueMasks = apply(testImages, @(bs)im2gray(bs.Data)<150, ...
        BlockSize=[512 512], ...
        Level=normalMaskLevel, ...
        UseParallel=canUseGPU, ...
        DisplayWaitbar=false, ...
        OutputLocation=testTissueMaskDir);
    save(fullfile(testTissueMaskDir,"testTissueMasks.mat"),"testTissueMasks")
else
    % Load previously saved data
    load(fullfile(testTissueMaskDir,"testTissueMasks.mat"),"testTissueMasks");
end

The tissue masks have only one level and are small enough to fit in memory. Display the tissue masks
in the Image Browser app using the browseBlockedImages helper function. This helper function
is attached to the example as a supporting file.

browseBlockedImages(testTissueMasks,1);

 Classify Tumors in Multiresolution Blocked Images

9-87



Preprocess Tumor Ground Truth Images

Specify the resolution level of the tumor masks.

tumorMaskLevel = 8;

Create a tumor mask for each ground truth tumor image using the
createMaskForCamelyon16TumorTissue helper function. This helper function is attached to the
example as a supporting file. The function performs these operations for each image:

• Read the (x, y) boundary coordinates for all ROIs in the annotated XML file.
• Separate the boundary coordinates for tumor and normal tissue ROIs into separate cell arrays.
• Convert the cell arrays of boundary coordinates to a binary blocked image using the

polyToBlockedImage (Image Processing Toolbox) function. In the binary image, the ROI
indicates tumor pixels and the background indicates normal tissue pixels. Pixels that are within
both tumor and normal tissue ROIs are classified as background.

testTumorMaskDir = fullfile(testDir,['test_tumor_mask_level' num2str(tumorMaskLevel)]);
if ~isfolder(testTumorMaskDir)
    testTumorMasks = createMaskForCamelyon16TumorTissue(testImages,testAnnotationDir,testTumorMaskDir,tumorMaskLevel);    
    save(fullfile(testTumorMaskDir,"testTumorMasks.mat"),"testTumorMasks")
else
    load(fullfile(testTumorMaskDir,"testTumorMasks.mat"),"testTumorMasks");
end

Predict Heatmaps of Tumor Probability

Use the trained classification network to predict a heatmap for each test image. The heatmap gives a
probability score that each block is of the tumor class. The example performs these operations for
each test image to create a heatmap:

• Select blocks using the selectBlockLocations (Image Processing Toolbox) function. Include all
blocks that have at least one tissue pixel by specifying the InclusionThreshold name-value
argument as 0.

• Process batches of blocks using the apply (Image Processing Toolbox) function with the
processing operations defined by the predictBlock helper function. The helper function is
attached to the example as a supporting file. The predictBlock helper function calls the
predict function on a block of data and returns the probability score that the block is tumor.

• Write the heatmap data to a TIF file using the write (Image Processing Toolbox) function. The
final output after processing all blocks is a heatmap showing the probability of finding tumors over
the entire WSI.

numTest = numel(testImages);
outputHeatmapsDir = fullfile(testDir,"heatmaps");
networkBlockSize = [299,299,3];
tic
for ind = 1:numTest
    % Check if TIF file already exists
    [~,id] = fileparts(testImages(ind).Source);
    outFile = fullfile(outputHeatmapsDir,id+".tif");
    if ~exist(outFile,"file")
        bls = selectBlockLocations(testImages(ind),Levels=1, ...
            BlockSize=networkBlockSize, ...
            Mask=testTissueMasks(ind),InclusionThreshold=0);
    

9 Image Processing Examples

9-88



        % Resulting heat maps are in-memory blockedImage objects
        bhm = apply(testImages(ind),@(x)predictBlockForCamelyon16(x,trainedNet), ...
            Level=1,BlockLocationSet=bls,BatchSize=128, ...
            PadPartialBlocks=true,DisplayWaitBar=false);
    
        % Write results to a TIF file
        write(bhm,outFile,BlockSize=[512 512]);
    end
end
toc

Collect all of the written heatmaps as an array of blockedImage objects.

heatMapFileSet = matlab.io.datastore.FileSet(outputHeatmapsDir,FileExtensions=".tif");
bheatMapImages = blockedImage(heatMapFileSet);

Visualize Heatmap

Select a test image to display. On the left side of a figure, display the ground truth boundary
coordinates as freehand ROIs using the showCamelyon16TumorAnnotations helper function. This
helper function is attached to the example as a supporting file. Normal regions (shown with a green
boundary) can occur inside tumor regions (shown with a red boundary).

idx = 27;
figure
tiledlayout(1,2)
nexttile
hBim1 = showCamelyon16TumorAnnotations(testImages(idx),testAnnotationDir);
title("Ground Truth")

On the right side of the figure, display the heatmap for the test image.

nexttile
hBim2 = bigimageshow(bheatMapImages(idx),Interpolation="nearest");
colormap(jet)

Link the axes and zoom in to an area of interest.

linkaxes([hBim1.Parent,hBim2.Parent])
xlim([53982, 65269])
ylim([122475, 133762])
title("Predicted Heatmap")

 Classify Tumors in Multiresolution Blocked Images

9-89



Classify Test Images at Specific Threshold

To classify blocks as tumor or normal, apply a threshold to the heatmap probability values.

Pick a threshold probability above which blocks are classified as tumor. Ideally, you would calculate
this threshold value using receiver operating characteristic (ROC) or precision-recall curves on the
validation data set.

thresh = 0.8;

Classify the blocks in each test image and calculate the confusion matrix using the apply (Image
Processing Toolbox) function with the processing operations defined by the
computeBlockConfusionMatrixForCamelyon16 helper function. The helper function is attached
to the example as a supporting file.

The computeBlockConfusionMatrixForCamelyon16 helper function performs these operations
on each heatmap:

• Resize and refine the ground truth mask to match the size of the heatmap.

9 Image Processing Examples

9-90



• Apply the threshold on the heatmap.
• Calculate a confusion matrix for all of the blocks at the finest resolution level. The confusion

matrix gives the number of true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) classification predictions.

• Save the total counts of TP, FP, TN, and FN blocks as a structure in a blocked image. The blocked
image is returned as an element in the array of blocked images, bcmatrix.

• Save a numeric labeled image of the classification predictions in a blocked image. The values 0, 1,
2, and 3 correspond to TN, FP, FN, and TP results, respectively. The blocked image is returned as
an element in the array of blocked images, bcmatrixImage.

for ind = 1:numTest
    [bcmatrix(ind),bcmatrixImage{ind}] = apply(bheatMapImages(ind), ...
        @(bs,tumorMask,tissueMask)computeBlockConfusionMatrixForCamelyon16(bs,tumorMask,tissueMask,thresh), ...
        ExtraImages=[testTumorMasks(ind),testTissueMasks(ind)]);    
end

Calculate the global confusion matrix over all test images.

cmArray = arrayfun(@(c)gather(c),bcmatrix);
cm = [sum([cmArray.tp]),sum([cmArray.fp]);
    sum([cmArray.fn]),sum([cmArray.tn])];

Display the confusion chart of the normalized global confusion matrix. The majority of blocks in the
WSI images are of normal tissue, resulting in a high percentage of true negative predictions.

figure
confusionchart(cm,["Tumor","Normal"],Normalization="total-normalized")

 Classify Tumors in Multiresolution Blocked Images

9-91



Visualize Classification Results

Compare the ground truth ROI boundary coordinates with the classification results. On the left side
of a figure, display the ground truth boundary coordinates as freehand ROIs. On the right side of the
figure, display the test image and overlay a color on each block based on the confusion matrix.
Display true positives as red, false positives as cyan, false negatives as yellow, and true negatives
with no color.

False negatives and false positives appear around the edges of the tumor region, which indicates that
the network has difficulty classifying blocks with partial classes.

idx = 27;
figure
tiledlayout(1,2)
nexttile
hBim1 = showCamelyon16TumorAnnotations(testImages(idx),testAnnotationDir);
title("Ground Truth")
nexttile
hBim2 = bigimageshow(testImages(idx));
cmColormap = [0 0 0; 0 1 1; 1 1 0; 1 0 0];
showlabels(hBim2,bcmatrixImage{idx}, ...
    Colormap=cmColormap,AlphaData=bcmatrixImage{idx})
title("Classified Blocks")
linkaxes([hBim1.Parent,hBim2.Parent])
xlim([56000 63000])
ylim([125000 132600])

9 Image Processing Examples

9-92



Note: To reduce the classification error around the perimeter of the tumor, you can retrain the
network with less homogenous blocks. When preprocessing the Tumor blocks of the training data set,
reduce the value of the InclusionThreshold name-value argument.

Quantify Network Prediction with AUC-ROC Curve

Calculate the ROC curve values at different thresholds by using the
computeROCCurvesForCamelyon16 helper function. This helper function is attached to the
example as a supporting file.

threshs = [1 0.99 0.9:-.1:.1 0.05 0];
[tpr,fpr,ppv] = computeROCCurvesForCamelyon16(bheatMapImages,testTumorMasks,testTissueMasks,threshs);

Calculate the area under the curve (AUC) metric using the trapz function. The metric returns a
value in the range [0, 1], where 1 indicates perfect model performance. The AUC for this data set is
close to 1. You can use the AUC to fine-tune the training process.

figure
stairs(fpr,tpr,"-");
ROCAUC = trapz(fpr,tpr);

 Classify Tumors in Multiresolution Blocked Images

9-93



title(["Area Under Curve: " num2str(ROCAUC)]);
xlabel("False Positive Rate")
ylabel("True Positive Rate")

References

[1] Ehteshami Bejnordi, Babak, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico
Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, et al. “Diagnostic Assessment of Deep
Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.” JAMA
318, no. 22 (December 12, 2017): 2199–2210. https://doi.org/10.1001/jama.2017.14585.

[2] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
“Rethinking the Inception Architecture for Computer Vision.” Preprint, submitted December 2, 2015.
https://arxiv.org/abs/1512.00567v3.

[3] ImageNet. https://www.image-net.org.

See Also
blockedImageDatastore | blockedImage | blockLocationSet | selectBlockLocations |
bigimageshow | trainingOptions | trainNetwork

Related Examples
• “Preprocess Multiresolution Images for Training Classification Network” (Image Processing

Toolbox)

More About
• “Set Up Spatial Referencing for Blocked Images” (Image Processing Toolbox)

9 Image Processing Examples

9-94

https://doi.org/10.1001/jama.2017.14585
https://arxiv.org/abs/1512.00567v3
https://www.image-net.org


• “Process Blocked Images Efficiently Using Partial Images or Lower Resolutions” (Image
Processing Toolbox)

• “Process Blocked Images Efficiently Using Mask” (Image Processing Toolbox)
• “Create Labeled Blocked Image from ROIs and Masks” (Image Processing Toolbox)
• “Datastores for Deep Learning” on page 20-2
• “List of Deep Learning Layers” on page 1-43

 Classify Tumors in Multiresolution Blocked Images

9-95



Unsupervised Day-to-Dusk Image Translation Using UNIT

This example shows how to translate images between daytime and dusk lighting conditions using an
unsupervised image-to-image translation network (UNIT).

Domain translation is the task of transferring styles and characteristics from one image domain to
another. This technique can be extended to other image-to-image learning operations, such as image
enhancement, image colorization, defect generation, and medical image analysis.

UNIT [1] on page 9-105 is a type of generative adversarial network (GAN) that consists of one
generator network and two discriminator networks that you train simultaneously to maximize the
overall performance. For more information about UNIT, see “Get Started with GANs for Image-to-
Image Translation” (Image Processing Toolbox).

Download Data Set

This example uses the CamVid data set [2] on page 9-105 from the University of Cambridge for
training. This data set is a collection of 701 images containing street-level views obtained while
driving.

Specify dataDir as the desired location of the data. Download the CamVid data set using the helper
function downloadCamVidImageData. This function is attached to the example as a supporting file.

dataDir = fullfile(tempdir,"CamVid"); 
downloadCamVidImageData(dataDir);
imgDir = fullfile(dataDir,"images","701_StillsRaw_full");

Load Day and Dusk Data

The CamVid image data set includes 497 images acquired in daytime and 124 images acquired at
dusk. The performance of the trained UNIT network is limited because the number of CamVid
training images is relatively small, which limits the performance of the trained network. Further,
some images belong to an image sequence and therefore are correlated with other images in the data
set. To minimize the impact of these limitations, this example manually partitions the data into
training and test data sets in a way that maximizes the variability of the training data.

Get the file names of the day and dusk images for training and testing by loading the file
camvidDayDuskDatasetFileNames.mat. The training data sets consist of 263 day images and 107
dusk images. The test data sets consist of 234 day images and 17 dusk images.

load("camvidDayDuskDatasetFileNames.mat");

Create imageDatastore objects that manage the day and dusk images for training and testing.

imdsDayTrain = imageDatastore(fullfile(imgDir,trainDayNames));
imdsDuskTrain = imageDatastore(fullfile(imgDir,trainDuskNames));
imdsDayTest = imageDatastore(fullfile(imgDir,testDayNames));
imdsDuskTest = imageDatastore(fullfile(imgDir,testDuskNames));

Preview a training image from the day and dusk training data sets.

day = preview(imdsDayTrain);
dusk = preview(imdsDuskTrain);
montage({day,dusk})

9 Image Processing Examples

9-96

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/


Preprocess and Augment Training Data

Specify the image input size for the source and target images.

inputSize = [256,256,3];

Augment and preprocess the training data by using the transform function with custom
preprocessing operations specified by the helper function augmentDataForDayToDusk. This
function is attached to the example as a supporting file.

The augmentDataForDayToDusk function performs these operations:

1 Resize the image to the specified input size using bicubic interpolation.
2 Randomly flip the image in the horizontal direction.
3 Scale the image to the range [-1, 1]. This range matches the range of the final tanhLayer used

in the generator.

imdsDayTrain = transform(imdsDayTrain, @(x)augmentDataForDayToDusk(x,inputSize));
imdsDuskTrain = transform(imdsDuskTrain, @(x)augmentDataForDayToDusk(x,inputSize));

Create Generator Network

Create a UNIT generator network using the unitGenerator (Image Processing Toolbox) function.
The source and target encoder sections of the generator each consist of two downsampling blocks
and five residual blocks. The encoder sections share two of the five residual blocks. Similarly, the
source and target decoder sections of the generator each consist of two downsampling blocks and
five residual blocks, and the decoder sections share two of the five residual blocks.

gen = unitGenerator(inputSize,NumResidualBlocks=5,NumSharedBlocks=2);

Visualize the generator network.

analyzeNetwork(gen)

 Unsupervised Day-to-Dusk Image Translation Using UNIT

9-97



Create Discriminator Networks

Create two discriminator networks, one for each of the source and target domains, using the
patchGANDiscriminator (Image Processing Toolbox) function. Day is the source domain and dusk
is the target domain.

discDay = patchGANDiscriminator(inputSize,NumDownsamplingBlocks=4,FilterSize=3, ...
    ConvolutionWeightsInitializer="narrow-normal",NormalizationLayer="none");
discDusk = patchGANDiscriminator(inputSize,NumDownsamplingBlocks=4,FilterSize=3, ...
    ConvolutionWeightsInitializer="narrow-normal",NormalizationLayer="none");

Visualize the discriminator networks.

analyzeNetwork(discDay);
analyzeNetwork(discDusk);

Define Model Gradients and Loss Functions

The modelGradientDisc and modelGradientGen helper functions calculate the gradients and
losses for the discriminators and generator, respectively. These functions are defined in the
Supporting Functions on page 9-103 section of this example.

The objective of each discriminator is to correctly distinguish between real images (1) and translated
images (0) for images in its domain. Each discriminator has a single loss function.

The objective of the generator is to generate translated images that the discriminators classify as
real. The generator loss is a weighted sum of five types of losses: self-reconstruction loss, cycle
consistency loss, hidden KL loss, cycle hidden KL loss, and adversarial loss.

Specify the weight factors for the various losses.

lossWeights.selfReconLossWeight = 10;
lossWeights.hiddenKLLossWeight = 0.01;
lossWeights.cycleConsisLossWeight = 10;
lossWeights.cycleHiddenKLLossWeight = 0.01;
lossWeights.advLossWeight = 1;
lossWeights.discLossWeight = 0.5;

Specify Training Options

Specify the options for Adam optimization. Train the network for 35 epochs. Specify identical options
for the generator and discriminator networks.

• Specify an equal learning rate of 0.0001.
• Initialize the trailing average gradient and trailing average gradient-square decay rates with [].
• Use a gradient decay factor of 0.5 and a squared gradient decay factor of 0.999.
• Use weight decay regularization with a factor of 0.0001.
• Use a mini-batch size of 1 for training.

learnRate = 0.0001;
gradDecay = 0.5;
sqGradDecay = 0.999;
weightDecay = 0.0001;

genAvgGradient = [];
genAvgGradientSq = [];

9 Image Processing Examples

9-98



discDayAvgGradient = [];
discDayAvgGradientSq = [];

discDuskAvgGradient = [];
discDuskAvgGradientSq = [];

miniBatchSize = 1;
numEpochs = 35;

Batch Training Data

Create a minibatchqueue object that manages the mini-batching of observations in a custom
training loop. The minibatchqueue object also casts data to a dlarray object that enables
automatic differentiation in deep learning applications.

Specify the mini-batch data extraction format as "SSCB" (spatial, spatial, channel, batch). Set the
DispatchInBackground name-value argument as the boolean returned by canUseGPU. If a
supported GPU is available for computation, then the minibatchqueue object preprocesses mini-
batches in the background in a parallel pool during training.

mbqDayTrain = minibatchqueue(imdsDayTrain,MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat="SSCB",DispatchInBackground=canUseGPU);
mbqDuskTrain = minibatchqueue(imdsDuskTrain,MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat="SSCB",DispatchInBackground=canUseGPU);

Train Network

By default, the example downloads a pretrained version of the UNIT generator for the CamVid data
set. The pretrained network enables you to run the entire example without waiting for training to
complete.

To train the network, set the doTraining variable in the following code to true. Train the model in
a custom training loop. For each iteration:

• Read the data for the current mini-batch using the next function.
• Evaluate the model gradients using the dlfeval function and the modelGradientDisc and

modelGradientGen helper functions.
• Update the network parameters using the adamupdate function.
• Display the input and translated images for both the source and target domains after each epoch.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 88 hours on an NVIDIA Titan RTX.

doTraining = false;
if doTraining
    % Create a figure to show the results
    figure(Units="Normalized");
    for iPlot = 1:4
        ax(iPlot) = subplot(2,2,iPlot);
    end
    
    iteration = 0;

    % Loop over epochs

 Unsupervised Day-to-Dusk Image Translation Using UNIT

9-99



    for epoch = 1:numEpochs
        
        % Shuffle data every epoch
        reset(mbqDayTrain);
        shuffle(mbqDayTrain);
        reset(mbqDuskTrain);
        shuffle(mbqDuskTrain);
        
        % Run the loop until all the images in the mini-batch queue 
        % mbqDayTrain are processed
        while hasdata(mbqDayTrain)
            iteration = iteration + 1;
            
            % Read data from the day domain
            imDay = next(mbqDayTrain); 
             
            % Read data from the dusk domain
            if hasdata(mbqDuskTrain) == 0
                reset(mbqDuskTrain);
                shuffle(mbqDuskTrain);
            end
            imDusk = next(mbqDuskTrain);
    
            % Calculate discriminator gradients and losses
            [discDayGrads,discDuskGrads,discDayLoss,disDuskLoss] = dlfeval( ...
                @modelGradientDisc,gen,discDay,discDusk,imDay,imDusk, ...
                lossWeights.discLossWeight);
            
            % Apply weight decay regularization on day discriminator gradients
            discDayGrads = dlupdate(@(g,w) g+weightDecay*w, ...
                discDayGrads,discDay.Learnables);
            
            % Update parameters of day discriminator
            [discDay,discDayAvgGradient,discDayAvgGradientSq] = adamupdate( ...
                discDay,discDayGrads,discDayAvgGradient,discDayAvgGradientSq, ...
                iteration,learnRate,gradDecay,sqGradDecay);  
            
            % Apply weight decay regularization on dusk discriminator gradients
            discDuskGrads = dlupdate(@(g,w) g+weightDecay*w, ...
                discDuskGrads,discDusk.Learnables);
            
            % Update parameters of dusk discriminator
            [discDusk,discDuskAvgGradient,discDuskAvgGradientSq] = adamupdate( ...
                discDusk,discDuskGrads,discDuskAvgGradient,discDuskAvgGradientSq, ...
                iteration,learnRate,gradDecay,sqGradDecay);
            
            % Calculate generator gradient and loss
            [genGrad,genLoss,images] = dlfeval( ...
                @modelGradientGen,gen,discDay,discDusk,imDay,imDusk,lossWeights);
            
            % Apply weight decay regularization on generator gradients
            genGrad = dlupdate(@(g,w) g+weightDecay*w,genGrad,gen.Learnables);
            
            % Update parameters of generator
            [gen,genAvgGradient,genAvgGradientSq] = adamupdate( ...
                gen,genGrad,genAvgGradient,genAvgGradientSq, ...
                iteration,learnRate,gradDecay,sqGradDecay);
        end

9 Image Processing Examples

9-100



        
        % Display the results
        updateTrainingPlotDayToDusk(ax,images{:});
    end
    
    % Save the trained network
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(dataDir,"trainedDayDuskUNITGeneratorNet-"+modelDateTime+".mat"),"gen");
    
else    
    net_url = "https://ssd.mathworks.com/supportfiles/"+ ...
        "vision/data/trainedDayDuskUNITGeneratorNet.zip";
    downloadTrainedNetwork(net_url,dataDir);
    load(fullfile(dataDir,"trainedDayDuskUNITGeneratorNet.mat"));
end

Evaluate Source-to-Target Translation

Source-to-target image translation uses the UNIT generator to generate an image in the target
domain (dusk) from an image in the source domain (day).

Read an image from the datastore of day test images.

idxToTest = 1;
dayTestImage = readimage(imdsDayTest,idxToTest);

Convert the image to data type single and normalize the image to the range [-1, 1].

dayTestImage = im2single(dayTestImage);
dayTestImage = (dayTestImage-0.5)/0.5;

Create a dlarray object that inputs data to the generator. If a supported GPU is available for
computation, then perform inference on a GPU by converting the data to a gpuArray object.

dlDayImage = dlarray(dayTestImage,"SSCB");    
if canUseGPU
    dlDayImage = gpuArray(dlDayImage);
end

Translate the input day image to the dusk domain using the unitPredict (Image Processing
Toolbox) function.

dlDayToDuskImage = unitPredict(gen,dlDayImage);
dayToDuskImage = extractdata(gather(dlDayToDuskImage));

The final layer of the generator network produces activations in the range [-1, 1]. For display, rescale
the activations to the range [0, 1]. Also, rescale the input day image before display.

dayToDuskImage = rescale(dayToDuskImage);
dayTestImage = rescale(dayTestImage);

Display the input day image and its translated dusk version in a montage.

figure
montage({dayTestImage dayToDuskImage})
title("Day Test Image "+num2str(idxToTest)+" with Translated Dusk Image")

 Unsupervised Day-to-Dusk Image Translation Using UNIT

9-101



Evaluate Target-to-Source Translation

Target-to-source image translation uses the UNIT generator to generate an image in the source
domain (day) from an image in the target domain (dusk).

Read an image from the datastore of dusk test images.

idxToTest = 1;
duskTestImage = readimage(imdsDuskTest,idxToTest);

Convert the image to data type single and normalize the image to the range [-1, 1].

duskTestImage = im2single(duskTestImage);
duskTestImage = (duskTestImage-0.5)/0.5;

Create a dlarray object that inputs data to the generator. If a supported GPU is available for
computation, then perform inference on a GPU by converting the data to a gpuArray object.

dlDuskImage = dlarray(duskTestImage,"SSCB");    
if canUseGPU
    dlDuskImage = gpuArray(dlDuskImage);
end

Translate the input dusk image to the day domain using the unitPredict (Image Processing
Toolbox) function.

dlDuskToDayImage = unitPredict(gen,dlDuskImage,OutputType="TargetToSource");
duskToDayImage = extractdata(gather(dlDuskToDayImage));

For display, rescale the activations to the range [0, 1]. Also, rescale the input dusk image before
display.

duskToDayImage = rescale(duskToDayImage);
duskTestImage = rescale(duskTestImage);

Display the input dusk image and its translated day version in a montage.

9 Image Processing Examples

9-102



montage({duskTestImage duskToDayImage})
title("Test Dusk Image "+num2str(idxToTest)+" with Translated Day Image")

Supporting Functions

Model Gradients Functions

The modelGradientDisc helper function calculates the gradients and loss for the two
discriminators.

function [discAGrads,discBGrads,discALoss,discBLoss] = modelGradientDisc(gen, ...
    discA,discB,ImageA,ImageB,discLossWeight)

    [~,fakeA,fakeB,~] = forward(gen,ImageA,ImageB);
    
    % Calculate loss of the discriminator for X_A
    outA = forward(discA,ImageA); 
    outfA = forward(discA,fakeA);
    discALoss = discLossWeight*computeDiscLoss(outA,outfA);
    
    % Update parameters of the discriminator for X
    discAGrads = dlgradient(discALoss,discA.Learnables); 
    
    % Calculate loss of the discriminator for X_B
    outB = forward(discB,ImageB); 
    outfB = forward(discB,fakeB);
    discBLoss = discLossWeight*computeDiscLoss(outB,outfB);
    
    % Update parameters of the discriminator for Y
    discBGrads = dlgradient(discBLoss,discB.Learnables);
    
    % Convert the data type from dlarray to single
    discALoss = extractdata(discALoss);
    discBLoss = extractdata(discBLoss);
end

The modelGradientGen helper function calculates the gradients and loss for the generator.

 Unsupervised Day-to-Dusk Image Translation Using UNIT

9-103



function [genGrad,genLoss,images] = modelGradientGen(gen, ...
    discA,discB,ImageA,ImageB,lossWeights)
    
    [ImageAA,ImageBA,ImageAB,ImageBB] = forward(gen,ImageA,ImageB);
    hidden = forward(gen,ImageA,ImageB,Outputs="encoderSharedBlock");
    
    [~,ImageABA,ImageBAB,~] = forward(gen,ImageBA,ImageAB);
    cycle_hidden = forward(gen,ImageBA,ImageAB,Outputs="encoderSharedBlock");
    
    % Calculate different losses
    selfReconLoss = computeReconLoss(ImageA,ImageAA) + computeReconLoss(ImageB,ImageBB);
    hiddenKLLoss = computeKLLoss(hidden);
    cycleReconLoss = computeReconLoss(ImageA,ImageABA) + computeReconLoss(ImageB,ImageBAB);
    cycleHiddenKLLoss = computeKLLoss(cycle_hidden);
    
    outA = forward(discA,ImageBA);
    outB = forward(discB,ImageAB);
    advLoss = computeAdvLoss(outA) + computeAdvLoss(outB);
    
    % Calculate the total loss of generator as a weighted sum of five losses
    genTotalLoss = ...
        selfReconLoss*lossWeights.selfReconLossWeight + ...
        hiddenKLLoss*lossWeights.hiddenKLLossWeight + ...
        cycleReconLoss*lossWeights.cycleConsisLossWeight + ...
        cycleHiddenKLLoss*lossWeights.cycleHiddenKLLossWeight + ...
        advLoss*lossWeights.advLossWeight;
    
    % Update the parameters of generator
    genGrad = dlgradient(genTotalLoss,gen.Learnables); 
    
    % Convert the data type from dlarray to single
    genLoss = extractdata(genTotalLoss);
    images = {ImageA,ImageAB,ImageB,ImageBA};
end

Loss Functions

The computeDiscLoss helper function calculates the discriminator loss. Each discriminator loss is a
sum of two components:

• The squared difference between a vector of ones and the predictions of the discriminator on real
images, Yreal

• The squared difference between a vector of zeros and the predictions of the discriminator on
generated images, Ytranslated

discriminatorLoss = 1− Yreal
2 + 0− Ytranslated

2

function discLoss = computeDiscLoss(Yreal,Ytranslated)
    discLoss = mean(((1-Yreal).^2),"all") + ...
               mean(((0-Ytranslated).^2),"all");
end

The computeAdvLoss helper function calculates the adversarial loss for the generator. Adversarial
loss is the squared difference between a vector of ones and the discriminator predictions on the
translated image.

9 Image Processing Examples

9-104



adversarialLoss = 1− Ytranslated
2

function advLoss = computeAdvLoss(Ytranslated)
    advLoss = mean(((Ytranslated-1).^2),"all");
end

The computeReconLoss helper function calculates the self-reconstruction loss and cycle-consistency
loss for the generator. Self-reconstruction loss is the L1 distance between the input images and their
self-reconstructed versions. Cycle-consistency loss is the L1 distance between the input images and
their cycle-reconstructed versions.

selfReconstructionLoss = Yreal− Yself − reconstructed 1

cycleConsistencyLoss = Yreal− Ycycle− reconstructed 1

function reconLoss = computeReconLoss(Yreal,Yrecon)
    reconLoss = mean(abs(Yreal-Yrecon),"all");
end

The computeKLLoss helper function calculates the hidden KL loss and cycle-hidden KL loss for the
generator. Hidden KL loss is the squared difference between a vector of zeros and the
encoderSharedBlock activation for the self-reconstruction stream. Cycle-hidden KL loss is the
squared difference between a vector of zeros and the encoderSharedBlock activation for the cycle-
reconstruction stream.

hiddenKLLoss = 0− YencoderSharedBlockActivation
2

cycleHiddenKLLoss = 0− YencoderSharedBlockActivation
2

function klLoss = computeKLLoss(hidden)
    klLoss = mean(abs(hidden.^2),"all");
end

References

[1] Liu, Ming-Yu, Thomas Breuel, and Jan Kautz, "Unsupervised image-to-image translation networks".
In Advances in Neural Information Processing Systems, 2017. https://arxiv.org/abs/1703.00848.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object Classes in Video: A
High-Definition Ground Truth Database." Pattern Recognition Letters. Vol. 30, Issue 2, 2009, pp
88-97.

See Also
transform | unitGenerator | unitPredict | dlarray | dlfeval | adamupdate |
minibatchqueue | patchGANDiscriminator

More About
• “Get Started with GANs for Image-to-Image Translation” (Image Processing Toolbox)

 Unsupervised Day-to-Dusk Image Translation Using UNIT

9-105

https://arxiv.org/abs/1703.00848


• “Datastores for Deep Learning” on page 20-2
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239

9 Image Processing Examples

9-106



Quantify Image Quality Using Neural Image Assessment

This example shows how to analyze the aesthetic quality of images using a Neural Image Assessment
(NIMA) convolutional neural network (CNN).

Image quality metrics provide an objective measure of image quality. An effective metric provides
quantitative scores that correlate well with a subjective perception of quality by a human observer.
Quality metrics enable the comparison of image processing algorithms.

NIMA [1] on page 9-118 is a no-reference technique that predicts the quality of an image without
relying on a pristine reference image, which is frequently unavailable. NIMA uses a CNN to predict a
distribution of quality scores for each image.

Evaluate Image Quality Using Trained NIMA Model

Set dataDir as the desired location of the data set.

dataDir = fullfile(tempdir,"LIVEInTheWild");
if ~exist(dataDir,"dir")
    mkdir(dataDir);
end

Download a pretrained NIMA neural network by using the helper function
downloadTrainedNetwork. The helper function is attached to the example as a supporting file. This
model predicts a distribution of quality scores for each image in the range [1, 10], where 1 and 10 are
the lowest and the highest possible values for the score, respectively. A high score indicates good
image quality.

trainedNet_url = "https://ssd.mathworks.com/supportfiles/image/data/trainedNIMA.zip";
downloadTrainedNetwork(trainedNet_url,dataDir);
load(fullfile(dataDir,"trainedNIMA.mat"));

You can evaluate the effectiveness of the NIMA model by comparing the predicted scores for a high-
quality and lower quality image.

Read a high-quality image into the workspace.

imOriginal = imread("kobi.png"); 

Reduce the aesthetic quality of the image by applying a Gaussian blur. Display the original image and
the blurred image in a montage. Subjectively, the aesthetic quality of the blurred image is worse than
the quality of the original image.

imBlur = imgaussfilt(imOriginal,5);
montage({imOriginal,imBlur})

 Quantify Image Quality Using Neural Image Assessment

9-107



Predict the NIMA quality score distribution for the two images using the predictNIMAScore helper
function. This function is attached to the example as a supporting file.

The predictNIMAScore function returns the mean and standard deviation of the NIMA score
distribution for an image. The predicted mean score is a measure of the quality of the image. The
standard deviation of scores can be considered a measure of the confidence level of the predicted
mean score.

[meanOriginal,stdOriginal] = predictNIMAScore(dlnet,imOriginal);
[meanBlur,stdBlur] = predictNIMAScore(dlnet,imBlur);

Display the images along with the mean and standard deviation of the score distributions predicted
by the NIMA model. The NIMA model correctly predicts scores for these images that agree with the
subjective visual assessment.

figure
t = tiledlayout(1,2);
displayImageAndScoresForNIMA(t,imOriginal,meanOriginal,stdOriginal,"Original Image")
displayImageAndScoresForNIMA(t,imBlur,meanBlur,stdBlur,"Blurred Image")

9 Image Processing Examples

9-108



The rest of this example shows how to train and evaluate a NIMA model.

Download LIVE In the Wild Data Set

This example uses the LIVE In the Wild data set [2] on page 9-118, which is a public-domain
subjective image quality challenge database. The data set contains 1162 photos captured by mobile
devices, with 7 additional images provided to train the human scorers. Each image is rated by an
average of 175 individuals on a scale of [1, 100]. The data set provides the mean and standard
deviation of the subjective scores for each image.

Download the data set by following the instructions outlined in LIVE In the Wild Image Quality
Challenge Database. Extract the data into the directory specified by the dataDir variable. When
extraction is successful, dataDir contains two directories: Data and Images.

Load LIVE In the Wild Data

Get the file paths to the images.

imageData = load(fullfile(dataDir,"Data","AllImages_release.mat"));
imageData = imageData.AllImages_release;
nImg = length(imageData);
imageList(1:7) = fullfile(dataDir,"Images","trainingImages",imageData(1:7));
imageList(8:nImg) = fullfile(dataDir,"Images",imageData(8:end));

Create an image datastore that manages the image data.

 Quantify Image Quality Using Neural Image Assessment

9-109

https://live.ece.utexas.edu/research/ChallengeDB/index.html
https://live.ece.utexas.edu/research/ChallengeDB/index.html


imds = imageDatastore(imageList);

Load the mean and standard deviation data corresponding to the images.

meanData = load(fullfile(dataDir,"Data","AllMOS_release.mat"));
meanData = meanData.AllMOS_release;
stdData = load(fullfile(dataDir,"Data","AllStdDev_release.mat"));
stdData = stdData.AllStdDev_release;

Optionally, display a few sample images from the data set with the corresponding mean and standard
deviation values.

figure
t = tiledlayout(1,3);
idx1 = 785;
displayImageAndScoresForNIMA(t,readimage(imds,idx1), ...
    meanData(idx1),stdData(idx1),"Image "+imageData(idx1))
idx2 = 203;
displayImageAndScoresForNIMA(t,readimage(imds,idx2), ...
    meanData(idx2),stdData(idx2),"Image "+imageData(idx2))
idx3 = 777;
displayImageAndScoresForNIMA(t,readimage(imds,idx3), ...
    meanData(idx3),stdData(idx3),"Image "+imageData(idx3))

Preprocess and Augment Data

Preprocess the images by resizing them to 256-by-256 pixels.

9 Image Processing Examples

9-110



rescaleSize = [256 256];
imds = transform(imds,@(x)imresize(x,rescaleSize));

The NIMA model requires a distribution of human scores, but the LIVE data set provides only the
mean and standard deviation of the distribution. Approximate an underlying distribution for each
image in the LIVE data set using the createNIMAScoreDistribution helper function. This
function is attached to the example as a supporting file.

The createNIMAScoreDistribution rescales the scores to the range [1, 10], then generates
maximum entropy distribution of scores from the mean and standard deviation values.

newMaxScore = 10;
prob = createNIMAScoreDistribution(meanData,stdData);
cumProb = cumsum(prob,2);

Create an arrayDatastore that manages the score distributions.

probDS = arrayDatastore(cumProb',IterationDimension=2); 

Combine the datastores containing the image data and score distribution data.

dsCombined = combine(imds,probDS);

Preview the output of reading from the combined datastore.

sampleRead = preview(dsCombined)

sampleRead=1×2 cell array
    {256×256×3 uint8}    {10×1 double}

figure
tiledlayout(1,2)
nexttile
imshow(sampleRead{1})
title("Sample Image from Data Set")
nexttile
plot(sampleRead{2})
title("Cumulative Score Distribution")

 Quantify Image Quality Using Neural Image Assessment

9-111



Split Data for Training, Validation, and Testing

Partition the data into training, validation, and test sets. Allocate 70% of the data for training, 15%
for validation, and the remainder for testing.

numTrain = floor(0.70 * nImg);
numVal = floor(0.15 * nImg);

Idx = randperm(nImg);
idxTrain = Idx(1:numTrain);
idxVal = Idx(numTrain+1:numTrain+numVal);
idxTest = Idx(numTrain+numVal+1:nImg);

dsTrain = subset(dsCombined,idxTrain);
dsVal = subset(dsCombined,idxVal);
dsTest = subset(dsCombined,idxTest);

Augment Training Data

Augment the training data using the augmentDataForNIMA helper function. This function is
attached to the example as a supporting file. The augmentDataForNIMA function performs these
augmentation operations on each training image:

• Crop the image to 224-by-244 pixels to reduce overfitting.
• Flip the image horizontally with 50% probability.

9 Image Processing Examples

9-112



inputSize = [224 224];
dsTrain = transform(dsTrain,@(x)augmentDataForNIMA(x,inputSize));

Calculate Training Set Statistics for Input Normalization

The input layer of the network performs z-score normalization of the training images. Calculate the
mean and standard deviation of the training images for use in z-score normalization.

meanImage = zeros([inputSize 3]);
meanImageSq = zeros([inputSize 3]);
while hasdata(dsTrain)
    dat = read(dsTrain);
    img = double(dat{1});
    meanImage = meanImage + img;
    meanImageSq = meanImageSq + img.^2;
end
meanImage = meanImage/numTrain;
meanImageSq = meanImageSq/numTrain;
varImage = meanImageSq - meanImage.^2;
stdImage = sqrt(varImage);

Reset the datastore to its initial state.

reset(dsTrain);

Batch Training Data

Create a minibatchqueue object that manages the mini-batching of observations in a custom
training loop. The minibatchqueue object also casts data to a dlarray object that enables
automatic differentiation in deep learning applications.

Specify the mini-batch data extraction format as "SSCB" (spatial, spatial, channel, batch). Set the
"DispatchInBackground" name-value argument to the boolean returned by canUseGPU. If a
supported GPU is available for computation, then the minibatchqueue object preprocesses mini-
batches in the background in a parallel pool during training.

miniBatchSize = 128;
mbqTrain = minibatchqueue(dsTrain,MiniBatchSize=miniBatchSize, ...
    PartialMiniBatch="discard",MiniBatchFormat=["SSCB",""], ...
    DispatchInBackground=canUseGPU);
mbqVal = minibatchqueue(dsVal,MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat=["SSCB",""],DispatchInBackground=canUseGPU);

Load and Modify MobileNet-v2 Network

This example starts with a MobileNet-v2 [3] on page 9-118 CNN trained on ImageNet [4] on page 9-
118. The example modifies the network by replacing the last layer of the MobileNet-v2 network with
a fully connected layer with 10 neurons, each representing a discrete score from 1 through 10. The
network predicts the probability of each score for each image. The example normalizes the outputs of
the fully connected layer using a softmax activation layer.

The mobilenetv2 function returns a pretrained MobileNet-v2 network. This function requires the
Deep Learning Toolbox™ Model for MobileNet-v2 Network support package. If this support package
is not installed, then the function provides a download link.

net = mobilenetv2;

Convert the network into a layerGraph object.

 Quantify Image Quality Using Neural Image Assessment

9-113



lgraph = layerGraph(net);

The network has an image input size of 224-by-224 pixels. Replace the input layer with an image
input layer that performs z-score normalization on the image data using the mean and standard
deviation of the training images.

inLayer = imageInputLayer([inputSize 3],Name="input", ...
    Normalization="zscore",Mean=meanImage,StandardDeviation=stdImage);
lgraph = replaceLayer(lgraph,"input_1",inLayer);

Replace the original final classification layer with a fully connected layer with 10 neurons. Add a
softmax layer to normalize the outputs. Set the learning rate of the fully connected layer to 10 times
the learning rate of the baseline CNN layers. Apply a dropout of 75%.

lgraph = removeLayers(lgraph,["ClassificationLayer_Logits","Logits_softmax","Logits"]);
newFinalLayers = [
    dropoutLayer(0.75,Name="drop")
    fullyConnectedLayer(newMaxScore,Name="fc",WeightLearnRateFactor=10,BiasLearnRateFactor=10)
    softmaxLayer(Name="prob")];    
lgraph = addLayers(lgraph,newFinalLayers);
lgraph = connectLayers(lgraph,"global_average_pooling2d_1","drop");
dlnet = dlnetwork(lgraph);

Visualize the network using the Deep Network Designer app.

deepNetworkDesigner(lgraph)

Define Model Gradients and Loss Functions

The modelGradients helper function calculates the gradients and losses for each iteration of
training the network. This function is defined in the Supporting Functions on page 9-117 section of
this example.

The objective of the NIMA network is to minimize the earth mover's distance (EMD) between the
ground truth and predicted score distributions. EMD loss considers the distance between classes
when penalizing misclassification. Therefore, EMD loss performs better than a typical softmax cross-
entropy loss used in classification tasks [5] on page 9-118. This example calculates the EMD loss
using the earthMoverDistance helper function, which is defined in the Supporting Functions on
page 9-117 section of this example.

For the EMD loss function, use an r-norm distance with r = 2. This distance allows for easy
optimization when you work with gradient descent.

Specify Training Options

Specify the options for SGDM optimization. Train the network for 150 epochs.

numEpochs = 150;
momentum = 0.9;
initialLearnRate = 3e-3;
decay = 0.95;

Train Network

By default, the example loads a pretrained version of the NIMA network. The pretrained network
enables you to run the entire example without waiting for training to complete.

9 Image Processing Examples

9-114



To train the network, set the doTraining variable in the following code to true. Train the model in
a custom training loop. For each iteration:

• Read the data for the current mini-batch using the next function.
• Evaluate the model gradients using the dlfeval function and the modelGradients helper

function.
• Update the network parameters using the sgdmupdate function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

doTraining = false;
if doTraining
    iteration = 0;
    velocity = [];
    start = tic;
    
    [hFig,lineLossTrain,lineLossVal] = initializeTrainingPlotNIMA;
    
    for epoch = 1:numEpochs
        
        shuffle (mbqTrain);    
        learnRate = initialLearnRate/(1+decay*floor(epoch/10));
        
        while hasdata(mbqTrain)
            iteration = iteration + 1;        
            [dlX,cdfY] = next(mbqTrain);
            [grad,loss] = dlfeval(@modelGradients,dlnet,dlX,cdfY);        
            [dlnet,velocity] = sgdmupdate(dlnet,grad,velocity,learnRate,momentum);
            
            updateTrainingPlotNIMA(lineLossTrain,loss,epoch,iteration,start)              
        end
        
        % Add validation data to plot
        [~,lossVal,~] = modelPredictions(dlnet,mbqVal);
        updateTrainingPlotNIMA(lineLossVal,lossVal,epoch,iteration,start) 
        
    end
    
    % Save the trained network
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(dataDir,"trainedNIMA-"+modelDateTime+".mat"),"dlnet");

else
    load(fullfile(dataDir,"trainedNIMA.mat"));    
end

Evaluate NIMA Model

Evaluate the performance of the model on the test data set using three metrics: EMD, binary
classification accuracy, and correlation coefficients. The performance of the NIMA network on the
test data set is in agreement with the performance of the reference NIMA model reported by Talebi
and Milanfar [1] on page 9-118.

Create a minibatchqueue object that manages the mini-batching of test data.

 Quantify Image Quality Using Neural Image Assessment

9-115



mbqTest = minibatchqueue(dsTest,MiniBatchSize=miniBatchSize,MiniBatchFormat=["SSCB",""]);

Calculate the predicted probabilities and ground truth cumulative probabilities of mini-batches of test
data using the modelPredictions function. This function is defined in the Supporting Functions on
page 9-117 section of this example.

[YPredTest,~,cdfYTest] = modelPredictions(dlnet,mbqTest);

Calculate the mean and standard deviation values of the ground truth and predicted distributions.

meanPred = extractdata(YPredTest)' * (1:10)';
stdPred = sqrt(extractdata(YPredTest)'*((1:10).^2)' - meanPred.^2);
origCdf = extractdata(cdfYTest);
origPdf = [origCdf(1,:); diff(origCdf)];
meanOrig = origPdf' * (1:10)';
stdOrig = sqrt(origPdf'*((1:10).^2)' - meanOrig.^2);

Calculate EMD

Calculate the EMD of the ground truth and predicted score distributions. For prediction, use an r-
norm distance with r = 1. The EMD value indicates the closeness of the predicted and ground truth
rating distributions.

EMDTest = earthMoverDistance(YPredTest,cdfYTest,1)

EMDTest = 
  1×1 single gpuArray dlarray

    0.0974

Calculate Binary Classification Accuracy

For binary classification accuracy, convert the distributions to two classifications: high-quality and
low-quality. Classify images with a mean score greater than a threshold as high-quality.

qualityThreshold = 5;
binaryPred = meanPred > qualityThreshold;    
binaryOrig = meanOrig > qualityThreshold;

Calculate the binary classification accuracy.

binaryAccuracy = 100 * sum(binaryPred==binaryOrig)/length(binaryPred)

binaryAccuracy =

   81.8182

Calculate Correlation Coefficients

Large correlation values indicate a large positive correlation between the ground truth and predicted
scores. Calculate the linear correlation coefficient (LCC) and Spearman’s rank correlation coefficient
(SRCC) for the mean scores.

meanLCC = corr(meanOrig,meanPred)

meanLCC =

  gpuArray single

9 Image Processing Examples

9-116



    0.8270

meanSRCC = corr(meanOrig,meanPred,type="Spearman")

meanSRCC =

  gpuArray single

    0.8133

Supporting Functions

Model Gradients Function

The modelGradients function takes as input a dlnetwork object dlnet and a mini-batch of input
data dlX with corresponding target cumulative probabilities cdfY. The function returns the gradients
of the loss with respect to the learnable parameters in dlnet as well as the loss. To compute the
gradients automatically, use the dlgradient function.

function [gradients,loss] = modelGradients(dlnet,dlX,cdfY)
    dlYPred = forward(dlnet,dlX);    
    loss = earthMoverDistance(dlYPred,cdfY,2);    
    gradients = dlgradient(loss,dlnet.Learnables);    
end

Loss Function

The earthMoverDistance function calculates the EMD between the ground truth and predicted
distributions for a specified r-norm value. The earthMoverDistance uses the computeCDF helper
function to calculate the cumulative probabilities of the predicted distribution.

function loss = earthMoverDistance(YPred,cdfY,r)
    N = size(cdfY,1);
    cdfYPred = computeCDF(YPred);
    cdfDiff = (1/N) * (abs(cdfY - cdfYPred).^r);
    lossArray = sum(cdfDiff,1).^(1/r);
    loss = mean(lossArray);
    
end
function cdfY = computeCDF(Y)
% Given a probability mass function Y, compute the cumulative probabilities
    [N,miniBatchSize] = size(Y);
    L = repmat(triu(ones(N)),1,1,miniBatchSize);
    L3d = permute(L,[1 3 2]);
    prod = Y.*L3d;
    prodSum = sum(prod,1);
    cdfY = reshape(prodSum(:)',miniBatchSize,N)';
end

Model Predictions Function

The modelPredictions function calculates the estimated probabilities, loss, and ground truth
cumulative probabilities of mini-batches of data.

function [dlYPred,loss,cdfYOrig] = modelPredictions(dlnet,mbq)
    reset(mbq);
    loss = 0;

 Quantify Image Quality Using Neural Image Assessment

9-117



    numObservations = 0;
    dlYPred = [];    
    cdfYOrig = [];
    
    while hasdata(mbq)     
        [dlX,cdfY] = next(mbq);
        miniBatchSize = size(dlX,4);
        
        dlY = predict(dlnet,dlX);
        loss = loss + earthMoverDistance(dlY,cdfY,2)*miniBatchSize;
        dlYPred = [dlYPred dlY];
        cdfYOrig = [cdfYOrig cdfY];
        
        numObservations = numObservations + miniBatchSize;
        
    end
    loss = loss / numObservations;
end

References

[1] Talebi, Hossein, and Peyman Milanfar. “NIMA: Neural Image Assessment.” IEEE Transactions on
Image Processing 27, no. 8 (August 2018): 3998–4011. https://doi.org/10.1109/TIP.2018.2831899.

[2] LIVE: Laboratory for Image and Video Engineering. "LIVE In the Wild Image Quality Challenge
Database." https://live.ece.utexas.edu/research/ChallengeDB/index.html.

[3] Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
“MobileNetV2: Inverted Residuals and Linear Bottlenecks.” In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4510–20. Salt Lake City, UT: IEEE, 2018. https://doi.org/
10.1109/CVPR.2018.00474.

[4] ImageNet. https://www.image-net.org.

[5] Hou, Le, Chen-Ping Yu, and Dimitris Samaras. “Squared Earth Mover’s Distance-Based Loss for
Training Deep Neural Networks.” Preprint, submitted November 30, 2016. https://arxiv.org/abs/
1611.05916.

See Also
mobilenetv2 | transform | layerGraph | dlnetwork | minibatchqueue | predict | dlfeval |
sgdmupdate

More About
• “Image Quality Metrics” (Image Processing Toolbox)
• “Datastores for Deep Learning” on page 20-2
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223

9 Image Processing Examples

9-118

https://doi.org/10.1109/TIP.2018.2831899
https://live.ece.utexas.edu/research/ChallengeDB/index.html
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://www.image-net.org
https://arxiv.org/abs/1611.05916
https://arxiv.org/abs/1611.05916


• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239

 Quantify Image Quality Using Neural Image Assessment

9-119



Neural Style Transfer Using Deep Learning

This example shows how to apply the stylistic appearance of one image to the scene content of a
second image using a pretrained VGG-19 network.

Load Data

Load the style image and content image. This example uses the distinctive Van Gogh painting "Starry
Night" as the style image and a photograph of a lighthouse as the content image.

styleImage = im2double(imread("starryNight.jpg"));
contentImage = imread("lighthouse.png");

Display the style image and content image as a montage.

imshow(imtile({styleImage,contentImage},BackgroundColor="w"));

Load Feature Extraction Network

In this example, you use a modified pretrained VGG-19 deep neural network to extract the features of
the content and style image at various layers. These multilayer features are used to calculate
respective content and style losses. The network generates the stylized transfer image using the
combined loss.

To get a pretrained VGG-19 network, install vgg19. If you do not have the required support packages
installed, then the software provides a download link.

net = vgg19;

To make the VGG-19 network suitable for feature extraction, remove all of the fully connected layers
from the network.

lastFeatureLayerIdx = 38;
layers = net.Layers;
layers = layers(1:lastFeatureLayerIdx);

9 Image Processing Examples

9-120



The max pooling layers of the VGG-19 network cause a fading effect. To decrease the fading effect
and increase the gradient flow, replace all max pooling layers with average pooling layers [1] on page
9-128.

for l = 1:lastFeatureLayerIdx
    layer = layers(l);
    if isa(layer,"nnet.cnn.layer.MaxPooling2DLayer")
        layers(l) = averagePooling2dLayer( ...
            layer.PoolSize,Stride=layer.Stride,Name=layer.Name);
    end
end

Create a layer graph with the modified layers.

lgraph = layerGraph(layers);

Visualize the feature extraction network in a plot.

plot(lgraph)
title("Feature Extraction Network")

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

dlnet = dlnetwork(lgraph);

Preprocess Data

Resize the style image and content image to a smaller size for faster processing.

imageSize = [384,512];
styleImg = imresize(styleImage,imageSize);
contentImg = imresize(contentImage,imageSize);

The pretrained VGG-19 network performs classification on a channel-wise mean subtracted image.
Get the channel-wise mean from the image input layer, which is the first layer in the network.

 Neural Style Transfer Using Deep Learning

9-121



imgInputLayer = lgraph.Layers(1);
meanVggNet = imgInputLayer.Mean(1,1,:);

The values of the channel-wise mean are appropriate for images of floating point data type with pixel
values in the range [0, 255]. Convert the style image and content image to data type single with
range [0, 255]. Then, subtract the channel-wise mean from the style image and content image.

styleImg = rescale(single(styleImg),0,255) - meanVggNet;
contentImg = rescale(single(contentImg),0,255) - meanVggNet;

Initialize Transfer Image

The transfer image is the output image as a result of style transfer. You can initialize the transfer
image with a style image, content image, or any random image. Initialization with a style image or
content image biases the style transfer process and produces a transfer image more similar to the
input image. In contrast, initialization with white noise removes the bias but takes longer to converge
on the stylized image. For better stylization and faster convergence, this example initializes the
output transfer image as a weighted combination of the content image and a white noise image.

noiseRatio = 0.7;
randImage = randi([-20,20],[imageSize 3]);
transferImage = noiseRatio.*randImage + (1-noiseRatio).*contentImg;

Define Loss Functions and Style Transfer Parameters

Content Loss

The objective of content loss is to make the features of the transfer image match the features of the
content image. The content loss is calculated as the mean squared difference between content image
features and transfer image features for each content feature layer [1] on page 9-128. Y is the
predicted feature map for the transfer image and Y is the predicted feature map for the content
image. Wc

l  is the content layer weight for the lth layer. H, W, Care the height, width, and channels of
the feature maps, respectively.

Lcontent = ∑
l

Wc
l × 1

HWC∑i, j
(Y i, j

l − Yi, j
l )2

Specify the content feature extraction layer names. The features extracted from these layers are used
to calculate the content loss. In the VGG-19 network, training is more effective using features from
deeper layers rather than features from shallow layers. Therefore, specify the content feature
extraction layer as the fourth convolutional layer.

styleTransferOptions.contentFeatureLayerNames = "conv4_2";

Specify the weights of the content feature extraction layers.

styleTransferOptions.contentFeatureLayerWeights = 1;

Style Loss

The objective of style loss is to make the texture of the transfer image match the texture of the style
image. The style representation of an image is represented as a Gram matrix. Therefore, the style
loss is calculated as the mean squared difference between the Gram matrix of the style image and the
Gram matrix of the transfer image [1] on page 9-128. Z and Z are the predicted feature maps for the

9 Image Processing Examples

9-122



style and transfer image, respectively. GZ and GZ are Gram matrices for style features and transfer
features, respectively. Ws

l  is the style layer weight for the lth style layer.

GZ = ∑
i, j

Zi, j × Z j, i

GZ = ∑
i, j

Zi, j × Z j, i

Lstyle = ∑
l

Ws
l × 1

(2HWC)2
∑ (GZ

l − GZ
l )2

Specify the names of the style feature extraction layers. The features extracted from these layers are
used to calculate style loss.

styleTransferOptions.styleFeatureLayerNames = [ ...
    "conv1_1","conv2_1","conv3_1","conv4_1","conv5_1"];

Specify the weights of the style feature extraction layers. Specify small weights for simple style
images and increase the weights for complex style images.

styleTransferOptions.styleFeatureLayerWeights = [0.5,1.0,1.5,3.0,4.0];

Total Loss

The total loss is a weighted combination of content loss and style loss. α and β are weight factors for
content loss and style loss, respectively.

Ltotal = α × Lcontent + β × Lstyle

Specify the weight factors alpha and beta for content loss and style loss. The ratio of alpha to
beta should be around 1e-3 or 1e-4 [1] on page 9-128.

styleTransferOptions.alpha = 1; 
styleTransferOptions.beta = 1e3;

Specify Training Options

Train for 2500 iterations.

numIterations = 2500;

Specify options for Adam optimization. Set the learning rate to 2 for faster convergence. You can
experiment with the learning rate by observing your output image and losses. Initialize the trailing
average gradient and trailing average gradient-square decay rates with [].

learningRate = 2;
trailingAvg = [];
trailingAvgSq = [];

Train the Network

Convert the style image, content image, and transfer image to dlarray objects with underlying type
single and dimension labels "SSC".

 Neural Style Transfer Using Deep Learning

9-123



dlStyle = dlarray(styleImg,"SSC");
dlContent = dlarray(contentImg,"SSC");
dlTransfer = dlarray(transferImage,"SSC");

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). For GPU training, convert the data into a gpuArray.

if canUseGPU
    dlContent = gpuArray(dlContent);
    dlStyle = gpuArray(dlStyle);
    dlTransfer = gpuArray(dlTransfer);
end

Extract the content features from the content image.

numContentFeatureLayers = numel(styleTransferOptions.contentFeatureLayerNames);
contentFeatures = cell(1,numContentFeatureLayers);
[contentFeatures{:}] = forward(dlnet,dlContent,Outputs=styleTransferOptions.contentFeatureLayerNames);

Extract the style features from the style image.

numStyleFeatureLayers = numel(styleTransferOptions.styleFeatureLayerNames);
styleFeatures = cell(1,numStyleFeatureLayers);
[styleFeatures{:}] = forward(dlnet,dlStyle,Outputs=styleTransferOptions.styleFeatureLayerNames);

Train the model using a custom training loop. For each iteration:

• Calculate the content loss and style loss using the features of the content image, style image, and
transfer image. To calculate the loss and gradients, use the helper function imageGradients
(defined in the Supporting Functions on page 9-126 section of this example).

• Update the transfer image using the adamupdate function.
• Select the best style transfer image as the final output image.

figure

minimumLoss = inf;

for iteration = 1:numIterations
    % Evaluate the transfer image gradients and state using dlfeval and the
    % imageGradients function listed at the end of the example
    [grad,losses] = dlfeval(@imageGradients,dlnet,dlTransfer, ...
        contentFeatures,styleFeatures,styleTransferOptions);
    [dlTransfer,trailingAvg,trailingAvgSq] = adamupdate( ...
        dlTransfer,grad,trailingAvg,trailingAvgSq,iteration,learningRate);
  
    if losses.totalLoss < minimumLoss
        minimumLoss = losses.totalLoss;
        dlOutput = dlTransfer;        
    end   
    
    % Display the transfer image on the first iteration and after every 50
    % iterations. The postprocessing steps are described in the "Postprocess
    % Transfer Image for Display" section of this example
    if mod(iteration,50) == 0 || (iteration == 1)
        
        transferImage = gather(extractdata(dlTransfer));

9 Image Processing Examples

9-124



        transferImage = transferImage + meanVggNet;
        transferImage = uint8(transferImage);
        transferImage = imresize(transferImage,size(contentImage,[1 2]));
        
        image(transferImage)
        title(["Transfer Image After Iteration ",num2str(iteration)])
        axis off image
        drawnow
    end   
    
end

Postprocess Transfer Image for Display

Get the updated transfer image.

transferImage = gather(extractdata(dlOutput));

Add the network-trained mean to the transfer image.

transferImage = transferImage + meanVggNet;

 Neural Style Transfer Using Deep Learning

9-125



Some pixel values can exceed the original range [0, 255] of the content and style image. You can clip
the values to the range [0, 255] by converting the data type to uint8.

transferImage = uint8(transferImage);

Resize the transfer image to the original size of the content image.

transferImage = imresize(transferImage,size(contentImage,[1 2]));

Display the content image, transfer image, and style image in a montage.

imshow(imtile({contentImage,transferImage,styleImage}, ...
    GridSize=[1 3],BackgroundColor="w"));

Supporting Functions

Calculate Image Loss and Gradients

The imageGradients helper function returns the loss and gradients using features of the content
image, style image, and transfer image.

function [gradients,losses] = imageGradients(dlnet,dlTransfer, ...
    contentFeatures,styleFeatures,params)
 
    % Initialize transfer image feature containers
    numContentFeatureLayers = numel(params.contentFeatureLayerNames);
    numStyleFeatureLayers = numel(params.styleFeatureLayerNames);
 
    transferContentFeatures = cell(1,numContentFeatureLayers);
    transferStyleFeatures = cell(1,numStyleFeatureLayers);
 
    % Extract content features of transfer image
    [transferContentFeatures{:}] = forward(dlnet,dlTransfer, ...
        Outputs=params.contentFeatureLayerNames);
     

9 Image Processing Examples

9-126



    % Extract style features of transfer image
    [transferStyleFeatures{:}] = forward(dlnet,dlTransfer, ...
        Outputs=params.styleFeatureLayerNames);
 
    % Calculate content loss
    cLoss = contentLoss(transferContentFeatures,contentFeatures, ...
        params.contentFeatureLayerWeights);
 
    % Calculate style loss
    sLoss = styleLoss(transferStyleFeatures,styleFeatures, ...
        params.styleFeatureLayerWeights);
 
    % Calculate final loss as weighted combination of content and style loss 
    loss = (params.alpha * cLoss) + (params.beta * sLoss);
 
    % Calculate gradient with respect to transfer image
    gradients = dlgradient(loss,dlTransfer);
    
    % Extract various losses
    losses.totalLoss = gather(extractdata(loss));
    losses.contentLoss = gather(extractdata(cLoss));
    losses.styleLoss = gather(extractdata(sLoss));
 
end

Calculate Content Loss

The contentLoss helper function calculates the weighted mean squared difference between the
content image features and the transfer image features.

function loss = contentLoss(transferContentFeatures,contentFeatures,contentWeights)

    loss = 0;
    for i=1:numel(contentFeatures)
        temp = 0.5 .* mean((transferContentFeatures{1,i}-contentFeatures{1,i}).^2,"all");
        loss = loss + (contentWeights(i)*temp);
    end
end

Calculate Style Loss

The styleLoss helper function calculates the weighted mean squared difference between the Gram
matrix of the style image features and the Gram matrix of the transfer image features.

function loss = styleLoss(transferStyleFeatures,styleFeatures,styleWeights)

    loss = 0;
    for i=1:numel(styleFeatures)
        
        tsf = transferStyleFeatures{1,i};
        sf = styleFeatures{1,i};    
        [h,w,c] = size(sf);
        
        gramStyle = calculateGramMatrix(sf);
        gramTransfer = calculateGramMatrix(tsf);
        sLoss = mean((gramTransfer - gramStyle).^2,"all") / ((h*w*c)^2);
        
        loss = loss + (styleWeights(i)*sLoss);

 Neural Style Transfer Using Deep Learning

9-127



    end
end

Calculate Gram Matrix

The calculateGramMatrix helper function is used by the styleLoss helper function to calculate
the Gram matrix of a feature map.

function gramMatrix = calculateGramMatrix(featureMap)
    [H,W,C] = size(featureMap);
    reshapedFeatures = reshape(featureMap,H*W,C);
    gramMatrix = reshapedFeatures' * reshapedFeatures;
end

References

[1] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. "A Neural Algorithm of Artistic Style."
Preprint, submitted September 2, 2015. https://arxiv.org/abs/1508.06576

See Also
vgg19 | trainNetwork | trainingOptions | dlarray

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239
• “List of Functions with dlarray Support” on page 19-504
• “List of Deep Learning Layers” on page 1-43

9 Image Processing Examples

9-128



Unsupervised Medical Image Denoising Using CycleGAN

This example shows how to generate high-quality high-dose computed tomography (CT) images from
noisy low-dose CT images using a CycleGAN neural network.

Note: This example references the Low Dose CT Grand Challenge data set, as accessed on May 1,
2021. The example uses chest images from the data set that are now under restricted access. To run
this example, you must have a compatible data set with low-dose and high-dose CT images, and adapt
the data preprocessing and training options to suit your data.

X-ray CT is a popular imaging modality used in clinical and industrial applications because it
produces high-quality images and offers superior diagnostic capabilities. To protect the safety of
patients, clinicians recommend a low radiation dose. However, a low radiation dose results in a lower
signal-to-noise ratio (SNR) in the images, and therefore reduces the diagnostic accuracy.

Deep learning techniques can improve the image quality for low-dose CT (LDCT) images. Using a
generative adversarial network (GAN) for image-to-image translation, you can convert noisy LDCT
images to images of the same quality as regular-dose CT images. For this application, the source
domain consists of LDCT images and the target domain consists of regular-dose images. For more
information, see “Get Started with GANs for Image-to-Image Translation” (Image Processing
Toolbox).

CT image denoising requires a GAN that performs unsupervised training because clinicians do not
typically acquire matching pairs of low-dose and regular-dose CT images of the same patient in the
same session. This example uses a cycle-consistent GAN (CycleGAN) trained on patches of image
data from a large sample of data. For a similar approach using a UNIT neural network trained on full
images from a limited sample of data, see “Unsupervised Medical Image Denoising Using UNIT”
(Image Processing Toolbox).

 Unsupervised Medical Image Denoising Using CycleGAN

9-129



Download LDCT Data Set

This example uses data from the Low Dose CT Grand Challenge [2, 3, 4]. The data includes pairs of
regular-dose CT images and simulated low-dose CT images for 99 head scans (labeled N for neuro),
100 chest scans (labeled C for chest), and 100 abdomen scans (labeled L for liver). The size of the
data set is 1.2 TB.

Specify dataDir as the desired location of the data set.

dataDir = fullfile(tempdir,"LDCT","LDCT-and-Projection-data");

To download the data, go to the Cancer Imaging Archive website. This example uses only images from
the chest. Download the chest files from the "Images (DICOM, 952 GB)" data set into the directory
specified by dataDir using the NBIA Data Retriever. When the download is successful, dataDir
contains 50 subfolders with names such as "C002" and "C004", ending with "C296".

Create Datastores for Training, Validation, and Testing

The LDCT data set provides pairs of low-dose and high-dose CT images. However, the CycleGAN
architecture requires unpaired data for unsupervised learning. This example simulates unpaired
training and validation data by partitioning images such that the patients used to obtain low-dose CT
and high-dose CT images do not overlap. The example retains pairs of low-dose and regular-dose
images for testing.

Split the data into training, validation, and test data sets using the createLDCTFolderList helper
function. This function is attached to the example as a supporting file. The helper function splits the

9 Image Processing Examples

9-130

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images


data such that there is roughly good representation of the two types of images in each group.
Approximately 80% of the data is used for training, 15% is used for testing, and 5% is used for
validation.

maxDirsForABodyPart = 25;
[filesTrainLD,filesTrainHD,filesTestLD,filesTestHD,filesValLD,filesValHD] = ...
    createLDCTFolderList(dataDir,maxDirsForABodyPart);

Create image datastores that contain training and validation images for both domains, namely low-
dose CT images and high-dose CT images. The data set consists of DICOM images, so use the custom
ReadFcn name-value argument in imageDatastore to enable reading the data.

exts = ".dcm";
readFcn = @(x)dicomread(x);
imdsTrainLD = imageDatastore(filesTrainLD,FileExtensions=exts,ReadFcn=readFcn);
imdsTrainHD = imageDatastore(filesTrainHD,FileExtensions=exts,ReadFcn=readFcn);
imdsValLD = imageDatastore(filesValLD,FileExtensions=exts,ReadFcn=readFcn);
imdsValHD = imageDatastore(filesValHD,FileExtensions=exts,ReadFcn=readFcn);
imdsTestLD = imageDatastore(filesTestLD,FileExtensions=exts,ReadFcn=readFcn);
imdsTestHD = imageDatastore(filesTestHD,FileExtensions=exts,ReadFcn=readFcn);

The number of low-dose and high-dose images can differ. Select a subset of the files such that the
number of images is equal.

numTrain = min(numel(imdsTrainLD.Files),numel(imdsTrainHD.Files));
imdsTrainLD = subset(imdsTrainLD,1:numTrain);
imdsTrainHD = subset(imdsTrainHD,1:numTrain);

numVal = min(numel(imdsValLD.Files),numel(imdsValHD.Files));
imdsValLD = subset(imdsValLD,1:numVal);
imdsValHD = subset(imdsValHD,1:numVal);

numTest = min(numel(imdsTestLD.Files),numel(imdsTestHD.Files));
imdsTestLD = subset(imdsTestLD,1:numTest);
imdsTestHD = subset(imdsTestHD,1:numTest);

Preprocess and Augment Data

Preprocess the data by using the transform function with custom preprocessing operations
specified by the normalizeCTImages helper function. This function is attached to the example as a
supporting file. The normalizeCTImages function rescales the data to the range [-1, 1].

timdsTrainLD = transform(imdsTrainLD,@(x){normalizeCTImages(x)});
timdsTrainHD = transform(imdsTrainHD,@(x){normalizeCTImages(x)});
timdsValLD = transform(imdsValLD,@(x){normalizeCTImages(x)});
timdsValHD  = transform(imdsValHD,@(x){normalizeCTImages(x)});
timdsTestLD = transform(imdsTestLD,@(x){normalizeCTImages(x)});
timdsTestHD  = transform(imdsTestHD,@(x){normalizeCTImages(x)});

Combine the low-dose and high-dose training data by using a randomPatchExtractionDatastore
(Image Processing Toolbox). When reading from this datastore, augment the data using random
rotation and horizontal reflection.

inputSize = [128,128,1];
augmenter = imageDataAugmenter(RandRotation=@()90*(randi([0,1],1)),RandXReflection=true);
dsTrain = randomPatchExtractionDatastore(timdsTrainLD,timdsTrainHD, ...
    inputSize(1:2),PatchesPerImage=16,DataAugmentation=augmenter);

 Unsupervised Medical Image Denoising Using CycleGAN

9-131



Combine the validation data by using a randomPatchExtractionDatastore. You do not need to
perform augmentation when reading validation data.

dsVal = randomPatchExtractionDatastore(timdsValLD,timdsValHD,inputSize(1:2));

Visualize Data Set

Look at a few low-dose and high-dose image patch pairs from the training set. Notice that the image
pairs of low-dose (left) and high-dose (right) images are unpaired, as they are from different patients.

numImagePairs = 6;
imagePairsTrain = [];
for i = 1:numImagePairs
    imLowAndHighDose = read(dsTrain);
    inputImage = imLowAndHighDose.InputImage{1};
    inputImage = rescale(im2single(inputImage));
    responseImage = imLowAndHighDose.ResponseImage{1};
    responseImage = rescale(im2single(responseImage));
    imagePairsTrain = cat(4,imagePairsTrain,inputImage,responseImage);
end
montage(imagePairsTrain,Size=[numImagePairs 2],BorderSize=4,BackgroundColor="w")

9 Image Processing Examples

9-132



Batch Training and Validation Data During Training

This example uses a custom training loop. The minibatchqueue object is useful for managing the
mini-batching of observations in custom training loops. The minibatchqueue object also casts data
to a dlarray object that enables auto differentiation in deep learning applications.

 Unsupervised Medical Image Denoising Using CycleGAN

9-133



Process the mini-batches by concatenating image patches along the batch dimension using the helper
function concatenateMiniBatchLD2HDCT. This function is attached to the example as a supporting
file. Specify the mini-batch data extraction format as "SSCB" (spatial, spatial, channel, batch).
Discard any partial mini-batches with less than miniBatchSize observations.

miniBatchSize = 32;

mbqTrain = minibatchqueue(dsTrain, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@concatenateMiniBatchLD2HDCT, ...
    PartialMiniBatch="discard", ...
    MiniBatchFormat="SSCB");
mbqVal = minibatchqueue(dsVal, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@concatenateMiniBatchLD2HDCT, ...
    PartialMiniBatch="discard", ...
    MiniBatchFormat="SSCB");

Create Generator and Discriminator Networks

The CycleGAN consists of two generators and two discriminators. The generators perform image-to-
image translation from low-dose to high-dose and vice versa. The discriminators are PatchGAN
networks that return the patch-wise probability that the input data is real or generated. One
discriminator distinguishes between the real and generated low-dose images and the other
discriminator distinguishes between real and generated high-dose images.

Create each generator network using the cycleGANGenerator (Image Processing Toolbox) function.
For an input size of 256-by-256 pixels, specify the NumResidualBlocks argument as 9. By default,
the function has 3 encoder modules and uses 64 filters in the first convolutional layer.

numResiduals = 6; 
genHD2LD = cycleGANGenerator(inputSize,NumResidualBlocks=numResiduals,NumOutputChannels=1);
genLD2HD = cycleGANGenerator(inputSize,NumResidualBlocks=numResiduals,NumOutputChannels=1);

Create each discriminator network using the patchGANDiscriminator (Image Processing Toolbox)
function. Use the default settings for the number of downsampling blocks and number of filters in the
first convolutional layer in the discriminators.

discLD = patchGANDiscriminator(inputSize);
discHD = patchGANDiscriminator(inputSize);

Define Loss Functions and Scores

The modelGradients helper function calculates the gradients and losses for the discriminators and
generators. This function is defined in the Supporting Functions on page 9-140 section of this
example.

The objective of the generator is to generate translated images that the discriminators classify as
real. The generator loss is a weighted sum of three types of losses: adversarial loss, cycle consistency
loss, and fidelity loss. Fidelity loss is based on structural similarity (SSIM) loss.

LTotal = LAdversarial + λ * LCycle consistency + LFidelity

Specify the weighting factor λ that controls the relative significance of the cycle consistency loss with
the adversarial and fidelity losses.

lambda = 10;

9 Image Processing Examples

9-134



The objective of each discriminator is to correctly distinguish between real images (1) and translated
images (0) for images in its domain. Each discriminator has a single loss function that relies on the
mean squared error (MSE) between the expected and predicted output.

Specify Training Options

Train with a mini-batch size of 32 for 3 epochs.

numEpochs = 3;
miniBatchSize = 32;

Specify the options for Adam optimization. For both generator and discriminator networks, use:

• A learning rate of 0.0002
• A gradient decay factor of 0.5
• A squared gradient decay factor of 0.999

learnRate = 0.0002;
gradientDecay = 0.5;
squaredGradientDecayFactor = 0.999;

Initialize Adam parameters for the generators and discriminators.

avgGradGenLD2HD = [];
avgSqGradGenLD2HD = [];
avgGradGenHD2LD = [];
avgSqGradGenHD2LD = [];
avgGradDiscLD = [];
avgSqGradDiscLD = [];
avgGradDiscHD = [];
avgSqGradDiscHD = [];

Display the generated validation images every 100 iterations.

validationFrequency = 100;

Train or Download Model

By default, the example downloads a pretrained version of the CycleGAN generator for low-dose to
high-dose CT. The pretrained network enables you to run the entire example without waiting for
training to complete.

To train the network, set the doTraining variable in the following code to true. Train the model in
a custom training loop. For each iteration:

• Read the data for the current mini-batch using the next function.
• Evaluate the model gradients using the dlfeval function and the modelGradients helper

function.
• Update the network parameters using the adamupdate function.
• Display the input and translated images for both the source and target domains after each epoch.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 30 hours on an NVIDIA™ Titan X with 24 GB of GPU
memory.

 Unsupervised Medical Image Denoising Using CycleGAN

9-135



doTraining = false;
if doTraining

    iteration = 0;
    start = tic;

    % Create a directory to store checkpoints
    checkpointDir = fullfile(dataDir,"checkpoints");
    if ~exist(checkpointDir,"dir")
        mkdir(checkpointDir);
    end

    % Initialize plots for training progress
    [figureHandle,tileHandle,imageAxes,scoreAxesX,scoreAxesY, ...
        lineScoreGenLD2HD,lineScoreGenD2LD,lineScoreDiscHD,lineScoreDiscLD] = ...
        initializeTrainingPlotLD2HDCT_CycleGAN;

    for epoch = 1:numEpochs

        shuffle(mbqTrain);

        % Loop over mini-batches
        while hasdata(mbqTrain)
            iteration = iteration + 1;

            % Read mini-batch of data
            [imageLD,imageHD] = next(mbqTrain);

            % Convert mini-batch of data to dlarray and specify the dimension labels
            % "SSCB" (spatial, spatial, channel, batch)
            imageLD = dlarray(imageLD,"SSCB");
            imageHD = dlarray(imageHD,"SSCB");

            % If training on a GPU, then convert data to gpuArray
            if canUseGPU
                imageLD = gpuArray(imageLD);
                imageHD = gpuArray(imageHD);
            end

            % Calculate the loss and gradients
            [genHD2LDGrad,genLD2HDGrad,discrXGrad,discYGrad, ...
                genHD2LDState,genLD2HDState,scores,imagesOutLD2HD,imagesOutHD2LD] = ...
                dlfeval(@modelGradients,genLD2HD,genHD2LD, ...
                discLD,discHD,imageHD,imageLD,lambda);
            genHD2LD.State = genHD2LDState;
            genLD2HD.State = genLD2HDState;

            % Update parameters of discLD, which distinguishes
            % the generated low-dose CT images from real low-dose CT images
            [discLD.Learnables,avgGradDiscLD,avgSqGradDiscLD] = ...
                adamupdate(discLD.Learnables,discrXGrad,avgGradDiscLD, ...
                avgSqGradDiscLD,iteration,learnRate,gradientDecay,squaredGradientDecayFactor);

            % Update parameters of discHD, which distinguishes
            % the generated high-dose CT images from real high-dose CT images
            [discHD.Learnables,avgGradDiscHD,avgSqGradDiscHD] = ...
                adamupdate(discHD.Learnables,discYGrad,avgGradDiscHD, ...
                avgSqGradDiscHD,iteration,learnRate,gradientDecay,squaredGradientDecayFactor);

9 Image Processing Examples

9-136



            % Update parameters of genHD2LD, which
            % generates low-dose CT images from high-dose CT images
            [genHD2LD.Learnables,avgGradGenHD2LD,avgSqGradGenHD2LD] = ...
                adamupdate(genHD2LD.Learnables,genHD2LDGrad,avgGradGenHD2LD, ...
                avgSqGradGenHD2LD,iteration,learnRate,gradientDecay,squaredGradientDecayFactor);
                        
            % Update parameters of genLD2HD, which
            % generates high-dose CT images from low-dose CT images
            [genLD2HD.Learnables,avgGradGenLD2HD,avgSqGradGenLD2HD] = ...
                adamupdate(genLD2HD.Learnables,genLD2HDGrad,avgGradGenLD2HD, ...
                avgSqGradGenLD2HD,iteration,learnRate,gradientDecay,squaredGradientDecayFactor);
                        
            % Update the plots of network scores
            updateTrainingPlotLD2HDCT_CycleGAN(scores,iteration,epoch,start,scoreAxesX,scoreAxesY,...
                lineScoreGenLD2HD,lineScoreGenD2LD, ...
                lineScoreDiscHD,lineScoreDiscLD)

            %  Every validationFrequency iterations, display a batch of
            %  generated images using the held-out generator input
            if mod(iteration,validationFrequency) == 0 || iteration == 1
                 displayGeneratedLD2HDCTImages(mbqVal,imageAxes,genLD2HD,genHD2LD);
            end
        end

        % Save the model after each epoch
        if canUseGPU
            [genLD2HD,genHD2LD,discLD,discHD] = ...
                gather(genLD2HD,genHD2LD,discLD,discHD);
        end
        generatorHighDoseToLowDose = genHD2LD;
        generatorLowDoseToHighDose = genLD2HD;
        discriminatorLowDose = discLD;
        discriminatorHighDose = discHD;    
        modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
        save(checkpointDir+filesep+"LD2HDCTCycleGAN-"+modelDateTime+"-Epoch-"+epoch+".mat", ...
            'generatorLowDoseToHighDose','generatorHighDoseToLowDose', ...
            'discriminatorLowDose','discriminatorHighDose');
    end
    
    % Save the final model
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(checkpointDir+filesep+"trainedLD2HDCTCycleGANNet-"+modelDateTime+".mat", ...
        'generatorLowDoseToHighDose','generatorHighDoseToLowDose', ...
        'discriminatorLowDose','discriminatorHighDose');

else
    net_url = "https://www.mathworks.com/supportfiles/vision/data/trainedLD2HDCTCycleGANNet.mat";
    downloadTrainedNetwork(net_url,dataDir);
    load(fullfile(dataDir,"trainedLD2HDCTCycleGANNet.mat"));
end

Generate New Images Using Test Data

Define the number of test images to use for calculating quality metrics. Randomly select two test
images to display.

 Unsupervised Medical Image Denoising Using CycleGAN

9-137



numTest = timdsTestLD.numpartitions;
numImagesToDisplay = 2;
idxImagesToDisplay = randi(numTest,1,numImagesToDisplay);

Initialize variables to calculate PSNR and SSIM.

origPSNR = zeros(numTest,1);
generatedPSNR = zeros(numTest,1);
origSSIM = zeros(numTest,1);
generatedSSIM = zeros(numTest,1);

To generate new translated images, use the predict function. Read images from the test data set
and use the trained generators to generate new images.

for idx = 1:numTest
    imageTestLD = read(timdsTestLD);
    imageTestHD = read(timdsTestHD);
    
    imageTestLD = cat(4,imageTestLD{1});
    imageTestHD = cat(4,imageTestHD{1});

    % Convert mini-batch of data to dlarray and specify the dimension labels
    % "SSCB" (spatial, spatial, channel, batch)
    imageTestLD = dlarray(imageTestLD,"SSCB");
    imageTestHD = dlarray(imageTestHD,"SSCB");

    % If running on a GPU, then convert data to gpuArray
    if canUseGPU
        imageTestLD = gpuArray(imageTestLD);
        imageTestHD = gpuArray(imageTestHD);
    end

    % Generate translated images
    generatedImageHD = predict(generatorLowDoseToHighDose,imageTestLD);
    generatedImageLD = predict(generatorHighDoseToLowDose,imageTestHD);

    % Display a few images to visualize the network responses
     if ismember(idx,idxImagesToDisplay)
         figure
         origImLD = rescale(extractdata(imageTestLD));
         genImHD = rescale(extractdata(generatedImageHD));
         montage({origImLD,genImHD},Size=[1 2],BorderSize=5)
         title("Original LDCT Test Image "+idx+" (Left), Generated HDCT Image (Right)")
    end
    
    origPSNR(idx) = psnr(imageTestLD,imageTestHD);
    generatedPSNR(idx) = psnr(generatedImageHD,imageTestHD);
    
    origSSIM(idx) = multissim(imageTestLD,imageTestHD);
    generatedSSIM(idx) = multissim(generatedImageHD,imageTestHD);
end

9 Image Processing Examples

9-138



Calculate the average PSNR of the original and generated images. A larger PSNR value indicates
better image quality.

disp("Average PSNR of original images: "+mean(origPSNR,"all"));

Average PSNR of original images: 20.4045

 Unsupervised Medical Image Denoising Using CycleGAN

9-139



disp("Average PSNR of generated images: "+mean(generatedPSNR,"all"));

Average PSNR of generated images: 27.9155

Calculate the average SSIM of the original and generated images. An SSIM value closer to 1 indicates
better image quality.

disp("Average SSIM of original images: "+mean(origSSIM,"all"));

Average SSIM of original images: 0.76651

disp("Average SSIM of generated images: "+mean(generatedSSIM,"all"));

Average SSIM of generated images: 0.90194

Supporting Functions

Model Gradients Function

The function modelGradients takes as input the two generator and discriminator dlnetwork
objects and a mini-batch of input data. The function returns the gradients of the loss with respect to
the learnable parameters in the networks and the scores of the four networks. Because the
discriminator outputs are not in the range [0, 1], the modelGradients function applies the sigmoid
function to convert discriminator outputs into probability scores.

function [genHD2LDGrad,genLD2HDGrad,discLDGrad,discHDGrad, ...
    genHD2LDState,genLD2HDState,scores,imagesOutLDAndHDGenerated,imagesOutHDAndLDGenerated] = ...
    modelGradients(genLD2HD,genHD2LD,discLD,discHD,imageHD,imageLD,lambda)

% Translate images from one domain to another: low-dose to high-dose and
% vice versa
[imageLDGenerated,genHD2LDState] = forward(genHD2LD,imageHD);
[imageHDGenerated,genLD2HDState] = forward(genLD2HD,imageLD);

% Calculate predictions for real images in each domain by the corresponding
% discriminator networks
predRealLD = forward(discLD,imageLD);
predRealHD = forward(discHD,imageHD);

% Calculate predictions for generated images in each domain by the
% corresponding discriminator networks
predGeneratedLD = forward(discLD,imageLDGenerated);
predGeneratedHD = forward(discHD,imageHDGenerated);

% Calculate discriminator losses for real images
discLDLossReal = lossReal(predRealLD);
discHDLossReal = lossReal(predRealHD);

% Calculate discriminator losses for generated images
discLDLossGenerated = lossGenerated(predGeneratedLD);
discHDLossGenerated = lossGenerated(predGeneratedHD);

% Calculate total discriminator loss for each discriminator network
discLDLossTotal = 0.5*(discLDLossReal + discLDLossGenerated);
discHDLossTotal = 0.5*(discHDLossReal + discHDLossGenerated);

% Calculate generator loss for generated images
genLossHD2LD = lossReal(predGeneratedLD);

9 Image Processing Examples

9-140



genLossLD2HD = lossReal(predGeneratedHD);

% Complete the round-trip (cycle consistency) outputs by applying the
% generator to each generated image to get the images in the corresponding
% original domains
cycleImageLD2HD2LD = forward(genHD2LD,imageHDGenerated);
cycleImageHD2LD2HD = forward(genLD2HD,imageLDGenerated);

% Calculate cycle consistency loss between real and generated images
cycleLossLD2HD2LD = cycleConsistencyLoss(imageLD,cycleImageLD2HD2LD,lambda);
cycleLossHD2LD2HD = cycleConsistencyLoss(imageHD,cycleImageHD2LD2HD,lambda);

% Calculate identity outputs
identityImageLD = forward(genHD2LD,imageLD);
identityImageHD = forward(genLD2HD,imageHD);
 
% Calculate fidelity loss (SSIM) between the identity outputs
fidelityLossLD = mean(1-multissim(identityImageLD,imageLD),"all");
fidelityLossHD = mean(1-multissim(identityImageHD,imageHD),"all");

% Calculate total generator loss
genLossTotal = genLossHD2LD + cycleLossHD2LD2HD + ...
    genLossLD2HD + cycleLossLD2HD2LD + fidelityLossLD + fidelityLossHD;

% Calculate scores of generators
genHD2LDScore = mean(sigmoid(predGeneratedLD),"all");
genLD2HDScore = mean(sigmoid(predGeneratedHD),"all");

% Calculate scores of discriminators
discLDScore = 0.5*mean(sigmoid(predRealLD),"all") + ...
    0.5*mean(1-sigmoid(predGeneratedLD),"all");
discHDScore = 0.5*mean(sigmoid(predRealHD),"all") + ...
    0.5*mean(1-sigmoid(predGeneratedHD),"all");

% Combine scores into cell array
scores = {genHD2LDScore,genLD2HDScore,discLDScore,discHDScore};

% Calculate gradients of generators
genLD2HDGrad = dlgradient(genLossTotal,genLD2HD.Learnables,RetainData=true);
genHD2LDGrad = dlgradient(genLossTotal,genHD2LD.Learnables,RetainData=true);

% Calculate gradients of discriminators
discLDGrad = dlgradient(discLDLossTotal,discLD.Learnables,RetainData=true);
discHDGrad = dlgradient(discHDLossTotal,discHD.Learnables);

% Return mini-batch of images transforming low-dose CT into high-dose CT
imagesOutLDAndHDGenerated = {imageLD,imageHDGenerated};

% Return mini-batch of images transforming high-dose CT into low-dose CT
imagesOutHDAndLDGenerated = {imageHD,imageLDGenerated};
end

Loss Functions

Specify MSE loss functions for real and generated images.

function loss = lossReal(predictions)
    loss = mean((1-predictions).^2,"all");

 Unsupervised Medical Image Denoising Using CycleGAN

9-141



end

function loss = lossGenerated(predictions)
    loss = mean((predictions).^2,"all");
end

Specify cycle consistency loss functions for real and generated images.

function loss = cycleConsistencyLoss(imageReal,imageGenerated,lambda)
    loss = mean(abs(imageReal-imageGenerated),"all") * lambda;
end

References

[1] Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. “Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks.” In 2017 IEEE International Conference on
Computer Vision (ICCV), 2242–51. Venice: IEEE, 2017. https://doi.org/10.1109/ICCV.2017.244.

[2] McCollough, Cynthia, Baiyu Chen, David R Holmes III, Xinhui Duan, Zhicong Yu, Lifeng Yu, Shuai
Leng, and Joel Fletcher. “Low Dose CT Image and Projection Data (LDCT-and-Projection-Data).” The
Cancer Imaging Archive, 2020. https://doi.org/10.7937/9NPB-2637.

[3] Grants EB017095 and EB017185 (Cynthia McCollough, PI) from the National Institute of
Biomedical Imaging and Bioengineering.

[4] Clark, Kenneth, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel, Stephen
Moore, et al. “The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information
Repository.” Journal of Digital Imaging 26, no. 6 (December 2013): 1045–57. https://doi.org/10.1007/
s10278-013-9622-7.

[5] You, Chenyu, Qingsong Yang, Hongming Shan, Lars Gjesteby, Guang Li, Shenghong Ju, Zhuiyang
Zhang, et al. “Structurally-Sensitive Multi-Scale Deep Neural Network for Low-Dose CT Denoising.”
IEEE Access 6 (2018): 41839–55. https://doi.org/10.1109/ACCESS.2018.2858196.

See Also
cycleGANGenerator | patchGANDiscriminator | transform | combine | minibatchqueue |
dlarray | dlfeval | adamupdate

Related Examples
• “Unsupervised Medical Image Denoising Using UNIT” on page 9-143

More About
• “Get Started with GANs for Image-to-Image Translation” (Image Processing Toolbox)
• “Datastores for Deep Learning” on page 20-2
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239

9 Image Processing Examples

9-142

https://doi.org/10.1109/ICCV.2017.244


Unsupervised Medical Image Denoising Using UNIT

This example shows how to generate high-quality computed tomography (CT) images from noisy low-
dose CT images using a UNIT neural network.

Note: This example references the Low Dose CT Grand Challenge data set, as accessed on May 1,
2021. The example uses chest images from the data set that are now under restricted access. To run
this example, you must have a compatible data set with low-dose and high-dose CT images, and adapt
the data preprocessing and training options to suit your data.

This example uses an unsupervised image-to-image translation (UNIT) neural network trained on full
images from a limited sample of data. For a similar approach using a CycleGAN neural network
trained on patches of image data from a large sample of data, see “Unsupervised Medical Image
Denoising Using CycleGAN” (Image Processing Toolbox).

X-ray CT is a popular imaging modality used in clinical and industrial applications because it
produces high-quality images and offers superior diagnostic capabilities. To protect the safety of
patients, clinicians recommend a low radiation dose. However, a low radiation dose results in a lower
signal-to-noise ratio (SNR) in the images, and therefore reduces the diagnostic accuracy.

Deep learning techniques offer solutions to improve the image quality for low-dose CT (LDCT)
images. Using a generative adversarial network (GAN) for image-to-image translation, you can
convert noisy LDCT images to images of the same quality as regular-dose CT images. For this
application, the source domain consists of LDCT images and the target domain consists of regular-
dose images.

CT image denoising requires a GAN that performs unsupervised training because clinicians do not
typically acquire matching pairs of low-dose and regular-dose CT images of the same patient in the
same session. This example uses a UNIT architecture that supports unsupervised training. For more
information, see “Get Started with GANs for Image-to-Image Translation” (Image Processing
Toolbox).

Download LDCT Data Set

This example uses data from the Low Dose CT Grand Challenge [2, 3, 4]. The data includes pairs of
regular-dose CT images and simulated low-dose CT images for 99 head scans (labeled N for neuro),
100 chest scans (labeled C for chest), and 100 abdomen scans (labeled L for liver).

Specify dataDir as the desired location of the data set. The data for this example requires 52 GB of
memory.

dataDir = fullfile(tempdir,"LDCT","LDCT-and-Projection-data");

To download the data, go to the Cancer Imaging Archive website. This example uses only two patient
scans from the chest. Download the chest files "C081" and "C120" from the "Images (DICOM, 952
GB)" data set using the NBIA Data Retriever. Specify the dataFolder variable as the location of the
downloaded data. When the download is successful, dataFolder contains two subfolders named
"C081" and "C120".

Create Datastores for Training, Validation, and Testing

Specify the patient scans that are the source of each data set.

 Unsupervised Medical Image Denoising Using UNIT

9-143

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images


scanDirTrain = fullfile(dataDir,"C120","08-30-2018-97899");
scanDirTest = fullfile(dataDir,"C081","08-29-2018-10762");

Create imageDatastore objects that manage the low-dose and high-dose CT images for training and
testing. The data set consists of DICOM images, so use the custom ReadFcn name-value argument in
imageDatastore to enable reading the data.

exts = ".dcm";
readFcn = @(x)rescale(dicomread(x));
imdsLDTrain = imageDatastore(fullfile(scanDirTrain,"1.000000-Low Dose Images-71581"), ...
    FileExtensions=exts,ReadFcn=readFcn);
imdsHDTrain = imageDatastore(fullfile(scanDirTrain,"1.000000-Full dose images-34601"), ...
    FileExtensions=exts,ReadFcn=readFcn);
imdsLDTest = imageDatastore(fullfile(scanDirTest,"1.000000-Low Dose Images-32837"), ...
    FileExtensions=exts,ReadFcn=readFcn);
imdsHDTest = imageDatastore(fullfile(scanDirTest,"1.000000-Full dose images-95670"), ...
    FileExtensions=exts,ReadFcn=readFcn);

Preview a training image from the low-dose and high-dose CT training data sets.

lowDose = preview(imdsLDTrain);
highDose = preview(imdsHDTrain);
montage({lowDose,highDose})

Preprocess and Augment Training Data

Specify the image input size for the source and target images.

inputSize = [256,256,1];

Augment and preprocess the training data by using the transform function with custom
preprocessing operations specified by the augmentDataForLD2HDCT helper function. This function
is attached to the example as a supporting file.

9 Image Processing Examples

9-144



The augmentDataForLD2HDCT function performs these operations:

1 Resize the image to the specified input size using bicubic interpolation.
2 Randomly flip the image in the horizontal direction.
3 Scale the image to the range [-1, 1]. This range matches the range of the final tanhLayer used

in the generator.

imdsLDTrain = transform(imdsLDTrain, @(x)augmentDataForLD2HDCT(x,inputSize));
imdsHDTrain = transform(imdsHDTrain, @(x)augmentDataForLD2HDCT(x,inputSize));

The LDCT data set provides pairs of low-dose and high-dose CT images. However, the UNIT
architecture requires unpaired data for unsupervised learning. This example simulates unpaired
training and validation data by shuffling the data in each iteration of the training loop.

Batch Training and Validation Data During Training

This example uses a custom training loop. The minibatchqueue object is useful for managing the
mini-batching of observations in custom training loops. The minibatchqueue object also casts data
to a dlarray object that enables auto differentiation in deep learning applications.

Specify the mini-batch data extraction format as SSCB (spatial, spatial, channel, batch). Set the
DispatchInBackground name-value argument as the boolean returned by canUseGPU. If a
supported GPU is available for computation, then the minibatchqueue object preprocesses mini-
batches in the background in a parallel pool during training.

miniBatchSize = 1;
mbqLDTrain = minibatchqueue(imdsLDTrain,MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat="SSCB",DispatchInBackground=canUseGPU);
mbqHDTrain = minibatchqueue(imdsHDTrain,MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat="SSCB",DispatchInBackground=canUseGPU);

Create Generator Network

The UNIT consists of one generator and two discriminators. The generator performs image-to-image
translation from low dose to high dose. The discriminators are PatchGAN networks that return the
patch-wise probability that the input data is real or generated. One discriminator distinguishes
between the real and generated low-dose images and the other discriminator distinguishes between
real and generated high-dose images.

Create a UNIT generator network using the unitGenerator (Image Processing Toolbox) function.
The source and target encoder sections of the generator each consist of two downsampling blocks
and five residual blocks. The encoder sections share two of the five residual blocks. Likewise, the
source and target decoder sections of the generator each consist of two downsampling blocks and
five residual blocks, and the decoder sections share two of the five residual blocks.

gen = unitGenerator(inputSize);

Visualize the generator network.

analyzeNetwork(gen)

Create Discriminator Networks

There are two discriminator networks, one for each of the image domains (low-dose CT and high-dose
CT). Create the discriminators for the source and target domains using the
patchGANDiscriminator (Image Processing Toolbox) function.

 Unsupervised Medical Image Denoising Using UNIT

9-145



discLD = patchGANDiscriminator(inputSize,NumDownsamplingBlocks=4,FilterSize=3, ...
    ConvolutionWeightsInitializer="narrow-normal",NormalizationLayer="none");
discHD = patchGANDiscriminator(inputSize,"NumDownsamplingBlocks",4,FilterSize=3, ...
    ConvolutionWeightsInitializer="narrow-normal",NormalizationLayer="none");

Visualize the discriminator networks.

analyzeNetwork(discLD);
analyzeNetwork(discHD);

Define Model Gradients and Loss Functions

The modelGradientDisc and modelGradientGen helper functions calculate the gradients and
losses for the discriminators and generator, respectively. These functions are defined in the
Supporting Functions on page 9-152 section of this example.

The objective of each discriminator is to correctly distinguish between real images (1) and translated
images (0) for images in its domain. Each discriminator has a single loss function.

The objective of the generator is to generate translated images that the discriminators classify as
real. The generator loss is a weighted sum of five types of losses: self-reconstruction loss, cycle
consistency loss, hidden KL loss, cycle hidden KL loss, and adversarial loss.

Specify the weight factors for the various losses.

lossWeights.selfReconLossWeight = 10;
lossWeights.hiddenKLLossWeight = 0.01;
lossWeights.cycleConsisLossWeight = 10;
lossWeights.cycleHiddenKLLossWeight = 0.01;
lossWeights.advLossWeight = 1;
lossWeights.discLossWeight = 0.5;

Specify Training Options

Specify the options for Adam optimization. Train the network for 26 epochs.

numEpochs = 26;

Specify identical options for the generator and discriminator networks.

• Specify a learning rate of 0.0001.
• Initialize the trailing average gradient and trailing average gradient-square decay rates with [].
• Use a gradient decay factor of 0.5 and a squared gradient decay factor of 0.999.
• Use weight decay regularization with a factor of 0.0001.
• Use a mini-batch size of 1 for training.

learnRate = 0.0001;
gradDecay = 0.5;
sqGradDecay = 0.999;
weightDecay = 0.0001;

genAvgGradient = [];
genAvgGradientSq = [];
discLDAvgGradient = [];
discLDAvgGradientSq = [];
discHDAvgGradient = [];
discHDAvgGradientSq = [];

9 Image Processing Examples

9-146



Train Model or Download Pretrained UNIT Network

By default, the example downloads a pretrained version of the UNIT generator for the NIH-AAPM-
Mayo Clinic Low-Dose CT data set. The pretrained network enables you to run the entire example
without waiting for training to complete.

To train the network, set the doTraining variable in the following code to true. Train the model in
a custom training loop. For each iteration:

• Read the data for the current mini-batch using the next function.
• Evaluate the discriminator model gradients using the dlfeval function and the

modelGradientDisc helper function.
• Update the parameters of the discriminator networks using the adamupdate function.
• Evaluate the generator model gradients using the dlfeval function and the modelGradientGen

helper function.
• Update the parameters of the generator network using the adamupdate function.
• Display the input and translated images for both the source and target domains after each epoch.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 58 hours on an NVIDIA Titan RTX.

doTraining = false;
if doTraining

    % Create a figure to show the results
    figure(Units="Normalized");
    for iPlot = 1:4
        ax(iPlot) = subplot(2,2,iPlot);
    end
    
    iteration = 0;

    % Loop over epochs
    for epoch = 1:numEpochs
        
        % Shuffle data every epoch
        reset(mbqLDTrain);
        shuffle(mbqLDTrain);
        reset(mbqHDTrain);
        shuffle(mbqHDTrain);
        
        % Run the loop until all the images in the mini-batch queue
        % mbqLDTrain are processed
        while hasdata(mbqLDTrain)
            iteration = iteration + 1;
            
            % Read data from the low-dose domain
            imLowDose = next(mbqLDTrain); 
             
            % Read data from the high-dose domain
            if hasdata(mbqHDTrain) == 0
                reset(mbqHDTrain);
                shuffle(mbqHDTrain);
            end

 Unsupervised Medical Image Denoising Using UNIT

9-147



            imHighDose = next(mbqHDTrain);
    
            % Calculate discriminator gradients and losses
            [discLDGrads,discHDGrads,discLDLoss,discHDLoss] = dlfeval(@modelGradientDisc, ...
                gen,discLD,discHD,imLowDose,imHighDose,lossWeights.discLossWeight);
            
            % Apply weight decay regularization on low-dose discriminator gradients
            discLDGrads = dlupdate(@(g,w) g+weightDecay*w,discLDGrads,discLD.Learnables);
            
            % Update parameters of low-dose discriminator
            [discLD,discLDAvgGradient,discLDAvgGradientSq] = adamupdate(discLD,discLDGrads, ...
                discLDAvgGradient,discLDAvgGradientSq,iteration,learnRate,gradDecay,sqGradDecay);  
            
            % Apply weight decay regularization on high-dose discriminator gradients
            discHDGrads = dlupdate(@(g,w) g+weightDecay*w,discHDGrads,discHD.Learnables);
            
            % Update parameters of high-dose discriminator
            [discHD,discHDAvgGradient,discHDAvgGradientSq] = adamupdate(discHD,discHDGrads, ...
                discHDAvgGradient,discHDAvgGradientSq,iteration,learnRate,gradDecay,sqGradDecay);
            
            % Calculate generator gradient and loss
            [genGrad,genLoss,images] = dlfeval(@modelGradientGen,gen,discLD,discHD,imLowDose,imHighDose,lossWeights);
            
            % Apply weight decay regularization on generator gradients
            genGrad = dlupdate(@(g,w) g+weightDecay*w,genGrad,gen.Learnables);
            
            % Update parameters of generator
            [gen,genAvgGradient,genAvgGradientSq] = adamupdate(gen,genGrad,genAvgGradient, ...
                genAvgGradientSq,iteration,learnRate,gradDecay,sqGradDecay);
        end
        
        % Display the results
        updateTrainingPlotLD2HDCT_UNIT(ax,images{:});
    end
    
    % Save the trained network
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(dataDir,"trainedLowDoseHighDoseUNITGeneratorNet-"+modelDateTime+".mat"),"gen");
    
else
    net_url = "https://ssd.mathworks.com/supportfiles/vision/data/trainedLowDoseHighDoseUNITGeneratorNet.zip";
    downloadTrainedNetwork(net_url,dataDir);
    load(fullfile(dataDir,"trainedLowDoseHighDoseUNITGeneratorNet.mat"));
end

Generate High-Dose Image Using Trained Network

Read and display an image from the datastore of low-dose test images.

idxToTest = 1;
imLowDoseTest = readimage(imdsLDTest,idxToTest);
figure
imshow(imLowDoseTest)

9 Image Processing Examples

9-148



Convert the image to data type single. Rescale the image data to the range [-1, 1] as expected by
the final layer of the generator network.

imLowDoseTest = im2single(imLowDoseTest);
imLowDoseTestRescaled = (imLowDoseTest-0.5)/0.5;

Create a dlarray object that inputs data to the generator. If a supported GPU is available for
computation, then perform inference on a GPU by converting the data to a gpuArray object.

dlLowDoseImage = dlarray(imLowDoseTestRescaled,'SSCB');    
if canUseGPU
    dlLowDoseImage = gpuArray(dlLowDoseImage);
end

 Unsupervised Medical Image Denoising Using UNIT

9-149



Translate the input low-dose image to the high-dose domain using the unitPredict (Image
Processing Toolbox) function. The generated image has pixel values in the range [-1, 1]. For display,
rescale the activations to the range [0, 1].

dlImLowDoseToHighDose = unitPredict(gen,dlLowDoseImage);
imHighDoseGenerated = extractdata(gather(dlImLowDoseToHighDose));
imHighDoseGenerated = rescale(imHighDoseGenerated);
imshow(imHighDoseGenerated)

Read and display the ground truth high-dose image. The high-dose and low-dose test datastores are
not shuffled, so the ground truth high-dose image corresponds directly to the low-dose test image.

imHighDoseGroundTruth = readimage(imdsHDTest,idxToTest);
imshow(imHighDoseGroundTruth)

9 Image Processing Examples

9-150



Display the input low-dose CT, the generated high-dose version, and the ground truth high-dose
image in a montage. Although the network is trained on data from a single patient scan, the network
generalizes well to test images from other patient scans.

imshow([imLowDoseTest imHighDoseGenerated imHighDoseGroundTruth])
title("Test Image "+num2str(idxToTest)+": Low-Dose, Generated High-dose, and Ground Truth High-dose")

 Unsupervised Medical Image Denoising Using UNIT

9-151



Supporting Functions

Model Gradients Function

The modelGradientGen helper function calculates the gradients and loss for the generator.

function [genGrad,genLoss,images] = modelGradientGen(gen,discLD,discHD,imLD,imHD,lossWeights)
    
    [imLD2LD,imHD2LD,imLD2HD,imHD2HD] = forward(gen,imLD,imHD);
    hidden = forward(gen,imLD,imHD,Outputs="encoderSharedBlock");
    
    [~,imLD2HD2LD,imHD2LD2HD,~] = forward(gen,imHD2LD,imLD2HD);
    cycle_hidden = forward(gen,imHD2LD,imLD2HD,Outputs="encoderSharedBlock");
    
    % Calculate different losses
    selfReconLoss = computeReconLoss(imLD,imLD2LD) + computeReconLoss(imHD,imHD2HD);
    hiddenKLLoss = computeKLLoss(hidden);
    cycleReconLoss = computeReconLoss(imLD,imLD2HD2LD) + computeReconLoss(imHD,imHD2LD2HD);
    cycleHiddenKLLoss = computeKLLoss(cycle_hidden);
    
    outA = forward(discLD,imHD2LD);
    outB = forward(discHD,imLD2HD);
    advLoss = computeAdvLoss(outA) + computeAdvLoss(outB);
    
    % Calculate the total loss of generator as a weighted sum of five losses
    genTotalLoss = ...
        selfReconLoss*lossWeights.selfReconLossWeight + ...
        hiddenKLLoss*lossWeights.hiddenKLLossWeight + ...
        cycleReconLoss*lossWeights.cycleConsisLossWeight + ...
        cycleHiddenKLLoss*lossWeights.cycleHiddenKLLossWeight + ...
        advLoss*lossWeights.advLossWeight;
    
    % Update the parameters of generator
    genGrad = dlgradient(genTotalLoss,gen.Learnables); 
    
    % Convert the data type from dlarray to single
    genLoss = extractdata(genTotalLoss);
    images = {imLD,imLD2HD,imHD,imHD2LD};
end

9 Image Processing Examples

9-152



The modelGradientDisc helper function calculates the gradients and loss for the two
discriminators.

function [discLDGrads,discHDGrads,discLDLoss,discHDLoss] = modelGradientDisc(gen, ...
    discLD,discHD,imRealLD,imRealHD,discLossWeight)

    [~,imFakeLD,imFakeHD,~] = forward(gen,imRealLD,imRealHD);
    
    % Calculate loss of the discriminator for low-dose images
    outRealLD = forward(discLD,imRealLD); 
    outFakeLD = forward(discLD,imFakeLD);
    discLDLoss = discLossWeight*computeDiscLoss(outRealLD,outFakeLD);
    
    % Update parameters of the discriminator for low-dose images
    discLDGrads = dlgradient(discLDLoss,discLD.Learnables); 
    
    % Calculate loss of the discriminator for high-dose images
    outRealHD = forward(discHD,imRealHD); 
    outFakeHD = forward(discHD,imFakeHD);
    discHDLoss = discLossWeight*computeDiscLoss(outRealHD,outFakeHD);
    
    % Update parameters of the discriminator for high-dose images
    discHDGrads = dlgradient(discHDLoss,discHD.Learnables);
    
    % Convert the data type from dlarray to single
    discLDLoss = extractdata(discLDLoss);
    discHDLoss = extractdata(discHDLoss);
end

Loss Functions

The computeDiscLoss helper function calculates discriminator loss. Each discriminator loss is a
sum of two components:

• The squared difference between a vector of ones and the predictions of the discriminator on real
images, Yreal

• The squared difference between a vector of zeros and the predictions of the discriminator on
generated images, Ytranslated

discriminatorLoss = 1− Yreal
2 + 0− Ytranslated

2

function discLoss = computeDiscLoss(Yreal,Ytranslated)
    discLoss = mean(((1-Yreal).^2),"all") + ...
               mean(((0-Ytranslated).^2),"all");
end

The computeAdvLoss helper function calculates adversarial loss for the generator. Adversarial loss
is the squared difference between a vector of ones and the discriminator predictions on the translated
image.

adversarialLoss = 1− Ytranslated
2

function advLoss = computeAdvLoss(Ytranslated)
    advLoss = mean(((Ytranslated-1).^2),"all");
end

 Unsupervised Medical Image Denoising Using UNIT

9-153



The computeReconLoss helper function calculates self-reconstruction loss and cycle consistency
loss for the generator. Self reconstruction loss is the L1 distance between the input images and their
self-reconstructed versions. Cycle consistency loss is the L1 distance between the input images and
their cycle-reconstructed versions.

selfReconstructionLoss = Yreal− Yself − reconstructed 1

cycleConsistencyLoss = Yreal− Ycycle− reconstructed 1

function reconLoss = computeReconLoss(Yreal,Yrecon)
    reconLoss = mean(abs(Yreal-Yrecon),"all");
end

The computeKLLoss helper function calculates hidden KL loss and cycle-hidden KL loss for the
generator. Hidden KL loss is the squared difference between a vector of zeros and the
'encoderSharedBlock' activation for the self-reconstruction stream. Cycle-hidden KL loss is the
squared difference between a vector of zeros and the 'encoderSharedBlock' activation for the
cycle-reconstruction stream.

hiddenKLLoss = 0− YencoderSharedBlockActivation
2

cycleHiddenKLLoss = 0− YencoderSharedBlockActivation
2

function klLoss = computeKLLoss(hidden)
    klLoss = mean(abs(hidden.^2),"all");
end

References

[1] Liu, Ming-Yu, Thomas Breuel, and Jan Kautz, "Unsupervised image-to-image translation networks".
In Advances in Neural Information Processing Systems, 2017. https://arxiv.org/pdf/1703.00848.pdf.

[2] McCollough, C.H., Chen, B., Holmes, D., III, Duan, X., Yu, Z., Yu, L., Leng, S., Fletcher, J. (2020).
Data from Low Dose CT Image and Projection Data [Data set]. The Cancer Imaging Archive. https://
doi.org/10.7937/9npb-2637.

[3] Grants EB017095 and EB017185 (Cynthia McCollough, PI) from the National Institute of
Biomedical Imaging and Bioengineering.

[4] Clark, Kenneth, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel, Stephen
Moore, et al. “The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information
Repository.” Journal of Digital Imaging 26, no. 6 (December 2013): 1045–57. https://doi.org/10.1007/
s10278-013-9622-7.

See Also
unitGenerator | unitPredict | patchGANDiscriminator | minibatchqueue | dlarray |
dlfeval | adamupdate

Related Examples
• “Unsupervised Medical Image Denoising Using CycleGAN” on page 9-129

9 Image Processing Examples

9-154

https://arxiv.org/pdf/1703.00848.pdf
https://doi.org/10.7937/9npb-2637
https://doi.org/10.7937/9npb-2637
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1007/s10278-013-9622-7


More About
• “Get Started with GANs for Image-to-Image Translation” (Image Processing Toolbox)
• “Datastores for Deep Learning” on page 20-2
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239

 Unsupervised Medical Image Denoising Using UNIT

9-155



Segment Lungs from CT Scan Using Pretrained Neural Network

This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) 3-D U-Net
[1 on page 9-163] and use it to perform semantic segmentation of the left and right lungs from a 3-D
chest CT scan. Semantic segmentation associates each voxel in a 3-D image with a class label. In this
example, you classify each voxel in a test data set as belonging to the left lung or right lung. For more
information about semantic segmentation, see “Semantic Segmentation” (Computer Vision Toolbox).

A challenge of applying pretrained networks is the possibility of differences between the intensity and
spatial details of a new data set and the data set used to train the network. Preprocessing is typically
required to format the data to match the expected network input and achieve accurate segmentation
results. In this example, you standardize the spatial orientation and normalize the intensity range of a
test data set before applying the pretrained network.

Download Pretrained Network

Specify the desired location of the pretrained network.

dataDir = fullfile(tempdir,"lungmask");
if ~exist(dataDir,"dir")   
    mkdir(dataDir);
end

Download the pretrained network from the MathWorks® website by using the
downloadTrainedNetwork helper function. The helper function is attached to this example as a

9 Image Processing Examples

9-156



supporting file. The network on the MathWorks website is equivalent to the R231 model, available in
the LungMask GitHub repository [2 on page 9-163], converted to the ONNX format. The size of the
pretrained network is approximately 11 MB.

lungmask_url = "https://www.mathworks.com/supportfiles/medical/pretrainedLungmaskR231Net.onnx";
downloadTrainedNetwork(lungmask_url,dataDir);

Import Pretrained Network

Import the ONNX network as a function by using the importONNXFunction function. You can use
this function to import a network with layers that the importONNXNetwork function does not
support. The importONNXFunction function requires the Deep Learning Toolbox™ Converter for
ONNX Model Format support package. If this support package is not installed, then
importONNXFunction provides a download link.

The importONNXFunction function imports the network and returns an ONNXParameters object
that contains the network parameters. When you import the pretrained lung segmentation network,
the function displays a warning that the LogSoftmax operator is not supported.

modelfileONNX = fullfile(dataDir,"pretrainedLungmaskR231Net.onnx");
modelfileM = "importedLungmaskFcn_R231.m";
params = importONNXFunction(modelfileONNX,modelfileM);

Function containing the imported ONNX network architecture was saved to the file importedLungmaskFcn_R231.m.
To learn how to use this function, type: help importedLungmaskFcn_R231.

Warning: Unable to import some ONNX operators or attributes. They may have been replaced by 'PLACEHOLDER' functions in the imported model function.

1 operator(s)    :    Operator 'LogSoftmax' is not supported with its current settings or in this context.

Open the generated function, saved as an M file in the current directory. The function contains these
lines of code that indicate that the unsupported LogSoftmax operator is replaced with a placeholder:

% PLACEHOLDER FUNCTION FOR UNSUPPORTED OPERATOR (LogSoftmax):
[Vars.x460, NumDims.x460] = PLACEHOLDER(Vars.x459);

In the function definition, replace the placeholder code with this code. Save the updated function as
lungmaskFcn_R231. A copy of lungmaskFcn_R231 with the correct code is also attached to this
example as a supporting file.

% Replacement for PLACEHOLDER FUNCTION FOR UNSUPPORTED OPERATOR (LogSoftmax):
Vars.x460 = log(softmax(Vars.x459,'DataFormat','CSSB'));
NumDims.x460 = NumDims.x459;

Save the network parameters in the ONNXParameters object params. Save the parameters in a new
MAT file.

save("lungmaskParams_R231","params");

Load Data

Test the pretrained lung segmentation network on a test data set. The test data is a CT chest volume
from the Medical Segmentation Decathlon data set [3 on page 9-163]. Download the
MedicalVolumNIfTIData ZIP archive from the MathWorks website, then unzip the file. The ZIP file
contains two CT chest volumes and corresponding label images, stored in the NIfTI file format. The
total size of the data set is approximately 76 MB.

 Segment Lungs from CT Scan Using Pretrained Neural Network

9-157



zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filePath = fileparts(zipFile);
unzip(zipFile,filePath)
dataFolder = fullfile(filePath,"MedicalVolumeNIfTIData");

Specify the file name of the first CT volume.

fileName = fullfile(dataFolder,"lung_027.nii.gz");

Create a medicalVolume (Medical Imaging Toolbox) object for the CT volume.

medVol = medicalVolume(fileName);

Extract and display the voxel data from the medicalVolume object.

V = medVol.Voxels;
volshow(V,RenderingStyle="GradientOpacity");

Preprocess Test Data

Preprocess the test data to match the expected orientation and intensity range of the pretrained
network.

9 Image Processing Examples

9-158



Rotate the test image volume in the transverse plane to match the expected input orientation for the
pretrained network. The network was trained using data oriented with the patient bed at the bottom
of the image, so the test data must be oriented in the same direction. If you change the test data, you
need to apply an appropriate spatial transformation to match the expected orientation for the
network.

rotationAxis = [0 0 1];
volAligned = imrotate3(V,90,rotationAxis);

Display a slice of the rotated volume to check the updated orientation.

imshow(volAligned(:,:,150),[])

Use intensity normalization to rescale the range of voxel intensities in the region of interest to the
range [0, 1], which is the range that the pretrained network expects. The first step in intensity

 Segment Lungs from CT Scan Using Pretrained Neural Network

9-159



normalization is to determine the range of intensity values within the region of interest. The values
are in Hounsfield units. To determine the thresholds for the intensity range, plot a histogram of the
voxel intensity values. Set the x- and y-limits of the histogram plot based on the minimum and
maximum values. The histogram has two large peaks. The first peak corresponds to background
pixels outside the body of the patient and air in the lungs. The second peak corresponds to soft tissue
such as the heart and stomach.

figure
histogram(V)
xlim([min(V,[],"all") max(V,[],"all")])
ylim([0 2e6])
xlabel("Intensity [Hounsfield Units]")
ylabel("Number of Voxels")
xline([-1024 500],"red",LineWidth=1)

To limit the intensities to the region containing the majority of the tissue in the region of interest,
select the thresholds for the intensity range as –1024 and 500.

th = [-1024 500];

9 Image Processing Examples

9-160



Apply the preprocessLungCT helper function to further preprocess the test image volume. The
helper function is attached to this example as a supporting file. The preprocessLungCT function
performs these steps:

1 Resize each 2-D slice along the transverse dimension to the target size, imSize. Decreasing the
number of voxels can improve prediction speed. Set the target size to 256-by-256 voxels.

2 Crop the voxel intensities to the range specified by the thresholds in th.
3 Normalize the updated voxel intensities to the range [0, 1].

imSize = [256 256];
volInp = preprocessLungCT(volAligned,imSize,th);

Segment Test Data and Postprocess Predicted Labels

Segment the test CT volume by using the lungSeg helper function. The helper function is attached to
this example as a supporting file. The lungSeg function predicts the segmentation mask by
performing inference on the pretrained network and postprocesses the network output to obtain the
segmentation mask.

To decrease the required computational time, the lungSeg function performs inference on the slices
of a volume in batches. Specify the batch size as eight slices using the batchSize name-value
argument of lungSeg. Increasing the batch size increases the speed of inference, but requires more
memory. If you run out of memory, try deceasing the batch size.

During postprocessing, the lungSeg helper function applies a mode filter to the network output to
smooth the segmentation labels using the modefilt (Image Processing Toolbox) function. You can
set the size of the mode filter by using the modeFilt name-value argument of lungSeg. The default
filter size is [9 9 9].

labelOut = lungSeg(volInp,batchSize=8);

Display Predicted Segmentation Labels

Display the segmentation results by using the volshow (Image Processing Toolbox) function. Use the
OverlayData argument to plot the predicted segmentation labels. To focus on the label data, use the
Alphamap argument to set the opacity of the image volume to 0 and the OverlayAlphamap
argument to set the opacity of the labels to 0.9.

volshow(volInp,OverlayData=labelOut,...
    Alphamap=0,...
    OverlayAlphamap=0.9,...
    RenderingStyle="GradientOpacity");

 Segment Lungs from CT Scan Using Pretrained Neural Network

9-161



You can also display the preprocessed test volume as slice planes with the predicted segmentation
labels as an overlay by setting the RenderingStyle name-value argument to "SlicePlanes".
Specify the lung segmentation label using the OverlayData name-value argument.

volshow(volInp,OverlayData=labelOut,...
    OverlayAlphamap=0.9,...
    RenderingStyle="SlicePlanes");

Click and drag the mouse to rotate the volume. To scroll in a plane, pause on the slice you want to
investigate until it becomes highlighted, then click and drag. The left and right lung segmentation
masks are visible in the slices for which they are defined.

9 Image Processing Examples

9-162



References

[1] Hofmanninger, Johannes, Forian Prayer, Jeanny Pan, Sebastian Röhrich, Helmut Prosch, and
Georg Langs. “Automatic Lung Segmentation in Routine Imaging Is Primarily a Data Diversity
Problem, Not a Methodology Problem.” European Radiology Experimental 4, no. 1 (December 2020):
50. https://doi.org/10.1186/s41747-020-00173-2.

[2] GitHub. “Automated Lung Segmentation in CT under Presence of Severe Pathologies.” Accessed
July 21, 2022. https://github.com/JoHof/lungmask.

 Segment Lungs from CT Scan Using Pretrained Neural Network

9-163

https://github.com/JoHof/lungmask


[3] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com. The Medical Segmentation Decathlon data set is provided under the CC-BY-SA
4.0 license. All warranties and representations are disclaimed. See the license for details.

See Also
importONNXFunction | modefilt | volshow

Related Examples
• “Segment Lungs from 3-D Chest Scan” (Image Processing Toolbox)
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” (Medical Imaging Toolbox)

9 Image Processing Examples

9-164

http://medicaldecathlon.com
http://medicaldecathlon.com


Brain MRI Segmentation Using Pretrained 3-D U-Net Network

This example shows how to segment a brain MRI using a deep neural network.

Segmentation of brain scans enables the visualization of individual brain structures. Brain
segmentation is also commonly used for quantitative volumetric and shape analyses to characterize
healthy and diseased populations. Manual segmentation by clinical experts is considered the highest
standard in segmentation. However, the process is extremely time-consuming and not practical for
labeling large data sets. Additionally, labeling requires expertise in neuroanatomy and is prone to
errors and limitations in interrater and intrarater reproducibility. Trained segmentation algorithms,
such as convolutional neural networks, have the potential to automate the labeling of large clinical
data sets.

In this example, you use the pretrained SynthSeg neural network [1 on page 9-171], a 3-D U-Net for
brain MRI segmentation. SynthSeg can be used to segment brain scans of any contrast and resolution
without retraining or fine-tuning. SynthSeg is also robust to a wide array of subject populations, from
young and healthy to aging and diseased subjects, and a wide array of scan conditions, such as white
matter lesions, with or without preprocessing, including bias field corruption, skull stripping,
intensity normalization, and template registration.

Download Brain MRI and Label Data

This example uses a subset of the CANDI data set [2 on page 9-171] [3 on page 9-171]. The subset
consists of a brain MRI volume and the corresponding ground truth label volume for one patient.
Both files are in the NIfTI file format. The total size of the data files is ~2.5 MB.

Run this code to download the dataset from the MathWorks® website and unzip the downloaded
folder.

zipFile = matlab.internal.examples.downloadSupportFile("image","data/brainSegData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The dataDir folder contains the downloaded and unzipped dataset.

dataDir = fullfile(filepath,"brainSegData");

 Brain MRI Segmentation Using Pretrained 3-D U-Net Network

9-165



Load Pretrained Network

This example uses a pretrained TensorFlow-Keras convolutional neural network. Download the
pretrained network from the MathWorks® website by using the helper function
downloadTrainedNetwork. The helper function is attached to this example as a supporting file. The
size of the pretrained network is approximately 51 MB.

trainedBrainCANDINetwork_url = "https://www.mathworks.com/supportfiles/"+ ...
    "image/data/trainedBrainSynthSegNetwork.h5";
downloadTrainedNetwork(trainedBrainCANDINetwork_url,dataDir);

Load Test Data

Read the metadata from the brain MRI volume by using the niftiinfo (Image Processing Toolbox)
function. Read the brain MRI volume by using the niftiread (Image Processing Toolbox) function.

imFile = fullfile(dataDir,"anat.nii.gz");
metaData = niftiinfo(imFile);
vol = niftiread(metaData);

In this example, you segment the brain into 32 classes corresponding to anatomical structures. Read
the names and numeric identifiers for each class label by using the
getBrainCANDISegmentationLabels helper function. The helper function is attached to this
example as a supporting file.

labelDirs = fullfile(dataDir,"groundTruth");
[classNames,labelIDs] = getBrainCANDISegmentationLabels;

Preprocess Test Data

Preprocess the MRI volume by using the preProcessBrainCANDIData helper function. The helper
function is attached to this example as a supporting file. The helper function performs these steps:

• Resampling — If resample is true, resample the data to the isotropic voxel size 1-by-1-by-1 mm.
By default, resample is false and the function does not perform resampling. To test the
pretrained network on images with a different voxel size, set resample to true if the input is not
isotropic.

• Alignment — Rotate the volume to a standardized RAS orientation.
• Cropping — Crop the volume to a maximum size of 192 voxels in each dimension.
• Normalization — Normalize the intensity values of the volume to values in the range [0, 1], which

improves the contrast.

resample = false;
cropSize = 192;
[volProc,cropIdx,imSize] = preProcessBrainCANDIData(vol,metaData,cropSize,resample);
inputSize = size(volProc);

Convert the preprocessed MRI volume into a formatted deep learning array with the SSSCB (spatial,
spatial, spatial, channel, batch) format by using dlarray.

volDL = dlarray(volProc,"SSSCB");

Define Network Architecture

Import the network layers from the downloaded model file of the pretrained network using the
importKerasLayers function. The importKerasLayers function requires the Deep Learning

9 Image Processing Examples

9-166



Toolbox™ Converter for TensorFlow Models support package. If this support package is not installed,
then importKerasLayers provides a download link. Specify ImportWeights as true to import the
layers using the weights from the same HDF5 file. The function returns a layerGraph object.

The Keras network contains some layers that the Deep Learning Toolbox™ does not support. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

modelFile = fullfile(dataDir,"trainedBrainSynthSegNetwork.h5");
lgraph = importKerasLayers(modelFile,ImportWeights=true,ImageInputSize=inputSize);

Warning: Imported layers have no output layer because the model does not specify a loss function. Add an output layer or use the 'OutputLayerType' name-value argument when you call importKerasLayers.

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

To replace the placeholder layers in the imported network, first identify the names of the layers to
replace. Find the placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  PlaceholderLayer with properties:

                  Name: 'unet_prediction'
    KerasConfiguration: [1×1 struct]
               Weights: []
           InputLabels: {''}
          OutputLabels: {''}

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Define existing layers with the same configurations as the imported Keras layers.

sf = softmaxLayer;

Replace the placeholder layers with existing layers using replaceLayer.

lgraph = replaceLayer(lgraph,"unet_prediction",sf);

Convert the network to a dlnetwork object.

net = dlnetwork(lgraph);

Display the updated layer graph information.

layerGraph(net)

ans = 
  LayerGraph with properties:

     InputNames: {'unet_input'}
    OutputNames: {1×0 cell}

 Brain MRI Segmentation Using Pretrained 3-D U-Net Network

9-167



         Layers: [60×1 nnet.cnn.layer.Layer]
    Connections: [63×2 table]

Predict Using Test Data

Predict Network Output

Predict the segmentation output for the preprocessed MRI volume. The segmentation output
predictIm contains 32 channels corresponding to the segmentation label classes, such as
"background", "leftCerebralCortex", "rightThalamus". The predictIm output assigns
confidence scores to each voxel for every class. The confidence scores reflect the likelihood of the
voxel being part of the corresponding class. This prediction is different from the final semantic
segmentation output, which assigns each voxel to exactly one class.

predictIm = predict(net,volDL);

Test Time Augmentation

This example uses test time augmentation to improve segmentation accuracy. In general,
augmentation applies random transformations to an image to increase the variability of a data set.
You can use augmentation before network training to increase the size of the training data set. Test
time augmentation applies random transformations to test images to create multiple versions of the
test image. You can then pass each version of the test image to the network for prediction. The
network calculates the overall segmentation result as the average prediction for all versions of the
test image. Test time augmentation improves segmentation accuracy by averaging out random errors
in the individual network predictions.

By default, this example flips the MRI volume in the left-right direction, resulting in a flipped volume
flippedData. The network output for the flipped volume is flipPredictIm. Set flipVal to
false to skip the test time augmentation and speed up prediction.

flipVal = ;
if flipVal
    flippedData = fliplr(volProc);  
    flippedData = flip(flippedData,2);
    flippedData = flip(flippedData,1);
    flippedData = dlarray(flippedData,"SSSCB");
    flipPredictIm = predict(net,flippedData);
else
    flipPredictIm = [];  
end

Postprocess Segmentation Prediction

To get the final segmentation maps, postprocess the network output by using the
postProcessBrainCANDIData helper function. The helper function is attached to this example as a
supporting file. The postProcessBrainCANDIData function performs these steps:

• Smoothing — Apply a 3-D Gaussian smoothing filter to reduce noise in the predicted segmentation
masks.

• Morphological Filtering — Keep only the largest connected component of predicted segmentation
masks to remove additional noise.

• Segmentation — Assign each voxel to the label class with the greatest confidence score for that
voxel.

9 Image Processing Examples

9-168



• Resizing — Resize the segmentation map to the original input volume size. Resizing the label
image allows you to visualize the labels as an overlay on the grayscale MRI volume.

• Alignment — Rotate the segmentation map back to the orientation of the original input MRI
volume.

The final segmentation result, predictedSegMaps, is a 3-D categorical array the same size as the
original input volume. Each element corresponds to one voxel and has one categorical label.

predictedSegMaps = postProcessBrainCANDIData(predictIm,flipPredictIm,imSize, ...
    cropIdx,metaData,classNames,labelIDs);

Overlay a slice from the predicted segmentation map on a corresponding slice from the input volume
using the labeloverlay (Image Processing Toolbox) function. Include all the brain structure labels
except the background label.

sliceIdx = 80;
testSlice = rescale(vol(:,:,sliceIdx));
predSegMap = predictedSegMaps(:,:,sliceIdx);
B = labeloverlay(testSlice,predSegMap,"IncludedLabels",2:32);
figure
montage({testSlice,B})

Quantify Segmentation Accuracy

Measure the segmentation accuracy by comparing the predicted segmentation labels with the ground
truth labels drawn by clinical experts.

Create a pixelLabelDatastore (Computer Vision Toolbox) to store the labels. Because the NIfTI
file format is a nonstandard image format, you must use a NIfTI file reader to read the pixel label
data. You can use the helper NIfTI file reader, niftiReader, defined at the bottom of this example.

 Brain MRI Segmentation Using Pretrained 3-D U-Net Network

9-169



pxds = pixelLabelDatastore(labelDirs,classNames,labelIDs,FileExtensions=".gz",...
    ReadFcn=@niftiReader);

Read the ground truth labels from the pixel label datastore.

groundTruthLabel = read(pxds);
groundTruthLabel = groundTruthLabel{1};

Measure the segmentation accuracy using the dice (Image Processing Toolbox) function. This
function computes the Dice index between the predicted and ground truth segmentations.

diceResult = zeros(length(classNames),1);
for j = 1:length(classNames)
    diceResult(j)= dice(groundTruthLabel==classNames(j),...
        predictedSegMaps==classNames(j));
end

Calculate the average Dice index across all labels for the MRI volume.

meanDiceScore = mean(diceResult);
disp("Average Dice score across all labels = " +num2str(meanDiceScore))

Average Dice score across all labels = 0.80793

Visualize statistics about the Dice indices across all the label classes as a box chart. The middle blue
line in the plot shows the median Dice index. The upper and lower bounds of the blue box indicate the
25th and 75th percentiles, respectively. Black whiskers extend to the most extreme data points that
are not outliers.

figure
boxchart(diceResult)
title("Dice Accuracy")
xticklabels("All Label Classes")
ylabel("Dice Coefficient")

9 Image Processing Examples

9-170



Supporting Functions

The niftiReader helper function reads a NIfTI file in a datastore.

function data = niftiReader(filename)
    data = niftiread(filename);
    data = uint8(data);
end

References

[1] Billot, Benjamin, Douglas N. Greve, Oula Puonti, Axel Thielscher, Koen Van Leemput, Bruce Fischl,
Adrian V. Dalca, and Juan Eugenio Iglesias. “SynthSeg: Domain Randomisation for Segmentation of
Brain Scans of Any Contrast and Resolution.” ArXiv:2107.09559 [Cs, Eess], December 21, 2021.
http://arxiv.org/abs/2107.09559.

[2] “NITRC: CANDI Share: Schizophrenia Bulletin 2008: Tool/Resource Info.” Accessed October 17,
2022. https://www.nitrc.org/projects/cs_schizbull08/.

 Brain MRI Segmentation Using Pretrained 3-D U-Net Network

9-171

http://arxiv.org/abs/2107.09559
https://www.nitrc.org/projects/cs_schizbull08/


[3] Frazier, J. A., S. M. Hodge, J. L. Breeze, A. J. Giuliano, J. E. Terry, C. M. Moore, D. N. Kennedy, et al.
“Diagnostic and Sex Effects on Limbic Volumes in Early-Onset Bipolar Disorder and Schizophrenia.”
Schizophrenia Bulletin 34, no. 1 (October 27, 2007): 37–46. https://doi.org/10.1093/schbul/sbm120.

See Also
niftiread | importKerasLayers | findPlaceholderLayers | pixelLabelDatastore | dice |
boxchart

Related Examples
• “Breast Tumor Segmentation from Ultrasound Using Deep Learning” on page 9-173
• “3-D Brain Tumor Segmentation Using Deep Learning” on page 8-185

More About
• “Datastores for Deep Learning” on page 20-2

9 Image Processing Examples

9-172

https://doi.org/10.1093/schbul/sbm120


Breast Tumor Segmentation from Ultrasound Using Deep
Learning

This example shows how to perform semantic segmentation of breast tumors from 2-D ultrasound
images using a deep neural network.

Semantic segmentation involves assigning a class to each pixel in a 2-D image. In this example, you
perform breast tumor segmentation using the DeepLab v3+ architecture. A common challenge of
medical image segmentation is class imbalance. In segmentation, class imbalance means the size of
the region of interest, such as a tumor, is small relative to the image background, resulting in many
more pixels in the background class. This example addresses class imbalance by using a custom
Tversky loss [1 on page 9-180]. The Tversky loss is an asymmetric similarity measure that is a
generalization of the Dice index and the Jaccard index.

Load Pretrained Network

Create a folder in which to store the pretrained network and image data set. In this example, a folder
named BreastSegmentation created within the tempdir directory has been used as dataDir.
Download the pretrained DeepLab v3+ network and test image by using the
downloadTrainedNetwork helper function. The helper function is attached to this example as a
supporting file. You can use the pretrained network to run the example without waiting for training to
complete.

dataDir = fullfile(tempdir,"BreastSegmentation");
if ~exist(dataDir,"dir")   
    mkdir(dataDir)
end
pretrainedNetwork_url = "https://www.mathworks.com/supportfiles/"+ ...
    "image/data/breastTumorDeepLabV3.tar.gz";
downloadTrainedNetwork(pretrainedNetwork_url,dataDir);

Unzip the TAR GZ file completely. Load the pretrained network into a variable called trainedNet.

gunzip(fullfile(dataDir,"breastTumorDeepLabV3.tar.gz"),dataDir);
untar(fullfile(dataDir,"breastTumorDeepLabV3.tar"),dataDir);
exampleDir = fullfile(dataDir,"breastTumorDeepLabV3");
load(fullfile(exampleDir,"breast_seg_deepLabV3.mat"));

Read the test ultrasound image and resize the image to the input size of the pretrained network.

imTest = imread(fullfile(exampleDir,"breastUltrasoundImg.png"));
imSize = [256 256];
imTest = imresize(imTest,imSize);

Predict the tumor segmentation mask for the test image.

segmentedImg = semanticseg(imTest,trainedNet);

Display the test image and the test image with the predicted tumor label overlay as a montage.

overlayImg = labeloverlay(imTest,segmentedImg,Transparency=0.7,IncludedLabels="tumor", ...
    Colormap="hsv");
montage({imTest,overlayImg});

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

9-173



Download Data Set

This example uses the Breast Ultrasound Images (BUSI) data set [2 on page 9-180]. The BUSI data
set contains 2-D ultrasound images stored in the PNG file format. The total size of the data set is 197
MB. The data set contains 133 normal scans, 487 scans with benign tumors, and 210 scans with
malignant tumors. This example uses images from the tumor groups only. Each ultrasound image has
a corresponding tumor mask image. The tumor mask labels have been reviewed by clinical
radiologists [2 on page 9-180].

Run this code to download the dataset from the MathWorks® website and unzip the downloaded
folder.

zipFile = matlab.internal.examples.downloadSupportFile("image","data/Dataset_BUSI.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The imageDir folder contains the downloaded and unzipped dataset.

imageDir = fullfile(filepath,"Dataset_BUSI_with_GT");

Load Data

Create an imageDatastore object to read and manage the ultrasound image data. Label each image
as normal, benign, or malignant according to the name of its folder.

imds = imageDatastore(imageDir,IncludeSubfolders=true,LabelSource="foldernames");

Remove files whose names contain "mask" to remove label images from the datastore. The image
datastore now contains only the grayscale ultrasound images.

imds = subset(imds,find(~contains(imds.Files,"mask")));

9 Image Processing Examples

9-174



Create a pixelLabelDatastore (Computer Vision Toolbox) object to store the labels.

classNames = ["tumor","background"];
labelIDs = [1 0];
numClasses = numel(classNames);
pxds = pixelLabelDatastore(imageDir,classNames,labelIDs,IncludeSubfolders=true);

Include only the subset of files whose names contain "_mask.png" in the datastore. The pixel label
datastore now contains only the tumor mask images.

pxds = subset(pxds,contains(pxds.Files,"_mask.png"));

Preview one image with a tumor mask overlay.

testImage = preview(imds);
mask = preview(pxds);
B = labeloverlay(testImage,mask,Transparency=0.7,IncludedLabels="tumor", ...
    Colormap="hsv");
imshow(B)
title("Labeled Test Ultrasound Image")

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

9-175



Combine the image datastore and the pixel label datastore to create a CombinedDatastore object.

dsCombined = combine(imds,pxds);

Prepare Data for Training

Partition Data into Training, Validation, and Test Sets

Split the combined datastore into data sets for training, validation, and testing. Allocate 80% of the
data for training, 10% for validation, and the remaining 10% for testing. Determine the indices to
include in each set by using the splitlabels (Computer Vision Toolbox) function. To exclude
images in the normal class without tumor images, use the image datastore labels as input and set
the Exclude name-value argument to "normal".

idxSet = splitlabels(imds.Labels,[0.8,0.1],"randomized",Exclude="normal");
dsTrain = subset(dsCombined,idxSet{1});
dsVal = subset(dsCombined,idxSet{2});
dsTest = subset(dsCombined,idxSet{3});

Augment Training and Validation Data

Augment the training and validation data by using the transform function with custom
preprocessing operations specified by the transformBreastTumorImageAndLabels helper
function. The helper function is attached to the example as a supporting file. The
transformBreastTumorImageAndLabels function performs these operations:

1 Convert the ultrasound images from RGB to grayscale.
2 Augment the intensity of the grayscale images by using the jitterIntensity (Medical Imaging

Toolbox) function.
3 Resize the images to 256-by-256 pixels.

tdsTrain = transform(dsTrain,@transformBreastTumorImageAndLabels,IncludeInfo=true);
tdsVal = transform(dsVal,@transformBreastTumorImageAndLabels,IncludeInfo=true);

Define Network Architecture

This example uses the DeepLab v3+ network. DeepLab v3+ consists of a series of convolution layers
with a skip connection, one maxpool layer, and one averagepool layer. The network also has a batch
normalization layer before each ReLU layer.

Create a DeepLab v3+ network based on ResNet-50 by using the using deeplabv3plusLayers
(Computer Vision Toolbox) function. Setting the base network as ResNet-50 requires the Deep
Learning Toolbox™ Model for ResNet-50 Network support package. If this support package is not
installed, then the function provides a download link.

Define the input size of the network as 256-by-256-by-3. Specify the number of classes as two for
background and tumor.

imageSize = [256 256 3];
lgraph = deeplabv3plusLayers(imageSize,numClasses,"resnet50");

Because the preprocessed ultrasound images are grayscale, replace the original input layer with a
256-by-256 input layer.

newInputLayer = imageInputLayer(imageSize(1:2),Name="newInputLayer");
lgraph = replaceLayer(lgraph,lgraph.Layers(1).Name,newInputLayer);

9 Image Processing Examples

9-176



Replace the first 2-D convolution layer with a new 2-D convolution layer to match the size of the new
input layer.

newConvLayer = convolution2dLayer([7 7],64,Stride=2,Padding=[3 3 3 3],Name="newConv1");
lgraph = replaceLayer(lgraph,lgraph.Layers(2).Name,newConvLayer);

To better segment smaller tumor regions and reduce the influence of larger background regions, use
a custom Tversky pixel classification layer. For more details about using a custom Tversky layer, see
“Define Custom Pixel Classification Layer with Tversky Loss” on page 8-195. Replace the pixel
classification layer with the Tversky pixel classification layer. The alpha and beta weighting factors
control the contribution of false positives and false negatives, respectively, to the loss function. The
alpha and beta values used in this example were selected using trial and error for the target data
set. Generally, specifying the beta value greater than the alpha value is useful for training images
with small objects and large background regions.

alpha = 0.01;
beta = 0.99;
pxLayer = tverskyPixelClassificationLayer("tverskyLoss",alpha,beta);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

Alternatively, you can modify the DeepLab v3+ network by using the Deep Network Designer from
Deep Learning Toolbox.

Use the Analyze tool in the Deep Network Designer to analyze the DeepLab v3+ network.

deepNetworkDesigner(lgraph)

Specify Training Options

Train the network using the adam optimization solver. Specify the hyperparameter settings using the
trainingOptions function. Set the learning rate to 1e-3 over the span of training. You can
experiment with the mini-batch size based on your GPU memory. Batch normalization layers are less
effective for smaller values of the mini-batch size. Tune the initial learning rate based on the mini-
batch size.

options = trainingOptions("adam", ...
    ExecutionEnvironment="gpu", ...
    InitialLearnRate=1e-3, ...
    ValidationData=tdsVal, ...
    MaxEpochs=300, ...
    MiniBatchSize=16, ...
    VerboseFrequency=20, ...
    Plots="training-progress");

Train Network

To train the network, set the doTraining variable to true. Train the model using the
trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about four hours on a single-GPU system with an NVIDIA™ Titan
Xp GPU and can take longer depending on your GPU hardware.

doTraining = ;
if doTraining

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

9-177



    [trainedNet,info] = trainNetwork(tdsTrain,lgraph,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save("breastTumorDeepLabv3-"+modelDateTime+".mat","trainedNet");
end

Predict Using New Data

Preprocess Test Data

Prepare the test data by using the transform function with custom preprocessing operations
specified by the transformBreastTumorImageResize helper function. This helper function is
attached to the example as a supporting file. The transformBreastTumorImageResize function
converts images from RGB to grayscale and resizes the images to 256-by-256 pixels.

dsTest = transform(dsTest,@transformBreastTumorImageResize,IncludeInfo=true);

Segment Test Data

Use the trained network for semantic segmentation of the test data set.

pxdsResults = semanticseg(dsTest,trainedNet,Verbose=true);

Running semantic segmentation network
-------------------------------------
* Processed 65 images.

Evaluate Segmentation Accuracy

Evaluate the network-predicted segmentation results against the ground truth pixel label tumor
masks.

metrics = evaluateSemanticSegmentation(pxdsResults,dsTest,Verbose=true);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 65 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.97588          0.96236       0.86931      0.9565         0.57667  

Measure the segmentation accuracy using the evaluateBreastTumorDiceAccuracy helper
function. This helper function computes the Dice index between the predicted and ground truth
segmentations using the dice (Image Processing Toolbox) function. The helper function is attached
to the example as a supporting file.

[diceTumor,diceBackground,numTestImgs] = evaluateBreastTumorDiceAccuracy(pxdsResults,dsTest);

Calculate the average Dice index across the set of test images.

disp("Average Dice score of background across "+num2str(numTestImgs)+ ...
    " test images = "+num2str(mean(diceBackground)))

Average Dice score of background across 65 test images = 0.98581

9 Image Processing Examples

9-178



disp("Average Dice score of tumor across "+num2str(numTestImgs)+ ...
    " test images = "+num2str(mean(diceTumor)))

Average Dice score of tumor across 65 test images = 0.78588

disp("Median Dice score of tumor across "+num2str(numTestImgs)+ ...
    " test images = "+num2str(median(diceTumor)))

Median Dice score of tumor across 65 test images = 0.85888

Visualize statistics about the Dice scores as a box chart. The middle blue line in the plot shows the
median Dice index. The upper and lower bounds of the blue box indicate the 25th and 75th
percentiles, respectively. Black whiskers extend to the most extreme data points that are not outliers.

figure
boxchart([diceTumor diceBackground])
title("Test Set Dice Accuracy")
xticklabels(classNames)
ylabel("Dice Coefficient")

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

9-179



References

[1] Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. “Tversky Loss Function for
Image Segmentation Using 3D Fully Convolutional Deep Networks.” In Machine Learning in Medical
Imaging, edited by Qian Wang, Yinghuan Shi, Heung-Il Suk, and Kenji Suzuki, 10541:379–87. Cham:
Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-67389-9_44.

[2] Al-Dhabyani, Walid, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. “Dataset of Breast
Ultrasound Images.” Data in Brief 28 (February 2020): 104863. https://doi.org/10.1016/
j.dib.2019.104863.

See Also
imageDatastore | pixelLabelDatastore | subset | combine | transform |
deeplabv3plusLayers | semanticseg | evaluateSemanticSegmentation

Related Examples
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 9-165
• “3-D Brain Tumor Segmentation Using Deep Learning” on page 8-185

More About
• “Datastores for Deep Learning” on page 20-2
• “Define Custom Pixel Classification Layer with Tversky Loss” (Computer Vision Toolbox)

9 Image Processing Examples

9-180

https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.1016/j.dib.2019.104863


Cardiac Left Ventricle Segmentation from Cine-MRI Images
Using U-Net Network

This example shows how to perform semantic segmentation of the left ventricle from 2-D cardiac MRI
images using U-Net.

Semantic segmentation associates each pixel in an image with a class label. Segmentation of cardiac
MRI images is useful for detecting abnormalities in heart structure and function. A common
challenge of medical image segmentation is class imbalance, meaning the region of interest is small
relative to the image background. Therefore, the training images contain many more background
pixels than labeled pixels, which can limit classification accuracy. In this example, you address class
imbalance by using a generalized Dice loss function [1 on page 9-192]. You also use the gradient-
weighted class activation mapping (Grad-CAM) deep learning explainability technique to determine
which regions of an image are important for the pixel classification decision.

This figure shows an example of a cine-MRI image before segmentation, the network-predicted
segmentation map, and the corresponding Grad-CAM map.

Load Pretrained Network

Download the pretrained U-Net network by using the downloadTrainedNetwork helper function.
The helper function is attached to this example as a supporting file. You can use this pretrained
network to run the example without training the network.

exampleDir = fullfile(tempdir,"cardiacMR");
if ~isfolder(exampleDir)   
    mkdir(exampleDir);
end

trainedNetworkURL = "https://ssd.mathworks.com/supportfiles" + ...
    "/medical/pretrainedLeftVentricleSegmentation.zip";
downloadTrainedNetwork(trainedNetworkURL,exampleDir);

Load the network.

data = load(fullfile(exampleDir,"pretrainedLeftVentricleSegmentationModel.mat"));
trainedNet = data.trainedNet;

 Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

9-181



Perform Semantic Segmentation

Use the pretrained network to predict the left ventricle segmentation mask for a test image.

Download Data Set

This example uses a subset of the Sunnybrook Cardiac Data data set [2 on page 9-192,3 on page 9-
193]. The subset consists of 45 cine-MRI images and their corresponding ground truth label images.
The MRI images were acquired from multiple patients with various cardiac pathologies. The ground
truth label images were manually drawn by experts [2]. The MRI images are in the DICOM file format
and the label images are in the PNG file format. The total size of the subset of data is ~105 MB.

Download the data set from the MathWorks® website and unzip the downloaded folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical","CardiacMRI.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The imageDir folder contains the downloaded and unzipped data set.

imageDir = fullfile(filepath,"Cardiac MRI");

Predict Left Ventricle Mask

Read an image from the data set and preprocess the image by using the preprocessImage on page
9-191 helper function, which is defined at the end of this example. The helper function resizes MRI
images to the input size of the network and converts them from grayscale to three-channel images.

testImg = dicomread(fullfile(imageDir,"images","SC-HF-I-01","SC-HF-I-01_rawdcm_099.dcm"));
trainingSize = [256 256 3];
data = preprocessImage(testImg,trainingSize);
testImg = data{1};

Predict the left ventricle segmentation mask for the test image using the pretrained network by using
the semanticseg (Computer Vision Toolbox) function.

segmentedImg = semanticseg(testImg,trainedNet);

Display the test image and an overlay with the predicted mask as a montage.

overlayImg = labeloverlay(mat2gray(testImg),segmentedImg, ...
    Transparency=0.7, ...
    IncludedLabels="LeftVentricle");
imshowpair(mat2gray(testImg),overlayImg,"montage");

9 Image Processing Examples

9-182



Prepare Data for Training

Create an imageDatastore object to read and manage the MRI images.

dataFolder = fullfile(imageDir,"images");
imds = imageDatastore(dataFolder,...
    IncludeSubfolders=true,...
    FileExtensions=".dcm",...
    ReadFcn=@dicomread);

Create a pixelLabelDatastore (Computer Vision Toolbox) object to read and manage the label
images.

labelFolder = fullfile(imageDir,"labels");
classNames = ["Background","LeftVentricle"];
pixIDs = [0,1];

pxds = pixelLabelDatastore(labelFolder,classNames,pixIDs,...
    IncludeSubfolders=true,...
    FileExtensions=".png");

Preprocess the data by using the transform function with custom operations specified by the
preprocessImage on page 9-191 helper function, which is defined at the end of this example. The
helper function resizes the MRI images to the input size of the network and converts them from
grayscale to three-channel images.

timds = transform(imds,@(img) preprocessImage(img,trainingSize));

Preprocess the label images by using the transform function with custom operations specified by
the preprocesslabels on page 9-192 helper function, which is defined at the end of this example.
The helper function resizes the label images to the input size of the network.

tpxds = transform(pxds,@(img) preprocessLabels(img,trainingSize));

 Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

9-183



Combine the transformed image and pixel label datastores to create a CombinedDatastore object.

combinedDS = combine(timds,tpxds);

Partition Data for Training, Validation, and Testing

Split the combined datastore into data sets for training, validation, and testing. Allocate 75% of the
data for training, 5% for validation, and the remaining 20% for testing.

numImages = numel(imds.Files);
numTrain = round(0.75*numImages);
numVal = round(0.05*numImages);
numTest = round(0.2*numImages);

shuffledIndices = randperm(numImages);
dsTrain = subset(combinedDS,shuffledIndices(1:numTrain));
dsVal = subset(combinedDS,shuffledIndices(numTrain+1:numTrain+numVal));
dsTest = subset(combinedDS,shuffledIndices(numTrain+numVal+1:end));

Visualize the number of images in the training, validation, and testing subsets.

figure
bar([numTrain,numVal,numTest])
title("Partitioned Data Set")
xticklabels({"Training Set","Validation Set","Testing Set"})
ylabel("Number of Images")

Augment Training Data

9 Image Processing Examples

9-184



Augment the training data by using the transform function with custom operations specified by the
augmentDataForLVSegmentation on page 9-192 helper function, which is defined at the end of
this example. The helper function applies random rotations, translations, and reflections to the MRI
images and corresponding ground truth labels.

dsTrain = transform(dsTrain,@(data) augmentDataForLVSegmentation(data));

Measure Label Imbalance

To measure the distribution of class labels in the data set, use the countEachLabel function to
count the background pixels and the labeled ventricle pixels.

pixelLabelCount = countEachLabel(pxds)

pixelLabelCount=2×3 table
          Name           PixelCount    ImagePixelCount
    _________________    __________    _______________

    {'Background'   }    5.1901e+07      5.2756e+07   
    {'LeftVentricle'}    8.5594e+05      5.2756e+07   

Visualize the labels by class. The image contains many more background pixels than labeled ventricle
pixels. The label imbalance can bias the training of the network. You address this imbalance when you
design the network.

figure
bar(categorical(pixelLabelCount.Name),pixelLabelCount.PixelCount)
ylabel("Frequency")

 Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

9-185



Define Network Architecture

This example uses a U-Net network for semantic segmentation. Create a U-Net network with an input
size of 256-by-256-by-3 that classifies pixels into two categories corresponding to the background and
left ventricle.

numClasses = length(classNames);
net = unetLayers(trainingSize,numClasses);

Replace the input network layer with an imageInputLayer object that normalizes image values
between 0 and 1000 to the range [0, 1]. Values less than 0 are set to 0 and values greater than 1000
are set to 1000.

inputlayer = imageInputLayer(trainingSize, ...
    Normalization="rescale-zero-one", ...
    Min=0, ...
    Max=1000, ...
    Name="input");
net = replaceLayer(net,net.Layers(1).Name,inputlayer);

To address the class imbalance between the smaller ventricle regions and larger background, this
example uses a dicePixelClassificationLayer (Computer Vision Toolbox) object. Replace the
pixel classification layer with the Dice pixel classification layer.

pxLayer = dicePixelClassificationLayer(Name="labels");
net = replaceLayer(net,net.Layers(end).Name,pxLayer);

9 Image Processing Examples

9-186



Specify Training Options

Specify the training options by using the trainingOptions function. Train the network using the
adam optimization solver. Set the learning rate to 0.001 over the span of training. You can experiment
with the mini-batch size based on your GPU memory. Batch normalization layers are less effective for
smaller values of the mini-batch size. Tune the initial learning rate based on the mini-batch size.

options = trainingOptions("adam", ...
        InitialLearnRate=0.0002,...
        GradientDecayFactor=0.999,...
        L2Regularization=0.0005, ...
        MaxEpochs=100, ...
        MiniBatchSize=32, ...
        Shuffle="every-epoch", ...
        Verbose=false,...
        VerboseFrequency=100,...
        ValidationData=dsVal,...
        Plots="training-progress",...
        ExecutionEnvironment="auto",...
        ResetInputNormalization=false);

Train Network

To train the network, set the doTraining variable to true. Train the network by using the
trainNetwork function.

Train on a GPU if one is available. Using a GPU requires a Parallel Computing Toolbox™ license and a
CUDA®-enabled NVIDIA® GPU.

doTraining = ;
if doTraining
    trainedNet = trainNetwork(dsTrain,net,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(exampleDir,"trainedLeftVentricleSegmentation-" ...
        +modelDateTime+".mat"),"trainedNet");

end

Test Network

Segment each image in the test data set by using the trained network.

resultsDir = fullfile(exampleDir,"Results");

if ~isfolder(resultsDir)
    mkdir(resultsDir)
end

pxdsResults = semanticseg(dsTest,trainedNet,...
    WriteLocation=resultsDir,...
    Verbose=true,...
    MiniBatchSize=1);

Running semantic segmentation network
-------------------------------------
* Processed 161 images.

Evaluate Segmentation Metrics

 Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

9-187



Evaluate the network by calculating performance metrics using the
evaluateSemanticSegmentation (Computer Vision Toolbox) function. The function computes
metrics that compare the labels that the network predicts in pxdsResults to the ground truth labels
in pxdsTest.

pxdsTest = dsTest.UnderlyingDatastores{2};
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 161 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.99829          0.97752       0.9539       0.99667        0.96747  

View the metrics by class by querying the ClassMetrics property of metrics.

metrics.ClassMetrics

ans=2×3 table
                     Accuracy      IoU      MeanBFScore
                     ________    _______    ___________

    Background       0.99907     0.99826        0.995  
    LeftVentricle    0.95598     0.90953      0.93994  

Evaluate Dice Score

Evaluate the segmentation accuracy by calculating the Dice score between the predicted and ground
truth label images. For each test image, calculate the Dice score for the background label and the
ventricle label by using the dice (Image Processing Toolbox) function.

reset(pxdsTest);
reset(pxdsResults);

diceScore = zeros(numTest,numClasses);
for idx = 1:numTest

    prediction = read(pxdsResults);
    groundTruth = read(pxdsTest);

    diceScore(idx,1) = dice(prediction{1}==classNames(1),groundTruth{1}==classNames(1));
    diceScore(idx,2) = dice(prediction{1}==classNames(2),groundTruth{1}==classNames(2));
end

Calculate the mean Dice score over all test images and report the mean values in a table.

meanDiceScore = mean(diceScore);
diceTable = array2table(meanDiceScore', ...
    VariableNames="Mean Dice Score", ...
    RowNames=classNames)

9 Image Processing Examples

9-188



diceTable=2×1 table
                     Mean Dice Score
                     _______________

    Background           0.99913    
    LeftVentricle         0.9282    

Visualize the Dice scores for each class as a box chart. The middle blue line in the plot shows the
median Dice score. The upper and lower bounds of the blue box indicate the 25th and 75th
percentiles, respectively. Black whiskers extend to the most extreme data points that are not outliers.

figure
boxchart(diceScore)
title("Test Set Dice Accuracy")
xticklabels(classNames)
ylabel("Dice Coefficient")

Explainability

By using explainability methods like Grad-CAM, you can see which areas of an input image the
network uses to make its pixel classifications. Use Grad-CAM to show which areas of a test MRI
image the network uses to segment the left ventricle.

Load an image from the test data set and preprocess it using the same operations you use to
preprocess the training data. The preprocessImage on page 9-191 helper function is defined at the
end of this example.

 Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

9-189



testImg = dicomread(fullfile(imageDir,"images","SC-HF-I-01","SC-HF-I-01_rawdcm_099.dcm"));
data = preprocessImage(testImg,trainingSize);
testImg = data{1};

Load the corresponding ground truth label image and preprocess it using the same operations you
use to preprocess the training data. The preprocessLabels on page 9-192 function is defined at the
end of this example.

testGroundTruth = imread(fullfile(imageDir,"labels","SC-HF-I-01","SC-HF-I-01gtmask0099.png"));
data = preprocessLabels({testGroundTruth}, trainingSize);
testGroundTruth = data{1};

Segment the test image using the trained network.

prediction = semanticseg(testImg,trainedNet);

To use Grad-CAM, you must select a feature layer from which to extract the feature map and a
reduction layer from which to extract the output activations. Use analyzeNetwork to find the layers
to use with Grad-CAM. In this example, you use the final ReLU layer as the feature layer and the
softmax layer as the reduction layer.

analyzeNetwork(trainedNet)
featureLayer = "Decoder-Stage-4-Conv-2";
reductionLayer = "Softmax-Layer";

Compute the Grad-CAM map for the test image by using the gradCAM function.

gradCAMMap = gradCAM(trainedNet,testImg,classNames,...
    ReductionLayer=reductionLayer,...
    FeatureLayer=featureLayer);

Visualize the test image, the ground truth labels, the network-predicted labels, and the Grad-CAM
map for the ventricle. As expected, the area within the ground truth ventricle mask contributes most
strongly to the network prediction of the ventricle label.

figure
tiledlayout(2,2)
nexttile
imshow(mat2gray(testImg))
title("Test Image")

nexttile
imshow(labeloverlay(mat2gray(testImg),testGroundTruth))
title("Ground Truth Label")

nexttile
imshow(labeloverlay(mat2gray(testImg),prediction,IncludedLabels="LeftVentricle"))
title("Network-Predicted Label")

nexttile
imshow(mat2gray(testImg))
hold on
imagesc(gradCAMMap(:,:,2),AlphaData=0.5)
title("GRAD-CAM Map")
colormap jet

9 Image Processing Examples

9-190



Supporting Functions

The preprocessImage helper function preprocesses the MRI images using these steps:

1 Resize the input image to the target size of the network.
2 Convert grayscale images to three channel images.
3 Return the preprocessed image in a cell array.

function out = preprocessImage(img,targetSize)
% Copyright 2023 The MathWorks, Inc.

    targetSize = targetSize(1:2);
    img = imresize(img,targetSize);

    if size(img,3) == 1
        img = repmat(img,[1 1 3]);
    end

    out = {img};

end

The preprocessLabels helper function preprocesses label images using these steps:

 Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

9-191



1 Resize the input label image to the target size of the network. The function uses nearest neighbor
interpolation so that the output is a binary image without partial decimal values.

2 Return the preprocessed image in a cell array.

function out = preprocessLabels(labels, targetSize)
% Copyright 2023 The MathWorks, Inc.

    targetSize = targetSize(1:2);
    labels = imresize(labels{1},targetSize,"nearest");

    out = {labels};

end

The augmentDataForLVSegmentation helper function randomly applies these augmentations to
each input image and its corresponding label image. The function returns the output data in a cell
array.

• Random rotation between 0 to 180 degrees.
• Random translation along the x- and y-axes of -10 to 10 pixels.
• Random reflection to flip the image in the x-axis.

function out = augmentDataForLVSegmentation(data)
% Copyright 2023 The MathWorks, Inc.

    img = data{1};
    labels = data{2};
    inputSize = size(img,[1 2]);

    tform = randomAffine2d(...
        Rotation=[-5 5],...
        XTranslation=[-10 10],...
        YTranslation=[-10 10]);

    sameAsInput = affineOutputView(inputSize,tform,BoundsStyle="sameAsInput");
    img = imwarp(img,tform,"linear",OutputView=sameAsInput);
    labels = imwarp(labels,tform,"nearest",OutputView=sameAsInput);

    out = {img,labels};

end

References

[1] Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. “V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation.” In 2016 Fourth International Conference on
3D Vision (3DV), 565–71. Stanford, CA, USA: IEEE, 2016. https://doi.org/10.1109/3DV.2016.79.

9 Image Processing Examples

9-192



[2] Radau, Perry, Yingli Lu, Kim Connelly, Gideon Paul, Alexander J Dick, and Graham A Wright.
“Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI.” The MIDAS Journal,
July 9, 2009. https://doi.org/10.54294/g80ruo.

[3] “Sunnybrook Cardiac Data – Cardiac Atlas Project.” Accessed January 10, 2023. http://
www.cardiacatlas.org/studies/sunnybrook-cardiac-data/.

See Also
imageDatastore | pixelLabelDatastore | subset | combine | transform | unetLayers |
semanticseg | evaluateSemanticSegmentation | gradCAM

Related Examples
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 9-165
• “Breast Tumor Segmentation from Ultrasound Using Deep Learning” on page 9-173
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 9-156
• “3-D Brain Tumor Segmentation Using Deep Learning” on page 8-185

More About
• “Datastores for Deep Learning” on page 20-2

 Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

9-193





Automated Driving Examples

10



Train a Deep Learning Vehicle Detector

This example shows how to train a vision-based vehicle detector using deep learning.

Overview

Vehicle detection using computer vision is an important component for tracking vehicles around the
ego vehicle. The ability to detect and track vehicles is required for many autonomous driving
applications, such as for forward collision warning, adaptive cruise control, and automated lane
keeping. Automated Driving Toolbox™ provides pretrained vehicle detectors
(vehicleDetectorFasterRCNN (Automated Driving Toolbox) and vehicleDetectorACF
(Automated Driving Toolbox)) to enable quick prototyping. However, the pretrained models might not
suit every application, requiring you to train from scratch. This example shows how to train a vehicle
detector from scratch using deep learning.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several deep learning techniques for object detection exist, including Faster R-CNN and
you only look once (YOLO) v2. This example trains a Faster R-CNN vehicle detector using the
trainFasterRCNNObjectDetector function. For more information, see “Object Detection”
(Computer Vision Toolbox).

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTrainingAndEval variable to true.

doTrainingAndEval = false;
if ~doTrainingAndEval && ~exist('fasterRCNNResNet50EndToEndVehicleExample.mat','file')
    disp('Downloading pretrained detector (118 MB)...');
    pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResNet50EndToEndVehicleExample.mat';
    websave('fasterRCNNResNet50EndToEndVehicleExample.mat',pretrainedURL);
end

Load Dataset

This example uses a small labeled dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 data sets, available at the Caltech Computational Vision website,
created by Pietro Perona and used with permission. Each image contains one or two labeled instances
of a vehicle. A small dataset is useful for exploring the Faster R-CNN training procedure, but in
practice, more labeled images are needed to train a robust detector. Unzip the vehicle images and
load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

Split the data set into a training set for training the detector and a test set for evaluating the
detector. Select 60% of the data for training. Use the rest for evaluation.

rng(0)
shuffledIdx = randperm(height(vehicleDataset));

10 Automated Driving Examples

10-2



idx = floor(0.6 * height(vehicleDataset));
trainingDataTbl = vehicleDataset(shuffledIdx(1:idx),:);
testDataTbl = vehicleDataset(shuffledIdx(idx+1:end),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest,bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Train a Deep Learning Vehicle Detector

10-3



Create Faster R-CNN Detection Network

A Faster R-CNN object detection network is composed of a feature extraction network followed by
two subnetworks. The feature extraction network is typically a pretrained CNN, such as ResNet-50 or
Inception v3. The first subnetwork following the feature extraction network is a region proposal
network (RPN) trained to generate object proposals - areas in the image where objects are likely to
exist. The second subnetwork is trained to predict the actual class of each object proposal.

The feature extraction network is typically a pretrained CNN (for details, see “Pretrained Deep
Neural Networks” on page 1-11). This example uses ResNet-50 for feature extraction. You can also
use other pretrained networks such as MobileNet v2 or ResNet-18, depending on your application
requirements.

Use fasterRCNNLayers to create a Faster R-CNN network automatically given a pretrained feature
extraction network. fasterRCNNLayers requires you to specify several inputs that parameterize a
Faster R-CNN network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size. When choosing the network input size, consider the minimum
size required to run the network itself, the size of the training images, and the computational cost
incurred by processing data at the selected size. When feasible, choose a network input size that is
close to the size of the training image and larger than the input size required for the network. To
reduce the computational cost of running the example, specify a network input size of [224 224 3],
which is the minimum size required to run the network.

inputSize = [224 224 3];

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the
training data. To account for the resizing of the images prior to training, resize the training data for
estimating anchor boxes. Use transform to preprocess the training data, then define the number of
anchor boxes and estimate the anchor boxes.

preprocessedTrainingData = transform(trainingData, @(data)preprocessData(data,inputSize));
numAnchors = 4;
anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData,numAnchors)

anchorBoxes = 4×2

    96    91
    68    65
   150   125
    38    29

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data”
(Computer Vision Toolbox) (Computer Vision Toolbox™) and “Anchor Boxes for Object Detection”
(Computer Vision Toolbox).

Now, use resnet50 to load a pretrained ResNet-50 model.

10 Automated Driving Examples

10-4



featureExtractionNetwork = resnet50;

Select 'activation_40_relu' as the feature extraction layer. This feature extraction layer outputs
feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-
off between spatial resolution and the strength of the extracted features, as features extracted
further down the network encode stronger image features at the cost of spatial resolution. Choosing
the optimal feature extraction layer requires empirical analysis. You can use analyzeNetwork to
find the names of other potential feature extraction layers within a network.

featureLayer = 'activation_40_relu';

Define the number of classes to detect.

numClasses = width(vehicleDataset)-1;

Create the Faster R-CNN object detection network.

lgraph = fasterRCNNLayers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the Faster R-CNN network architecture, use Deep Network Designer
to design the Faster R-CNN detection network manually. For more information, see “Getting Started
with R-CNN, Fast R-CNN, and Faster R-CNN” (Computer Vision Toolbox).

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to test data. Ideally, test data is
representative of the original data and is left unmodified for unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read the same image multiple times and display the augmented training data.

augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedTrainingData);
    augmentedData{k} = insertShape(data{1},'rectangle',data{2});
    reset(augmentedTrainingData);
end
figure
montage(augmentedData,'BorderSize',10)

 Train a Deep Learning Vehicle Detector

10-5



Preprocess Training Data

Preprocess the augmented training data to prepare for training.

trainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));

Read the preprocessed data.

data = read(trainingData);

Display the image and box bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

10 Automated Driving Examples

10-6



Train Faster R-CNN

Use trainingOptions to specify network training options. Set 'CheckpointPath' to a temporary
location. This enables the saving of partially trained detectors during the training process. If training
is interrupted, such as by a power outage or system failure, you can resume training from the saved
checkpoint.

options = trainingOptions('sgdm',...
    'MaxEpochs',7,...
    'MiniBatchSize',1,...
    'InitialLearnRate',1e-3,...
    'CheckpointPath',tempdir);

Use trainFasterRCNNObjectDetector to train Faster R-CNN object detector if
doTrainingAndEval is true. Otherwise, load the pretrained network.

if doTrainingAndEval
    % Train the Faster R-CNN detector.
    % * Adjust NegativeOverlapRange and PositiveOverlapRange to ensure

 Train a Deep Learning Vehicle Detector

10-7



    %   that training samples tightly overlap with ground truth.
    [detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options, ...
        'NegativeOverlapRange',[0 0.3], ...
        'PositiveOverlapRange',[0.6 1]);
else
    % Load pretrained detector for the example.
    pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
    detector = pretrained.detector;
end

This example was verified on an Nvidia(TM) Titan X GPU with 12 GB of memory. Training the network
took approximately 20 minutes. The training time varies depending on the hardware you use.

As a quick check, run the detector on one test image. Make sure you resize the image to the same
size as the training images.

I = imread(testDataTbl.imageFilename{1});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

10 Automated Driving Examples

10-8



Apply the same preprocessing transform to the test data as for the training data.

testData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

if doTrainingAndEval
    detectionResults = detect(detector,testData,'MinibatchSize',4);
else
    % Load pretrained detector for the example.
    pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
    detectionResults = pretrained.detectionResults;
end
    

Evaluate the object detector using the average precision metric.

[ap, recall, precision] = evaluateDetectionPrecision(detectionResults,testData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))

 Train a Deep Learning Vehicle Detector

10-9



Supporting Functions

function data = augmentData(data)
% Randomly flip images and bounding boxes horizontally.
tform = randomAffine2d('XReflection',true);
sz = size(data{1},[1 2]);
rout = affineOutputView(sz, tform);
data{1} = imwarp(data{1},tform,'OutputView',rout);

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to open this function.
data{2} = helperSanitizeBoxes(data{2});

% Warp boxes.
data{2} = bboxwarp(data{2},tform,rout);
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));

% Sanitize boxes, if needed. This helper function is attached as a
% supporting file. Open the example in MATLAB to open this function.
data{2} = helperSanitizeBoxes(data{2});

% Resize boxes.
data{2} = bboxresize(data{2},scale);
end

References

[1] Ren, S., K. He, R. Gershick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks." IEEE Transactions of Pattern Analysis and Machine Intelligence. Vol. 39,
Issue 6, June 2017, pp. 1137-1149.

[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition. Columbus, OH, June 2014, pp. 580-587.

[3] Girshick, R. "Fast R-CNN." Proceedings of the 2015 IEEE International Conference on Computer
Vision. Santiago, Chile, Dec. 2015, pp. 1440-1448.

[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." European
Conference on Computer Vision. Zurich, Switzerland, Sept. 2014, pp. 391-405.

[5] Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. "Selective Search for
Object Recognition." International Journal of Computer Vision. Vol. 104, Number 2, Sept. 2013, pp.
154-171.

See Also
Functions
trainRCNNObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector

10 Automated Driving Examples

10-10



More About
• “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” (Computer Vision Toolbox)
• “Object Detection Using Faster R-CNN Deep Learning” on page 8-215
• “Train Object Detector Using R-CNN Deep Learning” on page 8-202

 Train a Deep Learning Vehicle Detector

10-11



Create Occupancy Grid Using Monocular Camera and Semantic
Segmentation

This example shows how to estimate free space around a vehicle and create an occupancy grid using
semantic segmentation and deep learning. You then use this occupancy grid to create a vehicle
costmap, which can be used to plan a path.

About Free Space Estimation

Free space estimation identifies areas in the environment where the ego vehicle can drive without
hitting any obstacles such as pedestrians, curbs, or other vehicles. A vehicle can use a variety of
sensors to estimate free space such as radar, lidar, or cameras. This example focuses on estimating
free space from an image sensor using semantic segmentation.

In this example, you learn how to:

• Use semantic image segmentation to estimate free space.
• Create an occupancy grid using the free space estimate.
• Visualize the occupancy grid on a bird's-eye plot.
• Create a vehicle costmap using the occupancy grid.
• Check whether locations in the world are occupied or free.

Download Pretrained Network

This example uses a pretrained semantic segmentation network, which can classify pixels into 11
different classes, including Road, Pedestrian, Car, and Sky. The free space in an image can be
estimated by defining image pixels classified as Road as free space. All other classes are defined as
non-free space or obstacles.

The complete procedure for training this network is shown in the “Semantic Segmentation Using
Deep Learning” (Computer Vision Toolbox) example. Download the pretrained network.

% Download and load the pretrained network.
data = downloadPretrainedNetwork('vision/data','segnetVGG16CamVid');
net = data.net;

Note: Download time of the data depends on your Internet connection. The commands used above
block MATLAB® until the download is complete. Alternatively, you can use your web browser to first
download the data set to your local disk. In this case, to use the file you downloaded from the web,
change the pretrainedFolder variable above to the location of the downloaded file.

Estimate Free Space

Estimate free space by processing the image using downloaded semantic segmentation network. The
network returns classifications for each image pixel in the image. The free space is identified as
image pixels that have been classified as Road.

The image used in this example is a single frame from an image sequence in the CamVid data set[1].
The procedure shown in this example can be applied to a sequence of frames to estimate free space
as a vehicle drives along. However, because a very deep convolutional neural network architecture is
used in this example (SegNet with a VGG-16 encoder), it takes about 1 second to process each frame.
Therefore, for expediency, process a single frame.

10 Automated Driving Examples

10-12



% Read the image.
I = imread('seq05vd_snap_shot.jpg');

% Segment the image.
[C,scores,allScores] = semanticseg(I,net);

% Overlay free space onto the image.
B = labeloverlay(I,C,'IncludedLabels',"Road");

% Display free space and image.
figure
imshow(B)

To understand the confidence in the free space estimate, display the output score for the Road class
for every pixel. The confidence values can be used to inform downstream algorithms of the estimate's
validity. For example, even if the network classifies a pixel as Road, the confidence score may be low
enough to disregard that classification for safety reasons.

% Use the network's output score for Road as the free space confidence.
roadClassIdx = 4;
freeSpaceConfidence = allScores(:,:,roadClassIdx);
    
% Display the free space confidence.

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

10-13



figure
imagesc(freeSpaceConfidence)
title('Free Space Confidence Scores')
colorbar

Although the initial segmentation result for Road pixels showed most pixels on the road were
classified correctly, visualizing the scores provides richer detail on the classifier's confidence in those
classifications. For example, the confidence decreases as you get closer to the boundary of the car.

Create Bird's-Eye-View Image

The free space estimate is generated in the image space. To facilitate generation of an occupancy
grid that is useful for navigation, the free space estimate needs to be transformed into the vehicle
coordinate system. This can be done by transforming the free space estimate to a bird's-eye-view
image.

To create the bird's-eye-view image, first define the camera sensor configuration. The supporting
function listed at the end of this example, camvidMonoCameraSensor, returns a monoCamera
(Automated Driving Toolbox) object representing the monocular camera used to collect the
CamVid[1] data. Configuring the monoCamera (Automated Driving Toolbox) requires the camera

10 Automated Driving Examples

10-14



intrinsics and extrinsics, which were estimated using data provided in the CamVid data set. To
estimate the camera intrinsics, the function used CamVid checkerboard calibration images and the
Camera Calibrator (Computer Vision Toolbox) app. Estimates of the camera extrinsics, such as height
and pitch, were derived from the extrinsic data estimated by the authors of the CamVid data set.

% Create monoCamera for CamVid data.
sensor = camvidMonoCameraSensor();

Given the camera setup, the birdsEyeView (Automated Driving Toolbox) object transforms the
original image to the bird's-eye view. This object lets you specify the area that you want transformed
using vehicle coordinates. Note that the vehicle coordinate units were established by the
monoCamera (Automated Driving Toolbox) object, when the camera mounting height was specified in
meters. For example, if the height was specified in millimeters, the rest of the simulation would use
millimeters.

% Define bird's-eye-view transformation parameters.
distAheadOfSensor = 20; % in meters, as previously specified in monoCamera height input
spaceToOneSide    = 3;  % look 3 meters to the right and left
bottomOffset      = 0;  
outView = [bottomOffset, distAheadOfSensor, -spaceToOneSide, spaceToOneSide];

outImageSize = [NaN, 256]; % output image width in pixels; height is chosen automatically to preserve units per pixel ratio

birdsEyeConfig = birdsEyeView(sensor,outView,outImageSize);

Generate bird's-eye-view image for the image and free space confidence.

% Resize image and free space estimate to size of CamVid sensor. 
imageSize = sensor.Intrinsics.ImageSize;
I = imresize(I,imageSize);
freeSpaceConfidence = imresize(freeSpaceConfidence,imageSize);

% Transform image and free space confidence scores into bird's-eye view.
imageBEV = transformImage(birdsEyeConfig,I);
freeSpaceBEV = transformImage(birdsEyeConfig,freeSpaceConfidence); 

% Display image frame in bird's-eye view.
figure
imshow(imageBEV)

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

10-15



10 Automated Driving Examples

10-16



Transform the image into a bird's-eye view and generate the free space confidence.

figure
imagesc(freeSpaceBEV)
title('Free Space Confidence')

The areas farther away from the sensor are more blurry, due to having fewer pixels and thus
requiring greater amount of interpolation.

Create Occupancy Grid Based on Free Space Estimation

Occupancy grids are used to represent a vehicle's surroundings as a discrete grid in vehicle
coordinates and are used for path planning. Each cell in the occupancy grid has a value representing
the probability of the occupancy of that cell. The estimated free space can be used to fill in values of
the occupancy grid.

The procedure to fill the occupancy grid using the free space estimate is as follows:

1 Define the dimensions of the occupancy grid in vehicle coordinates.
2 Generate a set of (X,Y) points for each grid cell. These points are in the vehicle's coordinate

system.

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

10-17



3 Transform the points from the vehicle coordinate space (X,Y) into the bird's-eye-view image
coordinate space (x,y) using the vehicleToImage (Automated Driving Toolbox) transform.

4 Sample the free space confidence values at (x,y) locations using griddedInterpolant to
interpolate free space confidence values that are not exactly at pixel centers in the image.

5 Fill the occupancy grid cell with the average free space confidence value for all (x,y) points that
correspond to that grid cell.

For brevity, the procedure shown above is implemented in the supporting function,
createOccupancyGridFromFreeSpaceEstimate, which is listed at the end of this example.
Define the dimensions of the occupancy grid in terms of the bird's-eye-view configuration and create
the occupancy grid by calling createOccupancyGridFromFreeSpaceEstimate.

% Define dimensions and resolution of the occupancy grid.
gridX = distAheadOfSensor;
gridY = 2 * spaceToOneSide;
cellSize = 0.25; % in meters to match units used by CamVid sensor

% Create the occupancy grid from the free space estimate.
occupancyGrid = createOccupancyGridFromFreeSpaceEstimate(...
    freeSpaceBEV, birdsEyeConfig, gridX, gridY, cellSize);

Visualize the occupancy grid using birdsEyePlot (Automated Driving Toolbox). Create a
birdsEyePlot (Automated Driving Toolbox) and add the occupancy grid on top using pcolor.

% Create bird's-eye plot.
bep = birdsEyePlot('XLimits',[0 distAheadOfSensor],'YLimits', [-5 5]);

% Add occupancy grid to bird's-eye plot.
hold on
[numCellsY,numCellsX] = size(occupancyGrid);
X = linspace(0, gridX, numCellsX);
Y = linspace(-gridY/2, gridY/2, numCellsY);
h = pcolor(X,Y,occupancyGrid);
title('Occupancy Grid (probability)')
colorbar
delete(legend)

% Make the occupancy grid visualization transparent and remove grid lines.
h.FaceAlpha = 0.5;
h.LineStyle = 'none';

10 Automated Driving Examples

10-18



The bird's-eye plot can also display data from multiple sensors. For example, add the radar coverage
area using coverageAreaPlotter (Automated Driving Toolbox).

% Add coverage area to plot.
caPlotter = coverageAreaPlotter(bep, 'DisplayName', 'Coverage Area');

% Update it with a field of view of 35 degrees and a range of 60 meters
mountPosition = [0 0];
range = 15;
orientation = 0;
fieldOfView = 35;
plotCoverageArea(caPlotter, mountPosition, range, orientation, fieldOfView);
hold off

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

10-19



Displaying data from multiple sensors is useful for diagnosing and debugging decisions made by
autonomous vehicles.

Create Vehicle Costmap Using the Occupancy Grid

The vehicleCostmap (Automated Driving Toolbox) provides functionality to check if locations, in
vehicle or world coordinates, are occupied or free. This check is required for any path-planning or
decision-making algorithm. Create the vehicleCostmap (Automated Driving Toolbox) using the
generated occupancyGrid.

% Create the costmap.
costmap = vehicleCostmap(flipud(occupancyGrid), ...
    'CellSize',cellSize, ...
    'MapLocation',[0,-spaceToOneSide]);
costmap.CollisionChecker.InflationRadius = 0;

% Display the costmap.
figure
plot(costmap,'Inflation','off')
colormap(parula)

10 Automated Driving Examples

10-20



colorbar
title('Vehicle Costmap')

% Orient the costmap so that it lines up with the vehicle coordinate
% system, where the X-axis points in front of the ego vehicle and the
% Y-axis points to the left.
view(gca,-90,90)

To illustrate how to use the vehicleCostmap (Automated Driving Toolbox), create a set of locations
in world coordinates. These locations represent a path the vehicle could traverse.

% Create a set of locations in vehicle coordinates.
candidateLocations = [
    8 0.375
    10 0.375
    12 2
    14 0.375   
    ];

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

10-21



Use checkOccupied (Automated Driving Toolbox) to check whether each location is occupied or
free. Based on the results, a potential path might be impossible to follow because it collides with
obstacles defined in the costmap.

% Check if locations are occupied.
isOccupied = checkOccupied(costmap,candidateLocations);

% Partition locations into free and occupied for visualization purposes.
occupiedLocations = candidateLocations(isOccupied,:);
freeLocations = candidateLocations(~isOccupied,:);

% Display free and occupied points on top of costmap.
hold on
markerSize = 100;
scatter(freeLocations(:,1),freeLocations(:,2),markerSize,'g','filled')
scatter(occupiedLocations(:,1),occupiedLocations(:,2),markerSize,'r','filled');
legend(["Free" "Occupied"])
hold off

The use of occupancyGrid, vehicleCostmap (Automated Driving Toolbox), and checkOccupied
(Automated Driving Toolbox) shown above illustrate the basic operations used by path planners such

10 Automated Driving Examples

10-22



as pathPlannerRRT (Automated Driving Toolbox). Learn more about path planning in the
“Automated Parking Valet” (Automated Driving Toolbox) example.

References

[1] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object Classes in Video: A
high-definition ground truth database." Pattern Recognition Letters. Vol. 30, Issue 2, 2009, pp. 88-97.

Supporting Functions

function sensor = camvidMonoCameraSensor()
% Return a monoCamera camera configuration based on data from the CamVid 
% data set[1].
%
% The cameraCalibrator app was used to calibrate the camera using the
% calibration images provided in CamVid:
%
% http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/CalibrationSeq_and_Files_0010YU.zip
%
% Calibration pattern grid size is 28 mm. 
%
% Camera pitch is computed from camera pose matrices [R t] stored here:
%
% http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/EgoBoost_trax_matFiles.zip

% References
% ----------
% [1] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object 
% Classes in Video: A high-definition ground truth database." _Pattern Recognition 
% Letters_. Vol. 30, Issue 2, 2009, pp. 88-97.

calibrationData = load('camera_params_camvid.mat');

% Describe camera configuration.
focalLength    = calibrationData.cameraParams.FocalLength;
principalPoint = calibrationData.cameraParams.PrincipalPoint;
imageSize      = calibrationData.cameraParams.ImageSize;

% Camera height estimated based on camera setup pictured in [1].
height = 0.5;  % height in meters from the ground

% Camera pitch was computed using camera extrinsics provided in data set.
pitch = 0;  % pitch of the camera, towards the ground, in degrees

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);
sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);
end

function occupancyGrid = createOccupancyGridFromFreeSpaceEstimate(...
    freeSpaceBEV,birdsEyeConfig,gridX,gridY,cellSize)
% Return an occupancy grid that contains the occupancy probability over
% a uniform 2-D grid.

% Number of cells in occupancy grid.
numCellsX = ceil(gridX / cellSize);
numCellsY = ceil(gridY / cellSize);

% Generate a set of (X,Y) points for each grid cell. These points are in

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

10-23



% the vehicle's coordinate system. Start by defining the edges of each grid
% cell.

% Define the edges of each grid cell in vehicle coordinates.
XEdges = linspace(0,gridX,numCellsX);
YEdges = linspace(-gridY/2,gridY/2,numCellsY);

% Next, specify the number of sample points to generate along each
% dimension within a grid cell. Use these to compute the step size in the
% X and Y direction. The step size will be used to shift the edge values of
% each grid to produce points that cover the entire area of a grid cell at
% the desired resolution.

% Sample 20 points from each grid cell. Sampling more points may produce
% smoother estimates at the cost of additional computation.
numSamplePoints = 20;

% Step size needed to sample number of desired points.
XStep = (XEdges(2)-XEdges(1)) / (numSamplePoints-1);
YStep = (YEdges(2)-YEdges(1)) / (numSamplePoints-1);

% Finally, slide the set of points across both dimensions of the grid
% cells. Sample the occupancy probability along the way using
% griddedInterpolant.

% Create griddedInterpolant for sampling occupancy probability. Use 1
% minus the free space confidence to represent the probability of occupancy.
occupancyProb = 1 - freeSpaceBEV;
sz = size(occupancyProb);
[y,x] = ndgrid(1:sz(1),1:sz(2));
F = griddedInterpolant(y,x,occupancyProb);

% Initialize the occupancy grid to zero.
occupancyGrid = zeros(numCellsY*numCellsX,1);

% Slide the set of points XEdges and YEdges across both dimensions of the
% grid cell. 
for j = 1:numSamplePoints
    
    % Increment sample points in the X-direction
    X = XEdges + (j-1)*XStep;
   
    for i = 1:numSamplePoints
        
        % Increment sample points in the Y-direction
        Y = YEdges + (i-1)*YStep;
        
        % Generate a grid of sample points in bird's-eye-view vehicle coordinates
        [XGrid,YGrid] = meshgrid(X,Y);
        
        % Transform grid of sample points to image coordinates
        xy = vehicleToImage(birdsEyeConfig,[XGrid(:) YGrid(:)]);
        
        % Clip sample points to lie within image boundaries
        xy = max(xy,1);
        xq = min(xy(:,1),sz(2));        
        yq = min(xy(:,2),sz(1));
        

10 Automated Driving Examples

10-24



        % Sample occupancy probabilities using griddedInterpolant and keep
        % a running sum.
        occupancyGrid = occupancyGrid + F(yq,xq);  
    end
    
end

% Determine mean occupancy probability.
occupancyGrid = occupancyGrid / numSamplePoints^2;
occupancyGrid = reshape(occupancyGrid,numCellsY,numCellsX);
end

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

10-25



Train Deep Learning Semantic Segmentation Network Using 3-
D Simulation Data

This example shows how to use 3-D simulation data to train a semantic segmentation network and
fine-tune it to real-world data using generative adversarial networks (GANs).

This example uses 3-D simulation data generated by Driving Scenario Designer and the Unreal
Engine®. For an example showing how to generate such simulation data, see “Depth and Semantic
Segmentation Visualization Using Unreal Engine Simulation” (Automated Driving Toolbox). The 3-D
simulation environment generates the images and the corresponding ground truth pixel labels. Using
the simulation data avoids the annotation process, which is both tedious and requires a large amount
of human effort. However, domain shift models trained on only simulation data do not perform well on
real-world data sets. To address this, you can use domain adaptation to fine-tune the trained model to
work on a real-world data set.

This example uses AdaptSegNet [1 on page 10-44], a network that adapts the structure of the output
segmentation predictions, which look alike irrespective of the input domain. The AdaptSegNet
network is based on the GAN model and consists of two networks that are trained simultaneously to
maximize the performance of both:

1 Generator — Network trained to generate high-quality segmentation results from real or
simulated input images

2 Discriminator — Network that compares and attempts to distinguish whether the segmentation
predictions of the generator are from real or simulated data

To fine-tune the AdaptSegNet model for real-world data, this example uses a subset of the CamVid
data [2 on page 10-44] and adapts the model to generate high-quality segmentation predictions on
the CamVid data.

Download Pretrained Network

Download the pretrained network. The pretrained model allows you to run the entire example without
having to wait for training to complete. If you want to train the network, set the doTraining
variable to true.

doTraining = false;
if ~doTraining
    pretrainedURL = 'https://ssd.mathworks.com/supportfiles/vision/data/trainedAdaptSegGANNet.mat';
    pretrainedFolder = fullfile(tempdir,'pretrainedNetwork');
    pretrainedNetwork = fullfile(pretrainedFolder,'trainedAdaptSegGANNet.mat'); 
    if ~exist(pretrainedNetwork,'file')
        mkdir(pretrainedFolder);
        disp('Downloading pretrained network (57 MB)...');
        websave(pretrainedNetwork,pretrainedURL);
    end
    pretrained = load(pretrainedNetwork);
    dlnetGenerator = pretrained.dlnetGenerator;
end    

10 Automated Driving Examples

10-26

https://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
https://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/


Download Data Sets

Download the simulation and real data sets by using the downloadDataset function, defined in the
Supporting Functions section of this example. The downloadDataset function downloads the entire
CamVid data set and partition the data into training and test sets.

The simulation data set was generated by Driving Scenario Designer. The generated scenarios, which
consist of 553 photorealistic images with labels, were rendered by the Unreal Engine. You use this
data set to train the model.

The real data set is a subset of the CamVid data set from the University of Cambridge. To adapt the
model to real-world data, 69 CamVid images. To evaluate the trained model, you use 368 CamVid
images.

The download time depends on your internet connection.

simulationDataURL = 'https://ssd.mathworks.com/supportfiles/vision/data/SimulationDrivingDataset.zip';
realImageDataURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip';
realLabelDataURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip';

simulationDataLocation = fullfile(tempdir,'SimulationData');
realDataLocation = fullfile(tempdir,'RealData');
[simulationImagesFolder, simulationLabelsFolder, realImagesFolder, realLabelsFolder, ...
    realTestImagesFolder, realTestLabelsFolder] = ... 
    downloadDataset(simulationDataLocation,simulationDataURL,realDataLocation,realImageDataURL,realLabelDataURL);

The downloaded files include the pixel labels for the real domain, but note that you do not use these
pixel labels in the training process. This example uses the real domain pixel labels only to calculate
the mean intersection over union (IoU) value to evaluate the efficacy of the trained model.

Load Simulation and Real Data

Use imageDatastore to load the simulation and real data sets for training. By using an image
datastore, you can efficiently load a large collection of images on disk.

simData = imageDatastore(simulationImagesFolder);
realData = imageDatastore(realImagesFolder);

Preview images from the simulation data set and real data set.

simImage = preview(simData);
realImage = preview(realData);
montage({simImage,realImage})

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-27



The real and simulated images look very different. Consequently, models trained on simulated data
and evaluated on real data perform poorly due to domain shift.

Load Pixel-Labeled Images for Simulation Data and Real Data

Load the simulation pixel label image data by using pixelLabelDatastore (Computer Vision
Toolbox). A pixel label datastore encapsulates the pixel label data and the label ID to a class name
mapping.

For this example, specify five classes useful for an automated driving application: road, background,
pavement, sky, and car.

classes = [
    "Road"
    "Background"
    "Pavement"
    "Sky"
    "Car"
    ];
numClasses = numel(classes);

The simulation data set has eight classes. Reduce the number of classes from eight to five by
grouping the building, tree, traffic signal, and light classes from the original data set into a single
background class. Return the grouped label IDs by using the helper function
simulationPixelLabelIDs. This helper function is attached to the example as a supporting file.

labelIDs = simulationPixelLabelIDs;

Use the classes and label IDs to create a pixel label datastore of the simulation data.

simLabels = pixelLabelDatastore(simulationLabelsFolder,classes,labelIDs);

Initialize the colormap for the segmented images using the helper function
domainAdaptationColorMap, defined in the Supporting Functions section.

dmap = domainAdaptationColorMap;

Preview a pixel-labeled image by overlaying the label on top of the image using the labeloverlay
(Image Processing Toolbox) function.

simImageLabel = preview(simLabels);
overlayImageSimulation = labeloverlay(simImage,simImageLabel,'ColorMap',dmap);

10 Automated Driving Examples

10-28



figure
imshow(overlayImageSimulation)
labelColorbar(dmap,classes);

Shift the simulation and real data used for training to zero center, to center the data around the
origin, by using the transform function and the preprocessData helper function, defined in the
Supporting Functions section.

preprocessedSimData = transform(simData, @(simdata)preprocessData(simdata));
preprocessedRealData = transform(realData, @(realdata)preprocessData(realdata));

Use the combine function to combine the transformed image datastore and pixel label datastores of
the simulation domain. The training process does not use the pixel labels of real data.

combinedSimData = combine(preprocessedSimData,simLabels);

Define AdaptSegNet Generator

This example modifies the VGG-16 network pretrained on ImageNet to a fully convolutional network.
To enlarge the receptive fields, dilated convolutional layers with strides of 2 and 4 are added. This
makes the output feature map resolution one-eighth of the input size. Atrous spatial pyramid pooling
(ASPP) is used to provide multiscale information and is followed by a resize2dlayer with an
upsampling factor of 8 to resize the output to the size of the input.

The AdaptSegNet generator network used in this example is illustrated in the following diagram.

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-29



To get a pretrained VGG-16 network, install the vgg16. If the support package is not installed, then
the software provides a download link.

net = vgg16;

To make the VGG-16 network suitable for semantic segmentation, remove all VGG layers after
'relu4_3'.

vggLayers = net.Layers(2:24);

Create an image input layer of size 1280-by-720-by-3 for the generator.

inputSizeGenerator = [1280 720 3];
inputLayer = imageInputLayer(inputSizeGenerator,'Normalization','None','Name','inputLayer');

Create fully convolutional network layers. Use dilation factors of 2 and 4 to enlarge the respective
fields.

fcnlayers = [
    convolution2dLayer([3 3], 360,'DilationFactor',[2 2],'Padding',[2 2 2 2],'Name','conv5_1','WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu5_1')
    convolution2dLayer([3 3], 360,'DilationFactor',[2 2],'Padding',[2 2 2 2] ,'Name','conv5_2','WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu5_2')
    convolution2dLayer([3 3], 360,'DilationFactor',[2 2],'Padding',[2 2 2 2],'Name','conv5_3','WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu5_3')
    convolution2dLayer([3 3], 480,'DilationFactor',[4 4],'Padding',[4 4 4 4],'Name','conv6_1','WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu6_1')
    convolution2dLayer([3 3], 480,'DilationFactor',[4 4],'Padding',[4 4 4 4] ,'Name','conv6_2','WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu6_2')
    ];

Combine the layers and create the layer graph.

layers = [
    inputLayer
    vggLayers
    fcnlayers
    ];
lgraph = layerGraph(layers);

ASPP is used to provide multiscale information. Add the ASPP module to the layer graph with a filter
size equal to the number of channels by using the addASPPToNetwork helper function, defined in
the Supporting Functions section.

10 Automated Driving Examples

10-30



lgraph  = addASPPToNetwork(lgraph, numClasses);

Apply resize2dLayer with an upsampling factor of 8 to make the output match the size of the input.

upSampleLayer = resize2dLayer('Scale',8,'Method','bilinear','Name','resizeLayer');
lgraphGenerator = addLayers(lgraph,upSampleLayer);
lgraphGenerator = connectLayers(lgraphGenerator,'additionLayer','resizeLayer');

Visualize the generator network in a plot.

plot(lgraphGenerator)
title("Generator")

Define AdaptSeg Discriminator

The discriminator network consists of five convolutional layers with a kernel size of 3 and a stride of
2, where the number of channels is {64, 128, 256, 512, 1}. Each layer is followed by a leaky ReLU
layer parameterized by a scale of 0.2, except for the last layer. resize2dLayer is used to resize the
output of the discriminator. Note that this example does not use batch normalization, as the
discriminator is jointly trained with the segmentation network using a small batch size.

The AdaptSegNet discriminator network in this example is illustrated in the following diagram.

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-31



Create an image input layer of size 1280-by-720-by-numClasses that takes in the segmentation
predictions of the simulation and real domains.

inputSizeDiscriminator = [1280 720 numClasses];

Create fully convolutional layers and generate the discriminator layer graph.

% Factor for number of channels in convolution layer.
numChannelsFactor = 64;

% Scale factor to resize the output of the discriminator.
resizeScale = 64;

% Scalar multiplier for leaky ReLU layers.
leakyReLUScale = 0.2;

% Create the layers of the discriminator.
layers = [
    imageInputLayer(inputSizeDiscriminator,'Normalization','none','Name','inputLayer')
    convolution2dLayer(3,numChannelsFactor,'Stride',2,'Padding',1,'Name','conv1','WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
    leakyReluLayer(leakyReLUScale,'Name','lrelu1')
    convolution2dLayer(3,numChannelsFactor*2,'Stride',2,'Padding',1,'Name','conv2','WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
    leakyReluLayer(leakyReLUScale,'Name','lrelu2')
    convolution2dLayer(3,numChannelsFactor*4,'Stride',2,'Padding',1,'Name','conv3','WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
    leakyReluLayer(leakyReLUScale,'Name','lrelu3')
    convolution2dLayer(3,numChannelsFactor*8,'Stride',2,'Padding',1,'Name','conv4','WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
    leakyReluLayer(leakyReLUScale,'Name','lrelu4')
    convolution2dLayer(3,1,'Stride',2,'Padding',1,'Name','classifer','WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
    resize2dLayer('Scale', resizeScale,'Method','bilinear','Name','resizeLayer');
    ];

% Create the layer graph of the discriminator.
lgraphDiscriminator  = layerGraph(layers);

Visualize the discriminator network in a plot.

10 Automated Driving Examples

10-32



plot(lgraphDiscriminator)
title("Discriminator")

Specify Training Options

Specify these training options.

• Set the total number of iterations to 5000. By doing so, you train the network for around 10
epochs.

• Set the learning rate for the generator to 2.5e-4.
• Set the learning rate for the discriminator to 1e-4.
• Set the L2 regularization factor to 0.0005.
• The learning rate exponentially decreases based on the formula learningrate ×

iteration
total iterations

power
. This decrease helps to stabilize the gradients at higher iterations. Set the

power to 0.9.
• Set the weight of the adversarial loss to 0.001.
• Initialize the velocity of the gradient as [ ]. This value is used by SGDM to store the velocity of

the gradients.
• Initialize the moving average of the parameter gradients as [ ]. This value is used by Adam

initializer to store the average of parameter gradients.
• Initialize the moving average of squared parameter gradients as [ ]. This value is used by Adam

initializer to store the average of the squared parameter gradients.
• Set the mini-batch size to 1.

numIterations = 5000;
learnRateGenBase = 2.5e-4;

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-33



learnRateDisBase = 1e-4;
l2Regularization = 0.0005;
power = 0.9;
lamdaAdv = 0.001;
vel= [];
averageGrad = [];
averageSqGrad = [];
miniBatchSize = 1;

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. To automatically detect if you have a GPU available, set
executionEnvironment to "auto". If you do not have a GPU, or do not want to use one for
training, set executionEnvironment to "cpu". To ensure the use of a GPU for training, set
executionEnvironment to "gpu". For information about the supported compute capabilities, see
“GPU Computing Requirements” (Parallel Computing Toolbox).

executionEnvironment = "auto";

Create the minibatchqueue object from the combined datastore of the simulation domain.

mbqTrainingDataSimulation =  minibatchqueue(combinedSimData,"MiniBatchSize",miniBatchSize, ...
    "MiniBatchFormat","SSCB","OutputEnvironment",executionEnvironment);

Create the minibatchqueue object from the input image datastore of the real domain.

mbqTrainingDataReal = minibatchqueue(preprocessedRealData,"MiniBatchSize",miniBatchSize, ... 
    "MiniBatchFormat","SSCB","OutputEnvironment",executionEnvironment);

Train Model

Train the model using a custom training loop. The helper function modelGradients, defined in the
Supporting Functions section of this example, calculate the gradients and losses for the generator
and discriminator. Create the training progress plot using configureTrainingLossPlotter,
attached to this example as a supporting file, and update the training progress using
updateTrainingPlots. Loop over the training data and update the network parameters at each
iteration.

For each iteration:

• Read the image and label information from the minibatchqueue object of the simulation data
using the next function.

• Read the image information from the minibatchqueue object of the real data using the next
function.

• Evaluate the model gradients using dlfeval and the modelGradients helper function, defined
in the Supporting Functions section. modelGradients returns the gradients of the loss with
respect to the learnable parameters.

• Update the generator network parameters using the sgdmupdate function.
• Update the discriminator network parameters using the adamupdate function.
• Update the training progress plot for every iteration and display various computed losses.

if doTraining

    % Create the dlnetwork object of the generator.
    dlnetGenerator = dlnetwork(lgraphGenerator);
    

10 Automated Driving Examples

10-34



    % Create the dlnetwork object of the discriminator.
    dlnetDiscriminator = dlnetwork(lgraphDiscriminator);
    
    % Create the subplots for the generator and discriminator loss.
    fig = figure;
    [generatorLossPlotter, discriminatorLossPlotter] = configureTrainingLossPlotter(fig);
    
    % Loop through the data for the specified number of iterations.
    for iter = 1:numIterations
       
        % Reset the minibatchqueue of simulation data.
        if ~hasdata(mbqTrainingDataSimulation)
            reset(mbqTrainingDataSimulation);
        end
        
        % Retrieve the next mini-batch of simulation data and labels.
        [dlX,label] = next(mbqTrainingDataSimulation); 
        
        % Reset the minibatchqueue of real data.
        if ~hasdata(mbqTrainingDataReal)
            reset(mbqTrainingDataReal);
        end
        
        % Retrieve the next mini-batch of real data. 
        dlZ = next(mbqTrainingDataReal);  
        
        % Evaluate the model gradients and loss using dlfeval and the modelGradients function.
        [gradientGenerator,gradientDiscriminator, lossSegValue, lossAdvValue, lossDisValue] = ...
            dlfeval(@modelGradients,dlnetGenerator,dlnetDiscriminator,dlX,dlZ,label,lamdaAdv);
        
        % Apply L2 regularization.
        gradientGenerator  = dlupdate(@(g,w) g + l2Regularization*w, gradientGenerator, dlnetGenerator.Learnables);
        
        % Adjust the learning rate.
        learnRateGen = piecewiseLearningRate(iter,learnRateGenBase,numIterations,power);
        learnRateDis = piecewiseLearningRate(iter,learnRateDisBase,numIterations,power);
        
         % Update the generator network learnable parameters using the SGDM optimizer.
        [dlnetGenerator.Learnables, vel] = ... 
            sgdmupdate(dlnetGenerator.Learnables,gradientGenerator,vel,learnRateGen);
               
         % Update the discriminator network learnable parameters using the Adam optimizer.
        [dlnetDiscriminator.Learnables, averageGrad, averageSqGrad] = ...
            adamupdate(dlnetDiscriminator.Learnables,gradientDiscriminator,averageGrad,averageSqGrad,iter,learnRateDis) ;
        
        % Update the training plot with loss values.
        updateTrainingPlots(generatorLossPlotter,discriminatorLossPlotter,iter, ... 
            double(gather(extractdata(lossSegValue + lamdaAdv * lossAdvValue))),double(gather(extractdata(lossDisValue))));

    end
    
    % Save the trained model.
    save('trainedAdaptSegGANNet.mat','dlnetGenerator');
end 

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-35



The discriminator can now identify whether the input is from the simulation or real domain. In turn,
the generator can now generate segmentation predictions that are similar across the simulation and
real domains.

Evaluate Model on Real Test Data

Evaluate the performance of the trained AdaptSegNet network by computing the mean IoU for the
test data predictions.

Load the test data using imageDatastore.

realTestData = imageDatastore(realTestImagesFolder);

The CamVid data set has 32 classes. Use the realpixelLabelIDs helper function to reduce the
number of classes to five, as for the simulation data set. The realpixelLabelIDs helper function is
attached to this example as a supporting file.

labelIDs = realPixelLabelIDs;

Use pixelLabelDatastore (Computer Vision Toolbox) to load the ground truth label images for the
test data.

realTestLabels = pixelLabelDatastore(realTestLabelsFolder,classes,labelIDs);

Shift the data to zero center to center the data around the origin, as for the training data, by using
the transform function and the preprocessData helper function, defined in the Supporting
Functions section.

preprocessedRealTestData = transform(realTestData, @(realtestdata)preprocessData(realtestdata));

Use combine to combine the transformed image datastore and pixel label datastores of the real test
data.

combinedRealTestData = combine(preprocessedRealTestData,realTestLabels);

Create the minibatchqueue object from the combined datastore of the test data. Set
"MiniBatchSize" to 1 for ease of evaluating the metrics.

mbqimdsTest = minibatchqueue(combinedRealTestData,"MiniBatchSize",1,...
    "MiniBatchFormat","SSCB","OutputEnvironment",executionEnvironment);

To generate the confusion matrix cell array, use the helper function
predictSegmentationLabelsOnTestSet on minibatchqueue object of test data. The helper
function predictSegmentationLabelsOnTestSet is listed below in Supporting Functions section.

imageSetConfusionMat = predictSegmentationLabelsOnTestSet(dlnetGenerator,mbqimdsTest);

Use evaluateSemanticSegmentation (Computer Vision Toolbox) to measure semantic
segmentation metrics on the test set confusion matrix.

metrics = evaluateSemanticSegmentation(imageSetConfusionMat,classes,'Verbose',false);

To see the data set level metrics, inspect metrics.DataSetMetrics.

metrics.DataSetMetrics

ans=1×4 table
    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU

10 Automated Driving Examples

10-36



    ______________    ____________    _______    ___________

       0.86883           0.769        0.64487      0.78026  

The data set metrics provide a high-level overview of network performance. To see the impact each
class has on the overall performance, inspect the per-class metrics using metrics.ClassMetrics.

metrics.ClassMetrics

ans=5×2 table
                  Accuracy      IoU  
                  ________    _______

    Road           0.9147     0.81301
    Background    0.93418     0.85518
    Pavement      0.33373     0.27105
    Sky           0.82652     0.81109
    Car           0.83586     0.47399

The data set performance is good, but the class metrics show that the car and pavement classes are
not segmented well. Training the network using additional data can yield improved results.

Segment Image

Run the trained network on one test image to check the segmented output prediction.

% Read the image from the test data.
data = readimage(realTestData,350);

% Perform the preprocessing step of zero shift on the image.
processeddata = preprocessData(data);

% Convert the data to dlarray.
processeddata = dlarray(processeddata,'SSCB');

% Predict the output of the network.
[genPrediction, ~] = forward(dlnetGenerator,processeddata);

% Get the label, which is the index with the maximum value in the channel dimension.
[~, labels] = max(genPrediction,[],3);

% Overlay the predicted labels on the image.
segmentedImage = labeloverlay(data,uint8(gather(extractdata(labels))),'Colormap',dmap);

Display the results.

figure
imshow(segmentedImage);
labelColorbar(dmap,classes);

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-37



Compare the label results with the expected ground truth stored in realTestLabels. The green and
magenta regions highlight areas where the segmentation results differ from the expected ground
truth.

expectedResult = readimage(realTestLabels,350);
actual = uint8(gather(extractdata(labels)));
expected = uint8(expectedResult);
figure
imshowpair(actual,expected)

10 Automated Driving Examples

10-38



Visually, the semantic segmentation results overlap well for the road, sky, and building classes.
However, the results do not overlap well for the car and pavement classes.

Supporting Functions

Model Gradients Function

The helper function modelGradients calculates the gradients and adversarial loss for the generator
and discriminator. The function also calculates the segmentation loss for the generator and the cross-
entropy loss for the discriminator. As no state information is required to be remembered between the
iterations for both generator and discriminator networks, the states are not updated.

function [gradientGenerator, gradientDiscriminator, lossSegValue, lossAdvValue, lossDisValue] = modelGradients(dlnetGenerator, dlnetDiscriminator, dlX, dlZ, label, lamdaAdv)

% Labels for adversarial training.
simulationLabel = 0;
realLabel = 1;

% Extract the predictions of the simulation from the generator.
[genPredictionSimulation, ~] = forward(dlnetGenerator,dlX);

% Compute the generator loss.
lossSegValue = segmentationLoss(genPredictionSimulation,label);

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-39



% Extract the predictions of the real data from the generator.
[genPredictionReal, ~] = forward(dlnetGenerator,dlZ);

% Extract the softmax predictions of the real data from the discriminator.
disPredictionReal = forward(dlnetDiscriminator,softmax(genPredictionReal));

% Create a matrix of simulation labels of real prediction size.
Y = simulationLabel * ones(size(disPredictionReal));

% Compute the adversarial loss to make the real distribution close to the simulation label.
lossAdvValue = mse(disPredictionReal,Y)/numel(Y(:));

% Compute the gradients of the generator with regard to loss.
gradientGenerator = dlgradient(lossSegValue + lamdaAdv*lossAdvValue,dlnetGenerator.Learnables);

% Extract the softmax predictions of the simulation from the discriminator.
disPredictionSimulation = forward(dlnetDiscriminator,softmax(genPredictionSimulation));

% Create a matrix of simulation labels of simulation prediction size.
Y = simulationLabel * ones(size(disPredictionSimulation));

% Compute the discriminator loss with regard to simulation class.
lossDisValueSimulation = mse(disPredictionSimulation,Y)/numel(Y(:));
 
% Extract the softmax predictions of the real data from the discriminator.
disPredictionReal = forward(dlnetDiscriminator,softmax(genPredictionReal));

% Create a matrix of real labels of real prediction size.
Y = realLabel * ones(size(disPredictionReal));

% Compute the discriminator loss with regard to real class.
lossDisValueReal = mse(disPredictionReal,Y)/numel(Y(:));

% Compute the total discriminator loss.
lossDisValue = lossDisValueSimulation + lossDisValueReal;

% Compute the gradients of the discriminator with regard to loss.
gradientDiscriminator = dlgradient(lossDisValue,dlnetDiscriminator.Learnables);

end

Segmentation Loss Function

The helper function segmentationLoss computes the feature segmentation loss, which is defined as
the cross-entropy loss for the generator using the simulation data and its respective ground truth.
The helper function computes the loss by using the crossentropy function.

function loss = segmentationLoss(predict, target)

% Generate the one-hot encodings of the ground truth.
oneHotTarget = onehotencode(categorical(extractdata(target)),4);

% Convert the one-hot encoded data to dlarray.
oneHotTarget = dlarray(oneHotTarget,'SSBC');

% Compute the softmax output of the predictions.
predictSoftmax = softmax(predict);

10 Automated Driving Examples

10-40



% Compute the cross-entropy loss.
loss =  crossentropy(predictSoftmax,oneHotTarget,'TargetCategories','exclusive')/(numel(oneHotTarget)/2);
end

The helper function downloadDataset downloads both the simulation and real data sets from the
specified URLs to the specified folder locations if they do not exist. The function returns the paths of
the simulation, real training data, and real testing data. The function downloads the entire CamVid
data set and partition the data into training and test sets using the
subsetCamVidDatasetFileNames mat file, attached to the example as a supporting file.

function [simulationImagesFolder, simulationLabelsFolder, realImagesFolder, realLabelsFolder,...
    realTestImagesFolder, realTestLabelsFolder] = ...
    downloadDataset(simulationDataLocation, simulationDataURL, realDataLocation, realImageDataURL, realLabelDataURL)
    
% Build the training image and label folder location for simulation data.
simulationDataZip = fullfile(simulationDataLocation,'SimulationDrivingDataset.zip');

% Get the simulation data if it does not exist.
if ~exist(simulationDataZip,'file')
    mkdir(simulationDataLocation)
    
    disp('Downloading the simulation data');
    websave(simulationDataZip,simulationDataURL);
    unzip(simulationDataZip,simulationDataLocation);
end
  
simulationImagesFolder = fullfile(simulationDataLocation,'SimulationDrivingDataset','images');
simulationLabelsFolder = fullfile(simulationDataLocation,'SimulationDrivingDataset','labels');

camVidLabelsZip = fullfile(realDataLocation,'CamVidLabels.zip');
camVidImagesZip = fullfile(realDataLocation,'CamVidImages.zip');

if ~exist(camVidLabelsZip,'file') || ~exist(camVidImagesZip,'file')   
    mkdir(realDataLocation)
       
    disp('Downloading 16 MB CamVid dataset labels...'); 
    websave(camVidLabelsZip, realLabelDataURL);
    unzip(camVidLabelsZip, fullfile(realDataLocation,'CamVidLabels'));
    
    disp('Downloading 587 MB CamVid dataset images...');  
    websave(camVidImagesZip, realImageDataURL);       
    unzip(camVidImagesZip, fullfile(realDataLocation,'CamVidImages'));    
end

% Build the training image and label folder location for real data.
realImagesFolder = fullfile(realDataLocation,'train','images');
realLabelsFolder = fullfile(realDataLocation,'train','labels');

% Build the testing image and label folder location for real data.
realTestImagesFolder = fullfile(realDataLocation,'test','images');
realTestLabelsFolder = fullfile(realDataLocation,'test','labels');

% Partition the data into training and test sets if they do not exist.
if ~exist(realImagesFolder,'file') || ~exist(realLabelsFolder,'file') || ...
        ~exist(realTestImagesFolder,'file') || ~exist(realTestLabelsFolder,'file')

    
    mkdir(realImagesFolder);

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-41



    mkdir(realLabelsFolder);
    mkdir(realTestImagesFolder);
    mkdir(realTestLabelsFolder);
    
    % Load the mat file that has the names for testing and training.
    partitionNames = load('subsetCamVidDatasetFileNames.mat');
    
    % Extract the test images names.
    imageTestNames = partitionNames.imageTestNames;
    
    % Remove the empty cells. 
    imageTestNames = imageTestNames(~cellfun('isempty',imageTestNames));
    
    % Extract the test labels names.
    labelTestNames = partitionNames.labelTestNames;
    
    % Remove the empty cells.
    labelTestNames = labelTestNames(~cellfun('isempty',labelTestNames));
    
    % Copy the test images to the respective folder.
    for i = 1:size(imageTestNames,1)
        labelSource = fullfile(realDataLocation,'CamVidLabels',labelTestNames(i));
        imageSource = fullfile(realDataLocation,'CamVidImages','701_StillsRaw_full',imageTestNames(i));
        copyfile(imageSource{1}, realTestImagesFolder);
        copyfile(labelSource{1}, realTestLabelsFolder);
    end
    
    % Extract the train images names.
    imageTrainNames = partitionNames.imageTrainNames;
    
    % Remove the empty cells.
    imageTrainNames = imageTrainNames(~cellfun('isempty',imageTrainNames));
    
    % Extract the train labels names.
    labelTrainNames = partitionNames.labelTrainNames;
    
    % Remove the empty cells.
    labelTrainNames = labelTrainNames(~cellfun('isempty',labelTrainNames));
    
    % Copy the train images to the respective folder.
    for i = 1:size(imageTrainNames,1)
        labelSource = fullfile(realDataLocation,'CamVidLabels',labelTrainNames(i));
        imageSource = fullfile(realDataLocation,'CamVidImages','701_StillsRaw_full',imageTrainNames(i));
        copyfile(imageSource{1},realImagesFolder);
        copyfile(labelSource{1},realLabelsFolder);
    end
end
end

The helper function addASPPToNetwork creates the atrous spatial pyramid pooling (ASPP) layers
and adds them to the input layer graph. The function returns the layer graph with ASPP layers
connected to it.

function lgraph  = addASPPToNetwork(lgraph, numClasses)

% Define the ASPP dilation factors.
asppDilationFactors = [6,12];

10 Automated Driving Examples

10-42



% Define the ASPP filter sizes.
asppFilterSizes = [3,3];

% Extract the last layer of the layer graph.
lastLayerName = lgraph.Layers(end).Name;

% Define the addition layer.
addLayer = additionLayer(numel(asppDilationFactors),'Name','additionLayer');

% Add the addition layer to the layer graph.
lgraph = addLayers(lgraph,addLayer);

% Create the ASPP layers connected to the addition layer
% and connect the layer graph.
for i = 1: numel(asppDilationFactors)
    asppConvName = "asppConv_" + string(i);
    branchFilterSize = asppFilterSizes(i);
    branchDilationFactor = asppDilationFactors(i);
    asspLayer  = convolution2dLayer(branchFilterSize, numClasses,'DilationFactor', branchDilationFactor,...
        'Padding','same','Name',asppConvName,'WeightsInitializer','narrow-normal','BiasInitializer','zeros');
    lgraph = addLayers(lgraph,asspLayer);
    lgraph = connectLayers(lgraph,lastLayerName,asppConvName);
    lgraph = connectLayers(lgraph,asppConvName,strcat(addLayer.Name,'/',addLayer.InputNames{i}));
end
end

The helper function predictSegmentationLabelsOnTestSet calculates the confusion matrix of
the predicted and ground truth labels using the segmentationConfusionMatrix (Computer Vision
Toolbox) function.

function confusionMatrix =  predictSegmentationLabelsOnTestSet(net, minbatchTestData)   
    
confusionMatrix = {};
i = 1;
while hasdata(minbatchTestData)
    
    % Use next to retrieve a mini-batch from the datastore.
    [dlX, gtlabels] = next(minbatchTestData);
    
    % Predict the output of the network.
    [genPrediction, ~] = forward(net,dlX);
    
    % Get the label, which is the index with maximum value in the channel dimension.
    [~, labels] = max(genPrediction,[],3);
    
    % Get the confusion matrix of each image.
    confusionMatrix{i}  = segmentationConfusionMatrix(double(gather(extractdata(labels))),double(gather(extractdata(gtlabels))));
  
    i = i+1;
end

confusionMatrix = confusionMatrix';
    
end

The helper function piecewiseLearningRate computes the current learning rate based on the
iteration number.

 Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

10-43



function lr = piecewiseLearningRate(i, baseLR, numIterations, power)

fraction = i/numIterations;
factor = (1 - fraction)^power * 1e1;
lr = baseLR * factor;

end

The helper function preprocessData performs a zero center shift by subtracting the number of the
image channels by the respective mean.

function data = preprocessData(data)

% Extract respective channels.
rc = data(:,:,1);
gc = data(:,:,2);
bc = data(:,:,3);

% Compute the respective channel means.
r = mean(rc(:));
g = mean(gc(:));
b = mean(bc(:));

% Shift the data by the mean of respective channel.
data = single(data) - single(shiftdim([r g b],-1));  
end

References

[1] Tsai, Yi-Hsuan, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, and Manmohan
Chandraker. “Learning to Adapt Structured Output Space for Semantic Segmentation.” In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7472–81. Salt Lake City, UT:
IEEE, 2018. https://doi.org/10.1109/CVPR.2018.00780.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. “Semantic Object Classes in Video: A
High-Definition Ground Truth Database.” Pattern Recognition Letters 30, no. 2 (January 2009): 88–97.
https://doi.org/10.1016/j.patrec.2008.04.005.

10 Automated Driving Examples

10-44



Navigation Examples

11



Train Deep Learning-Based Sampler for Motion Planning

This example demonstrates how to train a deep learning-based sampler to speed up path planning
using sampling-based planners like RRT (rapidly-exploring random tree) and RRT*.

The classical sampling-based planners such as RRT and RRT* rely on generating samples from a
uniform distribution over a specified state space. However, these planners typically restrict the actual
robot path to a small portion of the state space. The uniform sampling causes the planner to explore
many states which do not have an impact on the final path. This causes the planning process to
become slow and inefficient, especially for state spaces with a large number of dimensions.

You can train a deep learning network to generate learned samples that can bias the path towards the
optimal solution. This example implements the approach proposed by Ichter et al. in their paper titled
"Learning Sampling Distributions for Robot Motion Planning on page 11-11". This approach
implements a Conditional Variation Autoencoder (CVAE) that generates learned samples for a given
map, start state, and goal state.

The learned sampling alone cannot guarantee the probabilistic completeness and asymptotic
optimality that uniform sampling does. Hence, you can mix both learned samples and uniform
samples in a certain proportion λ, to bias the planner towards the optimal solution while also
guaranteeing to find a solution. λ=0 indicates pure uniform sampling, λ=1 indicates pure learned
sampling, and 0<λ<1 indicates the combination of both.

Load Pretrained Network

Load the pretrained network from the mat file CVAESamplerTrainedModel.mat. The network was
trained using the dataset MazeMapDataset.mat. If you want to train the network, set the
doTraining to true.

doTraining=false;
if ~doTraining
    load("CVAESamplerTrainedModel","encoderNet","decoderNet")
end

11 Navigation Examples

11-2



Load Dataset

Load the dataset from the mat file MazeMapDataset.mat. The dataset contains 2000 maze maps and
their corresponding start states, goal states, and path states.

load("MazeMapDataset","dataset","mapParams")

Dataset Generation

The dataset was generated using the examplerHelperGenerateData function. Note that the
dataset generation took more than 90 minutes to complete for the settings used in the helper
function. The time taken for dataset generation may vary for your system. To train for different types
of maps, you can replace or modify the examplerHelperGenerateData function.

The following code snippet from the examplerHelperGenerateData function shows the generation
of maps using the mapMaze (Navigation Toolbox) function. You can modify the settings for the
mapMaze function or replace them with different map generation function.

%% Generate maps
% Set random seed
rng("default");

% Number of maps
numMaps = 2000;
% Maze map parameters
mapSize = 10; % Map size in meters (assume height = weight)
gridSize = 25; % Number of grid cells (assume height = weight)
passageWidth = 5; % in cells
wallThickness = 1; % in cells
mapRes = gridSize/mapSize; % map resolution (cells per meter)
% Generate maps
for k=1:numMaps
    maps{k} = mapMaze(passageWidth,wallThickness, ...
                      MapSize=[mapSize,mapSize], ...
                      MapResolution=mapRes);
end

The following code snippet from the examplerHelperGenerateData function shows the set of start
and goal states chosen for the problem.

% Randomly sample two different start and goal states from this
startGoalStates = [1, 1, 0;
                   9, 9, 0;
                   9, 1, 0;
                   1, 9, 0];

The following code snippet from the examplerHelperGenerateData function shows the optimal
paths generation using the plannerRRTStar (Navigation Toolbox) object. You can modify the
settings to get different optimal paths.

planner = plannerRRTStar(stateSpace, stateValidator);
planner.ContinueAfterGoalReached = true; % optimize
planner.MaxConnectionDistance = 1;
planner.GoalReachedFcn = @examplerHelperCheckIfGoalReached;
planner.MaxIterations = 2000;

 Train Deep Learning-Based Sampler for Motion Planning

11-3



Visualize Dataset
figure
for i=1:4
    subplot(2,2,i)  
    % Select a random map
    ind = randi(length(dataset));    
    exampleHelperPlotData(dataset(ind).maps,dataset(ind).startStates,dataset(ind).goalStates, ...
                          navPath(stateSpaceSE2,dataset(ind).pathStates));
end

Prepare Data for Training

Compress Maps

In the real-world scenario, the occupancy maps can be quite large, and the map is usually sparse. You
can compress the map to a compact representation using the trainAutoencoder function. This
helps training loss to converge faster for the main network during training in the Train Deep
Learning Network on page 11-8 section.

Load the pretrained autoencoder model from the mat file MapsAutoencoder.mat.

load("MazeMapAutoencoder","mapsAE")

The exampleHelperCompressMaps function was used to train the autoencoder model for the
random maze maps. In this example, the map of size 25x25=625 is compressed to 50. Hence,
workSpaceSize is set to 50 in the Define CVAE Network Settings on page 11-6 section. To train
for a different setting, you can replace or modify the exampleHelperCompressMaps function.

11 Navigation Examples

11-4



Process Dataset

You need to process the loaded dataset into the format required for training the network using the
exampleHelperProcessData function.

The most crucial step in data processing is to make sure that the scaling used for the dataset is in the
range of [0,1] or [-1,1].

• The map data is in the form of a binary occupancy matrix, and it is already in the range of [0,1].
• Normalize the position X, Y of the states to [0,1] by dividing them with the mapSize parameter.
• Normalize the orientation theta to [-1,1] by dividing them with pi.

Use the exampleHelperNormalizeStates function to normalize the states data. During the
prediction, denormalize the states data using the exampleHelperDenormalizeStates function.

The next data processing step is to divide the state samples into multiple dependent sets. Choose
these sample sets such that they are well dispersed. At each training step, the network will train on
multiple samples drawn from these sets. The network will learn to represent the samples along the
solution trajectory through multiple distributions.

Specify the number of dependent sets using numDependentSets. Specify the split that
corresponds to the fraction of the dataset used for the training. Then use the remaining fraction (1-
split) for evaluation.

split = 0.9;
numDependentSets = 5;
[trainCondition,trainStates,testCondition,testStates] = exampleHelperProcessData(dataset,mapsAE,numDependentSets,split);

Define Network Architecture

The deep learning network used to generate learned samples in this example is based on CVAE. The
CVAE is an extension of a Variational Autoencoder (VAE) which is a generative model used to
"generate data" based on random Gaussian input. See “Train Variational Autoencoder (VAE) to
Generate Images” on page 3-163 example to know how VAE works. The CVAE takes an additional
input called "condition" so that the data is generated from a conditional probability distribution.

In this example, "data generated" corresponds to the learned state samples. The "condition"
corresponds to the workspace information of the robot (occupancy map), start states, and goal states.
The network learns the probability distribution of the path "states" conditioned on the "condition"
inputs.

The CVAE works differently during the training and prediction (or deployment) phases:

• In the training phase, the encoder takes input state x, input condition y, and computes the latent
state z. The KL (Kullback–Leibler) divergence loss at the output of the encoder will try to match
the distribution of z with the normal distribution N(0, I). The decoder takes the input condition y,
the latent state z, and computes the predicted states x. The mean squared loss at the output of the
decoder will try to make the predicted state x the same as the input state x.

 Train Deep Learning-Based Sampler for Motion Planning

11-5



• During the prediction phase use only the decoder. The normal distribution N(0, I) provides the
input condition y for a specified map, start, goal, and input latent z. The decoder predicts the
learned samples which the sampling-based planner can use. You can query a large number of
states in one step, and this will be faster on a GPU.

Define CVAE Network Settings

Specify these settings for creating the CVAE network:

11 Navigation Examples

11-6



• The stateSize is the size of the SE(2) state vector [X,Y,theta].
• The workspaceSize can be cell values of the maze map or the compressed representation. In

this example, you can choose the compressed representation of the map for better training
convergence.

• The latentStateSize is the number of dimensions of multivariate Gaussian distribution.
• The conditionSize is sum of workspaceSize, start stateSize and goal stateSize.

stateSize = 3; 
workspaceSize = 50;
latentStateSize = 4; 
conditionSize = workspaceSize + 2*stateSize;  

Create CVAE Encoder Network

The CVAE encoder network is a neural network that consists of fully connected layers with the ReLU
(Rectified Linear Unit) activation function layer and dropout layers in between. The dropout layers
help to reduce overfitting and achieve better generalization. The input layer of the encoder takes the
concatenated condition y and state x vectors. The final layer of the encoder computes the mean and
standard deviation of the latent state vector z, using the exampleHelperSamplingLayer function.

% Hidden sizes of fully connected layers in the encoder network
encoderHiddenSizes = [512, 512]; 
% Probability values for the dropout layers
prob = [0.10, 0.01];
% Create layers 
encoderLayers = featureInputLayer(numDependentSets*stateSize+conditionSize, Name="encoderInput");
for k=1:length(encoderHiddenSizes)
    encoderLayers(end+1) = fullyConnectedLayer(encoderHiddenSizes(k)); %#ok<*SAGROW> 
    encoderLayers(end+1) = reluLayer;
    encoderLayers(end+1) = dropoutLayer(prob(k));
end
encoderLayers(end+1) = fullyConnectedLayer(2*latentStateSize);
encoderLayers(end+1) = exampleHelperSamplingLayer(Name="encoderOutput");
% Create layer graph and dlnetwork object
encoderGraph = layerGraph(encoderLayers);
% Create this network only when doTraining=true
if doTraining
    encoderNet = dlnetwork(encoderGraph);
end

Create CVAE Decoder Network

The CVAE decoder network is a neural network that consists of fully connected layers with ReLU and
dropout layers in between. The input layer of the decoder takes the concatenated condition y and the
latent state z vectors. The final layer of the decoder computes the predicted states x.

% Hidden sizes of fully connected layers in the decoder network
decoderHiddenSizes = [512 512];
% Probability values for the dropout layers
prob = [0.10 0.01]; 
% Create layers 
decoderLayers = featureInputLayer(conditionSize+latentStateSize,Name="decoderInput");
for k=1:length(decoderHiddenSizes)
    decoderLayers(end+1) = fullyConnectedLayer(decoderHiddenSizes(k)); %#ok<*SAGROW> 
    decoderLayers(end+1) = reluLayer;
    decoderLayers(end+1) = dropoutLayer(prob(k));

 Train Deep Learning-Based Sampler for Motion Planning

11-7



end   
decoderLayers(end+1) = fullyConnectedLayer(numDependentSets*stateSize,Name="decoderOutput");
% Create layer graph
decoderGraph = layerGraph(decoderLayers);
% Create this network only when doTraining=true
if doTraining
    decoderNet = dlnetwork(decoderGraph);
end

Train Deep Learning Network

Training Options

Specify these training options for training the deep learning network:

• Set the number of epochs to 100.
• Set the mini-batch size for training to 32.
• Set the learning rate to 1e-3.
• Set the beta weight for KL divergence loss to 1e-4. See Model Loss Function on page 11-10.
• Set the weight for the mean squared error loss to [1,1,0.1]. See Model Loss Function on page

11-10.

options = struct;
options.NumEpochs = 100;    
options.TrainBatchSize = 32;
options.LearningRate = 1e-3; 
options.Beta = 1e-4; 
options.Weight = [1,1,0.1]; 

Train Network

Use the exampleHelperTrainCVAESampler function for training the neural network which is based on
the concept of custom training loops, see “Define Custom Training Loops, Loss Functions, and
Networks” on page 19-223. The neural network was trained using a NVIDIA GeForce GPU with 8 GB
graphics memory. Training this network for 100 epochs took approximately 11 hours. The training
time may vary for your system.

In this example, the provided pretrained model CVAESamplerTrainedModel.mat loads by default.
To train the model with a custom network and custom dataset, set doTraining to true in the Load
Pretrained Network on page 11-2 section.

if doTraining
    % For reproducibility
    rng("default")
    % Create mini-batch queue for training    
    trainData = combine(arrayDatastore(trainCondition),arrayDatastore(trainStates));
    mbqTrain = minibatchqueue(trainData,MiniBatchSize=options.TrainBatchSize, ...
                              OutputAsDlarray=[1,1],MiniBatchFormat={'BC','BC'});
    % Train the CVAE sampler model
    figure(Name="Training Loss");
    [encoderNet,decoderNet] = exampleHelperTrainCVAESampler(encoderNet,decoderNet, ...
                                                            @lossCVAESampler,mbqTrain, ...
                                                            options);
end

11 Navigation Examples

11-8



Predict Using New Data

Use the trained network to generate learned samples for the part of the dataset kept aside for
prediction. In the Process Dataset on page 11-5 section, set split to 0.9, so you have 10% of the
dataset for prediction.

Prepare Test Set

% For reproducibility
rng("default")
% Prepare test mini-batches
testData = combine(arrayDatastore(testCondition),arrayDatastore(testStates));
mbqTest = minibatchqueue(testData, MiniBatchSize=1,...
                         OutputAsDlarray=[1,1],MiniBatchFormat={'BC','BSC'});
shuffle(mbqTest) 

Generate Learned Samples

Use the exampleHelperGenerateLearnedSamples function to generate the learned samples. Press the
Run button below to generate learned samples for different maps at each time. You can adjust the
lambda value to visualize the combination of learned samples and uniform samples.

% Press Run button to visualize results for new maps

% Vary lambda to visualize results for different ratios of learned samples to total samples

lambda = ;

% Number of samples to be generated 
numSamples = 2000;

if ~hasdata(mbqTest)
    reset(mbqTest)
end

% Generate samples for different test maps
figure(Name="Prediction");
for k = 1:4
    [mapMatrix,start,goal,statesLearned] = exampleHelperGenerateLearnedSamples(encoderNet, ...
                                               decoderNet,mapsAE,mbqTest,numDependentSets, ...
                                               mapParams.mapSize,numSamples,lambda);
    % Visualize the samples
    map = binaryOccupancyMap(mapMatrix,mapParams.mapRes);
    subplot(2,2,k)
    exampleHelperPlotData(map,start,goal,statesLearned);
end

 Train Deep Learning-Based Sampler for Motion Planning

11-9



Conclusion

This example shows how to train a deep learning network to generate learned samples for sampling-
based planners such as RRT and RRT*. It also shows the data generation process, deep learning
network setup, training, and prediction. You can modify this example to use with custom maps and
custom datasets. Further, you can extend this for applications like manipulator path planning, 3-D
UAV path planning, and more.

To augment sampling-based planners with the deep learning-based sampler to find optimal paths
efficiently, See “Accelerate Motion Planning with Deep-Learning-Based Sampler” (Navigation Toolbox)
example.

Supporting Functions

Model Loss Function

Use the lossCVAESampler function for training the deep learning network in the Train Deep
Learning Network on page 11-8 section. The loss function consists of two components: The Define
Network Architecture on page 11-5 section describes the KL divergence loss and mean squared.
“Train Variational Autoencoder (VAE) to Generate Images” on page 3-163 example also describes
these losses.

function [loss,gradientsEncoder,gradientsDecoder] = lossCVAESampler(encoderNet,decoderNet,condition,state,beta,weight)
% lossCVAESampler Define losses for the CVAE network

% Predict latent states from encoder
[z,zMean,zLogVarSq] = forward(encoderNet,vertcat(state,condition));

11 Navigation Examples

11-10



% Predict state from decoder
statePred = forward(decoderNet,vertcat(condition,z));

%% KL diveregence loss
klloss = exp(zLogVarSq) + zMean.^2 - zLogVarSq -1;
% Reduce sum over zdim
klloss = sum(klloss,1); 
% Reduce mean over batch
klloss = mean(klloss); 
% Weighting term for KL loss
klloss = klloss*beta;

%% Reconstruction loss
reconLoss = (state-statePred).^2;
% Apply weight vector to state vector
numSets = size(reconLoss,1)/length(weight);
weight = repmat(weight,numSets,1);
reconLoss = reconLoss.* weight;
% Reduce mean over batches
reconloss = mean(reconLoss,1);
% Reduce mean over state vector dimensions
reconloss = mean(reconloss);

% Total loss
loss = klloss + reconloss;

% Gradients
[gradientsEncoder,gradientsDecoder] = dlgradient(loss,encoderNet.Learnables,decoderNet.Learnables);

% Convert loss to double
loss = double(loss);

end

Bibliography

1 Ichter, Brian, James Harrison, and Marco Pavone. “Learning Sampling Distributions for Robot
Motion Planning.” In 2018 IEEE International Conference on Robotics and Automation (ICRA),
7087–94. Brisbane, QLD: IEEE, 2018. https://doi.org/10.1109/ICRA.2018.8460730.

 Train Deep Learning-Based Sampler for Motion Planning

11-11

https://doi.org/10.1109/ICRA.2018.8460730


Accelerate Motion Planning with Deep-Learning-Based Sampler

The example demonstrates how to augment sampling-based planners such as RRT (rapidly-exploring
random tree) and RRT* with a deep-learning-based sampler to find optimal paths efficiently.

The classical sampling-based planners such as RRT and RRT* rely on generating samples from a
uniform distribution over a specified state space. However, these planners typically restrict the actual
robot path to a small portion of the state space. The uniform sampling causes the planner to explore
many states which do not have an impact on the final path. This causes the planning process to
become slow and inefficient, especially for state spaces with a large number of dimensions.

You can train a deep learning network to generate learned samples that can bias the path towards the
optimal solution. This example implements the approach proposed by Ichter et al. in their paper titled
"Learning Sampling Distributions for Robot Motion Planning on page 11-21". This approach
implements a Conditional Variation Autoencoder (CVAE) that generates learned samples for a given
map, start state, and goal state. The “Train Deep Learning-Based Sampler for Motion Planning”
(Navigation Toolbox) example explains the architecture of the deep learning network and the training
pipeline.

RRT* Path (with Uniform Sampling):

RRT* Path (with Learned Sampling):

11 Navigation Examples

11-12



Load Pretrained Network

Load the pretrained network from the mat file CVAESamplerTrainedModel.mat. The network was
trained using the dataset MazeMapDataset.mat. The “Train Deep Learning-Based Sampler for
Motion Planning” (Navigation Toolbox) example explains the network training.

load("CVAESamplerTrainedModel","decoderNet")

Load Dataset

Load the dataset from the mat file MazeMapDataset.mat. The dataset contains 2000 maze maps and
their corresponding start states, goal states, and path states.

load("MazeMapDataset","dataset","mapParams")

Dataset Generation

The dataset was generated using the examplerHelperGenerateData function. The function uses
the mapMaze (Navigation Toolbox) function for the generation of maps and randomly samples start
and goal states from a set of start and goal states. For more details, see the Dataset Generation
section in the “Train Deep Learning-Based Sampler for Motion Planning” (Navigation Toolbox)
example.

Prediction Data

Select the part of the dataset that has been allocated for testing that corresponds to the last (1-
split) fraction. As a result, the size of the test dataset is 200 out of 2000.

split = 0.9;
testInd = floor(split*length(dataset))+1:length(dataset);
dataset = dataset(testInd);

 Accelerate Motion Planning with Deep-Learning-Based Sampler

11-13



Visualize Maps

Visualize four random maps and their start and goal states from the test dataset.

figure(Name="Maps");
for i=1:4
    subplot(2,2,i)
    ind = randi(length(dataset));
    [map,start,goal] = exampleHelperGetData(dataset,ind);
    exampleHelperPlotData(map,start,goal);
end

Create Custom State Space with Deep-Learning-Based Sampler

The ExampleHelperCustomStateSpaceSE2 class defines the custom SE(2) state space for the
learned sampling. The class inherits stateSpaceSE2 (Navigation Toolbox) and overloads the
sampleUniform function to generate a combination of learned and uniform samples based on the
value of the Lambda property. CVAE Decoder network generates learned samples in the
sampleUniform function, while the sampleUniform function of stateSpaceSE2 generates
uniform samples.

This class constructor takes the inputs start, goal, map, maxSamples, and network. Using these
constructor inputs pregenerate maxSamples, the number of learned samples at constructor call, to
reduce the number of CVAE Decoder network calls and speed-up plan (Navigation Toolbox) function
of plannerRRTStar (Navigation Toolbox) object. Because the plan function generates one-one
sample for each iteration of it for custom state space. As a result, to avoid the CVAE Decoder network
in the plan function, set maxSamples to the MaxIterations property of plannerRRTStar object.

11 Navigation Examples

11-14



Plan an optimal path with few samples using the custom state space and validatorOccupancyMap
(Navigation Toolbox) object.

Obtain the start, goal, and map data from the dataset already loaded in the Load Dataset on page
11-13 section.

The network contains the CVAE Decoder network already loaded in the Load Pretrained Network on
page 11-13 section. Generate samples corresponding to maxSamples using this network. For more
details about the CVAE network, see Define Network Architecture section of “Train Deep Learning-
Based Sampler for Motion Planning” (Navigation Toolbox) example. The decoder takes the inputs
start, goal, map and latent state z sampled from the normal distribution N(0, I).

The network also takes the autoencoder network that encodes the maze type of maps into a compact
representation, to speed up the training in the “Train Deep Learning-Based Sampler for Motion
Planning” (Navigation Toolbox) example.

Load the pretrained autoencoder model from the mat file MapsAutoencoder.mat.

% Load autoencoder network that encodes maze maps
load("MazeMapAutoencoder.mat","mapsAE")

% Prepare network 
network = struct("DecoderNet",decoderNet,"MapsAutoEncoder",mapsAE);

Run RRT* with Custom State Space

Run the plannerRRTStar with ExampleHelperCustomStateSpaceSE2 for the test dataset loaded
in the Load Dataset on page 11-13 section. We can vary the testInd value to switch different maps
in the test data. You can vary the lambda value in range [0, 1] to observe the effect of learned
sampling proportion on the final results.

You can confirm from the following results that the learning sampling helps the plannerRRTStar to
efficiently find optimal paths between the start and the goal.

• For the lower lambda value, the RRT tree is spread across a larger region of the map and the path
is less optimal.

• For the higher lambda value, the RRT tree is concentrated towards the learned samples and the
path is more optimal. Also, lambda value less than one guarantees completeness.

Initialize state-space, validator, and planner input parameters.

 Accelerate Motion Planning with Deep-Learning-Based Sampler

11-15



% Select test data index (1-200)

testInd = ;

% Get map, start, goal for current test index
[map,start,goal] = exampleHelperGetData(dataset,testInd);

% Select the learned sampling proportion 0 = pure uniform, 1 = pure learned

lambda = ;

%Set max Iterations
maxIters = 1000;

Create the custom state space and state validator objects. Integrate these objects to
plannerRRTStar object and plan a path with the plan object function.

% Set random seed
rng("default");

% Create ExampleHelperCustomStateSpaceSE2
customSE2 = ExampleHelperCustomStateSpaceSE2(start,goal,map,maxIters,network);
customSE2.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi,pi]];
customSE2.Lambda = lambda;

% Create stateValidator
sv = validatorOccupancyMap(customSE2);
sv.Map = map;
sv.ValidationDistance = 0.1;

% Create plannerRRTStar 
planner = plannerRRTStar(customSE2,sv);
planner.MaxConnectionDistance = 1;
planner.MaxIterations = maxIters;

% Run the planner
[pathObj,solnInfo] = plan(planner,start,goal);

% Visualize the results
figure(Name="RRT results")
exampleHelperPlotData(map,start,goal,pathObj,solnInfo);

11 Navigation Examples

11-16



Evaluation Metrics

Analyze the evaluation metrics such as Success Rate on page 11-18 and Path Costs on page 11-20
by running the plannerRRTStar with ExampleHelperCustomStateSpaceSE2 which contains the
deep-learning-based sampler. To obtain robust metrics, perform 100 runs for each chosen map, start
and goal combination.

Compare the evaluation metrics between learned sampling (with λ=0.5) and uniform sampling. Note
that for the comparison, use ExampleHelperCustomStateSpaceSE2 for learned sampling and
stateSpaceSE2 for uniform sampling. The Lambda property of the
ExampleHelperCustomStateSpaceSE2 class represents the proportion of learning-based samples
(λ).

• The default Lambda value is 0.5 which means the probability of learned and uniform sampling is
equal.

• If Lambda is 0, the sampleUniform function will sample states uniformly.
• If Lambda is 1, the sampleUniform function will sample only from learned samples.

The planner results vary depending on the value of the Lambda property. You can set the Lambda
property as shown in the following code snippet.

% Set Lambda = 0.9 (~50% of samples are learned samples)
customSE2.Lambda = 0.5

Choose few maps from the test data that have two or more turns from left to right or vice-versa. For
these maps, plannerRRTStar with uniform sampling frequently fails to find the path if the number

 Accelerate Motion Planning with Deep-Learning-Based Sampler

11-17



of samples are less than or equal to 500. The examplerHelperPickTestDataForEvaluation
function loads the selected maps and the corresponding start and goal states.

[maps,startStates,goalStates] = examplerHelperPickTestDataForEvaluation(dataset);

Visualize data used for extracting evaluation metrics.

figure(Name="Maps For Evaluation Metrics");
for i=1:5
    subplot(2,3,i)
    exampleHelperPlotData(maps{i},startStates(i,:),goalStates(i,:))
end

Success Rate

Define the success rate as the fraction of total runs for which the paths are found. Compare the
success rate between learned sampling (with λ=0.5) and uniform sampling (with λ=0). You can
observe that rise in success rate is sharp for learned sampling as compared to uniform sampling. The
learned sampling achieves the success rate of 90% at around 400 samples, whereas uniform sampling
only achieves the success rate of 90% at 1000 samples. This indicates that learned sampling helps
achieve a higher success rate with a lesser number of samples.

11 Navigation Examples

11-18



Use the exampleHelperSuccessRateEvaluation function to extract the success rate metric. The
following code snippet shows how to run this function to obtain the metric and the plots. Note that it
took about 60 minutes to run this helper function on a Linux machine. Results may vary for your
system.

% Call success rate example helper function
[successRateLearnedAvg,successRateUniformedAvg] = exampleHelperSuccessRateEvaluation(maps, ...
                                                             startStates,goalStates,network);

In the exampleHelperSuccessRateEvaluation function, change the seed value for each run to
get different results at each run, and compute the average success rate over 100 runs. Set optimize
to false, so the plannerRRTStar stops after the path is found and does not optimize further. You
can modify the maximum iterations, number of runs, lambda, etc. for evaluation.

% Set optimize to false to exit from planner if path found.
optimize = false;

maxIterations = [5:50:500 1000:500:2500];
maxConnectionDistance = 1;

lambda = 0.5;
nRunTime = 100;

seed = 100;

% ...

for i=1:numel(maxIterations)
    for j=1:nRunTime
        [successRateLearned(j,i),successRateUniformed(j,i)] = exampleHelperSuccessRateComputation(...
            maps,optimize,maxConnectionDistance,maxIterations(i),startStates,goalStates,network,lambda,seed+j*10);
    end
end

 Accelerate Motion Planning with Deep-Learning-Based Sampler

11-19



Path Costs

Define path cost as the average cost for the total number of 100 runs for each maps choosen using
examplerHelperPickTestDataForEvaluation function. Compare the success rate between
learned sampling (with λ=0.5) and uniform sampling (with λ=0). You can observe that the rate of
convergence of the path cost is very fast for the learned sampling as compared to the uniform
sampling. For 500 samples, uniform sampling cannot find a path for each map and each run, while
the learned sampling can, and the path is better than the uniform sampling path at 2500 samples.

Use the exampleHelperPathCostEvaluation function to extract the path cost. The following code
snippet shows how to run this function to obtain the metrics and the plots. Note that it took about 6
hours to run this helper function on a Linux machine. Results may vary for your system.

% Call execution time example helper function
[pathCostsLearnedOptimized,pathCostsUniformedOptimized] = exampleHelperPathCostEvaluation(maps, ...
                                                                  startStates,goalStates,network)

In the exampleHelperPathCostEvaluation function, Set optimize to true, so that it continues
to optimize for the fixed number of samples even if the goal is reached earlier. You can modify the
maximum iterations, number of runs, lambda, etc. for evaluation.

% Set optimize to false to exit from planner if path found.
optimize = true;

maxIterations = 500:500:2500;
maxConnectionDistance = 1;

11 Navigation Examples

11-20



lambda = 0.5;
nRunTime = 2;

seed = 100;

%...

for i=1:numel(maxIterations)
    for j=1:nRunTime
        [pathCostLrndOpt(j,i),pathCostUniOpt(j,i)] = exampleHelperPathCostComputation(maps,optimize, ...
              maxConnectionDistance,maxIterations(i),startStates,goalStates,network,lambda,seed+j*10);
    end
end

Conclusion

This example shows how to integrate the deep-learning-based sampler trained in the “Train Deep
Learning-Based Sampler for Motion Planning” (Navigation Toolbox) example with RRT* planner using
a custom state space class. It shows how the planned path and the RRT tree, improve with the
learned sampling. It also shows the learned sampling gives better performance using the evaluation
metrics such as success rate and path cost.

Bibliography

1 Ichter, Brian, James Harrison, and Marco Pavone. "Learning Sampling Distributions for Robot
Motion Planning." In 2018 IEEE International Conference on Robotics and Automation (ICRA),
7087–94. Brisbane, QLD: IEEE, 2018. https://doi.org/10.1109/ICRA.2018.8460730.

 Accelerate Motion Planning with Deep-Learning-Based Sampler

11-21

https://doi.org/10.1109/ICRA.2018.8460730




Lidar Examples

12



Code Generation for Lidar Object Detection Using
SqueezeSegV2 Network

This example shows how to generate CUDA® MEX code for a lidar object detection network. In the
example, you first segment the point cloud with a pretrained network, then cluster the points and fit
3-D bounding boxes to each cluster. Finally, you generate MEX code for the network.

The lidar object detection network in this example is a SqueezeSegV2 [1 on page 12-7] network
pretrained on the PandaSet data set, which contains 8240 unorganized lidar point cloud scans of
various city scenes captured using a Pandar64 sensor. The network can segment 12 different classes
and fit bounding boxes to objects in the car class.

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver

Optional

For non-MEX builds such as static libraries, dynamic libraries, or executables, this example has the
following additional requirements.

• NVIDIA toolkit
• NVIDIA cuDNN library
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify if the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig("host");
envCfg.DeepLibTarget = "cudnn";
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load SqueezeSegV2 Network and Entry-Point Function

Use the getSqueezeSegV2PandasetNet function, attached to this example as a supporting file, to
load the pretrained SqueezeSegV2 network. For more information on how to train this network, see
“Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network” (Lidar
Toolbox).

net = getSqueezeSegV2PandasetNet;

The pretrained network is a DAG network. To display an interactive visualization of the network
architecture, use the analyzeNetwork function.

The segmentClusterDetect entry-point function takes in the organized point cloud matrix as an
input and passes it to a trained network to segment, cluster and detect the bounding boxes. The

12 Lidar Examples

12-2



segmentClusterDetect function loads the network object into a persistent variable and reuses the
persistent object for subsequent prediction calls.

type('segmentClusterDetect.m');

function [op,bboxes] = segmentClusterDetect(I)
% Entry point function to segment, cluster and fit 3-D boxes.
% Copyright 2021 The MathWorks, Inc.

%#codegen

persistent net;

if isempty(net)
    net = coder.loadDeepLearningNetwork('trainedSqueezeSegV2PandasetNet.mat');
end

% Pass input.
predictedResult = predict(net,I);
[~,op] = max(predictedResult,[],3);

% Get the indices of points for the required class.
carIdx = (op == 7);

% Select the points of required class and cluster them based on distance.
 ptCldMod = select(pointCloud(I(:,:,1:3)),carIdx);
[labels,numClusters] = pcsegdist(ptCldMod,0.5);

% Select each cluster and fit a cuboid to each cluster.
bboxes = zeros(0,9);
for num = 1:numClusters
    labelIdx = (labels == num);
    
    % Ignore cluster that has points less than 150 points.
    if sum(labelIdx,'all') < 150
        continue;
    end

    pcSeg = select(ptCldMod,labelIdx); 
    mdl = pcfitcuboid(pcSeg);
    bboxes = [bboxes;mdl.Parameters];    
end

end

Execute Entry-Point Function

Read the point cloud and convert it to organized format using pcorganize (Lidar Toolbox) function.
For more details on unorganized to organized point cloud conversion, see the “Unorganized to
Organized Conversion of Point Clouds Using Spherical Projection” (Lidar Toolbox) example.

ptCloudIn = pcread("pandasetDrivingData.pcd");

vbeamAngles = [15.0000   11.0000    8.0000    5.0000    3.0000    2.0000    1.8333    1.6667    1.5000    1.3333    1.1667    1.0000    0.8333    0.6667 ...
                0.5000    0.3333    0.1667         0   -0.1667   -0.3333   -0.5000   -0.6667   -0.8333   -1.0000   -1.1667   -1.3333   -1.5000   -1.6667 ...
               -1.8333   -2.0000   -2.1667   -2.3333   -2.5000   -2.6667   -2.8333   -3.0000   -3.1667   -3.3333   -3.5000   -3.6667   -3.8333   -4.0000 ...
               -4.1667   -4.3333   -4.5000   -4.6667   -4.8333   -5.0000   -5.1667   -5.3333   -5.5000   -5.6667   -5.8333   -6.0000   -7.0000   -8.0000 ...
               -9.0000  -10.0000  -11.0000  -12.0000  -13.0000  -14.0000  -19.0000  -25.0000];

 Code Generation for Lidar Object Detection Using SqueezeSegV2 Network

12-3



hResolution = 1856;
params = lidarParameters(vbeamAngles,hResolution);
ptCloudOrg = pcorganize(ptCloudIn,params);

Convert the organized point cloud to a 5-channel input image using the helperPointCloudToImage
function, attached to the example as a supporting file.

I = helperPointCloudToImage(ptCloudOrg);

Use the segmentClusterDetect entry-point function to get the predicted bounding boxes for cars
and the segmentation labels.

[op,bboxes] = segmentClusterDetect(I);

Get the location and color map of the output.

cmap = helperLidarColorMap;
colormap = cmap(op,:);
loc = reshape(I(:,:,1:3),[],3);

Display the point cloud with segmentation output and bounding boxes.

figure
ax = pcshow(loc,colormap);
showShape("cuboid",bboxes,Parent=ax,Opacity=0.1,...
          Color="green",LineWidth=0.5);
zoom(ax,2);

12 Lidar Examples

12-4



Generate CUDA MEX Code

To generate CUDA® code for the segmentClusterDetect entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig(TargetLibrary='cudnn');

args = {coder.typeof(I,[64 1856 5],[0 0 0])};

codegen -config cfg segmentClusterDetect -args args -report

Code generation successful: View report

To generate CUDA® code for the TensorRT target, create and use a TensorRT deep learning
configuration object instead of the CuDNN configuration object.

Run Generated MEX Code

Call the generated CUDA MEX code on the 5-channel image I, created from ptCloudIn.

[op,bboxes] = segmentClusterDetect_mex(I);

Get the color map of the output.

colormap = cmap(op,:);

Display the output.

figure
ax1 = pcshow(loc,colormap);
showShape("cuboid",bboxes,Parent=ax1,Opacity=0.1,...
          Color="green",LineWidth=0.5);
zoom(ax1,2);

 Code Generation for Lidar Object Detection Using SqueezeSegV2 Network

12-5



Supporting Functions

Define Lidar Color Map

The helperLidarColorMap function defines the colormap used by the lidar dataset.

function cmap = helperLidarColorMap
% Lidar color map for the pandaset classes

cmap = [[30 30 30];      % UnClassified
        [0 255 0];       % Vegetation
        [255 150 255];   % Ground
        [255 0 255];     % Road
        [255 0 0];       % Road Markings
        [90 30 150];     % Side Walk
        [245 150 100];   % Car
        [250 80 100];    % Truck
        [150 60 30];     % Other Vehicle
        [255 255 0];     % Pedestrian
        [0 200 255];     % Road Barriers
        [170 100 150];   % Signs
        [30 30 255]];    % Building

cmap = cmap./255;

end

12 Lidar Examples

12-6



References

[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from
a LiDAR Point Cloud.” In 2019 International Conference on Robotics and Automation (ICRA), 4376–
82. Montreal, QC, Canada: IEEE, 2019. https://doi.org/10.1109/ICRA.2019.8793495.

[2] PandaSet is provided by Hesai and Scale under the CC-BY-4.0 license.

 Code Generation for Lidar Object Detection Using SqueezeSegV2 Network

12-7

https://doi.org/10.1109/ICRA.2019.8793495
https://scale.com/open-datasets/pandaset
https://creativecommons.org/licenses/by/4.0/


Lidar Object Detection Using Complex-YOLO v4 Network

This example shows how to train a Complex-YOLO v4 network to perform object detection on point
clouds.

The Complex-YOLO [1 on page 12-23] approach is effective for lidar object detection as it directly
operates on bird's-eye-view RGB maps that are transformed from the point clouds. In this example,
using the Complex-YOLO approach, you train a YOLO v4 [2 on page 12-23] network to predict both
2-D box positions and orientation in the bird's-eye-view frame. You then project the 2-D positions
along with the orientation predictions back onto the point cloud to generate 3-D bounding boxes
around the object of interest.

Download Lidar Data Set

This example uses a subset of the PandaSet data set [3 on page 12-24] that contains 2560
preprocessed organized point clouds. Each point cloud covers 360 degrees of view and is specified as
a 64-by-1856 matrix. The point clouds are stored in PCD format and their corresponding ground truth
data is stored in the PandaSetLidarGroundTruth.mat file. The file contains 3-D bounding box
information for three classes, which are car, truck, and pedestrian. The size of the data set is 5.2 GB.

Download the PandaSet data set from the given URL using the helperDownloadPandasetData
helper function, defined at the end of this example.

outputFolder = fullfile(tempdir,'Pandaset');

lidarURL = ['https://ssd.mathworks.com/supportfiles/lidar/data/' ...
            'Pandaset_LidarData.tar.gz'];

helperDownloadPandasetData(outputFolder,lidarURL);

Depending on your internet connection, the download process can take some time. The code
suspends MATLAB® execution until the download process is complete. Alternatively, you can
download the data set to your local disk using your web browser and extract the file. If you do so,
change the outputFolder variable in the code to the location of the downloaded file. The download
file contains Lidar, Cuboids, and semanticLabels folders, which contain the point clouds, cuboid
label information, and semantic label information respectively.

Download Pretrained Model

This example implements two variants of the complex YOLO v4 object detectors:

• complex-yolov4-pandaset — Standard complex YOLO v4 network trained on bird's-eye-view
generated from point clouds of the PandaSet data set

• tiny-complex-yolov4-pandaset — Lightweight complex YOLO v4 network trained on bird's-
eye-view images generated from point clouds of the PandaSet data set

The pretrained networks are trained on three object categories: car, truck and pedestrian.

modelName = 'tiny-complex-yolov4-pandaset';
mdl = downloadPretrainedComplexYOLOv4(modelName);
net = mdl.net; 

12 Lidar Examples

12-8



Load Data

Create a file datastore to load the PCD files from the specified path using the pcread (Computer
Vision Toolbox) function.

path = fullfile(outputFolder,'Lidar');
lidarData = fileDatastore(path,'ReadFcn',@(x) pcread(x));

Load the 3-D bounding box labels of the car, truck, and pedestrian objects.

gtPath = fullfile(outputFolder,'Cuboids','PandaSetLidarGroundTruth.mat');
data = load(gtPath,'lidarGtLabels');
Labels = timetable2table(data.lidarGtLabels);
boxLabels = Labels(:,2:end);

Display the full-view point cloud.

figure
ptCld = read(lidarData);
ax = pcshow(ptCld.Location);
set(ax,'XLim',[-50 50],'YLim',[-40 40]);
zoom(ax,2.5);
axis off;

 Lidar Object Detection Using Complex-YOLO v4 Network

12-9



Create Bird's-eye-view Image from Point Cloud Data

The PandaSet data consists of full-view point clouds. For this example, crop the full-view point clouds
and convert them to a bird's-eye-view images using the standard parameters. These parameters
determine the size of the input passed to the network. Selecting a smaller range of point clouds along
the x-, y-, and z-axes helps you detect objects that are closer to the origin.

xMin = -25.0;     
xMax = 25.0;      
yMin = 0.0;      
yMax = 50.0;      
zMin = -7.0;     
zMax = 15.0;     

Define the dimensions for the bird's-eye-view image. You can set any dimensions for the bird's-eye-
view image but the preprocessData helper function resizes it to network input size. For this
example, the network input size is 608-by-608.

bevHeight = 608;
bevWidth = 608;

12 Lidar Examples

12-10



Find the grid resolution.

gridW = (yMax - yMin)/bevWidth;
gridH = (xMax - xMin)/bevHeight;

Define the grid parameters.

gridParams = {{xMin,xMax,yMin,yMax,zMin,zMax},{bevWidth,bevHeight},{gridW,gridH}};

Convert the training data to bird's-eye-view images by using the transformPCtoBEV helper
function, attached to this example as a supporting file. You can set writeFiles to false if your
training data is already present in the outputFolder.

writeFiles = true;
if writeFiles
    transformPCtoBEV(lidarData,boxLabels,gridParams,outputFolder);
end

Create Datastore Objects for Training

Create a datastore for loading the bird's-eye-view images.

dataPath = fullfile(outputFolder,'BEVImages');
imds = imageDatastore(dataPath);

Create a datastore for loading the ground truth boxes.

labelPath = fullfile(outputFolder,'Cuboids','BEVGroundTruthLabels.mat');
load(labelPath,'processedLabels');
blds = boxLabelDatastore(processedLabels);

Remove the data that has no labels from the training data.

[imds,blds] = removeEmptyData(imds,blds);

Split the data set into a training set for training the network and a test set for evaluating the network.
Use 60% of the data for training set and the rest for testing..

rng(0);
shuffledIndices = randperm(size(imds.Files,1));
idx = floor(0.6 * length(shuffledIndices));

Split the image datastore into training and test sets.

imdsTrain = subset(imds,shuffledIndices(1:idx));
imdsTest = subset(imds,shuffledIndices(idx+1:end));

Split the box label datastore into training and test sets.

bldsTrain = subset(blds,shuffledIndices(1:idx));
bldsTest = subset(blds,shuffledIndices(idx+1:end));

Combine the image and box label datastores.

trainData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest,bldsTest);

Use the validateInputDataComplexYOLOv4 helper function, attached to this example as a
supporting file, to detect:

 Lidar Object Detection Using Complex-YOLO v4 Network

12-11



• Samples with an invalid image format or that contain NaNs
• Bounding boxes containing zeros, NaNs, Infs, or are empty
• Missing or noncategorical labels.

The values of the bounding boxes must be finite and positive and cannot be NaNs. They must also be
within the image boundary with a positive height and width.

validateInputDataComplexYOLOv4(trainData);
validateInputDataComplexYOLOv4(testData);

Preprocess Training Data

Preprocess the training data to prepare for training. The preprocessData helper function, listed at
the end of the example, applies the following operations to the input data.

• Resize the images to the network input size.
• Scale the image pixels in the range [0 1].
• Set isRotRect to true to return the rotated rectangles.

networkInputSize = [608 608 3];
isRotRect = true;
preprocessedTrainingData = transform(trainData,@(data)preprocessData(data,networkInputSize,isRotRect));

Read the preprocessed training data.

data = read(preprocessedTrainingData);

Display an image with the bounding boxes.

I = data{1,1};
bbox = data{1,2};
labels = data{1,3};
helperDisplayBoxes(I,bbox,labels);

12 Lidar Examples

12-12



Reset the datastore.

reset(preprocessedTrainingData);

Modify Pretrained Complex-YOLO V4 Network

The Complex-YOLO V4 network uses anchor boxes estimated from the training data to have better
initial estimate corresponding to the type of data set and to help the network learn to predict the
boxes accurately.

First, because the training images vary in size, use the transform function to preprocess the
training data and resize all the images to the same size.

Specify the number of anchors:

 Lidar Object Detection Using Complex-YOLO v4 Network

12-13



• complex-yolov4-pandaset model — Specify 9 anchors
• tiny-complex-yolov4-pandaset model — Specify 6 anchors

For reproducibility, set the random seed. Estimate the anchor boxes using estimateAnchorBoxes
function. You can set isRotRect to false because the rotation angle is not necessary for the
bounding boxes to estimate the anchors. For more information about anchor boxes, refer to "Specify
Anchor Boxes" section of “Getting Started with YOLO v4” (Computer Vision Toolbox).

rng(0)
isRotRect = false;
trainingDataForEstimation = transform(trainData,@(data)preprocessData(data,networkInputSize,isRotRect));
numAnchors = 6;
[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingDataForEstimation,numAnchors)

anchorBoxes = 6×2

    22    51
    10    11
    23    58
    26    63
    25    54
    16    23

meanIoU = 0.7951

Configure the pretrained model for training using the configureComplexYOLOV4 function. This
function configures the detection head of the YOLO v4 model to predict the angle regression along
with bounding boxes, the objectness score, and classification scores.

This function returns a the modified layer graph, network output names, reordered anchor boxes, and
anchor box masks to select anchor boxes to use in the detected heads. The size of an anchor box
assigned to a detection head corresponds to the size of the feature map output from the detection
head. The function reorders the anchor boxes in such a way that the large anchor boxes are assigned
to the feature maps with low resolution and small anchor boxes to the feature maps with high
resolution.

% Specify the class names to use for training.
classNames = {'Car'
              'Truck'
              'Pedestrain'};
[net,networkOutputs,anchorBoxes] = configureComplexYOLOv4(net,classNames,anchorBoxes,modelName);

Specify Training Options

Specify these training options.

• Set the number of epochs to 90.
• Set the mini batch size to 8. Stable training is possible with higher learning rates when higher

mini batch size is used. Set this value depending on the memory available.
• Set the learning rate to 0.001.
• Set the warmup period to 1000 iterations. It helps in stabilizing the gradients at higher learning

rates.
• Set the L2 regularization factor to 0.001.

12 Lidar Examples

12-14



• Specify the penalty threshold as 0.5. Detections that overlap less than 0.5 with the ground truth
are penalized.

• Initialize the velocity of the gradient as [ ], which is used by SGDM to store the velocity of the
gradients.

maxEpochs = 90;
miniBatchSize = 8;
learningRate = 0.001;
warmupPeriod = 1000;
l2Regularization = 0.001;
penaltyThreshold = 0.5;
velocity = [];

Train Model

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

Use the minibatchqueue function to split the preprocessed training data into batches with the
supporting function createBatchData, defined at the end of the example, which returns the
batched images and bounding boxes combined with the respective class IDs. For faster extraction of
the batch data for training, set the dispatchInBackground to true to use a parallel pool.

minibatchqueue automatically detects whether a GPU is available. If you do not have a GPU or do
not want to use one for training, set the OutputEnvironment parameter to cpu.

if canUseParallelPool
   dispatchInBackground = true;
else
   dispatchInBackground = false;
end

mbqTrain = minibatchqueue(preprocessedTrainingData,2, ...
        "MiniBatchSize",miniBatchSize,...
        "MiniBatchFcn",@(images,boxes,labels) createBatchData(images,boxes,labels,classNames), ...
        "MiniBatchFormat",["SSCB",""],...
        "DispatchInBackground",dispatchInBackground,...
        "OutputCast",["","double"]);

Create the training progress plot using the supporting function
configureTrainingProgressPlotter.

Finally, specify the custom training loop. For each iteration:

• Read data from the minibatchqueue. If it has no more data, reset the minibatchqueue and
shuffle.

• Evaluate the model gradients using the dlfeval and the modelGradients supporting function,
listed at the end of this example.

• Apply a weight decay factor to the gradients to regularization for more robust training.
• Determine the learning rate based on the iterations using the

piecewiseLearningRateWithWarmup supporting function.
• Update the net parameters using the sgdmupdate function.

 Lidar Object Detection Using Complex-YOLO v4 Network

12-15



• Update the state parameters of net with the moving average.
• Display the learning rate, total loss, and the individual losses (box loss, object loss, and class loss)

for every iteration. Use these values to interpret how the respective losses change in each
iteration. For example, a sudden spike in the box loss after a few iterations implies that the
predictions contain Inf values or NaNs.

• Update the training progress plot.

You can terminate the training if the loss saturates for a few epochs.

doTraining = false;

if doTraining
    iteration = 0;
   
    % Create subplots for the learning rate and mini-batch loss.
    fig = figure;
    [lossPlotter, learningRatePlotter] = configureTrainingProgressPlotter(fig);

    % Custom training loop.
    for epoch = 1:maxEpochs
          
        reset(mbqTrain);
        shuffle(mbqTrain);
        
        while(hasdata(mbqTrain))
            iteration = iteration + 1;
           
            [XTrain,YTrain] = next(mbqTrain);
            
            % Evaluate the model gradients and loss using dlfeval and the
            % modelGradients function.
            [gradients,state,lossInfo] = dlfeval(@modelGradients,net,XTrain,YTrain,anchorBoxes,penaltyThreshold,networkOutputs);
    
            % Apply L2 regularization.
            gradients = dlupdate(@(g,w) g + l2Regularization*w, gradients, net.Learnables);
    
            % Determine the current learning rate value.
            currentLR = piecewiseLearningRateWithWarmup(iteration,epoch,learningRate,warmupPeriod,maxEpochs);
            
            % Update the network learnable parameters using the SGDM optimizer.
            [net,velocity] = sgdmupdate(net,gradients,velocity,currentLR);
    
            % Update the state parameters of dlnetwork.
            net.State = state;
            
            % Display progress.
            if mod(iteration,10)==1
                displayLossInfo(epoch,iteration,currentLR,lossInfo);
            end
                
            % Update training plot with new points.
            updatePlots(lossPlotter,learningRatePlotter,iteration,currentLR,lossInfo.totalLoss);
        end
    end
else
    net = mdl.net;

12 Lidar Examples

12-16



    anchorBoxes = mdl.anchorBoxes;
end

To find optimal training options by sweeping through ranges of hyperparameter values, use the Deep
Network Designer app.

Evaluate Model

Computer Vision Toolbox™ provides object detector evaluation functions to measure common metrics
such as average precision (evaluateDetectionAOS) for rotated rectangles. This example uses the
average orientation similarity (AOS) metric. AOS is a metric for measuring detector performance on
rotated rectangle detections. This metric provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

% Create a table to hold the bounding boxes, scores, and labels returned by
% the detector. 
results = table('Size',[0 3], ...
    'VariableTypes',{'cell','cell','cell'}, ...
    'VariableNames',{'Boxes','Scores','Labels'});

% Run the detector on images in the test set and collect the results.
reset(testData)
while hasdata(testData)
    % Read the datastore and get the image.
    data = read(testData);
    image = data{1,1};
    
    % Run the detector.
    executionEnvironment = 'auto';
    [bboxes,scores,labels] = detectComplexYOLOv4(net,image,anchorBoxes,classNames,executionEnvironment);
    
    % Collect the results.
    tbl = table({bboxes},{scores},{labels},'VariableNames',{'Boxes','Scores','Labels'});
    results = [results; tbl];
end

% Evaluate the object detector using the average precision metric.
metrics = evaluateDetectionAOS(results, testData)

metrics=3×5 table
                    AOS        AP       OrientationSimilarity       Precision           Recall     
                  _______    _______    _____________________    _______________    _______________

    Car           0.83079    0.90904       {7339×1 double}       {7339×1 double}    {7339×1 double}
    Truck         0.46622    0.48079       {1134×1 double}       {1134×1 double}    {1134×1 double}
    Pedestrain     0.6626    0.72495       {3439×1 double}       {3439×1 double}    {3439×1 double}

Detect Objects Using Trained Complex-YOLO V4

Use the network for object detection.

% Read the datastore.
reset(testData)
data = read(testData);

% Get the image.

 Lidar Object Detection Using Complex-YOLO v4 Network

12-17



I = data{1,1};

% Run the detector.
executionEnvironment = 'auto';
[bboxes,scores,labels] = detectComplexYOLOv4(net,I,anchorBoxes,classNames,executionEnvironment);

% Display the output.
figure
helperDisplayBoxes(I,bboxes,labels);

Transfer the detected boxes to a point cloud using the transferbboxToPointCloud helper
function, attached to this example as a supporting file.

12 Lidar Examples

12-18



lidarTestData = subset(lidarData,shuffledIndices(idx+1:end));
ptCld = read(lidarTestData);
[ptCldOut,bboxCuboid] = transferbboxToPointCloud(bboxes,gridParams,ptCld);
helperDisplayBoxes(ptCldOut,bboxCuboid,labels);

Supporting Functions

Model Gradients

The function modelGradients takes as input the Complex-YOLO v4 network, a mini-batch of input
data XTrain with corresponding ground truth boxes YTrain, and the specified penalty threshold. It
returns the gradients of the loss with respect to the learnable parameters in net, the corresponding
mini-batch loss information, and the state of the current batch.

The modelGradients function computes the total loss and gradients by performing these
operations.

• Generate predictions from the input batch of images using the complexYOLOv4Forward method.
• Collect predictions on the CPU for postprocessing.

 Lidar Object Detection Using Complex-YOLO v4 Network

12-19



• Convert the predictions from the Complex-YOLO v4 grid cell coordinates to bounding box
coordinates to allow easy comparison with the ground truth data.

• Generate targets for loss computation by using the converted predictions and ground truth data.
Generate the targets for bounding box positions (x, y, width, height, yaw), object confidence, and
class probabilities. See the supporting function generateComplexYOLOv4Targets.

• Calculate the mean squared error of the predicted bounding box coordinates with target boxes
using the supporting function bboxOffsetLoss, defined at the end of the example.

• Calculate the binary cross-entropy of the predicted object confidence score with a target object
confidence score using the supporting function objectnessLoss, defined at the end of the
example.

• Calculate the binary cross-entropy of the predicted class of object with the target using the
supporting function classConfidenceLoss, defined at the end of the example.

• Compute the total loss as the sum of all losses.
• Compute the gradients of learnables with respect to the total loss.

function [gradients,state,info] = modelGradients(net,XTrain,YTrain,anchors,penaltyThreshold,networkOutputs)

    inputImageSize = size(XTrain,1:2);
    
    % Gather the ground truths in the CPU for postprocessing.
    YTrain = gather(extractdata(YTrain));
    
    % Extract the predictions from the network.
    [YPredCell,state] = complexYOLOv4Forward(net,XTrain,networkOutputs,anchors);
    
    % Gather the activations in the CPU for postprocessing and extract dlarray data. 
    gatheredPredictions = cellfun(@ gather,YPredCell(:,1:8),'UniformOutput',false); 
    gatheredPredictions = cellfun(@ extractdata, gatheredPredictions,'UniformOutput', false);
    
    % Convert predictions from grid cell coordinates to box coordinates.
    tiledAnchors = generateTiledAnchorsComplexYolov4(gatheredPredictions(:,2:5),anchors);
    gatheredPredictions(:,2:5) = applyAnchorBoxOffsetsComplexYolov4(tiledAnchors,gatheredPredictions(:,2:5),inputImageSize);
    
    % Generate targets for predictions from the ground truth data.
    [boxTarget,objectnessTarget,classTarget,objectMaskTarget,boxErrorScale] = generateComplexYOLOv4Targets(gatheredPredictions,YTrain,inputImageSize,anchors,penaltyThreshold);
    
    % Compute the loss.
    boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 9 10 6 7]),boxTarget,objectMaskTarget,boxErrorScale);
    objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
    clsLoss = classConfidenceLoss(YPredCell(:,8),classTarget,objectMaskTarget);
    totalLoss = boxLoss + objLoss + clsLoss;
    
    info.boxLoss = boxLoss;
    info.objLoss = objLoss;
    info.clsLoss = clsLoss;
    info.totalLoss = totalLoss;
    
    % Compute the gradients of learnables with regard to the loss.
    gradients = dlgradient(totalLoss,net.Learnables);
end

Loss Functions

Compute the mean squared error for the bounding box position.

12 Lidar Examples

12-20



function boxLoss = bboxOffsetLoss(boxPredCell,boxDeltaTarget,boxMaskTarget,boxErrorScaleTarget)
    lossX = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,1),boxDeltaTarget(:,1),boxMaskTarget(:,1),boxErrorScaleTarget));
    lossY = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,2),boxDeltaTarget(:,2),boxMaskTarget(:,1),boxErrorScaleTarget));
    lossW = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,3),boxDeltaTarget(:,3),boxMaskTarget(:,1),boxErrorScaleTarget));
    lossH = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,4),boxDeltaTarget(:,4),boxMaskTarget(:,1),boxErrorScaleTarget));
    
    lossYaw1 = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,5),boxDeltaTarget(:,5),boxMaskTarget(:,1),boxErrorScaleTarget));
    lossYaw2 = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,6),boxDeltaTarget(:,6),boxMaskTarget(:,1),boxErrorScaleTarget));
    
    boxLoss = lossX+lossY+lossW+lossH+lossYaw1+lossYaw2;
end

Compute the binary cross-entropy loss for the class confidence score.

function clsLoss = classConfidenceLoss(classPredCell,classTarget,boxMaskTarget)
    clsLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),classPredCell,classTarget,boxMaskTarget(:,3)));
end

Compute the binary cross-entropy loss for the objectness score.

function objLoss = objectnessLoss(objectnessPredCell,objectnessDeltaTarget,boxMaskTarget)
    objLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),objectnessPredCell,objectnessDeltaTarget,boxMaskTarget(:,2)));
end

Preprocess Data

function data = preprocessData(data,targetSize,isRotRect)
% Resize the images and scale the pixels to between 0 and 1. Also scale the
% corresponding bounding boxes.
for ii = 1:size(data,1)
    I = data{ii,1};
    imgSize = size(I);
    
    % Convert an input image with a single channel to three channels.
    if numel(imgSize) < 3 
        I = repmat(I,1,1,3);
    end
    bboxes = data{ii,2};

    I = im2single(imresize(I,targetSize(1:2)));
    scale = targetSize(1:2)./imgSize(1:2);
    bboxes = bboxresize(bboxes,scale);

    if ~isRotRect
        bboxes = bboxes(:,1:4);
    end
    
    data(ii, 1:2) = {I,bboxes};
end
end

function [XTrain,YTrain] = createBatchData(data,groundTruthBoxes,groundTruthClasses,classNames)
% Return images combined along the batch dimension in XTrain and
% normalized bounding boxes concatenated with classIDs in YTrain.

    % Concatenate images along the batch dimension.
    XTrain = cat(4,data{:,1});
    

 Lidar Object Detection Using Complex-YOLO v4 Network

12-21



    % Get class IDs from the class names.
    classNames = repmat({categorical(classNames')},size(groundTruthClasses));
    [~,classIndices] = cellfun(@(a,b)ismember(a,b),groundTruthClasses,classNames,'UniformOutput',false);
    
    % Append the label indexes and training image size to scaled bounding boxes
    % and create a single cell array of responses.
    combinedResponses = cellfun(@(bbox,classid)[bbox,classid],groundTruthBoxes,classIndices,'UniformOutput',false);
    len = max(cellfun(@(x)size(x,1),combinedResponses));
    paddedBBoxes = cellfun(@(v) padarray(v,[len-size(v,1),0],0,'post'),combinedResponses,'UniformOutput',false);
    YTrain = cat(4,paddedBBoxes{:,1});
end

Learning Rate Schedule Function

function currentLR = piecewiseLearningRateWithWarmup(iteration,epoch,learningRate,warmupPeriod,numEpochs)
% The piecewiseLearningRateWithWarmup function computes the current
% learning rate based on the iteration number.
    persistent warmUpEpoch;
    
    if iteration <= warmupPeriod
        % Increase the learning rate for the number of iterations in the warmup period.
        currentLR = learningRate*((iteration/warmupPeriod)^4);
        warmUpEpoch = epoch;
    elseif iteration >= warmupPeriod && epoch < warmUpEpoch+floor(0.6*(numEpochs-warmUpEpoch))
        % After the warmup period, keep the learning rate constant if the remaining number of epochs is less than 60 percent. 
        currentLR = learningRate;
        
    elseif epoch >= warmUpEpoch + floor(0.6*(numEpochs-warmUpEpoch)) && epoch < warmUpEpoch+floor(0.9*(numEpochs-warmUpEpoch))
        % If the remaining number of epochs is more than 60 percent but less
        % than 90 percent, multiply the learning rate by 0.1.
        currentLR = learningRate*0.1;
        
    else
        % If more than 90 percent of the epochs remain, multiply the learning
        % rate by 0.01.
        currentLR = learningRate*0.01;
    end
end

Utility Functions

function [lossPlotter,learningRatePlotter] = configureTrainingProgressPlotter(f)
% Create the subplots to display the loss and learning rate.

    figure(f);
    clf
    subplot(2,1,1);
    ylabel('Learning Rate');
    xlabel('Iteration');
    learningRatePlotter = animatedline;
    subplot(2,1,2);
    ylabel('Total Loss');
    xlabel('Iteration');
    lossPlotter = animatedline;
end

function displayLossInfo(epoch,iteration,currentLR,lossInfo)
% Display loss information for each iteration.

12 Lidar Examples

12-22



    disp("Epoch : " + epoch + " | Iteration : " + iteration + " | Learning Rate : " + currentLR + ...
       " | Total Loss : " + double(gather(extractdata(lossInfo.totalLoss))) + ...
       " | Box Loss : " + double(gather(extractdata(lossInfo.boxLoss))) + ...
       " | Object Loss : " + double(gather(extractdata(lossInfo.objLoss))) + ...
       " | Class Loss : " + double(gather(extractdata(lossInfo.clsLoss))));
end

function updatePlots(lossPlotter,learningRatePlotter,iteration,currentLR,totalLoss)
% Update loss and learning rate plots.
    addpoints(lossPlotter,iteration,double(extractdata(gather(totalLoss))));
    addpoints(learningRatePlotter, iteration,currentLR);
    drawnow
end

function helperDisplayBoxes(obj,bboxes,labels)
% Display the boxes over the image and point cloud.
    figure
    if ~isa(obj,'pointCloud')
        imshow(obj)
        shape = 'rectangle';
    else
        pcshow(obj.Location);
        shape = 'cuboid';
    end
    showShape(shape,bboxes(labels=='Car',:),...
                  'Color','green','LineWidth',0.5);hold on;
    showShape(shape,bboxes(labels=='Truck',:),...
              'Color','magenta','LineWidth',0.5);
    showShape(shape,bboxes(labels=='Pedestrain',:),...
              'Color','yellow','LineWidth',0.5);
    hold off;
end

function helperDownloadPandasetData(outputFolder,lidarURL)
% Download the data set from the given URL to the output folder.
    lidarDataTarFile = fullfile(outputFolder,'Pandaset_LidarData.tar.gz');    
    if ~exist(lidarDataTarFile,'file')
        mkdir(outputFolder);        
        disp('Downloading PandaSet Lidar driving data (5.2 GB)...');
        websave(lidarDataTarFile,lidarURL);
        untar(lidarDataTarFile,outputFolder);
    end    
    % Extract the file.
    if (~exist(fullfile(outputFolder,'Lidar'),'dir'))...
            &&(~exist(fullfile(outputFolder,'Cuboids'),'dir'))
        untar(lidarDataTarFile,outputFolder);
    end
end

References

[1] Simon, Martin, Stefan Milz, Karl Amende, and Horst-Michael Gross. "Complex-YOLO: Real-Time
3D Object Detection on Point Clouds". ArXiv:1803.06199 [Cs], 24 September 2018. https://
arxiv.org/abs/1803.06199.

 Lidar Object Detection Using Complex-YOLO v4 Network

12-23

https://arxiv.org/abs/1803.06199
https://arxiv.org/abs/1803.06199


[2] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and
Accuracy of Object Detection". ArXiv:2004.10934 [Cs, Eess], 22 April 2020. https://arxiv.org/abs/
2004.10934.

[3] PandaSet is provided by Hesai and Scale under the CC-BY-4.0 license.

12 Lidar Examples

12-24

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://scale.com/open-datasets/pandaset
https://creativecommons.org/licenses/by/4.0


Aerial Lidar Semantic Segmentation Using PointNet++ Deep
Learning

This example shows how to train a PointNet++ deep learning network to perform semantic
segmentation on aerial lidar data.

Lidar data acquired from airborne laser scanning systems is used in applications such as topographic
mapping, city modeling, biomass measurement, and disaster management. Extracting meaningful
information from this data requires semantic segmentation, a process where each point in the point
cloud is assigned a unique class label.

In this example, you train a PointNet++ network to perform semantic segmentation by using the
Dayton Annotated Lidar Earth Scan (DALES) dataset [1 on page 12-34]. The dataset contains scenes
of dense, labeled aerial lidar data from urban, suburban, rural, and commercial settings. The dataset
provides semantic segmentation labels for 8 classes such as buildings, cars, trucks, poles, power
lines, fences, ground, and vegetation.

Load DALES Data

The DALES dataset contains 40 scenes of aerial lidar data. Out of the 40 scenes, 29 scenes are used
for training and the remaining 11 scenes are used for testing. Each pixel in the data has a class label.
Follow the instructions on the DALES website to download the dataset to the folder specified by the
dataFolder variable. Create folders to store training and test data.

dataFolder = fullfile('/local-ssd/vancha/vancha_data/DALES/','DALES');
trainDataFolder = fullfile(dataFolder,'dales_las','train');
testDataFolder = fullfile(dataFolder,'dales_las','test');

Preview a point cloud from the training data.

lasReader = lasFileReader(fullfile(trainDataFolder,'5080_54435.las'));
[pc,attr] = readPointCloud(lasReader,'Attributes','Classification');
labels = attr.Classification;

% Select only labeled data.
pc = select(pc,labels~=0);
labels = labels(labels~=0);
classNames = [
    "ground"
    "vegetation"
    "cars"
    "trucks"
    "powerlines"
    "fences"
    "poles"
    "buildings"
    ];
figure;
ax = pcshow(pc.Location,labels);
helperLabelColorbar(ax,classNames);
title("Point Cloud with Overlaid Semantic Labels");

 Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

12-25

https://udayton.edu/engineering/research/centers/vision_lab/research/was_data_analysis_and_processing/dale.php


Preprocess Data

Each point cloud in the DALES dataset covers an area of 500-by-500 meters, which is much larger
than the typical area covered by terrestrial lidar point clouds. For efficient memory processing, divide
the point cloud into small, non-overlapping blocks by using a blockedPointCloud (Lidar Toolbox)
object.

Define the block dimensions using the blockSize parameter. As the size of each point cloud in the
dataset varies, set the z-dimension of the block to Inf to avoid block creation along z-axis.

blocksize = [51 51 Inf];

Create a matlab.io.datastore.FileSet object to collect all the point cloud files in the training
data.

fs = matlab.io.datastore.FileSet(trainDataFolder);

Create a blockedPointCloud (Lidar Toolbox) object using the Fileset object.

bpc = blockedPointCloud(fs,blocksize);

Note: Processing can take some time. The code suspends MATLAB® execution until processing is
complete.

Use the helperCalculateClassWeights helper function, attached to this example as a supporting
file, to calculate the point distribution across all the classes in the training dataset.

12 Lidar Examples

12-26



numClasses = numel(classNames);
[weights,maxLabel,maxWeight] = helperCalculateClassWeights(fs,numClasses);

Create Datastore Object for Training

Create a blockedPointCloudDatastore (Lidar Toolbox) object using the blocked point cloud, bpc
to train the network.

ldsTrain = blockedPointCloudDatastore(bpc);

Specify label IDs from 1 to the number of classes.

labelIDs = 1 : numClasses;

Preview and display the point cloud.

ptcld = preview(ldsTrain);
figure;
pcshow(ptcld.Location);
title("Cropped Point Cloud");

For faster training, set a fixed number of points per block.

numPoints = 8192;

Transform the data to make it compatible with the input layer of the network, using the
helperTransformToTrainData function, defined at the end of this example. Follow these steps to
apply transformation.

 Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

12-27



• Extract the point cloud and the respective labels.
• Downsample the point cloud, the labels to a specified number, numPoints.
• Normalize the point clouds to the range [0 1].
• Convert the point cloud and the corresponding labels to make them compatible with the input

layer of the network.

ldsTransformed = transform(ldsTrain,@(x,info) helperTransformToTrainData(x, ...
    numPoints,info,labelIDs,classNames),'IncludeInfo',true);
read(ldsTransformed)

ans=1×2 cell array
    {8192×3 double}    {8192×1 categorical}

Define PointNet++ Model

PointNet++ is a popular neural network used for semantic segmentation of unorganized lidar point
clouds. Semantic segmentation associates each point in a 3-D point cloud with a class label, such as
car, truck, ground, or vegetation. For more information, see “Getting Started with PointNet++” (Lidar
Toolbox).

Define the PointNet++ architecture using the pointnetplusLayers (Lidar Toolbox) function.

lgraph = pointnetplusLayers(numPoints,3,numClasses);

To handle the class-imbalance on the DALES dataset, the weighted cross-entropy loss from the
pixelClassificationLayer (Computer Vision Toolbox) function is used. This will penalize the
network more if a point that belongs to a class with lower weight is misclassified.

% Replace the FocalLoss layer with pixelClassificationLayer.
larray = pixelClassificationLayer('Name','SegmentationLayer','ClassWeights', ...
    weights,'Classes',classNames);
lgraph = replaceLayer(lgraph,'FocalLoss',larray);

Specify Training Options

Use the Adam optimization algorithm to train the network. Use the trainingOptions function to
specify the hyperparameters.

learningRate = 0.0005;
l2Regularization = 0.01;
numEpochs = 20;
miniBatchSize = 16;
learnRateDropFactor = 0.1;
learnRateDropPeriod = 10;
gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

options = trainingOptions('adam', ...
    'InitialLearnRate',learningRate, ...
    'L2Regularization',l2Regularization, ...
    'MaxEpochs',numEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor',learnRateDropFactor, ...
    'LearnRateDropPeriod',learnRateDropPeriod, ...

12 Lidar Examples

12-28



    'GradientDecayFactor',gradientDecayFactor, ...
    'SquaredGradientDecayFactor',squaredGradientDecayFactor, ...
    'Plots','training-progress', ...
    'ExecutionEnvironment','gpu');

Note: Reduce the miniBatchSize value to control memory usage when training.

Train Model

To train the network, set the doTraining argument to true. Otherwise, load a pretrained network.
To train the network, you can use CPU or GPU. Using a GPU requires Parallel Computing Toolbox™
and a CUDA® enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

doTraining = false;
if doTraining
    % Train the network on the ldsTransformed datastore using 
    % the trainNetwork function.
    [net,info] = trainNetwork(ldsTransformed,lgraph,options);
else
    % Load the pretrained network.
    load('pointnetplusTrained','net');
end

Segment Aerial Point Cloud

To perform segmentation on the test point cloud, first create a blockedPointCloud (Lidar Toolbox)
object, then create a blockedPointCloudDatastore (Lidar Toolbox) object.

Apply the similar transformation used on training data, to the test data:

• Extract the point cloud and the respective labels.
• Downsample the point cloud to a specified number, numPoints.
• Normalize the point clouds to the range [0 1].
• Convert the point cloud to make it compatible with the input layer of the network.

tbpc = blockedPointCloud(fullfile(testDataFolder,'5080_54470.las'),blocksize);
tbpcds = blockedPointCloudDatastore(tbpc);

Define numNearestNeighbors and radius to find the nearest points in the downsampled point
cloud for each point in the dense point cloud and to perform interpolation effectively.

numNearestNeighbors = 20;
radius = 0.05;

Initiailize empty placeholder for predictions.

labelsDensePred = [];

Perform inference on this test point cloud to compute prediction labels. Interpolate the prediction
labels, to obtain prediction labels on the dense point cloud. Iterate the process all over the non-
overlapping blocks and predict the labels using the pcsemanticseg (Lidar Toolbox) function.

while hasdata(tbpcds)

    % Read the block along with block information.
    ptCloudDense = read(tbpcds);

 Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

12-29



    % Use the helperDownsamplePoints function, attached to this example as a
    % supporting file, to extract a downsampled point cloud from the
    % dense point cloud.
    ptCloudSparse = helperDownsamplePoints(ptCloudDense{1},[],numPoints);
                       
    % Use the helperNormalizePointCloud function, attached to this example as
    % a supporting file, to normalize the point cloud between 0 and 1.
    ptCloudSparseNormalized = helperNormalizePointCloud(ptCloudSparse);
    ptCloudDenseNormalized = helperNormalizePointCloud(ptCloudDense{1});
    
    % Use the helperTransformToTestData function, defined at the end of this
    % example, to convert the point cloud to a cell array and to permute the
    % dimensions of the point cloud to make it compatible with the input layer
    % of the network.
    ptCloudSparseForPrediction = helperTransformToTestData(ptCloudSparseNormalized);
    
    % Get the output predictions.
    labelsSparsePred = pcsemanticseg(ptCloudSparseForPrediction{1,1}, ...
        net,'OutputType','uint8');
    
    % Use the helperInterpolate function, attached to this example as a
    % supporting file, to calculate labels for the dense point cloud,
    % using the sparse point cloud and labels predicted on the sparse point cloud.
    interpolatedLabels = helperInterpolate(ptCloudDenseNormalized, ...
        ptCloudSparseNormalized,labelsSparsePred,numNearestNeighbors, ...
        radius,maxLabel,numClasses);  
    
    % Concatenate the predicted labels from the blocks.
    labelsDensePred = vertcat(labelsDensePred,interpolatedLabels);
end

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 6).

For better visualisation, only display a block inferred from the point cloud data.

figure;
ax = pcshow(ptCloudDense{1}.Location,interpolatedLabels);
axis off;
helperLabelColorbar(ax,classNames);
title("Point Cloud Overlaid with Detected Semantic Labels");

12 Lidar Examples

12-30



Evaluate Network

To perform evaluation on the test data, get the labels from the test point cloud. The labels for the test
data are already predicted in the previous step. Hence, iterate over the non-overlapping blocks of the
point cloud and extract the ground truth labels.

Initialize the placeholders for target labels.

labelsDenseTarget = [];

Loop over the block point cloud datastore and get the ground truth labels.

reset(tbpcds);

while hasdata(tbpcds)    
    % Read the block along with block information.
    [~,infoDense] = read(tbpcds);

    % Extract the labels from the block information.
    labelsDense = infoDense.PointAttributes.Classification;
    
    % Concatenate the target labels from the blocks.
    labelsDenseTarget = vertcat(labelsDenseTarget,labelsDense);
end

Use the evaluateSemanticSegmentation (Computer Vision Toolbox) function to compute the
semantic segmentation metrics from the test set results. The target and predicted labels are

 Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

12-31



computed previously and are stored in the labelsDensePred and the labelsDenseTarget
variables respectively.

confusionMatrix = segmentationConfusionMatrix(double(labelsDensePred), ...
    double(labelsDenseTarget),'Classes',1:numClasses);
metrics = evaluateSemanticSegmentation({confusionMatrix},classNames,'Verbose',false);

You can measure the amount of overlap per class using the intersection-over-union (IoU) metric.

The evaluateSemanticSegmentation (Computer Vision Toolbox) function returns metrics for the
entire data set, for individual classes, and for each test image. To see the metrics at the data set level,
use the metrics.DataSetMetrics property.

metrics.DataSetMetrics

ans=1×4 table
    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU
    ______________    ____________    _______    ___________

       0.93771           0.6691       0.54486      0.89091  

The data set metrics provide a high-level overview of network performance. To see the impact each
class has on the overall performance, inspect the metrics for each class using the
metrics.ClassMetrics property.

metrics.ClassMetrics

ans=8×2 table
                  Accuracy      IoU   
                  ________    ________

    ground         0.9942      0.94533
    vegetation    0.86256         0.83
    cars           0.7154      0.40561
    trucks        0.10772     0.088377
    powerlines    0.74916       0.6945
    fences        0.40889       0.2463
    poles         0.58334      0.25323
    buildings     0.93155      0.89556

Although the overall network performance is good, the class metrics for some classes like Trucks
indicate that more training data is required for better performance.

Supporting Functions

The helperLabelColorbar function adds a colorbar to the current axis. The colorbar is formatted
to display the class names with the color.

function helperLabelColorbar(ax,classNames)
% Colormap for the original classes.
cmap = [[0 0 255];
    [0 255 0];
    [255 192 203];
    [255 255 0];
    [255 0 255];
    [255 165 0];

12 Lidar Examples

12-32



    [139 0 150];
    [255 0 0]];
cmap = cmap./255;
cmap = cmap(1:numel(classNames),:);
colormap(ax,cmap);

% Add colorbar to current figure.
c = colorbar(ax);
c.Color = 'w';

% Center tick labels and use class names for tick marks.
numClasses = size(classNames,1);
c.Ticks = 1:1:numClasses;
c.TickLabels = classNames;

% Remove tick mark.
c.TickLength = 0;
end

The helperTransformToTrainData function performs these set of transforms on the input data
which are:

• Extract the point cloud and the respective labels.
• Downsample the point cloud, the labels to a specified number, numPoints.
• Normalize the point clouds to the range [0 1].
• Convert the point cloud and the corresponding labels to make them compatible with the input

layer of the network.

function [cellout,dataout] = helperTransformToTrainData(data,numPoints,info,...
    labelIDs,classNames)
if ~iscell(data)
    data = {data};
end
numObservations = size(data,1);
cellout = cell(numObservations,2);
dataout = cell(numObservations,2);
for i = 1:numObservations 
    classification = info.PointAttributes(i).Classification;

    % Use the helperDownsamplePoints function, attached to this example as a
    % supporting file, to extract a downsampled point cloud and its labels
    % from the dense point cloud.
    [ptCloudOut,labelsOut] = helperDownsamplePoints(data{i,1}, ...
    classification,numPoints);

    % Make the spatial extent of the dense point cloud and the sparse point
    % cloud same.
    limits = [ptCloudOut.XLimits;ptCloudOut.YLimits;...
                    ptCloudOut.ZLimits];
    ptCloudSparseLocation = ptCloudOut.Location;
    ptCloudSparseLocation(1:2,:) = limits(:,1:2)';
    ptCloudSparseUpdated = pointCloud(ptCloudSparseLocation, ...
        'Intensity',ptCloudOut.Intensity, ...
        'Color',ptCloudOut.Color, ...
        'Normal',ptCloudOut.Normal);

    % Use the helperNormalizePointCloud function, attached to this example as

 Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

12-33



    % a supporting file, to normalize the point cloud between 0 and 1.    
    ptCloudOutSparse = helperNormalizePointCloud( ...
        ptCloudSparseUpdated);
    cellout{i,1} = ptCloudOutSparse.Location;

    % Permuted output.
    cellout{i,2} = permute(categorical(labelsOut,labelIDs,classNames),[1 3 2]);

    % General output.
    dataout{i,1} = ptCloudOutSparse;
    dataout{i,2} = labelsOut;
end
end

The helperTransformToTestData function converts the point cloud to a cell array and permutes
the dimensions of the point cloud to make it compatible with the input layer of the network.

function data = helperTransformToTestData(data)
if ~iscell(data)
    data = {data};
end
numObservations = size(data,1);
for i = 1:numObservations
    tmp = data{i,1}.Location;
    data{i,1} = tmp;
end
end

References

[1] Varney, Nina, Vijayan K. Asari, and Quinn Graehling. "DALES: A Large-Scale Aerial LiDAR dataset
for Semantic Segmentation." ArXiv:2004.11985 [Cs, Stat], April 14, 2020. https://arxiv.org/abs/
2004.11985.

[2] Qi, Charles R., Li Yi, Hao Su, and Leonidas J. Guibas. "PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space." ArXiv:1706.02413 [Cs], June 7, 2017. https://arxiv.org/abs/
1706.02413.

12 Lidar Examples

12-34

https://arxiv.org/abs/2004.11985
https://arxiv.org/abs/2004.11985
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1706.02413


Code Generation For Aerial Lidar Semantic Segmentation
Using PointNet++ Deep Learning

This example shows how to generate CUDA® MEX code for a PointNet++ [1 on page 12-40]
network for lidar semantic segmentation. This example uses a pretrained PointNet++ network that
can segment unorganized lidar point clouds belonging to eight classes (buildings, cars, trucks, poles,
power lines, fences, ground, and vegetation). For more information on PointNet++ network, see
“Getting Started with PointNet++” (Lidar Toolbox).

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static libraries, dynamic libraries, or executables, this example has the
following additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load PointNet++ Network

Use the getPointnetplusNet function, attached as a supporting file to this example, to load the
pretrained PointNet++ network. For more information on how to train this network, see “Aerial Lidar
Semantic Segmentation Using PointNet++ Deep Learning” (Lidar Toolbox) example.

net = getPointnetplusNet;

The pretrained network is a DAG network. To display an interactive visualization of the network
architecture, use the analyzeNetwork function.

The sampling and grouping layer, and the interpolation layer are implemented using the
functionLayer function. Both pointCloudInputLayer and the functionLayer functions do not
support code generation. For code generation support, replace the function layers with custom layers
and the pointCloudInputLayer with the imageInputLayer by using the
helperReplaceInputAndFunctionLayers helper function, attached to this example as a support
file. This function saves the network as a MAT file with the name pointnetplusCodegenNet.mat.

 Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

12-35



net = helperReplaceInputAndFunctionLayers(net);

pointnetplusPredict Entry-Point Function

The pointnetplusPredict entry-point function takes a point cloud data matrix as input and
performs prediction on it by using the deep learning network saved in the
pointnetplusCodegenNet.mat file. The function loads the network object from the
pointnetplusCodegenNet.mat file into a persistent variable mynet and reuses the persistent
variable in subsequent prediction calls.

type('pointnetplusPredict.m');

function out = pointnetplusPredict(in)
%#codegen

% A persistent object mynet is used to load the DAG network object. At
% the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.

% Copyright 2021 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('pointnetplusCodegenNet.mat');
end

% pass in input
out = predict(mynet,in);

Generate CUDA MEX Code

To generate CUDA® code for the pointnetplusPredict entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command with the size of point cloud data in the input layer of the network, which
in this case is [8192 1 3].

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig(TargetLibrary='cudnn');
codegen -config cfg pointnetplusPredict -args {randn(8192,1,3,'single')} -report

Code generation successful: View report

To generate CUDA® code for the TensorRT target, create and use a TensorRT deep learning
configuration object instead of the CuDNN configuration object.

Segment Aerial Point Cloud Using Generated MEX Code

The network in this example is trained on the DALES data set [2 on page 12-40]. Follow the
instructions on the DALES website to download the data set to the folder specified by the
dataFolder variable. Create a folder to store the test data.

12 Lidar Examples

12-36

https://udayton.edu/engineering/research/centers/vision_lab/research/was_data_analysis_and_processing/dale.php


dataFolder = fullfile(tempdir,'DALES');
testDataFolder = fullfile(dataFolder,'dales_las','test');

Each point cloud in the DALES dataset covers an area of 500-by-500 meters, which is much larger
than the typical area covered by terrestrial lidar point clouds. For efficient memory processing, divide
the point cloud into small, non-overlapping blocks by using a blockedPointCloud (Lidar Toolbox)
object.

Define the block dimensions using the blockSize parameter. As the size of each point cloud in the
dataset varies, set the z-dimension of the block to Inf to avoid block creation along z-axis.

blockSize = [51 51 Inf];

First, create a blockedPointCloud (Lidar Toolbox) object. Then, create a
blockedPointCloudDatastore (Lidar Toolbox) object on the test data using the
blockedPointCloud (Lidar Toolbox) object.

tbpc = blockedPointCloud(fullfile(testDataFolder,'5080_54470.las'),blockSize);
tbpcds = blockedPointCloudDatastore(tbpc);

Define the parameters used to train the network. For more details, see the “Aerial Lidar Semantic
Segmentation Using PointNet++ Deep Learning” (Lidar Toolbox) example.

numNearestNeighbors = 20;
radius = 0.05;
numPoints = 8192;
maxLabel = 1;
classNames = [
    "ground"
    "vegetation"
    "cars"
    "trucks"
    "powerlines"
    "fences"
    "poles"
    "buildings"
    ];
numClasses = numel(classNames);

Initialize placeholders for the predicted and target labels.

labelsDensePred = [];
labelsDenseTarget = [];

Apply the same transformation used on training data to the test data, tbpcds, follow these steps.

• Extract the point cloud.
• Downsample the point cloud to a specified number, numPoints.
• Normalize the point clouds to the range [0 1].
• Convert the point cloud to make it compatible with the input layer of the network.

Perform inference on the test point cloud data to compute prediction labels. Predict the labels of the
sparse point cloud using the pointnetplusPredict_mex function. Then interpolate the prediction
labels of the sparse point cloud to obtain prediction labels of the dense point cloud and iterate this
process on all the non-overlapping blocks.

 Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

12-37



while hasdata(tbpcds)
    
    % Read the block along with block information.
    [ptCloudDense,infoDense] = read(tbpcds);

    % Extract the labels from the block information.
    labelsDense = infoDense.PointAttributes.Classification;
    
    % Select only labeled data.
    ptCloudDense = select(ptCloudDense{1},labelsDense~=0);
    labelsDense = labelsDense(labelsDense~=0);

    % Use the helperDownsamplePoints function, attached to this example as a
    % supporting file, to extract a downsampled point cloud from the
    % dense point cloud.
    ptCloudSparse = helperDownsamplePoints(ptCloudDense, ...
        labelsDense,numPoints);

    % Make the spatial extent of the dense point cloud equal to the sparse
    % point cloud.
    limits = [ptCloudDense.XLimits;ptCloudDense.YLimits;ptCloudDense.ZLimits];
    ptCloudSparseLocation = ptCloudSparse.Location;
    ptCloudSparseLocation(1:2,:) = limits(:,1:2)';
    ptCloudSparse = pointCloud(ptCloudSparseLocation,Color=ptCloudSparse.Color, ...
        Intensity=ptCloudSparse.Intensity, Normal=ptCloudSparse.Normal);

    % Use the helperNormalizePointCloud function, attached to this example as
    % a supporting file, to normalize the point cloud between 0 and 1.
    ptCloudSparseNormalized = helperNormalizePointCloud(ptCloudSparse);
    ptCloudDenseNormalized = helperNormalizePointCloud(ptCloudDense);

    % Use the helperTransformToTestData function, defined at the end of this
    % example, to convert the point cloud to a cell array and to permute the
    % dimensions of the point cloud to make it compatible with the input layer
    % of the network.
    ptCloudSparseForPrediction = helperTransformToTestData(ptCloudSparseNormalized);

    % Get the output predictions.
    scoresPred = pointnetplusPredict_mex(single(ptCloudSparseForPrediction{1,1}));
    [~,labelsSparsePred] = max(scoresPred,[],3);
    labelsSparsePred = uint8(labelsSparsePred);

    % Use the helperInterpolate function, attached to this example as a
    % supporting file, to calculate labels for the dense point cloud,
    % using the sparse point cloud and labels predicted on the sparse point cloud.
    interpolatedLabels = helperInterpolate(ptCloudDenseNormalized, ...
        ptCloudSparseNormalized,labelsSparsePred,numNearestNeighbors, ...
        radius,maxLabel,numClasses);

    % Concatenate the predicted and target labels from the blocks.
    labelsDensePred = vertcat(labelsDensePred,interpolatedLabels);
    labelsDenseTarget = vertcat(labelsDenseTarget,labelsDense);
end

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 6).

For better visualisation, display a single block inferred from the point cloud data.

12 Lidar Examples

12-38



figure;
ax = pcshow(ptCloudDense.Location,interpolatedLabels);
axis off;
helperLabelColorbar(ax,classNames);
title("Point Cloud Overlaid with Detected Semantic Labels");

Supporting Functions

The helperLabelColorbar function adds a colorbar to the current axis. The colorbar is formatted
to display the class names with the color.

function helperLabelColorbar(ax,classNames)
% Colormap for the original classes.
cmap = [[0,0,255];
    [0,255,0];
    [255,192,203];
    [255,255,0];
    [255,0,255];
    [255,165,0];
    [139,0,150];
    [255,0,0]];
cmap = cmap./255;
cmap = cmap(1:numel(classNames),:);
colormap(ax,cmap);

% Add colorbar to current figure.

 Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

12-39



c = colorbar(ax);
c.Color = 'w';

% Center tick labels and use class names for tick marks.
numClasses = size(classNames, 1);
c.Ticks = 1:1:numClasses;
c.TickLabels = classNames;

% Remove tick mark.
c.TickLength = 0;
end

The helperTransformToTestData function converts the point cloud into a cell array and permutes
the dimensions of the point cloud to make it compatible with the input layer of the network.

function data = helperTransformToTestData(data)
if ~iscell(data)
    data = {data};
end
numObservations = size(data,1);
for i = 1:numObservations
    tmp = data{i,1}.Location;
    data{i,1} = permute(tmp,[1 3 2]);
end
end

References

[1] Qi, Charles R., Li Yi, Hao Su, and Leonidas J. Guibas. "PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space." ArXiv:1706.02413 [Cs], June 7, 2017. https://arxiv.org/abs/
1706.02413.

[2] Varney, Nina, Vijayan K. Asari, and Quinn Graehling. "DALES: A Large-Scale Aerial LiDAR Data
Set for Semantic Segmentation." ArXiv:2004.11985 [Cs, Stat], April 14, 2020. https://arxiv.org/abs/
2004.11985.

12 Lidar Examples

12-40

https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/2004.11985
https://arxiv.org/abs/2004.11985


Lidar Point Cloud Semantic Segmentation Using PointSeg Deep
Learning Network

This example shows how to train a PointSeg semantic segmentation network on 3-D organized lidar
point cloud data.

PointSeg [1 on page 12-51] is a convolutional neural network (CNN) for performing end-to-end
semantic segmentation of road objects based on an organized lidar point cloud. By using methods
such as atrous spatial pyramid pooling (ASPP) and squeeze-and-excitation blocks, the network
provides improved segmentation results. The training procedure shown in this example requires 2-D
spherical projected images as inputs to the deep learning network.

This example uses a highway scene data set collected using an Ouster OS1 sensor. It contains
organized lidar point cloud scans of highway scenes and corresponding ground truth labels for car
and truck objects. The size of the data file is approximately 760 MB.

Download Lidar Data Set

Execute this code to download the highway scene data set. The data set contains 1617 point clouds
stored as pointCloud objects in a cell array. Corresponding ground truth data, which is attached to
the example, contains bounding box information of cars and trucks in each point cloud.

url = 'https://www.mathworks.com/supportfiles/lidar/data/WPI_LidarData.tar.gz';

outputFolder = fullfile(tempdir,'WPI');
lidarDataTarFile = fullfile(outputFolder,'WPI_LidarData.tar.gz');

if ~exist(lidarDataTarFile, 'file') 
    mkdir(outputFolder);
    
    disp('Downloading WPI Lidar driving data (760 MB)...');
    websave(lidarDataTarFile, url);
    untar(lidarDataTarFile,outputFolder); 
end

% Check if tar.gz file is downloaded, but not uncompressed.
if ~exist(fullfile(outputFolder, 'WPI_LidarData.mat'), 'file')
    untar(lidarDataTarFile,outputFolder);
end
lidarData = load(fullfile(outputFolder, 'WPI_LidarData.mat'));

groundTruthData = load('WPI_LidarGroundTruth.mat');

Note: Depending on your Internet connection, the download process can take some time. The code
suspends MATLAB® execution until the download process is complete. Alternatively, you can
download the data set to your local disk using your web browser, and then extract WPI_LidarData.
To use the file you downloaded from the web, change the outputFolder variable in the code to the
location of the downloaded file.

Download Pretrained Network

Download the pretrained network to avoid having to wait for training to complete. If you want to train
the network, set the doTraining variable to true.

 Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

12-41



doTraining = false;
if ~doTraining && ~exist('trainedPointSegNet.mat','file')
    disp('Downloading pretrained network (14 MB)...');
    pretrainedURL = 'https://www.mathworks.com/supportfiles/lidar/data/trainedPointSegNet.mat';
    websave('trainedPointSegNet.mat', pretrainedURL);
end

Downloading pretrained network (14 MB)...

Prepare Data for Training

Load Lidar Point Clouds and Class Labels

Use the helperGenerateTrainingData supporting function, attached to this example, to generate
training data from the lidar point clouds. The function uses point cloud and bounding box data to
create five-channel input images and pixel label images. To create the pixel label images, the function
selects points inside the bounding box and labels them with the bounding box class ID. Each training
image is specified as a 64-by-1024-by-5 array:

• The height of each image is 64 pixels.
• The width of each image is 1024 pixels.
• Each image has 5 channels. The five channels specify the 3-D coordinates of the point cloud,

intensity, and range: r = x2 + y2 + z2.

A visual representation of the training data follows.

Generate the five-channel training images and pixel label images.

imagesFolder = fullfile(outputFolder, 'images');
labelsFolder = fullfile(outputFolder, 'labels');

helperGenerateTrainingData(lidarData, groundTruthData, imagesFolder, labelsFolder); 

Preprocessing data 100.00% complete

The five-channel images are saved as MAT files. Pixel labels are saved as PNG files.

12 Lidar Examples

12-42



Note: Processing can take some time. The code suspends MATLAB® execution until processing is
complete.

Create ImageDatastore and PixelLabelDatastore

Use the imageDatastore object to extract and store the five channels of the 2-D spherical images
using the helperImageMatReader supporting function, which is a custom MAT file reader. This
function is attached to this example as a supporting file.

imds = imageDatastore(imagesFolder, ...
         'FileExtensions', '.mat', ...
         'ReadFcn', @helperImageMatReader);

Use the pixelLabelDatastore (Computer Vision Toolbox) object to store pixel-wise labels from the
label images. The object maps each pixel label to a class name. In this example, cars and trucks are
the only objects of interest; all other pixels are the background. Specify these classes (car, truck, and
background) and assign a unique label ID to each class.

classNames = [
    "background"
    "car"
    "truck"
];

numClasses = numel(classNames);

% Specify label IDs from 1 to the number of classes.
labelIDs = 1 : numClasses;

pxds = pixelLabelDatastore(labelsFolder, classNames, labelIDs);

Load and display one of the labeled images by overlaying it on the corresponding intensity image
using the helperDisplayLidarOverlayImage function, defined in the Supporting Functions on
page 12-48 section of this example.

imageNumber = 225;

% Point cloud (channels 1, 2, and 3 are for location, channel 4 is for intensity).
I = readimage(imds, imageNumber);

labelMap = readimage(pxds, imageNumber);
figure;
helperDisplayLidarOverlayImage(I, labelMap, classNames);
title('Ground Truth');

 Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

12-43



Prepare Training, Validation, and Test Sets

Use the helperPartitionLidarData supporting function, attached to this example, to split the
data into training, validation, and test sets that contain 970, 216, and 431 images, respectively.

[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = ...
    helperPartitionLidarData(imds, pxds);

Use the combine function to combine the pixel and image datastores for the training and validation
data sets.

trainingData = combine(imdsTrain, pxdsTrain); 
validationData = combine(imdsVal, pxdsVal);

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Augment the training data using the transform function with custom preprocessing operations
specified by the augmentData function, defined in the Supporting Functions on page 12-48 section
of this example. This function randomly flips the spherical 2-D image and associated labels in the
horizontal direction. Apply data augmentation to only the training data set.

augmentedTrainingData = transform(trainingData, @(x) augmentData(x));

Balance Classes Using Class Weighting

To see the distribution of class labels in the data set, use the countEachLabel (Computer Vision
Toolbox) function.

tbl = countEachLabel(pxds);
tbl(:,{'Name','PixelCount','ImagePixelCount'})

ans=3×3 table
         Name         PixelCount    ImagePixelCount
    ______________    __________    _______________

    {'background'}    1.0473e+08      1.0597e+08   
    {'car'       }    9.7839e+05      8.4738e+07   
    {'truck'     }    2.6017e+05      1.9726e+07   

The classes in this data set are imbalanced, which is a common issue in automotive data sets
containing street scenes. The background class covers more area than the car and truck classes. If
not handled correctly, this imbalance can be detrimental to the learning process because the learning
is biased in favor of the dominant classes.

Use these weights to correct the class imbalance. Use the pixel label counts from the
tbl.PixelCount property and calculate the median frequency class weights.

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq

classWeights = 3×1

    0.0133

12 Lidar Examples

12-44



    1.1423
    1.0000

Define Network Architecture

Create a PointSeg network using the createPointSeg supporting function, which is attached to the
example. The code returns the layer graph that you use to train the network.

inputSize = [64 1024 5];

lgraph = createPointSeg(inputSize, classNames, classWeights);

Use the analyzeNetwork function to display an interactive visualization of the network architecture.

analyzeNetwork(lgraph)

Specify Training Options

Use the rmsprop optimization algorithm to train the network. Specify the hyperparameters for the
algorithm by using the trainingOptions function.

maxEpochs = 30;
initialLearningRate= 5e-4;
miniBatchSize = 8;
l2reg = 2e-4;

options = trainingOptions('rmsprop', ...
    'InitialLearnRate', initialLearningRate, ...
    'L2Regularization', l2reg, ...
    'MaxEpochs', maxEpochs, ...
    'MiniBatchSize', miniBatchSize, ...
    'LearnRateSchedule', 'piecewise', ...
    'LearnRateDropFactor', 0.1, ...
    'LearnRateDropPeriod', 10, ...
    'ValidationData', validationData, ...
    'Plots', 'training-progress', ...
    'VerboseFrequency', 20);

Note: Reduce miniBatchSize to control memory usage when training.

Train Network

Use the trainNetwork function to train a PointSeg network if doTraining is true. Otherwise, load
the pretrained network.

If you train the network, you can use a CPU or a GPU. Using a GPU requires Parallel Computing
Toolbox™ and a CUDA® enabled NVIDIA® GPU. For more information, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

if doTraining    
    [net, info] = trainNetwork(trainingData, lgraph, options);
else
    pretrainedNetwork = load('trainedPointSegNet.mat');
    net = pretrainedNetwork.net;
end

 Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

12-45



Predict Results on Test Point Cloud

Use the trained network to predict results on a test point cloud and display the segmentation result.

First, read a PCD file and convert the point cloud to a five-channel input image. Predict the labels
using the trained network. Display the figure with the segmentation as an overlay.

ptCloud = pcread('ousterLidarDrivingData.pcd');
I = helperPointCloudToImage(ptCloud);
predictedResult = semanticseg(I, net);

figure;
helperDisplayLidarOverlayImage(I, predictedResult, classNames);
title('Semantic Segmentation Result');

Use the helperDisplayLidarOverlayPointCloud helper function, defined in the Supporting
Functions on page 12-48 section of this example, to display the segmentation result over the 3-D
point cloud object ptCloud .

figure;
helperDisplayLidarOverlayPointCloud(ptCloud, predictedResult, numClasses);
view([95.71 24.14])
title('Semantic Segmentation Result on Point Cloud');

12 Lidar Examples

12-46



Evaluate Network

Run the semanticseg function on the entire test set to measure the accuracy of the network. Set
MiniBatchSize to a value of 8 to reduce memory usage when segmenting images. You can increase
or decrease this value depending on the amount of GPU memory you have on your system.

outputLocation = fullfile(tempdir, 'output');
if ~exist(outputLocation,'dir')
    mkdir(outputLocation);
end
pxdsResults = semanticseg(imdsTest, net, ...
                'MiniBatchSize', 8, ...
                'WriteLocation', outputLocation, ...
                'Verbose', false);

The semanticseg function returns the segmentation results on the test data set as a
PixelLabelDatastore object. The function writes the actual pixel label data for each test image in
the imdsTest object to the disk in the location specified by the 'WriteLocation' argument.

Use the evaluateSemanticSegmentation (Computer Vision Toolbox) function to compute the
semantic segmentation metrics from the test set results.

metrics = evaluateSemanticSegmentation(pxdsResults, pxdsTest, 'Verbose', false);

You can measure the amount of overlap per class using the intersection-over-union (IoU) metric.

 Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

12-47



The evaluateSemanticSegmentation function returns metrics for the entire data set, for
individual classes, and for each test image. To see the metrics at the data set level, use the
metrics.DataSetMetrics property.

metrics.DataSetMetrics

ans=1×5 table
    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.99209          0.83752       0.67895      0.98685        0.91654  

The data set metrics provide a high-level overview of network performance. To see the impact each
class has on the overall performance, inspect the metrics for each class using the
metrics.ClassMetrics property.

metrics.ClassMetrics

ans=3×3 table
                  Accuracy      IoU      MeanBFScore
                  ________    _______    ___________

    background    0.99466     0.99212      0.98529  
    car           0.75977     0.50096      0.82682  
    truck         0.75814     0.54378      0.77119  

Although the network overall performance is good, the class metrics show that biased classes (car
and truck) are not segmented as well as the classes with abundant data (background). You can
improve the network performance by training the network on more labeled data containing the car
and truck classes.

Supporting Functions

Function to Augment Data

The augmentData function randomly flips the 2-D spherical image and associated labels in the
horizontal direction.

function out = augmentData(inp)
%augmentData Apply random horizontal flipping.

out = cell(size(inp));

% Randomly flip the five-channel image and pixel labels horizontally.
I = inp{1};
sz = size(I);
tform = randomAffine2d('XReflection',true);
rout = affineOutputView(sz,tform,'BoundsStyle','centerOutput');

out{1} = imwarp(I,tform,'OutputView',rout);
out{2} = imwarp(inp{2},tform,'OutputView',rout);
end

12 Lidar Examples

12-48



Function to Display Lidar Segmentation Map Overlaid on 2-D Spherical Image

The helperDisplayLidarOverlayImage function overlays the semantic segmentation map over
the intensity channel of the 2-D spherical image. The function also resizes the overlaid image for
better visualization.

function helperDisplayLidarOverlayImage(lidarImage, labelMap, classNames)
%helperDisplayLidarOverlayImage Overlay labels over the intensity image. 
% 
%  helperDisplayLidarOverlayImage(lidarImage, labelMap, classNames) 
%  displays the overlaid image. lidarImage is a five-channel lidar input. 
%  labelMap contains pixel labels and classNames is an array of label 
%  names.

% Read the intensity channel from the lidar image.
intensityChannel = uint8(lidarImage(:,:,4));

% Load the lidar color map.
cmap = helperLidarColorMap();

% Overlay the labels over the intensity image.
B = labeloverlay(intensityChannel,labelMap,'Colormap',cmap,'Transparency',0.4);

% Resize for better visualization.
B = imresize(B, 'Scale', [3 1], 'method', 'nearest');
imshow(B);

% Display the color bar.
helperPixelLabelColorbar(cmap, classNames); 
end

Function To Display Lidar Segmentation Map Overlaid on 3-D Point Cloud

The helperDisplayLidarOverPointCloud function overlays the segmentation result over a 3-D
organized point cloud.

function helperDisplayLidarOverlayPointCloud(ptCloud, labelMap, numClasses)
%helperDisplayLidarOverlayPointCloud Overlay labels over a point cloud object. 
% 
%  helperDisplayLidarOverlayPointCloud(ptCloud, labelMap, numClasses)
%  displays the overlaid pointCloud object. ptCloud is the organized
%  3-D point cloud input. labelMap contains pixel labels and numClasses
%  is the number of predicted classes.

sz = size(labelMap);

% Apply the color red to cars.
carClassCar = zeros(sz(1), sz(2), numClasses, 'uint8');
carClassCar(:,:,1) = 255*ones(sz(1), sz(2), 'uint8');

% Apply the color blue to trucks.
truckClassColor = zeros(sz(1), sz(2), numClasses, 'uint8');
truckClassColor(:,:,3) = 255*ones(sz(1), sz(2), 'uint8');

% Apply the color gray to the background.
backgroundClassColor = 153*ones(sz(1), sz(2), numClasses, 'uint8');

% Extract indices from the labels.

 Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

12-49



carIndices = labelMap == 'car';
truckIndices = labelMap == 'truck';
backgroundIndices = labelMap == 'background';

% Extract a point cloud for each class.
carPointCloud = select(ptCloud, carIndices, 'OutputSize','full');
truckPointCloud = select(ptCloud, truckIndices, 'OutputSize','full');
backgroundPointCloud = select(ptCloud, backgroundIndices, 'OutputSize','full');

% Apply colors to different classes.
carPointCloud.Color = carClassCar;
truckPointCloud.Color = truckClassColor;
backgroundPointCloud.Color = backgroundClassColor;

% Merge and add all the processed point clouds with class information.
coloredCloud = pcmerge(carPointCloud, truckPointCloud, 0.01);
coloredCloud = pcmerge(coloredCloud, backgroundPointCloud, 0.01);

% Plot the colored point cloud. Set an ROI for better visualization.
ax = pcshow(coloredCloud);
set(ax,'XLim',[-35.0 35.0],'YLim',[-32.0 32.0],'ZLim',[-3 8], ...
    'XColor','none','YColor','none','ZColor','none');
set(get(ax,'parent'), 'units','normalized');
end

Function to Define Lidar Colormap

The helperLidarColorMap function defines the colormap used by the lidar data set.

function cmap = helperLidarColorMap()

cmap = [
   0.00  0.00   0.00  % background
   0.98  0.00   0.00  % car
   0.00  0.00   0.98  % truck
   ];
end

Function to Display Pixel Label Colorbar

The helperPixelLabelColorbar function adds a colorbar to the current axis. The colorbar is
formatted to display the class names with the color.

function helperPixelLabelColorbar(cmap, classNames)

colormap(gca, cmap);

% Add a colorbar to the current figure.
c = colorbar('peer', gca);

% Use class names for tick marks.
c.TickLabels = classNames;
numClasses = size(classNames, 1);

% Center tick labels.
c.Ticks = 1/(numClasses * 2):1/numClasses:1;

% Remove tick marks.

12 Lidar Examples

12-50



c.TickLength = 0;
end

References

[1] Wang, Yuan, Tianyue Shi, Peng Yun, Lei Tai, and Ming Liu. “PointSeg: Real-Time Semantic
Segmentation Based on 3D LiDAR Point Cloud.” ArXiv:1807.06288 [Cs], September 25, 2018. http://
arxiv.org/abs/1807.06288.

 Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

12-51



Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2
Deep Learning Network

This example shows how to train a SqueezeSegV2 semantic segmentation network on 3-D organized
lidar point cloud data.

SqueezeSegV2 [1 on page 12-60] is a convolutional neural network (CNN) for performing end-to-end
semantic segmentation of an organized lidar point cloud. The training procedure shown in this
example requires 2-D spherical projected images as inputs to the deep learning network.

This example uses PandaSet data set from Hesai and Scale [2] on page 12-60. The PandaSet
contains 4800 unorganized lidar point cloud scans of the various city scenes captured using the
Pandar 64 sensor. The data set provides semantic segmentation labels for 42 different classes
including car, road, and pedestrian.

Download Lidar Data Set

This example uses a subset of PandaSet, that contains 2560 preprocessed organized point clouds.
Each point cloud is specified as a 64-by-1856 matrix. The corresponding ground truth contains the
semantic segmentation labels for 12 classes. The point clouds are stored in PCD format, and the
ground truth data is stored in PNG format. The size of the data set is 5.2 GB. Execute this code to
download the data set.

url = "https://ssd.mathworks.com/supportfiles/lidar/data/Pandaset_LidarData.tar.gz";
outputFolder = fullfile(tempdir,"Pandaset");
lidarDataTarFile = fullfile(outputFolder,"Pandaset_LidarData.tar.gz");
if ~exist(lidarDataTarFile,"file")
    mkdir(outputFolder);
    disp("Downloading Pandaset Lidar driving data (5.2 GB)...");
    websave(lidarDataTarFile,url);
    untar(lidarDataTarFile,outputFolder);
end
% Check if tar.gz file is downloaded, but not uncompressed.
if (~exist(fullfile(outputFolder,"Lidar"),"file"))...
        &&(~exist(fullfile(outputFolder,"semanticLabels"),"file"))
    untar(lidarDataTarFile,outputFolder);
end
lidarData =  fullfile(outputFolder,"Lidar");
labelsFolder = fullfile(outputFolder,"semanticLabels");

Depending on your Internet connection, the download process can take some time. The code
suspends MATLAB® execution until the download process is complete. Alternatively, you can
download the data set to your local disk using your web browser, and then extract
Pandaset_LidarData folder. The Pandaset_LidarData contains Lidar, Cuboids and
semanticLabels folders that holds the point clouds, cuboid label and semantic label info
respectively. To use the file you downloaded from the web, change the outputFolder variable in the
code to the location of the downloaded file.

The training procedure for this example is for organized point clouds. For an example showing how to
convert unorganized to organized point clouds, see “Unorganized to Organized Conversion of Point
Clouds Using Spherical Projection” (Lidar Toolbox).

12 Lidar Examples

12-52



Download Pretrained Network

Download the pretrained network to avoid having to wait for training to complete. If you want to train
the network, set the doTraining variable to true.

doTraining = false;
pretrainedNetURL = ...
"https://ssd.mathworks.com/supportfiles/lidar/data/trainedSqueezeSegV2PandasetNet.zip";
if ~doTraining
    downloadPretrainedSqueezeSegV2Net(outputFolder,pretrainedNetURL);
end

Downloading pretrained model (5 MB)...

Prepare Data for Training

Load Lidar Point Clouds and Class Labels

Use the helperTransformOrganizedPointCloudToTrainingData supporting function, attached
to this example, to generate training data from the lidar point clouds. The function uses point cloud
data to create five-channel input images. Each training image is specified as a 64-by-1856-by-5 array:

• The height of each image is 64 pixels.
• The width of each image is 1856 pixels.
• Each image has five channels. The five channels specify the 3-D coordinates of the point cloud,

intensity, and range: r = x2 + y2 + z2.

A visual representation of the training data follows.

Generate the five-channel training images.

imagesFolder = fullfile(outputFolder,"images");
helperTransformOrganizedPointCloudToTrainingData(lidarData,imagesFolder);

Preprocessing data 100% complete

 Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

12-53



The five-channel images are saved as MAT files.

Processing can take some time. The code suspends MATLAB® execution until processing is complete.

Create imageDatastore and pixelLabelDatastore

Create an imageDatastore to extract and store the five channels of the 2-D spherical images using
imageDatastore and the helperImageMatReader supporting function, which is a custom MAT file
reader. This function is attached to this example as a supporting file.

imds = imageDatastore(imagesFolder, ...
    "FileExtensions",".mat", ...
    "ReadFcn",@helperImageMatReader);

Create a pixel label datastore using pixelLabelDatastore (Computer Vision Toolbox) to store
pixel-wise labels from the pixel label images. The object maps each pixel label to a class name. In this
example, the vegetation, ground, road, road markings, sidewalk, cars, trucks, other vehicles,
pedestrian, road barrier, signs, and buildings are the objects of interest; all other pixels are the
background. Specify these classes and assign a unique label ID to each class.

classNames = ["unlabelled"
              "Vegetation"
              "Ground"
              "Road"
              "RoadMarkings"
              "SideWalk"
              "Car"
              "Truck"
              "OtherVehicle"
              "Pedestrian"
              "RoadBarriers"
              "Signs"
              "Buildings"];
numClasses = numel(classNames);
% Specify label IDs from 1 to the number of classes.
labelIDs = 1 : numClasses;
pxds = pixelLabelDatastore(labelsFolder,classNames,labelIDs);

Load and display one of the labeled images by overlaying it on the corresponding intensity image
using the helperDisplayLidarOverlaidImage function, defined in the Supporting Functions on
page 12-58 section of this example.

% Point cloud (channels 1, 2, and 3 are for location, channel 4 is for intensity, and channel 5 is for range).
I = read(imds);
labelMap = read(pxds);
figure;
helperDisplayLidarOverlaidImage(I,labelMap{1,1},classNames);
title("Ground Truth");

12 Lidar Examples

12-54



Prepare Training, Validation, and Test Sets

Use the helperPartitionLidarSegmentationDataset supporting function, attached to this
example, to split the data into training, validation, and test sets. You can split the training data
according to the percentage specified by the trainingDataPercentage. Divide the rest of the data
in a 2:1 ratio into validation and testing data. Default value of trainingDataPercentage is 0.7.

[imdsTrain,imdsVal,imdsTest,pxdsTrain,pxdsVal,pxdsTest] = ...
helperPartitionLidarSegmentationDataset(imds,pxds,"trainingDataPercentage",0.75);

Use the combine function to combine the pixel label and image datastores for the training and
validation data.

trainingData = combine(imdsTrain,pxdsTrain);
validationData = combine(imdsVal,pxdsVal);

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Augment the training data by using the transform function with custom preprocessing operations
specified by the helperAugmentData function, defined in the Supporting Functions on page 12-58
section of this example. This function randomly flips the multichannel 2-D image and associated
labels in the horizontal direction. Apply data augmentation to only the training data set.

augmentedTrainingData = transform(trainingData,@(x) helperAugmentData(x));

Define Network Architecture

Create a standard SqueezeSegV2 [1 on page 12-60] network by using the squeezesegv2Layers
(Lidar Toolbox) function. In the SqueezeSegV2 network, the encoder subnetwork consists of
FireModules interspersed with max-pooling layers. This arrangement successively decreases the
resolution of the input image. In addition, the SqueezeSegV2 network uses the focal loss function to
mitigate the effect of the imbalanced class distribution on network accuracy. For more details on how
to use the focal loss function in semantic segmentation, see focalLossLayer (Computer Vision
Toolbox).

Execute this code to create a layer graph that can be used to train the network.

inputSize = [64 1856 5];
lgraph = squeezesegv2Layers(inputSize, ...
numClasses,"NumEncoderModules",4,"NumContextAggregationModules",2);

Use the analyzeNetwork function to display an interactive visualization of the network architecture.

analyzeNetwork(lgraph);

Specify Training Options

Use the Adam optimization algorithm to train the network. Use the trainingOptions function to
specify the hyperparameters.

maxEpochs = 30;
initialLearningRate = 1e-3;
miniBatchSize = 8;

 Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

12-55



l2reg = 2e-4;
options = trainingOptions("adam", ...
    "InitialLearnRate",initialLearningRate, ...
    "L2Regularization",l2reg, ...
    "MaxEpochs",maxEpochs, ...
    "MiniBatchSize",miniBatchSize, ...
    "LearnRateSchedule","piecewise", ...
    "LearnRateDropFactor",0.1, ...
    "LearnRateDropPeriod",10, ...
    "ValidationData",validationData, ...
    "Plots","training-progress", ...
    "VerboseFrequency",20);

Note: Reduce the miniBatchSize value to control memory usage when training.

Train Network

You can train the network yourself by setting the doTraining argument to true. If you train the
network, you can use a CPU or a GPU. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). Otherwise, load a pretrained network.

if doTraining
    [net,info] = trainNetwork(trainingData,lgraph,options);
else
    load(fullfile(outputFolder,"trainedSqueezeSegV2PandasetNet.mat"),"net");
end

Predict Results on Test Point Cloud

Use the trained network to predict results on a test point cloud and display the segmentation result.
First, read a five-channel input image and predict the labels using the trained network.

Display the figure with the segmentation as an overlay.

I = read(imdsTest);
predictedResult = semanticseg(I,net);
figure;
helperDisplayLidarOverlaidImage(I,predictedResult,classNames);
title("Semantic Segmentation Result");

Use the helperDisplayLabelOverlaidPointCloud function, defined in the Supporting Functions
on page 12-58 section of this example, to display the segmentation result on the point cloud.

figure;
helperDisplayLabelOverlaidPointCloud(I,predictedResult);                          
view([39.2 90.0 60]);
title("Semantic Segmentation Result on Point Cloud");

12 Lidar Examples

12-56



Evaluate Network

Use the evaluateSemanticSegmentation (Computer Vision Toolbox) function to compute the
semantic segmentation metrics from the test set results.

outputLocation = fullfile(tempdir,"output");
if ~exist(outputLocation,"dir")
    mkdir(outputLocation);
end
pxdsResults = semanticseg(imdsTest,net, ...
    "MiniBatchSize",4, ...
    "WriteLocation",outputLocation, ...
    "Verbose",false);
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest,"Verbose",false);

You can measure the amount of overlap per class using the intersection-over-union (IoU) metric.

The evaluateSemanticSegmentation (Computer Vision Toolbox) function returns metrics for the
entire data set, for individual classes, and for each test image. To see the metrics at the data set level,
use the metrics.DataSetMetrics property.

metrics.DataSetMetrics

ans=1×5 table
    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

 Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

12-57



       0.89724          0.61685       0.54431      0.81806        0.74537  

The data set metrics provide a high-level overview of network performance. To see the impact each
class has on the overall performance, inspect the metrics for each class using the
metrics.ClassMetrics property.

metrics.ClassMetrics 

ans=13×3 table
                    Accuracy      IoU      MeanBFScore
                    ________    _______    ___________

    unlabelled         0.94      0.9005      0.99911  
    Vegetation      0.77873     0.64819      0.95466  
    Ground          0.69019     0.59089      0.60657  
    Road            0.94045     0.83663      0.99084  
    RoadMarkings    0.37802     0.34149      0.77073  
    SideWalk         0.7874     0.65668      0.93687  
    Car              0.9334     0.81065      0.95448  
    Truck           0.30352     0.27401      0.37273  
    OtherVehicle    0.64397     0.58108      0.47253  
    Pedestrian      0.26214     0.20896      0.45918  
    RoadBarriers    0.23955     0.21971      0.19433  
    Signs           0.17276     0.15613      0.44275  
    Buildings       0.94891     0.85117      0.96929  

Although the overall network performance is good, the class metrics for some classes like
RoadMarkings and Truck indicate that more training data is required for better performance.

Supporting Functions

Function to Augment Data

The helperAugmentData function randomly flips the spherical image and associated labels in the
horizontal direction.

function out = helperAugmentData(inp)
% Apply random horizontal flipping.
out = cell(size(inp));
% Randomly flip the five-channel image and pixel labels horizontally.
I = inp{1};
sz = size(I);
tform = randomAffine2d("XReflection",true);
rout = affineOutputView(sz,tform,"BoundsStyle","centerOutput");
out{1} = imwarp(I,tform,"OutputView",rout);
out{2} = imwarp(inp{2},tform,"OutputView",rout);
end

Function to Display Lidar Segmentation Map Overlaid on 2-D Spherical Image

The helperDisplayLidarOverlaidImage function overlays the semantic segmentation map over
the intensity channel of the 2-D spherical image. The function also resizes the overlaid image for
better visualization.

function helperDisplayLidarOverlaidImage(lidarImage,labelMap,classNames)
%  helperDisplayLidarOverlaidImage(lidarImage, labelMap, classNames)

12 Lidar Examples

12-58



%  displays the overlaid image. lidarImage is a five-channel lidar input.
%  labelMap contains pixel labels and classNames is an array of label
%  names.
% Read the intensity channel from the lidar image.
intensityChannel = uint8(lidarImage(:,:,4));
% Load the lidar color map.
cmap = helperPandasetColorMap;
% Overlay the labels over the intensity image.
B = labeloverlay(intensityChannel,labelMap,"Colormap",cmap,"Transparency",0.4);
% Resize for better visualization.
B = imresize(B,"Scale",[3 1],"method","nearest");
imshow(B);
helperPixelLabelColorbar(cmap,classNames);
end

Function to Display Lidar Segmentation Map Overlaid on 3-D Point Cloud

The helperDisplayLabelOverlaidPointCloud function overlays the segmentation result over a
3-D organized point cloud.

function helperDisplayLabelOverlaidPointCloud(I,predictedResult)
%  helperDisplayLabelOverlaidPointCloud(I, predictedResult)
%  displays the overlaid pointCloud object. I is the 5 channels organized
%  input image. predictedResult contains pixel labels.
ptCloud = pointCloud(I(:,:,1:3),"Intensity",I(:,:,4));
cmap = helperPandasetColorMap;
B = ...
labeloverlay(uint8(ptCloud.Intensity),predictedResult,"Colormap",cmap,"Transparency",0.4);
pc = pointCloud(ptCloud.Location,"Color",B);
figure;
ax = pcshow(pc);
set(ax,"XLim",[-70 70],"YLim",[-70 70]);
zoom(ax,3.5);
end

Function to Define Lidar Colormap

The helperPandasetColorMap function defines the colormap used by the lidar data set.

function cmap = helperPandasetColorMap
cmap = [[30 30 30];      % Unlabeled
        [0 255 0];       % Vegetation
        [255 150 255]; % Ground
        [255 0 255];     % Road
        [255 0 0];       % Road Markings
        [90 30 150];   % Sidewalk
        [245 150 100];   % Car
        [250 80 100];  % Truck
        [150 60 30];   % Other Vehicle
        [255 255 0];   % Pedestrian
        [0 200 255];   % Road Barriers
        [170 100 150];   % Signs
        [30 30 255]];  % Building
cmap = cmap./255;
end

 Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

12-59



Function to Display Pixel Label Colorbar

The helperPixelLabelColorbar function adds a colorbar to the current axis. The colorbar is
formatted to display the class names with the color.

function helperPixelLabelColorbar(cmap,classNames)
colormap(gca,cmap);
% Add a colorbar to the current figure.
c = colorbar("peer",gca);
% Use class names for tick marks.
c.TickLabels = classNames;
numClasses = size(classNames,1);
% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;
% Remove tick marks.
c.TickLength = 0;
end

Function to Download Pretrained Model

The downloadPretrainedSqueezeSegV2Net function downloads the pretrained model.

function downloadPretrainedSqueezeSegV2Net(outputFolder,pretrainedNetURL)
    preTrainedMATFile = fullfile(outputFolder,"trainedSqueezeSegV2PandasetNet.mat");
    preTrainedZipFile = fullfile(outputFolder,"trainedSqueezeSegV2PandasetNet.zip");
    
    if ~exist(preTrainedMATFile,"file")
        if ~exist(preTrainedZipFile,"file")
            disp("Downloading pretrained model (5 MB)...");
            websave(preTrainedZipFile,pretrainedNetURL);
        end
        unzip(preTrainedZipFile,outputFolder);   
    end       
end

References

[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from
a LiDAR Point Cloud.” In 2019 International Conference on Robotics and Automation (ICRA), 4376–
82. Montreal, QC, Canada: IEEE, 2019.https://doi.org/10.1109/ICRA.2019.8793495.

[2] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset

12 Lidar Examples

12-60

https://doi.org/10.1109/ICRA.2019.8793495
https://scale.com/open-datasets/pandaset


Code Generation for Lidar Point Cloud Segmentation Network

This example shows how to generate CUDA® MEX code for a deep learning network for lidar
semantic segmentation. This example uses a pretrained SqueezeSegV2 [1] network that can segment
organized lidar point clouds belonging to three classes (background, car, and truck). For information
on the training procedure for the network, see “Lidar Point Cloud Semantic Segmentation Using
SqueezeSegV2 Deep Learning Network” (Lidar Toolbox). The generated MEX code takes a point
cloud as input and performs prediction on the point cloud by using the DAGNetwork object for the
SqueezeSegV2 network.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• NVIDIA TensorRT library.
• Environment variables for the compilers and libraries. For details, see “Third-Party Hardware”

(GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Segmentation Network

SqueezeSegV2 is a convolutional neural network (CNN) designed for the semantic segmentation of
organized lidar point clouds. It is a deep encoder-decoder segmentation network trained on a lidar
data set and imported into MATLAB® for inference. In SqueezeSegV2, the encoder subnetwork
consists of convolution layers that are interspersed with max-pooling layers. This arrangement
successively decreases the resolution of the input image. The decoder subnetwork consists of a series
of transposed convolution layers, which successively increase the resolution of the input image. In
addition, the SqueezeSegV2 network mitigates the impact of missing data by including context
aggregation modules (CAMs). A CAM is a convolutional subnetwork with filterSize of value [7, 7] that
aggregates contextual information from a larger receptive field, which improves the robustness of the
network to missing data. The SqueezeSegV2 network in this example is trained to segment points
belonging to three classes (background, car, and truck).

 Code Generation for Lidar Point Cloud Segmentation Network

12-61



For more information on training a semantic segmentation network in MATLAB® by using the
Mathworks lidar dataset, see “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep
Learning Network” (Lidar Toolbox).

Download the pretrained SqueezeSegV2 Network.

net = getSqueezeSegV2Net();

Downloading pretrained SqueezeSegV2 (2 MB)...

The DAG network contains 238 layers, including convolution, ReLU, and batch normalization layers,
and a focal loss output layer. To display an interactive visualization of the deep learning network
architecture, use the analyzeNetwork function.

analyzeNetwork(net);

squeezesegv2_predict Entry-Point Function

The squeezesegv2_predict.m entry-point function, which is attached to this example, takes a
point cloud as input and performs prediction on it by using the deep learning network saved in the
SqueezeSegV2Net.mat file. The function loads the network object from the
SqueezeSegV2Net.mat file into a persistent variable mynet and reuses the persistent variable in
subsequent prediction calls.

type('squeezesegv2_predict.m');

function out = squeezesegv2_predict(in)
%#codegen

% A persistent object mynet is used to load the DAG network object. At
% the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.

% Copyright 2020 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('SqueezeSegV2Net.mat');
end

% pass in input
out = predict(mynet,in);

Generate CUDA MEX Code

To generate CUDA MEX code for the squeezesegv2_predict.m entry-point function, create a GPU
code configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command, specifying an input size of [64, 1024, 5]. This value corresponds to the
size of the input layer of the SqueezeSegV2 network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';

12 Lidar Examples

12-62



cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg squeezesegv2_predict -args {ones(64,1024,5,'uint8')} -report

Code generation successful: View report

To generate CUDA C++ code that takes advantage of NVIDIA TensorRT libraries, in the code, specify
coder.DeepLearningConfig('tensorrt') instead of
coder.DeepLearningConfig('cudnn').

For information on how to generate MEX code for deep learning networks on Intel® processors, see
“Code Generation for Deep Learning Networks with MKL-DNN” (MATLAB Coder).

Prepare Data

Load an organized test point cloud in MATLAB®. Convert the point cloud to a five-channel image for
prediction.

ptCloud = pcread('ousterLidarDrivingData.pcd');
I = pointCloudToImage(ptCloud);

% Examine converted data
whos I

  Name       Size                 Bytes  Class    Attributes

  I         64x1024x5            327680  uint8              

The image has five channels. The (x,y,z) point coordinates comprise the first three channels. The
fourth channel contains the lidar intensity measurement. The fifth channel contains the range
information, which is computed as r = x2 + y2 + z2.

Visualize intensity channel of the image.

intensityChannel = I(:,:,4);    

figure;
imshow(intensityChannel);
title('Intensity Image');

Run Generated MEX on Data

Call squeezesegv2_predict_mex on the five-channel image.

predict_scores = squeezesegv2_predict_mex(I);

The predict_scores variable is a three-dimensional matrix that has three channels corresponding
to the pixel-wise prediction scores for every class. Compute the channel by using the maximum
prediction score to get the pixel-wise labels

[~,argmax] = max(predict_scores,[],3);

 Code Generation for Lidar Point Cloud Segmentation Network

12-63



Overlay the segmented labels on the intensity channel image and display the segmented region.
Resize the segmented output and add a colorbar for better visualization.

classes = [
    "background"
    "car"
    "truck"
    ];

cmap = lidarColorMap();
SegmentedImage = labeloverlay(intensityChannel,argmax,'ColorMap',cmap);
SegmentedImage = imresize(SegmentedImage, 'Scale', [2 1], 'method', 'nearest');
figure;
imshow(SegmentedImage);

N = numel(classes);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classes),'Ticks',ticks,'TickLength',0,'TickLabelInterpreter','none');
colormap(cmap)
title('Semantic Segmentation Result');

Run Generated MEX Code on Point Cloud Sequence

Read an input point cloud sequence. The sequence contains 10 organized pointCloud frames
collected using an Ouster OS1 lidar sensor. The input data has a height of 64 and a width of 1024, so
each pointCloud object is of size 64-by-1024.

dataFile = 'highwaySceneData.mat';

% Load data in workspace.
load(dataFile);

Setup different colors to visualize point-wise labels for different classes of interest.

% Apply the color red to cars.
carClassCar = zeros(64, 1024, 3, 'uint8');
carClassCar(:,:,1) = 255*ones(64, 1024, 'uint8');

% Apply the color blue to trucks.
truckClassColor = zeros(64, 1024, 3, 'uint8');
truckClassColor(:,:,3) = 255*ones(64, 1024, 'uint8');

% Apply the color gray to background.
backgroundClassColor = 153*ones(64, 1024, 3, 'uint8');

Set the pcplayer function properties to display the sequence and the output predictions. Read the
input sequence frame by frame and detect classes of interest using the model.

12 Lidar Examples

12-64



xlimits = [0 120.0];
ylimits = [-80.7 80.7];
zlimits = [-8.4 27];

player = pcplayer(xlimits, ylimits, zlimits);
set(get(player.Axes,'parent'), 'units','normalized','outerposition',[0 0 1 1]);
zoom(get(player.Axes,'parent'),2);
set(player.Axes,'XColor','none','YColor','none','ZColor','none');

for i = 1 : numel(inputData)
    ptCloud = inputData{i};
    
    % Convert point cloud to five-channel image for prediction.
    I = pointCloudToImage(ptCloud);
    
    % Call squeezesegv2_predict_mex on the 5-channel image.
    predict_scores = squeezesegv2_predict_mex(I);
    
    % Convert the numeric output values to categorical labels.
    [~,predictedOutput] = max(predict_scores,[],3);
    predictedOutput = categorical(predictedOutput, 1:3, classes);
    
    % Extract the indices from labels.
    carIndices = predictedOutput == 'car';
    truckIndices = predictedOutput == 'truck';
    backgroundIndices = predictedOutput == 'background';
    
    % Extract a point cloud for each class.
    carPointCloud = select(ptCloud, carIndices, 'OutputSize','full');
    truckPointCloud = select(ptCloud, truckIndices, 'OutputSize','full');
    backgroundPointCloud = select(ptCloud, backgroundIndices, 'OutputSize','full');
    
    % Fill the colors to different classes.
    carPointCloud.Color = carClassCar;
    truckPointCloud.Color = truckClassColor;
    backgroundPointCloud.Color = backgroundClassColor;
    
    % Merge and add all the processed point clouds with class information.
    coloredCloud = pcmerge(carPointCloud, truckPointCloud, 0.01);
    coloredCloud = pcmerge(coloredCloud, backgroundPointCloud, 0.01);
    
    % View the output.
    view(player, coloredCloud);
    drawnow;
end

 Code Generation for Lidar Point Cloud Segmentation Network

12-65



Helper Functions

The helper functions used in this example follow.

type pointCloudToImage.m

function image = pointCloudToImage(ptcloud)
%pointCloudToImage Converts organized 3-D point cloud to 5-channel 
%   2-D image.

image = ptcloud.Location;
image(:,:,4) = ptcloud.Intensity;
rangeData = iComputeRangeData(image(:,:,1),image(:,:,2),image(:,:,3));
image(:,:,5) = rangeData;

% Cast to uint8.
image = uint8(image);
end

%--------------------------------------------------------------------------
function rangeData = iComputeRangeData(xChannel,yChannel,zChannel)
rangeData = sqrt(xChannel.*xChannel+yChannel.*yChannel+zChannel.*zChannel);
end

type lidarColorMap.m

function cmap = lidarColorMap()

cmap = [
   0.00  0.00   0.00  % background
   0.98  0.00   0.00  % car
   0.00  0.00   0.98  % truck
   ];
end

12 Lidar Examples

12-66



References

[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from
a LiDAR Point Cloud.” Preprint, submitted September 22, 2018. http://arxiv.org/abs/1809.08495.

 Code Generation for Lidar Point Cloud Segmentation Network

12-67



Lidar 3-D Object Detection Using PointPillars Deep Learning

This example shows how to train a PointPillars network for object detection in point clouds.

Lidar point cloud data can be acquired by a variety of lidar sensors, including Velodyne®, Pandar, and
Ouster sensors. These sensors capture 3-D position information about objects in a scene, which is
useful for many applications in autonomous driving and augmented reality. However, training robust
detectors with point cloud data is challenging because of the sparsity of data per object, object
occlusions, and sensor noise. Deep learning techniques have been shown to address many of these
challenges by learning robust feature representations directly from point cloud data. One deep
learning technique for 3-D object detection is PointPillars [1 on page 12-79]. Using a similar
architecture to PointNet, the PointPillars network extracts dense, robust features from sparse point
clouds called pillars, then uses a 2-D deep learning network with a modified SSD object detection
network to estimate joint 3-D bounding boxes, orientations, and class predictions.

Download Lidar Data Set

This example uses a subset of PandaSet [2 on page 12-79] that contains 2560 preprocessed
organized point clouds. Each point cloud covers 360o of view, and is specified as a 64-by-1856 matrix.
The point clouds are stored in PCD format and their corresponding ground truth data is stored in the
PandaSetLidarGroundTruth.mat file. The file contains 3-D bounding box information for three
classes, which are car, truck, and pedestrian. The size of the data set is 5.2 GB.

Download the Pandaset dataset from the given URL using the helperDownloadPandasetData
helper function, defined at the end of this example.

doTraining = false;

outputFolder = fullfile(tempdir,'Pandaset');

lidarURL = ['https://ssd.mathworks.com/supportfiles/lidar/data/' ...
    'Pandaset_LidarData.tar.gz'];
helperDownloadPandasetData(outputFolder,lidarURL);

Depending on your Internet connection, the download process can take some time. The code
suspends MATLAB® execution until the download process is complete. Alternatively, you can
download the data set to your local disk using your web browser and extract the file. If you do so,
change the outputFolder variable in the code to the location of the downloaded file. The
downloaded file contains Lidar, Cuboids and semanticLabels folders that holds the point clouds,
cuboid label and semantic label info respectively

Load Data

Create a file datastore to load the PCD files from the specified path using the pcread (Computer
Vision Toolbox) function.

path = fullfile(outputFolder,'Lidar');
lidarData = fileDatastore(path,'ReadFcn',@(x) pcread(x));

Load the 3-D bounding box labels of the car and truck objects.

gtPath = fullfile(outputFolder,'Cuboids','PandaSetLidarGroundTruth.mat');
data = load(gtPath,'lidarGtLabels');

12 Lidar Examples

12-68



Labels = timetable2table(data.lidarGtLabels);
boxLabels = Labels(:,2:3);

Display the full-view point cloud.

figure
ptCld = read(lidarData);
ax = pcshow(ptCld.Location);
set(ax,'XLim',[-50 50],'YLim',[-40 40]);
zoom(ax,2.5);
axis off;

reset(lidarData);

Preprocess Data

The PandaSet data consists of full-view point clouds. For this example, crop the full-view point clouds
to front-view point clouds using the standard parameters [1 on page 12-79]. These parameters
determine the size of the input passed to the network. Select a smaller point cloud range along the x,
y, and z-axis to detect objects closer to origin. This also decreases the overall training time of the
network.

 Lidar 3-D Object Detection Using PointPillars Deep Learning

12-69



xMin = 0.0;     % Minimum value along X-axis.
yMin = -39.68;  % Minimum value along Y-axis.
zMin = -5.0;    % Minimum value along Z-axis.
xMax = 69.12;   % Maximum value along X-axis.
yMax = 39.68;   % Maximum value along Y-axis.
zMax = 5.0;     % Maximum value along Z-axis.
xStep = 0.16;   % Resolution along X-axis.
yStep = 0.16;   % Resolution along Y-axis.
dsFactor = 2.0; % Downsampling factor.

% Calculate the dimensions for the pseudo-image.
Xn = round(((xMax - xMin)/xStep));
Yn = round(((yMax - yMin)/yStep));

% Define point cloud parameters.
pointCloudRange = [xMin xMax yMin yMax zMin zMax];
voxelSize = [xStep yStep];

Use the cropFrontViewFromLidarData helper function, attached to this example as a supporting
file, to:

• Crop the front view from the input full-view point cloud.
• Select the box labels that are inside the ROI specified by gridParams.

[croppedPointCloudObj,processedLabels] = cropFrontViewFromLidarData(...
    lidarData,boxLabels,pointCloudRange);

Processing data 100% complete

Display the cropped point cloud and the ground truth box labels using the
helperDisplay3DBoxesOverlaidPointCloud helper function defined at the end of the example.

pc = croppedPointCloudObj{1,1};
gtLabelsCar = processedLabels.Car{1};
gtLabelsTruck = processedLabels.Truck{1};

helperDisplay3DBoxesOverlaidPointCloud(pc.Location,gtLabelsCar,...
   'green',gtLabelsTruck,'magenta','Cropped Point Cloud');

12 Lidar Examples

12-70



reset(lidarData);

Create Datastore Objects for Training

Split the data set into training and test sets. Select 70% of the data for training the network and the
rest for evaluation.

rng(1);
shuffledIndices = randperm(size(processedLabels,1));
idx = floor(0.7 * length(shuffledIndices));

trainData = croppedPointCloudObj(shuffledIndices(1:idx),:);
testData = croppedPointCloudObj(shuffledIndices(idx+1:end),:);

trainLabels = processedLabels(shuffledIndices(1:idx),:);
testLabels = processedLabels(shuffledIndices(idx+1:end),:);

So that you can easily access the datastores, save the training data as PCD files by using the
saveptCldToPCD helper function, attached to this example as a supporting file. You can set
writeFiles to "false" if your training data is saved in a folder and is supported by the pcread
(Computer Vision Toolbox) function.

 Lidar 3-D Object Detection Using PointPillars Deep Learning

12-71



writeFiles = true;
dataLocation = fullfile(outputFolder,'InputData');
[trainData,trainLabels] = saveptCldToPCD(trainData,trainLabels,...
    dataLocation,writeFiles);

Processing data 100% complete

Create a file datastore using fileDatastore to load PCD files using the pcread (Computer Vision
Toolbox) function.

lds = fileDatastore(dataLocation,'ReadFcn',@(x) pcread(x));

Createa box label datastore using boxLabelDatastore (Computer Vision Toolbox) for loading the 3-
D bounding box labels.

bds = boxLabelDatastore(trainLabels);

Use the combine function to combine the point clouds and 3-D bounding box labels into a single
datastore for training.

cds = combine(lds,bds);

Data Augmentation

This example uses ground truth data augmentation and several other global data augmentation
techniques to add more variety to the training data and corresponding boxes. For more information
on typical data augmentation techniques used in 3-D object detection workflows with lidar data, see
the “Data Augmentations for Lidar Object Detection Using Deep Learning” (Lidar Toolbox).

Read and display a point cloud before augmentation using the
helperDisplay3DBoxesOverlaidPointCloud helper function, defined at the end of the example..

augData = read(cds);
augptCld = augData{1,1};
augLabels = augData{1,2};
augClass = augData{1,3};

labelsCar = augLabels(augClass=='Car',:);
labelsTruck = augLabels(augClass=='Truck',:);

helperDisplay3DBoxesOverlaidPointCloud(augptCld.Location,labelsCar,'green',...
    labelsTruck,'magenta','Before Data Augmentation');

12 Lidar Examples

12-72



reset(cds);

Use the sampleLidarData function to sample 3-D bounding boxes and their corresponding points
from the training data.

classNames = {'Car','Truck'};
sampleLocation = fullfile(outputFolder,'GTsamples');
[ldsSampled,bdsSampled] = sampleLidarData(cds,classNames,'MinPoints',20,...                  
                            'Verbose',false,'WriteLocation',sampleLocation);
cdsSampled = combine(ldsSampled,bdsSampled);

Use the pcBboxOversample function to randomly add a fixed number of car and truck class objects
to every point cloud. Use the transform function to apply the ground truth and custom data
augmentations to the training data.

numObjects = [10 10];
cdsAugmented = transform(cds,@(x)pcBboxOversample(x,cdsSampled,classNames,numObjects));

Apply these additional data augmentation techniques to every point cloud.

 Lidar 3-D Object Detection Using PointPillars Deep Learning

12-73



• Random flipping along the x-axis
• Random scaling by 5 percent
• Random rotation along the z-axis from [-pi/4, pi/4]
• Random translation by [0.2, 0.2, 0.1] meters along the x-, y-, and z-axis respectively

cdsAugmented = transform(cdsAugmented,@(x)augmentData(x));

Display an augmented point cloud along with the ground truth augmented boxes using the
helperDisplay3DBoxesOverlaidPointCloud helper function, defined at the end of the example.

augData = read(cdsAugmented);
augptCld = augData{1,1};
augLabels = augData{1,2};
augClass = augData{1,3};

labelsCar = augLabels(augClass=='Car',:);
labelsTruck = augLabels(augClass=='Truck',:);

helperDisplay3DBoxesOverlaidPointCloud(augptCld.Location,labelsCar,'green',...
    labelsTruck,'magenta','After Data Augmentation');

12 Lidar Examples

12-74



reset(cdsAugmented);

Create PointPillars Object Detector

Use the pointPillarsObjectDetector (Lidar Toolbox) function to create a PointPillars object
detection network. For more information on PointPillars network, see “Getting Started with
PointPillars” (Lidar Toolbox).

The diagram shows the network architecture of a PointPillars object detector. You can use the Deep
Network Designer App to create a PointPillars network.

The pointPillarsObjectDetector (Lidar Toolbox) function requires you to specify several inputs
that parameterize the PointPillars network:

• Class names
• Anchor boxes
• Point cloud range
• Voxel size
• Number of prominent pillars
• Number of points per pillar

% Define the number of prominent pillars.
P = 12000; 

% Define the number of points per pillar.
N = 100;   

Estimate the anchor boxes from training data using calculateAnchorsPointPillars helper
function, attached to this example as a supporting file.

anchorBoxes = calculateAnchorsPointPillars(trainLabels);
classNames = trainLabels.Properties.VariableNames;

Define the PointPillars detector.

 Lidar 3-D Object Detection Using PointPillars Deep Learning

12-75



detector = pointPillarsObjectDetector(pointCloudRange,classNames,anchorBoxes,...
    'VoxelSize',voxelSize,'NumPillars',P,'NumPointsPerPillar',N);

Train Pointpillars Object Detector

Specify the network training parameters using the trainingOptions function. Set
'CheckpointPath' to a temporary location to enable saving of partially trained detectors during
the training process. If training is interrupted, you can resume training from the saved checkpoint.

Train the detector using a CPU or GPU. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). To automatically detect if you have a GPU available, set
executionEnvironment to "auto". If you do not have a GPU, or do not want to use one for
training, set executionEnvironment to "cpu". To ensure the use of a GPU for training, set
executionEnvironment to "gpu".

executionEnvironment = "auto";
if canUseParallelPool
    dispatchInBackground = true;
else
    dispatchInBackground = false;
end

options = trainingOptions('adam',...
    'Plots',"none",...
    'MaxEpochs',60,...
    'MiniBatchSize',3,...
    'GradientDecayFactor',0.9,...
    'SquaredGradientDecayFactor',0.999,...
    'LearnRateSchedule',"piecewise",...
    'InitialLearnRate',0.0002,...
    'LearnRateDropPeriod',15,...
    'LearnRateDropFactor',0.8,...
    'ExecutionEnvironment',executionEnvironment,...
    'DispatchInBackground',dispatchInBackground,...
    'BatchNormalizationStatistics','moving',...
    'ResetInputNormalization',false,...
    'CheckpointPath',tempdir);

Use the trainPointPillarsObjectDetector (Lidar Toolbox) function to train the PointPillars
object detector if doTraining is "true". Otherwise, load a pretrained detector.

if doTraining    
    [detector,info] = trainPointPillarsObjectDetector(cdsAugmented,detector,options);
else
    pretrainedDetector = load('pretrainedPointPillarsDetector.mat','detector');
    detector = pretrainedDetector.detector;
end

Generate Detections

Use the trained network to detect objects in the test data:

• Read the point cloud from the test data.
• Run the detector on the test point cloud to get the predicted bounding boxes and confidence

scores.

12 Lidar Examples

12-76



• Display the point cloud with bounding boxes using the
helperDisplay3DBoxesOverlaidPointCloud helper function, defined at the end of the
example.

ptCloud = testData{45,1};
gtLabels = testLabels(45,:);

% Specify the confidence threshold to use only detections with
% confidence scores above this value.
confidenceThreshold = 0.5;
[box,score,labels] = detect(detector,ptCloud,'Threshold',confidenceThreshold);

boxlabelsCar = box(labels'=='Car',:);
boxlabelsTruck = box(labels'=='Truck',:);

% Display the predictions on the point cloud.
helperDisplay3DBoxesOverlaidPointCloud(ptCloud.Location,boxlabelsCar,'green',...
    boxlabelsTruck,'magenta','Predicted Bounding Boxes');

 Lidar 3-D Object Detection Using PointPillars Deep Learning

12-77



Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of point cloud data to measure the performance.

numInputs = 50;

% Generate rotated rectangles from the cuboid labels.
bds = boxLabelDatastore(testLabels(1:numInputs,:));
groundTruthData = transform(bds,@(x)createRotRect(x));

% Set the threshold values.
nmsPositiveIoUThreshold = 0.5;
confidenceThreshold = 0.25;

detectionResults = detect(detector,testData(1:numInputs,:),...
    'Threshold',confidenceThreshold);

% Convert the bounding boxes to rotated rectangles format and calculate
% the evaluation metrics.
for i = 1:height(detectionResults)
    box = detectionResults.Boxes{i};
    detectionResults.Boxes{i} = box(:,[1,2,4,5,9]);
end

metrics = evaluateDetectionAOS(detectionResults,groundTruthData,...
    nmsPositiveIoUThreshold);
disp(metrics(:,1:2))

               AOS        AP   
             _______    _______

    Car      0.74377    0.75569
    Truck    0.60989    0.61157

Helper Functions

function helperDownloadPandasetData(outputFolder,lidarURL)
% Download the data set from the given URL to the output folder.

    lidarDataTarFile = fullfile(outputFolder,'Pandaset_LidarData.tar.gz');
    
    if ~exist(lidarDataTarFile,'file')
        mkdir(outputFolder);
        
        disp('Downloading PandaSet Lidar driving data (5.2 GB)...');
        websave(lidarDataTarFile,lidarURL);
        untar(lidarDataTarFile,outputFolder);
    end
    
    % Extract the file.
    if (~exist(fullfile(outputFolder,'Lidar'),'dir'))...
            &&(~exist(fullfile(outputFolder,'Cuboids'),'dir'))
        untar(lidarDataTarFile,outputFolder);
    end

end

12 Lidar Examples

12-78



function helperDisplay3DBoxesOverlaidPointCloud(ptCld,labelsCar,carColor,...
    labelsTruck,truckColor,titleForFigure)
% Display the point cloud with different colored bounding boxes for different
% classes.
    figure;
    ax = pcshow(ptCld);
    showShape('cuboid',labelsCar,'Parent',ax,'Opacity',0.1,...
        'Color',carColor,'LineWidth',0.5);
    hold on;
    showShape('cuboid',labelsTruck,'Parent',ax,'Opacity',0.1,...
        'Color',truckColor,'LineWidth',0.5);
    title(titleForFigure);
    zoom(ax,1.5);
end

References

[1] Lang, Alex H., Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
"PointPillars: Fast Encoders for Object Detection From Point Clouds." In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 12689-12697. Long Beach, CA, USA: IEEE,
2019. https://doi.org/10.1109/CVPR.2019.01298.

[2] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset.

 Lidar 3-D Object Detection Using PointPillars Deep Learning

12-79

https://doi.org/10.1109/CVPR.2019.01298
https://scale.com/open-datasets/pandaset




Signal Processing Examples

13



Learn Pre-Emphasis Filter Using Deep Learning

This example shows how to use a convolutional deep network to learn a pre-emphasis filter for speech
recognition. The example uses a learnable short-time Fourier transform (STFT) layer to obtain a time-
frequency representation suitable for use with 2-D convolutional layers. The use of a learnable STFT
enables a gradient-based optimization of the pre-emphasis filter weights.

Data

Clone or download the Free Spoken Digit Dataset (FSDD), available at https://github.com/Jakobovski/
free-spoken-digit-dataset. FSDD is an open data set, which means that it can grow over time. This
example uses the version committed on 08/20/2020 which consists of 3000 recordings of the English
digits 0 through 9 obtained from six speakers. The data is sampled at 8000 Hz.

This example assumes that you have downloaded the data into the folder corresponding to the value
of tempdir in MATLAB. If you use a different folder, substitute that folder name for tempdir in the
following code. Use audioDatastore to manage data access and ensure random division of data into
training and test sets.

pathToRecordingsFolder = fullfile(tempdir,'free-spoken-digit-dataset','recordings');
ads = audioDatastore(pathToRecordingsFolder);

Use the filenames2labels function to obtain a categorical vector of labels from the FSDD files.
Display the count of each label in the data set.

lbls = filenames2labels(ads,ExtractBefore="_");
ads.Labels = lbls;
countlabels(lbls)

ans=10×3 table
    Label    Count    Percent
    _____    _____    _______

      0       300       10   
      1       300       10   
      2       300       10   
      3       300       10   
      4       300       10   
      5       300       10   
      6       300       10   
      7       300       10   
      8       300       10   
      9       300       10   

Split the FSDD into training and test sets maintaining equal class proportions in each subset. For
reproducible results, set the random number generator to its default value. Eighty percent, or 2400
recordings, are used for training. The remaining 600 recordings, 20% of the total, are held out for
testing. Shuffle the files in the datastore once before creating the training and test sets.

rng default;
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8,0.2);

13 Signal Processing Examples

13-2

https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset


The recordings in FSDD are not equal in length. Use a transform so that each read from the datastore
is padded or truncated to 8192 samples. The data are additionally cast to single-precision and a z-
score normalization is applied.

transTrain = transform(adsTrain,@(x,info)helperReadData(x,info),'IncludeInfo',true);
transTest = transform(adsTest,@(x,info)helperReadData(x,info),'IncludeInfo',true);

Deep Convolutional Neural Network (DCNN) Architecture

This example uses a custom training loop with the following deep convolutional network.

numF = 12;
dropoutProb = 0.2;
layers = [
    sequenceInputLayer(1,'Name','input','MinLength',8192,...
         'Normalization',"none")

    convolution1dLayer(5,1,"name","pre-emphasis-filter",...
    "WeightsInitializer",@(sz)kronDelta(sz),"BiasLearnRateFactor",0)  

    stftLayer('Window',hamming(1280),'OverlapLength',900,...
    'Name','STFT') 
    
    convolution2dLayer(5,numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,2*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,2*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

 Learn Pre-Emphasis Filter Using Deep Learning

13-3



    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')
    
    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')
   
    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    dropoutLayer(dropoutProb)
    globalAveragePooling2dLayer
    fullyConnectedLayer(numel(categories(ads.Labels)))
    softmaxLayer    
    ];
dlnet = dlnetwork(layers);

The sequence input layer is followed by a 1-D convolution layer consisting of a single filter with 5
coefficients. This is a finite impulse response filter. Convolutional layers in deep learning networks by
default implement an affine operation on the input features. To obtain a strictly linear (filtering)
operation, use the default 'BiasInitializer' which is 'zeros' and set the bias learn rate factor
of the layer to 0. This means that the bias is initialized to 0 and never changes during training. The
network uses a custom initialization of the filter weights to be a scaled Kronecker delta sequence.
This is an allpass filter, which performs no filtering of the input. The code for the allpass filter weight
initializer is shown here.

function delta = kronDelta(sz)
% This function is only for use in the "Learn Pre-Emphasis Filter using
% Deep Learning" example. It may change or be removed in a
% future release.

L = sz(1);

13 Signal Processing Examples

13-4



delta = zeros(L,sz(2),sz(3),'single');
delta(1) = 1/sqrt(L);

end

stftLayer takes the filtered batch of input signals and obtains their magnitude STFTs. The
magnitude STFT is a 2-D representation of the signal, which is amenable to use in 2-D convolutional
networks.

While the weights of the STFT are not changed here during training, the layer supports
backpropagation, which enables the filter coefficients in the "pre-emphasis-filter" layer to be learned.

Network Training

Set the training options for the custom training loop. Use 70 epochs with a minibatch size of 128. Set
the initial learn rate to 0.001.

NumEpochs = 70;
miniBatchSize = 128;
learnRate = 0.001;

In the custom training loop, use a minibatchqueue object. The processSpeechMB function reads
in a minibatch and applies a one-hot encoding scheme to the labels.

mbqTrain = minibatchqueue(transTrain,2,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFormat', {'CBT','CB'}, ... 
    'MiniBatchFcn', @processSpeechMB);

Train the network and plot the loss for each iteration. Use an Adam optimizer to update the network
learnable parameters. To plot the loss as training progress, set the value of progress in the
following code to "training-progress".

progress = "final-loss";
if progress == "training-progress"
    figure
    lineLossTrain = animatedline;
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

% Initialize some training loop variables
trailingAvg = [];
trailingAvgSq = [];
iteration = 0;
lossByIteration = 0;

% Loop over epochs and time the epochs
start = tic;

for epoch = 1:NumEpochs
    reset(mbqTrain)
    shuffle(mbqTrain)

    % Loop over mini-batches
    while hasdata(mbqTrain)

 Learn Pre-Emphasis Filter Using Deep Learning

13-5



        iteration = iteration + 1;
        
        % Get the next minibatch and one-hot coded targets
        [dlX,Y] = next(mbqTrain);
        
        % Evaluate the model gradients and loss 
        [gradients, loss, state] = dlfeval(@modelGradSTFT,dlnet,dlX,Y);
        if progress == "final-loss"
            lossByIteration(iteration) = loss;
        end

        % Update the network state
        dlnet.State = state;
        
        % Update the network parameters using an Adam optimizer
        [dlnet,trailingAvg,trailingAvgSq] = adamupdate(...
            dlnet,gradients,trailingAvg,trailingAvgSq,iteration,learnRate);        
        
        % Display the training progress
        D = duration(0,0,toc(start),'Format','hh:mm:ss');
        if progress == "training-progress"
            addpoints(lineLossTrain,iteration,loss)
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
        end
        
    end
    disp("Training loss after epoch " + epoch + ": " + loss); 

end

Training loss after epoch 1: 1.5686
Training loss after epoch 2: 1.2063
Training loss after epoch 3: 0.70384
Training loss after epoch 4: 0.50291
Training loss after epoch 5: 0.35332
Training loss after epoch 6: 0.22536
Training loss after epoch 7: 0.14302
Training loss after epoch 8: 0.14749
Training loss after epoch 9: 0.1436
Training loss after epoch 10: 0.092127
Training loss after epoch 11: 0.053437
Training loss after epoch 12: 0.059123
Training loss after epoch 13: 0.07433
Training loss after epoch 14: 0.066282
Training loss after epoch 15: 0.11964
Training loss after epoch 16: 0.087663
Training loss after epoch 17: 0.069451
Training loss after epoch 18: 0.11175
Training loss after epoch 19: 0.044604
Training loss after epoch 20: 0.064503
Training loss after epoch 21: 0.050275
Training loss after epoch 22: 0.022125
Training loss after epoch 23: 0.092534
Training loss after epoch 24: 0.1393
Training loss after epoch 25: 0.015846
Training loss after epoch 26: 0.022516
Training loss after epoch 27: 0.01798
Training loss after epoch 28: 0.012391

13 Signal Processing Examples

13-6



Training loss after epoch 29: 0.0068496
Training loss after epoch 30: 0.036968
Training loss after epoch 31: 0.014514
Training loss after epoch 32: 0.0055389
Training loss after epoch 33: 0.0080868
Training loss after epoch 34: 0.0097247
Training loss after epoch 35: 0.0067841
Training loss after epoch 36: 0.0073048
Training loss after epoch 37: 0.0068763
Training loss after epoch 38: 0.064052
Training loss after epoch 39: 0.029343
Training loss after epoch 40: 0.055245
Training loss after epoch 41: 0.20821
Training loss after epoch 42: 0.052951
Training loss after epoch 43: 0.034677
Training loss after epoch 44: 0.020905
Training loss after epoch 45: 0.077562
Training loss after epoch 46: 0.0055673
Training loss after epoch 47: 0.015712
Training loss after epoch 48: 0.011886
Training loss after epoch 49: 0.0063345
Training loss after epoch 50: 0.0030241
Training loss after epoch 51: 0.0033596
Training loss after epoch 52: 0.0042235
Training loss after epoch 53: 0.0054001
Training loss after epoch 54: 0.0037229
Training loss after epoch 55: 0.0042717
Training loss after epoch 56: 0.0030938
Training loss after epoch 57: 0.0024514
Training loss after epoch 58: 0.005746
Training loss after epoch 59: 0.0027509
Training loss after epoch 60: 0.0069394
Training loss after epoch 61: 0.0024441
Training loss after epoch 62: 0.0054856
Training loss after epoch 63: 0.0012796
Training loss after epoch 64: 0.0013482
Training loss after epoch 65: 0.0038288
Training loss after epoch 66: 0.0013217
Training loss after epoch 67: 0.0022817
Training loss after epoch 68: 0.0025086
Training loss after epoch 69: 0.0013634
Training loss after epoch 70: 0.0014228

if progress == "final-loss"
        plot(1:iteration,lossByIteration)
        grid on 
        title('Training Loss by Iteration')
        xlabel("Iteration")
        ylabel("Loss")
end

 Learn Pre-Emphasis Filter Using Deep Learning

13-7



Test the trained network on the held-out test set. Use a minibatchqueue object with a minibatch
size of 32.

miniBatchSize = 32;
mbqTest = minibatchqueue(transTest,2,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFormat', {'CBT','CB'}, ... 
    'MiniBatchFcn', @processSpeechMB);

Loop over the test set and predict the class labels for each minibatch.

numObservations = numel(adsTest.Files);
classes = string(unique(adsTest.Labels));

predictions = [];

% Loop over mini-batches
while hasdata(mbqTest)    
    % Read mini-batch of data
    dlX = next(mbqTest);

    % Make predictions on the minibatch
    dlYPred = predict(dlnet,dlX);

    % Determine corresponding classes
    predBatch = onehotdecode(dlYPred,classes,1);
    predictions = [predictions predBatch];  
end

13 Signal Processing Examples

13-8



Evaluate the classification accuracy on the 600 examples in the held-out test set.

accuracy = mean(predictions' == categorical(adsTest.Labels))

accuracy = 0.9883

Test performance is approximately 99%. You can comment out the 1-D convolution layer and retrain
the network without the pre-emphasis filter. The test performance without the pre-emphasis filter is
also excellent at approximately 96%, but the use of the pre-emphasis filter makes a small
improvement. It is noteworthy, that while the use of the learned pre-emphasis filter has only improved
the test accuracy slightly, this was achieved by adding only 5 learnable parameters to the network.

To examine the learned pre-emphasis filter, extract the weights of the 1-D convolutional layer. Plot the
frequency response. Recall that the sampling frequency of the data is 8 kHz. Because we initialized
the filter to a scaled Kronecker delta sequence (allpass filter), we can easily compare the frequency
response of the initialized filter with the learned response.

FIRFilter = dlnet.Layers(2).Weights;
[H,W] = freqz(FIRFilter,1,[],8000);
delta = kronDelta([5 1 1]);
Hinit = freqz(delta,1,[],4000);
plot(W,20*log10(abs([H Hinit])),'linewidth',2)
grid on
xlabel('Hz')
ylabel('dB')
legend('Learned Filter','Initial Filter','Location','SouthEast')
title('Learned Pre-emphasis Filter')

 Learn Pre-Emphasis Filter Using Deep Learning

13-9



This example showed how to learn a pre-emphasis filter as a preprocessing step in a 2-D
convolutional network based on short-time Fourier transforms of the signals. The ability of
stftLayer to support backpropagation enabled gradient-based optimization of the filter weights
inside the deep network. While this resulted in only a small improvement in the performance of the
network on the test set, it achieved this improvement with a trivial increase in the number of
learnable parameters.

Appendix: Helper Functions

function [out,info] = helperReadData(x,info)
% This function is only for use in the "Learn Pre-Emphasis Filter using
% Deep Learning" example. It may change or be removed in a
% future release.

N = numel(x);
x = single(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = (x-mean(x))./std(x);
x = x(:)';
out = {x,info.Label};
end

function [dlX,dlY] = processSpeechMB(Xcell,Ycell)
% This function is only for use in the "Learn Pre-Emphasis Filter using
% Deep Learning" example. It may change or be removed in a
% future release.

Xcell = cellfun(@(x)reshape(x,1,1,[]),Xcell,'uni',false);
dlX = cat(2,Xcell{:});
dlY = cat(2,Ycell{:});
dlY = onehotencode(dlY,1);
end

function [grads,loss,state] = modelGradSTFT(net,X,T)
% This function is only for use in the "Learn Pre-Emphasis Filter using
% Deep Learning" example. It may change or be removed in a
% future release.

[y,state] = net.forward(X);
loss = crossentropy(y,T);
grads = dlgradient(loss,net.Learnables);
loss = double(gather(extractdata(loss)));
end

See Also
Apps
Deep Network Designer

13 Signal Processing Examples

13-10



Objects
dlarray | dlnetwork | stftLayer

Functions
dlstft | stft | istft | stftmag2sig

Related Examples
• “List of Deep Learning Layers” on page 1-43

 Learn Pre-Emphasis Filter Using Deep Learning

13-11



Hand Gesture Classification Using Radar Signals and Deep
Learning

This example shows how to classify ultra-wideband (UWB) impulse radar signal data using a multiple-
input, single-output convolutional neural network (CNN).

Introduction

Movement-based signal data acquired using sensors, like UWB impulse radars, contain patterns
specific to different gestures. Correlating motion data with movement benefits several avenues of
work. For example, hand gesture recognition is important for contactless human-computer
interaction. This example aims to use a deep learning solution to automate feature extraction from
patterns within a hand gesture dataset and provide a label for every signal sample.

UWB-gestures is a publicly available dataset of dynamic hand gestures [1 on page 13-23]. It contains
a total of 9600 samples gathered from 8 different human volunteers. To obtain each recording, the
examiners placed a separate UWB impulse radar at the left, top, and right sides of their experimental
setup, resulting in 3 received radar signal data matrices. Volunteers performed hand gestures from a
gesture vocabulary consisting of 12 dynamic hand movements:

1 Left-right swipe (L-R swipe)
2 Right-left swipe (R-L swipe)
3 Up-down swipe (U-D swipe)
4 Down-up swipe (D-U swipe)
5 Diagonal-left-right-up-down swipe (Diag-LR-UD swipe)
6 Diagonal-left-right-down-up swipe (Diag-LR-DU swipe)
7 Diagonal-right-left-up-down swipe (Diag-RL-UD swipe)
8 Diagonal-right-left-down-up swipe (Diag-RL-DU swipe)
9 Clockwise rotation
10 Counterclockwise rotation
11 Inward push
12 Empty gesture

As each hand gesture motion is captured by 3 independent UWB impulse radars, we will use a CNN
architecture that accepts 3 signals as separate inputs. The CNN model will extract feature
information from each signal before combining it to make a final gesture label prediction. As such, a
multiple-input, single-output CNN will use minimally pre-processed radar signal data matrices to
classify different gestures.

Download the Data

Each radar signal data matrix is labeled as the hand gesture that generated it. 8 different human
volunteers performed 12 separate hand gestures, for a total of 96 trials stored in 96 MAT-files. Each
MAT-file contains 3 radar data matrices, corresponding to the 3 radars used in the experimental
setup. They are named Left, Top, and Right. The files are available at the following location:

https://ssd.mathworks.com/supportfiles/SPT/data/uwb-gestures.zip

Download the data files into your MATLAB Examples directory.

13 Signal Processing Examples

13-12



datasetZipFolder = matlab.internal.examples.downloadSupportFile("SPT","data/uwb-gestures.zip");
datasetFolder = erase(datasetZipFolder,".zip");
if ~exist(datasetFolder,"dir")
    downloadLocation = fileparts(datasetZipFolder);
    unzip(datasetZipFolder,downloadLocation);
end

You can also choose to download a separate file which includes a pre-trained network, misoNet,
stored in a MAT-file named pretrainedNetwork.mat. It is available at the following location:

https://ssd.mathworks.com/supportfiles/SPT/data/uwb-gestures-network.zip

You can skip the training steps and use the pre-trained network for classification by setting
doTraining to false. If doTraining is set to false, the pre-trained network will be downloaded
later in this example. If you want to train the network as the example runs, make sure to set
doTraining to true.

doTraining = true;

Explore the Data

Create a signal datastore to access the data in the files. Specify the signal variable names you want to
read from each file using the SignalVariableNames parameter. This example assumes the dataset
has been stored in your MATLAB Examples directory under the uwb-gestures folder. If this is not the
case, change the path to the data in the datasetFolder variable.

sds = signalDatastore(datasetFolder,...
                      "IncludeSubfolders",true,...
                      "SignalVariableNames",["Left","Top","Right"],...
                      "FileExtensions",".mat",...
                      "ReadOutputOrientation","row");

The datastore returns a three-element cell array containing the radar signal matrices for the left, top,
and right radars, in that order.

preview(sds)

ans=1×3 cell array
    {9000×189 double}    {9000×189 double}    {9000×189 double}

The rows and columns in each radar signal matrix represent the duration of the hand gesture (slow-
time) and the distance of the hand from the radar (fast-time), respectively. During data acquisition,
examiners recorded a subject repeating a particular hand gesture for 450 seconds, corresponding to
9000 (slow-time) rows. There is 1 complete gesture motion in 90 slow-time frames. As such, each
radar signal matrix contains 100 complete hand gesture motion samples. The range of each UWB
radar is 1.2 meters, corresponding to 189 fast-time bins.

slowTimeFrames = 90;
recordedTimePerSample = 4.5;
radarRange = 1.2;

To visualize a hand gesture motion, specify a UWB radar location, gesture, and gesture sample
(between 1 and 100).

radarToPlot = ;

gestureToPlot = ;

 Hand Gesture Classification Using Radar Signals and Deep Learning

13-13



gestureSample = ;

Obtain the radar signal matrix for the chosen hand gesture and radar location.

sdssubset = subset(sds,contains(sds.Files,gestureToPlot));
radarDataMatrix = read(sdssubset);
radarDataMatrix = radarDataMatrix{radarToPlot};

Use normalize to transform the gesture signal data to range between 0 and 1, and use imagesc to
visualize the hand gesture motion sample.

normalizedRadarData = normalize(radarDataMatrix,2,"range",[0 1]);
imagesc([0 radarRange],...
        [0 recordedTimePerSample],...
        normalizedRadarData(slowTimeFrames*(gestureSample-1)+1:slowTimeFrames*gestureSample,:),...
        [0 1]);
set(gca,"YDir","normal")
title("Raw Signal")
xlabel("Distance of Hand from the Radar (m)")
ylabel("Duration of Hand Gesture (s)")

As you can see, it is difficult to discern a motion pattern.

The raw signal contains environmental reflections from body parts or other static objects present
within the radar"s range. These unwanted reflections are known as "clutter" and can be removed

13 Signal Processing Examples

13-14



using a pulse canceller that performs an exponential moving average. The transfer function for this
operation is

H z = 1− z−1

1− αz−1

such that α is a value 0 ≤ α ≤ 1 that controls the amount of averaging [2 on page 13-23]. Use
filter with the numerator coefficients and denominator coefficients set as [1 -1] and [1 -0.9],
respectively, to remove clutter from the raw signal.

clutterRemovedSignal = filter([1 -1],[1 -0.9],radarDataMatrix,[],1);

Visualize the clutter-removed signal to see the difference.

normalizedClutterRemovedSignal = normalize(clutterRemovedSignal,2,"range",[0 1]);
imagesc([0 radarRange],...
        [0 recordedTimePerSample],...
        normalizedClutterRemovedSignal(slowTimeFrames*(gestureSample-1)+1:slowTimeFrames*gestureSample,:),...
        [0 1]);
set(gca,"YDir","normal")
title("Clutter-Removed Signal")
xlabel("Distance of Hand from the Radar (m)")
ylabel("Duration of Hand Gesture (s)")

Note that the motion pattern is much more visible now. For example, if you choose to visualize a left-
right swipe from the perspective of the left radar, you will see that the distance of the hand from the
radar increases over the duration of the hand gesture.

 Hand Gesture Classification Using Radar Signals and Deep Learning

13-15



Prepare Data for Training

The MAT-file names contain gesture codes (G1, G2,..., G12) corresponding to labels for each radar
signal matrix. Convert these codes to labels within the gesture vocabulary, using a categorical array.

[~,filenames] = fileparts(sds.Files);
gestureLabels = extract(filenames,"G"+digitsPattern);
gestureCodes = ["G1","G2","G3","G4",...
                "G5","G6","G7","G8",...
                "G9","G10","G11","G12"];
gestureVocabulary = ["L-R swipe",       "R-L swipe",       "U-D swipe",       "D-U swipe",...
                     "Diag-LR-UD swipe","Diag-LR-DU swipe","Diag-RL-UD swipe","Diag-RL-DU swipe",...
                     "clockwise",       "counterclockwise","inward push",     "empty"];
gestureLabels = categorical(gestureLabels,gestureCodes,gestureVocabulary);

Collect the labels in an array datastore.

labelDs = arrayDatastore(gestureLabels,"OutputType","cell");

Combine the signal datastore and array datastore to obtain a single datastore that contains the signal
data from each radar and a categorical label. Shuffle the resulting datastore to randomize the order
in which it stores the MAT-files.

allDataDs = combine(sds,labelDs);
allDataDs = shuffle(allDataDs);
preview(allDataDs)

ans=1×4 cell array
    {9000×189 double}    {9000×189 double}    {9000×189 double}    {[Diag-LR-UD swipe]}

The transform function allows the helper function, processData, to be applied to data as it is read
by a datastore. processData performs the normalization and filtering that was described in the
above section to standardize data and remove clutter. In addition, it divides the radar signal matrix
into separate hand gesture motion samples.

allDataDs = transform(allDataDs,@processData);
preview(allDataDs)

ans=8×4 cell array
    {90×189 double}    {90×189 double}    {90×189 double}    {[Diag-LR-UD swipe]}
    {90×189 double}    {90×189 double}    {90×189 double}    {[Diag-LR-UD swipe]}
    {90×189 double}    {90×189 double}    {90×189 double}    {[Diag-LR-UD swipe]}
    {90×189 double}    {90×189 double}    {90×189 double}    {[Diag-LR-UD swipe]}
    {90×189 double}    {90×189 double}    {90×189 double}    {[Diag-LR-UD swipe]}
    {90×189 double}    {90×189 double}    {90×189 double}    {[Diag-LR-UD swipe]}
    {90×189 double}    {90×189 double}    {90×189 double}    {[Diag-LR-UD swipe]}
    {90×189 double}    {90×189 double}    {90×189 double}    {[Diag-LR-UD swipe]}

Neural network training is iterative. At every iteration, the datastore reads data from files and
transforms the data before updating the network coefficients. Since the data is being read from
individual samples, the data will need to be read into memory, before being re-shuffled and inserted
into another datastore for training.

Because the entire training dataset fits in memory, it is possible to transform the data in parallel, if
Parallel Computing Toolbox is available, and then gather it into the workspace. Use readall with the
UseParallel flag set to true to utilize a parallel pool to read all of the signal data and labels into the

13 Signal Processing Examples

13-16



workspace. If the data fits into the memory of your computer, importing the data into the workspace
enables faster training because the data is read and transformed only once. Note that if the data does
not fit in memory, you must to pass the datastore into the training function, and the transformations
are performed at every training epoch.

allData = readall(allDataDs,"UseParallel",true);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).

The labels are returned as the last column in allData. Use countlabels to obtain proportions of
label values in the dataset. Note that the gestures are balanced and well-represented across the
dataset.

countlabels(allData(:,4))

ans=12×3 table
         Label          Count    Percent
    ________________    _____    _______

    D-U swipe            793     8.2664 
    Diag-LR-DU swipe     800     8.3394 
    Diag-LR-UD swipe     800     8.3394 
    Diag-RL-DU swipe     800     8.3394 
    Diag-RL-UD swipe     800     8.3394 
    L-R swipe            800     8.3394 
    R-L swipe            800     8.3394 
    U-D swipe            800     8.3394 
    clockwise            800     8.3394 
    counterclockwise     800     8.3394 
    empty                800     8.3394 
    inward push          800     8.3394 

Divide the data randomly into training and validation sets, while making sure to leave testing data for
later. In this example, training, validation, and testing splits will be 70%, 15%, and 15%, respectively.
Use splitlabels to split the data into training, validation, and testing sets that maintain the same
label proportions as the original dataset. Specify the randomized option to shuffle the data randomly
across the three sets.

idxs = splitlabels(allData(:,4),[0.7 0.15],"randomized");
trainIdx = idxs{1}; valIdx = idxs{2}; testIdx = idxs{3};

Avoid selecting samples from the same trial by randomizing the indices once more. Store the in-
memory training and validation data in array datastores so that they can be used to train a multi-
input network.

trainData = allData(trainIdx(randperm(length(trainIdx))),:);
valData = allData(valIdx(randperm(length(valIdx))),:);
trainDataDs = arrayDatastore(trainData,"OutputType","same");
valDataDs = arrayDatastore(valData,"OutputType","same");

Prepare Network for Training

Define the network architecture before training. Since each hand gesture motion is captured by 3
independent UWB impulse radars, we will use a CNN architecture that accepts 3 signals as separate
inputs. The results achieved after training this proposed multiple-input, single-output CNN are

 Hand Gesture Classification Using Radar Signals and Deep Learning

13-17



considerably better than those achieved with an alternative single-input, single-output CNN whose
input is a 90 x 189 x 3 stack of radar data matrices.

repeatBranch contains operations that will be performed separately on the three radar data signal
matrices. The CNN model needs to combine the extracted feature information from each signal to
make a final gesture label prediction. mainBranch contains operations that will concatenate the 3
repeatBranch outputs and estimate labels. Specify an imageInputLayer of size 90 x 189 to accept
the hand gesture motion samples. Specify an additionLayer with number of inputs set to 3, to
collect the outputs of the 3 branches and pass them into the classification section of the model.
Specify a fullyConnectedLayer with an output size of 12, one for each of the hand gestures. Add a
softmaxLayer and a classificationLayer to output the estimated labels.

repeatBranch = [
    imageInputLayer([90 189 1],"Normalization", "none")

    convolution2dLayer(3,8,"Padding",1)
    batchNormalizationLayer
    reluLayer   
    maxPooling2dLayer(2,"Stride",2)

    convolution2dLayer(3,16,"Padding",1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,"Stride",2)

    convolution2dLayer(3,32,"Padding",1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,"Stride",2)

    convolution2dLayer(3,64,"Padding",1)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,"Stride",2)];

mainBranch = [
    additionLayer(3)
    fullyConnectedLayer(12)
    softmaxLayer
    classificationLayer];

Define a layerGraph to which repeatBranch is added 3 times and mainBranch is added once.
Connect the outputs of the final maxPooling2dLayer in each repeatBranch to the inputs of
additionLayer.

misoCNN = layerGraph();
misoCNN = addLayers(misoCNN, repeatBranch);
misoCNN = addLayers(misoCNN, repeatBranch);
misoCNN = addLayers(misoCNN, repeatBranch);
misoCNN = addLayers(misoCNN, mainBranch);
misoCNN = connectLayers(misoCNN, "maxpool_4", "addition/in1");
misoCNN = connectLayers(misoCNN, "maxpool_8", "addition/in2");
misoCNN = connectLayers(misoCNN, "maxpool_12", "addition/in3");

Visualize the multiple-input, single-output CNN.

plot(misoCNN);

13 Signal Processing Examples

13-18



Choose options for the training process that ensure good network performance. Make sure to specify
valDataDs as ValidationData, so that it is used for validation during training. Refer to the
trainingOptions (Deep Learning Toolbox) documentation for a description of each parameter.

options = trainingOptions("adam", ...
    "InitialLearnRate",1e-3, ...
    "MaxEpochs",3,... 
    "MiniBatchSize",32, ...
    "ValidationData",valDataDs,...
    "ValidationFrequency",40,...
    "Verbose",false,...
    "Plots","training-progress");

Train Network

Use the trainNetwork command to train the CNN.

if doTraining == true
    misoNet = trainNetwork(trainDataDs,misoCNN,options);
else
    pretrainedNetworkZipFolder = matlab.internal.examples.downloadSupportFile("SPT","data/uwb-gestures-network.zip");
    pretrainedNetworkFolder = erase(pretrainedNetworkZipFolder,".zip");
    if ~exist(pretrainedNetworkFolder,"dir")
        downloadLocation = fileparts(pretrainedNetworkZipFolder);
        unzip(pretrainedNetworkZipFolder,downloadLocation);
    end
    load(fullfile(pretrainedNetworkFolder,"pretrainedNetwork.mat"),"misoNet");
end

 Hand Gesture Classification Using Radar Signals and Deep Learning

13-19



Classify Testing Data

Classify the testing data using the trained CNN and the classify command.

testData = allData(testIdx,:);
testData = {cat(4,testData{:,1}),cat(4,testData{:,2}),cat(4,testData{:,3}),cat(1,testData{:,4})};
actualLabels = testData{4};
predictedLabels = classify(misoNet,testData{1},testData{2},testData{3});
accuracy = mean(predictedLabels==actualLabels);
fprintf("Accuracy on the test set is %0.2f%%",100*accuracy)

Accuracy on the test set is 96.04%

Visualize classification performance using a confusion matrix.

confusionchart(predictedLabels,actualLabels);

13 Signal Processing Examples

13-20



The largest confusion is between counterclockwise and clockwise movements and inward push and
empty movements.

Explore Network Predictions

You can obtain the scores from the final max-pooling layers in each input branch to get a better
understanding of how data from each radar contributed to final network confidence. The helper
function, getActivationData, returns softmax-normalized scores (probabilities for class
membership) and indices corresponding to the 3 highest scores.

gestureToPlot = ;
gestureToPlotIndices = find(matches(string(actualLabels),gestureToPlot));
gestureSelection = randsample(gestureToPlotIndices,1);
actualLabel = actualLabels(gestureSelection);
predictedLabel = predictedLabels(gestureSelection);
allLabels = categories(actualLabels);

[leftScores, leftClassIds] = getActivationData(misoNet,testData,gestureSelection,"maxpool_4");
[topScores, topClassIds] = getActivationData(misoNet,testData,gestureSelection,"maxpool_8");
[rightScores, rightClassIds] = getActivationData(misoNet,testData,gestureSelection,"maxpool_12");

Use the helper function plotActivationData to visualize the data from each radar and overlay the
labels corresponding to the 3 highest scores after the operations in each input branch are completed.

t = tiledlayout(1,3);
plotActivationData(testData, allLabels, leftScores, leftClassIds,...

 Hand Gesture Classification Using Radar Signals and Deep Learning

13-21



    gestureSelection, [0 radarRange],[0 recordedTimePerSample], "Left");
plotActivationData(testData, allLabels, topScores, topClassIds,...
    gestureSelection, [0 radarRange],[0 recordedTimePerSample], "Top");
plotActivationData(testData, allLabels, rightScores, rightClassIds,...
    gestureSelection, [0 radarRange],[0 recordedTimePerSample], "Right");
title(t,["Actual Label : "+string(actualLabel);"Predicted Label : "+string(predictedLabel)],"FontSize",12);
xlabel(t,"Distance of Hand from the Radar (m)","FontSize",11)
ylabel(t,"Duration of Hand Gesture (s)","FontSize",11)

Conclusion

In this example, you learned how to use a multiple-input CNN to extract information from 3
independent radar data matrices and classify hand gesture movements. The multiple-input
architecture allowed us to take advantage of data generated by multiple sensors recording the same
event.

Helper Functions
function dataOut = processData(dataIn)
    label = dataIn(end);
    dataIn(end) = [];
    dataOut = cellfun(@(x) filter([1 -1],[1 -0.9],x,[],1),dataIn,"UniformOutput",false);
    dataOut = cellfun(@(x) normalize(x,2,"range",[0 1]),dataOut,"UniformOutput",false);
    dataOut = cat(1,dataOut{:});
    dataOut = mat2cell(dataOut,90*ones(1,size(dataOut,1)/90));
    dataOut = reshape(dataOut,[],3);
    dataOut(:,4) = label;
end

13 Signal Processing Examples

13-22



function [scores, classIds] = getActivationData(net, testData, index, layer)
    activation = activations(net,testData{1}(:,:,index),testData{2}(:,:,index),testData{3}(:,:,index),layer,"OutputAs","columns");
    fcWeights = net.Layers(end-2).Weights;
    fcBias = net.Layers(end-2).Bias;
    scores = fcWeights*activation + fcBias;
    scores = exp(scores)/sum(exp(scores));  
    [~,classIds] = maxk(scores,3);
end

function plotActivationData(testData, labels, scores, ids, sampleIdx, xlimits, ylimits, plotTitle)
    if plotTitle == "Left"
        gesture = 1;
    elseif plotTitle == "Top"
        gesture = 2;
    elseif plotTitle == "Right"
        gesture = 3;
    end
    nexttile;
    imagesc(xlimits,ylimits,testData{gesture}(:,:,sampleIdx),[0 1])
    text(0.3,4,plotTitle,"Color","red","FontWeight","bold","HorizontalAlignment","center")
    set(gca,"YDir","normal")
    title(string(labels(ids)) + ": " + string(round(scores(ids),3)),"FontSize",8);
end

References

[1] Ahmed, S., Wang, D., Park, J. et al. UWB-gestures, a public dataset of dynamic hand gestures
acquired using impulse radar sensors. Sci Data 8, 102 (2021). https://doi.org/10.1038/
s41597-021-00876-0.

[2] Lazaro A, Girbau D, Villarino R. Techniques for clutter suppression in the presence of body
movements during the detection of respiratory activity through UWB radars. Sensors (Basel,
Switzerland). 2014 Feb;14(2):2595-2618. DOI: 10.3390/s140202595.

See Also
arrayDatastore | signalDatastore | splitlabels | trainNetwork

 Hand Gesture Classification Using Radar Signals and Deep Learning

13-23



Waveform Segmentation Using Deep Learning

This example shows how to segment human electrocardiogram (ECG) signals using recurrent deep
learning networks and time-frequency analysis.

Introduction

The electrical activity in the human heart can be measured as a sequence of amplitudes away from a
baseline signal. For a single normal heartbeat cycle, the ECG signal can be divided into the following
beat morphologies [1 on page 13-42]:

• P wave — A small deflection before the QRS complex representing atrial depolarization
• QRS complex — Largest-amplitude portion of the heartbeat
• T wave — A small deflection after the QRS complex representing ventricular repolarization

The segmentation of these regions of ECG waveforms can provide the basis for measurements useful
for assessing the overall health of the human heart and the presence of abnormalities [2 on page 13-
42]. Manually annotating each region of the ECG signal can be a tedious and time-consuming task.
Signal processing and deep learning methods potentially can help streamline and automate region-of-
interest annotation.

This example uses ECG signals from the publicly available QT Database [3 on page 13-43] [4 on
page 13-43]. The data consists of roughly 15 minutes of ECG recordings, with a sample rate of 250
Hz, measured from a total of 105 patients. To obtain each recording, the examiners placed two
electrodes on different locations on a patient's chest, resulting in a two-channel signal. The database
provides signal region labels generated by an automated expert system [2 on page 13-42]. This
example aims to use a deep learning solution to provide a label for every ECG signal sample
according to the region where the sample is located. This process of labeling regions of interest
across a signal is often referred to as waveform segmentation.

To train a deep neural network to classify signal regions, you can use a Long Short-Term Memory
(LSTM) network. This example shows how signal preprocessing techniques and time-frequency
analysis can be used to improve LSTM segmentation performance. In particular, this example uses
the Fourier synchrosqueezed transform to represent the nonstationary behavior of the ECG signal.

Download and Prepare the Data

Each channel of the 105 two-channel ECG signals was labeled independently by the automated expert
system and is treated independently, for a total of 210 ECG signals that were stored together with the
region labels in 210 MAT-files. The files are available at the following location: https://
www.mathworks.com/supportfiles/SPT/data/QTDatabaseECGData.zip.

Download the data files into your temporary directory, whose location is specified by MATLAB®'s
tempdir command. If you want to place the data files in a folder different from tempdir, change the
directory name in the subsequent instructions.

% Download the data
dataURL = 'https://www.mathworks.com/supportfiles/SPT/data/QTDatabaseECGData1.zip';
datasetFolder = fullfile(tempdir,'QTDataset');
zipFile = fullfile(tempdir,'QTDatabaseECGData.zip');
if ~exist(datasetFolder,'dir')
     websave(zipFile,dataURL);

13 Signal Processing Examples

13-24

https://www.mathworks.com/supportfiles/SPT/data/QTDatabaseECGData.zip
https://www.mathworks.com/supportfiles/SPT/data/QTDatabaseECGData.zip


     unzip(zipFile,tempdir);
end

The unzip operation creates the QTDatabaseECGData folder in your temporary directory with 210
MAT-files in it. Each file contains an ECG signal in variable ecgSignal and a table of region labels in
variable signalRegionLabels. Each file also contains the sample rate of the signal in variable Fs.
In this example all signals have a sample rate of 250 Hz.

Create a signal datastore to access the data in the files. This example assumes the dataset has been
stored in your temporary directory under the QTDatabaseECGData folder. If this is not the case,
change the path to the data in the code below. Specify the signal variable names you want to read
from each file using the SignalVariableNames parameter.

sds = signalDatastore(datasetFolder,'SignalVariableNames',["ecgSignal","signalRegionLabels"])

sds = 
  signalDatastore with properties:

                       Files:{
                             '/tmp/QTDataset/ecg1.mat';
                             '/tmp/QTDataset/ecg10.mat';
                             '/tmp/QTDataset/ecg100.mat'
                              ... and 207 more
                             }
                     Folders: {'/tmp/QTDataset'}
    AlternateFileSystemRoots: [0×0 string]
                    ReadSize: 1
         SignalVariableNames: ["ecgSignal"    "signalRegionLabels"]
       ReadOutputOrientation: "column"

The datastore returns a two-element cell array with an ECG signal and a table of region labels each
time you call the read function. Use the preview function of the datastore to see that the content of
the first file is a 225,000 samples long ECG signal and a table containing 3385 region labels.

data = preview(sds)

data=2×1 cell array
    {225000×1 double}
    {  3385×2 table }

Look at the first few rows of the region labels table and observe that each row contains the region
limit indices and the region class value (P, T, or QRS).

head(data{2})

    ROILimits     Value
    __________    _____

     83    117     P   
    130    153     QRS 
    201    246     T   
    285    319     P   
    332    357     QRS 
    412    457     T   
    477    507     P   
    524    547     QRS 

 Waveform Segmentation Using Deep Learning

13-25



Visualize the labels for the first 1000 samples using a signalMask object.

M = signalMask(data{2});
plotsigroi(M,data{1}(1:1000))

The usual machine learning classification procedure is the following:

1 Divide the database into training and testing datasets.
2 Train the network using the training dataset.
3 Use the trained network to make predictions on the testing dataset.

The network is trained with 70% of the data and tested with the remaining 30%.

For reproducible results, reset the random number generator. Use the dividerand function to get
random indices to shuffle the files, and the subset function of signalDatastore to divide the data
into training and testing datastores.

rng default
[trainIdx,~,testIdx] = dividerand(numel(sds.Files),0.7,0,0.3);
trainDs = subset(sds,trainIdx);
testDs = subset(sds,testIdx);

13 Signal Processing Examples

13-26



In this segmentation problem, the input to the LSTM network is an ECG signal and the output is a
sequence or mask of labels with the same length as the input signal. The network task is to label each
signal sample with the name of the region it belongs to. For this reason, it is necessary to transform
the region labels on the dataset to sequences containing one label per signal sample. Use a
transformed datastore and the getmask helper function to transform the region labels. The getmask
function adds a label category, "n/a", to label samples that do not belong to any region of interest.

type getmask.m

function outputCell = getmask(inputCell)
%GETMASK Convert region labels to a mask of labels of size equal to the
%size of the input ECG signal.
%
%   inputCell is a two-element cell array containing an ECG signal vector
%   and a table of region labels. 
%
%   outputCell is a two-element cell array containing the ECG signal vector
%   and a categorical label vector mask of the same length as the signal. 

% Copyright 2020 The MathWorks, Inc.

sig = inputCell{1};
roiTable = inputCell{2};
L = length(sig);
M = signalMask(roiTable);

% Get categorical mask and give priority to QRS regions when there is overlap
mask = catmask(M,L,'OverlapAction','prioritizeByList','PriorityList',[2 1 3]);

% Set missing values to "n/a"
mask(ismissing(mask)) = "n/a";

outputCell = {sig,mask};
end

Preview the transformed datastore to observe that it returns a signal vector and a label vector of
equal lengths. Plot the first 1000 element of the categorical mask vector.

trainDs = transform(trainDs, @getmask);
testDs = transform(testDs, @getmask);

transformedData = preview(trainDs)

transformedData=1×2 cell array
    {224993×1 double}    {224993×1 categorical}

plot(transformedData{2}(1:1000))

 Waveform Segmentation Using Deep Learning

13-27



Passing very long input signals into the LSTM network can result in estimation performance
degradation and excessive memory usage. To avoid these effects, break the ECG signals and their
corresponding label masks using a transformed datastore and the resizeData helper function. The
helper function creates as many 5000-sample segments as possible and discards the remaining
samples. A preview of the output of the transformed datastore shows that the first ECG signal and its
label mask are broken into 5000-sample segments. Note that preview of the transformed datastore
only shows the first 8 elements of the otherwise floor(224993/5000) = 44 element cell array that
would result if we called the datastore read function.

trainDs = transform(trainDs,@resizeData);
testDs = transform(testDs,@resizeData);
preview(trainDs)

ans=8×2 cell array
    {[  0 0 0 0 0 0 1 1 1 1 1 1 0 1 2 1 1 2 2 2 3 4 6 8 11 15 18 18 17 17 17 16 14 12 8 4 2 1 0 -1 -2 -1 0 0 0 1 2 2 2 2 1 0 -1 -1 -2 -3 -3 -2 -2 -2 -1 0 4 5 5 3 2 0 -1 -1 0 2 3 5 5 3 4 8 15 25 36 50 63 73 83 90 97 99 98 88 74 58 42 30 22 19 15 10 5 1 -1 -2 -2 -3 -4 -5 -6 -7 -9 -9 -10 -12 -13 -13 -12 -13 -14 -15 -15 -16 -18 -19 -20 -21 -22 -21 -22 -23 -24 -25 -25 -26 -27 -28 -29 -29 -28 -26 -25 -24 -23 -21 -19 -18 -16 -14 -12 -11 -9 -7 -6 -5 -5 -3 -3 -3 -3 -2 -2 -2 -2 -1 -1 -2 -2 -1 -1 -1 -1 0 0 0 -1 0 1 2 3 5 7 8 11 13 13 13 12 11 9 6 2 0 -2 -3 -5 -7 -8 -8 -7 -5 -4 -5 -4 -3 -4 -4 -5 -5 -6 -8 -9 -9 -8 -9 -9 -8 -6 -6 -4 -2 -3 -4 -5 -6 -7 -8 -8 -7 -6 -5 -6 -8 -7 -5 2 12 24 36 48 58 66 72 78 83 82 75 61 46 30 18 11 9 6 0 -4 -8 -9 -11 -12 -12 -13 -13 -14 -14 -15 -17 -17 -17 -17 -18 -18 -18 -19 -21 -22 -23 -23 -25 -25 -26 -26 -27 -28 -29 -30 -31 -32 -32 -33 -33 -34 -34 -34 -34 -32 -31 -30 -29 -27 -25 -23 -22 -19 -17 -15 -15 -14 -12 -11 -11 -9 -8 -8 -8 -8 -9 -9 -8 -8 -8 -8 -9 -8 -7 -7 -8 -8 -7 -7 -7 -6 -5 -3 -3 -1 2 4 5 6 7 6 5 4 2 -2 -5 -7 -7 -8 -10 -10 -10 -10 -9 -9 -7 -7 -6 -5 -5 -6 -8 -10 -11 -12 -12 -11 -11 -11 -10 -9 -7 -6 -5 -6 -7 -9 -11 -13 -14 -14 -14 -12 -11 -10 -11 -10 -6 0 10 22 35 47 58 68 76 80 83 78 67 51 36 22 12 6 3 -1 -6 -10 -12 -13 -14 -16 -17 -17 -17 -18 -18 -18 -19 -20 -20 -20 -20 -20 -19 -19 -20 -21 -22 -23 -25 -26 -26 -26 -26 -27 -27 -28 -28 -29 -28 -29 -28 -28 -29 -28 -27 -25 -25 -23 -22 -21 -19 -17 -15 -14 -12 -10 -9 -8 -7 -6 -5 -5 -5 -5 -5 -5 -5 -4 -4 -4 -3 -3 -3 -4 -3 -3 -3 -3 -4 -3 -4 -4 -2 -1 0 2 4 8 10 10 10 10 9 8 6 4 0 -3 -5 -5 -7 -9 -9 -8 -7 -8 -8 -7 -7 -7 -6 -6 -6 -7 -9 -9 -10 -11 -11 -11 -10 -10 -9 -7 -5 -3 -4 -5 -7 -9 -10 -11 -9 -8 -6 -4 -3 -4 -6 -5 0 6 16 27 40 51 60 68 75 82 81 77 66 52 39 27 17 10 6 2 -2 -6 -10 -12 -13 -14 -15 -16 -15 -16 -16 -17 -17 -17 -18 -18 -18 -17 -17 -16 -17 -17 -18 -19 -19 -20 -20 -21 -22 -23 -24 -25 -26 -26 -26 -26 -27 -26 -26 -26 -25 -24 -23 -22 -21 -19 -18 -16 -14 -11 -9 -8 -7 -5 -4 -4 -3 -2 -1 -1 -1 -1 -1 -2 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 5 7 10 14 16 17 15 14 13 12 11 8 5 1 0 0 -2 -4 -4 -3 -3 -2 -1 0 0 0 -1 -2 -3 -5 -5 -5 -6 -6 -5 -5 -5 -4 -2 0 1 2 1 0 -3 -5 -5 -5 -4 -2 0 0 -1 -1 1 7 14 26 39 53 63 73 81 87 90 87 80 65 51 38 26 18 12 8 3 -2 -6 -8 -9 -10 -11 -12 -12 -12 -14 -13 -12 -12 -13 -13 -14 -15 -16 -17 -16 -17 -18 -18 -17 -18 -20 -21 -22 -22 -24 -24 -24 -24 -24 -24 -23 -24 -24 -24 -23 -22 -21 -19 -16 -14 -13 -11 -9 -7 -5 -3 0 0 1 2 3 4 4 4 6 6 6 6 7 8 7 7 7 7 6 6 8 8 8 8 9 9 9 10 11 12 12 14 15 17 19 22 25 27 27 27 27 25 22 19 15 13 11 11 10 9 8 7 8 8 8 9 9 10 10 9 9 7 5 5 6 6 5 5 5 6 6 9 12 13 11 9 6 4 1 1 4 6 7 9 9 8 9 14 23 34 48 62 77 86 96 103 109 110 103 92 76 61 45 34 29 25 19 11 6 2 0 0 -1 -3 -5 -6 -6 -6 -7 -7 -7 -7 -8 -8 -8 -9 -10 -11 -11 -11 -12 -14 -15 -15 -16 -17 -17 -18 -19 -20 -21 -21 -22 -22 -21 -21 -20 -19 -18 -16 -15 -13 -11 -9 -7 -4 -1 1 2 4 5 6 7 8 9 9 9 9 9 9 9 8 9 10 10 11 12 12 11 11 11 11 10 11 11 12 13 14 15 15 15 17 20 24 28 29 30 29 28 28 27 24 20 16 14 13 12 11 10 9 8 9 9 9 9 10 11 11 10 9 8 7 7 6 6 6 6 7 7 8 10 12 13 11 8 5 3 1 0 2 5 6 6 5 4 6 12 22 35 50 62 77 88 97 103 108 110 104 94 78 62 45 34 29 26 21 14 9 5 3 1 0 -1 -2 -3 -4 -4 -5 -6 -6 -5 -6 -8 -8 -8 -8 -9 -10 -10 -12 -13 -14 -15 -15 -16 -17 -17 -19 -21 -22 -22 -23 -24 -24 -23 -24 -24 -22 -20 -19 -17 -14 -12 -10 -9 -7 -5 -4 -3 -1 1 3 4 5 7 7 7 8 8 8 7 7 8 7 7 7 7 5 5 5 5 5 5 6 7 7 7 7 8 9 10 11 13 16 18 20 21 20 20 19 18 15 12 9 7 6 4 3 2 2 2 2 3 2 1 2 3 4 3 3 2 1 0 0 -1 -1 -2 -2 -1 0 1 2 2 0 -3 -5 -8 -9 -9 -8 -6 -5 -6 -6 -5 -1 7 20 35 49 62 74 84 92 99 105 103 94 77 58 39 25 19 16 12 6 0 -3 -6 -9 -11 -12 -12 -14 -14 -14 -14 -15 -15 -16 -17 -17 -18 -17 -17 -18 -18 -19 -20 -22 -23 -23 -24 -26 -27 -28 -29 -30 -31 -30 -31 -31 -33 -33 -33 -32 -30 -30 -28 -27 -25 -22 -20 -18 -16 -13 -10 -8 -6 -4 -2 -2 -2 -1 0 -1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 2 2 2 3 3 3 4 5 6 7 9 13 16 19 19 19 18 18 17 16 13 9 6 4 3 1 0 -2 -2 -2 -1 0 0 1 1 1 1 0 0 0 -2 -3 -3 -2 -3 -3 -4 -2 -1 0 1 1 0 -2 -5 -6 -9 -9 -7 -5 -3 -1 -1 0 2 8 18 32 46 59 71 83 94 101 107 106 98 83 65 49 35 27 23 21 15 7 2 0 0 -2 -4 -4 -6 -7 -8 -8 -9 -9 -9 -8 -9 -9 -10 -9 -10 -11 -11 -11 -12 -13 -14 -15 -16 -18 -18 -19 -20 -21 -22 -23 -24 -24 -24 -24 -24 -24 -23 -21 -19 -17 -16 -14 -11 -9 -7 -5 -2 -1 1 2 2 2 3 4 4 4 4 4 4 4 5 5 4 3 4 5 5 4 4 4 4 5 5 7 6 6 6 7 8 9 12 15 19 20 21 19 18 18 18 16 12 8 5 4 4 2 1 0 0 0 1 3 3 3 4 4 4 3 2 1 1 0 0 1 1 0 1 1 2 3 3 3 1 0 -1 -3 -5 -5 -3 -1 0 0 0 1 4 10 21 34 47 60 71 82 89 97 100 100 93 80 66 47 34 26 23 19 13 7 3 1 -1 -2 -3 -4 -6 -7 -6 -6 -6 -6 -6 -6 -7 -8 -9 -9 -9 -10 -10 -11 -12 -14 -15 -16 -17 -18 -19 -19 -21 -21 -22 -23 -24 -25 -25 -24 -23 -23 -21 -20 -19 -18 -16 -12 -10 -7 -5 -4 -3 -2 -1 0 1 1 2 2 2 1 1 1 0 0 1 1 0 0 1 1 1 1 2 3 4 3 3 3 3 4 5 7 7 8 11 13 15 16 16 16 15 14 12 10 7 4 3 2 0 0 0 1 0 0 0 1 1 2 3 3 1 0 0 -1 -2 -3 -2 -2 -1 -1 0 0 1 2 2 1 -1 -4 -6 -7 -7 -6 -5 -4 -4 -5 -3 0 5 14 27 42 56 67 79 87 96 101 105 101 87 71 53 39 29 24 22 16 10 5 2 1 0 -1 -2 -3 … ]}    {[n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    …      ]}
    {[ -34 -34 -33 -32 -31 -30 -28 -26 -24 -22 -20 -17 -15 -12 -10 -8 -6 -6 -5 -3 -3 -2 0 1 1 0 1 2 2 2 2 2 2 2 2 3 4 4 5 6 6 7 7 8 10 12 15 18 20 21 21 20 20 18 17 13 8 4 2 2 0 -2 -2 -1 0 -1 -1 0 0 1 1 1 0 -2 -3 -3 -3 -3 -3 -2 -2 -1 -1 1 3 5 6 4 2 -1 -3 -5 -6 -6 -4 -1 0 -1 -2 0 5 13 26 41 56 69 80 92 99 107 109 107 96 79 62 43 28 20 17 13 6 0 -3 -5 -6 -7 -8 -9 -11 -13 -13 -12 -11 -11 -12 -12 -14 -15 -16 -17 -17 -18 -19 -19 -19 -21 -23 -24 -26 -27 -28 -28 -28 -29 -30 -31 -31 -32 -33 -33 -32 -32 -31 -29 -27 -25 -23 -20 -18 -16 -14 -11 -8 -6 -5 -3 -1 0 1 2 2 1 2 2 2 2 3 3 4 4 3 3 3 3 4 4 5 5 6 8 8 8 11 14 17 19 20 21 20 19 18 17 13 8 6 5 4 2 0 0 0 0 1 1 1 0 0 1 1 0 -2 -3 -4 -4 -4 -3 -4 -4 -4 -3 -2 0 1 1 0 -3 -7 -9 -11 -11 -9 -5 -3 -4 -6 -5 -2 5 17 31 44 58 69 79 87 91 97 94 86 71 55 39 22 12 8 5 0 -6 -9 -12 -13 -14 -15 -15 -17 -19 -19 -19 -20 -20 -19 -19 -20 -21 -21 -22 -23 -24 -25 -25 -26 -28 -30 -31 -33 -35 -35 -35 -36 -37 -38 -39 -40 -40 -39 -39 -40 -39 -38 -37 -36 -35 -33 -30 -27 -26 -23 -21 -20 -19 -16 -15 -13 -12 -12 -12 -13 -13 -13 -13 -12 -12 -12 -11 -11 -12 -11 -11 -11 -12 -12 -12 -13 -13 -13 -12 -12 -12 -11 -10 -8 -5 -2 0 0 0 0 -1 -3 -6 -9 -11 -12 -14 -16 -18 -19 -20 -19 -18 -17 -17 -17 -16 -16 -17 -18 -18 -19 -20 -21 -22 -22 -22 -22 -21 -20 -20 -19 -17 -15 -17 -19 -21 -24 -26 -27 -27 -25 -24 -23 -24 -26 -28 -24 -16 -6 5 19 31 43 51 57 63 66 65 57 46 30 13 0 -8 -12 -14 -18 -22 -26 -28 -29 -30 -30 -31 -31 -32 -31 -33 -34 -34 -34 -34 -35 -35 -36 -37 -38 -39 -39 -41 -41 -43 -43 -45 -46 -46 -47 -48 -50 -50 -50 -51 -52 -51 -51 -52 -51 -49 -47 -47 -45 -43 -41 -39 -38 -35 -34 -32 -30 -28 -27 -26 -24 -23 -21 -21 -21 -21 -21 -23 -23 -22 -22 -22 -22 -21 -21 -22 -23 -24 -24 -24 -23 -22 -21 -20 -20 -19 -17 -15 -13 -11 -11 -11 -10 -11 -13 -17 -20 -22 -23 -24 -25 -26 -28 -28 -27 -26 -25 -26 -25 -23 -23 -24 -25 -26 -27 -28 -29 -29 -29 -30 -31 -30 -31 -30 -28 -26 -25 -26 -28 -31 -33 -36 -37 -37 -36 -34 -35 -35 -37 -36 -32 -24 -14 -2 10 22 32 40 47 54 58 57 51 38 23 6 -7 -14 -17 -20 -24 -29 -32 -34 -35 -36 -38 -40 -41 -41 -42 -41 -42 -43 -44 -45 -44 -45 -46 -47 -47 -47 -48 -48 -49 -50 -52 -52 -53 -53 -54 -55 -55 -57 -56 -58 -57 -58 -57 -58 -58 -57 -57 -54 -54 -51 -50 -47 -44 -41 -38 -38 -36 -35 -32 -32 -31 -29 -30 -30 -30 -30 -31 -31 -31 -30 -31 -31 -30 -30 -30 -31 -30 -29 -30 -29 -28 -26 -26 -25 -25 -23 -21 -18 -16 -15 -15 -15 -15 -15 -17 -19 -22 -25 -27 -27 -28 -29 -31 -31 -30 -30 -30 -31 -30 -30 -30 -31 -31 -31 -33 -33 -34 -34 -35 -35 -35 -34 -33 -32 -29 -27 -27 -29 -31 -33 -36 -37 -38 -36 -37 -36 -35 -36 -36 -33 -25 -17 -5 8 22 34 44 54 64 71 72 65 51 35 18 4 -4 -9 -12 -18 -24 -28 -31 -32 -34 -35 -36 -36 -37 -37 -37 -37 -37 -38 -39 -39 -39 -38 -39 -38 -40 -40 -43 -44 -44 -44 -45 -46 -46 -47 -47 -48 -48 -50 -52 -52 -52 -51 -52 -50 -50 -49 -47 -45 -42 -41 -39 -38 -35 -34 -33 -32 -30 -29 -28 -26 -25 -24 -24 -23 -22 -22 -22 -22 -21 -21 -21 -20 -19 -19 -19 -19 -18 -17 -16 -15 -13 -11 -11 -9 -5 -3 -2 0 3 3 2 2 2 2 0 -4 -7 -9 -11 -12 -14 -16 -17 -16 -14 -14 -14 -13 -12 -12 -13 -13 -15 -16 -17 -17 -16 -16 -16 -17 -16 -16 -15 -13 -10 -7 -8 -9 -11 -13 -16 -17 -15 -13 -10 -9 -9 -10 -10 -7 0 10 21 34 48 59 69 77 84 89 87 81 68 53 38 24 16 11 6 1 -4 -8 -11 -11 -12 -13 -14 -14 -14 -15 -16 -17 -16 -16 -17 -18 -18 -18 -19 -20 -21 -22 -23 -23 -23 -24 -25 -26 -27 -28 -30 -30 -30 -30 -32 -33 -34 -35 -35 -35 -33 -32 -30 -28 -26 -25 -23 -20 -17 -14 -12 -10 -9 -8 -6 -4 -4 -3 -3 -1 -1 -2 -2 -2 -1 -1 0 1 1 0 1 3 3 3 3 5 6 8 11 14 16 17 18 18 18 18 15 13 9 6 5 5 3 1 0 0 1 1 1 2 2 2 2 2 1 0 0 -1 -1 -2 -2 0 0 0 0 2 5 7 8 8 7 4 2 0 0 0 2 4 4 2 1 1 5 12 23 37 51 64 74 85 92 99 102 98 89 75 60 44 31 23 22 19 14 8 3 1 0 0 0 0 -1 -3 -4 -4 -4 -5 -6 -6 -8 -8 -9 -10 -11 -13 -14 -15 -16 -18 -19 -20 -22 -24 -26 -27 -29 -30 -30 -30 -29 -30 -30 -29 -28 -27 -25 -23 -22 -20 -17 -15 -13 -10 -7 -5 -4 -2 -1 -1 0 0 1 2 3 2 3 2 2 3 4 5 5 5 6 5 5 5 5 5 6 6 9 12 15 16 18 18 17 17 16 14 10 8 7 6 4 2 0 0 1 2 2 2 1 1 1 1 1 1 0 0 -2 -1 -1 0 -1 -1 -1 0 1 3 5 5 3 0 -1 -2 -4 -4 -2 0 0 -1 -3 -3 -1 3 12 25 35 46 56 66 74 81 88 90 88 78 67 52 37 27 23 21 16 10 6 3 2 2 2 1 0 -1 -2 -2 -2 -2 -2 -2 -3 -5 -6 -7 -8 -9 -9 -10 -11 -12 -13 -14 -15 -16 -17 -17 -18 -18 -19 -20 -21 -21 -20 -19 -19 -18 -17 -14 -13 -13 -11 -10 -10 -9 -7 -4 -2 -1 0 0 0 2 4 4 4 4 5 5 5 5 5 6 6 6 6 5 5 6 8 9 10 12 14 16 19 20 21 21 19 19 19 18 16 13 11 9 7 6 6 7 8 8 8 8 8 10 10 10 9 9 9 9 9 9 9 9 8 8 9 10 11 13 14 14 12 10 8 7 6 6 9 11 13 13 12 13 17 27 39 53 65 78 89 102 112 119 124 119 109 91 75 59 48 43 39 34 27 22 20 19 17 16 15 13 11 10 10 10 9 7 6 4 2 1 0 0 -1 -2 -2 -2 -4 -6 -7 -9 -9 -9 -8 -8 -9 -11 -12 -13 -13 -12 -10 -9 -7 -6 -5 -4 -4 0 2 5 6 9 11 13 14 15 17 19 20 20 21 21 21 22 22 22 21 22 22 24 24 25 26 25 25 26 28 29 32 35 39 42 44 45 45 45 44 44 42 41 38 34 32 29 28 28 28 28 28 28 29 29 29 28 27 25 24 23 24 24 24 24 24 23 23 25 27 30 31 32 31 29 27 25 26 27 29 32 35 34 33 33 36 43 53 66 79 93 102 113 122 129 134 133 129 115 102 87 73 63 58 56 50 45 38 34 32 30 28 27 26 25 24 23 23 23 … ]}    {[T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    …        ]}
    {[12 11 10 9 7 7 6 4 4 4 4 3 2 2 2 1 0 0 -1 -2 -4 -5 -7 -9 -10 -11 -11 -12 -12 -13 -14 -15 -16 -16 -17 -17 -17 -17 -17 -17 -16 -14 -12 -10 -7 -4 -1 1 3 6 9 11 13 14 15 16 16 17 18 19 19 20 20 20 21 21 22 22 22 23 23 23 24 25 27 28 30 32 35 38 40 40 41 40 40 40 39 37 33 30 26 23 21 22 22 23 23 22 22 21 22 21 22 22 20 19 18 18 17 17 17 17 17 18 21 24 25 25 24 21 18 15 15 15 16 18 21 22 20 19 22 30 40 53 69 83 96 107 117 126 131 132 124 110 90 69 51 39 35 34 31 26 20 17 16 15 13 11 10 10 8 6 6 5 5 4 4 4 2 0 -3 -5 -6 -5 -4 -4 -6 -9 -11 -13 -15 -17 -18 -19 -21 -21 -21 -20 -21 -25 -27 -25 -21 -20 -18 -15 -14 -13 -12 -8 -7 -5 -2 0 3 3 3 4 4 6 7 6 5 5 7 7 7 8 10 11 10 9 8 9 10 11 14 15 17 18 22 26 28 30 31 32 31 30 29 28 25 22 19 15 14 14 15 15 14 12 13 13 14 13 13 12 10 9 9 9 9 8 7 6 7 8 10 14 15 14 14 13 11 8 6 6 8 10 14 15 14 11 12 18 27 39 54 69 82 92 98 105 109 109 102 86 68 48 32 21 17 16 13 9 5 2 1 0 0 -1 -2 -3 -4 -5 -7 -7 -8 -9 -10 -9 -11 -12 -12 -14 -14 -15 -15 -17 -18 -20 -21 -22 -24 -25 -26 -26 -26 -27 -27 -27 -27 -27 -26 -25 -23 -21 -19 -16 -14 -11 -10 -7 -5 -3 0 3 5 7 8 8 8 8 9 10 11 11 12 13 13 13 14 15 15 16 17 18 19 19 22 24 27 29 33 34 35 35 36 36 34 32 30 27 24 21 20 19 19 19 20 19 18 18 18 19 19 19 18 17 15 14 14 15 15 15 16 17 18 20 23 24 23 21 20 19 17 17 18 20 21 21 20 18 19 23 32 45 57 69 80 91 97 104 110 116 117 111 102 85 68 53 44 41 40 36 30 25 21 19 18 17 16 16 16 15 14 11 11 11 11 11 10 9 7 6 5 5 4 3 2 1 0 -2 -3 -3 -4 -5 -6 -6 -7 -8 -7 -7 -7 -6 -5 -2 -1 0 2 4 6 8 10 13 16 18 21 23 24 25 26 27 28 28 30 30 31 31 32 33 34 34 34 34 34 35 36 39 40 40 42 45 48 50 53 52 51 50 50 51 49 48 44 42 39 36 36 36 37 36 37 37 37 36 36 36 34 34 34 35 35 34 34 34 33 33 35 36 38 39 39 39 39 38 35 33 31 31 32 34 36 35 34 34 37 43 53 67 79 92 103 115 123 132 138 139 134 118 103 86 73 65 61 58 50 44 39 38 35 34 34 32 30 28 28 27 27 26 25 25 24 22 21 20 19 18 17 16 14 13 12 11 11 9 8 8 6 4 3 3 3 4 4 5 5 6 7 8 10 11 13 15 18 19 21 24 25 26 27 29 30 31 32 32 33 32 33 34 35 35 36 37 36 36 35 36 36 36 39 40 42 44 47 49 52 52 52 51 50 49 46 46 43 40 36 34 32 31 32 32 32 31 31 31 31 30 29 28 26 25 25 25 24 24 25 26 27 28 30 32 31 29 28 26 24 22 22 23 24 25 25 24 22 24 31 41 52 66 78 92 100 109 115 122 123 116 105 87 71 57 50 46 42 36 29 25 21 20 18 17 16 15 14 13 11 10 11 10 8 7 7 5 4 3 2 1 0 -1 -2 -3 -4 -6 -8 -9 -10 -11 -11 -12 -13 -13 -12 -13 -13 -13 -12 -10 -9 -7 -5 -4 -3 -1 0 1 3 5 7 8 9 9 10 10 10 10 10 10 10 11 11 12 11 12 12 12 11 13 14 15 17 20 23 25 27 28 28 27 26 26 25 23 19 17 13 10 9 9 9 9 8 8 8 7 7 7 6 4 3 3 2 1 0 0 0 1 2 3 5 7 7 7 4 2 -1 -2 -2 -1 0 2 3 1 1 3 8 16 27 41 54 66 75 85 91 97 97 92 81 64 49 34 23 18 16 13 7 2 -1 -2 -3 -5 -7 -8 -9 -10 -11 -12 -13 -14 -15 -15 -17 -18 -18 -18 -18 -20 -21 -22 -23 -25 -26 -28 -29 -30 -31 -31 -32 -33 -34 -34 -35 -35 -34 -33 -32 -32 -30 -28 -26 -24 -21 -18 -15 -14 -12 -9 -7 -6 -5 -3 -2 -2 -2 -1 -1 -1 0 0 0 0 0 2 2 2 2 3 3 5 7 9 11 14 16 16 17 16 16 16 15 13 10 7 3 0 -1 -1 -2 -2 -1 -1 -1 -2 -2 -1 -2 -4 -5 -5 -6 -6 -5 -5 -5 -5 -5 -3 -1 0 2 2 0 -2 -4 -6 -7 -6 -5 -3 -3 -5 -6 -6 -2 6 19 33 47 58 68 79 85 92 94 95 85 71 54 35 21 14 13 10 4 0 -3 -5 -6 -8 -10 -12 -12 -12 -14 -15 -15 -15 -15 -16 -18 -19 -19 -18 -19 -21 -22 -23 -23 -24 -25 -27 -29 -29 -30 -31 -34 -35 -35 -35 -34 -34 -34 -33 -33 -33 -31 -29 -27 -25 -22 -19 -17 -15 -14 -12 -11 -8 -6 -5 -4 -3 -2 -2 -2 -1 -1 -1 -2 -1 -1 0 0 0 0 1 1 1 2 3 5 6 10 13 15 16 16 16 15 15 13 10 7 4 2 0 -1 -2 -1 -1 -2 -2 -1 -1 -1 -1 -1 -2 -4 -4 -4 -5 -4 -4 -4 -3 -3 -2 0 2 3 3 2 0 -2 -5 -6 -5 -4 -1 1 0 0 0 6 14 26 41 57 71 82 94 100 107 107 104 90 74 57 40 28 22 20 15 7 1 0 0 0 -1 -2 -3 -6 -8 -9 -8 -8 -10 -13 -15 -15 -14 -15 -16 -18 -20 -21 -22 -22 -24 -25 -27 -30 -31 -29 -29 -32 -36 -37 -36 -35 -34 -33 -34 -33 -31 -28 -27 -27 -25 -22 -18 -16 -15 -17 -18 -18 -15 -11 -7 -7 -9 -9 -8 -8 -9 -9 -8 -7 -7 -6 -5 -6 -7 -6 -5 -5 -4 -1 1 4 6 8 9 7 7 7 5 1 -3 -5 -7 -9 -12 -12 -12 -12 -12 -12 -11 -11 -11 -10 -8 -8 -9 -11 -13 -16 -17 -16 -18 -18 -17 -16 -16 -17 -16 -13 -11 -11 -12 -13 -15 -17 -17 -16 -14 -13 -14 -16 -16 -13 -7 1 14 29 43 57 67 75 81 84 85 76 65 50 35 20 8 3 1 -3 -10 -15 -16 -16 -17 -20 -23 -24 -25 -26 -30 -32 -32 -31 -31 -32 -33 -34 -33 -34 -36 -38 -39 -40 -41 -42 -43 -45 -45 -45 -46 -49 -52 -54 -53 -53 -53 -52 -51 -51 -50 -47 -46 -44 -43 -40 -38 -37 -34 -32 -29 -28 -27 -26 -24 -23 -23 -22 -21 -20 -20 -20 -21 -21 -20 -19 -18 -18 -17 -17 -16 -16 -16 -14 -12 -9 -6 -2 0 0 0 0 0 0 -1 -3 -5 -8 -10 -12 -13 -14 -14 -12 -12 -12 -13 -12 -11 -12 -13 -13 -14 -15 -15 -15 -15 -15 -16 -15 -15 -15 -12 -9 -7 -8 -9 -11 -12 -14 -14 -13 -11 -10 -9 -8 -10 -8 -3 6 18 31 44 58 67 76 84 91 94 88 78 60 44 27 15 9 8 4 0 -6 -9 -12 -13 -13 -14 -15 -15 -15 -16 -18 -19 -20 -20 -21 -21 -21 -22 -24 -24 -25 -26 -27 -27 -29 -31 -32 -33 -34 -35 -36 -36 -37 -37 -38 -38 -38 -38 -37 -36 -34 -33 -30 -28 -25 -24 -22 -20 -18 -15 -14 -12 -10 -8 -8 -7 -6 -5 -5 -3 -2 -2 -2 -1 -1 -1 0 0 0 0 1 2 3 4 6 9 11 13 14 15 15 15 14 11 7 3 2 1 0 -2 -2 -1 -2 -2 -2 -2 -2 -2 -1 -1 … ]}    {[n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    …        ]}
    {[  -2 -1 -1 0 0 -1 -1 -1 -2 -3 -3 -4 -4 -4 -3 -2 -2 -2 -1 1 3 2 1 0 -3 -6 -8 -9 -8 -8 -7 -4 -4 -5 -3 4 14 27 42 60 74 86 96 106 115 116 110 92 73 52 37 27 22 17 10 4 0 -2 -3 -3 -5 -7 -7 -7 -7 -8 -9 -10 -10 -11 -12 -12 -13 -14 -15 -14 -14 -15 -17 -17 -19 -20 -22 -22 -24 -25 -26 -27 -27 -29 -30 -30 -30 -30 -30 -28 -27 -25 -24 -22 -21 -21 -20 -18 -16 -14 -11 -9 -8 -8 -7 -5 -4 -5 -6 -6 -7 -6 -5 -5 -5 -6 -6 -6 -6 -6 -6 -5 -4 -5 -5 -4 -4 -3 -2 0 2 5 7 9 10 9 8 7 6 3 0 -2 -4 -7 -9 -9 -10 -10 -9 -8 -8 -8 -8 -9 -9 -11 -13 -13 -14 -15 -16 -15 -14 -15 -14 -14 -12 -12 -10 -7 -5 -6 -8 -10 -13 -16 -17 -17 -15 -15 -14 -15 -16 -16 -12 -5 7 22 37 51 64 75 85 92 99 98 88 73 56 40 24 16 12 7 0 -6 -10 -13 -15 -16 -15 -15 -16 -18 -18 -20 -22 -23 -22 -21 -21 -23 -23 -24 -26 -26 -27 -27 -29 -30 -31 -34 -35 -37 -36 -38 -39 -40 -41 -40 -42 -41 -42 -41 -42 -42 -40 -38 -35 -34 -31 -30 -28 -26 -23 -19 -18 -15 -13 -11 -12 -13 -12 -11 -10 -10 -10 -9 -9 -9 -9 -9 -9 -9 -7 -6 -6 -6 -5 -5 -5 -4 -2 0 1 3 7 10 11 11 10 9 9 10 8 6 2 0 -2 -4 -6 -6 -4 -5 -5 -5 -4 -3 -4 -4 -5 -6 -7 -8 -8 -9 -9 -10 -8 -8 -8 -7 -5 -3 -2 -2 -3 -5 -7 -9 -10 -12 -13 -12 -9 -8 -9 -10 -8 -3 5 17 32 46 56 65 73 81 87 90 86 74 58 42 27 15 9 7 3 -2 -7 -10 -10 -11 -13 -14 -13 -14 -15 -15 -16 -16 -17 -18 -18 -19 -20 -21 -22 -22 -23 -24 -23 -25 -27 -29 -29 -29 -30 -30 -31 -31 -32 -33 -33 -33 -33 -34 -32 -31 -31 -31 -30 -28 -26 -24 -22 -18 -16 -15 -14 -13 -12 -10 -8 -7 -6 -6 -4 -4 -4 -4 -4 -3 -3 -3 -2 -2 -2 -1 -1 -1 -1 -1 0 1 2 3 6 9 12 14 15 15 14 14 13 12 9 6 3 1 0 -2 -2 -1 0 0 1 2 1 1 1 1 0 0 0 0 -1 -2 -2 -2 -2 -2 0 1 3 4 6 5 4 2 0 0 -1 -1 0 0 0 -1 -2 -2 0 8 18 30 42 54 64 74 81 88 93 94 88 75 59 42 28 22 20 19 12 8 5 3 1 0 0 -1 -2 -2 -2 -2 -4 -5 -5 -6 -8 -8 -7 -8 -8 -10 -11 -12 -13 -14 -15 -16 -17 -17 -18 -18 -19 -20 -21 -22 -24 -24 -23 -23 -23 -22 -21 -19 -19 -16 -14 -11 -9 -6 -4 -2 -1 0 1 2 3 3 5 4 4 4 4 4 4 4 4 5 4 5 5 5 4 5 7 8 9 10 12 15 18 21 22 22 20 21 20 19 16 13 10 8 5 4 4 4 5 6 6 5 4 6 7 7 6 6 5 3 3 3 3 2 2 3 3 4 7 10 10 8 7 5 2 1 1 3 3 3 3 3 2 4 11 23 35 51 65 81 92 101 110 118 120 110 95 75 55 40 32 28 22 15 8 5 4 2 2 1 0 -2 -3 -4 -5 -5 -6 -5 -6 -7 -8 -9 -10 -10 -11 -12 -14 -16 -17 -17 -19 -20 -21 -22 -24 -25 -25 -25 -25 -27 -26 -26 -26 -25 -23 -21 -20 -19 -18 -16 -14 -12 -9 -4 -2 -1 0 2 4 4 5 5 4 3 4 5 5 5 6 7 7 7 7 7 7 7 8 9 10 11 12 13 14 16 20 24 27 28 26 25 24 22 20 17 15 12 10 7 5 4 5 6 5 4 5 6 7 8 7 6 4 1 1 1 1 1 2 2 3 4 6 9 10 10 9 7 3 0 0 1 3 5 7 7 4 3 5 13 25 40 55 72 86 97 107 114 121 119 113 97 79 62 46 36 30 27 20 14 9 7 5 4 4 2 2 2 1 0 -1 -2 -4 -5 -5 -6 -7 -8 -9 -9 -10 -11 -11 -12 -13 -15 -17 -18 -18 -20 -21 -21 -21 -22 -23 -22 -22 -22 -22 -21 -20 -20 -18 -16 -14 -12 -9 -5 -1 0 1 3 4 5 6 8 9 9 10 11 11 11 11 12 12 12 12 13 14 13 13 14 15 15 16 18 19 20 22 26 29 31 32 33 33 32 31 29 25 20 17 17 17 16 14 14 15 15 14 15 15 15 15 15 15 14 13 13 12 11 10 12 13 14 14 15 17 18 21 21 21 19 17 15 14 12 13 15 15 15 13 12 14 21 31 45 60 73 87 98 110 117 125 127 121 108 89 72 54 44 40 38 32 25 20 18 16 15 13 13 12 11 10 10 9 7 6 5 5 5 5 5 3 1 0 0 -1 -2 -3 -4 -5 -6 -7 -8 -10 -11 -11 -12 -12 -12 -12 -12 -11 -10 -9 -7 -6 -4 -2 0 1 3 5 8 10 11 14 15 16 16 17 18 18 19 19 20 20 20 20 21 21 21 21 22 23 22 23 24 26 28 31 36 38 39 39 39 38 36 35 32 28 26 25 25 23 22 21 22 22 22 22 23 23 23 24 23 22 20 19 19 19 19 18 19 19 19 20 22 25 26 27 26 25 22 20 18 17 18 19 21 21 21 19 22 27 37 49 64 79 91 104 115 126 132 134 130 115 99 81 67 55 49 45 40 33 28 25 23 22 20 18 17 17 16 15 15 15 13 12 12 12 10 9 9 8 7 6 5 4 2 1 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -8 -7 -6 -5 -5 -4 -2 0 0 2 4 6 8 10 12 14 15 17 18 19 20 20 21 21 21 20 20 20 20 21 22 22 22 22 23 24 24 24 26 29 31 34 38 39 38 37 37 36 33 30 27 25 23 22 21 19 17 17 19 20 19 19 19 19 17 16 15 14 13 11 12 12 12 12 12 13 13 15 17 20 20 19 17 14 12 9 10 11 12 13 15 14 13 14 21 32 44 58 71 85 95 106 114 120 122 115 102 83 66 51 42 37 34 28 21 17 14 12 11 10 8 7 6 4 3 2 1 0 0 0 -1 -2 -4 -5 -5 -6 -6 -8 -9 -10 -12 -14 -15 -15 -16 -18 -19 -20 -21 -21 -21 -22 -22 -21 -20 -18 -16 -14 -12 -10 -9 -7 -5 -2 0 1 3 3 3 4 5 6 7 6 6 7 7 7 7 8 9 9 8 8 8 8 10 11 12 12 15 17 20 21 22 23 22 22 20 19 15 11 9 7 6 4 3 3 3 3 3 4 3 2 3 3 3 2 1 0 -1 -1 0 0 -1 -2 -1 0 1 3 6 6 5 3 1 -1 -3 -4 -4 -2 -1 0 0 0 1 7 17 30 43 56 68 80 88 94 101 102 95 81 65 48 33 24 21 19 14 8 4 1 0 -2 -3 -5 -6 -7 -8 -8 -10 -11 -11 -12 -13 -14 -14 -15 -16 -17 -18 -19 -21 -22 -23 -24 -26 -26 -27 -29 -30 -31 -31 -32 -32 -33 -33 -33 -33 -32 -31 -29 -27 -24 -22 -20 -19 -16 -13 -11 -9 -7 -5 -5 -5 -4 -2 -2 -3 -2 -2 -3 -4 -3 -2 -2 -2 -1 0 0 0 0 1 1 2 5 9 12 13 13 13 12 10 9 6 3 0 -2 -2 -4 -5 -6 -7 -7 -7 -7 -6 -6 -6 -5 -4 -5 -6 -8 -8 -9 -9 -9 -8 -8 -9 -9 -9 -7 -5 -2 0 -1 -4 -7 -9 -11 -12 -11 -8 -6 -5 -5 -6 -4 -1 7 20 36 51 66 80 92 101 109 113 107 92 74 56 39 27 22 17 11 3 -1 -3 -4 -5 -7 -8 -9 -11 -11 -12 -12 -14 -14 -14 -15 -17 -18 -18 -19 -20 -21 -22 -22 -24 -25 -26 -27 -28 -30 -30 -31 -31 -32 -32 -32 -32 -33 -32 -31 -30 -29 -27 -25 -24 -21 -19 -16 -14 -12 -10 -8 -6 -5 -5 -4 … ]}    {[n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    …       ]}
    {[52 62 69 78 84 87 86 77 65 49 34 22 15 14 12 8 2 -1 -3 -4 -4 -4 -4 -4 -5 -6 -5 -4 -5 -7 -8 -8 -8 -8 -8 -8 -9 -10 -10 -10 -11 -12 -12 -13 -15 -16 -18 -18 -19 -19 -20 -21 -22 -22 -20 -19 -18 -18 -16 -14 -14 -12 -9 -6 -6 -6 -5 -1 0 0 1 1 1 0 1 2 3 4 5 4 3 3 4 4 5 5 5 5 6 5 6 6 6 6 7 10 11 14 17 19 18 16 15 17 18 18 15 11 7 4 4 4 3 1 2 3 4 4 5 6 7 6 5 5 5 5 4 3 2 1 1 1 1 1 1 3 5 6 7 7 6 3 1 -1 -2 -3 -3 0 0 -1 -3 -2 0 6 15 28 40 51 62 71 81 87 94 95 87 75 58 43 29 21 17 13 8 3 0 -1 -2 -4 -4 -5 -6 -7 -6 -5 -4 -4 -6 -7 -8 -9 -10 -9 -9 -10 -11 -12 -12 -14 -16 -18 -19 -21 -22 -22 -22 -23 -25 -26 -28 -28 -28 -27 -27 -27 -26 -26 -25 -24 -22 -21 -20 -18 -14 -13 -12 -12 -11 -9 -7 -6 -5 -5 -6 -7 -6 -5 -5 -6 -6 -6 -6 -6 -7 -7 -8 -8 -7 -8 -8 -7 -5 -3 -3 -3 -1 1 3 3 4 4 3 1 0 -2 -6 -9 -10 -11 -12 -13 -14 -15 -16 -16 -16 -15 -16 -16 -16 -15 -17 -19 -19 -19 -19 -20 -18 -18 -18 -19 -19 -19 -19 -17 -16 -16 -17 -18 -20 -24 -27 -30 -29 -28 -27 -27 -27 -27 -27 -23 -16 -5 7 22 39 54 63 73 81 90 88 77 60 39 20 6 0 -1 -6 -12 -18 -22 -25 -26 -26 -28 -29 -30 -29 -29 -31 -33 -34 -34 -35 -34 -34 -35 -36 -38 -40 -43 -45 -45 -44 -44 -46 -48 -49 -49 -50 -51 -53 -55 -55 -56 -55 -55 -54 -53 -51 -50 -49 -48 -47 -44 -43 -40 -37 -34 -34 -33 -31 -31 -29 -29 -27 -28 -29 -29 -28 -27 -27 -26 -26 -25 -25 -25 -25 -26 -27 -27 -26 -26 -25 -23 -21 -21 -19 -17 -14 -13 -13 -12 -12 -12 -11 -11 -13 -17 -21 -23 -25 -26 -27 -29 -30 -30 -29 -28 -28 -27 -26 -25 -24 -26 -27 -27 -26 -27 -28 -28 -28 -28 -28 -27 -27 -26 -25 -23 -21 -22 -24 -26 -27 -30 -32 -32 -30 -28 -27 -27 -27 -26 -22 -13 -1 12 28 44 59 72 81 90 95 91 80 62 45 26 12 4 0 -3 -10 -16 -20 -23 -25 -25 -25 -25 -27 -27 -28 -28 -28 -28 -29 -30 -31 -32 -31 -32 -33 -34 -34 -36 -38 -38 -39 -39 -41 -42 -43 -43 -43 -45 -44 -46 -46 -46 -45 -45 -45 -43 -43 -40 -39 -36 -34 -32 -29 -27 -23 -21 -19 -19 -17 -15 -15 -14 -13 -12 -13 -13 -12 -11 -10 -9 -8 -7 -8 -9 -8 -7 -7 -8 -6 -5 -4 -3 -2 0 1 4 7 9 9 10 11 11 10 7 4 1 -1 -2 -3 -5 -5 -5 -5 -3 -3 -3 -3 -2 -1 0 0 -1 -3 -5 -6 -6 -6 -5 -4 -3 -3 -4 -3 0 3 4 2 0 -3 -4 -5 -4 -5 -4 -2 -1 -2 -2 0 6 15 28 43 58 71 82 94 103 110 111 106 93 76 60 44 32 26 23 18 12 8 7 7 5 4 4 5 4 3 2 2 2 1 0 0 -1 -1 -2 -2 -3 -4 -4 -4 -5 -7 -8 -8 -9 -10 -11 -11 -12 -13 -14 -14 -14 -15 -14 -13 -12 -12 -11 -8 -6 -4 -1 2 4 6 8 10 12 14 14 15 16 16 17 18 18 18 19 20 21 21 21 22 22 22 22 22 23 24 25 26 27 27 28 31 34 37 38 40 39 40 40 39 36 31 28 26 26 24 23 22 22 22 24 25 25 25 25 27 26 25 24 23 22 20 20 21 22 21 22 24 25 27 28 30 30 29 27 25 23 21 21 21 23 23 24 22 22 23 30 41 54 68 81 93 104 113 121 127 129 121 108 92 74 58 48 46 43 39 32 29 26 24 23 23 23 21 20 19 18 18 17 18 17 16 15 15 14 13 13 12 11 10 9 10 11 10 8 7 7 7 7 7 6 4 3 3 4 4 5 6 8 9 10 13 16 18 20 22 24 24 25 27 29 30 30 30 31 30 31 32 32 32 31 33 35 35 33 33 34 35 37 37 38 37 38 41 43 46 46 47 47 46 45 45 43 38 35 33 33 31 30 29 30 30 30 31 32 32 32 33 33 32 30 29 29 29 29 29 29 28 28 28 29 30 31 33 34 33 31 29 27 25 25 27 28 29 29 28 27 29 34 44 56 68 80 89 100 107 116 121 123 117 105 91 74 60 52 51 47 42 36 34 33 32 32 30 29 27 25 25 24 22 21 22 22 22 20 20 20 19 19 19 19 18 17 15 14 12 10 10 10 9 7 7 7 6 5 7 8 8 8 9 10 12 13 15 17 19 21 23 26 28 29 30 31 30 31 31 32 32 33 33 33 34 33 34 34 34 34 34 36 36 36 36 37 37 39 41 43 46 45 46 46 47 47 45 43 39 36 34 34 32 30 29 29 30 30 30 30 31 32 33 33 33 32 30 29 28 29 29 29 28 27 27 28 29 30 31 31 30 29 27 26 24 23 23 25 26 27 27 26 28 32 40 51 63 75 84 97 104 112 115 115 108 95 81 64 51 43 42 41 36 31 26 25 23 22 19 18 17 14 15 15 14 13 12 11 9 8 7 7 6 5 5 5 5 3 2 1 0 0 -1 -2 -3 -3 -3 -4 -4 -5 -6 -6 -6 -7 -5 -2 0 0 2 5 7 8 10 12 13 13 13 15 15 16 16 17 18 18 20 21 20 18 19 20 19 18 17 18 18 19 20 21 23 24 26 28 29 30 31 33 32 29 26 22 19 17 17 15 13 12 13 13 13 13 13 14 14 14 13 13 12 12 12 12 11 10 9 9 8 8 10 12 13 14 14 13 10 7 5 4 4 4 6 6 4 2 2 6 13 23 35 48 58 69 79 89 95 101 100 90 76 58 43 30 22 19 16 12 6 3 2 0 0 -1 -2 -4 -5 -6 -7 -8 -9 -10 -11 -11 -12 -14 -14 -15 -16 -18 -17 -17 -18 -20 -21 -22 -23 -24 -25 -25 -26 -27 -28 -28 -29 -29 -27 -26 -25 -24 -23 -21 -19 -18 -17 -15 -14 -12 -10 -8 -6 -5 -4 -3 -3 -2 -1 -1 -1 -1 0 1 1 1 0 0 0 -1 0 1 2 2 2 3 5 6 9 11 11 10 10 12 12 11 8 5 3 1 1 0 -1 -2 -1 0 -1 -2 -1 0 1 1 1 1 0 -1 -2 -2 -3 -3 -3 -3 -3 -3 -1 1 3 4 3 2 0 -3 -6 -7 -7 -7 -7 -6 -6 -6 -2 2 10 20 32 45 55 67 76 86 94 97 95 81 65 46 30 20 15 12 7 1 -2 -4 -5 -6 -8 -9 -8 -9 -10 -11 -11 -11 -13 -13 -14 -14 -15 -17 -17 -17 -18 -18 -19 -19 -20 -21 -22 -24 -25 -26 -26 -27 -29 -29 -29 -29 -28 -29 -28 -27 -27 -26 -24 -21 -20 -18 -16 -14 -13 -12 -10 -8 -7 -6 -4 -4 -4 -2 0 0 0 0 1 1 0 0 0 0 0 1 2 1 1 2 3 4 5 6 9 11 13 14 15 15 15 15 14 10 7 4 4 3 2 1 1 3 3 3 3 3 3 5 6 6 5 5 4 2 1 1 2 3 3 3 3 4 4 6 8 9 7 7 6 4 2 0 0 0 0 1 1 1 3 9 19 31 43 56 69 81 92 102 113 112 105 88 69 50 35 28 24 20 14 9 6 4 2 1 1 0 -1 -2 -3 -4 -4 -4 -5 -6 -7 -8 -7 -7 -8 -9 -9 -10 -12 -12 -13 -14 -15 -16 -18 -19 -20 -20 -19 -20 -20 -20 -20 -20 -21 -19 -18 -16 -15 -12 -9 -8 -7 -5 -3 -1 0 1 3 4 4 4 5 5 5 6 6 7 … ]}    {[QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    …    ]}
    {[  7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 10 11 12 13 14 15 16 18 22 26 27 26 25 25 23 21 18 15 12 11 10 8 6 5 6 7 8 9 10 10 10 10 10 9 8 6 5 5 5 6 7 8 8 7 8 11 14 15 15 13 11 7 6 6 8 9 11 12 11 10 12 20 29 42 57 72 86 96 107 113 119 115 106 91 72 57 44 36 30 25 18 12 7 5 5 4 2 0 0 0 -1 -2 -3 -3 -3 -4 -4 -5 -7 -9 -10 -10 -11 -12 -13 -14 -16 -18 -19 -20 -21 -23 -23 -24 -25 -25 -26 -26 -26 -25 -24 -22 -21 -20 -18 -16 -14 -12 -9 -8 -7 -5 -2 -1 0 1 2 2 1 2 2 2 2 3 4 3 4 4 5 4 4 4 5 6 6 7 8 9 10 14 18 20 21 21 21 20 18 16 12 7 4 3 3 1 -1 -2 -3 -3 -2 0 0 0 0 0 0 0 -1 -2 -2 -3 -4 -3 -2 -2 -1 0 1 2 4 5 4 3 0 -3 -5 -4 -3 -1 1 0 0 0 2 7 16 30 45 58 70 80 90 97 102 102 94 81 63 47 32 22 18 15 9 1 -3 -5 -7 -8 -9 -9 -10 -11 -11 -11 -11 -12 -13 -12 -13 -14 -17 -17 -18 -19 -19 -20 -20 -21 -23 -24 -25 -27 -28 -28 -28 -28 -29 -30 -31 -31 -32 -31 -31 -31 -28 -26 -24 -23 -22 -20 -17 -15 -13 -11 -9 -8 -7 -5 -3 -3 -2 -2 -1 -1 -1 -1 0 0 -1 0 0 1 1 2 2 1 0 1 1 3 4 6 8 9 12 15 17 18 17 17 16 13 10 8 4 3 2 2 1 0 -1 -1 0 1 2 3 5 4 3 2 1 1 0 0 0 0 0 0 0 0 1 2 4 7 7 5 4 2 0 -2 -3 -3 -2 -1 0 -1 -3 -2 4 13 24 36 51 63 73 82 90 98 101 97 86 69 52 36 26 21 18 15 10 4 1 0 -1 -2 -2 -2 -3 -3 -4 -5 -5 -5 -6 -6 -7 -7 -8 -9 -9 -10 -11 -11 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -20 -19 -19 -19 -19 -17 -16 -15 -14 -12 -9 -8 -5 -4 -2 -2 0 3 5 6 7 7 8 8 8 8 8 7 8 9 9 9 9 10 10 10 11 11 11 11 11 12 14 14 15 17 19 20 22 24 25 24 24 23 22 19 15 13 10 10 9 9 7 8 9 10 10 9 10 11 11 10 11 11 10 9 9 9 8 8 9 10 10 10 12 14 16 16 15 14 11 7 5 4 4 4 5 7 6 6 7 13 22 32 46 61 74 86 96 108 114 116 110 96 78 61 49 40 35 30 25 19 13 10 8 7 6 6 6 6 5 4 4 4 3 3 3 3 2 1 0 0 -1 -2 -2 -3 -3 -5 -5 -6 -7 -9 -10 -10 -11 -12 -13 -13 -13 -13 -12 -12 -11 -10 -8 -5 -3 -2 -1 0 2 4 7 10 12 13 14 14 13 13 12 12 12 12 12 11 11 11 10 11 11 10 9 9 8 7 8 10 12 13 15 17 20 22 24 24 22 21 20 20 17 13 9 8 8 6 4 2 0 1 4 6 6 4 2 2 2 2 2 1 1 1 0 0 0 0 0 0 1 1 4 7 8 7 5 2 0 -4 -4 -3 -2 -1 0 1 0 0 5 16 28 43 58 74 87 99 109 117 121 115 103 83 66 50 39 34 28 21 13 8 6 3 2 1 0 -1 -2 -2 -2 -3 -4 -4 -5 -6 -7 -7 -7 -7 -8 -9 -10 -12 -13 -13 -15 -16 -17 -17 -18 -19 -20 -22 -23 -24 -25 -26 -26 -26 -25 -24 -22 -21 -20 -18 -15 -13 -11 -7 -5 -4 -2 -1 0 1 1 1 2 2 3 3 4 3 3 5 4 4 3 4 4 4 4 3 3 3 3 4 6 7 7 9 13 16 17 17 17 17 17 16 14 10 5 0 -1 -1 -3 -5 -6 -6 -6 -7 -5 -5 -5 -6 -4 -3 -4 -7 -8 -9 -10 -9 -8 -8 -9 -9 -10 -10 -9 -7 -4 -2 -2 -4 -7 -10 -14 -16 -16 -14 -13 -12 -12 -13 -11 -5 5 19 36 53 72 87 102 111 121 123 112 95 72 52 34 24 20 14 6 -2 -7 -9 -10 -10 -11 -13 -15 -16 -16 -17 -18 -18 -18 -18 -19 -20 -21 -22 -23 -24 -25 -26 -28 -29 -29 -30 -31 -34 -36 -37 -38 -38 -39 -39 -41 -42 -44 -44 -43 -42 -40 -38 -38 -36 -32 -29 -27 -24 -21 -20 -19 -17 -15 -12 -12 -10 -9 -9 -9 -9 -8 -8 -9 -8 -7 -7 -7 -7 -6 -7 -9 -9 -8 -7 -7 -5 -3 -2 -1 0 3 6 9 12 13 12 11 11 10 6 1 -3 -5 -7 -9 -10 -11 -12 -12 -11 -10 -10 -9 -8 -7 -8 -9 -9 -9 -10 -11 -11 -10 -10 -11 -10 -9 -9 -8 -5 -3 -3 -5 -6 -9 -12 -13 -14 -13 -12 -10 -8 -7 -7 -3 6 19 31 47 63 77 89 99 109 112 112 101 85 66 46 32 24 20 14 8 1 -2 -5 -6 -6 -7 -8 -8 -8 -8 -10 -11 -11 -11 -12 -13 -13 -14 -15 -15 -15 -16 -17 -18 -18 -19 -20 -20 -20 -22 -24 -26 -25 -26 -26 -26 -26 -27 -27 -26 -25 -23 -22 -19 -17 -15 -14 -12 -10 -8 -6 -4 -2 -1 0 0 1 2 2 3 4 4 3 3 4 4 5 5 6 6 6 6 6 6 6 7 8 9 9 10 13 15 17 20 23 25 24 23 23 22 20 17 13 10 8 8 7 4 2 2 3 4 5 5 5 5 5 6 6 4 3 3 3 3 3 3 3 3 4 4 6 8 10 11 9 6 2 0 -1 -2 -1 0 1 2 0 0 2 10 19 31 46 60 72 82 92 99 102 103 93 80 64 48 34 26 23 20 14 8 4 3 2 1 0 0 0 -1 -2 -2 -2 -2 -3 -3 -3 -3 -4 -5 -5 -5 -6 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -16 -16 -16 -17 -17 -16 -16 -14 -12 -10 -9 -7 -4 -2 0 1 3 5 7 8 9 11 12 12 13 13 13 13 13 13 12 12 13 13 13 13 13 14 14 14 14 15 15 16 18 20 21 23 26 29 30 31 31 30 29 26 23 18 14 13 12 12 9 8 8 9 10 11 11 10 10 10 11 11 10 9 8 8 7 6 7 7 7 8 10 11 12 13 14 12 10 8 6 4 4 4 5 6 5 4 6 10 17 29 43 56 69 79 90 97 102 106 106 99 85 69 51 38 30 27 25 18 12 8 7 7 5 5 5 5 4 4 4 3 2 2 2 1 0 0 0 0 -1 -1 -2 -4 -5 -5 -6 -7 -9 -9 -10 -11 -13 -13 -13 -14 -15 -15 -15 -15 -14 -13 -11 -9 -7 -5 -4 -2 0 2 4 5 6 8 10 10 10 11 11 11 10 11 12 12 12 12 13 12 11 12 13 13 13 14 15 16 16 17 18 19 23 26 29 29 29 29 29 27 24 21 17 14 11 10 9 7 7 7 9 9 9 10 11 10 9 9 9 8 7 7 7 6 6 5 6 6 6 8 10 12 13 12 11 8 5 2 1 0 0 2 3 3 2 4 8 15 26 41 57 71 84 96 107 115 119 116 104 85 66 49 38 31 28 23 16 10 6 5 4 2 2 2 2 1 0 0 -1 -2 -3 -2 -2 -2 -3 -3 -5 -6 -7 -8 -8 -10 -11 -12 -13 -13 -15 -16 -18 -19 -20 -19 -19 -18 -18 -18 -17 -16 -15 -13 -11 -9 -7 -4 -1 1 2 4 7 8 10 12 13 13 13 14 14 14 14 15 15 14 13 13 14 15 15 15 16 16 16 16 18 18 19 20 22 24 26 28 30 31 31 31 31 30 28 24 21 18 17 15 14 12 11 13 15 16 15 15 16 16 15 15 15 14 13 11 12 12 12 12 13 13 13 13 15 18 19 18 17 15 12 10 9 8 8 8 8 8 7 7 13 21 30 43 57 71 81 91 102 108 113 109 99 84 67 52 40 35 30 26 20 14 11 9 10 9 8 7 7 6 5 5 4 4 3 3 3 2 1 1 1 0 0 -1 -1 -2 -4 -4 -4 -5 -7 -8 -8 -9 -10 -11 -11 -11 -12 -11 -9 -7 -7 -5 -3 -2 -1 1 4 5 7 10 12 12 13 14 16 16 15 15 16 16 16 17 … ]}    {[T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    …      ]}

13 Signal Processing Examples

13-28



Choose to Train Networks or Download Pre-Trained Networks

The next sections of this example compare three different approaches to train LSTM networks. Due to
the large size of the dataset, the training process of each network may take several minutes. If your
machine has a GPU and Parallel Computing Toolbox™, then MATLAB automatically uses the GPU for
faster training. Otherwise, it uses the CPU.

You can skip the training steps and download the pre-trained networks using the selector below. If
you want to train the networks as the example runs, select 'Train Networks'. If you want to skip the
training steps, select 'Download Networks' and a file containing all three pre-trained networks -
rawNet, filteredNet, and fsstNet- will be downloaded into your temporary directory, whose
location is specified by MATLAB®'s tempdir command. If you want to place the downloaded file in a
folder different from tempdir, change the directory name in the subsequent instructions.

actionFlag = ;
if actionFlag == "Download networks"
    % Download the pre-trained networks
    dataURL = 'https://ssd.mathworks.com/supportfiles/SPT/data/QTDatabaseECGSegmentationNetworks.zip'; %#ok<*UNRCH>
    modelsFolder = fullfile(tempdir,'QTDatabaseECGSegmentationNetworks');
    modelsFile = fullfile(modelsFolder,'trainedNetworks.mat');
    zipFile = fullfile(tempdir,'QTDatabaseECGSegmentationNetworks.zip');
    if ~exist(modelsFolder,'dir')
        websave(zipFile,dataURL);
        unzip(zipFile,fullfile(tempdir,'QTDatabaseECGSegmentationNetworks'));
    end
    load(modelsFile)
end

Results between the downloaded networks and newly trained networks may vary slightly since the
networks are trained using random initial weights.

Input Raw ECG Signals Directly into the LSTM Network

First, train an LSTM network using the raw ECG signals from the training dataset.

Define the network architecture before training. Specify a sequenceInputLayer of size 1 to accept
one-dimensional time series. Specify an LSTM layer with the 'sequence' output mode to provide
classification for each sample in the signal. Use 200 hidden nodes for optimal performance. Specify a
fullyConnectedLayer with an output size of 4, one for each of the waveform classes. Add a
softmaxLayer and a classificationLayer to output the estimated labels.

layers = [ ...
    sequenceInputLayer(1)
    lstmLayer(200,'OutputMode','sequence')
    fullyConnectedLayer(4)
    softmaxLayer
    classificationLayer];

Choose options for the training process that ensure good network performance. Refer to the
trainingOptions documentation for a description of each parameter.

options = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'MiniBatchSize',50, ...
    'InitialLearnRate',0.01, ...
    'LearnRateDropPeriod',3, ...

 Waveform Segmentation Using Deep Learning

13-29



    'LearnRateSchedule','piecewise', ...
    'GradientThreshold',1, ...
    'Plots','training-progress',...
    'shuffle','every-epoch',...
    'Verbose',0,...
    'DispatchInBackground',true);

Because the entire training dataset fits in memory, it is possible to use the tall function of the
datastore to transform the data in parallel, if Parallel Computing Toolbox™ is available, and then
gather it into the workspace. Neural network training is iterative. At every iteration, the datastore
reads data from files and transforms the data before updating the network coefficients. If the data fits
into the memory of your computer, importing the data into the workspace enables faster training
because the data is read and transformed only once. Note that if the data does not fit in memory, you
must to pass the datastore into the training function, and the transformations are performed at every
training epoch.

Create tall arrays for both the training and test sets. Depending on your system, the number of
workers in the parallel pool that MATLAB creates may be different.

tallTrainSet = tall(trainDs);

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 8).

tallTestSet = tall(testDs);

Now call the gather function of the tall arrays to compute the transformations over the entire
dataset and obtain cell arrays with the training and test signals and labels.

 trainData = gather(tallTrainSet);

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 10 sec
Evaluation completed in 11 sec

 trainData(1,:)

ans=1×2 cell array
    {[0 0 0 0 0 0 1 1 1 1 1 1 0 1 2 1 1 2 2 2 3 4 6 8 11 15 18 18 17 17 17 16 14 12 8 4 2 1 0 -1 -2 -1 0 0 0 1 2 2 2 2 1 0 -1 -1 -2 -3 -3 -2 -2 -2 -1 0 4 5 5 3 2 0 -1 -1 0 2 3 5 5 3 4 8 15 25 36 50 63 73 83 90 97 99 98 88 74 58 42 30 22 19 15 10 5 1 -1 -2 -2 -3 -4 -5 -6 -7 -9 -9 -10 -12 -13 -13 -12 -13 -14 -15 -15 -16 -18 -19 -20 -21 -22 -21 -22 -23 -24 -25 -25 -26 -27 -28 -29 -29 -28 -26 -25 -24 -23 -21 -19 -18 -16 -14 -12 -11 -9 -7 -6 -5 -5 -3 -3 -3 -3 -2 -2 -2 -2 -1 -1 -2 -2 -1 -1 -1 -1 0 0 0 -1 0 1 2 3 5 7 8 11 13 13 13 12 11 9 6 2 0 -2 -3 -5 -7 -8 -8 -7 -5 -4 -5 -4 -3 -4 -4 -5 -5 -6 -8 -9 -9 -8 -9 -9 -8 -6 -6 -4 -2 -3 -4 -5 -6 -7 -8 -8 -7 -6 -5 -6 -8 -7 -5 2 12 24 36 48 58 66 72 78 83 82 75 61 46 30 18 11 9 6 0 -4 -8 -9 -11 -12 -12 -13 -13 -14 -14 -15 -17 -17 -17 -17 -18 -18 -18 -19 -21 -22 -23 -23 -25 -25 -26 -26 -27 -28 -29 -30 -31 -32 -32 -33 -33 -34 -34 -34 -34 -32 -31 -30 -29 -27 -25 -23 -22 -19 -17 -15 -15 -14 -12 -11 -11 -9 -8 -8 -8 -8 -9 -9 -8 -8 -8 -8 -9 -8 -7 -7 -8 -8 -7 -7 -7 -6 -5 -3 -3 -1 2 4 5 6 7 6 5 4 2 -2 -5 -7 -7 -8 -10 -10 -10 -10 -9 -9 -7 -7 -6 -5 -5 -6 -8 -10 -11 -12 -12 -11 -11 -11 -10 -9 -7 -6 -5 -6 -7 -9 -11 -13 -14 -14 -14 -12 -11 -10 -11 -10 -6 0 10 22 35 47 58 68 76 80 83 78 67 51 36 22 12 6 3 -1 -6 -10 -12 -13 -14 -16 -17 -17 -17 -18 -18 -18 -19 -20 -20 -20 -20 -20 -19 -19 -20 -21 -22 -23 -25 -26 -26 -26 -26 -27 -27 -28 -28 -29 -28 -29 -28 -28 -29 -28 -27 -25 -25 -23 -22 -21 -19 -17 -15 -14 -12 -10 -9 -8 -7 -6 -5 -5 -5 -5 -5 -5 -5 -4 -4 -4 -3 -3 -3 -4 -3 -3 -3 -3 -4 -3 -4 -4 -2 -1 0 2 4 8 10 10 10 10 9 8 6 4 0 -3 -5 -5 -7 -9 -9 -8 -7 -8 -8 -7 -7 -7 -6 -6 -6 -7 -9 -9 -10 -11 -11 -11 -10 -10 -9 -7 -5 -3 -4 -5 -7 -9 -10 -11 -9 -8 -6 -4 -3 -4 -6 -5 0 6 16 27 40 51 60 68 75 82 81 77 66 52 39 27 17 10 6 2 -2 -6 -10 -12 -13 -14 -15 -16 -15 -16 -16 -17 -17 -17 -18 -18 -18 -17 -17 -16 -17 -17 -18 -19 -19 -20 -20 -21 -22 -23 -24 -25 -26 -26 -26 -26 -27 -26 -26 -26 -25 -24 -23 -22 -21 -19 -18 -16 -14 -11 -9 -8 -7 -5 -4 -4 -3 -2 -1 -1 -1 -1 -1 -2 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 5 7 10 14 16 17 15 14 13 12 11 8 5 1 0 0 -2 -4 -4 -3 -3 -2 -1 0 0 0 -1 -2 -3 -5 -5 -5 -6 -6 -5 -5 -5 -4 -2 0 1 2 1 0 -3 -5 -5 -5 -4 -2 0 0 -1 -1 1 7 14 26 39 53 63 73 81 87 90 87 80 65 51 38 26 18 12 8 3 -2 -6 -8 -9 -10 -11 -12 -12 -12 -14 -13 -12 -12 -13 -13 -14 -15 -16 -17 -16 -17 -18 -18 -17 -18 -20 -21 -22 -22 -24 -24 -24 -24 -24 -24 -23 -24 -24 -24 -23 -22 -21 -19 -16 -14 -13 -11 -9 -7 -5 -3 0 0 1 2 3 4 4 4 6 6 6 6 7 8 7 7 7 7 6 6 8 8 8 8 9 9 9 10 11 12 12 14 15 17 19 22 25 27 27 27 27 25 22 19 15 13 11 11 10 9 8 7 8 8 8 9 9 10 10 9 9 7 5 5 6 6 5 5 5 6 6 9 12 13 11 9 6 4 1 1 4 6 7 9 9 8 9 14 23 34 48 62 77 86 96 103 109 110 103 92 76 61 45 34 29 25 19 11 6 2 0 0 -1 -3 -5 -6 -6 -6 -7 -7 -7 -7 -8 -8 -8 -9 -10 -11 -11 -11 -12 -14 -15 -15 -16 -17 -17 -18 -19 -20 -21 -21 -22 -22 -21 -21 -20 -19 -18 -16 -15 -13 -11 -9 -7 -4 -1 1 2 4 5 6 7 8 9 9 9 9 9 9 9 8 9 10 10 11 12 12 11 11 11 11 10 11 11 12 13 14 15 15 15 17 20 24 28 29 30 29 28 28 27 24 20 16 14 13 12 11 10 9 8 9 9 9 9 10 11 11 10 9 8 7 7 6 6 6 6 7 7 8 10 12 13 11 8 5 3 1 0 2 5 6 6 5 4 6 12 22 35 50 62 77 88 97 103 108 110 104 94 78 62 45 34 29 26 21 14 9 5 3 1 0 -1 -2 -3 -4 -4 -5 -6 -6 -5 -6 -8 -8 -8 -8 -9 -10 -10 -12 -13 -14 -15 -15 -16 -17 -17 -19 -21 -22 -22 -23 -24 -24 -23 -24 -24 -22 -20 -19 -17 -14 -12 -10 -9 -7 -5 -4 -3 -1 1 3 4 5 7 7 7 8 8 8 7 7 8 7 7 7 7 5 5 5 5 5 5 6 7 7 7 7 8 9 10 11 13 16 18 20 21 20 20 19 18 15 12 9 7 6 4 3 2 2 2 2 3 2 1 2 3 4 3 3 2 1 0 0 -1 -1 -2 -2 -1 0 1 2 2 0 -3 -5 -8 -9 -9 -8 -6 -5 -6 -6 -5 -1 7 20 35 49 62 74 84 92 99 105 103 94 77 58 39 25 19 16 12 6 0 -3 -6 -9 -11 -12 -12 -14 -14 -14 -14 -15 -15 -16 -17 -17 -18 -17 -17 -18 -18 -19 -20 -22 -23 -23 -24 -26 -27 -28 -29 -30 -31 -30 -31 -31 -33 -33 -33 -32 -30 -30 -28 -27 -25 -22 -20 -18 -16 -13 -10 -8 -6 -4 -2 -2 -2 -1 0 -1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 2 2 2 3 3 3 4 5 6 7 9 13 16 19 19 19 18 18 17 16 13 9 6 4 3 1 0 -2 -2 -2 -1 0 0 1 1 1 1 0 0 0 -2 -3 -3 -2 -3 -3 -4 -2 -1 0 1 1 0 -2 -5 -6 -9 -9 -7 -5 -3 -1 -1 0 2 8 18 32 46 59 71 83 94 101 107 106 98 83 65 49 35 27 23 21 15 7 2 0 0 -2 -4 -4 -6 -7 -8 -8 -9 -9 -9 -8 -9 -9 -10 -9 -10 -11 -11 -11 -12 -13 -14 -15 -16 -18 -18 -19 -20 -21 -22 -23 -24 -24 -24 -24 -24 -24 -23 -21 -19 -17 -16 -14 -11 -9 -7 -5 -2 -1 1 2 2 2 3 4 4 4 4 4 4 4 5 5 4 3 4 5 5 4 4 4 4 5 5 7 6 6 6 7 8 9 12 15 19 20 21 19 18 18 18 16 12 8 5 4 4 2 1 0 0 0 1 3 3 3 4 4 4 3 2 1 1 0 0 1 1 0 1 1 2 3 3 3 1 0 -1 -3 -5 -5 -3 -1 0 0 0 1 4 10 21 34 47 60 71 82 89 97 100 100 93 80 66 47 34 26 23 19 13 7 3 1 -1 -2 -3 -4 -6 -7 -6 -6 -6 -6 -6 -6 -7 -8 -9 -9 -9 -10 -10 -11 -12 -14 -15 -16 -17 -18 -19 -19 -21 -21 -22 -23 -24 -25 -25 -24 -23 -23 -21 -20 -19 -18 -16 -12 -10 -7 -5 -4 -3 -2 -1 0 1 1 2 2 2 1 1 1 0 0 1 1 0 0 1 1 1 1 2 3 4 3 3 3 3 4 5 7 7 8 11 13 15 16 16 16 15 14 12 10 7 4 3 2 0 0 0 1 0 0 0 1 1 2 3 3 1 0 0 -1 -2 -3 -2 -2 -1 -1 0 0 1 2 2 1 -1 -4 -6 -7 -7 -6 -5 -4 -4 -5 -3 0 5 14 27 42 56 67 79 87 96 101 105 101 87 71 53 39 29 24 22 16 10 5 2 1 0 -1 -2 -3 … ]}    {[n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    P    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    QRS    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    T    n/a    n/a    n/a    n/a    n/a    n/a    n/a    n/a    …    ]}

 testData = gather(tallTestSet);

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 2.9 sec
Evaluation completed in 3 sec

Train Network

Use the trainNetwork command to train the LSTM network.

if actionFlag == "Train networks"
     rawNet = trainNetwork(trainData(:,1),trainData(:,2),layers,options);
end

13 Signal Processing Examples

13-30



The training accuracy and loss subplots in the figure track the training progress across all iterations.
Using the raw signal data, the network correctly classifies about 77% of the samples as belonging to
a P wave, a QRS complex, a T wave, or an unlabeled region "n/a".

Classify Testing Data

Classify the testing data using the trained LSTM network and the classify command. Specify a
mini-batch size of 50 to match the training options.

predTest = classify(rawNet,testData(:,1),'MiniBatchSize',50);

A confusion matrix provides an intuitive and informative means to visualize classification
performance. Use the confusionchart command to calculate the overall classification accuracy for
the testing data predictions. For each input, convert the cell array of categorical labels to a row
vector. Specify a row-normalized display to view results as percentages of samples for each class.

confusionchart([testData{:,2}],[predTest{:}],'Normalization','row-normalized');

 Waveform Segmentation Using Deep Learning

13-31



Using the raw ECG signal as input to the network, only about 60% of T-wave samples, 40% of P-wave
samples, and 60% of QRS-complex samples were correct. To improve performance, apply some
knowledge of the ECG signal characteristics prior to input to the deep learning network, for instance
the baseline wandering caused by a patient's respiratory motion.

Apply Filtering Methods to Remove Baseline Wander and High-Frequency Noise

The three beat morphologies occupy different frequency bands. The spectrum of the QRS complex
typically has a center frequency around 10–25 Hz, and its components lie below 40 Hz. The P and T
waves occur at even lower frequencies: P-wave components are below 20 Hz, and T-wave components
are below 10 Hz [5 on page 13-43].

Baseline wander is a low-frequency (< 0.5 Hz) oscillation caused by the patient's breathing motion.
This oscillation is independent from the beat morphologies and does not provide meaningful
information [6 on page 13-43].

Design a bandpass filter with passband frequency range of [0.5, 40] Hz to remove the wander and
any high frequency noise. Removing these components improves the LSTM training because the
network does not learn irrelevant features. Use cellfun on the tall data cell arrays to filter the
dataset in parallel.

% Bandpass filter design
hFilt = designfilt('bandpassiir', 'StopbandFrequency1',0.4215,'PassbandFrequency1', 0.5, ...

13 Signal Processing Examples

13-32



    'PassbandFrequency2',40,'StopbandFrequency2',53.345,...
    'StopbandAttenuation1',60,'PassbandRipple',0.1,'StopbandAttenuation2',60,...
    'SampleRate',250,'DesignMethod','ellip');

% Create tall arrays from the transformed datastores and filter the signals
tallTrainSet = tall(trainDs);
tallTestSet = tall(testDs);

filteredTrainSignals = gather(cellfun(@(x)filter(hFilt,x),tallTrainSet(:,1),'UniformOutput',false));

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 11 sec
Evaluation completed in 11 sec

trainLabels = gather(tallTrainSet(:,2));

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 3.3 sec
Evaluation completed in 3.7 sec

filteredTestSignals = gather(cellfun(@(x)filter(hFilt,x),tallTestSet(:,1),'UniformOutput',false));

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 2.4 sec
Evaluation completed in 2.5 sec

testLabels = gather(tallTestSet(:,2));

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.1 sec

Plot the raw and filtered signals for a typical case.

trainData = gather(tallTrainSet);

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 3.8 sec
Evaluation completed in 4.1 sec

figure
subplot(2,1,1)
plot(trainData{95,1}(2001:3000))
title('Raw')
grid
subplot(2,1,2)
plot(filteredTrainSignals{95}(2001:3000))
title('Filtered')
grid

 Waveform Segmentation Using Deep Learning

13-33



Even though the baseline of the filtered signals may confuse a physician that is used to traditional
ECG measurements on medical devices, the network will actually benefit from the wandering
removal.

Train Network with Filtered ECG Signals

Train the LSTM network on the filtered ECG signals using the same network architecture as before.

if actionFlag == "Train networks"
    filteredNet = trainNetwork(filteredTrainSignals,trainLabels,layers,options);
end

13 Signal Processing Examples

13-34



Preprocessing the signals improves the training accuracy to better than 80%.

Classify Filtered ECG Signals

Classify the preprocessed test data with the updated LSTM network.

predFilteredTest = classify(filteredNet,filteredTestSignals,'MiniBatchSize',50);

Visualize the classification performance as a confusion matrix.

figure
confusionchart([testLabels{:}],[predFilteredTest{:}],'Normalization','row-normalized');

 Waveform Segmentation Using Deep Learning

13-35



Simple preprocessing improves T-wave classification by about 15%, and QRS-complex and P-wave
classification by about 10%.

Time-Frequency Representation of ECG Signals

A common approach for successful classification of time-series data is to extract time-frequency
features and feed them to the network instead of the original data. The network then learns patterns
across time and frequency simultaneously [7 on page 13-43].

The Fourier synchrosqueezed transform (FSST) computes a frequency spectrum for each signal
sample so it is ideal for the segmentation problem at hand where we need to maintain the same time
resolution as the original signals. Use the fsst function to inspect the transform of one of the
training signals. Specify a Kaiser window of length 128 to provide adequate frequency resolution.

data =  preview(trainDs);
figure
fsst(data{1,1},250,kaiser(128),'yaxis')

13 Signal Processing Examples

13-36



Calculate the FSST of each signal in the training dataset over the frequency range of interest, [0.5,
40] Hz. Treat the real and imaginary parts of the FSST as separate features and feed both
components into the network. Furthermore, standardize the training features by subtracting the
mean and dividing by the standard deviation. Use a transformed datastore, the
extractFSSTFeatures helper function, and the tall function to process the data in parallel.

fsstTrainDs = transform(trainDs,@(x)extractFSSTFeatures(x,250));
fsstTallTrainSet = tall(fsstTrainDs);
fsstTrainData = gather(fsstTallTrainSet);

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

- Pass 1 of 1: 4% complete
Evaluation 4% complete

- Pass 1 of 1: 8% complete
Evaluation 8% complete

- Pass 1 of 1: 12% complete
Evaluation 12% complete

 Waveform Segmentation Using Deep Learning

13-37



- Pass 1 of 1: 17% complete
Evaluation 17% complete

- Pass 1 of 1: 21% complete
Evaluation 21% complete

- Pass 1 of 1: 25% complete
Evaluation 25% complete

- Pass 1 of 1: 29% complete
Evaluation 29% complete

- Pass 1 of 1: 33% complete
Evaluation 33% complete

- Pass 1 of 1: 38% complete
Evaluation 38% complete

- Pass 1 of 1: 42% complete
Evaluation 42% complete

- Pass 1 of 1: 46% complete
Evaluation 46% complete

- Pass 1 of 1: 50% complete
Evaluation 50% complete

- Pass 1 of 1: 54% complete
Evaluation 54% complete

- Pass 1 of 1: 58% complete
Evaluation 58% complete

- Pass 1 of 1: 62% complete
Evaluation 62% complete

- Pass 1 of 1: 67% complete
Evaluation 67% complete

- Pass 1 of 1: 71% complete
Evaluation 71% complete

- Pass 1 of 1: 75% complete
Evaluation 75% complete

- Pass 1 of 1: 79% complete
Evaluation 79% complete

- Pass 1 of 1: 83% complete
Evaluation 83% complete

- Pass 1 of 1: 88% complete
Evaluation 88% complete

- Pass 1 of 1: 92% complete
Evaluation 92% complete

- Pass 1 of 1: 96% complete

13 Signal Processing Examples

13-38



Evaluation 96% complete

- Pass 1 of 1: 100% complete
Evaluation 100% complete

- Pass 1 of 1: Completed in 2 min 39 sec
Evaluation 100% complete

Evaluation completed in 2 min 39 sec

Repeat this procedure for the testing data.

fsstTTestDs = transform(testDs,@(x)extractFSSTFeatures(x,250));
fsstTallTestSet = tall(fsstTTestDs);
fsstTestData = gather(fsstTallTestSet);

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 1 min 8 sec
Evaluation completed in 1 min 8 sec

Adjust Network Architecture

Modify the LSTM architecture so that the network accepts a frequency spectrum for each sample
instead of a single value. Inspect the size of the FSST to see the number of frequencies.

size(fsstTrainData{1,1})

ans = 1×2

          40        5000

Specify a sequenceInputLayer of 40 input features. Keep the rest of the network parameters
unchanged.

layers = [ ...
    sequenceInputLayer(40)
    lstmLayer(200,'OutputMode','sequence')
    fullyConnectedLayer(4)
    softmaxLayer
    classificationLayer];

Train Network with FSST of ECG Signals

Train the updated LSTM network with the transformed dataset.

if actionFlag == "Train networks"
    fsstNet = trainNetwork(fsstTrainData(:,1),fsstTrainData(:,2),layers,options);
end

 Waveform Segmentation Using Deep Learning

13-39



Using time-frequency features improves the training accuracy, which now exceeds 90%.

Classify Test Data with FSST

Using the updated LSTM network and extracted FSST features, classify the testing data.

predFsstTest = classify(fsstNet,fsstTestData(:,1),'MiniBatchSize',50);

Visualize the classification performance as a confusion matrix.

confusionchart([fsstTestData{:,2}],[predFsstTest{:}],'Normalization','row-normalized');

13 Signal Processing Examples

13-40



Using a time-frequency representation improves T-wave classification by about 25%, P-wave
classification by about 40%, and QRS-complex classification by 30%, when compared to the raw data
results.

Use a signalMask object to compare the network prediction to the ground truth labels for a single
ECG signal. Ignore the "n/a" labels when plotting the regions of interest.

testData = gather(tall(testDs));

Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 2.1 sec
Evaluation completed in 2.2 sec

Mtest = signalMask(testData{1,2}(3000:4000));
Mtest.SpecifySelectedCategories = true;
Mtest.SelectedCategories = find(Mtest.Categories ~= "n/a");

figure
subplot(2,1,1)
plotsigroi(Mtest,testData{1,1}(3000:4000))
title('Ground Truth')

Mpred = signalMask(predFsstTest{1}(3000:4000));
Mpred.SpecifySelectedCategories = true;

 Waveform Segmentation Using Deep Learning

13-41



Mpred.SelectedCategories = find(Mpred.Categories ~= "n/a");

subplot(2,1,2)
plotsigroi(Mpred,testData{1,1}(3000:4000))
title('Predicted')

Conclusion

This example showed how signal preprocessing and time-frequency analysis can improve LSTM
waveform segmentation performance. Bandpass filtering and Fourier-based synchrosqueezing result
in an average improvement across all output classes from 55% to around 85%.

References

[1] McSharry, Patrick E., et al. "A dynamical model for generating synthetic electrocardiogram
signals." IEEE® Transactions on Biomedical Engineering. Vol. 50, No. 3, 2003, pp. 289–294.

[2] Laguna, Pablo, Raimon Jané, and Pere Caminal. "Automatic detection of wave boundaries in
multilead ECG signals: Validation with the CSE database." Computers and Biomedical Research. Vol.
27, No. 1, 1994, pp. 45–60.

13 Signal Processing Examples

13-42



[3] Goldberger, Ary L., Luis A. N. Amaral, Leon Glass, Jeffery M. Hausdorff, Plamen Ch. Ivanov, Roger
G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley. "PhysioBank,
PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic
Signals." Circulation. Vol. 101, No. 23, 2000, pp. e215–e220. [Circulation Electronic Pages; http://
circ.ahajournals.org/content/101/23/e215.full].

[4] Laguna, Pablo, Roger G. Mark, Ary L. Goldberger, and George B. Moody. "A Database for
Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG."
Computers in Cardiology. Vol.24, 1997, pp. 673–676.

[5] Sörnmo, Leif, and Pablo Laguna. "Electrocardiogram (ECG) signal processing." Wiley
Encyclopedia of Biomedical Engineering, 2006.

[6] Kohler, B-U., Carsten Hennig, and Reinhold Orglmeister. "The principles of software QRS
detection." IEEE Engineering in Medicine and Biology Magazine. Vol. 21, No. 1, 2002, pp. 42–57.

[7] Salamon, Justin, and Juan Pablo Bello. "Deep convolutional neural networks and data
augmentation for environmental sound classification." IEEE Signal Processing Letters. Vol. 24, No. 3,
2017, pp. 279–283.

See Also
confusionchart | fsst | labeledSignalSet | lstmLayer | trainingOptions | trainNetwork

More About
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39

 Waveform Segmentation Using Deep Learning

13-43

https://www.physionet.org/physiobank/database/qtdb/doc/index.shtml
https://www.physionet.org/physiobank/database/qtdb/doc/index.shtml


Classify ECG Signals Using Long Short-Term Memory Networks

This example shows how to classify heartbeat electrocardiogram (ECG) data from the PhysioNet 2017
Challenge using deep learning and signal processing. In particular, the example uses Long Short-
Term Memory networks and time-frequency analysis.

For an example that reproduces and accelerates this workflow using a GPU and Parallel Computing
Toolbox™, see “Classify ECG Signals Using Long Short-Term Memory Networks with GPU
Acceleration” (Signal Processing Toolbox).

Introduction

ECGs record the electrical activity of a person's heart over a period of time. Physicians use ECGs to
detect visually if a patient's heartbeat is normal or irregular.

Atrial fibrillation (AFib) is a type of irregular heartbeat that occurs when the heart's upper chambers,
the atria, beat out of coordination with the lower chambers, the ventricles.

This example uses ECG data from the PhysioNet 2017 Challenge [1 on page 13-60], [2 on page 13-
60], [3 on page 13-60], which is available at https://physionet.org/challenge/2017/. The data
consists of a set of ECG signals sampled at 300 Hz and divided by a group of experts into four
different classes: Normal (N), AFib (A), Other Rhythm (O), and Noisy Recording (~). This example
shows how to automate the classification process using deep learning. The procedure explores a
binary classifier that can differentiate Normal ECG signals from signals showing signs of AFib.

A long short-term memory (LSTM) network is a type of recurrent neural network (RNN) well-suited to
study sequence and time-series data. An LSTM network can learn long-term dependencies between
time steps of a sequence. The LSTM layer (lstmLayer) can look at the time sequence in the forward
direction, while the bidirectional LSTM layer (bilstmLayer) can look at the time sequence in both
forward and backward directions. This example uses a bidirectional LSTM layer.

This example shows the advantages of using a data-centric approach when solving artificial
intelligence (AI) problems. An initial attempt to train the LSTM network using raw data gives
substandard results. Training the same model architecture using extracted features leads to a
considerable improvement in classification performance.

To accelerate the training process, run this example on a machine with a GPU. If your machine has a
GPU and Parallel Computing Toolbox™, then MATLAB® automatically uses the GPU for training;
otherwise, it uses the CPU.

Load and Examine Data

Run the ReadPhysionetData script to download the data from the PhysioNet website and generate
a MAT-file (PhysionetData.mat) that contains the ECG signals in the appropriate format.
Downloading the data might take a few minutes. Use a conditional statement that runs the script only
if PhysionetData.mat does not already exist in the current folder.

if ~isfile('PhysionetData.mat')
    ReadPhysionetData         
end
load PhysionetData

13 Signal Processing Examples

13-44

https://physionet.org/challenge/2017/


The loading operation adds two variables to the workspace: Signals and Labels. Signals is a cell
array that holds the ECG signals. Labels is a categorical array that holds the corresponding ground-
truth labels of the signals.

Signals(1:5)

ans=5×1 cell array
    {1×9000  double}
    {1×9000  double}
    {1×18000 double}
    {1×9000  double}
    {1×18000 double}

Labels(1:5)

ans = 5×1 categorical
     N 
     N 
     N 
     A 
     A 

Use the summary function to see how many AFib signals and Normal signals are contained in the
data.

summary(Labels)

     A       738 
     N      5050 

Generate a histogram of signal lengths. Most of the signals are 9000 samples long.

L = cellfun(@length,Signals);
h = histogram(L);
xticks(0:3000:18000);
xticklabels(0:3000:18000);
title('Signal Lengths')
xlabel('Length')
ylabel('Count')

 Classify ECG Signals Using Long Short-Term Memory Networks

13-45



Visualize a segment of one signal from each class. AFib heartbeats are spaced out at irregular
intervals while Normal heartbeats occur regularly. AFib heartbeat signals also often lack a P wave,
which pulses before the QRS complex in a Normal heartbeat signal. The plot of the Normal signal
shows a P wave and a QRS complex.

normal = Signals{1};
aFib = Signals{4};

subplot(2,1,1)
plot(normal)
title('Normal Rhythm')
xlim([4000,5200])
ylabel('Amplitude (mV)')
text(4330,150,'P','HorizontalAlignment','center')
text(4370,850,'QRS','HorizontalAlignment','center')

subplot(2,1,2)
plot(aFib)
title('Atrial Fibrillation')
xlim([4000,5200])
xlabel('Samples')
ylabel('Amplitude (mV)')

13 Signal Processing Examples

13-46



Prepare Data for Training

During training, the trainNetwork function splits the data into mini-batches. The function then pads
or truncates signals in the same mini-batch so they all have the same length. Too much padding or
truncating can have a negative effect on the performance of the network, because the network might
interpret a signal incorrectly based on the added or removed information.

To avoid excessive padding or truncating, apply the segmentSignals function to the ECG signals so
they are all 9000 samples long. The function ignores signals with fewer than 9000 samples. If a signal
has more than 9000 samples, segmentSignals breaks it into as many 9000-sample segments as
possible and ignores the remaining samples. For example, a signal with 18500 samples becomes two
9000-sample signals, and the remaining 500 samples are ignored.

[Signals,Labels] = segmentSignals(Signals,Labels);

View the first five elements of the Signals array to verify that each entry is now 9000 samples long.

Signals(1:5)

ans=5×1 cell array
    {1×9000 double}
    {1×9000 double}
    {1×9000 double}
    {1×9000 double}
    {1×9000 double}

 Classify ECG Signals Using Long Short-Term Memory Networks

13-47



First Attempt: Train Classifier Using Raw Signal Data

To design the classifier, use the raw signals generated in the previous section. Split the signals into a
training set to train the classifier and a testing set to test the accuracy of the classifier on new data.

Use the summary function to show that the ratio of AFib signals to Normal signals is 718:4937, or
approximately 1:7.

summary(Labels)

     A       718 
     N      4937 

Because about 7/8 of the signals are Normal, the classifier would learn that it can achieve a high
accuracy simply by classifying all signals as Normal. To avoid this bias, augment the AFib data by
duplicating AFib signals in the dataset so that there is the same number of Normal and AFib signals.
This duplication, commonly called oversampling, is one form of data augmentation used in deep
learning.

Split the signals according to their class.

afibX = Signals(Labels=='A');
afibY = Labels(Labels=='A');

normalX = Signals(Labels=='N');
normalY = Labels(Labels=='N');

Next, use dividerand to divide targets from each class randomly into training and testing sets.

[trainIndA,~,testIndA] = dividerand(718,0.9,0.0,0.1);
[trainIndN,~,testIndN] = dividerand(4937,0.9,0.0,0.1);

XTrainA = afibX(trainIndA);
YTrainA = afibY(trainIndA);

XTrainN = normalX(trainIndN);
YTrainN = normalY(trainIndN);

XTestA = afibX(testIndA);
YTestA = afibY(testIndA);

XTestN = normalX(testIndN);
YTestN = normalY(testIndN);

Now there are 646 AFib signals and 4443 Normal signals for training. To achieve the same number of
signals in each class, use the first 4438 Normal signals, and then use repmat to repeat the first 634
AFib signals seven times.

For testing, there are 72 AFib signals and 494 Normal signals. Use the first 490 Normal signals, and
then use repmat to repeat the first 70 AFib signals seven times. By default, the neural network
randomly shuffles the data before training, ensuring that contiguous signals do not all have the same
label.

XTrain = [repmat(XTrainA(1:634),7,1); XTrainN(1:4438)];
YTrain = [repmat(YTrainA(1:634),7,1); YTrainN(1:4438)];

XTest = [repmat(XTestA(1:70),7,1); XTestN(1:490)];
YTest = [repmat(YTestA(1:70),7,1); YTestN(1:490);];

13 Signal Processing Examples

13-48



The distribution between Normal and AFib signals is now evenly balanced in both the training set and
the testing set.

summary(YTrain)

     A      4438 
     N      4438 

summary(YTest)

     A      490 
     N      490 

Define LSTM Network Architecture

LSTM networks can learn long-term dependencies between time steps of sequence data. This
example uses the bidirectional LSTM layer bilstmLayer, as it looks at the sequence in both forward
and backward directions.

Because the input signals have one dimension each, specify the input size to be sequences of size 1.
Specify a bidirectional LSTM layer with an output size of 100 and output the last element of the
sequence. This command instructs the bidirectional LSTM layer to map the input time series into 100
features and then prepares the output for the fully connected layer. Finally, specify two classes by
including a fully connected layer of size 2, followed by a softmax layer and a classification layer.

layers = [ ...
    sequenceInputLayer(1)
    bilstmLayer(100,'OutputMode','last')
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer
    ]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 1 dimensions
     2   ''   BiLSTM                  BiLSTM with 100 hidden units
     3   ''   Fully Connected         2 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Next specify the training options for the classifier. Set the 'MaxEpochs' to 10 to allow the network
to make 10 passes through the training data. A 'MiniBatchSize' of 150 directs the network to look
at 150 training signals at a time. An 'InitialLearnRate' of 0.01 helps speed up the training
process. Specify a 'SequenceLength' of 1000 to break the signal into smaller pieces so that the
machine does not run out of memory by looking at too much data at one time. Set
'GradientThreshold' to 1 to stabilize the training process by preventing gradients from getting too
large. Specify 'Plots' as 'training-progress' to generate plots that show a graphic of the
training progress as the number of iterations increases. Set 'Verbose' to false to suppress the
table output that corresponds to the data shown in the plot. If you want to see this table, set
'Verbose' to true.

This example uses the adaptive moment estimation (ADAM) solver. ADAM performs better with RNNs
like LSTMs than the default stochastic gradient descent with momentum (SGDM) solver.

options = trainingOptions('adam', ...
    'MaxEpochs',10, ...

 Classify ECG Signals Using Long Short-Term Memory Networks

13-49



    'MiniBatchSize', 150, ...
    'InitialLearnRate', 0.01, ...
    'SequenceLength', 1000, ...
    'GradientThreshold', 1, ...
    'ExecutionEnvironment',"auto",...
    'plots','training-progress', ...
    'Verbose',false);

Train LSTM Network

Train the LSTM network with the specified training options and layer architecture by using
trainNetwork. Because the training set is large, the training process can take several minutes.

net = trainNetwork(XTrain,YTrain,layers,options);

The top subplot of the training-progress plot represents the training accuracy, which is the
classification accuracy on each mini-batch. When training progresses successfully, this value typically
increases towards 100%. The bottom subplot displays the training loss, which is the cross-entropy
loss on each mini-batch. When training progresses successfully, this value typically decreases towards
zero.

If the training is not converging, the plots might oscillate between values without trending in a
certain upward or downward direction. This oscillation means that the training accuracy is not
improving and the training loss is not decreasing. This situation can occur from the start of training,
or the plots might plateau after some preliminary improvement in training accuracy. In many cases,
changing the training options can help the network achieve convergence. Decreasing
MiniBatchSize or decreasing InitialLearnRate might result in a longer training time, but it can
help the network learn better.

13 Signal Processing Examples

13-50



The classifier's training accuracy oscillates between about 50% and about 60%, and at the end of 10
epochs, it already has taken several minutes to train.

Visualize Training and Testing Accuracy

Calculate the training accuracy, which represents the accuracy of the classifier on the signals on
which it was trained. First, classify the training data.

trainPred = classify(net,XTrain,'SequenceLength',1000);

In classification problems, confusion matrices are used to visualize the performance of a classifier on
a set of data for which the true values are known. The Target Class is the ground-truth label of the
signal, and the Output Class is the label assigned to the signal by the network. The axes labels
represent the class labels, AFib (A) and Normal (N).

Use the confusionchart command to calculate the overall classification accuracy for the testing
data predictions. Specify 'RowSummary' as 'row-normalized' to display the true positive rates
and false positive rates in the row summary. Also, specify 'ColumnSummary' as 'column-
normalized' to display the positive predictive values and false discovery rates in the column
summary.

LSTMAccuracy = sum(trainPred == YTrain)/numel(YTrain)*100

LSTMAccuracy = 61.7283

figure
confusionchart(YTrain,trainPred,'ColumnSummary','column-normalized',...
              'RowSummary','row-normalized','Title','Confusion Chart for LSTM');

 Classify ECG Signals Using Long Short-Term Memory Networks

13-51



Now classify the testing data with the same network.

testPred = classify(net,XTest,'SequenceLength',1000);

Calculate the testing accuracy and visualize the classification performance as a confusion matrix.

LSTMAccuracy = sum(testPred == YTest)/numel(YTest)*100

LSTMAccuracy = 66.2245

figure
confusionchart(YTest,testPred,'ColumnSummary','column-normalized',...
              'RowSummary','row-normalized','Title','Confusion Chart for LSTM');

Second Attempt: Improve Performance with Feature Extraction

Feature extraction from the data can help improve the training and testing accuracies of the
classifier. To decide which features to extract, this example adapts an approach that computes time-
frequency images, such as spectrograms, and uses them to train convolutional neural networks
(CNNs) [4 on page 13-61], [5 on page 13-61].

Visualize the spectrogram of each type of signal.

fs = 300;

figure
subplot(2,1,1);
pspectrum(normal,fs,'spectrogram','TimeResolution',0.5)

13 Signal Processing Examples

13-52



title('Normal Signal')

subplot(2,1,2);
pspectrum(aFib,fs,'spectrogram','TimeResolution',0.5)
title('AFib Signal')

Because this example uses an LSTM instead of a CNN, it is important to translate the approach so it
applies to one-dimensional signals. Time-frequency (TF) moments extract information from the
spectrograms. Each moment can be used as a one-dimensional feature to input to the LSTM.

Explore two TF moments in the time domain:

• Instantaneous frequency (instfreq)
• Spectral entropy (pentropy)

The instfreq function estimates the time-dependent frequency of a signal as the first moment of the
power spectrogram. The function computes a spectrogram using short-time Fourier transforms over
time windows. In this example, the function uses 255 time windows. The time outputs of the function
correspond to the centers of the time windows.

Visualize the instantaneous frequency for each type of signal.

[instFreqA,tA] = instfreq(aFib,fs);
[instFreqN,tN] = instfreq(normal,fs);

figure
subplot(2,1,1);

 Classify ECG Signals Using Long Short-Term Memory Networks

13-53



plot(tN,instFreqN)
title('Normal Signal')
xlabel('Time (s)')
ylabel('Instantaneous Frequency')

subplot(2,1,2);
plot(tA,instFreqA)
title('AFib Signal')
xlabel('Time (s)')
ylabel('Instantaneous Frequency')

Use cellfun to apply the instfreq function to every cell in the training and testing sets.

instfreqTrain = cellfun(@(x)instfreq(x,fs)',XTrain,'UniformOutput',false);
instfreqTest = cellfun(@(x)instfreq(x,fs)',XTest,'UniformOutput',false);

The spectral entropy measures how spiky flat the spectrum of a signal is. A signal with a spiky
spectrum, like a sum of sinusoids, has low spectral entropy. A signal with a flat spectrum, like white
noise, has high spectral entropy. The pentropy function estimates the spectral entropy based on a
power spectrogram. As with the instantaneous frequency estimation case, pentropy uses 255 time
windows to compute the spectrogram. The time outputs of the function correspond to the center of
the time windows.

Visualize the spectral entropy for each type of signal.

[pentropyA,tA2] = pentropy(aFib,fs);
[pentropyN,tN2] = pentropy(normal,fs);

13 Signal Processing Examples

13-54



figure
subplot(2,1,1)
plot(tN2,pentropyN)
title('Normal Signal')
ylabel('Spectral Entropy')

subplot(2,1,2)
plot(tA2,pentropyA)
title('AFib Signal')
xlabel('Time (s)')
ylabel('Spectral Entropy')

Use cellfun to apply the pentropy function to every cell in the training and testing sets.

pentropyTrain = cellfun(@(x)pentropy(x,fs)',XTrain,'UniformOutput',false);
pentropyTest = cellfun(@(x)pentropy(x,fs)',XTest,'UniformOutput',false);

Concatenate the features such that each cell in the new training and testing sets has two dimensions,
or two features.

XTrain2 = cellfun(@(x,y)[x;y],instfreqTrain,pentropyTrain,'UniformOutput',false);
XTest2 = cellfun(@(x,y)[x;y],instfreqTest,pentropyTest,'UniformOutput',false);

Visualize the format of the new inputs. Each cell no longer contains one 9000-sample-long signal; now
it contains two 255-sample-long features.

XTrain2(1:5)

 Classify ECG Signals Using Long Short-Term Memory Networks

13-55



ans=5×1 cell array
    {2×255 double}
    {2×255 double}
    {2×255 double}
    {2×255 double}
    {2×255 double}

Standardize Data

The instantaneous frequency and the spectral entropy have means that differ by almost one order of
magnitude. Furthermore, the instantaneous frequency mean might be too high for the LSTM to learn
effectively. When a network is fit on data with a large mean and a large range of values, large inputs
could slow down the learning and convergence of the network [6 on page 13-61].

mean(instFreqN)

ans = 5.5615

mean(pentropyN)

ans = 0.6326

Use the training set mean and standard deviation to standardize the training and testing sets.
Standardization, or z-scoring, is a popular way to improve network performance during training.

XV = [XTrain2{:}];
mu = mean(XV,2);
sg = std(XV,[],2);

XTrainSD = XTrain2;
XTrainSD = cellfun(@(x)(x-mu)./sg,XTrainSD,'UniformOutput',false);

XTestSD = XTest2;
XTestSD = cellfun(@(x)(x-mu)./sg,XTestSD,'UniformOutput',false);

Show the means of the standardized instantaneous frequency and spectral entropy.

instFreqNSD = XTrainSD{1}(1,:);
pentropyNSD = XTrainSD{1}(2,:);

mean(instFreqNSD)

ans = -0.3211

mean(pentropyNSD)

ans = -0.2416

Modify LSTM Network Architecture

Now that the signals each have two dimensions, it is necessary to modify the network architecture by
specifying the input sequence size as 2. Specify a bidirectional LSTM layer with an output size of 100,
and output the last element of the sequence. Specify two classes by including a fully connected layer
of size 2, followed by a softmax layer and a classification layer.

layers = [ ...
    sequenceInputLayer(2)
    bilstmLayer(100,'OutputMode','last')

13 Signal Processing Examples

13-56



    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer
    ]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 2 dimensions
     2   ''   BiLSTM                  BiLSTM with 100 hidden units
     3   ''   Fully Connected         2 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Specify the training options. Set the maximum number of epochs to 30 to allow the network to make
30 passes through the training data.

options = trainingOptions('adam', ...
    'MaxEpochs',30, ...
    'MiniBatchSize', 150, ...
    'InitialLearnRate', 0.01, ...
    'GradientThreshold', 1, ...
    'ExecutionEnvironment',"auto",...
    'plots','training-progress', ...
    'Verbose',false);

Train LSTM Network with Time-Frequency Features

Train the LSTM network with the specified training options and layer architecture by using
trainNetwork.

net2 = trainNetwork(XTrainSD,YTrain,layers,options);

 Classify ECG Signals Using Long Short-Term Memory Networks

13-57



There is a great improvement in the training accuracy. The cross-entropy loss trends towards 0.
Furthermore, the time required for training decreases because the TF moments are shorter than the
raw sequences.

Visualize Training and Testing Accuracy

Classify the training data using the updated LSTM network. Visualize the classification performance
as a confusion matrix.

trainPred2 = classify(net2,XTrainSD);
LSTMAccuracy = sum(trainPred2 == YTrain)/numel(YTrain)*100

LSTMAccuracy = 83.5962

figure
confusionchart(YTrain,trainPred2,'ColumnSummary','column-normalized',...
              'RowSummary','row-normalized','Title','Confusion Chart for LSTM');

13 Signal Processing Examples

13-58



Classify the testing data with the updated network. Plot the confusion matrix to examine the testing
accuracy.

testPred2 = classify(net2,XTestSD);

LSTMAccuracy = sum(testPred2 == YTest)/numel(YTest)*100

LSTMAccuracy = 80.1020

figure
confusionchart(YTest,testPred2,'ColumnSummary','column-normalized',...
              'RowSummary','row-normalized','Title','Confusion Chart for LSTM');

 Classify ECG Signals Using Long Short-Term Memory Networks

13-59



Conclusion

This example shows how to build a classifier to detect atrial fibrillation in ECG signals using an LSTM
network. The procedure uses oversampling to avoid the classification bias that occurs when one tries
to detect abnormal conditions in populations composed mainly of healthy patients. Training the LSTM
network using raw signal data results in a poor classification accuracy. Training the network using
two time-frequency-moment features for each signal significantly improves the classification
performance and also decreases the training time.

References

[1] AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in
Cardiology Challenge, 2017. https://physionet.org/challenge/2017/

[2] Clifford, Gari, Chengyu Liu, Benjamin Moody, Li-wei H. Lehman, Ikaro Silva, Qiao Li, Alistair
Johnson, and Roger G. Mark. "AF Classification from a Short Single Lead ECG Recording: The
PhysioNet Computing in Cardiology Challenge 2017." Computing in Cardiology (Rennes: IEEE). Vol.
44, 2017, pp. 1–4.

[3] Goldberger, A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C.-K. Peng, and H. E. Stanley. "PhysioBank, PhysioToolkit, and PhysioNet: Components of

13 Signal Processing Examples

13-60

https://physionet.org/challenge/2017/


a New Research Resource for Complex Physiologic Signals". Circulation. Vol. 101, No. 23, 13 June
2000, pp. e215–e220. http://circ.ahajournals.org/content/101/23/e215.full

[4] Pons, Jordi, Thomas Lidy, and Xavier Serra. "Experimenting with Musically Motivated
Convolutional Neural Networks". 14th International Workshop on Content-Based Multimedia
Indexing (CBMI). June 2016.

[5] Wang, D. "Deep learning reinvents the hearing aid," IEEE Spectrum, Vol. 54, No. 3, March 2017,
pp. 32–37. doi: 10.1109/MSPEC.2017.7864754.

[6] Brownlee, Jason. How to Scale Data for Long Short-Term Memory Networks in Python. 7 July
2017. https://machinelearningmastery.com/how-to-scale-data-for-long-short-term-memory-networks-
in-python/.

See Also
Functions
instfreq | pentropy | trainingOptions | trainNetwork | bilstmLayer | lstmLayer

More About
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

 Classify ECG Signals Using Long Short-Term Memory Networks

13-61

https://machinelearningmastery.com/how-to-scale-data-for-long-short-term-memory-networks-in-python/
https://machinelearningmastery.com/how-to-scale-data-for-long-short-term-memory-networks-in-python/


Generate Synthetic Signals Using Conditional GAN

This example shows how to generate synthetic pump signals using a conditional generative
adversarial network.

Generative adversarial networks (GANs) can be used to produce synthetic data that resembles real
data input to the networks. GANs are useful when simulations are computationally expensive or
experiments are costly. Conditional GANs (CGANs) can use data labels during the training process to
generate data belonging to specific categories.

This example treats simulated signals obtained by a pump Simulink™ model as the "real" data that
plays the role of training data set for a CGAN. The CGAN uses 1-D convolutional networks and is
trained using a custom training loop and a deep learning array. In addition, this example uses
principal component analysis (PCA) to visually compare the characteristics of generated and real
signals.

CGAN for Signal Synthesis

CGANs consist of two networks that train together as adversaries:

1 Generator network — Given a label and random array as input, this network generates data with
the same structure as the training data observations corresponding to the same label. The
objective of the generator is to generate labeled data that the discriminator classifies as "real."

2 Discriminator network — Given batches of labeled data containing observations from both
training data and generated data from the generator, this network attempts to classify the
observations as "real" or "generated." The objective of the discriminator is to not be "fooled" by
the generator when given batches of both real and generated labeled data.

Ideally, these strategies result in a generator that generates convincingly realistic data corresponding
to the input labels and a discriminator that has learned strong features characteristic of the training
data for each label.

Load Data

The simulated data is generated by the pump Simulink model presented in the “Multi-Class Fault
Detection Using Simulated Data” (Predictive Maintenance Toolbox) example. The Simulink model is
configured to model three types of faults: cylinder leaks, blocked inlets, and increased bearing
friction. The data set contains 1575 pump output flow signals, of which 760 are healthy signals and
815 have a single fault, combinations of two faults, or combinations of three faults. Each signal has
1201 signal samples with a sample rate of 1000 Hz.

13 Signal Processing Examples

13-62



Download and unzip the data in your temporary directory, whose location is specified by MATLAB®
tempdir command. If you have the data in a folder different from that specified by tempdir, change
the directory name in the following code.

% Download the data
dataURL = 'https://ssd.mathworks.com/supportfiles/SPT/data/PumpSignalGAN.zip';
saveFolder = fullfile(tempdir,'PumpSignalGAN'); 
zipFile = fullfile(tempdir,'PumpSignalGAN.zip');
if ~exist(fullfile(saveFolder,'simulatedDataset.mat'),'file')
    websave(zipFile,dataURL);
    % Unzip the data
    unzip(zipFile,saveFolder)
end

The zip file contains the training data set and a pretrained CGAN:

• simulatedDataset — Simulated signals and their corresponding categorical labels
• GANModel — Generator and discriminator trained on the simulated data

Load the training data set and standardize the signals to have zero mean and unit variance.

load(fullfile(saveFolder,'simulatedDataset.mat')) % load data set
meanFlow = mean(flow,2);
flowNormalized = flow-meanFlow;
stdFlow = std(flowNormalized(:));
flowNormalized = flowNormalized/stdFlow;

Healthy signals are labeled as 1 and faulty signals are labeled as 2.

Define Generator Network

Define the following two-input network, which generates flow signals given 1-by-1-by-100 arrays of
random values and corresponding labels.

The network:

• Projects and reshapes the 1-by-1-by-100 arrays of noise to 4-by-1-by-1024 arrays by a custom
layer.

• Converts the categorical labels to embedding vectors and reshapes them to a 4-by-1-by-1 arrays.
• Concatenates the results from the two inputs along the channel dimension. The output is a 4-by-1-

by-1025 array.
• Upsamples the resulting arrays to 1201-by-1-by-1 arrays using a series of 1-D transposed

convolution layers with batch normalization and ReLU layers.

To project and reshape the noise input, use the custom layer projectAndReshapeLayer, attached
to this example as a supporting file. The projectAndReshapeLayer object upscales the input using
a fully connected layer and reshapes the output to the specified size.

To input the labels into the network, use an imageInputLayer object and specify a size of 1-by-1. To
embed and reshape the label input, use the custom layer embedAndReshapeLayer, attached to this
example as a supporting file. The embedAndReshapeLayer object converts a categorical label to a
one-channel array of the specified size using an embedding and a fully connected operation. For
categorical inputs, use an embedding dimension of 100.

% Generator Network

 Generate Synthetic Signals Using Conditional GAN

13-63



numFilters = 64;
numLatentInputs = 100;
projectionSize = [4 1 1024];
numClasses = 2;
embeddingDimension = 100;

layersGenerator = [
    imageInputLayer([1 1 numLatentInputs],'Normalization','none','Name','in')
    projectAndReshapeLayer(projectionSize,numLatentInputs,'proj');
    concatenationLayer(3,2,'Name','cat');
    transposedConv2dLayer([5 1],8*numFilters,'Name','tconv1')
    batchNormalizationLayer('Name','bn1','Epsilon',5e-5)
    reluLayer('Name','relu1')
    transposedConv2dLayer([10 1],4*numFilters,'Stride',4,'Cropping',[1 0],'Name','tconv2')
    batchNormalizationLayer('Name','bn2','Epsilon',5e-5)
    reluLayer('Name','relu2')
    transposedConv2dLayer([12 1],2*numFilters,'Stride',4,'Cropping',[1 0],'Name','tconv3')
    batchNormalizationLayer('Name','bn3','Epsilon',5e-5)
    reluLayer('Name','relu3')
    transposedConv2dLayer([5 1],numFilters,'Stride',4,'Cropping',[1 0],'Name','tconv4')
    batchNormalizationLayer('Name','bn4','Epsilon',5e-5)
    reluLayer('Name','relu4')
    transposedConv2dLayer([7 1],1,'Stride',2,'Cropping',[1 0],'Name','tconv5')
    ];

lgraphGenerator = layerGraph(layersGenerator);

layers = [
    imageInputLayer([1 1],'Name','labels','Normalization','none')
    embedAndReshapeLayer(projectionSize(1:2),embeddingDimension,numClasses,'emb')];

lgraphGenerator = addLayers(lgraphGenerator,layers);
lgraphGenerator = connectLayers(lgraphGenerator,'emb','cat/in2');

Plot the network structure for the generator.

plot(lgraphGenerator)

13 Signal Processing Examples

13-64



To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

dlnetGenerator = dlnetwork(lgraphGenerator);

Define Discriminator Network

Define the following two-input network, which classifies real and generated 1201-by-1 signals given a
set of signals and their corresponding labels.

This network:

• Takes 1201-by-1-by-1 signals as input.
• Converts categorical labels to embedding vectors and reshapes them to a 1201-by-1-by-1 arrays.
• Concatenates the results from the two inputs along the channel dimension. The output is a 1201-

by-1-by-1025 array.
• Downsamples the resulting arrays to scalar prediction scores, which are 1-by-1-by-1 arrays, using

a series of 1-D convolution layers with leaky ReLU layers with a scale of 0.2.

 Generate Synthetic Signals Using Conditional GAN

13-65



% Discriminator Network

scale = 0.2;
inputSize = [1201 1 1];

layersDiscriminator = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
    concatenationLayer(3,2,'Name','cat')
    convolution2dLayer([17 1],8*numFilters,'Stride',2,'Padding',[1 0],'Name','conv1')
    leakyReluLayer(scale,'Name','lrelu1')
    convolution2dLayer([16 1],4*numFilters,'Stride',4,'Padding',[1 0],'Name','conv2')
    leakyReluLayer(scale,'Name','lrelu2')
    convolution2dLayer([16 1],2*numFilters,'Stride',4,'Padding',[1 0],'Name','conv3')
    leakyReluLayer(scale,'Name','lrelu3')
    convolution2dLayer([8 1],numFilters,'Stride',4,'Padding',[1 0],'Name','conv4')
    leakyReluLayer(scale,'Name','lrelu4')
    convolution2dLayer([8 1],1,'Name','conv5')];

lgraphDiscriminator = layerGraph(layersDiscriminator);

layers = [
    imageInputLayer([1 1],'Name','labels','Normalization','none')
    embedAndReshapeLayer(inputSize,embeddingDimension,numClasses,'emb')];

lgraphDiscriminator = addLayers(lgraphDiscriminator,layers);
lgraphDiscriminator = connectLayers(lgraphDiscriminator,'emb','cat/in2');

Plot the network structure for the discriminator.

plot(lgraphDiscriminator)

13 Signal Processing Examples

13-66



To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

dlnetDiscriminator = dlnetwork(lgraphDiscriminator);

Train Model

Train the CGAN model using a custom training loop. Loop over the training data and update the
network parameters at each iteration. To monitor the training progress, display generated healthy
and faulty signals using two fixed arrays of random values to input into the generator as well as a plot
of the scores of the two networks.

For each epoch, shuffle the training data and loop over mini-batches of data.

For each mini-batch:

• Generate a dlarray object containing an array of random values for the generator network.
• For GPU training, convert the data to a gpuArray (Parallel Computing Toolbox) object.
• Evaluate the model gradients using dlfeval and the helper function modelGradients.

 Generate Synthetic Signals Using Conditional GAN

13-67



• Update the network parameters using the adamupdate function.

The helper function modelGradients takes as input the generator and discriminator networks, a
mini-batch of input data, and an array of random values, and returns the gradients of the loss with
respect to the learnable parameters in the networks and the scores of the two networks. The loss
function is defined in the helper function ganLoss.

Specify Training Options

Set the training parameters.

params.numLatentInputs = numLatentInputs;
params.numClasses = numClasses;
params.sizeData = [inputSize length(labels)];
params.numEpochs = 1000;
params.miniBatchSize = 256;

% Specify the options for Adam optimizer
params.learnRate = 0.0002;
params.gradientDecayFactor = 0.5;
params.squaredGradientDecayFactor = 0.999;

Set the execution environment to run the CGANs on the CPU. To run the CGANs on the GPU, set
executionEnvironment to "gpu" or select the "Run on GPU" option in Live Editor. Using a GPU
requires Parallel Computing Toolbox™. To see which GPUs are supported, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

executionEnvironment = ;
params.executionEnvironment = executionEnvironment;

Skip the training process by loading the pretrained network. To train the network on your computer,
set trainNow to true or select the "Train CGAN now" option in Live Editor.

trainNow = ;
if trainNow
    % Train the CGAN
    [dlnetGenerator,dlnetDiscriminator] = trainGAN(dlnetGenerator, ...
        dlnetDiscriminator,flowNormalized,labels,params); %#ok
else
    % Use pretrained CGAN (default)
    load(fullfile(tempdir,'PumpSignalGAN','GANModel.mat')) % load data set
end

The training plot below shows an example of scores of the generator and discriminator networks. To
learn more about how to interpret the network scores, see “Monitor GAN Training Progress and
Identify Common Failure Modes” on page 5-279. In this example, the scores of both the generator
and discriminator converge close to 0.5, indicating that the training performance is good.

13 Signal Processing Examples

13-68



Synthesize Flow Signals

Create a dlarray object containing a batch of 2000 1-by-1-by-100 arrays of random values to input
into the generator network. Reset the random number generator for reproducible results.

rng default

numTests = 2000;
ZNew = randn(1,1,numLatentInputs,numTests,'single');
dlZNew = dlarray(ZNew,'SSCB');

Specify that the first 1000 random arrays are healthy and the rest are faulty.

TNew = ones(1,1,1,numTests,'single');
TNew(1,1,1,numTests/2+1:end) = single(2);
dlTNew = dlarray(TNew,'SSCB');

 Generate Synthetic Signals Using Conditional GAN

13-69



To generate signals using the GPU, convert the data to gpuArray objects.

if executionEnvironment == "gpu"
    dlZNew = gpuArray(dlZNew);
    dlTNew = gpuArray(dlTNew);
end

Use the predict function on the generator with the batch of 1-by-1-by-100 arrays of random values
and labels to generate synthetic signals and revert the standardization step that you performed on
the original flow signals.

dlXGeneratedNew = predict(dlnetGenerator,dlZNew,dlTNew)*stdFlow+meanFlow;

Signal Feature Visualization

Unlike images and audio signals, general signals have characteristics that make them difficult for
human perception to tell apart. To compare real and generated signals or healthy and faulty signals,
you can apply principal component analysis (PCA) to the statistical features of the real signals and
then project the features of the generated signals to the same PCA subspace.

Feature Extraction

Combine the original real signal and the generated signals in one data matrix. Use the helper
function helperExtractFeature to extract the feature including common signal statistics such as
the mean and variance as well as spectral characteristics.

idxGenerated = 1:numTests;
idxReal = numTests+1:numTests+size(flow,2);

XGeneratedNew = squeeze(extractdata(gather(dlXGeneratedNew)));
x = [XGeneratedNew single(flow)];

features = zeros(size(x,2),14,'like',x);

for ii = 1:size(x,2)
    features(ii,:) = helperExtractFeature(x(:,ii));
end

Each row of features corresponds to the features of one signal.

Modify the labels for the generated healthy and faulty signals as well as real healthy and faulty
signals.

L = [squeeze(TNew)+2;labels.'];

The labels now have these definitions:

• 1 — Generated healthy signals
• 2 — Generated faulty signals
• 3 — Real healthy signals
• 4 — Real faulty signals

Principal Component Analysis

Perform PCA on the features of the real signals and project the features of the generated signals to
the same PCA subspace. W is the coefficient and Y is the score.

13 Signal Processing Examples

13-70



% PCA via svd
featuresReal = features(idxReal,:);
mu = mean(featuresReal,1);
[~,S,W] = svd(featuresReal-mu);
S = diag(S);
Y = (features-mu)*W;

From the singular vector S, the first three singular values make up 99% of the energy in S. You can
visualize the signal features by taking advantage of the first three principal components.

sum(S(1:3))/sum(S)

ans = single
    0.9923

Plot the features of all the signals using the first three principal components. In the PCA subspace,
the distribution of the generated signals is similar to the distribution of the real signals.

idxHealthyR = L==1;
idxFaultR = L==2;

idxHealthyG = L==3;
idxFaultG = L==4;

pp = Y(:,1:3);

figure
scatter3(pp(idxHealthyR,1),pp(idxHealthyR,2),pp(idxHealthyR,3),'o')
xlabel('1st Principal Component')
ylabel('2nd Principal Component')
zlabel('3rd Principal Component')
hold on
scatter3(pp(idxFaultR,1),pp(idxFaultR,2),pp(idxFaultR,3),'d')
scatter3(pp(idxHealthyG,1),pp(idxHealthyG,2),pp(idxHealthyG,3),'s')
scatter3(pp(idxFaultG,1),pp(idxFaultG,2),pp(idxFaultG,3),'+')
view(-10,20)
legend('Real healthy','Real faulty','Generated healthy','Generated faulty', ...
    'Location','Best')
hold off

 Generate Synthetic Signals Using Conditional GAN

13-71



To better capture the difference between the real signals and generated signals, plot the subspace
using the first two principal components.

view(2)

13 Signal Processing Examples

13-72



Healthy and faulty signals lie in the same area of the PCA subspace regardless of their being real or
generated, demonstrating that the generated signals have features similar to those of the real
signals.

Predict Labels of Real Signals

To further illustrate the performance of the CGAN, train an SVM classifier based on the generated
signals and then predict whether a real signal is healthy or faulty.

Set the generated signals as the training data set and the real signals as the test data set. Change the
numeric labels to character vectors.

LABELS = {'Healthy','Faulty'};
strL = LABELS([squeeze(TNew);labels.']).';

dataTrain = features(idxGenerated,:);
dataTest = features(idxReal,:);

labelTrain = strL(idxGenerated);
labelTest = strL(idxReal);

 Generate Synthetic Signals Using Conditional GAN

13-73



predictors = dataTrain; 
response = labelTrain;
cvp = cvpartition(size(predictors,1),'KFold',5);

Train an SVM classifier using the generated signals.

SVMClassifier = fitcsvm( ...
    predictors(cvp.training(1),:), ...
    response(cvp.training(1)),'KernelFunction','polynomial', ...
    'PolynomialOrder',2, ...
    'KernelScale','auto', ...
    'BoxConstraint',1, ...
    'ClassNames',LABELS, ...
    'Standardize',true);

Use the trained classifier to obtain the predicted labels for the real signals. The classifier achieves a
prediction accuracy above 90%.

actualValue = labelTest;
predictedValue = predict(SVMClassifier,dataTest);
predictAccuracy = mean(cellfun(@strcmp,actualValue,predictedValue))

predictAccuracy = 0.9460

Use a confusion matrix to view detailed information about prediction performance for each category.
The confusion matrix shows that, in each category, the classifier trained based on the generated
signals achieves a high degree of accuracy.

figure
confusionchart(actualValue,predictedValue)

13 Signal Processing Examples

13-74



Case Study

Compare the spectral characteristics of real and generated signals. Due to the nondeterministic
behavior of GPU training, if you train the CGAN model yourself, your results might differ from the
results in this example.

The pump motor speed is 950 rpm, or 15.833 Hz, and since the pump has three cylinders the flow is
expected to have a fundamental at 3 times 15.833 Hz, or 47.5 Hz, and harmonics at multiples of 47.5
Hz. Plot the spectrum for one case of the real and generated healthy signals. From the plot, the
generated healthy signal has relatively high power values at 47.5 Hz and 2 times 47.5 Hz, which is
exactly the same as the real healthy signal.

Fs = 1000;
pspectrum([x(:,1) x(:,2006)],Fs)
set(gca,'XScale','log')
legend('Generated healthy','Real healthy')

 Generate Synthetic Signals Using Conditional GAN

13-75



If faults exist, resonances will occur at the pump motor speed, 15.833 Hz, and its harmonics. Plot the
spectra for one case of real and generated faulty signals. The generated signal has relatively high
power values at around 15.833 Hz and its harmonics, which is similar to the real faulty signal.

pspectrum([x(:,1011) x(:,2100)],Fs)
set(gca,'XScale','log')
legend('Generated faulty','Real faulty')

13 Signal Processing Examples

13-76



Plot spectra for another case of real and generated faulty signals. The spectral characteristics of the
generated faulty signals do not match the theoretical analysis very well and are different from the
real faulty signal. The CGAN can still be possibly improved by tuning the network structure or
hyperparameters.

pspectrum([x(:,1001) x(:,2600)],Fs)
set(gca,'XScale','log')
legend('Generated faulty','Real faulty')

 Generate Synthetic Signals Using Conditional GAN

13-77



Computation Time

The Simulink simulation takes about 14 hours to generate 2000 pump flow signals. This duration can
be reduced to about 1.7 hours with eight parallel workers if you have Parallel Computing Toolbox™.

The CGAN takes 1.5 hours to train and 70 seconds to generate the same amount of synthetic data
with an NVIDIA Titan V GPU.

13 Signal Processing Examples

13-78



Classify Time Series Using Wavelet Analysis and Deep Learning

This example shows how to classify human electrocardiogram (ECG) signals using the continuous
wavelet transform (CWT) and a deep convolutional neural network (CNN).

Training a deep CNN from scratch is computationally expensive and requires a large amount of
training data. In various applications, a sufficient amount of training data is not available, and
synthesizing new realistic training examples is not feasible. In these cases, leveraging existing neural
networks that have been trained on large data sets for conceptually similar tasks is desirable. This
leveraging of existing neural networks is called transfer learning. In this example we adapt two deep
CNNs, GoogLeNet and SqueezeNet, pretrained for image recognition to classify ECG waveforms
based on a time-frequency representation.

GoogLeNet and SqueezeNet are deep CNNs originally designed to classify images in 1000 categories.
We reuse the network architecture of the CNN to classify ECG signals based on images from the CWT
of the time series data. The data used in this example are publicly available from PhysioNet.

Data Description

In this example, you use ECG data obtained from three groups of people: persons with cardiac
arrhythmia (ARR), persons with congestive heart failure (CHF), and persons with normal sinus
rhythms (NSR). In total you use 162 ECG recordings from three PhysioNet databases: MIT-BIH
Arrhythmia Database [3][7], MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive
Heart Failure Database [1][3]. More specifically, 96 recordings from persons with arrhythmia, 30
recordings from persons with congestive heart failure, and 36 recordings from persons with normal
sinus rhythms. The goal is to train a classifier to distinguish between ARR, CHF, and NSR.

Download Data

The first step is to download the data from the GitHub® repository. To download the data from the
website, click Code and select Download ZIP. Save the file physionet_ECG_data-main.zip in a
folder where you have write permission. The instructions for this example assume you have
downloaded the file to your temporary directory, tempdir, in MATLAB®. Modify the subsequent
instructions for unzipping and loading the data if you choose to download the data in folder different
from tempdir.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir)

Unzipping creates the folder physionet-ECG_data-main in your temporary directory. This folder
contains the text file README.md and ECGData.zip. The ECGData.zip file contains

• ECGData.mat
• Modified_physionet_data.txt
• License.txt

ECGData.mat holds the data used in this example. The text file, Modified_physionet_data.txt,
is required by PhysioNet's copying policy and provides the source attributions for the data as well as
a description of the preprocessing steps applied to each ECG recording.

Unzip ECGData.zip in physionet-ECG_data-main. Load the data file into your MATLAB
workspace.

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-79

https://physionet.org
https://www.physionet.org/physiobank/database/mitdb/
https://www.physionet.org/physiobank/database/mitdb/
https://www.physionet.org/physiobank/database/nsrdb/
https://www.physionet.org/physiobank/database/chfdb/
https://www.physionet.org/physiobank/database/chfdb/
https://github.com/mathworks/physionet_ECG_data/


unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-main'))
load(fullfile(tempdir,'physionet_ECG_data-main','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. The Data field is a 162-by-65536
matrix where each row is an ECG recording sampled at 128 hertz. Labels is a 162-by-1 cell array of
diagnostic labels, one for each row of Data. The three diagnostic categories are: 'ARR', 'CHF', and
'NSR'.

To store the preprocessed data of each category, first create an ECG data directory dataDir inside
tempdir. Then create three subdirectories in 'data' named after each ECG category. The helper
function helperCreateECGDirectories does this. helperCreateECGDirectories accepts
ECGData, the name of an ECG data directory, and the name of a parent directory as input arguments.
You can replace tempdir with another directory where you have write permission. You can find the
source code for this helper function in the Supporting Functions section at the end of this example.

parentDir = tempdir;
dataDir = 'data';
helperCreateECGDirectories(ECGData,parentDir,dataDir)

Plot a representative of each ECG category. The helper function helperPlotReps does this.
helperPlotReps accepts ECGData as input. You can find the source code for this helper function in
the Supporting Functions section at the end of this example.

helperPlotReps(ECGData)

13 Signal Processing Examples

13-80



Create Time-Frequency Representations

After making the folders, create time-frequency representations of the ECG signals. These
representations are called scalograms. A scalogram is the absolute value of the CWT coefficients of a
signal.

To create the scalograms, precompute a CWT filter bank. Precomputing the CWT filter bank is the
preferred method when obtaining the CWT of many signals using the same parameters.

Before generating the scalograms, examine one of them. Create a CWT filter bank using
cwtfilterbank (Wavelet Toolbox) for a signal with 1000 samples. Use the filter bank to take the
CWT of the first 1000 samples of the signal and obtain the scalogram from the coefficients.

Fs = 128;
fb = cwtfilterbank('SignalLength',1000,...
    'SamplingFrequency',Fs,...
    'VoicesPerOctave',12);
sig = ECGData.Data(1,1:1000);
[cfs,frq] = wt(fb,sig);
t = (0:999)/Fs;figure;pcolor(t,frq,abs(cfs))
set(gca,'yscale','log');shading interp;axis tight;
title('Scalogram');xlabel('Time (s)');ylabel('Frequency (Hz)')

Use the helper function helperCreateRGBfromTF to create the scalograms as RGB images and
write them to the appropriate subdirectory in dataDir. The source code for this helper function is in
the Supporting Functions section at the end of this example. To be compatible with the GoogLeNet
architecture, each RGB image is an array of size 224-by-224-by-3.

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-81



helperCreateRGBfromTF(ECGData,parentDir,dataDir)

Divide into Training and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a CNN.

allImages = imageDatastore(fullfile(parentDir,dataDir),...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Randomly divide the images into two groups, one for training and the other for validation. Use 80% of
the images for training, and the remainder for validation. For purposes of reproducibility, we set the
random seed to the default value.

rng default
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized');
disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]);

Number of training images: 130

disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]);

Number of validation images: 32

GoogLeNet

Load

Load the pretrained GoogLeNet neural network. If Deep Learning Toolbox™ Model for GoogLeNet
Network support package is not installed, the software provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then click Install.

net = googlenet;

Extract and display the layer graph from the network.

lgraph = layerGraph(net);
numberOfLayers = numel(lgraph.Layers);
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
plot(lgraph)
title(['GoogLeNet Layer Graph: ',num2str(numberOfLayers),' Layers']);

13 Signal Processing Examples

13-82



Inspect the first element of the network Layers property. Confirm that GoogLeNet requires RGB
images of size 224-by-224-by-3.

net.Layers(1)

ans = 
  ImageInputLayer with properties:

                Name: 'data'
           InputSize: [224 224 3]

   Hyperparameters
    DataAugmentation: 'none'
       Normalization: 'zerocenter'
                Mean: [224×224×3 single]

Modify GoogLeNet Network Parameters

Each layer in the network architecture can be considered a filter. The earlier layers identify more
common features of images, such as blobs, edges, and colors. Subsequent layers focus on more
specific features in order to differentiate categories. GoogLeNet is pretrained to classify images into
1000 object categories. You must retrain GoogLeNet for our ECG classification problem.

To prevent overfitting, a dropout layer is used. A dropout layer randomly sets input elements to zero
with a given probability. See dropoutLayer for more information. The default probability is 0.5.

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-83



Replace the final dropout layer in the network, 'pool5-drop_7x7_s1', with a dropout layer of
probability 0.6.

newDropoutLayer = dropoutLayer(0.6,'Name','new_Dropout');
lgraph = replaceLayer(lgraph,'pool5-drop_7x7_s1',newDropoutLayer);

The convolutional layers of the network extract image features that the last learnable layer and final
classification layer use to classify the input image. These two layers, 'loss3-classifier' and
'output' in GoogLeNet, contain information on how to combine the features that the network
extracts into class probabilities, a loss value, and predicted labels. To retrain GoogLeNet to classify
the RGB images, replace these two layers with new layers adapted to the data.

Replace the fully connected layer 'loss3-classifier' with a new fully connected layer with the
number of filters equal to the number of classes. To learn faster in the new layers than in the
transferred layers, increase the learning rate factors of the fully connected layer.

numClasses = numel(categories(imgsTrain.Labels));
newConnectedLayer = fullyConnectedLayer(numClasses,'Name','new_fc',...
    'WeightLearnRateFactor',5,'BiasLearnRateFactor',5);
lgraph = replaceLayer(lgraph,'loss3-classifier',newConnectedLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'output',newClassLayer);

Set Training Options and Train GoogLeNet

Training a neural network is an iterative process that involves minimizing a loss function. To minimize
the loss function, a gradient descent algorithm is used. In each iteration, the gradient of the loss
function is evaluated and the descent algorithm weights are updated.

Training can be tuned by setting various options. InitialLearnRate specifies the initial step size in
the direction of the negative gradient of the loss function. MiniBatchSize specifies how large of a
subset of the training set to use in each iteration. One epoch is a full pass of the training algorithm
over the entire training set. MaxEpochs specifies the maximum number of epochs to use for training.
Choosing the right number of epochs is not a trivial task. Decreasing the number of epochs has the
effect of underfitting the model, and increasing the number of epochs results in overfitting.

Use the trainingOptions function to specify the training options. Set MiniBatchSize to 10,
MaxEpochs to 10, and InitialLearnRate to 0.0001. Visualize training progress by setting Plots
to training-progress. Use the stochastic gradient descent with momentum optimizer. By default,
training is done on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™. To
see which GPUs are supported, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For purposes of reproducibility, set ExecutionEnvironment to cpu so that trainNetwork used the
CPU. Set the random seed to the default value. Run times will be faster if you are able to use a GPU.

options = trainingOptions('sgdm',...
    'MiniBatchSize',15,...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4,...
    'ValidationData',imgsValidation,...
    'ValidationFrequency',10,...
    'Verbose',1,...

13 Signal Processing Examples

13-84



    'ExecutionEnvironment','cpu',...
    'Plots','training-progress');
rng default

Train the network. The training process usually takes 1-5 minutes on a desktop CPU. The command
window displays training information during the run. Results include epoch number, iteration
number, time elapsed, mini-batch accuracy, validation accuracy, and loss function value for the
validation data.

trainedGN = trainNetwork(imgsTrain,lgraph,options);

Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:03 |        6.67% |       18.75% |       4.9207 |       2.4141 |      1.0000e-04 |
|       2 |          10 |       00:00:23 |       66.67% |       62.50% |       0.9589 |       1.3191 |      1.0000e-04 |
|       3 |          20 |       00:00:43 |       46.67% |       75.00% |       1.2973 |       0.5928 |      1.0000e-04 |
|       4 |          30 |       00:01:04 |       60.00% |       78.13% |       0.7219 |       0.4576 |      1.0000e-04 |
|       5 |          40 |       00:01:25 |       73.33% |       84.38% |       0.4750 |       0.3367 |      1.0000e-04 |
|       7 |          50 |       00:01:46 |       93.33% |       84.38% |       0.2714 |       0.2892 |      1.0000e-04 |
|       8 |          60 |       00:02:07 |       80.00% |       87.50% |       0.3617 |       0.2433 |      1.0000e-04 |
|       9 |          70 |       00:02:29 |       86.67% |       87.50% |       0.3246 |       0.2526 |      1.0000e-04 |
|      10 |          80 |       00:02:50 |      100.00% |       96.88% |       0.0701 |       0.1876 |      1.0000e-04 |
|      12 |          90 |       00:03:11 |       86.67% |      100.00% |       0.2836 |       0.1681 |      1.0000e-04 |
|      13 |         100 |       00:03:32 |       86.67% |       96.88% |       0.4160 |       0.1607 |      1.0000e-04 |
|      14 |         110 |       00:03:53 |       86.67% |       96.88% |       0.3237 |       0.1565 |      1.0000e-04 |

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-85



|      15 |         120 |       00:04:14 |       93.33% |       96.88% |       0.1646 |       0.1476 |      1.0000e-04 |
|      17 |         130 |       00:04:35 |      100.00% |       96.88% |       0.0551 |       0.1330 |      1.0000e-04 |
|      18 |         140 |       00:04:57 |       93.33% |       96.88% |       0.0927 |       0.1347 |      1.0000e-04 |
|      19 |         150 |       00:05:18 |       93.33% |       93.75% |       0.1666 |       0.1325 |      1.0000e-04 |
|      20 |         160 |       00:05:39 |       93.33% |       96.88% |       0.0873 |       0.1164 |      1.0000e-04 |
|======================================================================================================================|

Inspect the last layer of the trained network. Confirm the Classification Output layer includes the
three classes.

trainedGN.Layers(end)

ans = 
  ClassificationOutputLayer with properties:

            Name: 'new_classoutput'
         Classes: [ARR    CHF    NSR]
      OutputSize: 3

   Hyperparameters
    LossFunction: 'crossentropyex'

Evaluate GoogLeNet Accuracy

Evaluate the network using the validation data.

[YPred,probs] = classify(trainedGN,imgsValidation);
accuracy = mean(YPred==imgsValidation.Labels);
disp(['GoogLeNet Accuracy: ',num2str(100*accuracy),'%'])

GoogLeNet Accuracy: 96.875%

The accuracy is identical to the validation accuracy reported on the training visualization figure. The
scalograms were split into training and validation collections. Both collections were used to train
GoogLeNet. The ideal way to evaluate the result of the training is to have the network classify data it
has not seen. Since there is an insufficient amount of data to divide into training, validation, and
testing, we treat the computed validation accuracy as the network accuracy.

Explore GoogLeNet Activations

Each layer of a CNN produces a response, or activation, to an input image. However, there are only a
few layers within a CNN that are suitable for image feature extraction. The layers at the beginning of
the network capture basic image features, such as edges and blobs. To see this, visualize the network
filter weights from the first convolutional layer. There are 64 individual sets of weights in the first
layer.

wghts = trainedGN.Layers(2).Weights;
wghts = rescale(wghts);
wghts = imresize(wghts,5);
figure
montage(wghts)
title('First Convolutional Layer Weights')

13 Signal Processing Examples

13-86



You can examine the activations and discover which features GoogLeNet learns by comparing areas
of activation with the original image. For more information, see “Visualize Activations of a
Convolutional Neural Network” on page 5-238 and “Visualize Features of a Convolutional Neural
Network” on page 5-253.

Examine which areas in the convolutional layers activate on an image from the ARR class. Compare
with the corresponding areas in the original image. Each layer of a convolutional neural network
consists of many 2-D arrays called channels. Pass the image through the network and examine the
output activations of the first convolutional layer, 'conv1-7x7_s2'.

convLayer = 'conv1-7x7_s2';

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-87



imgClass = 'ARR';
imgName = 'ARR_10.jpg';
imarr = imread(fullfile(parentDir,dataDir,imgClass,imgName));

trainingFeaturesARR = activations(trainedGN,imarr,convLayer);
sz = size(trainingFeaturesARR);
trainingFeaturesARR = reshape(trainingFeaturesARR,[sz(1) sz(2) 1 sz(3)]);
figure
montage(rescale(trainingFeaturesARR),'Size',[8 8])
title([imgClass,' Activations'])

Find the strongest channel for this image. Compare the strongest channel with the original image.

13 Signal Processing Examples

13-88



imgSize = size(imarr);
imgSize = imgSize(1:2);
[~,maxValueIndex] = max(max(max(trainingFeaturesARR)));
arrMax = trainingFeaturesARR(:,:,:,maxValueIndex);
arrMax = rescale(arrMax);
arrMax = imresize(arrMax,imgSize);
figure;
imshowpair(imarr,arrMax,'montage')
title(['Strongest ',imgClass,' Channel: ',num2str(maxValueIndex)])

SqueezeNet

SqueezeNet is a deep CNN whose architecture supports images of size 227-by-227-by-3. Even though
the image dimensions are different for GoogLeNet, you do not have to generate new RGB images at
the SqueezeNet dimensions. You can use the original RGB images.

Load

Load the pretrained SqueezeNet neural network. If Deep Learning Toolbox™ Model for SqueezeNet
Network support package is not installed, the software provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then click Install.

sqz = squeezenet;

Extract the layer graph from the network. Confirm SqueezeNet has fewer layers than GoogLeNet.
Also confirm that SqueezeNet is configured for images of size 227-by-227-by-3.

lgraphSqz = layerGraph(sqz);
disp(['Number of Layers: ',num2str(numel(lgraphSqz.Layers))])

Number of Layers: 68

disp(lgraphSqz.Layers(1).InputSize)

   227   227     3

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-89



Modify SqueezeNet Network Parameters

To retrain SqueezeNet to classify new images, make changes similar to those made for GoogLeNet.

Inspect the last six network layers.

lgraphSqz.Layers(end-5:end)

ans = 
  6x1 Layer array with layers:

     1   'drop9'                             Dropout                 50% dropout
     2   'conv10'                            Convolution             1000 1x1x512 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_conv10'                       ReLU                    ReLU
     4   'pool10'                            Average Pooling         14x14 average pooling with stride [1  1] and padding [0  0  0  0]
     5   'prob'                              Softmax                 softmax
     6   'ClassificationLayer_predictions'   Classification Output   crossentropyex with 'tench' and 999 other classes

Replace the 'drop9' layer, the last dropout layer in the network, with a dropout layer of probability
0.6.

tmpLayer = lgraphSqz.Layers(end-5);
newDropoutLayer = dropoutLayer(0.6,'Name','new_dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);

Unlike GoogLeNet, the last learnable layer in SqueezeNet is a 1-by-1 convolutional layer, 'conv10',
and not a fully connected layer. Replace the 'conv10' layer with a new convolutional layer with the
number of filters equal to the number of classes. As was done with GoogLeNet, increase the learning
rate factors of the new layer.

numClasses = numel(categories(imgsTrain.Labels));
tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
        'Name','new_conv', ...
        'WeightLearnRateFactor',10, ...
        'BiasLearnRateFactor',10);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);

Replace the classification layer with a new one without class labels.

tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);

Inspect the last six layers of the network. Confirm the dropout, convolutional, and output layers have
been changed.

lgraphSqz.Layers(63:68)

ans = 
  6x1 Layer array with layers:

     1   'new_dropout'       Dropout                 60% dropout
     2   'new_conv'          Convolution             3 1x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_conv10'       ReLU                    ReLU
     4   'pool10'            Average Pooling         14x14 average pooling with stride [1  1] and padding [0  0  0  0]
     5   'prob'              Softmax                 softmax
     6   'new_classoutput'   Classification Output   crossentropyex

13 Signal Processing Examples

13-90



Prepare RGB Data for SqueezeNet

The RGB images have dimensions appropriate for the GoogLeNet architecture. Create augmented
image datastores that automatically resize the existing RGB images for the SqueezeNet architecture.
For more information, see augmentedImageDatastore.

augimgsTrain = augmentedImageDatastore([227 227],imgsTrain);
augimgsValidation = augmentedImageDatastore([227 227],imgsValidation);

Set Training Options and Train SqueezeNet

Create a new set of training options to use with SqueezeNet. Set the random seed to the default value
and train the network. The training process usually takes 1-5 minutes on a desktop CPU.

ilr = 3e-4;
miniBatchSize = 10;
maxEpochs = 15;
valFreq = floor(numel(augimgsTrain.Files)/miniBatchSize);
opts = trainingOptions('sgdm',...
    'MiniBatchSize',miniBatchSize,...
    'MaxEpochs',maxEpochs,...
    'InitialLearnRate',ilr,...
    'ValidationData',augimgsValidation,...
    'ValidationFrequency',valFreq,...
    'Verbose',1,...
    'ExecutionEnvironment','cpu',...
    'Plots','training-progress');

rng default
trainedSN = trainNetwork(augimgsTrain,lgraphSqz,opts);

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-91



Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:01 |       20.00% |       43.75% |       5.2508 |       1.2540 |          0.0003 |
|       1 |          13 |       00:00:11 |       60.00% |       50.00% |       0.9912 |       1.0519 |          0.0003 |
|       2 |          26 |       00:00:20 |       60.00% |       59.38% |       0.8554 |       0.8497 |          0.0003 |
|       3 |          39 |       00:00:30 |       60.00% |       59.38% |       0.8120 |       0.8328 |          0.0003 |
|       4 |          50 |       00:00:38 |       50.00% |              |       0.7885 |              |          0.0003 |
|       4 |          52 |       00:00:40 |       60.00% |       65.63% |       0.7091 |       0.7314 |          0.0003 |
|       5 |          65 |       00:00:49 |       90.00% |       87.50% |       0.4639 |       0.5893 |          0.0003 |
|       6 |          78 |       00:00:59 |       70.00% |       87.50% |       0.6021 |       0.4355 |          0.0003 |
|       7 |          91 |       00:01:08 |       90.00% |       90.63% |       0.2307 |       0.2945 |          0.0003 |
|       8 |         100 |       00:01:15 |       90.00% |              |       0.1827 |              |          0.0003 |
|       8 |         104 |       00:01:18 |       90.00% |       93.75% |       0.2139 |       0.2153 |          0.0003 |
|       9 |         117 |       00:01:28 |      100.00% |       90.63% |       0.0521 |       0.1964 |          0.0003 |
|      10 |         130 |       00:01:38 |       90.00% |       90.63% |       0.1134 |       0.2214 |          0.0003 |
|      11 |         143 |       00:01:47 |      100.00% |       90.63% |       0.0855 |       0.2095 |          0.0003 |
|      12 |         150 |       00:01:52 |       90.00% |              |       0.2394 |              |          0.0003 |
|      12 |         156 |       00:01:57 |      100.00% |       90.63% |       0.0606 |       0.1849 |          0.0003 |
|      13 |         169 |       00:02:06 |      100.00% |       90.63% |       0.0090 |       0.2071 |          0.0003 |
|      14 |         182 |       00:02:16 |      100.00% |       93.75% |       0.0127 |       0.3597 |          0.0003 |
|      15 |         195 |       00:02:25 |      100.00% |       93.75% |       0.0016 |       0.3414 |          0.0003 |
|======================================================================================================================|

Inspect the last layer of the network. Confirm the Classification Output layer includes the three
classes.

13 Signal Processing Examples

13-92



trainedSN.Layers(end)

ans = 
  ClassificationOutputLayer with properties:

            Name: 'new_classoutput'
         Classes: [ARR    CHF    NSR]
      OutputSize: 3

   Hyperparameters
    LossFunction: 'crossentropyex'

Evaluate SqueezeNet Accuracy

Evaluate the network using the validation data.

[YPred,probs] = classify(trainedSN,augimgsValidation);
accuracy = mean(YPred==imgsValidation.Labels);
disp(['SqueezeNet Accuracy: ',num2str(100*accuracy),'%'])

SqueezeNet Accuracy: 93.75%

Conclusion

This example shows how to use transfer learning and continuous wavelet analysis to classify three
classes of ECG signals by leveraging the pretrained CNNs GoogLeNet and SqueezeNet. Wavelet-
based time-frequency representations of ECG signals are used to create scalograms. RGB images of
the scalograms are generated. The images are used to fine-tune both deep CNNs. Activations of
different network layers were also explored.

This example illustrates one possible workflow you can use for classifying signals using pretrained
CNN models. Other workflows are possible. “Deploy Signal Classifier on NVIDIA Jetson Using
Wavelet Analysis and Deep Learning” (Wavelet Toolbox) and “Deploy Signal Classifier Using Wavelets
and Deep Learning on Raspberry Pi” (Wavelet Toolbox) show how to deploy code onto hardware for
signal classification. GoogLeNet and SqueezeNet are models pretrained on a subset of the ImageNet
database [10], which is used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [8].
The ImageNet collection contains images of real-world objects such as fish, birds, appliances, and
fungi. Scalograms fall outside the class of real-world objects. In order to fit into the GoogLeNet and
SqueezeNet architecture, the scalograms also underwent data reduction. Instead of fine-tuning
pretrained CNNs to distinguish different classes of scalograms, training a CNN from scratch at the
original scalogram dimensions is an option.

References
1 Baim, D. S., W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue, D. F. Gauthier, B. J.

Ransil, W. Grossman, and E. Braunwald. "Survival of patients with severe congestive heart failure
treated with oral milrinone." Journal of the American College of Cardiology. Vol. 7, Number 3,
1986, pp. 661–670.

2 Engin, M. "ECG beat classification using neuro-fuzzy network." Pattern Recognition Letters. Vol.
25, Number 15, 2004, pp.1715–1722.

3 Goldberger A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C.-K. Peng, and H. E. Stanley. "PhysioBank, PhysioToolkit,and PhysioNet:
Components of a New Research Resource for Complex Physiologic Signals." Circulation. Vol. 101,
Number 23: e215–e220. [Circulation Electronic Pages; http://circ.ahajournals.org/
content/101/23/e215.full]; 2000 (June 13). doi: 10.1161/01.CIR.101.23.e215.

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-93



4 Leonarduzzi, R. F., G. Schlotthauer, and M. E. Torres. "Wavelet leader based multifractal analysis
of heart rate variability during myocardial ischaemia." In Engineering in Medicine and Biology
Society (EMBC), Annual International Conference of the IEEE, 110–113. Buenos Aires,
Argentina: IEEE, 2010.

5 Li, T., and M. Zhou. "ECG classification using wavelet packet entropy and random forests."
Entropy. Vol. 18, Number 8, 2016, p.285.

6 Maharaj, E. A., and A. M. Alonso. "Discriminant analysis of multivariate time series: Application
to diagnosis based on ECG signals." Computational Statistics and Data Analysis. Vol. 70, 2014,
pp. 67–87.

7 Moody, G. B., and R. G. Mark. "The impact of the MIT-BIH Arrhythmia Database." IEEE
Engineering in Medicine and Biology Magazine. Vol. 20. Number 3, May-June 2001, pp. 45–50.
(PMID: 11446209)

8 Russakovsky, O., J. Deng, and H. Su et al. "ImageNet Large Scale Visual Recognition Challenge."
International Journal of Computer Vision. Vol. 115, Number 3, 2015, pp. 211–252.

9 Zhao, Q., and L. Zhang. "ECG feature extraction and classification using wavelet transform and
support vector machines." In IEEE International Conference on Neural Networks and Brain,
1089–1092. Beijing, China: IEEE, 2005.

10 ImageNet. http://www.image-net.org

Supporting Functions

helperCreateECGDataDirectories creates a data directory inside a parent directory, then creates
three subdirectories inside the data directory. The subdirectories are named after each class of ECG
signal found in ECGData.

function helperCreateECGDirectories(ECGData,parentFolder,dataFolder)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

rootFolder = parentFolder;
localFolder = dataFolder;
mkdir(fullfile(rootFolder,localFolder))

folderLabels = unique(ECGData.Labels);
for i = 1:numel(folderLabels)
    mkdir(fullfile(rootFolder,localFolder,char(folderLabels(i))));
end
end

helperPlotReps plots the first thousand samples of a representative of each class of ECG signal
found in ECGData.

function helperPlotReps(ECGData)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

folderLabels = unique(ECGData.Labels);

for k=1:3
    ecgType = folderLabels{k};
    ind = find(ismember(ECGData.Labels,ecgType));
    subplot(3,1,k)
    plot(ECGData.Data(ind(1),1:1000));
    grid on

13 Signal Processing Examples

13-94



    title(ecgType)
end
end

helperCreateRGBfromTF uses cwtfilterbank (Wavelet Toolbox) to obtain the continuous wavelet
transform of the ECG signals and generates the scalograms from the wavelet coefficients. The helper
function resizes the scalograms and writes them to disk as jpeg images.

function helperCreateRGBfromTF(ECGData,parentFolder,childFolder)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

imageRoot = fullfile(parentFolder,childFolder);

data = ECGData.Data;
labels = ECGData.Labels;

[~,signalLength] = size(data);

fb = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
r = size(data,1);

for ii = 1:r
    cfs = abs(fb.wt(data(ii,:)));
    im = ind2rgb(im2uint8(rescale(cfs)),jet(128));
    
    imgLoc = fullfile(imageRoot,char(labels(ii)));
    imFileName = strcat(char(labels(ii)),'_',num2str(ii),'.jpg');
    imwrite(imresize(im,[224 224]),fullfile(imgLoc,imFileName));
end
end

See Also
cwtfilterbank | googlenet | squeezenet | trainNetwork | trainingOptions |
imageDatastore | augmentedImageDatastore

Related Examples
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Pretrained Deep Neural Networks” on page 1-11
• “Deep Learning in MATLAB” on page 1-2

 Classify Time Series Using Wavelet Analysis and Deep Learning

13-95



Deploy Signal Classifier on NVIDIA Jetson Using Wavelet
Analysis and Deep Learning

This example shows how to generate and deploy a CUDA® executable that classifies human
electrocardiogram (ECG) signals using features extracted by the continuous wavelet transform (CWT)
and a pretrained convolutional neural network (CNN).

SqueezeNet is a deep CNN originally designed to classify images in 1000 categories. We reuse the
network architecture of the CNN to classify ECG signals based on their scalograms. A scalogram is
the absolute value of the CWT of the signal. After training SqueezeNet to classify ECG signals, you
create a CUDA executable that generates a scalogram of an ECG signal and then uses the CNN to
classify the signal. The executable and CNN are both deployed to the NVIDIA hardware.

This example uses the same data as used in “Classify Time Series Using Wavelet Analysis and Deep
Learning” (Wavelet Toolbox). In that example, transfer learning with GoogLeNet and SqueezeNet are
used to classify ECG waveforms into one of three categories. The description of the data and how to
obtain it are repeated here for convenience.

ECG Data Description and Download

The ECG data is obtained from three groups of people: persons with cardiac arrhythmia (ARR),
persons with congestive heart failure (CHF), and persons with normal sinus rhythms (NSR). In total
there are 162 ECG recordings from three PhysioNet databases: MIT-BIH Arrhythmia Database [2][3],
MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive Heart Failure Database [1]
[3]. More specifically, 96 recordings from persons with arrhythmia, 30 recordings from persons with
congestive heart failure, and 36 recordings from persons with normal sinus rhythms. The goal is to
train a model to distinguish between ARR, CHF, and NSR.

You can obtain this data from the MathWorks GitHub repository. To download the data from the
website, click Code and select Download ZIP. Save the file physionet_ECG_data-main.zip in a
folder where you have write permission. The instructions for this example assume you have
downloaded the file to your temporary directory, tempdir, in MATLAB. Modify the subsequent
instructions for unzipping and loading the data if you choose to download the data in a folder
different from tempdir.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir)

Unzipping creates the folder physionet-ECG_data-main in your temporary directory. This folder
contains the text file README.md and ECGData.zip. The ECGData.zip file contains:

• ECGData.mat
• Modified_physionet_data.txt
• License.txt

ECGData.mat holds the data used in this example. The text file Modified_physionet_data.txt is
required by PhysioNet's copying policy and provides the source attributions for the data as well as a
description of the preprocessing steps applied to each ECG recording.

Unzip ECGData.zip in physionet-ECG_data-main. Load the data file into your MATLAB
workspace.

13 Signal Processing Examples

13-96

https://www.physionet.org/physiobank/database/mitdb/
https://www.physionet.org/physiobank/database/nsrdb/
https://www.physionet.org/physiobank/database/chfdb/
https://github.com/mathworks/physionet_ECG_data/


unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-main'))
load(fullfile(tempdir,'physionet_ECG_data-main','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. The Data field is a 162-by-65536
matrix where each row is an ECG recording sampled at 128 hertz. Labels is a 162-by-1 cell array of
diagnostic labels, one label for each row of Data. The three diagnostic categories are: 'ARR', 'CHF',
and 'NSR'.

Feature Extraction

After downloading the data, you must generate scalograms of the signals. The scalograms are the
"input" images to the CNN.

To store the scalograms of each category, first create an ECG data directory 'data' inside tempdir.
Then create three subdirectories in 'data' named after each ECG category. The helper function
helperCreateECGDirectories does this for you. helperCreateECGDirectories accepts
ECGData, the name of an ECG data directory, and the name of a parent directory as input arguments.
You can replace tempdir with another directory where you have write permission. You can find the
source code for this helper function in the Supporting Functions on page 13-109 section at the end of
this example.

parentDir = tempdir;
dataDir = 'data';
helperCreateECGDirectories(ECGData,parentDir,dataDir)

After making the folders, create scalograms of the ECG signals as RGB images and write them to the
appropriate subdirectory in dataDir. To create the scalograms, first precompute a CWT filter bank.
Precomputing the filter bank is the preferred method when obtaining the CWT of many signals using
the same parameters. The helper function helperCreateRGBfromTF does this. The source code for
this helper function is in the Supporting Functions on page 13-109 section at the end of this example.
To be compatible with the SqueezeNet architecture, each RGB image is an array of size 227-by-227-
by-3.

helperCreateRGBfromTF(ECGData,parentDir,dataDir)

Divide Data Set into Training and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An
image datastore enables you to store large image data, including data that does not fit in memory,
and efficiently read batches of images when training a CNN.

allImages = imageDatastore(fullfile(tempdir,dataDir),...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Randomly divide the images into two groups, one for training and the other for validation. Use 80% of
the images for training and the remainder for validation. For purposes of reproducibility, we set the
random seed to the default value.

rng default
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized');
disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]);

Number of training images: 130

 Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning

13-97



disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]);

Number of validation images: 32

SqueezeNet

SqueezeNet is a pretrained CNN that can classify images into 1000 categories. You need to retrain
SqueezeNet for our ECG classification problem. Prior to retraining, you modify several network
layers and set various training options. After retraining is complete, you save the CNN in a .mat file.
The CUDA executable will use the .mat file.

Specify an experiment trial index and a results directory. If necessary, create the directory.

trial = 1;
ResultDir = 'results';
if ~exist(ResultDir,'dir')
    mkdir(ResultDir)
end
MatFile = fullfile(ResultDir,sprintf('SqueezeNet_Trial%d.mat',trial));

Load SqeezeNet. Extract the layer graph and inspect the last five layers.

sqz = squeezenet;
lgraph = layerGraph(sqz);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

     1   'conv10'                            Convolution                  1000 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'                       ReLU                         ReLU
     3   'pool10'                            2-D Global Average Pooling   2-D global average pooling
     4   'prob'                              Softmax                      softmax
     5   'ClassificationLayer_predictions'   Classification Output        crossentropyex with 'tench' and 999 other classes

To retrain SqueezeNet to classify the three classes of ECG signals, replace the 'conv10' layer with a
new convolutional layer with the number of filters equal to the number of ECG classes. Replace the
classification layer with a new one without class labels.

numClasses = numel(categories(imgsTrain.Labels));
new_conv10_WeightLearnRateFactor = 1;
new_conv10_BiasLearnRateFactor = 1;
newConvLayer = convolution2dLayer(1,numClasses,...
        'Name','new_conv10',...
        'WeightLearnRateFactor',new_conv10_WeightLearnRateFactor,...
        'BiasLearnRateFactor',new_conv10_BiasLearnRateFactor);
lgraph = replaceLayer(lgraph,'conv10',newConvLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

     1   'new_conv10'        Convolution                  3 1×1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'       ReLU                         ReLU
     3   'pool10'            2-D Global Average Pooling   2-D global average pooling
     4   'prob'              Softmax                      softmax
     5   'new_classoutput'   Classification Output        crossentropyex

13 Signal Processing Examples

13-98



Create a set of training options to use with SqueezeNet.

OptimSolver = 'sgdm';
MiniBatchSize = 15;
MaxEpochs = 20;
InitialLearnRate = 1e-4;
Momentum = 0.9;
ExecutionEnvironment = 'cpu';

options = trainingOptions(OptimSolver,...
    'MiniBatchSize',MiniBatchSize,...
    'MaxEpochs',MaxEpochs,...
    'InitialLearnRate',InitialLearnRate,...
    'ValidationData',imgsValidation,...
    'ValidationFrequency',10,...
    'ExecutionEnvironment',ExecutionEnvironment,...
    'Momentum',Momentum);

Save all the parameters in a structure. The trained network and structure will be later saved in
a .mat file.

TrialParameter.new_conv10_WeightLearnRateFactor = new_conv10_WeightLearnRateFactor;
TrialParameter.new_conv10_BiasLearnRateFactor = new_conv10_BiasLearnRateFactor;
TrialParameter.OptimSolver = OptimSolver;
TrialParameter.MiniBatchSize = MiniBatchSize;
TrialParameter.MaxEpochs = MaxEpochs;
TrialParameter.InitialLearnRate = InitialLearnRate;
TrialParameter.Momentum = Momentum;
TrialParameter.ExecutionEnvironment = ExecutionEnvironment;

Set the random seed to the default value and train the network. Save the trained network, trial
parameters, training run time, and image datastore containing the validation images. The training
process usually takes 1-5 minutes on a desktop CPU. If you want to use a trained CNN from a
previous trial, set trial to the index number of that trial and LoadModel to true.

LoadModel = false;
if ~LoadModel
    rng default
    tic;
    trainedModel = trainNetwork(imgsTrain,lgraph,options);
    trainingTime = toc;
    fprintf('Total training time: %.2e sec\n',trainingTime);
    save(MatFile,'TrialParameter','trainedModel','trainingTime','imgsValidation');
else
    disp('Load ML model from the file')
    load(MatFile,'trainedModel','imgsValidation');
end

Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:03 |       26.67% |       25.00% |       4.1769 |       2.9883 |      1.0000e-04 |
|       2 |          10 |       00:00:18 |       73.33% |       59.38% |       0.9875 |       1.1554 |      1.0000e-04 |
|       3 |          20 |       00:00:35 |       60.00% |       56.25% |       0.9157 |       0.9178 |      1.0000e-04 |
|       4 |          30 |       00:00:52 |       86.67% |       68.75% |       0.6708 |       0.7883 |      1.0000e-04 |
|       5 |          40 |       00:01:10 |       66.67% |       68.75% |       0.9026 |       0.7482 |      1.0000e-04 |

 Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning

13-99



|       7 |          50 |       00:01:29 |       80.00% |       78.12% |       0.5429 |       0.6788 |      1.0000e-04 |
|       8 |          60 |       00:01:48 |      100.00% |       81.25% |       0.4165 |       0.6130 |      1.0000e-04 |
|       9 |          70 |       00:02:06 |       93.33% |       84.38% |       0.3590 |       0.5480 |      1.0000e-04 |
|      10 |          80 |       00:02:24 |       73.33% |       84.38% |       0.5113 |       0.4783 |      1.0000e-04 |
|      12 |          90 |       00:02:42 |       86.67% |       84.38% |       0.4211 |       0.4065 |      1.0000e-04 |
|      13 |         100 |       00:03:00 |       93.33% |       90.62% |       0.1935 |       0.3486 |      1.0000e-04 |
|      14 |         110 |       00:03:18 |      100.00% |       90.62% |       0.1488 |       0.3119 |      1.0000e-04 |
|      15 |         120 |       00:03:36 |      100.00% |       93.75% |       0.0788 |       0.2774 |      1.0000e-04 |
|      17 |         130 |       00:03:55 |       86.67% |       93.75% |       0.2489 |       0.2822 |      1.0000e-04 |
|      18 |         140 |       00:04:13 |      100.00% |       93.75% |       0.0393 |       0.2283 |      1.0000e-04 |
|      19 |         150 |       00:04:32 |      100.00% |       93.75% |       0.0522 |       0.2364 |      1.0000e-04 |
|      20 |         160 |       00:04:50 |      100.00% |       93.75% |       0.0227 |       0.2034 |      1.0000e-04 |
|======================================================================================================================|
Training finished: Max epochs completed.

Total training time: 3.03e+02 sec

Save only the trained network in a separate .mat file. This file will be used by the CUDA executable.

ModelFile = fullfile(ResultDir,sprintf('SqueezeNet_Trial%d.mat',trial));
OutMatFile = fullfile('ecg_model.mat');

data = load(ModelFile,'trainedModel');
net = data.trainedModel;
save(OutMatFile,'net');

Use the trained network to predict the classes for the validation set.

[YPred, probs] = classify(trainedModel,imgsValidation);
accuracy = mean(YPred==imgsValidation.Labels)

accuracy = 0.9375

Summarize the performance of the trained network on the validation set with a confusion chart.
Display the precision and recall for each class by using column and row summaries. Save the figure.
The table at the bottom of the confusion chart shows the precision values. The table to the right of
the confusion chart shows the recall values.

figure
confusionMat = confusionmat(imgsValidation.Labels,YPred);
confusionchart(imgsValidation.Labels,YPred, ...
    'Title',sprintf('Confusion Matrix on Validation (overall accuracy: %.4f)',accuracy),...
    'ColumnSummary','column-normalized','RowSummary','row-normalized');

13 Signal Processing Examples

13-100



AccFigFile = fullfile(ResultDir,sprintf('SqueezeNet_ValidationAccuracy_Trial%d.fig',trial));
saveas(gcf,AccFigFile);

Display the size of the trained network.

info = whos('trainedModel');
ModelMemSize = info.bytes/1024;
fprintf('Trained network size: %g kB\n',ModelMemSize)

Trained network size: 2991.89 kB

Determine the average time it takes the network to classify an image.

NumTestForPredTime = 20;
TrialParameter.NumTestForPredTime = NumTestForPredTime;

fprintf('Test prediction time (number of tests: %d)... ',NumTestForPredTime)

Test prediction time (number of tests: 20)... 

imageSize = trainedModel.Layers(1).InputSize;
PredTime = zeros(NumTestForPredTime,1);
for i = 1:NumTestForPredTime
    x = randn(imageSize);
    tic;
    [YPred, probs] = classify(trainedModel,x,'ExecutionEnvironment',ExecutionEnvironment);
    PredTime(i) = toc;
end

 Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning

13-101



AvgPredTimePerImage = mean(PredTime);
fprintf('Average prediction time (execution environment: %s): %.2e sec \n',...
    ExecutionEnvironment,AvgPredTimePerImage);

Average prediction time (execution environment: cpu): 1.67e-01 sec 

Save the results.

if ~LoadModel
    save(MatFile,'accuracy','confusionMat','PredTime','ModelMemSize', ...
        'AvgPredTimePerImage','-append')
end

GPU Code Generation — Define Functions

The scalogram of a signal is the input "image" to a deep CNN. Create a function,
cwt_ecg_jetson_ex, that computes the scalogram of an input signal and returns an image at the
user-specified dimensions. The image uses the jet(128) colormap. The %#codegen directive in the
function indicates that the function is intended for code generation. When using the
coder.gpu.kernelfun pragma, code generation attempts to map the computations in the
cwt_ecg_jetson_ex function to the GPU.

type cwt_ecg_jetson_ex.m

function im = cwt_ecg_jetson_ex(TimeSeriesSignal, ImgSize) %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

coder.gpu.kernelfun();

%% Create Scalogram
cfs = cwt(TimeSeriesSignal, 'morse', 1, 'VoicesPerOctave', 12);
cfs = abs(cfs);

%% Image generation
cmapj128 = coder.load('cmapj128');
imx = ind2rgb_custom_ecg_jetson_ex(round(255*rescale(cfs))+1,cmapj128.cmapj128);

% resize to proper size and convert to uint8 data type
im = im2uint8(imresize(imx, ImgSize)); 

end

Create the entry-point function, model_predict_ecg.m, for code generation. The function takes an
ECG signal as input and calls the cwt_ecg_jetson_ex function to create an image of the scalogram.
The model_predict_ecg function uses the network contained in the ecg_model.mat file to classify
the ECG signal.

type model_predict_ecg.m

function PredClassProb = model_predict_ecg(TimeSeriesSignal) %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.
    coder.gpu.kernelfun();
    
    % parameters
    ModFile = 'ecg_model.mat'; % file that saves neural network model
    ImgSize = [227 227]; % input image size for the ML model

13 Signal Processing Examples

13-102



    
    % sanity check signal is a row vector of correct length
    assert(isequal(size(TimeSeriesSignal), [1 65536])) 
    %% cwt transformation for the signal
    im = cwt_ecg_jetson_ex(TimeSeriesSignal, ImgSize);
    
    %% model prediction
    persistent model;
    if isempty(model)
        model = coder.loadDeepLearningNetwork(ModFile, 'mynet');
    end

    PredClassProb = predict(model, im);
    
end

To generate a CUDA executable that can be deployed to an NVIDIA target, create a custom main file
(main_ecg_jetson_ex.cu) and a header file (main_ecg_jetson_ex.h). You can generate an
example main file and use that as a template to rewrite new main and header files. For more
information, see the GenerateExampleMain property of coder.CodeConfig (MATLAB Coder). The
main file calls the code generated for the MATLAB entry-point function. The main file first reads the
ECG signal from a text file, passes the data to the entry-point function, and writes the prediction
results to a text file (predClassProb.txt). To maximize computation efficiency on the GPU, the
executable processes single-precision data.

type main_ecg_jetson_ex.cu

//
// File: main_ecg_jetson_ex.cu
//
// This file is only intended to support wavelet deep learning examples.
// It may change or be removed in a future release.
        
//***********************************************************************
// Include Files
#include "rt_nonfinite.h"
#include "model_predict_ecg.h"
#include "main_ecg_jetson_ex.h"
#include "model_predict_ecg_terminate.h"
#include "model_predict_ecg_initialize.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

// Function Definitions

/* Read data from a file*/
int readData_real32_T(const char * const file_in, real32_T data[65536])
{
  FILE* fp1 = fopen(file_in, "r");
  if (fp1 == 0)
  {
    printf("ERROR: Unable to read data from %s\n", file_in);
    exit(0);
  }
  for(int i=0; i<65536; i++)
  {
      fscanf(fp1, "%f", &data[i]);

 Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning

13-103



  }
  fclose(fp1);
  return 0;
}

/* Write data to a file*/
int writeData_real32_T(const char * const file_out, real32_T data[3])
{
  FILE* fp1 = fopen(file_out, "w");
  if (fp1 == 0) 
  {
    printf("ERROR: Unable to write data to %s\n", file_out);
    exit(0);
  }
  for(int i=0; i<3; i++)
  {
    fprintf(fp1, "%f\n", data[i]);
  }
  fclose(fp1);
  return 0;
}

// model predict function
static void main_model_predict_ecg(const char * const file_in, const char * const file_out)
{
  real32_T PredClassProb[3];
  //  real_T b[65536];
  real32_T b[65536];

  // readData_real_T(file_in, b);
  readData_real32_T(file_in, b);
       
  model_predict_ecg(b, PredClassProb);

  writeData_real32_T(file_out, PredClassProb);

}

// main function
int32_T main(int32_T argc, const char * const argv[])
{
  const char * const file_out = "predClassProb.txt";
  // Initialize the application.
  model_predict_ecg_initialize();
  
  // Run prediction function
  main_model_predict_ecg(argv[1], file_out); // argv[1] = file_in

  // Terminate the application.
  model_predict_ecg_terminate();
  return 0;
}

type main_ecg_jetson_ex.h

//
// File: main_ecg_jetson_ex.h
//

13 Signal Processing Examples

13-104



// This file is only intended to support wavelet deep learning examples.
// It may change or be removed in a future release.

//
//***********************************************************************
#ifndef MAIN_H
#define MAIN_H

// Include Files
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "model_predict_ecg_types.h"

// Function Declarations
extern int32_T main(int32_T argc, const char * const argv[]);

#endif

//
// File trailer for main_ecg_jetson_ex.h
//
// [EOF]
//

GPU Code Generation — Specify Target

To create an executable that can be deployed to the target device, set CodeGenMode equal to 1. If
you want to create an executable that runs locally and connects remotely to the target device, set
CodeGenMode equal to 2.

The main function reads data from the text file specified by signalFile and writes the classification
results to resultFile. Set ExampleIndex to choose a representative ECG signal. You will use this
signal to test the executable against the classify function. Jetson_BuildDir specifies the
directory for performing the remote build process on the target. If the specified build directory does
not exist on the target, then the software creates a directory with the given name.

CodeGenMode = ;
signalFile = 'signalData.txt';
resultFile = 'predClassProb.txt'; % consistent with "main_ecg_jetson_ex.cu"
Jetson_BuildDir = '~/projectECG';
ExampleIndex = 1; % 1,4: type ARR; 2,5: type CHF; 3,6: type NSR

Function_to_Gen = 'model_predict_ecg';
ModFile = 'ecg_model.mat'; % file that saves neural network model; consistent with "main_ecg_jetson_ex.cu"
ImgSize = [227 227]; % input image size for the ML model

switch ExampleIndex
    case 1 % ARR 7
        SampleSignalIdx = 7;
    case 2 % CHF 97
        SampleSignalIdx = 97;
    case 3 % NSR 132
        SampleSignalIdx = 132;
    case 4 % ARR 31
        SampleSignalIdx = 31;
    case 5 % CHF 101

 Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning

13-105



        SampleSignalIdx = 101;
    case 6 % NSR 131
        SampleSignalIdx = 131;
end
signal_data = single(ECGData.Data(SampleSignalIdx,:));
ECGtype = ECGData.Labels{SampleSignalIdx};

GPU Code Generation — Connect to Hardware

To communicate with the NVIDIA hardware, you create a live hardware connection object using the
jetson function. You must know the host name or IP address, user name, and password of the target
board to create a live hardware connection object.

Create a live hardware connection object for the Jetson hardware. In the following code, replace:

• NameOfJetsonDevice with the name or IP address of your Jetson device
• Username with your user name
• password with your password

During the creation of the object, the software performs hardware and software checks, IO server
installation, and gathers information on the peripherals connected to the target. This information is
displayed in the command window.

hwobj = jetson("NameOfJetsonDevice","Username","password");

Checking for CUDA availability on the Target...
Checking for 'nvcc' in the target system path...
Checking for cuDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for prerequisite libraries is complete.
Gathering hardware details...
Checking for third-party library availability on the Target...
Gathering hardware details is complete.
 Board name              : NVIDIA Jetson Nano
 CUDA Version            : 10.0
 cuDNN Version           : 7.3
 TensorRT Version        : 5.0
 GStreamer Version       : 1.14.5
 V4L2 Version            : 1.14.2-1
 SDL Version             : 1.2
 OpenCV Version          : 3.3.1
 Available Webcams       :  
 Available GPUs          : NVIDIA Tegra X1
 Available Digital Pins  : 7  11  12  13  15  16  18  19  21  22  23  24  26  29  31  32  33  35  36  37  38  40

Use the coder.checkGpuInstall (GPU Coder) function and verify that the compilers and libraries
needed for running this example are set up correctly on the hardware.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.HardwareObject = hwobj;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg)

ans = struct with fields:
                 gpu: 1

13 Signal Processing Examples

13-106



                cuda: 1
               cudnn: 1
            tensorrt: 0
        basiccodegen: 0
       basiccodeexec: 0
         deepcodegen: 1
        deepcodeexec: 0
    tensorrtdatatype: 0
           profiling: 0

GPU Code Generation — Compile

Create a GPU code configuration object necessary for compilation. Use the coder.hardware
function to create a configuration object for the Jetson platform and assign it to the Hardware
property of the code configuration object cfg. Use 'NVIDIA Jetson' for the Jetson TX1 or TX2
boards. The custom main file is a wrapper that calls the entry-point function in the generated code.
The custom file is required for a deployed executable.

Use the coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning
configuration object and assign it to the DeepLearningConfig property of the GPU code
configuration object. The code generator takes advantage of NVIDIA® CUDA® deep neural network
library (cuDNN) for NVIDIA GPUs. cuDNN is a GPU-accelerated library of primitives for deep neural
networks.

if CodeGenMode == 1
    cfg = coder.gpuConfig('exe');
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
    cfg.CustomSource = fullfile('main_ecg_jetson_ex.cu');
elseif CodeGenMode == 2
    cfg = coder.gpuConfig('lib');
    cfg.VerificationMode = 'PIL';
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
end

To generate CUDA code, use the codegen function and pass the GPU code configuration along with
the size and type of the input for the model_predict_ecg entry-point function. After code
generation on the host is complete, the generated files are copied over and built on the target.

codegen('-config ',cfg,Function_to_Gen,'-args',{signal_data},'-report');

Code generation successful: View report

GPU Code Generation — Execute

If you compiled an executable to be deployed to the target, write the example ECG signal to a text
file. Use the putFile() function of the hardware object to place the text file on the target. The
workspaceDir property contains the path to the codegen folder on the target.

if CodeGenMode == 1
    fid = fopen(signalFile,'w');
    for i = 1:length(signal_data)
        fprintf(fid,'%f\n',signal_data(i));

 Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning

13-107



    end
    fclose(fid);
    hwobj.putFile(signalFile,hwobj.workspaceDir);
end

Run the executable.

When running the deployed executable, delete the previous result file if it exists. Use the
runApplication() function to launch the executable on the target hardware, and then the
getFile() function to retrieve the results. Because the results may not exist immediately after the
runApplication() function call returns, and to allow for communication delays, set a maximum
time for fetching the results to 90 seconds. Use the evalc function to suppress the command-line
output.

if CodeGenMode == 1 % run deployed executable
    maxFetchTime = 90;
    resultFile_hw = fullfile(hwobj.workspaceDir,resultFile);
    if ispc
        resultFile_hw = strrep(resultFile_hw,'\','/');
    end
    
    ta = tic;
    
    hwobj.deleteFile(resultFile_hw)
    evalc('hwobj.runApplication(Function_to_Gen,signalFile)');
    
    tf = tic;
    success = false;
    while toc(tf) < maxFetchTime
        try
            evalc('hwobj.getFile(resultFile_hw)');
            success = true;
        catch ME
        end
        if success
            break
        end
    end
    fprintf('Fetch time = %.3e sec\n',toc(tf));
    assert(success,'Unable to fetch the prediction')
    PredClassProb = readmatrix(resultFile);
    PredTime = toc(ta);
elseif CodeGenMode == 2 % run PIL executable
    ta = tic;
    eval(sprintf('PredClassProb = %s_pil(signal_data);',Function_to_Gen));
    PredTime = toc(ta);
    eval(sprintf('clear %s_pil;',Function_to_Gen)); % terminate PIL execution
end

Fetch time = 1.658e+01 sec

Use the classify function to predict the class labels for the example signal.

ModData = load(ModFile,'net');
im = cwt_ecg_jetson_ex(signal_data,ImgSize);
[ModPred, ModPredProb] = classify(ModData.net,im);
PredCat = categories(ModPred)';

13 Signal Processing Examples

13-108



Compare the results.

PredTableJetson = array2table(PredClassProb(:)','VariableNames',matlab.lang.makeValidName(PredCat));
fprintf('tPred = %.3e sec\nExample ECG Type: %s\n',PredTime,ECGtype)

tPred = 2.044e+01 sec
Example ECG Type: ARR

disp(PredTableJetson)

      ARR        CHF         NSR   
    _______    ________    ________

    0.99858    0.001252    0.000166

PredTableMATLAB = array2table(ModPredProb(:)','VariableNames',matlab.lang.makeValidName(PredCat));
disp(PredTableMATLAB)

      ARR         CHF          NSR    
    _______    _________    __________

    0.99858    0.0012516    0.00016613

Close the hardware connection.

clear hwobj

Summary

This example shows how to create and deploy a CUDA executable that uses a CNN to classify ECG
signals. You also have the option to create an executable the runs locally and connects to the remote
target. A complete workflow is presented in this example. After the data is downloaded, the CWT is
used to extract features from the ECG signals. Then SqueezeNet is retrained to classify the signals
based on their scalograms. Two user-defined functions are created and compiled on the target
NVIDIA device. Results of the executable are compared with MATLAB.

References

1 Baim, D. S., W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue, D. F. Gauthier, B. J.
Ransil, W. Grossman, and E. Braunwald. "Survival of patients with severe congestive heart failure
treated with oral milrinone." Journal of the American College of Cardiology. Vol. 7, Number 3,
1986, pp. 661–670.

2 Goldberger A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C.-K. Peng, and H. E. Stanley. "PhysioBank, PhysioToolkit,and PhysioNet:
Components of a New Research Resource for Complex Physiologic Signals." Circulation. Vol. 101,
Number 23: e215–e220. [Circulation Electronic Pages; http://circ.ahajournals.org/
content/101/23/e215.full]; 2000 (June 13). doi: 10.1161/01.CIR.101.23.e215.

3 Moody, G. B., and R. G. Mark. "The impact of the MIT-BIH Arrhythmia Database." IEEE
Engineering in Medicine and Biology Magazine. Vol. 20. Number 3, May-June 2001, pp. 45–50.
(PMID: 11446209)

Supporting Functions

helperCreateECGDirectories

function helperCreateECGDirectories(ECGData,parentFolder,dataFolder)
% This function is only intended to support wavelet deep learning examples.

 Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning

13-109



% It may change or be removed in a future release.

rootFolder = parentFolder;
localFolder = dataFolder;
mkdir(fullfile(rootFolder,localFolder))

folderLabels = unique(ECGData.Labels);
for i = 1:numel(folderLabels)
    mkdir(fullfile(rootFolder,localFolder,char(folderLabels(i))));
end
end

helperPlotReps
function helperPlotReps(ECGData)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

folderLabels = unique(ECGData.Labels);

for k=1:3
    ecgType = folderLabels{k};
    ind = find(ismember(ECGData.Labels,ecgType));
    subplot(3,1,k)
    plot(ECGData.Data(ind(1),1:1000));
    grid on
    title(ecgType)
end
end

helperCreateRGBfromTF
function helperCreateRGBfromTF(ECGData,parentFolder, childFolder)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

imageRoot = fullfile(parentFolder,childFolder);

data = ECGData.Data;
labels = ECGData.Labels;

[~,signalLength] = size(data);

fb = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
r = size(data,1);

for ii = 1:r
    cfs = abs(fb.wt(data(ii,:)));
    im = ind2rgb(im2uint8(rescale(cfs)),jet(128));
    
    imgLoc = fullfile(imageRoot,char(labels(ii)));
    imFileName = strcat(char(labels(ii)),'_',num2str(ii),'.jpg');
    imwrite(imresize(im,[227 227]),fullfile(imgLoc,imFileName));
end
end

See Also
cwt | coder.DeepLearningConfig | cwtfilterbank

13 Signal Processing Examples

13-110



More About
• “GPU Acceleration of Scalograms for Deep Learning” (Wavelet Toolbox)

 Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning

13-111



Deploy Signal Classifier Using Wavelets and Deep Learning on
Raspberry Pi

This example shows the workflow to classify human electrocardiogram (ECG) signals using the
Continuous Wavelet Transform (CWT) and a deep convolutional neural network (CNN). This example
also provides information on how to generate and deploy the code and CNN for prediction on a
Raspberry Pi target (ARM®-based device).

SqueezeNet is a deep CNN originally designed to classify images in 1000 categories. In the example
“Classify Time Series Using Wavelet Analysis and Deep Learning” (Wavelet Toolbox), SqueezeNet is
retrained to classify ECG waveforms based on their scalograms. A scalogram is a time-frequency
representation of the signal and is the absolute value of the CWT of the signal. We reuse the retrained
SqueezeNet in this example.

ECG Data Description

In this example, ECG data from PhysioNet is used. The ECG data is obtained from three groups of
people: persons with cardiac arrhythmia (ARR), persons with congestive heart failure (CHF), and
persons with normal sinus rhythms (NSR). The data set includes 96 recordings from persons with
ARR, 30 recordings from persons with CHF, and 36 recordings from persons with NSR. The 162 ECG
recordings are from three PhysioNet databases: MIT-BIH Arrhythmia Database [2][3], MIT-BIH
Normal Sinus Rhythm Database [3], and The BIDMC Congestive Heart Failure Database [1][3].
Shortened ECG data of the above references can be downloaded from the GitHub repository.

Prerequisites

• ARM processor that supports the NEON extension
• ARM Compute Library version 19.05 (on the target ARM hardware)
• Environment variables for the compilers and libraries
• MATLAB Support Package for Raspberry Pi Hardware
• MATLAB Coder Interface for Deep Learning support package

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder). This example is not
supported in MATLAB Online™.

Functionality of Generated Code

The core function in the generated executable, processECG, uses 65,536 samples of single-precision
ECG data as input. The function:

1 Takes the CWT of the ECG data.
2 Obtains scalogram from wavelet coefficients.
3 Converts the scalogram to an RGB image of dimension 227-by-227-by-3. This makes the image

compatible with the SqueezeNet network architecture.
4 Performs prediction to classify the image using SqueezeNet.

type processECG

function [YPred] = processECG(input)
% processECG function - converts 1D ECG to image and predicts the syndrome

13 Signal Processing Examples

13-112

https://physionet.org/
https://www.physionet.org/physiobank/database/mitdb/
https://www.physionet.org/physiobank/database/nsrdb/
https://www.physionet.org/physiobank/database/nsrdb/
https://www.physionet.org/physiobank/database/chfdb/
https://github.com/mathworks/physionet_ECG_data/
https://www.mathworks.com/matlabcentral/fileexchange/45145-matlab-support-package-for-raspberry-pi-hardware
https://www.mathworks.com/matlabcentral/fileexchange/68612-matlab-coder-interface-for-deep-learning


% of heart disease
%
% This function is only intended to support the example:
% Signal Classification Code Generation Using Wavelets and
% Deep Learning on Raspberry Pi. It may change or be removed in a
% future release.

% Copyright 2020 The MathWorks, Inc.

    % colourmap for image transformation
    persistent net jetdata;
    if(isempty(jetdata))
        jetdata = colourmap(128,class(input));
    end

    % Squeezenet trained network
    if(isempty(net))
        net = coder.loadDeepLearningNetwork('trainedNet.mat');
    end

    % Wavelet Transformation & Image conversion
    cfs = ecg_to_Image(input);
    image = ind2rgb(im2uint8(rescale(cfs)),single(jetdata));
    image = im2uint8(imresize(image,[227,227]));

    % figure
    if isempty(coder.target)        
        imshow(image);
    end

    % Prediction
    [YPred] = predict(net,image);

    %% ECG to image conversion
    function cfs = ecg_to_Image(input)

        %Wavelet Transformation
        persistent filterBank
        [~,siglen] = size(input);
        if isempty(filterBank)
            filterBank = cwtfilterbank('SignalLength',siglen,'VoicesPerOctave',6);
        end
        %CWT conversion
        cfs = abs(filterBank.wt(input));
    end

    %% Colourmap
    function J = colourmap(m,class)

        n = ceil(m/4);
        u = [(1:1:n)/n ones(1,n-1) (n:-1:1)/n]';
        g = ceil(n/2) - (mod(m,4)==1) + (1:length(u))';
        r = g + n;
        b = g - n;
        r1 = r(r<=128);
        g1 = g(g<=128);

 Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi

13-113



        b1 = b(b >0);
        J = zeros(m,3);
        J(r1,1) = u(1:length(r1));
        J(g1,2) = u(1:length(g1));
        J(b1,3) = u(end-length(b1)+1:end);
        feval = str2func(class);
        J = feval(J);
    end
end

Create Code Generation Configuration Object

Create a code generation configuration object for generation of an executable program. Specify
generation of C++ code.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Set Up Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the same version of the ARM Compute library as
the one on the Raspberry Pi. Specify the architecture of the Raspberry Pi.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '19.05';
dlcfg.ArmArchitecture = 'armv7';

Attach Deep Learning Configuration Object to Code Generation Configuration Object

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object. Make the MATLAB Source Comments visible in the configuration object
at the time of code generation.

cfg.DeepLearningConfig = dlcfg;
cfg.MATLABSourceComments = 1;

Create a Connection to the Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Support Package function, raspi, to create a
connection to the Raspberry Pi. In the following code, replace:

• raspiname with the name or IP address of your Raspberry Pi
• username with your user name
• password with your password

r = raspi('raspiname','username','password');

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.Hardware object for Raspberry Pi and attach it to the code generation configuration
object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

13 Signal Processing Examples

13-114



buildDir = '~/remdirECG';
cfg.Hardware.BuildDir = buildDir;

Provide C++ Main File for Code Execution

The C++ main file reads the input ECG data, calls the processECG function to perform
preprocessing and deep learning using CNN on the ECG data, and displays the classification
probability.

Specify the main file in the code generation configuration object. To learn more about generating and
customizing main_ecg_raspi.cpp, refer to “Generating Standalone C/C++ Executables from
MATLAB Code” (MATLAB Coder).

cfg.CustomSource = 'main_ecg_raspi.cpp';

Generate Source C++ Code Using codegen

Use the codegen function to generate the C++ code. When codegen is used with the MATLAB
Support Package for Raspberry Pi Hardware, the executable is built on the Raspberry Pi board.

Make sure to set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
Raspberry Pi. See “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

codegen -config cfg processECG -args {ones(1,65536,'single')} -d arm_compute

 Deploying code. This may take a few minutes. 

Fetch Generated Executable Directory

To test the generated code on the Raspberry Pi, copy the input ECG signal to the generated code
directory. You can find this directory manually or by using the
raspi.utils.getRemoteBuildDirectory API. This function lists the directories of the binary
files that are generated by using codegen.

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName','processECG')

applicationDirPaths=1×4 cell array
    {1×1 struct}    {1×1 struct}    {1×1 struct}    {1×1 struct}

The complete path to the remote build directory is derived from the present working directory. If you
do not know which applicationDirPaths entry contains the generated code, use the helper
function helperFindTargetDir. Otherwise, specify the proper directory.

directoryUnknown = true;

if directoryUnknown
    targetDirPath = helperFindTargetDir(applicationDirPaths);
else   
    targetDirPath = applicationDirPaths{1}.directory;
end

Copy Input File to Raspberry Pi

The text file input_ecg_raspi.csv contains the ECG samples of a representative ARR signal. To
copy the file required to run the executable program, use putFile, which is available with the
MATLAB Support Package for Raspberry Pi Hardware.

 Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi

13-115



r.putFile('input_ecg_raspi.csv', targetDirPath);

For a pictorial representation, the first 1000 samples can be plotted by using these steps.

input = dlmread('input_ecg_raspi.csv');
plot(input(1:1000))
title('ARR Signal')

Run Executable on Raspberry Pi

Run the executable program on the Raspberry Pi from MATLAB and direct the output back to
MATLAB. The input file name is passed as the command line argument for the executable.

exeName = 'processECG.elf';           % executable name
fileName = 'input_ecg_raspi.csv';     % Input ECG file that is pushed to target
command = ['cd ' targetDirPath ';./' exeName ' ' fileName];
output = system(r,command)

output = 
    'Predicted Values on the Target Hardware
     ARR            CHF            NSR
     0.806078    0.193609    0.000313103
     '

References
1 Baim, D. S., W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue, D. F. Gauthier, B. J.

Ransil, W. Grossman, and E. Braunwald. "Survival of patients with severe congestive heart failure

13 Signal Processing Examples

13-116



treated with oral milrinone." Journal of the American College of Cardiology. Vol. 7, Number 3,
1986, pp. 661–670.

2 Goldberger A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C.-K. Peng, and H. E. Stanley. "PhysioBank, PhysioToolkit,and PhysioNet:
Components of a New Research Resource for Complex Physiologic Signals." Circulation. Vol. 101,
Number 23: e215–e220. [Circulation Electronic Pages; http://circ.ahajournals.org/
content/101/23/e215.full]; 2000 (June 13). doi: 10.1161/01.CIR.101.23.e215.

3 Moody, G. B., and R. G. Mark. "The impact of the MIT-BIH Arrhythmia Database." IEEE
Engineering in Medicine and Biology Magazine. Vol. 20. Number 3, May-June 2001, pp. 45–50.
(PMID: 11446209)

Supporting Functions

helperFindTargetDir

function targetDir = helperFindTargetDir(dirPaths)
%
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

% find pwd
p = pwd;
if ispc
    % replace blank spaces with underscores
    p = strrep(p,' ','_');
    
    % split path into component folders
    pSplit = regexp(p,filesep,'split');
    
    % Since Windows uses colons, remove any colons that occur
    for k=1:numel(pSplit)
        pSplit{k} = erase(pSplit{k},':');
    end
    
    % now build the path using Linux file separation
    pLinux = '';
    for k=1:numel(pSplit)-1
        pLinux = [pLinux,pSplit{k},'/'];
    end
    pLinux = [pLinux,pSplit{end}];
else
    pLinux = p;
end

targetDir = '';
for k=1:numel(dirPaths)
    d = strfind(dirPaths{k}.directory,pLinux);
    if ~isempty(d)
        targetDir = dirPaths{k}.directory;
        break
    end
end

if numel(targetDir) == 0
    disp('Target directory not found.');

 Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi

13-117



end
end

13 Signal Processing Examples

13-118



Deploy Signal Segmentation Deep Network on Raspberry Pi

This example details the workflow for waveform segmentation of an electrocardiogram (ECG) signal
using short-time Fourier transform and a bidirectional long short-term memory (BiLSTM) network.
The example also provides information on how to generate and deploy the code and the trained
BiLSTM network for segmentation on a Raspberry Pi® target (ARM®-based device).

The pretrained network in the example is similar to the “Waveform Segmentation Using Deep
Learning” (Signal Processing Toolbox) example.

This example details:

• Processor-in-the-loop (PIL) based workflow to verify generated code deployed and running on a
Raspberry Pi from MATLAB™

• Generation of a standalone executable

The PIL verification process is a crucial part of the design cycle to check that the behavior of the
generated code matches the design before deploying a standalone executable.

ECG Dataset

This example uses ECG signals from the publicly available QT Database [1 on page 13-127] [2 on
page 13-127]. The data consists of roughly 15 minutes of labeled ECG recordings, with a sample rate
of 250 Hz, measured from a total of 105 patients.

The ECG signal can be divided into the following beat morphologies [3 on page 13-127]:

• P wave — A small deflection before the QRS complex representing atrial depolarization
• QRS complex — Largest amplitude portion of the heartbeat
• T wave — A small deflection after the QRS complex representing ventricular repolarization

The segmentation of these regions of ECG waveforms can provide the basis for measurements that
assess the overall health of the human heart and the presence of abnormalities.

Prerequisites

• ARM processor that supports the NEON extension
• ARM Compute Library (on the target ARM hardware)
• MATLAB® Coder™
• Embedded Coder™
• Deep Learning Toolbox™
• Deep Learning Support for MATLAB Coder
• MATLAB Support Package for Raspberry Pi™

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder) (MATLAB Coder).

Functionality of Generated Code

The core function in the generated executable:

 Deploy Signal Segmentation Deep Network on Raspberry Pi

13-119

https://www.mathworks.com/hardware-support/deep-learning-matlab-coder.html
https://www.mathworks.com/hardware-support/raspberry-pi-matlab.html


• Uses 15,000 samples of single-precision ECG data as input.
• Computes the short-time Fourier transform of the signal.
• Standardizes and normalizes the output.
• Labels regions of the signal using the pretrained BiLSTM network.
• Generates an output file with the labels.

waveformSegmentation Function

An entry-point function, also known as the top-level or primary function, is a function you define for
code generation. You must define an entry-point function that calls code-generation-enabled functions
and generates C/C++ code from the entry-point function. All functions within the entry-point function
must support code generation.

In this example, waveformSegmentation is the entry-point function. It takes an ECG signal as an
input and passes it to the trained BiLSTM network for prediction. The performPreprocessing
function preprocesses the raw signal and applies the short-time Fourier transform. The
genClassifiedResults function passes the preprocessed signal to the network for prediction and
displays the classification results.

type waveformSegmentation

function out = waveformSegmentation(in)
%#codegen
persistent net;

if isempty(net)
    net = coder.loadDeepLearningNetwork('trained-network-STFTBILSTM.mat', 'net');
end

preprocessedSignal = performPreprocessing(in);
out = cell(3,1);

for indx = 1:3
  out{indx,1} =  genClassifedResults(net.predict(preprocessedSignal{1,indx}));
end

end

Create a Connection to the Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi function, raspi, to create a connection to the
Raspberry Pi. In the following code, replace:

• 'raspiname' with the name of your Raspberry Pi
• 'pi' with your username
• 'password' with your password

r = raspi('raspiname','pi','password');

13 Signal Processing Examples

13-120



The example shows the PIL-based workflow for verification of code and design and then creates and
deploys a standalone executable. Optionally, if you want to directly deploy a standalone executable,
you can skip PIL execution and go to creating a standalone execution.

Generate PIL MEX Function

The first step shows a PIL-based workflow to generate a MEX function for the
waveformSegmentation function.

Set Up Code Generation Configuration Object for a Static Library

Create a code configuration object for a static library and set the verification mode to 'PIL'. Set the
target language to 'C++'.

cfg = coder.config('lib','ecoder',true);
cfg.VerificationMode = 'PIL';
cfg.TargetLang = 'C++'; 

Set Up Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the version of the ARM Compute library as the one
on the Raspberry Pi. Specify the architecture of the Raspberry Pi. (This example requires ARM
Compute Library v19.05).

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '19.05';
dlcfg.ArmArchitecture = 'armv7';

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object. Set the configuration object with MATLAB Source Comments visible in
the code generation.

cfg.DeepLearningConfig = dlcfg;
cfg.MATLABSourceComments = 1;

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.Hardware object for the Raspberry Pi and attach it to the code generation
configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

cfg.Hardware.BuildDir = '~/waveformSegmentation';

Generate Source C++ Code Using codegen Function

Use the codegen function to generate the C++ code. When codegen is used with MATLAB Support
Package for Raspberry Pi Hardware, the generated code is downloaded to the board and compiled
there. A PIL MEX function is generated to communicate between MATLAB and the generated code
running on the Raspberry Pi.

Make sure to set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
Raspberry Pi. See “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder) (MATLAB
Coder).

 Deploy Signal Segmentation Deep Network on Raspberry Pi

13-121



codegen -config cfg waveformSegmentation -args {coder.typeof(single(ones(1,15000)),[1,15000],[0,0])} -report

### Target device has no native communication support. Checking connectivity configuration registrations...
 Deploying code. This may take a few minutes. 
### Target device has no native communication support. Checking connectivity configuration registrations...
### Connectivity configuration for function 'waveformSegmentation': 'Raspberry Pi'
Location of the generated elf : /home/pi/waveformSegmentation/MATLAB_ws/R2020b/C/Users/eshashah/OneDrive_-_MathWorks/Documents/MATLAB/Examples/deeplearning_shared-ex28372959/codegen/lib/waveformSegmentation/pil
Code generation successful: View report

Run the Executable Program on Raspberry Pi

Load the MAT-file ecgsignal_test. The file stores a sample ECG signal on which you can test the
generated code.

Run the generated waveformSegmentation_pil MEX function on the test signal.

load ecgsignal_test.mat;
out = waveformSegmentation_pil(test);

### Starting application: 'codegen\lib\waveformSegmentation\pil\waveformSegmentation.elf'
    To terminate execution: clear waveformSegmentation_pil
### Launching application waveformSegmentation.elf...

Display the signals with predicted labels.

labels = categorical(out{1}(1,2000:3000));
msk = signalMask(labels);
plotsigroi(msk,test(1,2000:3000))
title('Predicted Labels')

13 Signal Processing Examples

13-122



After the verifying the output of the PIL MEX function, you can create a standalone executable for the
waveformSegmentation function.

The next part shows the code generation workflow to generate and deploy a standalone executable in
the code for prediction on a Raspberry Pi using the MATLAB Coder App.

Create a Standalone Executable Using the MATLAB Coder App

The MATLAB Coder app generates C or C++ code from MATLAB® code. The workflow-based user
interface steps you through the code generation process. The following steps describe a brief
workflow using the MATLAB Coder app. For more details, see MATLAB Coder (MATLAB Coder) and
“Generate C Code by Using the MATLAB Coder App” (MATLAB Coder).

Select the Entry-Point Function File

On the Apps tab, click the down arrow on the far right of the toolstrip to expand the apps gallery.
Under Code Generation, click MATLAB Coder. The app opens the Select Source Files page.
Enter or select the name of the entry-point function, waveformSegmentation.

 Deploy Signal Segmentation Deep Network on Raspberry Pi

13-123



Click Next to go to the Define Input Types page.

Define Input Types

1. Select Let me enter input or global types directly and set the value of the input in as single
(1x15000).

2. Click Next to go to the Generate Code step. Skip the Check for Run-Time Issues step because
MEX generation is not supported for code generation with the ARM Compute Library.

Generate Code

1. Set values in the generate code dialog box:

• Set Build Type to Executable (.exe)
• Set Language to C++
• Set Hardware Board as Raspberry Pi

2. Click the More Settings button:

13 Signal Processing Examples

13-124



• In the Custom Code pane, in additional source files, browse and select
ecgsegmentation_main.cpp. For more information on writing a C/C++ main function, refer to
“Structure of Generated Example C/C++ Main Function” (MATLAB Coder).

• In the Hardware pane, set the username and password for the Raspberry Pi board.
• In the Deep Learning pane, set Target library to ARM Compute. Specify ARM Compute

Library version and ARM Compute Architecture.

3. Close the Settings window and generate code.

4. Click Next to go to the Finish Workflow page.

Fetch Generated Executable Directory

Once the code generation is complete, you can test the generated code on the Raspberry Pi. As a first
step, copy the input ECG signal to the generated code directory. You can find the directory manually
or by using the raspi.utils.getRemoteBuildDirectory API. This function lists the directories
of the binary files that are generated by using the codegen function. Assuming that the binary is
found in only one directory, enter:

applicationDirPaths = ...

 Deploy Signal Segmentation Deep Network on Raspberry Pi

13-125



raspi.utils.getRemoteBuildDirectory('applicationName','waveformSegmentation')
;

targetDirPath = applicationDirPaths{1}.directory;

Copy Input Files to the Raspberry Pi

To copy files required to run the executable program, use putFile, which is available with the
MATLAB Support Package for Raspberry Pi Hardware. The input.csv file contains a sample ECG
signal that is used to test the deployed code.

r.putFile('input.csv',targetDirPath);

input = dlmread('input.csv');

Run Executable program on Raspberry Pi

Run the executable program on the Raspberry Pi from MATLAB and get the output file to MATLAB.
Input file name should be passed as the command line argument for the executable.

exeName = 'waveformSegmentation.elf'; % Executable name

command = ['cd ' targetDirPath ';./' exeName];

system(r,command)

outputPath = strcat(targetDirPath,'/*.txt');

getFile(r,outputPath)

Display the signals with predicted labels. The output is depicted in the figure.

load ecgsignal_test.mat;

labels = categorical(textread('out.txt','%s')');

msk = signalMask(labels(1,2000:3000));

plotsigroi(msk,test(1,2000:3000))

title('Predicted Labels')

13 Signal Processing Examples

13-126



References

[1] McSharry, Patrick E., et al. "A dynamical model for generating synthetic electrocardiogram
signals." IEEE® Transactions on Biomedical Engineering. Vol. 50, No. 3, 2003, pp. 289–294.

[2] Laguna, Pablo, Raimon Jané, and Pere Caminal. "Automatic detection of wave boundaries in
multilead ECG signals: Validation with the CSE database." Computers and Biomedical Research. Vol.
27, No. 1, 1994, pp. 45–60.

[3] Goldberger, Ary L., Luis A. N. Amaral, Leon Glass, Jeffery M. Hausdorff, Plamen Ch. Ivanov, Roger
G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley. "PhysioBank,
PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic
Signals." Circulation. Vol. 101, No. 23, 2000, pp. e215–e220. [Circulation Electronic Pages; http://
circ.ahajournals.org/content/101/23/e215.full].

See Also
Apps
MATLAB Coder

 Deploy Signal Segmentation Deep Network on Raspberry Pi

13-127



Functions
codegen | fsst | signalMask

More About
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
• “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder)
• “Structure of Generated Example C/C++ Main Function” (MATLAB Coder)

13 Signal Processing Examples

13-128



Anomaly Detection Using Autoencoder and Wavelets

This example shows how wavelet features can be used to detect arc faults in a DC system. For the
safe operation of DC distribution systems, it is important to identify arc faults and prefault signals
that can be caused by deterioration of wire insulation due to aging, abrasion, or rodent bites. These
arc faults can result in shock, fires, and system failures in the microgrid. Unlike the fault signals in
AC distribution systems, these prefault arc flash signals are difficult to identify as they do not
generate significant power to trigger the circuit breakers. As a result, these signals can exist in the
system for hours without being detected.

Arc fault detection using the wavelet transform was studied in [1] on page 13-138. This example
follows the feature extraction procedure detailed in that work which consists of filtering the load
signals using the Daubechies db3 wavelet followed by normalization. Further, an autoencoder trained
with signal features under normal conditions is used to detect arc faults in load signals. The DC arc
model used to generate the fault signals and the pretrained network used to detect the arc faults are
provided in the example folder. As training the network for arc detection of larger signals can take
significantly long simulation time, in this example we only report the detection results.

Training and Testing Setup

The autoencoder is trained using the load signal generated by the Simulink® model DCNoArc under
normal conditions, i.e., without arc faults. The model DCNoArc was built using components from the
Simscape™ Electrical™ Specialized Power Systems library.

Figure 1: DCNoArc model for generating load signal under normal conditions.

The voltage sources are modeled using the following parameters:

• AC Harmonic Source 1: 10 V AC voltage and 120 Hz frequency
• AC Harmonic Source 2: 20 V AC voltage and 2000 Hz frequency
• DC voltage source: 1000 V

 Anomaly Detection Using Autoencoder and Wavelets

13-129



In the model DCArcModelFinal we add arc fault generation in every load branch. The model uses
the Cassie arc model for synthetic arc fault generation. The arc model works like an ideal
conductance until the arc ignites at the contact separation time.

Figure 2: DCArcModelFinal model for generating load signal with arc fault.

The Cassie arc model is one of the most studied black box models for generating synthetic arcs. The
model is described by the following differential equation:

dg
dt = g

τ
u2

Uc
2 − 1

where

• g is the conductance of the arc in siemens
• τ is the arc time constant in seconds
• u is the voltage across the arc in volts
• Uc is the constant arc voltage in volts

The Cassie arc models were implemented in Simulink® using the following parameter values:

• Initial conductance g(0) is 1e4 siemens
• Constant arc voltage Uc = 100 V
• Arc time constant is 1.2e-6 seconds

The contact separation times for the arc models are chosen at random. All the parameters have been
loaded in the PreLoadFcn callbacks in the Model Properties of the Model Settings tab.

At the contact separation time, the voltage across the mathematical Cassie arc model drops by some
level and stays at that value during the remaining simulation period. However, in real power system
branches the arc is sustained for a small time interval. To ensure that the voltage across the Cassie

13 Signal Processing Examples

13-130



arc model emulates the behavior of real life arc faults, we use a switch across each model to limit the
arc time. We use the DCArcModelFinalmodel to generate a faulty load signal to test the
autoencoder.

To detect arc faults in all the load branches simultaneously the sensing system measures the load
voltage at each branch. The sensing system combines the load voltages and sends the resulting signal
to the feature generation block. The generated features are then used to detect the arc faults in all
the branches using a deep network.

Anomaly Detection with Autoencoder

Autoencoders are used to detect anomalies in a signal. The autoencoder is trained on data without
anomalies. As a result, the learned network weights minimize the reconstruction error for load
signals without arc faults. The statistics of the reconstruction error for the training data can be used
to select the threshold in the anomaly detection block that determines the detection performance of
the autoencoder. The detection block declares the presence of an anomaly when it encounters a
reconstruction error above threshold. In this example, we used root-mean-square error (RMSE) as the
reconstruction error metric.

For this example, we trained two autoencoders using the load signal under normal conditions without
arc fault. One autoencoder was trained using the raw load signal as training data. This encoder uses
the raw faulty load signal to detect arc faults. The second autoencoder was trained using wavelet
features. Arc fault detection is subsequently done on wavelet features as opposed to the raw data. For
training and testing the network, we assume that the load consists of 10 parallel resistive branches
with randomly chosen resistance values. For arc fault signal generation, we add a Cassie arc model in
every load branch. The contact separation times of the models are such that they are triggered
randomly throughout the simulation period. Just like in a real-time DC system, the load signals from
both normal and faulty conditions have added white noise.

Feature Extraction

The wavelet-based autoencoder was trained and tested on signals filtered using the discrete wavelet
transform (DWT). Following [1] on page 13-138, the Daubechies db3 wavelet was used.

The following figures show the wavelet-filtered load signals under normal and faulty conditions. The
wavelet-filtered faulty signal captures the variation due to arc faults. For training and testing
purposes, the wavelet-filtered signals are segmented into 100-sample frames.

 Anomaly Detection Using Autoencoder and Wavelets

13-131



Figure 3: Raw load signal and wavelet-filtered signal under normal conditions.

13 Signal Processing Examples

13-132



Figure 4: Raw load signal and wavelet-filtered signal under faulty conditions.

Model Training

The autoencoder is trained using wavelet-filtered features from the load signal under normal
conditions. For the training stage you have two options:

1 Train your own autoencoder and load the network into the prediction block of the
DCArcModelFinal model.

2 Use the DCArcModelFinal model that has been preloaded with the pretrained model available
in the netData.mat file in the example folder.

To train your own autoencoder you can use the following steps.

• First, generate the load signal under normal operating conditions using the DCNoArc model. Load,
open, and run the model using the following commands. Extract the load signal from the
simulation output.

load_system('DCNoArc.slx');
open_system('DCNoArc.slx');
out = sim('DCNoArc.slx');

% extract normal load signal from the simulation output
xn = out.xn; 

• Next, extract the wavelet-filtered features from the load signal. You use the features as the input
to the autoencoder.

% training data: load voltage under normal conditions 
featureDimension = 100;
xn = sigresize(xn,featureDimension);

% Obtain training features
trnd4 = getDet(xn);
trainData = getFeature(trnd4, featureDimension);

The pretrained autoencoder was trained using the following network layers and training options.

% Create network layers
layers = [ sequenceInputLayer(1,Name='in')
    bilstmLayer(32,Name='bilstm1')
    reluLayer(Name='relu1')
    bilstmLayer(16,Name='bilstm2')
    reluLayer(Name='relu2')
    bilstmLayer(32,Name='bilstm3')
    reluLayer(Name='relu3')
    fullyConnectedLayer(1,Name='fc')
    regressionLayer(Name='out') ];

% Set options
options = trainingOptions('adam', ...
    MaxEpochs=20, ...
    MiniBatchSize=16, ...
    Plots='training-progress');

The training steps takes several minutes. If you want to train the network, select trainingFlag =
“Train network”. Then, you can load the trained network into the Predict block from Deep Learning
Toolbox™ used in the DCArcModelFinal model.

 Anomaly Detection Using Autoencoder and Wavelets

13-133



trainingFlag = 

if trainingFlag == "Train network"
    % training network
    net = trainNetwork(trainData,trainData,layers,options);
    save('network.mat','net');
end

If you want to skip the training steps, you can run the DCArcModelFinal model loaded with the
pretrained network in netData.mat to detect arc faults in load signals.

13 Signal Processing Examples

13-134



Figure 5: Training progress for the autoencoder.

The figure shows the histogram for the reconstruction error produced by the autoencoder when the
input is the training data. You can use the statistics for the reconstruction error to choose the
detection threshold. For instance, choose the detection threshold to be three times the standard
deviation of the reconstruction error.

 Anomaly Detection Using Autoencoder and Wavelets

13-135



Figure 6: Histogram for the reconstruction error produced by the autoencoder when the input is the
training data.

Model for Anomaly Detection Using Autoencoder

The DCArcModelFinal model is used for real-time detection of the arc fault in a DC load signal.
Before running the model, you must specify the simulation stop time in seconds in the workspace
variable t.

Figure 7: DCArcModelFinal for arc fault detection.

The first block generates a noisy DC load signal with arc fault in continuous time. The load voltage is
then converted into a discrete-time signal sampled at 20 kHz by the Rate transition block in DSP
System Toolbox™. The discrete time signal is then buffered to the LWTFeatureGen block that obtains

13 Signal Processing Examples

13-136



the desired level 4 detail projection after preprocessing. The detail projection is then segmented in
100 sample frames that are the test features for the Predict block. The Predict block has been
preloaded with the network pretrained using the load signal under normal conditions. The anomaly
detection block then calculates the root-mean-square error (RMSE) for each frame and declares the
presence of an arc fault if the error is above some predefined threshold.

This plot shows the regions predicted by the network when the wavelet-filtered features are used.
The autoencoder was able to detect all 10 arc fault regions correctly. In other words, we obtained a
100% probability of detection in this case.

Figure 8: Detection performance for the autoencoder using wavelet-filtered features.

This plot shows the anomaly detection performance of the raw data trained autoencoder (pretrained
network included in netDataRaw.mat). When we used raw data for anomaly detection, the encoder
was able to identify seven out of 10 regions correctly.

 Anomaly Detection Using Autoencoder and Wavelets

13-137



Figure 9: Detection performance for the autoencoder using raw load signal.

We generated a 50 second long anomalous signal with 40 arc fault regions (this data is not included
with the example). When tested with the autoencoder trained with raw signals, the arc regions were
detected with a 57.85% probability of detection. In contrast, the autoencoder trained with the
wavelet-filtered signals was able to detect the arc fault regions with a 97.52% probability of
detection.

We also investigated the impact of the load signal normalization on the fault detection performance of
the autoencoder. To this end, we modified the sequence input layer of the autoencoder model such
that the input data is normalized when it is forward propagated through the input layer. We chose the
‘zscore’ normalization for this purpose. The modified autoencoder layers are:

layers = [ sequenceInputLayer(1,Name='in',Normalization='zscore')
bilstmLayer(32,Name='bilstm1')
reluLayer(Name='relu1')
bilstmLayer(16,Name='bilstm2')
reluLayer(Name='relu2')
bilstmLayer(32,Name='bilstm3')
reluLayer(Name='relu3')
fullyConnectedLayer(1,Name='fc')
regressionLayer(Name='out') ];

Similar to the previous experimental setup, we trained one autoencoder with raw data and another
autoencoder with wavelet-filtered load signal under normal conditions. Then, we monitored the fault
detection performance for both autoencoders. We ran the simulation for 5 minutes. The faulty load
signal included 50 arc faults occurring at random time instances. The autoencoder trained with raw
data achieved a detection probability of 80%. In contrast, the autoencoder trained with the wavelet-
filtered signals was able to detect the arc fault regions with a 96% probability of detection.

Summary

In this example, we demonstrated how autoencoders can be used to identify arc faults in DC systems.
Both the raw and wavelet filtered load signals under normal conditions can be used as features to
train the autoencoders. These anomaly detection mechanisms can be used to detect arc faults in a
timely manner and thus protect a DC system from damages caused by the faults.

References

[1] Wang, Zhan, and Robert S. Balog. “Arc Fault and Flash Signal Analysis in DC Distribution Systems
Using Wavelet Transformation.” IEEE Transactions on Smart Grid 6, no. 4 (July 2015): 1955–63.
https://doi.org/10.1109/TSG.2015.2407868

Helper Functions

getDet - this function obtains the wavelet-filtered normal load signal and normalizes them.

function d4 = getDet(x)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

LS = liftingScheme(Wavelet='db3');
[ca4,cd4]= lwt(x,Level=4,LiftingScheme=LS);
D4 = lwtcoef(ca4,cd4,LiftingScheme=LS,OutputType="projection",...

13 Signal Processing Examples

13-138

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7063248
https://doi.org/10.1109/TSG.2015.2407868


    Type="detail");
d4 = normalize(D4);
end

getFeature - this function segments the wavelet-filtered into features of the size featureDimension.

function feature = getFeature(x, sz)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

n = floor(length(x)/sz);
feature = cell(n,1);

for ii = 1:n
    c1 = 1+((ii-1)*sz);
    c2 = sz+((ii-1)*sz);
    ind = c1:c2;
    feature{ii} = transpose(x(ind,:));
end
end

sigresize - this function removes the transient part of the load signal.

function xn = sigresize(x,sz)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

n = floor(length(x)/sz);
lf = n*sz;
xn = zeros(lf,1);
xn(1:lf) = x(1:lf);
end

See Also
Functions
lwt | ilwt | lwtcoef

Objects
liftingScheme

Related Examples
• “Code Generation for a Deep Learning Simulink Model to Classify ECG Signals” (Wavelet

Toolbox)

 Anomaly Detection Using Autoencoder and Wavelets

13-139



Fault Detection Using Wavelet Scattering and Recurrent Deep
Networks

This example shows how to classify faults in acoustic recordings of air compressors using a wavelet
scattering network paired with a recurrent neural network. The example provides the opportunity to
use a GPU to accelerate the computation of the wavelet scattering transform. If you wish to utilize a
GPU, you must have Parallel Computing Toolbox™ and a supported GPU. See “GPU Computing
Requirements” (Parallel Computing Toolbox) for details.

Dataset

The dataset consists of acoustic recordings collected on a single stage reciprocating type air
compressor [1 on page 13-146]. The data are sampled at 16 kHz. Specifications of the air compressor
are as follows:

• Air Pressure Range: 0-500 lb/m2, 0-35 Kg/cm2
• Induction Motor: 5HP, 415V, 5Am, 50 Hz, 1440rpm
• Pressure Switch: Type PR-15, Range 100-213 PSI

Each recording represents one of 8 states which includes the healthy state and 7 faulty states. The 7
faulty states are:

1 Leakage inlet valve (LIV) fault
2 Leakage outlet valve (LOV) fault
3 Non-return valve (NRV) fault
4 Piston ring fault
5 Flywheel fault
6 Rider belt fault
7 Bearing fault

Download the dataset and unzip the data file in a folder where you have write permission. This
example assumes you are downloading the data in the temporary directory designated as tempdir in
MATLAB®. If you chose to use a different folder, substitute that folder for tempdir in the following.
The recordings are stored as .wav files in folders named for their respective state.

url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'AirCompressorDataSet');
if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
    loc = websave(downloadFolder,url);
    unzip(loc,fullfile(tempdir,'AirCompressorDataSet'))
end

Use an audioDatastore to manage data access. Each subfolder contains only recordings of the
designated class. Use the folder names as the class labels.

datasetLocation = fullfile(tempdir,'AirCompressorDataSet','AirCompressorDataset');
ads = audioDatastore(datasetLocation,'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Examine the number of examples in each class. There are 225 recordings in each class.

13 Signal Processing Examples

13-140



countcats(ads.Labels)

ans = 8×1

   225
   225
   225
   225
   225
   225
   225
   225

Split the data into training and test sets. Use 80% of the data for training and hold out the remaining
20% for testing. Shuffle the data once before splitting.

rng default
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8,0.2);

Verify that the number of examples in each class is the expected number.

uniqueLabels = unique(adsTrain.Labels);
tblTrain = countEachLabel(adsTrain);
tblTest = countEachLabel(adsTest);
H = bar(uniqueLabels,[tblTrain.Count, tblTest.Count],'stacked');
legend(H,["Training Set","Test Set"],'Location','NorthEastOutside')

 Fault Detection Using Wavelet Scattering and Recurrent Deep Networks

13-141



Select some random examples from the training set for plotting.

idx = randperm(numel(adsTrain.Files),8);
Fs = 16e3;
for n = 1:numel(idx)
    x = audioread(adsTrain.Files{idx(n)});
    t = (0:size(x,1)-1)/Fs;
    subplot(4,2,n);
    plot(t,x);
    if n == 7 || n == 8
        xlabel('Seconds');
    end
    title(string(adsTrain.Labels(idx(n))));
end

Wavelet Scattering Network

Each record has 50,000 samples sampled at 16 kHz. Construct a wavelet scattering network based on
the data characteristics. Set the invariance scale to be 0.5 seconds.

N = 5e4;
Fs = 16e3;
IS = 0.5;
sn = waveletScattering('SignalLength',N,'SamplingFrequency',Fs,...
    'InvarianceScale',0.5);

With these network settings, there are 330 scattering paths and 25 time windows per example. You
can see this with the following code.

13 Signal Processing Examples

13-142



[~,npaths] = paths(sn);
Ncfs = numCoefficients(sn);
sum(npaths)

ans = 330

Ncfs

Ncfs = 25

Note this already represents a 6-fold reduction in the size of the data for each record. We reduced the
data size from 50,000 samples to 8250 in total. Most importantly, we reduced the size of the data
along the time dimension from 50,000 to 25 samples. This is crucial for our use of a recurrent
network. Attempting to use a recurrent network on the original data with 50,000 samples would
immediately result in memory problems.

Obtain the wavelet scattering features for the training and test sets. If you have a suitable GPU and
Parallel Computing Toolbox, you can set useGPU to true to accelerate the scattering transform. The
function helperBatchScatFeatures obtains the scattering transform of each example.

batchsize = 64;
useGPU = false; 
scTrain = [];
while hasdata(adsTrain)
    sc = helperBatchScatFeatures(adsTrain,sn,N,batchsize,useGPU);
    scTrain = cat(3,scTrain,sc);
end

Repeat the process for the held out test set.

scTest = [];
while hasdata(adsTest)
   sc = helperBatchScatFeatures(adsTest,sn,N,batchsize,useGPU);
   scTest = cat(3,scTest,sc); 
end

Remove the 0-th order scattering coefficients. For both the training and test sets, put each 330-by-25
scattering transform into an element of a cell array for use in training and testing the recurrent
network.

TrainFeatures = scTrain(2:end,:,:);
TrainFeatures = squeeze(num2cell(TrainFeatures,[1 2]));
YTrain = adsTrain.Labels;
TestFeatures = scTest(2:end,:,:);
TestFeatures = squeeze(num2cell(TestFeatures,[1 2]));
YTest = adsTest.Labels;

Define Network

Recall there are 1440 training examples and 360 test set examples. Accordingly the TrainFeatures
and TestFeatures cell arrays have 1440 and 360 elements respectively.

Use the number of scattering paths as the number of features. Create a recurrent network with a
single LSTM layer having 512 hidden units. Follow the LSTM layer with a fully connected layer and
finally a softmax layer. Use 'zscore' normalization across all scattering paths at the input to the
network.

[inputSize, ~] = size(TrainFeatures{1});

 Fault Detection Using Wavelet Scattering and Recurrent Deep Networks

13-143



numHiddenUnits = 512;
numClasses = numel(unique(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize,'Normalization','zscore')
    lstmLayer(numHiddenUnits,'OutputMode','last') 
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Train Network

Train the network for 50 epochs with a mini batch size of 128. Use an Adam optimizer with an initial
learn rate of 1e-4. Shuffle the data each epoch.

maxEpochs = 50;
miniBatchSize = 128;

options = trainingOptions('adam', ...
    'InitialLearnRate',1e-4,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'SequenceLength','shortest', ...
    'Shuffle','every-epoch',...
    'Plots','training-progress',...
    'Verbose',true);

net = trainNetwork(TrainFeatures,YTrain,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:08 |       16.41% |       2.1281 |      1.0000e-04 |
|       5 |          50 |       00:00:59 |      100.00% |       0.0536 |      1.0000e-04 |
|      10 |         100 |       00:01:51 |      100.00% |       0.0072 |      1.0000e-04 |
|      14 |         150 |       00:02:40 |      100.00% |       0.0064 |      1.0000e-04 |
|      19 |         200 |       00:03:27 |      100.00% |       0.0025 |      1.0000e-04 |
|      23 |         250 |       00:04:14 |      100.00% |       0.0015 |      1.0000e-04 |
|      28 |         300 |       00:05:00 |      100.00% |       0.0012 |      1.0000e-04 |
|      32 |         350 |       00:05:45 |      100.00% |       0.0007 |      1.0000e-04 |
|      37 |         400 |       00:06:29 |      100.00% |       0.0006 |      1.0000e-04 |
|      41 |         450 |       00:07:12 |      100.00% |       0.0005 |      1.0000e-04 |
|      46 |         500 |       00:07:55 |      100.00% |       0.0005 |      1.0000e-04 |
|      50 |         550 |       00:08:41 |      100.00% |       0.0004 |      1.0000e-04 |
|========================================================================================|
Training finished: Reached final iteration.

13 Signal Processing Examples

13-144



In training, the network has achieved near perfect performance. In order to ensure we have not
overfit to the training data, use the held-out test set to determine how well our network generalizes
to unseen data.

YPred = classify(net,TestFeatures);
accuracy = 100*sum(YPred == YTest) / numel(YTest)

accuracy = 100

In this case, we see that the performance on the held-out test set is also excellent.

figure 
confusionchart(YTest, YPred)

 Fault Detection Using Wavelet Scattering and Recurrent Deep Networks

13-145



Summary

In this example, the wavelet scattering transform was used with a simple recurrent network to
classify faults in an air compressor. The scattering transform allowed us to extract robust features for
our learning problem. Additionally, the data reduction achieved along the time dimension of the data
by the use of the wavelet scattering transform was critical in order to create a computationally
feasible problem for our recurrent network.

References

[1] Verma, Nishchal K., Rahul Kumar Sevakula, Sonal Dixit, and Al Salour. “Intelligent Condition
Based Monitoring Using Acoustic Signals for Air Compressors.” IEEE Transactions on Reliability 65,
no. 1 (March 2016): 291–309. https://doi.org/10.1109/TR.2015.2459684.

helperbatchscatfeatures - This function returns the wavelet time scattering feature matrix for a
given input signal. If useGPU is set to true, the scattering transform is computed on the GPU.

function sc = helperBatchScatFeatures(ds,sn,N,batchsize,useGPU)
% This function is only intended to support examples in the Wavelet
% Toolbox. It may be changed or removed in a future release.

% Read batch of data from audio datastore
batch = helperReadBatch(ds,N,batchsize);
if useGPU
    batch = gpuArray(batch);

13 Signal Processing Examples

13-146

https://doi.org/10.1109/TR.2015.2459684


end

% Obtain scattering features
S = sn.featureMatrix(batch,'transform','log');
gather(batch);
S = gather(S);
    
% Subsample the features
%sc = S(:,1:6:end,:);
sc = S;
end

helperReadBatch - This function reads batches of a specified size from a datastore and returns the
output in single precision. Each column of the output is a separate signal from the datastore. The
output may have fewer columns than the batch size if the datastore does not have enough records.

function batchout = helperReadBatch(ds,N,batchsize)
% This function is only in support of Wavelet Toolbox examples. It may
% change or be removed in a future release.
%
% batchout = readReadBatch(ds,N,batchsize) where ds is the Datastore and
%   ds is the Datastore
%   batchsize is the batchsize

kk = 1;

while(hasdata(ds)) && kk <= batchsize
    tmpRead = read(ds);
    batchout(:,kk) = cast(tmpRead(1:N),'single'); %#ok<AGROW>
    kk = kk+1;
end

end

Copyright 2021, The MathWorks, Inc.

See Also
waveletScattering

Related Examples
• “Air Compressor Fault Detection Using Wavelet Scattering” (Wavelet Toolbox)
• “Deep Learning Code Generation on ARM for Fault Detection Using Wavelet Scattering and

Recurrent Neural Networks” (Wavelet Toolbox)
• “Generate and Deploy Optimized Code for Wavelet Time Scattering on ARM Targets” (Wavelet

Toolbox)

More About
• “Wavelet Scattering” (Wavelet Toolbox)

 Fault Detection Using Wavelet Scattering and Recurrent Deep Networks

13-147



Parasite Classification Using Wavelet Scattering and Deep
Learning

This example shows how to classify parasitic infections in Giemsa stain images using wavelet image
scattering and deep learning. The dataset is challenging for deep networks because it contains only
48 images. The images are divided evenly into three categories of parasitic infections: babesiosis,
plasmodium-gametocyte, and trypanosomiasis.

Data

Unzip the BloodSmearImages.zip file into a folder where you have write permission. This example
uses the directory corresponding to the value of tempdir in MATLAB. To use another folder, set
dataFolder equal to that value in the following code.

dataFolder = tempdir;
unzip("BloodSmearImages.zip",dataFolder);

In the BloodSmearImages folder, you can find a README.txt file that details the original source of all
images.

Create an ImageDatastore to manage the access of the Giemsa stain images. The images are in
RGB format with a common size of 300-by-300-by-3.

imagedir = fullfile(dataFolder,'BloodSmearImages');
Imds = imageDatastore(imagedir,'IncludeSubFolders',true,'FileExtensions',...
    '.jpg','LabelSource','foldernames');
summary(Imds.Labels)

     babesiosis                 16 
     plasmodium-gametocyte      16 
     trypanosomiasis            16 

There are 16 images for each of the three parasite types. Split the data into training and hold-out test
sets, with 70 percent of the images in the training set and 30 percent in the test set. Set the random
number generator for reproducibility.

rng default
[trainImds,testImds] = splitEachLabel(Imds,0.7);

Verify that equal numbers of each parasite class are contained in both the training and test sets.

summary(trainImds.Labels)

     babesiosis                 11 
     plasmodium-gametocyte      11 
     trypanosomiasis            11 

% Perform the same for the test set.
summary(testImds.Labels)

     babesiosis                 5 
     plasmodium-gametocyte      5 
     trypanosomiasis            5 

Because this is a small dataset, the entire training and test sets fit in memory. Read all images for
both sets.

13 Signal Processing Examples

13-148



trainImages = readall(trainImds);
testImages = readall(testImds);

Plot some sample images from the training data.

idx = randperm(33,6);
figure
for ii = 1:length(idx)
    im = trainImages{idx(ii)};
    subplot(3,2,ii)
    imshow(im,[])
    title(string(trainImds.Labels(idx(ii))));
end

Wavelet Scattering Network

In this example, you use a wavelet scattering transform as the feature extractor for the machine
learning approaches. The wavelet scattering transform helps to reduce the dimensionality of the data
and increase the interclass dissimilarity. Construct a two-layer image scattering network with a 40-
by-40 pixel invariance scale. Use two wavelets per octave in the first layer and one wavelet per octave
in the second layer. Use two rotations of the wavelets per layer.

sn = waveletScattering2('ImageSize',[300 300],'InvarianceScale',40,...
    'QualityFactors',[2 1],'NumRotations',[2 2]);
[~,npaths] = paths(sn);
sum(npaths)

ans = 27

 Parasite Classification Using Wavelet Scattering and Deep Learning

13-149



coefficientSize(sn)

ans = 1×2

    38    38

The specified wavelet scattering network has 27 paths. The image on each scattering path is reduced
to 38-by-38-by-3. Even without further averaging of the scattering coefficients, this is a reduction in
the size of each image's memory by more than a factor of 2. However, for classification we form a
feature vector that averages the scattering coefficients over the spatial and channel dimensions. This
results in feature vectors with only 27 elements, a real-valued scalar for each scattering path. This
represents a reduction in the number of elements by a factor of 10,000 for each image.

The following code computes the wavelet scattering feature vectors for both the training and test
sets. Concatenate the feature vectors so that you have N-by-27 matrices, where N is the number of
examples in the training or test set and each row is a wavelet scattering feature vector for an
example.

trainfeatures = cellfun(@(x)helperScatImages_mean(sn,x),trainImages,'Uni',0);
testfeatures = cellfun(@(x)helperScatImages_mean(sn,x),testImages,'Uni',0);
trainfeatures = cat(1,trainfeatures{:});
testfeatures = cat(1,testfeatures{:});

SVM Classification

Use an SVM classifier with the scattering features. Choose a cubic polynomial kernel. Use a one-vs-all
coding scheme.

template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 3, ...
    'KernelScale', 1, ...
    'BoxConstraint', 314, ...
    'Standardize', true);
classificationSVM = fitcecoc(trainfeatures,trainImds.Labels,...
    'Learners', template, 'Coding', 'onevsall');

Estimate the accuracy on the training set using cross-validation with 5 folds.

kfoldmodel = crossval(classificationSVM, 'KFold', 5);
loss = kfoldLoss(kfoldmodel)*100;
crossvalAccuracy = 100-loss

crossvalAccuracy = single
    81.8182

The cross-validation accuracy is approximately 80 percent. Now examine the accuracy on the held-
out test set and plot the confusion chart.

[predLabels,scores] = predict(classificationSVM,testfeatures);
testAccuracy = ...
    sum(categorical(predLabels)== testImds.Labels)/numel(testImds.Labels)*100

testAccuracy = 80

figure
cchart = confusionchart(testImds.Labels,predLabels);

13 Signal Processing Examples

13-150



cchart.Title = ...
    {'Confusion Chart for Wavelet' ; 'Scattering Features using SVM'};
cchart.RowSummary = 'row-normalized';
cchart.ColumnSummary = 'column-normalized';

The overall test accuracy is also approximately 80 percent with the SVM model. The recall for each
class is 80%. The precision is also good for the plasmodium-gametocyte and trypanosomiasis
parasites, but worse for babesiosis. Examine the F1 scores for each class.

f1SVM = f1score(cchart.NormalizedValues);
disp(f1SVM)

                               F1   
                             _______

    babesiosis               0.72727
    plasmodium-gametocyte    0.88889
    trypanosomiasis              0.8

All F1 scores are between approximately 0.7 and 0.9.

PCA classifier with scattering features

Support vector machines are powerful techniques for features that are not linearly separable, but
they are designed for binary classification and may be suboptimal for multiclass problems. Here you
complement the SVM analysis by using a simple PCA (linear) classifier with the same wavelet
scattering features. The helperPCAModel function determines the numcomp eigenvectors

 Parasite Classification Using Wavelet Scattering and Deep Learning

13-151



corresponding to the largest eigenvalues of the covariance matrix of the wavelet scattering features
for each pathogen in the training set along with the class means.

helperPCAClassifier classifies each test sample. It does this by subtracting the model class
means from each wavelet scattering feature vector in the test dataset and projecting the centered
feature vectors onto the covariance-matrix eigenvectors for each class in the model.
helperPCAClassifier assigns each test example to the pathogen with the smallest error, or
residual. This is a principal components analysis (PCA) classifier.

Remove the 0-th order scattering features from each feature vector. Set the number of principal
components (eigenvectors) to 6.

numcomp = 6;
model = helperPCAModel(trainfeatures(:,2:end)',numcomp,trainImds.Labels);
PCALabels = helperPCAClassifier(testfeatures(:,2:end)',model);
testPCAacc = sum(PCALabels==testImds.Labels)/numel(testImds.Labels)*100

testPCAacc = 86.6667

The test accuracy is approximately 87% with the PCA classifier. Plot the confusion chart and calculate
the F1 scores for each class.

figure
cchart = confusionchart(testImds.Labels,PCALabels);
cchart.Title = {'Confusion Chart for Wavelet Scattering Features' ; ...
    'using PCA Classifier'};
cchart.RowSummary = 'row-normalized';
cchart.ColumnSummary = 'column-normalized';

13 Signal Processing Examples

13-152



f1PCA = f1score(cchart.NormalizedValues);
disp(f1PCA)

                               F1   
                             _______

    babesiosis               0.90909
    plasmodium-gametocyte    0.88889
    trypanosomiasis              0.8

The F1 scores for the PCA classifier with wavelet scattering features are quite strong, with all scores
between 0.8 and 1.

Convolutional Deep Network

In this section, you attempt the same classification using deep convolutional networks. Deep
networks provide state-of-art results for classification problems with large datasets and are capable
of learning complicated nonlinear mappings, but their performance often suffers in small datasets. To
mitigate this problem, use an image augmenter. imageDataAugmenter perturbs the data in each
epoch, in effect creating new training examples.

augmenter = imageDataAugmenter('RandRotation',[0 180],'RandXTranslation', [-5 5], ...
    'RandYTranslation',[-5 5]);
augimds = augmentedImageDatastore([300 300 3],trainImds,'DataAugmentation',augmenter);

Define a small CNN consisting of two convolution layers followed by batch normalization layers and
RELU activations. Follow the final RELU activation with max pooling, fully connected, and softmax
layers.

layers = [
    imageInputLayer([300 300 3])
    convolution2dLayer(7,16)
    batchNormalizationLayer
    reluLayer    
    convolution2dLayer(3,20)
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(4)
    fullyConnectedLayer(3)
    softmaxLayer
    classificationLayer];

Use stochastic gradient descent with a minibatch size of 10. Shuffle the data each epoch. Run the
training for 100 epochs.

opts = trainingOptions('sgdm',...
    'InitialLearnRate',  0.0001, ...
    'MaxEpochs', 100, ...
    'MiniBatchSize',10,...
    'Shuffle','every-epoch',...
    'Plots', 'training-progress',...
    'Verbose',false,...
    'ExecutionEnvironment','cpu');

Train the network.

trainedNet = trainNetwork(augimds,layers,opts);

 Parasite Classification Using Wavelet Scattering and Deep Learning

13-153



Examine the performance of the network on the held-out test set.

ypred = trainedNet.classify(testImds);
cnnAccuracy = sum(ypred == testImds.Labels)/numel(testImds.Labels)*100

cnnAccuracy = 66.6667

figure
cchart = confusionchart(testImds.Labels,ypred);
cchart.Title = 'Confusion Chart for Deep CNN';
cchart.RowSummary = 'row-normalized';
cchart.ColumnSummary = 'column-normalized';

13 Signal Processing Examples

13-154



f1CNN = f1score(cchart.NormalizedValues);
disp(f1CNN)

                               F1   
                             _______

    babesiosis                   0.8
    plasmodium-gametocyte    0.66667
    trypanosomiasis              0.5

In spite of using an augmented dataset for training, the CNN has overfit the training set and the F1
scores are significantly worse than either the SVM or PCA model with the wavelet scattering
features.

Next, use transfer learning with SqueezeNet. Modify the final convolutional layer to accommodate
the fact that you have three classes of pathogens. SqueezeNet was constructed to recognize 1,000
classes.

net = squeezenet;
lgraphSQZ = layerGraph(net);
numClasses = numel(categories(trainImds.Labels));
oldFinalConv = lgraphSQZ.Layers(end-4);
newFinalConv = convolution2dLayer(1,numClasses, ...
        'Name','new_conv');
setLearnRateFactor(newFinalConv,'Weights',10);
setLearnRateFactor(newFinalConv,'Bias',10)

 Parasite Classification Using Wavelet Scattering and Deep Learning

13-155



ans = 
  Convolution2DLayer with properties:

              Name: 'new_conv'

   Hyperparameters
        FilterSize: [1 1]
       NumChannels: 'auto'
        NumFilters: 3
            Stride: [1 1]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

lgraphSQZ = replaceLayer(lgraphSQZ,oldFinalConv.Name,newFinalConv);
oldClassLayer= lgraphSQZ.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSQZ = replaceLayer(lgraphSQZ,oldClassLayer.Name,newClassLayer);

Reset the training and test datastores. Modify the datastore read function to resize images to be
compatible with SqueezeNet, which expects 227-by-227-by-3 images. Set up the image augmenter
and train the network.

reset(trainImds);
reset(testImds);
trainImds.ReadFcn = @(x)imresize(imread(x),'OutputSize',[227 227]);
testImds.ReadFcn = @(x)imresize(imread(x),'OutputSize',[227 227]);
augmenter = imageDataAugmenter('RandRotation',[0 180],'RandXTranslation', [-5 5], ...
    'RandYTranslation',[-5 5]);
augimds = augmentedImageDatastore([227 227 3],trainImds,...
    'DataAugmentation',augmenter);
trainedNet = trainNetwork(augimds,lgraphSQZ,opts);

13 Signal Processing Examples

13-156



Obtain the SqueezeNet accuracy, plot the confusion chart, and compute the F1 scores.

ypred = trainedNet.classify(testImds);
sqznetAccuracy = sum(ypred == testImds.Labels)/numel(testImds.Labels)*100

sqznetAccuracy = 73.3333

figure
cchart = confusionchart(testImds.Labels,ypred);
cchart.Title = {'Confusion Chart for Transfer Learning' ; 'with SqueezeNet'};
cchart.RowSummary = 'row-normalized';
cchart.ColumnSummary = 'column-normalized';

 Parasite Classification Using Wavelet Scattering and Deep Learning

13-157



f1SqueezeNet = f1score(cchart.NormalizedValues);
disp(f1SqueezeNet)

                               F1   
                             _______

    babesiosis               0.72727
    plasmodium-gametocyte        0.8
    trypanosomiasis          0.66667

SqueezeNet performs better than the simpler CNN, particularly in terms of the F1 score for
trypanosomiasis, but the performance does not match the accuracy of the simpler PCA classifier with
the wavelet scattering features.

Summary

In this example, the wavelet scattering transform and deep learning frameworks were used to classify
pathogens in Giemsa stain images. The limited dataset size provides challenges for training a deep
learning classifier even when data augmentation is used. The example illustrated that the wavelet
scattering transform can provide a useful alternative to deep networks in such cases. In forming
feature vectors from the wavelet scattering transform, we reduced each transform output from a 27-
by-38-by-38-by-3 tensor to a 27-element vector. Accordingly, we have used a global pooling of the
scattering coefficients. It is possible to utilize other pooling schemes, which could yield better results.

13 Signal Processing Examples

13-158



Appendix — Supporting Functions

function features = helperScatImages_mean(sn,x)
smat = featureMatrix(sn,x);
features = mean(smat,2:4);
features = features';
end
function F1scores = f1score(cchartVal)
N = sum(cchartVal,'all');
probT = sum(cchartVal)./N;
classProbEst = diag(cchartVal)./N;
Prec = classProbEst'./probT;
probC = [5/15 5/15 5/15];
Recall = classProbEst'./probC;
F1scores = harmmean([Prec ; Recall]);
F1scores = F1scores';
F1scores = table(F1scores,'VariableNames',{'F1'},...
    'RowNames', {'babesiosis','plasmodium-gametocyte', 'trypanosomiasis'});
end

function labels = helperPCAClassifier(features,model)
% This function is only to support wavelet image scattering examples in 
% Wavelet Toolbox. It may change or be removed in a future release.
% model is a structure array with fields, M, mu, v, and Labels
% features is the matrix of test data which is Ns-by-L, Ns is the number of
% scattering paths and L is the number of test examples. Each column of
% features is a test example.

% Copyright 2018-2021 MathWorks

labelIdx = determineClass(features,model); 
labels = model.Labels(labelIdx); 
% Returns as column vector to agree with imageDatastore Labels
labels = labels(:);

%--------------------------------------------------------------------------
function labelIdx = determineClass(features,model)
% Determine number of classes
Nclasses = numel(model.Labels);
% Initialize error matrix
errMatrix = Inf(Nclasses,size(features,2));
for nc = 1:Nclasses
    % class centroid
    mu = model.mu{nc};
    u = model.U{nc};
    % 1-by-L
    errMatrix(nc,:) = projectionError(features,mu,u);
end
% Determine minimum along class dimension
[~,labelIdx] = min(errMatrix,[],1);   

%--------------------------------------------------------------------------
function totalerr = projectionError(features,mu,u)
    %
    Npc = size(u,2);
    L = size(features,2);

 Parasite Classification Using Wavelet Scattering and Deep Learning

13-159



    % Subtract class mean: Ns-by-L minus Ns-by-1
    s = features-mu;
    % 1-by-L
    normSqX = sum(abs(s).^2,1)';
    err = Inf(Npc+1,L);
    err(1,:) = normSqX;
    err(2:end,:) = -abs(u'*s).^2;
    % 1-by-L
    totalerr = sqrt(sum(err,1));
end
end
end

function model = helperPCAModel(features,M,Labels)
% This function is only to support wavelet image scattering examples in
% Wavelet Toolbox. It may change or be removed in a future release.
% model = helperPCAModel(features,M,Labels)

% Copyright 2018-2021 MathWorks

% Initialize structure array to hold the affine model
model = struct('Dim',[],'mu',[],'U',[],'Labels',categorical([]),'S',[]);
model.Dim = M;
% Obtain the number of classes
LabelCategories = categories(Labels);
Nclasses = numel(categories(Labels));
for kk = 1:Nclasses
    Class = LabelCategories{kk};
    % Find indices corresponding to each class
    idxClass = Labels == Class;
    % Extract feature vectors for each class
    tmpFeatures = features(:,idxClass);
    % Determine the mean for each class
    model.mu{kk} = mean(tmpFeatures,2);
    [model.U{kk},model.S{kk}] = scatPCA(tmpFeatures);
    if size(model.U{kk},2) > M
        model.U{kk} = model.U{kk}(:,1:M);
        model.S{kk} = model.S{kk}(1:M);
        
    end
    model.Labels(kk) = Class;
end

    function [u,s,v] = scatPCA(x)
        % Calculate the principal components of x along the second dimension.
        [u,d] = eig(cov(x'));
        % Sort eigenvalues of covariance matrix in descending order
        [s,ind] = sort(diag(d),'descend');
        % sort eigenvector matrix accordingly
        u = u(:,ind);
    end
end

See Also
waveletScattering2

13 Signal Processing Examples

13-160



Related Examples
• “Texture Classification with Wavelet Image Scattering” (Wavelet Toolbox)

More About
• “Wavelet Scattering” (Wavelet Toolbox)

 Parasite Classification Using Wavelet Scattering and Deep Learning

13-161



Detect Anomalies Using Wavelet Scattering with Autoencoders

This example shows how to use the wavelet scattering transform with both LSTM and convolutional
autoencoders to develop an alert system for predictive maintenance. The example compares wavelet
scattering transform+autoencdoer and raw data+autoencoder approaches.

Data

The dataset is collected from a 2MW wind turbine high-speed shaft driven by a 20-tooth pinion gear
[1 on page 13-177]. A vibration signal of 6 seconds was acquired at a sample rate of 97,656 Hz each
day for 50 consecutive days from 2013-03-07 to 2013-04-25. There are two measurements on
2013-03-17, which are treated as two days in this example. Each timeseries consists of 585,936
samples. An inner race fault developed and caused the failure of the bearing across the 50-day
recording period.

Data Download

Obtain the data from https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data.
You can download the entire repository as a zip file and save it in a folder where you have write
permission. The commands in this example assume that you have downloaded the data in the folder
MATLAB designates as tempdir. If you choose to use a different folder, change the value of
parentDir below. After downloading the zip file, unzip the data using this command.

parentDir = tempdir;
if exist(fullfile(parentDir,'WindTurbineHighSpeedBearingPrognosis-Data-main.zip'),'file')
    unzip(fullfile(parentDir,'WindTurbineHighSpeedBearingPrognosis-Data-main.zip'),parentDir)
else
    error("File not found. "+ ...
        "\nManually download the repository as a .zip file from GitHub. "+ ...
        "Confirm the .zip file is in: \n%s",parentDir)
end

If you prefer to use Git commands to clone the repository, the folder does not include the "-main"
designation and the data is placed in a WindTurbineHighSpeedBearingPrognosis-Data folder.

Signal Datastore

Unzipping the WindTurbineHighSpeedBearingPrognosis-Data-main.zip file creates a folder
with 50 .mat files. Each .mat file contains two variables: tach and vibration. This example utilizes
only the vibration data. Accordingly, create a signal datastore to read only the vibration data from
the .mat files.

filepath = fullfile(parentDir,'WindTurbineHighSpeedBearingPrognosis-Data-main');
sds = signalDatastore(filepath,SignalVariableNames = "vibration");

Because there are only 50 records in this dataset, read all the data into memory at once.

allSignals = readall(sds);

The data records are relatively long at 585,936 samples. As a first attempt at data reduction, examine
the spectral characteristics of a random sample of 6 signals. Use the maximal overlap wavelet packet
transform with the default wavelet and level. This results in an orthogonal decomposition of the
signal's energy into passbands of width Fs/25 where Fs is the sample rate. Plot the relative energy of
each signal as a function of the passband. Print the percentage of signal energy below 1/4 of the
sampling frequency.

13 Signal Processing Examples

13-162

https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data


rng default
fs = 97656;
rdIdx = randperm(length(allSignals),6);
figure
tiledlayout(2,3)
for ii = 1:6
    nexttile
    [~,~,f,~,re] = modwpt(allSignals{ii});
    bar((f.*fs)/1e3,re.*100)
    sprintf('%2.2f',sum(re(f <= 1/4))*100)
    record = rdIdx(ii);
    title({'Passband Energy:' ; ['Record ' num2str(record)]}); 
    xlabel("kHz")
    ylabel("Percentage Energy")
end

ans = 
'96.73'

ans = 
'95.84'

ans = 
'96.00'

ans = 
'95.61'

ans = 
'95.77'

ans = 
'95.95'

 Detect Anomalies Using Wavelet Scattering with Autoencoders

13-163



In these samples, approximately 96% of the signal energy is below the cutoff frequency of 24.414 kHz
required for downsampling the signal length by a factor of 2. Examination of all signals in the data set
reveals that all records have between 94.7 and 98.2 percent of their energy below 24.414 kHz.
Resample all signals at 1/2 the original sample rate and adjust the sample rate accordingly.

allSignals = cellfun(@(x)resample(x,1,2),allSignals,UniformOutput = false);
fs = fs/2;

The data in this example are unlabeled. To obtain an idea of how the data evolves over the 50-day
period, create a cumulative plot.

tstart = 0;
figure
for ii = 1:length(allSignals)
    t = (1:length(allSignals{ii}))./fs + tstart;    
    hold on
    plot(t,allSignals{ii})
    tstart = t(end);    
end
hold off
title("Cumulative Wind-Turbine Vibration Monitoring")
xlabel("Time (sec) -- 6 seconds per day for 50 days")
ylabel("Voltage")

13 Signal Processing Examples

13-164



From the preceding plot, it is evident that the amount of vibration in the data appears to be gradually
increasing on average over time. This appears especially evident after 200 seconds of recording,
which corresponds to the period beyond 33 days. While this average trend is evident, note that for
individual recordings this is not always the case. Some recordings near the end of the 50-day period
exhibit behavior similar to recordings nearer the beginning.

Data Preparation and Feature Extraction

Split each 6 second recording into 11 separate recordings of 1 second each overlapped by 0.5
seconds. Cast the data to single precision.

frameSize =   1*fs;
frameRate = 0.5*fs;
nframe = (length(allSignals{1})-frameSize)/frameRate + 1;
nday = length(allSignals);

myXAll = zeros(frameSize,nframe*nday);
XAll = zeros(frameSize,nframe*nday);
colIdx = 1;
for ii = 1:length(allSignals)
    XAll(:,colIdx:colIdx+nframe-1) = buffer(allSignals{ii},frameSize,...
        frameRate,'nodelay');
    colIdx = colIdx+nframe;
end

XAll = single(XAll);

 Detect Anomalies Using Wavelet Scattering with Autoencoders

13-165



The resulting XAll has 550 columns representing 11 recordings for each of the 50 days. Each column
of XAll has 48,828 samples.

Set up the wavelet scattering network. Set the invariance scale to 0.2 seconds and the number of
wavelet filters per octave to be 4 in the first layer and 1 in the second layer. Set the oversampling
factor to 1 and optimize the path, or channel computation of the network.

N = size(XAll,1);
sn = waveletScattering(SignalLength = N, SamplingFrequency = fs,...
    InvarianceScale = 0.2, QualityFactors = [4 1],...
    OptimizePath = true, OversamplingFactor = 1, Precision = 'single');

Display the number of scattering coefficients per path (channel) and the total number of channels.

[~,pathbyLev] = paths(sn);
Ncfs = numCoefficients(sn)

Ncfs = 48

sum(pathbyLev)

ans = 180

There are 180 channels in the output of the scattering transform. However, there are only 48 time
samples. This means the amount of data for each signal is reduced by nearly a factor of 6.

Obtain all the wavelet scattering features for the data. In this example, we omit the zero-th order
scattering coefficients. As a result, the number of channels reduces by 1 to 179. If you have a
supported GPU, you can accelerate the scattering transform by setting useGPU to true. Otherwise,
set useGPU = false.

useGPU = true;
if useGPU
    XAll = gpuArray(XAll);
end
SAll = sn.featureMatrix(XAll);
SAll = SAll(2:end,:,:);
npaths = size(SAll,1);
scatfeatures = squeeze(num2cell(SAll,[1,2]));

scatfeatures is a cell array with 550 elements. Each element contains the scattering transform of
a one-second recording. Because this data is unlabeled, we are uncertain which records are
indicative of normal operation and which records indicate the presence of the inner-race fault. All we
know from the data description is that an inner-race fault develops sometime over the 50-day period.

Accordingly, we construct our training and validation sets from the earliest recordings to maximize
the probability that these sets contain only recordings without the presence of the inner-race fault.
The first 66 records (6 days) are used to form the training set and the next 44 recordings (4 days) are
used to form the validation set. The remaining 440 recordings (40 days) are held out as the test set.

ntrain = 6;
trainscatFeatures = scatfeatures(1:ntrain*nframe);
validationscatFeatures = scatfeatures(ntrain*nframe+1:ntrain*nframe+4*nframe);
testscatFeatures = scatfeatures((ntrain*nframe+4*nframe+1):end);

In this example, we compare the scattering transform with networks fit to the absolute values of the
raw time series. The absolute values are used based on the observation that the amplitude of the
vibrations appears to increase on average over the 50-day period.

13 Signal Processing Examples

13-166



rawfeatures = num2cell(XAll,1)';
rawfeatures = cellfun(@transpose,rawfeatures,UniformOutput = false);
rawABSfeatures = cellfun(@abs,rawfeatures,UniformOutput = false);
ntrain = 6;
trainrFeatures = rawABSfeatures(1:ntrain*nframe);
validationrFeatures = rawABSfeatures(ntrain*nframe+1:ntrain*nframe+4*nframe);
testrFeatures = rawABSfeatures((ntrain*nframe+4*nframe+1):end);

Deep Networks

In this example, two deep-learning autoencoders are used: an LSTM and a convolutional autoencoder.

The LSTM autoencoder uses Z-score normalization at the input followed by two LSTM layers at the
encoding stage consisting of 179 channels and floor(179/2) channels respectively. The final LSTM
layer in the encoder only outputs from the last timestep cell, OutputMode = "last". Subsequently,
a custom layer, repeatVectorLayer, is used to replicate this sample for the next LSTM layer.

Ntimesteps = Ncfs;
lstmAutoEncoder = [ sequenceInputLayer(npaths, Normalization = "zscore",...
                                       Name = "input", MinLength = Ntimesteps)
    lstmLayer(npaths, Name = "lstm1a")
    reluLayer(Name = "relu1")
    lstmLayer(floor(npaths/2), Name = "lstm2a", OutputMode = "last")
    dropoutLayer(0.2, Name = "drop1")
    reluLayer(Name = "relu2")
    repeatVectorLayer(Ntimesteps)
    lstmLayer(floor(npaths/2), Name = "lstm2b")
    dropoutLayer(0.2,Name = "drop2")
    reluLayer(Name = "relu3")
    lstmLayer(npaths, Name = "lstm1b")
    reluLayer(Name = "relu4")
    regressionLayer(Name = "regression") ];

Train the autoencoder for 200 epochs. Use a minibatch size of 16, shuffle the training data every
epoch. Output the network with the best validation loss.

options = trainingOptions('adam', ...
    'MaxEpochs',200, ...
    'MiniBatchSize',16, ...
    'Shuffle','every-epoch',...
    'ValidationData',{validationscatFeatures,validationscatFeatures},...
    'Plots','training-progress',...
    'Verbose', false,...
    'OutputNetwork','best-validation-loss');
scatLSTMAutoencoder = trainNetwork(trainscatFeatures,trainscatFeatures,...
    lstmAutoEncoder,options);

 Detect Anomalies Using Wavelet Scattering with Autoencoders

13-167



Threshold determination

There is no definitive rule for determining the threshold to use in anomaly detection. In this example,
the mean-absolute error (MAE) is used due to the robust behavior of the L1 norm with respect to
outliers. First, compute the MAE errors for the training, validation, and test data.

ypredTrain = cellfun(@(x)predict(scatLSTMAutoencoder,x),trainscatFeatures,'UniformOutput',false);
maeTrain = cellfun(@(x,y)maeLoss(x,y),ypredTrain,trainscatFeatures);
ypredValidation = cellfun(@(x)predict(scatLSTMAutoencoder,x),validationscatFeatures,'UniformOutput',false);
maeValid = cellfun(@(x,y)maeLoss(x,y),ypredValidation,validationscatFeatures);
ypredTest = cellfun(@(x)predict(scatLSTMAutoencoder,x),testscatFeatures,'UniformOutput',false);
maeTest = cellfun(@(x,y)maeLoss(x,y),ypredTest,testscatFeatures);
if useGPU
    [maeTrain,maeValid,maeTest] = gather(maeTrain,maeValid,maeTest);
end

Use only the validation data to determine the threshold for anomaly detection. This example uses a
nonparametric method based on the upper quartile of the validation errors plus 1.5 times the
interquartile range. Note that based on the cost of false positives versus false negatives in your
application, you can choose a more or less conservative threshold. The upper quartile plus 1.5 times
the interquartile range is a fairly conservative estimate and will, in general, minimize false positives
at the risk of missing actual events.

thresh = quantile(maeValid,0.75)+1.5*iqr(maeValid);

Having determined the threshold, plot the training, validation, and test errors as a function of the
day. The black horizontal line marks the threshold for suspected anomalous behavior.

figure
plot(...

13 Signal Processing Examples

13-168



    (1:length(maeTrain))/11,maeTrain,'b',...
    (length(maeTrain)+[1:length(maeValid)])/11,maeValid,'g',...
    (length(maeTrain)+length(maeValid)+[1:length(maeTest)])/11,maeTest,'r',...
    'linewidth',1.5)
hold on
plot((1:550)/11,thresh*ones(550,1),'k')
hold off
xlabel("Day")
ylabel("MAE")
xlim([1 50])
legend("Training","Validation","Test","Location","NorthWest")
title("LSTM Autoencoder with Wavelet Scattering Sequences")
grid on

There is an initial indication of anomalous behavior between day 11 and 12. Subsequently, the wind
turbine appears to display anomalous behavior almost continually after day 30. This is consistent with
the cumulative plot of the data.

One advantage of the LSTM autoencoder with wavelet scattering features is the significant data
reduction wavelet scattering provides in the time dimension, from 48,828 samples down to 48. This
enables us to train the autoencoder in less than 2 minutes using a GPU. Because training robust deep
learning models often involves tuning hyperparameters, having a model which trains quickly is a
significant advantage.

Conversely, training an autoencoder on the raw data required over 1.5 hours using a GPU.
Accordingly, the training of the autoencoder with raw data is not repeated in this example. Here only
the results are presented. The following LSTM autoencoder was trained on the raw data.

 Detect Anomalies Using Wavelet Scattering with Autoencoders

13-169



Nt = length(rawfeatures{1}); 
lstmAutoEncoder = [ sequenceInputLayer(1, Normalization = "zscore", ...
Name = "input", MinLength = Nt) 
lstmLayer(32, Name = "lstm1a") reluLayer(Name = "relu1") 
lstmLayer(16, Name = "lstm2a", OutputMode = "last") 
dropoutLayer(0.2, Name = "drop1") 
reluLayer(Name = "relu2") 
repeatVectorLayer(Nt) 
lstmLayer(16, Name = "lstm2b") 
dropoutLayer(0.2,Name = "drop2") 
reluLayer(Name = "relu3") 
lstmLayer(32, Name = "lstm1b") 
reluLayer(Name = "relu4") 
fullyConnectedLayer(1) 
regressionLayer(Name = "regression") ]; 

Due to computational considerations, the number of hidden units in the LSTM layers was reduced
with the raw data. Otherwise, the networks used with raw data and with wavelet scattering
sequences were identical.

The threshold was determined in the exact same way as previously described. The following figure
shows the results.

13 Signal Processing Examples

13-170



There are several similarities between the results obtained with the wavelet scattering sequences and
the raw data. Both show the data obtained between day 11 and 12 as an outlier. Both also indicate
anomalous behavior with increasing regularity after approximately day 30. However, the autoencoder
on the raw data appears to have underfit the training data and a few of the training records appear as
anomalous. This does not agree with our knowledge that the wind turbine was functioning normally
at the start of the recording period. There are also many more anomalies indicated by using the
autoencoder on the raw data. Given the false positives on the training data, there is cause to suspect
there are a number of false positives among these detections. Given that we have used a conservative
estimate, it is likely that other thresholding methods would yield even more detections.

Convolutional Autoencoder

While recurrent networks (RNNS) are powerful architectures for anomaly detection, RNNs are
computationally expensive when the time dimension of the data becomes large. To reiterate, the
LSTM autoencoder used above was computationally efficient because of the use of the wavelet
scattering transform which reduced the time dimension of the data from 48,828 samples to 48
samples. As a result, training the autoencoder required less than two minutes using a GPU. On the
other hand, training an LSTM on the raw data required more than 1.5 hours. The training
discrepancies between the two approaches can be lessened by using a convolutional network. The

 Detect Anomalies Using Wavelet Scattering with Autoencoders

13-171



convolutional network mimics the LSTM autoencoder by using convolutional layers with
downsampling at the encoding stage followed by transposed convolutional layers with upsampling at
the decoding stage.

Create a convolutional network. Normalize the data at the input layer using Z-score normalization. To
downsample the input, specify repeating blocks of 1-D convolution, ReLU, and dropout layers. To
upsample the encoded input, include the same number of blocks of 1-D transposed convolution, ReLU,
and dropout layers.

For the convolution layers, specify decreasing numbers of filters with size 11. To ensure that the
outputs are downsampled evenly by a factor of 2, specify a stride of 2, and set the Padding option to
"same". For the transposed convolution layers, specify increasing numbers of filters with size 11. To
ensure that the outputs are upsampled evenly be a factor of 2, specify a stride of 2, and set the
Cropping option to "same".

For the dropout layers, specify a dropout probability of 0.2. To output sequences with the same
number of channels as the input, specify a 1-D transposed convolution layer with the number of filters
matching the number of channels of the input. To ensure output sequences are the same length as the
layer input, set the Cropping option to "same". * At the output use a regression layer.

numDownsamples = 2;
minLength = 48;
filterSize = 11;
numFilters = 16;
dropoutProb = 0.2;
numChannels = npaths;

convlayers = [
    sequenceInputLayer(numChannels,Normalization="zscore",...
    MinLength=minLength,Name = 'InputLayer')

    % Encoder stage
    convolution1dLayer(filterSize,2*numFilters,Padding="same",Stride=2)
    reluLayer
    dropoutLayer(dropoutProb,Name = "dropout1")

    convolution1dLayer(filterSize,numFilters,Padding="same",Stride=2)
    reluLayer
    dropoutLayer(dropoutProb,Name = "dropout2")

    % Decoder stage
    transposedConv1dLayer(filterSize,numFilters,Cropping="same",Stride=2)
    reluLayer
    dropoutLayer(dropoutProb,Name = "transpdropout1")

    transposedConv1dLayer(filterSize,2*numFilters,Cropping="same",Stride=2)
    reluLayer
    dropoutLayer(dropoutProb,Name = "transpdropout2")
    
    % Make channels agree for output
    transposedConv1dLayer(filterSize,numChannels,Cropping="same", ...
    Name = "FinalConvLayer")
    regressionLayer('Name','regression') ];

Train the convolutional network for 300 epochs. Shuffle the training data on each epoch. Output the
network with the best validation loss.

13 Signal Processing Examples

13-172



options = trainingOptions("adam", ...
    MaxEpochs=300, ...
    Shuffle="every-epoch", ...
    ValidationData={validationscatFeatures,validationscatFeatures}, ...
    Verbose=0, ...
    OutputNetwork = 'best-validation-loss',...
    Plots="training-progress");
convNetSCAT = trainNetwork(trainscatFeatures,trainscatFeatures,convlayers,options);

Calculate the MAE losses as done with the LSTM autoencoder.

ypredCTrain = cellfun(@(x)predict(convNetSCAT,x),trainscatFeatures,'UniformOutput',false);
maeCTrain = cellfun(@(x,y)maeLoss(x,y),ypredCTrain,trainscatFeatures);
ypredCValidation = cellfun(@(x)predict(convNetSCAT,x),validationscatFeatures,'UniformOutput',false);
maeCValid = cellfun(@(x,y)maeLoss(x,y),ypredCValidation,validationscatFeatures);
ypredCTest = cellfun(@(x)predict(convNetSCAT,x),testscatFeatures,'UniformOutput',false);
maeCTest = cellfun(@(x,y)maeLoss(x,y),ypredCTest,testscatFeatures);
if useGPU
    [maeCTrain,maeCValid,maeCTest] = gather(maeCTrain,maeCValid,maeCTest);
end

Use only the validation data to determine the threshold for anomaly detection. Utilize the same
threshold determination method as used with the LSTM autoencoder.

threshCV = quantile(maeCValid,0.75)+1.5*iqr(maeCValid);

Plot the results.

figure
plot(...
    (1:length(maeCTrain))/11,maeCTrain,'b',...

 Detect Anomalies Using Wavelet Scattering with Autoencoders

13-173



    (length(maeCTrain)+[1:length(maeCValid)])/11,maeValid,'g',...
    (length(maeCTrain)+length(maeCValid)+[1:length(maeCTest)])/11,maeTest,'r',...
    'linewidth',1.5)
hold on
plot((1:550)/11,thresh*ones(550,1),'k')
hold off
xlabel("Day")
ylabel("MAE")
xlim([1 50])
legend("Training","Validation","Test","Location","NorthWest");
title("Convolutional Network with Wavelet Scattering Sequences")
grid on

Use the same convolutional network to work on the raw data. Change the number of channels to 1 to
match the raw data dimensions. Training with a dropout probability of 0.2 resulted in an severe
underfitting of the training data. As a result, reduce the dropout probability to 0.1. Otherwise, the
networks used with the wavelet scattering sequences and the raw data are identical.

lgraph = layerGraph(convlayers);
inputlayer = sequenceInputLayer(1,Normalization="zscore",...
    MinLength=48,Name = 'InputLayerRaw');
doLayer = dropoutLayer(0.1);
tconvLayer = transposedConv1dLayer(filterSize,1,Cropping="same", ...
    Name = "FinalConvLayer");
rawConvLayers = replaceLayer(lgraph,"InputLayer",inputlayer);
rawConvLayers = replaceLayer(rawConvLayers,"dropout1",doLayer);
rawConvLayers = replaceLayer(rawConvLayers,"dropout2",doLayer);

13 Signal Processing Examples

13-174



rawConvLayers = replaceLayer(rawConvLayers,"transpdropout1",doLayer);
rawConvLayers = replaceLayer(rawConvLayers,"transpdropout2",doLayer);
rawConvLayers = replaceLayer(rawConvLayers,"FinalConvLayer",tconvLayer);

Train the network on the raw data. Use the same options are used with the wavelet scattering
sequences.

options = trainingOptions("adam", ...
    MaxEpochs=300, ...
    Shuffle="every-epoch", ...
    ValidationData={validationrFeatures,validationrFeatures}, ...
    Verbose=0, ...
    OutputNetwork = "best-validation-loss",...
    Plots="training-progress");
convNetRAW = trainNetwork(trainrFeatures,trainrFeatures,rawConvLayers,options);

Calculate the MAE losses and determine the threshold.

ypredRTrain = cellfun(@(x)predict(convNetRAW,x),trainrFeatures,'UniformOutput',false);
maeRTrain = cellfun(@(x,y)maeLoss(x,y),ypredRTrain,trainrFeatures);
ypredRValidation = cellfun(@(x)predict(convNetRAW,x),validationrFeatures,'UniformOutput',false);
maeRValid = cellfun(@(x,y)maeLoss(x,y),ypredRValidation,validationrFeatures);
ypredRTest = cellfun(@(x)predict(convNetRAW,x),testrFeatures,'UniformOutput',false);
maeRTest = cellfun(@(x,y)maeLoss(x,y),ypredRTest,testrFeatures);
if useGPU
    [maeRTrain,maeRValid,maeRTest] = gather(maeRTrain,maeRValid,maeRTest);
end
threshCVraw = quantile(maeRValid,0.75)+1.5*iqr(maeRValid);

Plot the results.

 Detect Anomalies Using Wavelet Scattering with Autoencoders

13-175



figure
plot(...
    (1:length(maeRTrain))/11,maeRTrain,'b',...
    (length(maeRTrain)+[1:length(maeRValid)])/11,maeRValid,'g',...
    (length(maeRTrain)+length(maeRValid)+[1:length(maeRTest)])/11,maeRTest,'r',...
    'linewidth',1.5)
hold on
plot((1:550)/11,threshCVraw*ones(550,1),'k')
hold off
xlabel("Day")
ylabel("MAE")
xlim([1 50])
legend("Training","Validation","Test","Location","NorthWest");
title("Convolutional Network with Raw Data")
grid on

Note that using the convolutional autoencoder has reduced the training time for the wavelet
scattering sequences from a little under one and a half minutes to approximately 45 seconds using a
GPU. The most significant training time input has occurred for the raw data, where training the LSTM
autoencoder required approximately 1.5 hours while the convolutional network completed the
training in approximately 3 minutes.

With respect to the results, those obtained with the convolutional network are similar to the LSTM
autoencoder for both the raw data and wavelet scattering sequences. In agreement with the LSTM
autoencoder results, the wavelet scattering based convolutional autoencoder exhibits anomalous
behavior between day 11 and 12. The wind turbine's behavior returns to the normal range again until
about day 30 when detections of anomalous behavior begin to occur with increasing frequency.

13 Signal Processing Examples

13-176



The results for the raw data are also similar to those obtained with the LSTM autoencoder. There are
detections in the training data, which are likely indicative of false detections. This causes some
suspicion of the detections which occur for the raw data networks during the early portion of the
recording near day 15.

It is important to note that preliminary analysis of records indicated as anomalous by both methods
did not reveal any clear differences using conventional signal analysis techniques such as the short-
time Fourier transform or continuous wavelet transform.

Discussion

In this example, we used both wavelet scattering sequences and raw data with two types of deep
autoencoders to detect inner-race faults in a wind turbine. The use of the wavelet scattering
sequences in place of raw data offered some advantages. First, it greatly reduced the dimensionality
of the problem along the time dimension. This allows for more rapid prototyping of models including
optimization of hyperparameters. Because this is such a critical part of the successful application of
deep learning, it is hard to overstate this advantage with respect to LSTM autoencoders. Secondly,
the deep networks trained on wavelet scattering sequences seem to be more robust against false
detections.

The convolutional autoencoder provided a training-time advantage for both the wavelet scattering
sequences and the raw data, but the relative advantage was far more significant with the raw data.
Using the convolutional autoencoder with both sets of features provides ample opportunity for
optimization of hyperparameters in a reasonable amount of time.

Finally, the use of these different networks and different features are also potentially complementary.
Specifically, they offer the possibility to more closely investigate those records which all methods
designate as normal vs. anomalous with more detailed signal analysis techniques. In an unsupervised
learning problem, this allows us to increase our understanding of the data and develop even more
powerful models for machine monitoring.

References

[1] Bechhoefer, Eric, Brandon Van Hecke, and David He. 2013. “Processing for Improved Spectral
Analysis”. Annual Conference of the Prognostics and Health Management Society 5 (1).

Supporting Functions

function mae = maeLoss(ypred,target)
mae = mean(abs(ypred-target),'all');
end

See Also
waveletScattering | signalDatastore

Related Examples
• “Air Compressor Fault Detection Using Wavelet Scattering” (Wavelet Toolbox)
• “Anomaly Detection Using Autoencoder and Wavelets” (Wavelet Toolbox)
• “Crack Identification from Accelerometer Data” (Wavelet Toolbox)
• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks” (Wavelet Toolbox)

 Detect Anomalies Using Wavelet Scattering with Autoencoders

13-177



More About
• “Wavelet Scattering” (Wavelet Toolbox)

13 Signal Processing Examples

13-178



Denoise Signals with Adversarial Learning Denoiser Model

This example shows how to denoise noisy signals using an adversarial learning denoiser model [1]. on
page 13-190 The model is wrapped as an object that can be trained with any data set of real 1-D
signals. After training, the object is ready to denoise test signals that have similar characteristics as
those in the training set. This example shows the efficacy of the model on noisy electrocardiogram
(ECG) and electroencephalogram (EEG) signals. Denoising these types of signals is a challenging
problem because they are nonstationary and have spectral content of interest that overlaps with the
noise spectrum. In the example, after you denoise the signals using the adversarial learning model,
you compare the results to those of a conventional wavelet denoising technique and of an LSTM
network denoiser model.

Adversarial Learning Denoiser Model

Adversarial learning and generative adversarial networks (GANs) have been widely used in image
generation and are now applied to other fields, including signal processing. Adversarial models
involve two main components: a generator that generates data that attempts to fool the discriminator
and a discriminator that distinguishes between artificially generated data and real data.

In this example, you train an adversarial learning model using clean and noisy signals. The model acts
as a signal denoiser and has this learning architecture.

The training input data consists of a set of signals including both clean and noisy realizations. The
encoder, which is also the generator, generates an encoded latent representation of the input signals.
Ideally, the encoded representation meets these two requirements:

1 The representation does not encode any noise information and be clean enough to fool the
discriminator into thinking it was encoded from a clean input signal.

2 The representation encodes enough information for the decoder to reconstruct the original signal
from it.

The discriminator is responsible for identifying whether the latent representation comes from a clean
input signal or a noisy one. Finally, the decoder reconstructs the denoised signal from the latent
representation. Both the discriminator and encoder provide feedback in the form of computed loss

 Denoise Signals with Adversarial Learning Denoiser Model

13-179



values to update themselves and the encoder. The Adadelta optimizer is used to update the model
after getting the feedback.

Loss1 is the mean squared error (MSE) between the generated denoised signal and the clean input
signal. Loss2, Loss3, and Loss4 are all cross-entropy losses for predicted labels from the
discriminator. The model use noisy source signal training set to compute Loss2 and Loss4 and clean
source signal training set to compute Loss3.

Because the encoder wants to fool the discriminator, the target label for Loss4 is clean even though
it is always computed using noisy signal inputs.

Data Preparation

This example uses the Physionet ECG-ID database [2] on page 13-190 [3] on page 13-190, which has
310 ECG records from 90 subjects. Each record contains a raw noisy ECG signal and a manually
filtered clean ground truth version.

Save the data set to a local folder or download the data use the following code.

datasetFolder = fullfile(tempdir,"ecg-id-database-1.0.0");
if ~isfolder(datasetFolder)
    loc = websave(tempdir,"https://physionet.org/static/published-projects/ecgiddb/ecg-id-database-1.0.0.zip");
    unzip(loc,tempdir);
end

Create a signalDatastore (Signal Processing Toolbox) object to manage the data. Randomly select
data from 10 different subjects as the test set. Reset the random seed so that reproducible data
segmentation and visualization results are reproducible.

sds = signalDatastore(datasetFolder, ...
                      IncludeSubfolders = true, ...
                      FileExtensions = ".dat", ...
                      ReadFcn = @helperReadSignalData);
rng("default")

subjectIds = unique(extract(sds.Files,"Person_"+digitsPattern));
testSubjects = contains(sds.Files,subjectIds(randperm(numel(subjectIds),10)));
testDs = subset(sds,testSubjects);

Use 80% of the remaining data for training and 20% for validation.

trainAndValDs = subset(sds,~testSubjects);
trainAndValDs = shuffle(trainAndValDs);
[trainInd,valInd] = dividerand(1:numel(trainAndValDs.Files),0.8,0.2,0);
trainDs = subset(trainAndValDs,trainInd);
validDs = subset(trainAndValDs,valInd);

Train Adversarial Signal Denoiser Object

Create a signal denoiser object for later use in training and denoising. Because the model is
dependent on the signal length, the object can work only with fixed-length signals. Specify the signal
length when creating the model.

sampleSignal = preview(trainDs);
signalLength = length(sampleSignal{1});
advDenoiser = helperAdversarialSignalDenoiser(signalLength);

13 Signal Processing Examples

13-180



Use the train function to train the denoiser object. You can specify multiple training options by
passing extra optional argument inputs to customize the training process.

Set the doTrain flag to false if you want to skip the training process and directly load a pretrained
object.

doTrain = ;
if doTrain
    train(advDenoiser,trainDs,...
        ValidationData = validDs, ...
        MaxEpochs = 100, ...
        MiniBatchSize = 32, ...
        Plots = true, ...
        Normalization = true);
else
    zipFile = matlab.internal.examples.downloadSupportFile('SPT','data/adversarialLearningDenoiserModelParameters.zip'); 
    unzip(zipFile);
    loadParameters(advDenoiser,"adversarialLearningDenoiserModelParameters");
end

Training loss after epoch 1: 1.7162
Training loss after epoch 10: 0.011477
Training loss after epoch 20: 0.018192
Training loss after epoch 30: 0.0096357
Training loss after epoch 40: 0.044912
Training loss after epoch 50: 0.003166
Training loss after epoch 60: 0.060249
Training loss after epoch 70: 0.0038481
Training loss after epoch 80: 0.0061918
Training loss after epoch 90: 0.0021122
Training loss after epoch 100: 0.001513

 Denoise Signals with Adversarial Learning Denoiser Model

13-181



Denoise Signals on Test Data Set

Use denoise to test the denoiser object with the signal data in the test signal datastore testDs. You
can specify the batch size and execution environment that the denoise function uses. Note that the
output of the denoise function is also a datastore.

denoisedSignalsDs = denoise(advDenoiser,testDs, ...
    "MiniBatchSize",32, ...
    "ExecutionEnvironment","auto");

Get the clean signals, noisy signals, and denoised signals from the datastores and store them as row-
wise matrices.

testData = readall(testDs);
denoisedSignals = readall(denoisedSignalsDs);
denoisedSignals = cat(1,denoisedSignals{:});

noisySignals = cellfun(@(x) x(1),testData);
noisySignals = cat(1,noisySignals{:});

13 Signal Processing Examples

13-182



cleanSignals = cellfun(@(x) x(2),testData);
cleanSignals = cat(1,cleanSignals{:});

Compare the original and the denoised signal-to-noise ratio (SNR) values.

N = size(cleanSignals,1);
snrsNoisy = zeros(N,1);
snrsDenoised = zeros(N,1);
snrsWaveletDenoised = zeros(N,1);
for i = 1:N
    snrsNoisy(i) = snr(cleanSignals(i,:),cleanSignals(i,:)-noisySignals(i,:));
end
for i = 1:N
    snrsDenoised(i) = snr(cleanSignals(i,:),cleanSignals(i,:)-denoisedSignals(i,:));
end

SNRs = [snrsNoisy,snrsDenoised];

bins = -10:2:16;
count = zeros(2,length(bins)-1);
for i =1:2
    count(i,:) = histcounts(SNRs(:,i),bins);
end

bar(bins(1:end-1),count,"stack");
legend(["Noisy","Denoised (advDenoiser)"],"Location","northwest")
title("SNR of the Noisy and Denoised Signals")
xlabel("SNR (dB)")
ylabel("Number of Samples")
grid on

 Denoise Signals with Adversarial Learning Denoiser Model

13-183



Display the best and worst denoised SNR values and plot the corresponding signals. Although some
original noisy signals are very distorted, the noise reduction effects are still clear in both cases.

[bestSNR,bestSNRIdx] = max(snrsDenoised)

bestSNR = 14.2563

bestSNRIdx = 9

[worstSNR,worstSNRIdx] = min(snrsDenoised)

worstSNR = -1.8763

worstSNRIdx = 19

helperPlotDenoisedSignal(bestSNRIdx,worstSNRIdx,noisySignals,denoisedSignals,cleanSignals)

13 Signal Processing Examples

13-184



 Denoise Signals with Adversarial Learning Denoiser Model

13-185



Compare Results with Wavelet Denoising

A common question that arises when using deep learning approaches to solve signal processing
problems is how these methods compare to classical or conventional signal processing techniques.
Compare the performance of the adversarial learning model with a conventional wavelet denoising
method. Use the wavelet denoising function wdenoise (Wavelet Toolbox) to denoise the test signals.
The parameters are from an exhaustive search in the original paper [1] on page 13-190.

noisySignalsNormalized = noisySignals - mean(noisySignals,2);
waveletDenoisedSignals = wdenoise(double(noisySignalsNormalized),...
    Wavele = "sym8", ...
    ThresholdRule = "soft", ...
    NoiseEstimate = "LevelDependent");

Compute and visualize the SNR of the wavelet denoised signal.

for i = 1:N
    snrsWaveletDenoised(i) = snr(cleanSignals(i,:),cleanSignals(i,:)-waveletDenoisedSignals(i,:));
end
SNRs = [snrsNoisy,snrsDenoised snrsWaveletDenoised];

13 Signal Processing Examples

13-186



bins = -10:2:16;
count = zeros(3,length(bins)-1);
for i =1:3
    count(i,:) = histcounts(SNRs(:,i),bins);
end
bar(bins(1:end-1),count,"stack");
legend(["Noisy","Denoised (advDenoiser)","Denoised (wavDenoiser)"],"Location","best")
title("SNR of the Noisy and Denoised Signals")
xlabel("SNR (dB)")
ylabel("Number of Samples")
grid on

Plot the wavelet-denoised signal and the adversarial-denoised signal for the worst SNR and best SNR.

helperPlotDenoisedSignal(bestSNRIdx,worstSNRIdx,noisySignals,denoisedSignals,cleanSignals,waveletDenoisedSignals)

 Denoise Signals with Adversarial Learning Denoiser Model

13-187



13 Signal Processing Examples

13-188



The adversarial denoiser performs better than the wavelet denoiser, especially for the worst SNR
values.

Note that the clean signals used as the ground truth in this data set are manually filtered with a
combination of some conventional noise reduction methods based on prior knowledge of the signal
and noise. While these conventional methods can also work well to denoise signals, the adversarial
denoiser model in this example does not require prior knowledge to apply signal denoising.

Apply Denoiser Object to Different Data Set

You can train the adversarial learning signal denoiser object with many other data sets. For example,
you can use the denoiser to denoise EEG signals.

To understand the performance of the adversarial signal denoiser, the model was compared with an
LSTM network, stftNet, which uses short-time Fourier transform (STFT) features as input. The
adversarial denoiser object and stftNet were used to denoise EEG signals contaminated by EOG
signals with different SNRs. For more information about stftNet and the EEG data set, see “Denoise
EEG Signals Using Deep Learning Regression with GPU Acceleration” (Signal Processing Toolbox).

 Denoise Signals with Adversarial Learning Denoiser Model

13-189



The adversarial denoiser object and stftNet were trained with 10% of the original set of EEG
signals. The plot illustrates the performance of the two models in terms of mean squared error. For
comparison, the plot also shows the mean squared error of the original noisy signals without any
denoising.

The adversarial model performs better than the stftNet model especially when the SNR is large.

References

[1] Casas, Leslie, Attila Klimmek, Nassir Navab, and Vasileios Belagiannis. “Adversarial Signal
Denoising with Encoder-Decoder Networks.” In 2020 28th European Signal Processing Conference
(EUSIPCO), 1467–71. Amsterdam, Netherlands: IEEE, 2021. https://doi.org/10.23919/
Eusipco47968.2020.9287738.

[2] Lugovaya, Tatiana. 2005. "Biometric Human Identification Based on Electrocardiogram." Master's
thesis, Saint Petersburg Electrotechnical University.

13 Signal Processing Examples

13-190



[3] Goldberger, Ary L., Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov, Roger
G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley. “PhysioBank,
PhysioToolkit, and PhysioNet.” Circulation 101, no. 23 (June 13, 2000): e215–20. https://doi.org/
10.1161/01.CIR.101.23.e215.

[4] Zhang, Haoming, Mingqi Zhao, Chen Wei, Dante Mantini, Zherui Li, and Quanying Liu.
“EEGdenoiseNet: A Benchmark Dataset for End-to-End Deep Learning Solutions of EEG Denoising.”
Preprint, submitted July 28, 2021. https://arxiv.org/abs/2009.11662.

Appendix: Helper Functions

function [dataOut,infoOut] = helperReadSignalData(filename)
    fid = fopen(filename,"r");
    % 1st row : raw data, 2nd row : filtered data
    data = fread(fid,[2 Inf],"int16=>single");
    fclose(fid);
    fid = fopen(replace(filename,".dat",".hea"),"r");
    header = textscan(fid,"%s%d%d%d",2,"Delimiter"," ");
    fclose(fid);
    gain = single(header{3}(2));
    dataOut{1} = data(1,:)/gain; % noisy, raw data
    dataOut{2} = data(2,:)/gain; % filtered, clean data
    infoOut.SampleRate = header{3}(1);
end

function helperPlotDenoisedSignal(varargin)
    bestSNRidx = varargin{1};
    worstSNRidx = varargin{2};
    plotRange = 2000:3000;
    labels = ["Noisy","Denoised (advDenoiser)","Clean","Denoised (wavDenoiser)"];
    
    figure
    hold on
    for i = 3:nargin
        signal = varargin{i};
        plot(plotRange,(signal(bestSNRidx,plotRange)));
    end

   
    legend(labels(1:nargin-2),Location="southoutside",Orientation = "horizontal",NumColumns=2)
    title("Denoised Signal with Best SNR")
    hold off

    figure
    hold on
    for i = 3:nargin
        signal = varargin{i};
        plot(plotRange,(signal(worstSNRidx,plotRange)));
    end
    legend(labels(1:nargin-2),Location="southoutside",Orientation = "horizontal",NumColumns=2)
    title("Denoised Signal with Worst SNR")
    hold off

end

 Denoise Signals with Adversarial Learning Denoiser Model

13-191



Contains information from the PhysioNet ECG-ID Database, which is made available under the ODC
Attribution License available at https://opendatacommons.org/licenses/by/1-0/.

See Also
Functions
wdenoise

Objects
signalDatastore

13 Signal Processing Examples

13-192

https://physionet.org/content/ecgiddb/1.0.0/
https://opendatacommons.org/licenses/by/1-0/


Human Health Monitoring Using Continuous Wave Radar and
Deep Learning

This example shows how to reconstruct electrocardiogram (ECG) signals via continuous wave (CW)
radar signals using deep learning neural networks.

Radar is now being used for vital sign monitoring. This method offers many advantages over wearable
devices. It allows non-contact measurement which is preferred for use in cases of daily use of long-
term monitoring. However, the challenge is that we need to convert radar signals to vital signs or to
meaningful biosignals that can be interpreted by physicians. Current traditional methods based on
signal transform and correlation analysis can capture periodic heartbeats but fail to reconstruct the
ECG signal from the radar returns. This example shows how AI, specifically a deep learning network,
can be used to reconstruct ECG signals solely from the radar measurements.

This example uses a hybrid convolutional autoencoder and bidirectional long short-term memory
(BiLSTM) network as the model. Then, a wavelet multiresolution decomposition layer, maximal
overlap discrete wavelet transform (MODWT) layer, is introduced to improve the performance. The
example compares the network using a 1-D convolutional layer and network using a MODWT layer.

Data Description

The dataset [1] presented in this example consists of synchronized data from a CW radar and ECG
signals measured simultaneously by a reference device on 30 healthy subjects. The implemented CW
radar system is based on the Six-Port technology and operates at 24 GHz in the Industrial Scientific
and Medical (ISM) band.

Due to the large volume of the original dataset, for efficiency of model training, only a small subset of
the data is used in this example. Specifically, the data from three scenarios, resting, apnea, and
Valsalva maneuver, is selected. Further, the data from subjects 1-5 is used to train and validate the
model. The data from subject 6 is used to test the trained model.

Also, because the main information contained in the ECG signal is usually located in a frequency band
less than 100 Hz, all signals are downsampled to 200 Hz and divided into segments of 1024 points,
i.e. signals of approximately 5s.

Download and Prepare Data

The data has been uploaded to this location: https://ssd.mathworks.com/supportfiles/SPT/data/
SynchronizedRadarECGData.zip.

Download the dataset using the downloadSupportFile function. The whole dataset is
approximately 16 MB in size. It contains two folders, trainVal for training and validation data and
test for test data. Inside each of them, ECG signals and radar signals are stored in two separate
folders, ecg and radar.

datasetZipFile = matlab.internal.examples.downloadSupportFile('SPT','data/SynchronizedRadarECGData.zip');
datasetFolder = fullfile(fileparts(datasetZipFile),'SynchronizedRadarECGData');
if ~exist(datasetFolder,'dir')     
    unzip(datasetZipFile,datasetFolder);
end

Create signal datastores to access the data in the files.

 Human Health Monitoring Using Continuous Wave Radar and Deep Learning

13-193

https://ssd.mathworks.com/supportfiles/SPT/data/SynchronizedRadarECGData.zip
https://ssd.mathworks.com/supportfiles/SPT/data/SynchronizedRadarECGData.zip


radarTrainValDs = signalDatastore(fullfile(datasetFolder,"trainVal","radar"));
radarTestDs = signalDatastore(fullfile(datasetFolder,"test","radar"));
ecgTrainValDs = signalDatastore(fullfile(datasetFolder,"trainVal","ecg"));
ecgTestDs = signalDatastore(fullfile(datasetFolder,"test","ecg"));

View the categories and distribution of the data contained in the training and test sets. Note the
GDN000X represents measurement data from subject X and not every subject has data for all three
scenarios.

trainCats = filenames2labels(radarTrainValDs,'ExtractBefore','_radar');
summary(trainCats)

     GDN0001_Resting        59 
     GDN0001_Valsalva       97 
     GDN0002_Resting        60 
     GDN0002_Valsalva       97 
     GDN0003_Resting        58 
     GDN0003_Valsalva      103 
     GDN0004_Apnea          14 
     GDN0004_Resting        58 
     GDN0004_Valsalva      106 
     GDN0005_Apnea          14 
     GDN0005_Resting        59 
     GDN0005_Valsalva      105 

testCats = filenames2labels(radarTestDs,'ExtractBefore','_radar');
summary(testCats)

     GDN0006_Apnea          14 
     GDN0006_Resting        59 
     GDN0006_Valsalva      127 

Apply normalization on ECG signals. Center each signal by subtracting its median and rescale it so
that its maximum peak is 1.

ecgTrainValDs = transform(ecgTrainValDs,@helperNormalize);
ecgTestDs = transform(ecgTestDs,@helperNormalize);

Combine radar and ECG signal datastores. Then, further split the training and validation dataset. Use
90% of data for training and 10% for validation. Set the random seed so that data segmentation and
visualization results are reproducible.

trainValDs = combine(radarTrainValDs,ecgTrainValDs);
testDs = combine(radarTestDs,ecgTestDs);

rng("default")
splitIndices = splitlabels(trainCats,0.90);
numTrain = length(splitIndices{1})

numTrain = 747

numVal = length(splitIndices{2})

numVal = 83

numTest = length(testCats)

numTest = 200

13 Signal Processing Examples

13-194



trainDs = subset(trainValDs,splitIndices{1});
valDs = subset(trainValDs,splitIndices{2});

Because the dataset used here is not large, read the training, testing, and validation data into
memory.

trainData = readall(trainDs);
valData = readall(valDs);
testData = readall(testDs);

Preview Data

Plot a representative of each type of signal. Notice that it is almost impossible to identify any
correlation between the radar signals and the corresponding reference ECG measurements.

numCats = cumsum(countcats(testCats));
previewindices = [randi([1,numCats(1)]),randi([numCats(1)+1,numCats(2)]),randi([numCats(2)+1,numCats(3)])];
helperPlotData(testDs,previewindices);

Train Convolutional Autoencoder and BiLSTM Model

Build a hybrid convolutional autoencoder and BiLSTM network to reconstruct ECG signals. The first
1-D convolutional layer filters the signal. Then, the convolutional autoencoder eliminates most of the
high-frequency noise and captures the high-level patterns of the whole signal. The subsequent
BiLSTM layer further finely shapes the signal details.

layers1 = [
    sequenceInputLayer(1,MinLength = 1024)
    
    convolution1dLayer(4,3,Padding="same",Stride=1)

    convolution1dLayer(64,8,Padding="same",Stride=8)
    batchNormalizationLayer()
    tanhLayer
    maxPooling1dLayer(2,Padding="same")

    convolution1dLayer(32,8,Padding="same",Stride=4)
    batchNormalizationLayer
    tanhLayer
    maxPooling1dLayer(2,Padding="same")

 Human Health Monitoring Using Continuous Wave Radar and Deep Learning

13-195



    transposedConv1dLayer(32,8,Cropping="same",Stride=4)
    tanhLayer

    transposedConv1dLayer(64,8,Cropping="same",Stride=8)
    tanhLayer
    
    bilstmLayer(8)

    fullyConnectedLayer(8)  
    dropoutLayer(0.2)

    fullyConnectedLayer(4)  
    dropoutLayer(0.2)

    fullyConnectedLayer(1)
    regressionLayer];

Define the training option parameters: use an Adam optimizer and choose to shuffle the data at every
epoch. Also, specify radarVal and ecgVal as the source for the validation data. Use the
trainNetwork function to train the model. At the same time, the training information is recorded,
which will be used for performance analysis and comparison later.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox) (Parallel Computing Toolbox).

options = trainingOptions("adam",...
    MaxEpochs=600,...
    MiniBatchSize=600,...
    InitialLearnRate=0.001,...
    ValidationData={valData(:,1),valData(:,2)},...
    ValidationFrequency=100,...
    VerboseFrequency=100,...
    Verbose=1, ...
    Shuffle="every-epoch",...
    Plots="none", ...
    DispatchInBackground=true);

[net1,info1] = trainNetwork(trainData(:,1),trainData(:,2),layers1,options);

Training on single GPU.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     RMSE     |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:01 |         0.19 |         0.18 |       0.0180 |       0.0171 |          0.0010 |
|     100 |         100 |       00:00:57 |         0.18 |         0.18 |       0.0166 |       0.0163 |          0.0010 |
|     200 |         200 |       00:01:54 |         0.18 |         0.18 |       0.0165 |       0.0164 |          0.0010 |
|     300 |         300 |       00:02:50 |         0.18 |         0.18 |       0.0161 |       0.0160 |          0.0010 |
|     400 |         400 |       00:03:46 |         0.17 |         0.17 |       0.0151 |       0.0148 |          0.0010 |
|     500 |         500 |       00:04:42 |         0.17 |         0.17 |       0.0144 |       0.0140 |          0.0010 |
|     600 |         600 |       00:05:38 |         0.17 |         0.16 |       0.0138 |       0.0133 |          0.0010 |
|======================================================================================================================|
Training finished: Max epochs completed.

13 Signal Processing Examples

13-196



Analyze Performance of Trained Model

Randomly pick a representative sample of each type from the test dataset to visualize and get an
initial intuition about the accuracy of the reconstructions of the trained model.

testindices = [randi([1,numCats(1)]),randi([numCats(1)+1,numCats(2)]),randi([numCats(2)+1,numCats(3)])];
helperPlotData(testDs,testindices,net1);

Comparing the measured and reconstructed ECG signals, it can be seen that the model has been able
to initially learn some correlations between the radar and ECG signals. But the results are not very
satisfactory. Some peaks are not aligned with the actual peaks and the waveform shapes do not
resemble those of the measured ECG. A few peaks are even completely lost.

Improve Performance Using Multiresolution Analysis and MODWT Layer

Feature extraction is often used to capture the key information of the signals, reduce the
dimensionality and redundancy of the data, and help the model achieve better results. Considering
that the effective information of the ECG signal exists in a certain frequency range. Use MODWT to
decompose the radar signals and get the multiresolution analysis (MRA) of it as the feature.

It can be found that some components of the radar signal decomposed by MODWTMRA, such as the
component of level 4, have similar periodic patterns with the measured ECG signal. Meanwhile, some
components contain almost complete noise. Inspired by this, introducing MODWT layer into the
model and selecting only a few level components may help the network focus more on correlated
information, while also reducing irrelevant interference.

ds = subset(trainDs,1);
[~,name,~] = fileparts(ds.UnderlyingDatastores{1}.Files{1});
data = read(ds);
radar = data{1};
ecg = data{2};

 Human Health Monitoring Using Continuous Wave Radar and Deep Learning

13-197



levs = 1:6;
idx = 100:800;
m = modwt(radar,'sym2',max(levs));
nplot = length(levs)+2;
mra = modwtmra(m);

figure
tiledlayout(nplot,1)
nexttile
plot(ecg(idx))
title(["ECG Signal and Radar Signal MODWTMRA", "of Sample " + regexprep(name, {'_','radar'}, '')])
ylabel("Measured ECG")
grid on
d = 1;
for i = levs
    d = d+1;
    nexttile
    plot(mra(i,idx))
    ylabel(["Radar", "MODWTMRA", "Level " + i'])
    grid on
end
nexttile
plot(mra(i+1,idx))
ylabel(["Radar", "MODWTMRA","Scaling","Coefficients"])
set(gcf,'Position',[0 0 700,800])

13 Signal Processing Examples

13-198



Replace the first convolution1dLayer with modwtLayer. The MODWT layer has been configured
to have the same filter size and number of output channels to preserve the number of learning

 Human Health Monitoring Using Continuous Wave Radar and Deep Learning

13-199



parameters. Based on the observations before, only components of a specific frequency range are
preserved, i.e. level 3 to 5, which effectively removes unnecessary signal information that is
irrelevant to the ECG reconstruction. Refer to modwtLayer (Wavelet Toolbox) documentation for
more details on modwtLayer and these parameters.

A flattenLayer is also inserted after the modwtLayer to make the subsequent
convolution1dLayer convolve along the time dimension, and to make the output format
compatible with the subsequent bilstmLayer.

layers2 = [
    sequenceInputLayer(1,MinLength = 1024)

    modwtLayer('Level',5,'IncludeLowpass',false,'SelectedLevels',3:5,"Wavelet","sym2")
    flattenLayer 

    convolution1dLayer(64,8,Padding="same",Stride=8)
    batchNormalizationLayer()
    tanhLayer
    maxPooling1dLayer(2,Padding="same")

    convolution1dLayer(32,8,Padding="same",Stride=4)
    batchNormalizationLayer
    tanhLayer
    maxPooling1dLayer(2,Padding="same")

    transposedConv1dLayer(32,8,Cropping="same",Stride=4)
    tanhLayer

    transposedConv1dLayer(64,8,Cropping="same",Stride=8)
    tanhLayer
    
    bilstmLayer(8)

    fullyConnectedLayer(8)  
    dropoutLayer(0.2)

    fullyConnectedLayer(4)  
    dropoutLayer(0.2)

    fullyConnectedLayer(1)
    regressionLayer];

Use the same training options as before.

options = trainingOptions("adam",...
    MaxEpochs=600,...
    MiniBatchSize=600,...
    InitialLearnRate=0.001,...
    ValidationData={valData(:,1),valData(:,2)},...
    ValidationFrequency=100,...
    VerboseFrequency=100,...
    Verbose=1, ...
    Shuffle="every-epoch",...
    Plots="none", ...
    DispatchInBackground=true);

[net2,info2] = trainNetwork(trainData(:,1),trainData(:,2),layers2,options);

13 Signal Processing Examples

13-200



Training on single GPU.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     RMSE     |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:01 |         0.19 |         0.19 |       0.0180 |       0.0172 |          0.0010 |
|     100 |         100 |       00:01:10 |         0.15 |         0.14 |       0.0112 |       0.0100 |          0.0010 |
|     200 |         200 |       00:02:19 |         0.12 |         0.11 |       0.0074 |       0.0064 |          0.0010 |
|     300 |         300 |       00:03:28 |         0.11 |         0.11 |       0.0063 |       0.0061 |          0.0010 |
|     400 |         400 |       00:04:37 |         0.11 |         0.11 |       0.0058 |       0.0059 |          0.0010 |
|     500 |         500 |       00:05:46 |         0.10 |         0.11 |       0.0053 |       0.0059 |          0.0010 |
|     600 |         600 |       00:06:57 |         0.10 |         0.11 |       0.0051 |       0.0061 |          0.0010 |
|======================================================================================================================|
Training finished: Max epochs completed.

Compare the training and validation losses of two models. Both the training loss and validation loss of
the model with MODWT layer drop much faster and more smoothly.

figure
plot(info1.TrainingLoss)
hold on
scatter(1:length(info1.ValidationLoss),info1.ValidationLoss)
plot(info2.TrainingLoss)
scatter(1:length(info2.ValidationLoss),info2.ValidationLoss)
hold off
legend(["Training Loss of ConvAE + LSTM", ...
    "Validation Loss of ConvAE + LSTM", ...
    "Training Loss of ConvAE + LSTM + modwtLayer",...
    "Validation Loss of ConvAE + LSTM + modwtLayer"],"Location","eastoutside")
xlabel("Epoch")
title("Training Information")
set(gcf,'Position',[0 0 1000,500]);

 Human Health Monitoring Using Continuous Wave Radar and Deep Learning

13-201



Further compare the reconstructed signals on the same test data samples. The model with
modwtLayer can capture the peak position, magnitude, and shape of ECG signals very well in resting
and valsalva scenarios. Even in apnea scenarios, with relatively few training samples, it can still
capture the main peaks and get reconstructed signals.

helperPlotData(testDs,testindices,net1,net2)

Compare the distributions of the reconstructed signal errors for the two models on the full test set. It
further illustrates that using MODWT layer improves the accuracy of the reconstruction.

ecgTestRe1 = predict(net1,testData(:,1));
loss1 = cellfun(@mse,ecgTestRe1,testData(:,2));
ecgTestRe2 = predict(net2,testData(:,1));
loss2 = cellfun(@mse,ecgTestRe2,testData(:,2));

figure
h1 = histogram(loss1);
hold on 
h2 = histogram(loss2);
hold off

h1.Normalization = 'probability';
h1.BinWidth = 0.003;
h2.Normalization = 'probability';
h2.BinWidth = 0.003;

13 Signal Processing Examples

13-202



ylabel("Probability")
xlabel("MSE between Measured and Reconstructed ECG Signals")
title("Distribution of Test MSEs")
legend(["Model without modwtLayer","Model with modwtLayer"])

Conclusion

This example implements a convolutional autoencoder and BiLSTM network to reconstruct ECG
signals from CW radar signals. The example analyzes the performance of the model with and without
a MODWT Layer. It shows that the introduction of MODWT layer improves the quality of the
reconstructed ECG signals.

Reference

[1] Schellenberger, S., Shi, K., Steigleder, T. et al. A dataset of clinically recorded radar vital signs
with synchronised reference sensor signals. Sci Data 7, 291 (2020). https://doi.org/10.1038/
s41597-020-00629-5

 Human Health Monitoring Using Continuous Wave Radar and Deep Learning

13-203



Appendix -- Helper Functions

helperNormalize - this function normalizes input signals by subtracting the median and dividing by
the maximum value.

function x = helperNormalize(x)
% This function is only intended to support this example. It may be changed
% or removed in a future release. 
    x = x-median(x);
    x = {x/max(x)};
end

helperPlotData - this function plots radar and ecg signals.

function  helperPlotData(DS,Indices,net1,net2)
% This function is only intended to support this example. It may be changed
% or removed in a future release. 
    arguments
       DS 
       Indices
       net1 =[]
       net2 = []
    end
    fs = 200;
    N = numel(Indices);
    M = 2;
    if ~isempty(net1)
        M = M + 1;
    end
    if ~isempty(net2)
        M = M + 1;
    end

    tiledlayout(M, N, 'Padding', 'none', 'TileSpacing', 'compact');
    for i = 1:N
        idx = Indices(i);
        ds = subset(DS,idx);
        [~,name,~] = fileparts(ds.UnderlyingDatastores{1}.Files{1});
        data = read(ds);
        radar = data{1};
        ecg = data{2};
        t = linspace(0,length(radar)/fs,length(radar));

        nexttile(i)
        plot(t,radar)
        title(["Sample",regexprep(name, {'_','radar'}, '')])
        xlabel(["Radar Signal","Time (s)"])
        grid on
    
        nexttile(N+i)
        plot(t,ecg)
        xlabel(["Measured ECG Signal","Time (s)"])
        ylim([-0.3,1])
        grid on
    
        if ~isempty(net1)
            nexttile(2*N+i)
            y = predict(net1,radar);

13 Signal Processing Examples

13-204



            plot(t,y)
            grid on
            ylim([-0.3,1])
            xlabel(["Reconstructed ECG Signal","Time (s)"])
        end
        
        if ~isempty(net2)
            nexttile(3*N+i)
            y = predict(net2,radar);
            hold on
            plot(t,y)
            hold off
            grid on
            ylim([-0.3,1])
            xlabel(["Reconstructed ECG Signal", "with modwtLayer","Time (s)"])
        end
        
    end

    set(gcf,'Position',[0 0 300*N,150*M])

end

See Also
Functions
dlmodwt

Objects
modwtLayer

Related Examples
• “Wavelet Time Scattering for ECG Signal Classification” (Wavelet Toolbox)

 Human Health Monitoring Using Continuous Wave Radar and Deep Learning

13-205



Classify ECG Signals Using DAG Network Deployed to FPGA

This example shows how to classify human electrocardiogram (ECG) signals by deploying a transfer
learning trained SqueezeNet network trainedSN to a Xilinx Zynq Ultrascale+ ZCU102 board.

Required Products

For this example, you need:

• Deep Learning Toolbox ™
• Image Processing Toolbox ™
• Wavelet Toolbox ™
• Deep Learning HDL Toolbox ™
• Deep Learning HDL Toolbox ™ Support Package for Xilinx FPGA and SoC Devices
• Xilinx Zynq Ultrascale+ MPSoC ZCu102

Download Data

Download the data from the GitHub repository. To download the data from the website, click Clone
and select Download ZIP. Save the file physionet_ECG_data-main.zip in a folder where you
have write permission.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-main.zip'),tempdir);

The ECG data is classified into these labels:

• persons with cardiac arrhythmia (ARR)
• persons with congestive heart failure (CHF)
• persons with normal sinus rhythms (NSR)

The data is collected from these sources:

• MIT-BIH Arrhythmia Database [3][7]
• MIT-BIH Normal Sinus Rhythm Database [3]
• BIDMC Congestive Heart Failure Database [1][3]

Unzipping creates the folder physionet-ECG_data-main in your temporary directory.

Unzip ECGData.zip in physionet-ECG_data-main. Load the ECGData.mat data file into your
MATLAB workspace.

unzip(fullfile(tempdir,'physionet_ECG_data-main','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-main'))
load(fullfile(tempdir,'physionet_ECG_data-main','ECGData.mat'))

Create a folder called dataDir inside the ECG data directory and then create three directories called
ARR, CHF, and NSR inside dataDir by using the helperCreateECGDirectories function. You can
find the source code for this helper function in the Supporting Functions section at the end of this
example.

13 Signal Processing Examples

13-206

https://github.com/mathworks/physionet_ECG_data/
https://www.physionet.org/physiobank/database/mitdb/
https://www.physionet.org/physiobank/database/nsrdb/
https://www.physionet.org/physiobank/database/chfdb/


% parentDir = tempdir;
parentDir = pwd;
dataDir = 'data';
helperCreateECGDirectories(ECGData,parentDir,dataDir);

Plot an ECG that represents each ECG category by using the helperPlotReps helper function. does
this. You can find the source code for this helper function in the Supporting Functions section at the
end of this example.

helperPlotReps(ECGData)

Create Time-Frequency Representations

After making the folders, create time-frequency representations of the ECG signals. Creating time-
frequency representations helps with feature extraction. These representations are called
scalograms. A scalogram is the absolute value of the continuous wavelet transform (CWT) coefficients
of a signal. Create a CWT filter bank using cwtfilterbank (Wavelet Toolbox) (Wavelet Toolbox) for a
signal with 1000 samples.

Fs =128;
fb = cwtfilterbank(SignalLength=1000,...
    SamplingFrequency=Fs,...
    VoicesPerOctave=12);
sig = ECGData.Data(1,1:1000);
[cfs,frq] = wt(fb,sig);
t = (0:999)/Fs;figure;pcolor(t,frq,abs(cfs))
set(gca,'yscale','log');shading interp;axis tight;
title('Scalogram');xlabel('Time (s)');ylabel('Frequency (Hz)')

 Classify ECG Signals Using DAG Network Deployed to FPGA

13-207



Use the helperCreateRGBfromTF helper function to create the scalograms as RGB images and
write them to the appropriate subdirectory in dataDir. The source code for this helper function is in
the Supporting Functions section at the end of this example. To be compatible with the SqueezeNet
architecture, each RGB image is an array of size 227-by-227-by-3.

helperCreateRGBfromTF(ECGData,parentDir,dataDir)

Divide into Training and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An
image datastore enables you to store large image data, including data that does not fit in memory,
and efficiently read batches of images during training of a CNN.

allImages = imageDatastore(fullfile(parentDir,dataDir),...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Randomly divide the images into two groups. Use 80% of the images for training, and the remainder
for validation. For purposes of reproducibility, we set the random seed to the default value.

rng default
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized');
disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]);
disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]);

13 Signal Processing Examples

13-208



Load Transfer Learning Trained Network

Load the transfer learning trained SqueezeNet network trainedSN. To create the trainedSN
network, see “Classify Time Series Using Wavelet Analysis and Deep Learning” on page 13-79.

load('trainedSN.mat');

Configure FPGA Board Interface

Configure the FPGA board interface for the deep learning network deployment and MATLAB
communication by using the dlhdl.Target class to create a target object with a custom name for
your target device and an interface to connect your target device to the host computer. To use
JTAG,Install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:

% hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

hTarget = dlhdl.Target('Xilinx',Interface="Ethernet");

Prepare trainedSN Network for Deployment

Prepare the trainedSN network for deployment by using the dlhdl.Workflow class to create an
object. When you create the object, specify the network and the bitstream name. Specify trainedSN
as the network. Make sure that the bitstream name matches the data type and the FPGA board that
you are targeting. In this example, the target FPGA board is the Xilinx ZCU102 SoC board. The
bitstream uses a single data type.

hW=dlhdl.Workflow(Network=trainedSN,Bitstream='zcu102_single',Target=hTarget)

hW = 
  Workflow with properties:

            Network: [1×1 DAGNetwork]
          Bitstream: 'zcu102_single'
    ProcessorConfig: []
             Target: [1×1 dnnfpga.hardware.TargetEthernet]

Generate Weights, Biases, and Instructions

Generate weights, biases, and instructions for the trainedSN network by using the compile
method of the dlhdl.Workflow object.

dn = hW.compile          

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'data'                    Image Input                  227×227×3 images with 'zerocenter' normalization                     (SW Layer)
     2   'conv1'                   Convolution                  64 3×3×3 convolutions with stride [2  2] and padding [0  0  0  0]    (HW Layer)
     3   'relu_conv1'              ReLU                         ReLU                                                                 (HW Layer)
     4   'pool1'                   Max Pooling                  3×3 max pooling with stride [2  2] and padding [0  0  0  0]          (HW Layer)
     5   'fire2-squeeze1x1'        Convolution                  16 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
     6   'fire2-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
     7   'fire2-expand1x1'         Convolution                  64 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
     8   'fire2-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
     9   'fire2-expand3x3'         Convolution                  64 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    10   'fire2-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    11   'fire2-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)

 Classify ECG Signals Using DAG Network Deployed to FPGA

13-209



    12   'fire3-squeeze1x1'        Convolution                  16 1×1×128 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    13   'fire3-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    14   'fire3-expand1x1'         Convolution                  64 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    15   'fire3-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    16   'fire3-expand3x3'         Convolution                  64 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1]   (HW Layer)
    17   'fire3-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    18   'fire3-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    19   'pool3'                   Max Pooling                  3×3 max pooling with stride [2  2] and padding [0  1  0  1]          (HW Layer)
    20   'fire4-squeeze1x1'        Convolution                  32 1×1×128 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    21   'fire4-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    22   'fire4-expand1x1'         Convolution                  128 1×1×32 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    23   'fire4-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    24   'fire4-expand3x3'         Convolution                  128 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    25   'fire4-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    26   'fire4-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    27   'fire5-squeeze1x1'        Convolution                  32 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    28   'fire5-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    29   'fire5-expand1x1'         Convolution                  128 1×1×32 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    30   'fire5-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    31   'fire5-expand3x3'         Convolution                  128 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    32   'fire5-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    33   'fire5-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    34   'pool5'                   Max Pooling                  3×3 max pooling with stride [2  2] and padding [0  1  0  1]          (HW Layer)
    35   'fire6-squeeze1x1'        Convolution                  48 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    36   'fire6-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    37   'fire6-expand1x1'         Convolution                  192 1×1×48 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    38   'fire6-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    39   'fire6-expand3x3'         Convolution                  192 3×3×48 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    40   'fire6-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    41   'fire6-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    42   'fire7-squeeze1x1'        Convolution                  48 1×1×384 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    43   'fire7-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    44   'fire7-expand1x1'         Convolution                  192 1×1×48 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    45   'fire7-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    46   'fire7-expand3x3'         Convolution                  192 3×3×48 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    47   'fire7-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    48   'fire7-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    49   'fire8-squeeze1x1'        Convolution                  64 1×1×384 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    50   'fire8-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    51   'fire8-expand1x1'         Convolution                  256 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    52   'fire8-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    53   'fire8-expand3x3'         Convolution                  256 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    54   'fire8-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    55   'fire8-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    56   'fire9-squeeze1x1'        Convolution                  64 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    57   'fire9-relu_squeeze1x1'   ReLU                         ReLU                                                                 (HW Layer)
    58   'fire9-expand1x1'         Convolution                  256 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    59   'fire9-relu_expand1x1'    ReLU                         ReLU                                                                 (HW Layer)
    60   'fire9-expand3x3'         Convolution                  256 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]  (HW Layer)
    61   'fire9-relu_expand3x3'    ReLU                         ReLU                                                                 (HW Layer)
    62   'fire9-concat'            Depth concatenation          Depth concatenation of 2 inputs                                      (HW Layer)
    63   'new_dropout'             Dropout                      60% dropout                                                          (HW Layer)
    64   'new_conv'                Convolution                  3 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]   (HW Layer)
    65   'relu_conv10'             ReLU                         ReLU                                                                 (HW Layer)
    66   'pool10'                  2-D Global Average Pooling   2-D global average pooling                                           (HW Layer)
    67   'prob'                    Softmax                      softmax                                                              (HW Layer)
    68   'new_classoutput'         Classification Output        crossentropyex with 'ARR' and 2 other classes                        (SW Layer)
                                                                                                                                   

13 Signal Processing Examples

13-210



### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data' and an addition layer 'data_norm' for normalization on hardware.
### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'new_classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: conv1>>fire2-relu_squeeze1x1 ...
### Compiling layer group: conv1>>fire2-relu_squeeze1x1 ... complete.
### Compiling layer group: fire2-expand1x1>>fire2-relu_expand1x1 ...
### Compiling layer group: fire2-expand1x1>>fire2-relu_expand1x1 ... complete.
### Compiling layer group: fire2-expand3x3>>fire2-relu_expand3x3 ...
### Compiling layer group: fire2-expand3x3>>fire2-relu_expand3x3 ... complete.
### Compiling layer group: fire3-squeeze1x1>>fire3-relu_squeeze1x1 ...
### Compiling layer group: fire3-squeeze1x1>>fire3-relu_squeeze1x1 ... complete.
### Compiling layer group: fire3-expand1x1>>fire3-relu_expand1x1 ...
### Compiling layer group: fire3-expand1x1>>fire3-relu_expand1x1 ... complete.
### Compiling layer group: fire3-expand3x3>>fire3-relu_expand3x3 ...
### Compiling layer group: fire3-expand3x3>>fire3-relu_expand3x3 ... complete.
### Compiling layer group: pool3>>fire4-relu_squeeze1x1 ...
### Compiling layer group: pool3>>fire4-relu_squeeze1x1 ... complete.
### Compiling layer group: fire4-expand1x1>>fire4-relu_expand1x1 ...
### Compiling layer group: fire4-expand1x1>>fire4-relu_expand1x1 ... complete.
### Compiling layer group: fire4-expand3x3>>fire4-relu_expand3x3 ...
### Compiling layer group: fire4-expand3x3>>fire4-relu_expand3x3 ... complete.
### Compiling layer group: fire5-squeeze1x1>>fire5-relu_squeeze1x1 ...
### Compiling layer group: fire5-squeeze1x1>>fire5-relu_squeeze1x1 ... complete.
### Compiling layer group: fire5-expand1x1>>fire5-relu_expand1x1 ...
### Compiling layer group: fire5-expand1x1>>fire5-relu_expand1x1 ... complete.
### Compiling layer group: fire5-expand3x3>>fire5-relu_expand3x3 ...
### Compiling layer group: fire5-expand3x3>>fire5-relu_expand3x3 ... complete.
### Compiling layer group: pool5>>fire6-relu_squeeze1x1 ...
### Compiling layer group: pool5>>fire6-relu_squeeze1x1 ... complete.
### Compiling layer group: fire6-expand1x1>>fire6-relu_expand1x1 ...
### Compiling layer group: fire6-expand1x1>>fire6-relu_expand1x1 ... complete.
### Compiling layer group: fire6-expand3x3>>fire6-relu_expand3x3 ...
### Compiling layer group: fire6-expand3x3>>fire6-relu_expand3x3 ... complete.
### Compiling layer group: fire7-squeeze1x1>>fire7-relu_squeeze1x1 ...
### Compiling layer group: fire7-squeeze1x1>>fire7-relu_squeeze1x1 ... complete.
### Compiling layer group: fire7-expand1x1>>fire7-relu_expand1x1 ...
### Compiling layer group: fire7-expand1x1>>fire7-relu_expand1x1 ... complete.
### Compiling layer group: fire7-expand3x3>>fire7-relu_expand3x3 ...
### Compiling layer group: fire7-expand3x3>>fire7-relu_expand3x3 ... complete.
### Compiling layer group: fire8-squeeze1x1>>fire8-relu_squeeze1x1 ...
### Compiling layer group: fire8-squeeze1x1>>fire8-relu_squeeze1x1 ... complete.
### Compiling layer group: fire8-expand1x1>>fire8-relu_expand1x1 ...
### Compiling layer group: fire8-expand1x1>>fire8-relu_expand1x1 ... complete.
### Compiling layer group: fire8-expand3x3>>fire8-relu_expand3x3 ...
### Compiling layer group: fire8-expand3x3>>fire8-relu_expand3x3 ... complete.
### Compiling layer group: fire9-squeeze1x1>>fire9-relu_squeeze1x1 ...
### Compiling layer group: fire9-squeeze1x1>>fire9-relu_squeeze1x1 ... complete.
### Compiling layer group: fire9-expand1x1>>fire9-relu_expand1x1 ...
### Compiling layer group: fire9-expand1x1>>fire9-relu_expand1x1 ... complete.
### Compiling layer group: fire9-expand3x3>>fire9-relu_expand3x3 ...
### Compiling layer group: fire9-expand3x3>>fire9-relu_expand3x3 ... complete.
### Compiling layer group: new_conv>>pool10 ...
### Compiling layer group: new_conv>>pool10 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

 Classify ECG Signals Using DAG Network Deployed to FPGA

13-211



    "InputDataOffset"           "0x00000000"     "24.0 MB"       
    "OutputResultOffset"        "0x01800000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x01c00000"     "4.0 MB"        
    "SystemBufferOffset"        "0x02000000"     "28.0 MB"       
    "InstructionDataOffset"     "0x03c00000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x04000000"     "12.0 MB"       
    "EndOffset"                 "0x04c00000"     "Total: 76.0 MB"

### Network compilation complete.

dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {{}  [-24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 -50.7900 -184.4480 0 -24.2516 … ]}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Xilinx ZCU102 hardware, run the deploy function of the
dlhdl.Workflow

object. This function uses the output of the compile function to program the FPGA board by using the
programming file. It also downloads the network weights and biases. The deploy function starts
programming the FPGA device, displays progress messages, and the time it takes to deploy the
network.

hW.deploy

### Programming FPGA Bitstream using Ethernet...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming FPGA device on Xilinx SoC hardware board at 192.168.1.101...
### Copying FPGA programming files to SD card...
### Setting FPGA bitstream and devicetree for boot...
# Copying Bitstream zcu102_single.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/zcu102_single.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'
### Rebooting Xilinx SoC at 192.168.1.101...
### Reboot may take several seconds...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 28-Apr-2022 15:33:54

Load Image for Prediction and Run Prediction

Load an image by randomly selecting an image from the validation data store.

idx=randi(32);
testim=readimage(imgsValidation,idx);
imshow(testim)

13 Signal Processing Examples

13-212



Execute the predict method on the dlhdl.Workflow object and then show the label in the MATLAB
command window.

[YPred1,probs1] = classify(trainedSN,testim);
accuracy1 = (YPred1==imgsValidation.Labels);
[YPred2,probs2] = hW.predict(single(testim),'profile','on');

### Finished writing input activations.
### Running single input activation.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                    9253245                  0.04206                       1            9257253             23.8
    data_norm               361047                  0.00164 
    conv1                   672559                  0.00306 
    pool1                   509079                  0.00231 
    fire2-squeeze1x1        308258                  0.00140 
    fire2-expand1x1         305646                  0.00139 
    fire2-expand3x3         305085                  0.00139 
    fire3-squeeze1x1        627799                  0.00285 
    fire3-expand1x1         305241                  0.00139 
    fire3-expand3x3         305256                  0.00139 
    pool3                   286627                  0.00130 
    fire4-squeeze1x1        264151                  0.00120 
    fire4-expand1x1         264600                  0.00120 
    fire4-expand3x3         264567                  0.00120 
    fire5-squeeze1x1        734588                  0.00334 
    fire5-expand1x1         264575                  0.00120 
    fire5-expand3x3         264719                  0.00120 
    pool5                   219725                  0.00100 
    fire6-squeeze1x1        194605                  0.00088 
    fire6-expand1x1         144199                  0.00066 

 Classify ECG Signals Using DAG Network Deployed to FPGA

13-213



    fire6-expand3x3         144819                  0.00066 
    fire7-squeeze1x1        288819                  0.00131 
    fire7-expand1x1         144285                  0.00066 
    fire7-expand3x3         144841                  0.00066 
    fire8-squeeze1x1        368116                  0.00167 
    fire8-expand1x1         243691                  0.00111 
    fire8-expand3x3         243738                  0.00111 
    fire9-squeeze1x1        488338                  0.00222 
    fire9-expand1x1         243654                  0.00111 
    fire9-expand3x3         243683                  0.00111 
    new_conv                 93849                  0.00043 
    pool10                    2751                  0.00001 
 * The clock frequency of the DL processor is: 220MHz

[val,idx]= max(YPred2);
trainedSN.Layers(end).ClassNames{idx}

ans = 
'ARR'

References

1 Baim, D. S., W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue, D. F. Gauthier, B. J.
Ransil, W. Grossman, and E. Braunwald. "Survival of patients with severe congestive heart failure
treated with oral milrinone." Journal of the American College of Cardiology. Vol. 7, Number 3,
1986, pp. 661–670.

2 Engin, M. "ECG beat classification using neuro-fuzzy network." Pattern Recognition Letters. Vol.
25, Number 15, 2004, pp.1715–1722.

3 Goldberger A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C.-K. Peng, and H. E. Stanley. "PhysioBank, PhysioToolkit,and PhysioNet:
Components of a New Research Resource for Complex Physiologic Signals." Circulation. Vol. 101,
Number 23: e215–e220. [Circulation Electronic Pages; http://circ.ahajournals.org/
content/101/23/e215.full]; 2000 (June 13). doi: 10.1161/01.CIR.101.23.e215.

4 Leonarduzzi, R. F., G. Schlotthauer, and M. E. Torres. "Wavelet leader based multifractal analysis
of heart rate variability during myocardial ischaemia." In Engineering in Medicine and Biology
Society (EMBC), Annual International Conference of the IEEE, 110–113. Buenos Aires,
Argentina: IEEE, 2010.

5 Li, T., and M. Zhou. "ECG classification using wavelet packet entropy and random forests."
Entropy. Vol. 18, Number 8, 2016, p.285.

6 Maharaj, E. A., and A. M. Alonso. "Discriminant analysis of multivariate time series: Application
to diagnosis based on ECG signals." Computational Statistics and Data Analysis. Vol. 70, 2014,
pp. 67–87.

7 Moody, G. B., and R. G. Mark. "The impact of the MIT-BIH Arrhythmia Database." IEEE
Engineering in Medicine and Biology Magazine. Vol. 20. Number 3, May-June 2001, pp. 45–50.
(PMID: 11446209)

8 Russakovsky, O., J. Deng, and H. Su et al. "ImageNet Large Scale Visual Recognition Challenge."
International Journal of Computer Vision. Vol. 115, Number 3, 2015, pp. 211–252.

9 Zhao, Q., and L. Zhang. "ECG feature extraction and classification using wavelet transform and
support vector machines." In IEEE International Conference on Neural Networks and Brain,
1089–1092. Beijing, China: IEEE, 2005.

10 ImageNet. http://www.image-net.org

13 Signal Processing Examples

13-214



Supporting Functions

helperCreateECGDataDirectories creates a data directory inside a parent directory, then creates
three subdirectories inside the data directory. The subdirectories are named after each class of ECG
signal found in ECGData.

function helperCreateECGDirectories(ECGData,parentFolder,dataFolder)

rootFolder = parentFolder;
localFolder = dataFolder;
mkdir(fullfile(rootFolder,localFolder))

folderLabels = unique(ECGData.Labels);
for i = 1:numel(folderLabels)
    mkdir(fullfile(rootFolder,localFolder,char(folderLabels(i))));
end
end

helperPlotReps plots the first thousand samples of a representative of each class of ECG signal
found in ECGData.

function helperPlotReps(ECGData)

folderLabels = unique(ECGData.Labels);

for k=1:3
    ecgType = folderLabels{k};
    ind = find(ismember(ECGData.Labels,ecgType));
    subplot(3,1,k)
    plot(ECGData.Data(ind(1),1:1000));
    grid on
    title(ecgType)
end
end

helperCreateRGBfromTF uses cwtfilterbank (Wavelet Toolbox) to obtain the continuous wavelet
transform of the ECG signals and generates the scalograms from the wavelet coefficients. The helper
function resizes the scalograms and writes them to disk as jpeg images.

function helperCreateRGBfromTF(ECGData,parentFolder,childFolder)

imageRoot = fullfile(parentFolder,childFolder);

data = ECGData.Data;
labels = ECGData.Labels;

[~,signalLength] = size(data);

fb = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
r = size(data,1);

for ii = 1:r
    cfs = abs(fb.wt(data(ii,:)));
    im = ind2rgb(im2uint8(rescale(cfs)),jet(128));
    
    imgLoc = fullfile(imageRoot,char(labels(ii)));
    imFileName = strcat(char(labels(ii)),'_',num2str(ii),'.jpg');
    imwrite(imresize(im,[227 227]),fullfile(imgLoc,imFileName));

 Classify ECG Signals Using DAG Network Deployed to FPGA

13-215



end
end

13 Signal Processing Examples

13-216



Code Generation for a Deep Learning Simulink Model to
Classify ECG Signals

This example demonstrates how you can use powerful signal processing techniques and
Convolutional Neural Networks together to classify ECG signals. We will also showcase how CUDA®
code can be generated from the Simulink® model. This example uses the pretrained CNN network
from the Classify Time Series Using Wavelet Analysis and Deep Learning example of the Wavelet
Toolbox™ to classify ECG signals based on images from the CWT of the time series data. For
information on training, see “Classify Time Series Using Wavelet Analysis and Deep Learning”
(Wavelet Toolbox).

For a video demonstration on how to perform software-in-the-loop (SIL), processor-in-the-loop (PIL)
simulation, and deploying this example to NVIDIA Jetson® board, see https://www.mathworks.com/
videos/deep-learning-in-simulink-for-nvidia-gpus-classification-of-ecg-signals-1621401016961.html.

This example illustrates the following concepts:

• Model the classification application in Simulink. Use MATLAB Function blocks to perform
preprocessing and wavelet transforms of the ECG data. Use the Image Classifier block from
the Deep Learning Toolbox™ for loading the pretrained network and performing the classification
of the ECG data.

• Configure the model for code generation.
• Generate a CUDA executable for the Simulink model.

Third-Party Prerequisites

• CUDA enabled NVIDIA GPU.
• NVIDIA CUDA toolkit and driver.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

ECG Data Description

This example uses ECG data from PhysioNet database. It contains data from three groups of people:

1 Persons with cardiac arrhythmia (ARR)
2 Persons with congestive heart failure (CHF)
3 Persons with normal sinus rhythms (NSR)

 Code Generation for a Deep Learning Simulink Model to Classify ECG Signals

13-217

https://www.mathworks.com/videos/deep-learning-in-simulink-for-nvidia-gpus-classification-of-ecg-signals-1621401016961.html
https://www.mathworks.com/videos/deep-learning-in-simulink-for-nvidia-gpus-classification-of-ecg-signals-1621401016961.html
https://physionet.org/


It includes 96 recordings from persons with ARR, 30 recordings from persons with CHF, and 36
recordings from persons with NSR. The ecg_signals MAT-file contains the test ECG data in time
series format. The image classifier in this example distinguishes between ARR, CHF, and NSR.

Algorithmic Workflow

The block diagram for the algorithmic workflow of the Simulink model is shown.

ECG Deep Learning Simulink Model

The Simulink model for classifying the ECG signals is shown. When the model runs, the Video
Viewer block displays the classified ECG signal.

open_system('ecg_dl_cwt');

13 Signal Processing Examples

13-218



ECG Preprocessing Subsystem

The ECG Preprocessing subsystem contains a MATLAB Function block that performs CWT to
obtain scalogram of the ECG signal and then processes the scalogram to obtain an image and an
Image Classifier block that loads the pretrained network from trainedNet.mat and performs
prediction for image classification based on SqueezeNet deep learning CNN.

open_system('ecg_dl_cwt/ECG Preprocessing');

The ScalogramFromECG function block defines a function called ecg_to_scalogram that:

• Uses 65536 samples of double-precision ECG data as input.
• Create time frequency representation from the ECG data by applying Wavelet transform.
• Obtain scalogram from the wavelet coefficients.
• Convert the scalogram to image of size (227x227x3).

The function signature of ecg_to_scalogram is shown.

type ecg_to_scalogram

function ecg_image  = ecg_to_scalogram(ecg_signal)

% Copyright 2020 The MathWorks, Inc.

persistent jetdata;
if(isempty(jetdata))

 Code Generation for a Deep Learning Simulink Model to Classify ECG Signals

13-219



    jetdata = ecgColorMap(128,'single');
end
% Obtain wavelet coefficients from ECG signal
cfs = cwt_ecg(ecg_signal);  
% Obtain scalogram from wavelet coefficients
image = ind2rgb(im2uint8(rescale(cfs)),jetdata);
ecg_image = im2uint8(imresize(image,[227,227]));

end

ECG Postprocessing

The ECG Postprocessing MATLAB function block defines the label_prob_image function that
finds the label for the scalogram image based on the highest score from the scores outputed by the
image classifier. It outputs the scalogram image with the label and confidence printed on it.

type label_prob_image

function final_image = label_prob_image(ecg_image, scores, labels)

% Copyright 2020-2021 The MathWorks, Inc.

scores = double(scores);
% Obtain maximum confidence 
[prob,index] = max(scores);
confidence = prob*100;
% Obtain label corresponding to maximum confidence
label = erase(char(labels(index)),'_label');
text = cell(2,1);
text{1} = ['Classification: ' label];
text{2} = ['Confidence: ' sprintf('%0.2f',confidence) '%'];
position = [135 20 0 0; 130 40 0 0];
final_image = insertObjectAnnotation(ecg_image,'rectangle',position,...
    text,'TextBoxOpacity',0.9,'FontSize',9);

end

Run the Simulation

Open Configuration Parameters dialog box.

In Simulation Target pane, select GPU acceleration. In the Deep Learning group, select the
target library as cuDNN.

13 Signal Processing Examples

13-220



To verify the algorithm and display the labels and confidence score of the test ECG signal loaded in
the workspace, run the simulation.

set_param('ecg_dl_cwt', 'SimulationMode', 'Normal');
sim('ecg_dl_cwt');

 Code Generation for a Deep Learning Simulink Model to Classify ECG Signals

13-221



Generate and Build the Simulink Model

In Code Generation pane, select the Language as C++ and enable Generate GPU code.

Open Code Generation > GPU Code pane. In the subcategory Libraries, enable cuBLAS,
cuSOLVER and cuFFT.

Generate and build the Simulink model on the host GPU by using the slbuild command. The code
generator places the files in a build folder, a subfolder named ecg_dl_cwt_ert_rtw under your
current working folder.

status = evalc("slbuild('ecg_dl_cwt')");

Generated CUDA® Code

The subfolder named ecg_dl_cwt_ert_rtw contains the generated C++ codes corresponding to
the different blocks in the Simulink model and the specific operations being performed in those
blocks. For example, the file trainedNet0_ecg_dl_cwt0.h contains the C++ class which contains
certain attributes such as numLayers and member functions such as getBatchSize(), predict().
This class represents the pretrained SqueezeNet which has been loaded in the Simulink model.

13 Signal Processing Examples

13-222



Cleanup

Close the Simulink model.

close_system('ecg_dl_cwt/ECG Preprocessing');
close_system('ecg_dl_cwt');

 Code Generation for a Deep Learning Simulink Model to Classify ECG Signals

13-223



Modulation Classification Using Wavelet Analysis on NVIDIA
Jetson

This example shows how to generate and deploy a CUDA® executable that performs modulation
classification using features extracted by the continuous wavelet transform (CWT), and a pretrained
convolutional neural network (CNN).

Modulation classification is an important function for an intelligent receiver. Modulation classification
has numerous applications, such as cognitive radar and software-defined radio. Typically, to identify
these waveforms and classify them by modulation type it is necessary to define meaningful features
and input them into a classifier. While effective, this procedure can require extensive effort and
domain knowledge to yield an accurate classification. This example explores a framework to
automatically extract time-frequency features from signals and perform signal classification using a
deep learning network.

You use the CWT to create time-frequency representations of complex-valued signals. You do not need
to separate the signal into I and Q channels. You use the representations, called scalograms, and
leverage an existing CNN by retraining the network to classify the signals. This leveraging of existing
neural networks is called transfer learning.

In this example we adapt SqueezeNet, a CNN pretrained for image recognition, to classify the
modulation type of each frame based on the scalogram. We then create a CUDA executable that
generates a scalogram of an input signal. We deploy the executable and retrained CNN onto a target
device, making it possible to classify signals in real time.

By default, this example downloads training data and trained network in a single ZIP file
wavelet_modulation_classification.zip. The size of the ZIP file is approximately 1.2
gigabytes. You have the option of generating the training data and training the network. However,
both are time-consuming operations. Depending on your computer hardware, generating the training
data can take one hour or longer. Training the network can take 90 minutes or longer.

Modulation Types

Specify five digital and three analog modulation types:

• Binary phase shift keying (BPSK)
• 16-ary quadrature amplitude modulation (16-QAM)
• 4-ary pulse amplitude modulation (PAM4)
• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast FM (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

modTypesList = ["BPSK", ...
  "16QAM", "PAM4", "GFSK", "CPFSK", ...
  "B-FM", "DSB-AM", "SSB-AM"];
modulationTypes = categorical(modTypesList);

Specify a parent directory parentDir and the name of a directory dataDir that will be inside
parentDir. You must have write permission to parentDir. The ZIP file is downloaded to

13 Signal Processing Examples

13-224



parentDir. Because the example downloads data by default, dataDir must be
'wavelet_modulation_classification'. The directory dataDirectory will contain the
training data used in this example. ResultDir specifies the name of a directory that will contain the
trained network. ResultDir is in the same directory as this example, and will be created for you if
necessary.

parentDir = tempdir;
dataDir = 'wavelet_modulation_classification';
dataDirectory = fullfile(parentDir,dataDir);
ResultDir = 'trainedNetworks';

Specify the parameters of the training data. The training data consists of 5,000 frames for each
modulation type. Each frame is 1024 samples long and has a sample rate of 200 kHz. For digital
modulation types, eight samples represent a symbol. Assume a center frequency of 902 MHz and 100
MHz for the digital and analog modulation types, respectively.

numFramesPerModType = 5000;
frameLength = 1024;
fs = 200e3;

Download Data

Download and unzip the training data and trained network. The dataDirectory folder contains
folders named after each modulation type. The training data are in these folders. The trained
network, waveletModClassNet.mat, is in ResultDir.

If you do not want to download the data, set downloadData to false. The helper function
helperGenerateModWaveforms generates the frames and stores them in dataDirectory. For
purposes of reproducibility, set the random seed.

downloadData = ;
if downloadData
    dataURL = 'https://ssd.mathworks.com/supportfiles/wavelet/waveletModulation/wavelet_modulation_classification.zip';
    zipFile = fullfile(parentDir,'wavelet_modulation_classification.zip');
    tic
    websave(zipFile,dataURL);
    disp(['Download time: ',num2str(toc),' seconds'])
    tic
    unzip(zipFile,parentDir);
    disp(['Unzipping time: ',num2str(toc),' seconds'])
    trainedNetworkDir = fullfile(parentDir,dataDir,'results');
    status = copyfile(trainedNetworkDir,ResultDir);
else
    rng(1235)
    helperGenerateModWaveforms(dataDirectory,modulationTypes,numFramesPerModType,frameLength,fs);
end

Download time: 38.2209 seconds

Unzipping time: 7.9005 seconds

Another example, “Modulation Classification with Deep Learning” (Communications Toolbox),
performs modulation classification of several different modulation types using Communications
Toolbox™. The helper function helperGenerateModWaveforms generates and augments a subset of
the modulation types used in that example. See the example link for an in-depth description of the
workflow necessary for digital and analog modulation classification and the techniques used to create
these waveforms.

 Modulation Classification Using Wavelet Analysis on NVIDIA Jetson

13-225



Plot the amplitude of the real and imaginary parts of a representative of each modulation type. The
helper function helperModClassPlotTimeDomain2 does this.

helperModClassPlotTimeDomain2(dataDirectory,modulationTypes,fs)

Generate Scalograms

Create time-frequency representations of the waveforms. These representations are called
scalograms. A scalogram is the absolute value of the CWT coefficients of a signal. To create the
scalograms, precompute a CWT filter bank. Precomputing the CWT filter bank is the preferred
method when obtaining the CWT of many signals using the same parameters.

Before generating all the scalograms, plot the scalograms from a representative of each modulation
type. Create a CWT filter bank using cwtfilterbank (Wavelet Toolbox) for a signal with 1024
samples, and use the filter bank to take the CWT of the signal. Because the signal is complex valued,
the CWT is a 3-D array. The first page is the CWT for the positive scales (analytic part or
counterclockwise component), and the second page is the CWT for the negative scales (anti-analytic
part or clockwise component). To generate the scalograms, take the absolute value of the
concatenation of each page. The helper function helperPlotScalogramsMod2 does this.

helperPlotScalogramsMod2(dataDirectory,modulationTypes,frameLength,fs)

13 Signal Processing Examples

13-226



If you downloaded the training data and trained network, proceed to Divide into Training, Testing,
and Validation Data on page 13-227. Otherwise, generate all the scalograms as RGB images and write
them to the appropriate subdirectory in dataDirectory. The helper function
helperGenerateCWTfiles2 does this. To be compatible with the SqueezeNet architecture, each
RGB image is an array of size 227-by-227-by-3.

if ~downloadData
    helperGenerateCWTfiles2(dataDirectory,modulationTypes,frameLength,fs)
end

Divide into Training, Testing, and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a CNN.

folders = fullfile(dataDirectory,string(modulationTypes));
imds = imageDatastore(folders,...
    'FileExtensions','.jpg','LabelSource','foldernames');

Randomly divide the images into three groups, where 80% are used for training, 10% are used for
validation, and 10% are used for testing. We use training and validation frames during the network
training phase. For purposes of reproducibility, we set the random seed.

rng(1235)
[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);

 Modulation Classification Using Wavelet Analysis on NVIDIA Jetson

13-227



If necessary, create the directory that will contain the trained network. If you downloaded the data,
the directory specified by ResultDir already exists, and the file waveletModClassNet.mat in this
directory contains the trained network.

if ~exist(ResultDir,'dir')
    mkdir(ResultDir)
end
MatFile = fullfile(ResultDir,'waveletModClassNet.mat');

If you downloaded the ZIP file, load the trained network and then proceed to Evaluate Network on
page 13-229. Otherwise, you must retrain SqueezeNet.

if downloadData
    disp('Load ML model from the file')
    load(MatFile,'trainedNet','imdsValidation')
end

Load ML model from the file

SqueezeNet

SqueezeNet is a pretrained CNN that can classify images into 1000 object categories. You must
retrain SqueezeNet to classify waveforms by their modulation type. Prior to retraining, you modify
several network layers and set various training options. After retraining is complete, you save the
CNN in a .mat file. The CUDA executable uses the .mat file.

Load SqueezeNet and extract the layer graph from the network. Inspect the last five layers of the
graph.

net = squeezenet;
lgraph = layerGraph(net);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

     1   'conv10'                            Convolution              1000 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'                       ReLU                     ReLU
     3   'pool10'                            Global Average Pooling   Global average pooling
     4   'prob'                              Softmax                  softmax
     5   'ClassificationLayer_predictions'   Classification Output    crossentropyex with 'tench' and 999 other classes

The last learnable layer in SqueezeNet is a 1-by-1 convolutional layer, 'conv10'. Replace the layer
with a new convolutional layer with the number of filters equal to the number of modulation types.

numClasses = numel(modulationTypes);
newLearnableLayer = convolution2dLayer(1,numClasses,'Name','new_conv10');
lgraph = replaceLayer(lgraph,lgraph.Layers(end-4).Name,newLearnableLayer);

Replace the classification layer with a new one without class labels. The output classes of the layer
are set automatically at training time. Display the last five layers to confirm the changes.

newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,lgraph.Layers(end).Name,newClassLayer);
lgraph.Layers(end-4:end)

ans = 
  5×1 Layer array with layers:

13 Signal Processing Examples

13-228



     1   'new_conv10'        Convolution              8 1×1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'relu_conv10'       ReLU                     ReLU
     3   'pool10'            Global Average Pooling   Global average pooling
     4   'prob'              Softmax                  softmax
     5   'new_classoutput'   Classification Output    crossentropyex

Train the CNN

Training a neural network is an iterative process that involves minimizing a loss function. Use the
trainingOptions function to specify options for the training process that ensures good network
performance. Refer to the trainingOptions documentation for a description of each option.

OptimSolver = 'adam';
MiniBatchSize = 50;
MaxEpochs = 20;
InitialLearnRate = 1e-4;
Shuffle = 'every-epoch';

options = trainingOptions(OptimSolver, ...
    'MiniBatchSize',MiniBatchSize, ...
    'MaxEpochs',MaxEpochs, ...
    'InitialLearnRate',InitialLearnRate, ...
    'Shuffle',Shuffle, ...
    'Verbose',false, ...
    'Plots','training-progress',...
    'ValidationData',imdsValidation);

Save all the parameters in a structure. The trained network and structure will be later saved in
a .mat file.

TrialParameter.OptimSolver = OptimSolver;
TrialParameter.MiniBatchSize = MiniBatchSize;
TrialParameter.MaxEpochs = MaxEpochs;
TrialParameter.InitialLearnRate = InitialLearnRate;

Set the random seed to the default value and use the trainNetwork function to train the CNN. Save
the trained network, trial parameters, training run time, and image datastore containing the
validation images. Because of the dataset's large size, the process will take many minutes. By default,
training is done on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™. To
see which GPUs are supported, see “GPU Computing Requirements” (Parallel Computing Toolbox).
Otherwise, training is done on the CPU. The training accuracy plots in the figure show the progress of
the network's learning across all iterations.

if ~downloadData
    rng default
    tic;
    trainedNet = trainNetwork(imdsTrain,lgraph,options);
    trainingTime = toc;
    fprintf('Total training time: %.2e sec\n',trainingTime);
    save(MatFile,'TrialParameter','trainedNet','trainingTime','imdsValidation');
end

Evaluate Network

Load the .mat file that contains the trained network and the training parameters. Save only the
trained network in a separate .mat file. This file will be used by the CUDA executable.

 Modulation Classification Using Wavelet Analysis on NVIDIA Jetson

13-229



OutMatFile = 'mdwv_model.mat';
data = load(MatFile,'trainedNet');
trainedNet = data.trainedNet;
save(OutMatFile,'trainedNet');

Evaluate the trained network by obtaining the classification accuracy for the test frames.

[YPred,probs] = classify(trainedNet,imdsTest);
imdsTestLabels = imdsTest.Labels;
modAccuracy = sum(YPred==imdsTestLabels)/numel(imdsTestLabels)*100

modAccuracy = 96.2250

Summarize the performance of the trained network on the test frames with a confusion chart. Display
the precision and recall for each class by using column and row summaries. Save the figure. The
table at the bottom of the confusion chart shows the precision values. The table to the right of the
confusion chart shows the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(imdsTestLabels,YPred);
ccDCNN.Title = ['Test Accuracy: ',num2str(modAccuracy)];
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';
AccFigFile = fullfile(ResultDir,'Network_ValidationAccuracy.fig');
saveas(gcf,AccFigFile);

Display the size of the trained network.

13 Signal Processing Examples

13-230



info = whos('trainedNet');
ModelMemSize = info.bytes/1024;
fprintf('Trained network size: %g kB\n',ModelMemSize)

Trained network size: 2992.95 kB

Determine the average time it takes the network to classify an image.

NumTestForPredTime = 20;
TrialParameter.NumTestForPredTime = NumTestForPredTime;

fprintf('Test prediction time (number of tests: %d)... ',NumTestForPredTime)

Test prediction time (number of tests: 20)... 

imageSize = trainedNet.Layers(1).InputSize;
PredTime = zeros(NumTestForPredTime,1);
for i = 1:NumTestForPredTime
    x = randn(imageSize);
    tic;
    [YPred, probs] = classify(trainedNet,x);
    PredTime(i) = toc;
end
AvgPredTimePerImage = mean(PredTime);
fprintf('Average prediction time: %.2e sec \n',AvgPredTimePerImage);

Average prediction time: 8.41e-02 sec 

Save the results.

if ~downloadData
    save(MatFile,'modAccuracy','ccDCNN','PredTime','ModelMemSize', ...
        'AvgPredTimePerImage','-append')
end

GPU Code Generation — Define Functions

The scalogram of a signal is the input "image" to a deep CNN. Create a function, cwtModType, that
computes the scalogram of the complex-valued waveform and returns an image at the user-specified
dimensions. The image uses the jet(128) colormap. For purposes of code generation, treat the
input signal as a 1024-by-2 matrix, where the first column contains the real parts of the waveform
samples, and the second column contains the imaginary parts. The %#codegen directive in the
function indicates that the function is intended for code generation. When using the
coder.gpu.kernelfun pragma, code generation attempts to map the computations in the
cwtModType function to the GPU.

type cwtModType

function im = cwtModType(inputSig, imgSize)  %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.
coder.gpu.kernel;

% Input is a 1024x2 matrix, convert it into complex form (a + 1*ib)
cinputSig = convertToComplex(inputSig);

% Wavelet time-frequency representations
[wt, ~, ~] = cwt(cinputSig, 'morse', 1, 'VoicesPerOctave', 48);

 Modulation Classification Using Wavelet Analysis on NVIDIA Jetson

13-231



% Generate Wavelet Time-Frequency Coefficients from Signal
cfs = abs([wt(:,:,1); wt(:,:,2)]); % Concatenate the clockwise and counterclockwise representation

% Image generation
im = generateImagefromCWTCoeff(cfs, imgSize);
end

Create the entry-point function, modelPredictModType, for code generation. The function takes
complex-valued signal, specified as a 1024-by-2 matrix, as input and calls the cwtModType function
to create an image of the scalogram. The modelPredictModType function uses the network
contained in the mdwv_model file to classify the waveform.

type modelPredictModType

function predClassProb = modelPredictModType(inputSig) %#codegen
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.
coder.gpu.kernelfun();
% input signal size is 1024-by-2

% parameters
ModelFile = 'mdwv_model.mat'; % file that saves the neural network model
imSize = [227 227]; % Size of the input image for the deep learning network

%Function to converts signal to wavelet time-frequency image
im = cwtModType(inputSig, imSize);

%Load the trained deep learning network
persistent model;
if isempty(model)
    model = coder.loadDeepLearningNetwork(ModelFile, 'mynet');
end

% Predict the Signal Modulation
predClassProb = model.predict(im);
end

To generate a CUDA executable that can be deployed to an NVIDIA target, create a custom main file
(main_mod_jetson.cu) and a header file (main_mod_jetson.h). You can generate an example
main file and use that as a template to rewrite new main and header files. For more information, see
the GenerateExampleMain property of coder.CodeConfig (MATLAB Coder). The main file calls
the code generated for the MATLAB entry-point function. The main file first reads the waveform
signal from a text file, passes the data to the entry-point function, and writes the prediction results to
a text file (predClassProb.txt). To maximize computation efficiency on the GPU, the executable
processes single-precision data.

If you want to view the contents of the main and header files, set viewFiles to true.

viewFiles = ;
if viewFiles
    type main_mod_jetson.cu
end
if viewFiles
    type main_mod_jetson.h
end

13 Signal Processing Examples

13-232



GPU Code Generation — Connect to Hardware

To communicate with the NVIDIA hardware, you create a live hardware connection object using the
jetson function. You must know the host name or IP address, user name, and password of the target
board to create a live hardware connection object.

Create a live hardware connection object for the Jetson hardware. In the following code, replace:

• NameOfJetsonDevice with the name or IP address of your Jetson device
• Username with your user name
• password with your password

During the creation of the object, the software performs hardware and software checks, IO server
installation, and gathers information on the peripherals connected to the target. This information is
displayed in the command window.

hwobj = jetson("NameOfJetsonDevice","Username","password");

Checking for CUDA availability on the Target...
Checking for 'nvcc' in the target system path...
Checking for cuDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for prerequisite libraries is complete.
Gathering hardware details...
Checking for third-party library availability on the Target...
Gathering hardware details is complete.
 Board name         : NVIDIA Jetson TX1, NVIDIA Jetson Nano
 CUDA Version       : 10.0
 cuDNN Version      : 7.3
 TensorRT Version   : 5.0
 GStreamer Version  : 1.14.5
 V4L2 Version       : 1.14.2-1
 SDL Version        : 1.2
 Available Webcams  :  
 Available GPUs     : NVIDIA Tegra X1

Use the coder.checkGpuInstall (GPU Coder) function and verify that the compilers and libraries
needed for running this example are set up correctly on the hardware.

envCfg = coder.gpuEnvConfig('jetson');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.HardwareObject = hwobj;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg)

ans = struct with fields:
                 gpu: 1
                cuda: 1
               cudnn: 1
            tensorrt: 0
        basiccodegen: 0
       basiccodeexec: 0
         deepcodegen: 1
        deepcodeexec: 0
    tensorrtdatatype: 0

 Modulation Classification Using Wavelet Analysis on NVIDIA Jetson

13-233



           profiling: 0

GPU Code Generation — Specify Target

To create an executable that can be deployed to the target device, set CodeGenMode equal to 1. If
you want to create an executable that runs locally and connects remotely to the target device, set
CodeGenMode equal to 2. Jetson_BuildDir specifies the directory for performing the remote build
process on the target. If the specified build directory does not exist on the target, then the software
creates a directory with the given name.

CodeGenMode = ;
Function_to_Gen = 'modelPredictModType';
ModFile = 'mdwv_model.mat'; % file that saves neural network model; consistent with "main_mod_jetson.cu"
ImgSize = [227 227]; % input image size for the ML model
Jetson_BuildDir = '~/projectMDWV';

Create a GPU code configuration object necessary for compilation. Use the coder.hardware
function to create a configuration object for the Jetson platform and assign it to the Hardware
property of the code configuration object cfg. Use 'NVIDIA Jetson' for the Jetson TX1 or TX2
boards. The custom main file is a wrapper that calls the entry-point function in the generated code.
The custom file is required for a deployed executable.

Use the coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning
configuration object and assign it to the DeepLearningConfig property of the GPU code
configuration object. The code generator takes advantage of NVIDIA® CUDA® deep neural network
library (cuDNN) for NVIDIA GPUs. cuDNN is a GPU-accelerated library of primitives for deep neural
networks.

if CodeGenMode == 1
    cfg = coder.gpuConfig('exe');
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
    cfg.CustomSource = 'main_mod_jetson.cu';
elseif CodeGenMode == 2
    cfg = coder.gpuConfig('lib');
    cfg.VerificationMode = 'PIL';
    cfg.Hardware = coder.hardware('NVIDIA Jetson');
    cfg.Hardware.BuildDir = Jetson_BuildDir;
    cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
end

GPU Code Generation — Compile

To generate CUDA code, use the codegen function and pass the GPU code configuration along with
the size and type of the input for the modelPredictModType entry-point function. After code
generation on the host is complete, the generated files are copied over and built on the target.

codegen('-config ',cfg,Function_to_Gen,'-args',{single(ones(1024,2))},'-report');

Code generation successful: View report

GPU Code Generation — Choose Signal

The CUDA executable performs modulation classification by generating the scalogram of the
complex-valued waveform and applying the retrained CNN to the scalogram. Choose a waveform that

13 Signal Processing Examples

13-234



was generated at the beginning of this example. From the 5,000 frames of each modulation type,
select one of the first 50 frames generated by setting waveNumber. Plot the real and imaginary parts
of the frame, and the scalogram generated from it. Use the helper function
helperPlotWaveFormAndScalogram. You can find the source code for this helper function in the
Supporting Functions on page 13-237 section at the end of this example.

waveForm = ;

waveNumber =  ;
signal_data = helperPlotWaveFormAndScalogram(dataDirectory,waveForm,waveNumber);

If you compiled an executable to be deployed to the target, write the signal you chose to the text file
signalFile. Use the putFile() function of the hardware object to place the text file on the target.
The workspaceDir property contains the path to the codegen folder on the target. The main
function in the executable reads data from the text file specified by signalFile and writes the
classification results to resultFile.

signalFile = 'signalData.txt';
resultFile = 'predClassProb.txt'; % consistent with "main_mod_jetson.cu"

if CodeGenMode == 1
    fid = fopen(signalFile,'w');
    for i = 1:length(signal_data)
        fprintf(fid,'%f\n',real(signal_data(i)));
    end

 Modulation Classification Using Wavelet Analysis on NVIDIA Jetson

13-235



    for i = 1:length(signal_data)
        fprintf(fid,'%f\n',imag(signal_data(i)));
    end
    fclose(fid);
    hwobj.putFile(signalFile,hwobj.workspaceDir);
end

GPU Code Generation — Execute

Run the executable.

When running the deployed executable, delete the previous result file if it exists. Use the
runApplication() function to launch the executable on the target hardware, and then the
getFile() function to retrieve the results. Because the results may not exist immediately after the
runApplication() function call returns, and to allow for communication delays, set a maximum
time for fetching the results to 90 seconds. Use the evalc function to suppress the command-line
output.

if CodeGenMode == 1 % run deployed executable
    maxFetchTime = 90;
    resultFile_hw = fullfile(hwobj.workspaceDir,resultFile);
    if ispc
        resultFile_hw = strrep(resultFile_hw,'\','/');
    end
    
    ta = tic;
    
    hwobj.deleteFile(resultFile_hw)
    evalc('hwobj.runApplication(Function_to_Gen,signalFile)');
    
    tf = tic;
    success = false;
    while toc(tf) < maxFetchTime
        try
            evalc('hwobj.getFile(resultFile_hw)');
            success = true;
        catch ME
        end
        if success
            break
        end
    end
    fprintf('Fetch time = %.3e sec\n',toc(tf));
    assert(success,'Unable to fetch the prediction')
    PredClassProb = readmatrix(resultFile);
    PredTime = toc(ta);
elseif CodeGenMode == 2 % run PIL executable
    sigData = [real(signal_data)';imag(signal_data)']';
    ta = tic;
    eval(sprintf('PredClassProb = %s_pil(single(sigData));',Function_to_Gen));
    PredTime = toc(ta);
    eval(sprintf('clear %s_pil;',Function_to_Gen)); % terminate PIL execution
end

Fetch time = 4.852e+00 sec

13 Signal Processing Examples

13-236



GPU Code Generation — Display Result

The resultFile contains the classification results. For each possible modulation type, the network
assigned a probability that the signal was of that type. Display the chosen modulation type. Use the
helper function helperPredViz to display the classification results.

if CodeGenMode == 1
    helperPredViz                   % read fetched prediction results file
elseif CodeGenMode == 2
    helperPredVizPil(PredClassProb) % read workspace variable
end

fprintf('Expected Waveform: %s\n',waveForm);

Expected Waveform: B-FM

Summary

This example shows how to create and deploy a CUDA executable that uses a CNN to perform
modulation classification. You also have the option to create an executable the runs locally and
connects to the remote target. A complete workflow is presented in this example. After the data is
downloaded, the CWT is used to extract features from the waveforms. Then SqueezeNet is retrained
to classify the signals based on their scalograms. Two user-defined functions are created and
compiled on the target NVIDIA device. Results of the executable are compared with MATLAB.

Supporting Functions

helperPlotWaveFormAndScalogram

 Modulation Classification Using Wavelet Analysis on NVIDIA Jetson

13-237



function sig = helperPlotWaveFormAndScalogram(dataDirectory,wvType,wvNum)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

waveFileName = sprintf('frame%s%05d.mat',wvType,wvNum);
load(fullfile(dataDirectory,wvType,waveFileName),'frame');
sig = frame;

cfs = cwt(sig,'morse',1,'VoicesPerOctave',48);
cfs = abs([cfs(:,:,1);cfs(:,:,2)]);

subplot(211)
plot(real(frame))
hold on
plot(imag(frame))
hold off
axis tight
legend('Real','Imag')
str = sprintf('Waveform: %s / Frame: %d\n Signal',wvType,wvNum);
title(str)

subplot(212)
imagesc(cfs)
title('Time-Frequency Representation')
%set(gca,'xtick',[]);
set(gca,'ytick',[]);

end

helperPredVizPil

function helperPredVizPil(PredClassProb)
% This function is only intended to support wavelet deep learning examples.
% It may change or be removed in a future release.

classNames = {'16QAM';'B-FM';'BPSK';'CPFSK';'DSB-AM';'GFSK';'PAM4';'SSB-AM'};
figure
bar(PredClassProb)
set(gca, 'XTickLabel' , classNames)
xlabel('Class Labels')
ylabel('Probability')
title('Modulation Classification Output')
axis tight
grid on

end

13 Signal Processing Examples

13-238



Crack Identification from Accelerometer Data

This example shows how to use wavelet and deep learning techniques to detect transverse pavement
cracks and localize their position. The example demonstrates the use of wavelet scattering sequences
as inputs to a gated recurrent unit (GRU) and 1-D convolutional network to classify time series based
on the presence or absence of a crack. The data are vertical acceleration measurements obtained
from a sensor mounted on the suspension knuckle of the front passenger seat wheel. Early
identification of developing transverse cracks is important for pavement performance evaluation and
maintenance. Reliable automatic detection methods enable more frequent and extensive monitoring.

Please read the Data - Description and Required Attributions on page 13-239 before running this
example. All data import and preprocessing is described in the Data — Download and Import on page
13-240 and the Data — Preprocessing on page 13-240 sections. If you want to skip the training-test
set creation, preprocessing, feature extraction, and model training, you can go directly to the
Classification and Analysis on page 13-246 section. There you can load the preprocessed test data as
well as the extracted features and trained models.

Data — Description and Required Attributions

The data used in this example was retrieved from the Mendeley Data open data repository [2 on page
13-253]. The data is distributed under a Creative Commons (CC) BY 4.0 license. Download the data
and models used in this example in your temporary directory specified by MATLAB® tempdir
command. If you choose to download the data in a folder different from tempdir, change the
directory name in the subsequent instructions. Unzip the data into a folder specified as
TransverseCrackData.

dataURL = 'https://ssd.mathworks.com/supportfiles/wavelet/crackDetection/transverse_crack.zip';
saveFolder = fullfile(tempdir,'TransverseCrackData'); 
zipFile = fullfile(tempdir,'transverse_crack.zip');
websave(zipFile,dataURL);
unzip(zipFile,saveFolder)

After you unzip the data, the TransverseCrackData folder contains a subfolder called
transverse_crack_latest. All subsequent commands must be run in this folder, or you can place
this folder on the matlabpath.

The text file, vehiclevibrationdata.rights, included in the zip file contains the text of the CC BY 4.0
license. The data has been repackaged from the original Excel format into MAT-files.

Data acquisition is described in detail in [1 on page 13-253]. Twelve four meter long sections of
asphalt containing a centrally-located transverse crack and twelve equal-length uncracked sections
were used. The data is obtained from three separate roads. The transverse cracks ranged in width
from 2-13 mm with crack spacings from 7-35 mm. The sections were driven at three different speeds:
30 km/hr, 40 km/hr, and 50 km/hr. Vertical acceleration measurements from the front passenger
suspension knuckle are acquired at a sampling frequency of 1.28 kHz. The speeds of 30, 40, and 50
km/hr correspond to sensor measurements every 6.5 mm at 30 km/hr, 8.68 mm at 40 km/hr, and
10.85 mm at 50 km/hr. See [1 on page 13-253] for a detailed wavelet analysis of these data distinct
from the analyses in this example.

In keeping with the stipulations of the CC BY 4.0 license, we note that the speed information of the
original data is not retained in the data used in this example. The speed and road information are
retained in the road1.mat, road2.mat, and road3.mat data files included in the data folder for
completeness.

 Crack Identification from Accelerometer Data

13-239



Data — Download and Import

Load the accelerometer data and their corresponding labels. There are 327 accelerometer
recordings.

load(fullfile(saveFolder,"transverse_crack_latest","allroadData.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","allroadLabel.mat"))

Data — Preprocessing

Obtain the length of all the time series. Display a bar graph of the number of time series per length.

tslen = cellfun(@length,allroadData);
uLen = unique(tslen);
Ng = histcounts(tslen);
Ng = Ng(Ng > 0);
bar(uLen,Ng,0.5)
grid on
AX = gca;
AX.YLim = [0 max(Ng)+15];
text(uLen(1),Ng(1)+10,num2str(Ng(1)))
text(uLen(2),Ng(2)+10,num2str(Ng(2)))
text(uLen(3),Ng(3)+10,num2str(Ng(3)))
xlabel('Length in Samples')
ylabel('Number of Series')
title('Time Series Length')

13 Signal Processing Examples

13-240



There are three unique lengths in the dataset: 369, 461, and 615 samples. The vehicle is traveling at
three different speeds but the distance traversed and sample rate is constant resulting in different
data record lengths. Determine how many records are in the "Cracked" (CR) and "Uncracked" (UNCR)
classes.

countlabels(allroadLabel)

ans=2×3 table
    Label    Count    Percent
    _____    _____    _______

    CR        109     33.333 
    UNCR      218     66.667 

This dataset is significantly imbalanced. There are twice as many time series without a crack (UNCR)
as series containing a crack (CR). This means that a classifier which predicts "Uncracked" on each
record would achieve an accuracy of 67% without any learning.

The time series are also of different lengths. To use a wavelet scattering transform, a common input
length is needed. In recurrent networks it is possible to use unequal length time series as inputs, but
all time series in a mini-batch are padded or truncated based on the training options. This requires
care in creating mini-batches for both training and testing to ensure the proper distribution of
padded sequences. Further, it requires that you do not shuffle the data during training. With this
small dataset, shuffling the training data for each epoch is desirable. Accordingly, a common time
series length is used.

The most common length is 461 samples. Further, the crack, if present, is centrally located in the
recording. Accordingly, we can symmetrically extend the series with 369 samples to length 461 by
reflecting the initial and final 46 samples. In the recordings with 615 samples, remove the initial 77
and final 77 samples.

Training — Feature Extraction and Network Training

The following sections generate the training and test sets, create the wavelet scattering sequences,
and train both gated recurrent unit (GRU) and 1-D convolutional networks. First, extend or truncate
the time series in both sets to obtain a common length of 461 samples.

allroadData = equalLenTS(allroadData);
all(cellfun(@numel,allroadData)== 461)

ans = logical
   1

Now each time series in both the cracked and uncracked datasets has 461 samples. Split the data in a
training set consisting of 80% of the time series in each class and hold out the remaining 20% of each
class for testing. Verify that the unbalanced proportions are retained in each set.

splt8020 = splitlabels(allroadLabel,0.80);
countlabels(allroadLabel(splt8020{1}))

ans=2×3 table
    Label    Count    Percent
    _____    _____    _______

    CR         87     33.333 

 Crack Identification from Accelerometer Data

13-241



    UNCR      174     66.667 

countlabels(allroadLabel(splt8020{2}))

ans=2×3 table
    Label    Count    Percent
    _____    _____    _______

    CR        22      33.333 
    UNCR      44      66.667 

Create the training and test sets.

TrainData = allroadData(splt8020{1});
TrainLabels = allroadLabel(splt8020{1});
TestData = allroadData(splt8020{2});
TestLabels = allroadLabel(splt8020{2});

Shuffle the data and labels once before training.

idxS = randperm(length(TrainData));
TrainData = TrainData(idxS);
TrainLabels = TrainLabels(idxS);
idxS = randperm(length(TrainData));
TrainData = TrainData(idxS);
TrainLabels = TrainLabels(idxS);

Compute the scattering sequences for each of the training series. The scattering sequences are
stored in a cell array to be compatible with the GRU and 1-D convolutional networks.

XTrainSCAT = cell(size(TrainData));
for kk = 1:numel(TrainData)
    XTrainSCAT{kk} = helperscat(TrainData{kk});
end
npaths = cellfun(@(x)size(x,1),XTrainSCAT);
inputSize = npaths(1);

Training — GRU Network

Construct the GRU network layers. Use two GRU layers with 30 hidden units each as well as two
dropout layers. Because the classes are significantly unbalanced use a weighted classification layer
with the class weights proportional to the inverse class frequencies. The input size is the number of
scattering paths. To train this network on the raw time series, change the inputSize to 1 and
transpose each time series to a row vector (1-by-461). If you wish to skip the network training, you
may go directly to the Classification and Analysis on page 13-246 section. There you can load the
trained GRU network as well as the preprocessed training and test sets.

numHiddenUnits1 = 30;
numHiddenUnits2 = 30;
numClasses = 2;
classFrequencies = countcats(allroadLabel);
Nsamp = sum(classFrequencies);
weightCR = 1/classFrequencies(1)*Nsamp/2;
weightUNCR = 1/classFrequencies(2)*Nsamp/2;
GRUlayers = [ ...
    sequenceInputLayer(inputSize,'Name','InputLayer', ...

13 Signal Processing Examples

13-242



        'Normalization','zerocenter')
    gruLayer(numHiddenUnits1,'Name','GRU1','OutputMode','sequence')
    dropoutLayer(0.35,'Name','Dropout1')
    gruLayer(numHiddenUnits2,'Name','GRU2','OutputMode','last')
    dropoutLayer(0.2,'Name','Dropout2')
    fullyConnectedLayer(numClasses,'Name','FullyConnected')
    softmaxLayer('Name','smax');
    classificationLayer('Name','ClassificationLayer','Classes',["CR" "UNCR"], ...
        'ClassWeights',[weightCR weightUNCR]);
        ];

Train the GRU network. Use a mini-batch size of 15 with 150 epochs.

maxEpochs = 150;
miniBatchSize = 15;

options = trainingOptions('adam', ...
    'L2Regularization',1e-3, ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'Verbose',0, ...
    'Plots','none');
iterPerEpoch = floor(length(XTrainSCAT)/miniBatchSize);
[scatGRUnet,infoGRU] = trainNetwork(XTrainSCAT,TrainLabels,GRUlayers,options);

Plot the smoothed training accuracy and loss per iteration.

figure
subplot(2,1,1)
smoothedACC = filter(1/iterPerEpoch*ones(iterPerEpoch,1),1, ...
    infoGRU.TrainingAccuracy);
smoothedLoss = filter(1/iterPerEpoch*ones(iterPerEpoch,1),1, ...
    infoGRU.TrainingLoss);
plot(smoothedACC)
title(['Training Accuracy (Smoothed) ' ...
    num2str(iterPerEpoch) ' iterations per epoch'])
ylabel('Accuracy (%)')
ylim([0 100.1])
grid on
xlim([1 length(smoothedACC)])
subplot(2,1,2)
plot(smoothedLoss)
ylim([-0.01 1])
grid on
xlim([1 length(smoothedLoss)])
ylabel('Loss')
xlabel('Iteration')

 Crack Identification from Accelerometer Data

13-243



Obtain the wavelet scattering transforms of the held-out test data for classification.

XTestSCAT = cell(size(TestData));
for kk = 1:numel(TestData)
    XTestSCAT{kk} = helperscat(TestData{kk});
end

Training — 1-D Convolutional Network

Train a 1-D convolutional network with wavelet scattering sequences. If you wish to skip the network
training, you may go directly to the Classification and Analysis on page 13-246 section. There you can
load the trained convolutional network as well as the preprocessed training and test sets.

Construct and train the 1-D convolutional network. There are 28 paths in the scattering network.

conv1dLayers = [
    sequenceInputLayer(28,'MinLength',58,'Normalization','zerocenter');
    convolution1dLayer(3,24,'Stride',2);
    batchNormalizationLayer;
    reluLayer;
    maxPooling1dLayer(4);
    convolution1dLayer(3,16,'Padding','same');
    batchNormalizationLayer;
    reluLayer;
    maxPooling1dLayer(2);
    fullyConnectedLayer(150);
    fullyConnectedLayer(2);

13 Signal Processing Examples

13-244



    globalAveragePooling1dLayer;
    softmaxLayer;
    classificationLayer('Name','ClassificationLayer','Classes',["CR","UNCR"], ...
    'ClassWeights',[weightCR weightUNCR]);
    ];

convoptions = trainingOptions('adam', ...
    'InitialLearnRate',0.01, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor',0.5, ...
    'LearnRateDropPeriod',5, ...
    'Plots','none',...
    'MaxEpochs',50, ...
    'Verbose',0, ...
    'Plots','none', ...
    'MiniBatchSize',miniBatchSize);
[scatCONV1Dnet,infoCONV] = ...
    trainNetwork(XTrainSCAT,TrainLabels,conv1dLayers,convoptions);

Plot the smoothed training accuracy and loss per iteration.

iterPerEpoch = floor(length(XTrainSCAT)/miniBatchSize);
figure
subplot(2,1,1)
smoothedACC = filter(1/iterPerEpoch*ones(iterPerEpoch,1),1, ...
    infoCONV.TrainingAccuracy);
smoothedLoss = filter(1/iterPerEpoch*ones(iterPerEpoch,1),1, ...
    infoCONV.TrainingLoss);
plot(smoothedACC)
title(['Training Accuracy (Smoothed) ' ...
    num2str(iterPerEpoch) ' iterations per epoch'])
ylabel('Accuracy (%)')
ylim([0 100.1])
grid on
xlim([1 length(smoothedACC)])
subplot(2,1,2)
plot(smoothedLoss)
ylim([-0.01 1])
grid on
xlim([1 length(smoothedLoss)])
ylabel('Loss')
xlabel('Iteration')

 Crack Identification from Accelerometer Data

13-245



Classification and Analysis

Load the trained gated recurrent unit (GRU) and 1-D convolutional networks along with the test data
and scattering sequences. All data, features, and networks were created in the Training — Feature
Extraction and Network Training on page 13-241 section.

load(fullfile(saveFolder,"transverse_crack_latest","TestData.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","TestLabels.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","XTestSCAT.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","scatGRUnet"))
load(fullfile(saveFolder,"transverse_crack_latest","scatCONV1Dnet.mat"))

If you additionally want the preprocessed data, labels, and wavelet scattering sequences for the
training data, you can load those with the following commands. These data and labels are not used in
the remainder of this example if you wish to skip the following load commands.

load(fullfile(saveFolder,"transverse_crack_latest","TrainData.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","TrainLabels.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","XTrainSCAT.mat"))

Examine the number of time series per class in the test set. Note the test set is significantly
imbalanced as discussed in Data — Preprocessing on page 13-240 section.

countlabels(TestLabels)

ans=2×3 table
    Label    Count    Percent

13 Signal Processing Examples

13-246



    _____    _____    _______

    CR        22      33.333 
    UNCR      44      66.667 

XTestSCAT contains the wavelet scattering sequences computed for the raw time series in
TestData.

Show the GRU model performance on the test data not used in model training.

miniBatchSize = 15;
ypredSCAT = classify(scatGRUnet,XTestSCAT, ...
    'MiniBatchSize',miniBatchSize);
figure
confusionchart(TestLabels,ypredSCAT,'RowSummary','row-normalized', ...
    'ColumnSummary','column-normalized')
title({'GRU network -- Wavelet Scattering Sequences'; ...
    'Confusion chart with precision and recall'})

In spite of the large imbalance in the classes and the small dataset, the precision and recall values
indicate the network performs well on the test data. Specifically, the precision and recall values for
"Cracked" data are excellent. This is achieved in spite of the fact that 67% of the records in the
training set were "Uncracked". The network has not overlearned to classify the time series as
"Uncracked" in spite of the imbalance.

 Crack Identification from Accelerometer Data

13-247



If you set the inputSize = 1 and transpose the time series in the training data, you can retrain the
GRU network on the raw time series data. This was done on the same data in the training set. You can
load that network and check the performance on the test set.

load(fullfile(saveFolder,"transverse_crack_latest","tsGRUnet.mat"))
rawTest = cellfun(@transpose,TestData,'UniformOutput',false);
miniBatchSize = 15;
YPredraw = classify(tsGRUnet,rawTest, ...
    'MiniBatchSize',miniBatchSize);
confusionchart(TestLabels,YPredraw,'RowSummary','row-normalized', ...
    'ColumnSummary','column-normalized')
title({'GRU network -- Raw Time Series'; ...
    'Confusion chart with precision and recall'})

For this network, the performance is not good. Specifically, the recall for the "Cracked" data is poor.
The number of false negatives for the "Crack" data is quite large. This is exactly what you would
expect with an imbalanced dataset when the model has not learned well.

Test the 1-D convolutional network trained with the wavelet scattering sequences.

miniBatchSize = 15;
YPredSCAT = classify(scatCONV1Dnet,XTestSCAT, ...
    'MiniBatchSize',miniBatchSize);
figure
confusionchart(TestLabels,YPredSCAT,'RowSummary','row-normalized', ...
    'ColumnSummary','column-normalized')
title({'1-D Convolutional Network-- Wavelet Scattering Sequences'; ...
    'Confusion chart with precision and recall'})

13 Signal Processing Examples

13-248



The performance of the convolutional network with scattering sequences is excellent and is
consistent with the performance of the GRU network. Precision and recall on the minority class
demonstrate robust learning.

To train the 1-D convolutional network on the raw sequences set inputSize to 1 in the
sequenceInpuLayer. Set the 'MinLength' to 461. You can load and test that network trained
using the same data and same network architecture.

load(fullfile(saveFolder,"transverse_crack_latest","tsCONV1Dnet.mat"))
miniBatchSize = 15;
TestDataT = cellfun(@transpose,TestData,'UniformOutput',false);
YPredRAW = classify(tsCONV1Dnet,TestDataT, ...
    'MiniBatchSize',miniBatchSize);
confusionchart(TestLabels,YPredRAW,'RowSummary','row-normalized', ...
    'ColumnSummary','column-normalized')
title({'1-D Convolutional Network-- Raw Sequences'; ...
    'Confusion chart with precision and recall'})

 Crack Identification from Accelerometer Data

13-249



The 1-D convolution network with the raw sequences performs well but not quite as well as the
convolutional network trained with the wavelet scattering sequences.

Wavelet Inference and Analysis

This section demonstrates how to classify a single time series using wavelet analysis with a
pretrained model. The model used is the 1-D convolutional network trained on wavelet scattering
sequences. Load the trained network and some test data if you have not already loaded these in the
previous section.

load(fullfile(saveFolder,"transverse_crack_latest","scatCONV1Dnet.mat"))
load(fullfile(saveFolder,"transverse_crack_latest","TestData.mat"))

Construct the wavelet scattering network to transform the data. Select a time series from the test
data and classify the data. If the model classifies the time series as "Cracked", investigate the series
for the position of the crack in the waveform.

sf = waveletScattering('SignalLength',461, ...
    'OversamplingFactor',1,'qualityfactors',[8 1], ...
    'InvarianceScale',0.05,'Boundary','reflect','SamplingFrequency',1280);
idx = 22;
data = TestData{idx};
[smat,x] = featureVectors(data,sf);
PredictedClass = classify(scatCONV1Dnet,smat);
if isequal(PredictedClass,'CR') 
    fprintf('Crack detected. Computing wavelet transform modulus maxima.\n')
    wtmm(data,'Scaling','local')
end

13 Signal Processing Examples

13-250



Crack detected. Computing wavelet transform modulus maxima.

The wavelet transform modulus maxima (WTMM) technique shows a maxima line converging to the
finest scale at sample 225. Maxima lines that converge to fine scales are a good estimate of where
singularities are in a time series. This makes sample 225 a good estimate of the location of the crack.

figure
plot(x,data)
axis tight
hold on
plot([x(225) x(225)],[min(data) max(data)],'k')
hold off
grid on
title(['Crack located at ' num2str(x(225)) ' meters'])
xlabel('Distance (m)')
ylabel('Amplitude')

 Crack Identification from Accelerometer Data

13-251



You can increase your confidence in this location by using multiresolution analysis (MRA) techniques
and identifying changes in slope in long-scale wavelet MRA series. See “Practical Introduction to
Multiresolution Analysis” (Wavelet Toolbox) for an introduction to MRA techniques. In [1 on page 13-
253] the difference in energy between "Cracked" and "Uncracked" series occurred in the low
frequency bands, specifically in the interval of [10,20] Hz. Accordingly, the following MRA is focused
on signal components in the frequency bands from [10,80] Hz. In these bands, identify linear changes
in the data. Plot the change points along with the MRA components.

[mra,chngpts] = helperMRA(data,x);

13 Signal Processing Examples

13-252



The MRA-based changepoint analysis has helped to confirm the WTMM analysis in identifying the
region around 1.94 meters as the probable location of the crack.

Summary

This example showed how to use wavelet scattering sequences with both recurrent and convolutional
networks to classify time series. The example further demonstrated how wavelet techniques can help
to localize features on the same spatial (time) scale as the original data.

References

[1] Yang, Qun and Shishi Zhou. "Identification of asphalt pavement transverse cracking based on
vehicle vibration signal analysis.", Road Materials and Pavement Design, 2020, 1-19. https://doi.org/
10.1080/14680629.2020.1714699.

[2] Zhou,Shishi. "Vehicle vibration data." https://data.mendeley.com/datasets/3dvpjy4m22/1. Data is
used under CC BY 4.0. Data is repackaged from original Excel data format to MAT-files. Speed label
removed and only "crack" or "nocrack" label retained.

Appendix

Helper functions used in this example.

function smat = helperscat(datain)
% This helper function is only in support of Wavelet Toolbox examples.

 Crack Identification from Accelerometer Data

13-253

https://doi.org/10.1080/14680629.2020.1714699
https://doi.org/10.1080/14680629.2020.1714699
https://data.mendeley.com/datasets/3dvpjy4m22/1
https://creativecommons.org/licenses/by/4.0/


% It may change or be removed in a future release.
datain = single(datain);

sn = waveletScattering('SignalLength',length(datain), ...
    'OversamplingFactor',1,'qualityfactors',[8 1], ...
    'InvarianceScale',0.05,'Boundary','reflect','SamplingFrequency',1280);
smat = sn.featureMatrix(datain);

end

%-----------------------------------------------------------------------
function dataUL = equalLenTS(data)
% This function in only in support of Wavelet Toolbox examples.
% It may change or be removed in a future release.
N = length(data);
dataUL = cell(N,1);
for kk = 1:N
    L = length(data{kk});
    switch L
        case 461
            dataUL{kk} = data{kk};
        case 369
            Ndiff = 461-369;
            pad = Ndiff/2;
            dataUL{kk} = [flip(data{kk}(1:pad)); data{kk} ; ...
                flip(data{kk}(L-pad+1:L))];     
        otherwise
            Ndiff = L-461;
            zrs = Ndiff/2;
            dataUL{kk} = data{kk}(zrs:end-zrs-1);
    end
end       

end

%--------------------------------------------------------------------------
function [fmat,x] = featureVectors(data,sf)
% This function is only in support of Wavelet Toolbox examples.
% It may change or be removed in a future release.
data = single(data);
N = length(data);
dt = 1/1280;
if N < 461
    Ndiff = 461-N;
    pad = Ndiff/2;
    dataUL = [flip(data(1:pad)); data ; ...
                flip(data(N-pad+1:N))];   
     rate = 5e4/3600;
     dx = rate*dt;
     x = 0:dx:(N*dx)-dx;     
elseif N > 461
    Ndiff = N-461;
    zrs = Ndiff/2;
    dataUL = data(zrs:end-zrs-1);
    rate = 3e4/3600;
    dx = rate*dt;
    x = 0:dx:(N*dx)-dx;
else

13 Signal Processing Examples

13-254



    dataUL = data;
    rate = 4e4/3600;
    dx = rate*dt;
    x = 0:dx:(N*dx)-dx;
end
fmat = sf.featureMatrix(dataUL);
end

%------------------------------------------------------------------------------
function [mra,chngpts] = helperMRA(data,x)
% This function is only in support of Wavelet Toolbox examples.
% It may change or be removed in a future release.
mra = modwtmra(modwt(data,'sym3'),'sym3');
mraLev = mra(4:6,:);
Ns = size(mraLev,1);
thresh = [2, 4, 8];
chngpts = false(size(mraLev));
% Determine changepoints. We want different thresholds for different
% resolution levels.
for ii = 1:Ns
    chngpts(ii,:) = ischange(mraLev(ii,:),"linear",2,"Threshold",thresh(ii));
end

for kk = 1:Ns
    idx = double(chngpts(kk,:));
    idx(idx == 0) = NaN;    
    subplot(Ns,1,kk)
    plot(x,mraLev(kk,:))
    if kk == 1
        title('MRA Components')
    end
    yyaxis right
    hs = stem(x,idx);
    hs.ShowBaseLine = 'off';
    hs.Marker = '^';
    hs.MarkerFaceColor = [1 0 0];
end
grid on
axis tight
xlabel('Distance (m)')
end

See Also
waveletScattering

Related Examples
• “Air Compressor Fault Detection Using Wavelet Scattering” (Wavelet Toolbox)
• “Digit Classification with Wavelet Scattering” (Wavelet Toolbox)
• “Fault Detection Using Wavelet Scattering and Recurrent Deep Networks” on page 13-140

More About
• “Wavelet Scattering” (Wavelet Toolbox)

 Crack Identification from Accelerometer Data

13-255



Time-Frequency Feature Embedding with Deep Metric Learning

This example shows how to use deep metric learning with a supervised contrastive loss to construct
feature embeddings based on a time-frequency analysis of electroencephaligraphic (EEG) signals. The
learned time-frequency embeddings reduce the dimensionality of the time-series data by a factor of
16. You can use these embeddings to classify EEG time-series from persons with and without epilepsy
using a support vector machine classifier.

Deep Metric Learning

Deep metric learning attempts to learn a nonlinear feature embedding, or encoder, that reduces the
distance (a metric) between examples from the same class and increases the distance between
examples from different classes. Loss functions that work in this way are often referred to as
contrastive. This example uses supervised deep metric learning with a particular contrastive loss
function called the normalized temperature-scaled cross-entropy loss [3] on page 13-267,[4] on page
13-267,[8] on page 13-267. The figure shows the general workflow for this supervised deep metric
learning.

Positive pairs refer to training samples with the same label, while negative pairs refer to training
samples with different labels. A distance, or similarity, matrix is formed from the positive and
negative pairs. In this example, the cosine similarity matrix is used. From these distances, losses are
computed and aggregated (reduced) to form a single scalar-valued loss for use in gradient-descent
learning.

13 Signal Processing Examples

13-256



Deep metric learning is also applicable in weakly supervised, self-supervised, and unsupervised
contexts. There is a wide variety of distance (metrics) measures, losses, reducers, and regularizers
that are employed in deep metric learning.

Data — Description, Attribution, and Download Instructions

The data used in this example is the Bonn EEG Data Set. The data is currently available at EEG Data
Download and Ralph Andrzejak's EEG data download page. See Ralph Andrzejak's EEG data for legal
conditions on the use of the data. The authors have kindly permitted the use of the data in this
example.

The data in this example were first analyzed and reported in:

Andrzejak, Ralph G., Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Christian
E. Elger. "Indications of Nonlinear Deterministic and Finite-Dimensional Structures in Time Series of
Brain Electrical Activity: Dependence on Recording Region and Brain State." Physical Review E 64,
no. 6 (2001). <https://doi.org/10.1103/physreve.64.061907>

The data consists of five sets of 100 single-channel EEG recordings. The resulting single-channel EEG
recordings were selected from 128-channel EEG recordings after visually inspecting each channel for
obvious artifacts and satisfying a weak stationarity criterion. See the linked paper for details.

The original paper designates these five sets as A-E. Each recording is 23.6 seconds in duration
sampled at 173.61 Hz. Each time series contains 4097 samples. The conditions are as follows:

A -- Normal subjects with eyes open

B -- Normal subjects with eyes closed

C -- Seizure-free recordings from patients with epilepsy. Recording from hippocampus in the
hemisphere opposite the epileptogenic zone

D -- Seizure-free recordings obtained from patients with epilepsy. Recordings from epileptogenic
zone.

E - Recordings from patients with epilepsy showing seizure activity.

The zip files corresponding to this data are labeled as z.zip (A), o.zip (B), n.zip (C), f.zip (D), and s.zip
(E).

The example assumes you have downloaded and unzipped the zip files into folders named Z, O, N, F,
and S respectively. In MATLAB® you can do this by creating a parent folder and using that as the
OUTPUTDIR variable in the unzip command. This example uses the folder designated by MATLAB as
tempdir as the parent folder. If you choose to use a different folder, adjust the value of parentDir
accordingly. The following code assumes that all the .zip files have been downloaded into parentDir.
Unzip the files by folder into a subfolder called BonnEEG.

parentDir = tempdir;
cd(parentDir)
mkdir('BonnEEG')
dataDir = fullfile(parentDir,'BonnEEG');
unzip('z.zip',dataDir)
unzip('o.zip',dataDir)
unzip('n.zip',dataDir)
unzip('f.zip',dataDir)
unzip('s.zip',dataDir)

 Time-Frequency Feature Embedding with Deep Metric Learning

13-257

https://www.ukbonn.de/en/epileptology/workgroups/lehnertz-workgroup-neurophysics/downloads/
https://www.ukbonn.de/en/epileptology/workgroups/lehnertz-workgroup-neurophysics/downloads/
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2001-indications-of-nonlinear-deterministic-and-finite-dimensional-structures-in-time-series-of-brain-electrical-activity-dependence-on-recording-regi?inheritRedirect=false&redirect=https%3A%2F%2Fwww.upf.edu%2Fweb%2Fntsa%2Fdownloads%3Fp_p_id%3D101_INSTANCE_xvT6E4pczrBw%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1#.X5Ep-S337UI
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2001-indications-of-nonlinear-deterministic-and-finite-dimensional-structures-in-time-series-of-brain-electrical-activity-dependence-on-recording-regi?inheritRedirect=false&redirect=https%3A%2F%2Fwww.upf.edu%2Fweb%2Fntsa%2Fdownloads%3Fp_p_id%3D101_INSTANCE_xvT6E4pczrBw%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1#.X5Ep-S337UI
https://www.upf.edu/documents/229517819/232450661/Andrzejak-PhysicalReviewE2001.pdf/0e9a54b8-8993-b400-743e-4d64fa29fb63
https://www.upf.edu/documents/229517819/232450661/Andrzejak-PhysicalReviewE2001.pdf/0e9a54b8-8993-b400-743e-4d64fa29fb63
https://www.upf.edu/documents/229517819/232450661/Andrzejak-PhysicalReviewE2001.pdf/0e9a54b8-8993-b400-743e-4d64fa29fb63
https://www.upf.edu/documents/229517819/232450661/Andrzejak-PhysicalReviewE2001.pdf/0e9a54b8-8993-b400-743e-4d64fa29fb63


Creating in-memory data and labels

The individual EEG time series are stored as .txt files in each of the Z, N, O, F, and S folders under
dataDir. Use a tabularTextDatastore to read the data. Create a tabular text datastore and
create a categorical array of signal labels based on the folder names.

tds = tabularTextDatastore(dataDir,'IncludeSubfolders',true,'FileExtensions','.txt');

The zip files were created on a macOS and accordingly there may be a MACOSX folder created with
unzip that results in extra files. If those exist, remove them.

extraTXT = contains(tds.Files,'__MACOSX');
tds.Files(extraTXT) = [];

Create labels for the data based on the first letter of the text file name.

labels = filenames2labels(tds.Files,'ExtractBetween',[1 1]);

Each read of the tabular text datastore creates a table containing the data. Create a cell array of all
signals reshaped as row vectors so they conform with the deep learning networks used in the
example.

ii = 1;
eegData = cell(numel(labels),1);
while hasdata(tds)
    tsTable = read(tds);
    ts = tsTable.Var1;
    eegData{ii} = reshape(ts,1,[]);
    ii = ii+1;
end

Time-Frequency Feature Embedding Deep Network

Here we construct a deep learning network that creates an embedding of the input signal based on a
time-frequency analysis.

TFnet = [sequenceInputLayer(1,'MinLength',4097,'Name',"input")
    cwtLayer('SignalLength',4097,'IncludeLowpass',true,'Wavelet','amor',...
    'FrequencyLimits',[0 0.23])
    convolution2dLayer([5,10],1,'stride',2)
    maxPooling2dLayer([5,10])
    convolution2dLayer([5,10],5,'Padding','same')
    maxPooling2dLayer([5,10])
    batchNormalizationLayer
    reluLayer
    convolution2dLayer([5,10],10,'Padding','same')
    maxPooling2dLayer([2,4])
    batchNormalizationLayer
    reluLayer
    flattenLayer
    globalAveragePooling1dLayer
    fullyConnectedLayer(256)];
TFnet = dlnetwork(TFnet);

After the input layer, the network obtains the continuous wavelet transform (CWT) of the data using
the analytic Morlet wavelet. The output of cwtLayer (Wavelet Toolbox) is the magnitude of the CWT,
or scalogram. Unlike the analyses in [1] on page 13-267,[2] on page 13-267, and [7] on page 13-267,
no pre-processing bandpass filter is used in this network. Instead, the CWT is obtained only over the

13 Signal Processing Examples

13-258



frequency range of [0.0, 0.23] cycles/sample which is equivalent to [0,39.93] Hz for the sample rate of
173.61 Hz. This is the approximate range of the bandpass filter applied to the data before analysis in
[1]. After the network obtains the scalogram, the network cascades a series of 2-D convolutional,
batch normalization, and RELU layers. The final layer is a fully connected layer with 256 output units.
This results in a 16-fold reduction in the size of the input. See [7] on page 13-267 for another
scalogram-based analysis of this data and [2] on page 13-267 for another wavelet-based analysis
using the tunable Q-factor wavelet transform.

Differentiating Normal, Pre-seizure, and Seizure EEG

Given the five conditions present in the data, there are multiple meaningful and clinically informative
ways to partition the data. One relevant way is to group the Z and O labels (non-epileptic subjects
with eyes open and closed) as "Normal". Similarly, the two conditions recorded in the persons with
epilepsy without overt seizure activity (N and F) may be grouped as "Pre-seizure". Finally, we
designate the recordings obtained in epileptic subjects with seizure activity as "Seizure". To create
labels, which may be cast to numeric values during training, designate these three classes as:

• 0 -- "Normal"
• 1 -- "Pre-seizure"
• 2 -- "Seizure"

Partition the data into training and test sets. First, create the new labels in order to partition the
data. Examine the number of examples in each class.

labelsPS = labels;
labelsPS = removecats(labelsPS,{'F','N','O','S','Z'});
labelsPS(labels == categorical("Z") | labels == categorical("O")) = categorical("0");
labelsPS(labels == categorical("N") | labels == categorical("F")) = categorical("1");
labelsPS(labels == categorical("S")) = categorical("2");
labelsPS(isundefined(labelsPS)) = [];
summary(labelsPS)

     0      200 
     1      200 
     2      100 

The resulting classes are unbalanced with twice as many signals in the "Normal" and "Pre-seizure"
categories as in the "Seizure" category. Partition the data for training the encoder and the hold-out
test set. Allocate 80% of the data to the training set and 20% to the test set.

idxPS = splitlabels(labelsPS,[0.8 0.2]);
TrainDataPS = eegData(idxPS{1});
TrainLabelsPS = labelsPS(idxPS{1});
testDataPS = eegData(idxPS{2});
testLabelsPS = labelsPS(idxPS{2});

Training the Encoder

To train the encoder, set trainEmbedder to true. To skip the training and load a pretrained encoder
and corresponding embeddings, set trainEmbedder to false and go to the Test Data Embeddings
on page 13-265 section.

trainEmbedder = true;

Because this example uses a custom loss function, you must use a custom training loop. To manage
data through the custom training loop, use a signalDatastore (Signal Processing Toolbox) with a

 Time-Frequency Feature Embedding with Deep Metric Learning

13-259



custom read function that normalizes the input signals to have zero mean and unit standard
deviation.

if trainEmbedder
    sdsTrain = signalDatastore(TrainDataPS,MemberNames = string(TrainLabelsPS));
    transTrainDS = transform(sdsTrain,@(x,info)helperReadData(x,info),'IncludeInfo',true);
end

Train the network by measuring the normalized temperature-controlled cross-entropy loss between
embeddings obtained from identical classes (corresponding to positive pairs) and disparate classes
(corresponding to negative pairs) in each mini-batch. The custom loss function computes the cosine
similarity between each training example, obtaining a M-by-M similarity matrix, where M is the mini-
batch size. The function computes the normalized temperature-controlled cross entropy for the
similarity matrix with the temperature parameter equal to 0.07. The function calculates the scalar
loss as the mean of the mini-batch losses.

Specify Training Options

The model parameters are updated based on the loss using an Adam optimizer.

Train the encoder for 150 epochs with a mini-batch size of 50, a learning rate of 0.001, and an L2-
regularization rate of 0.01.

if trainEmbedder
    NumEpochs = 150;
    minibatchSize = 50;
    learnRate = 0.001;
    l2Regularization = 1e-2;    
end

Calculate the number of iterations per epoch and the total number of iterations to display training
progress.

if trainEmbedder
    numObservations = numel(TrainDataPS);
    numIterationsPerEpoch = floor(numObservations./minibatchSize);
    numIterations = NumEpochs*numIterationsPerEpoch;
end

Create a minibatchqueue object to manage data flow through the custom training loop.

if trainEmbedder
    numOutputs = 2;
    mbqTrain = minibatchqueue(transTrainDS,numOutputs,...
        'minibatchSize',minibatchSize,...
        'OutputAsDlarray',[1,1],...
        'minibatchFcn',@processMB,...
        'OutputCast',{'single','single'},...
        'minibatchFormat', {'CBT','B'});
end

Train the encoder.

if trainEmbedder
    progress = "final-loss";
    if progress == "training-progress"
        figure
        lineLossTrain = animatedline;

13 Signal Processing Examples

13-260



        ylim([0 inf])
        xlabel("Iteration")
        ylabel("Loss")
        grid on
    end
    % Initialize some training loop variables
    trailingAvg = [];
    trailingAvgSq = [];
    iteration = 1;
    lossByIteration = zeros(numIterations,1);

    % Loop over epochs and time the epochs
    start = tic;

    for epoch = 1:NumEpochs
        % Shuffle the mini-batches each epoch
        reset(mbqTrain)
        shuffle(mbqTrain)

        % Loop over mini-batches
        while hasdata(mbqTrain)
            % Get the next mini-batch and one-hot coded targets
            [dlX,Y] = next(mbqTrain);
            % Evaluate the model gradients and contrastive loss
            [gradients, loss, state] = dlfeval(@modelGradcontrastiveLoss,TFnet,dlX,Y);
            if progress == "final-loss"
                lossByIteration(iteration) = loss;
            end
            % Update the gradients with the L2-regularization rate
            idx = TFnet.Learnables.Parameter == "Weights";
            gradients(idx,:) = ...
                dlupdate(@(g,w) g + l2Regularization*w, gradients(idx,:), TFnet.Learnables(idx,:));
            % Update the network state
            TFnet.State = state;
            % Update the network parameters using an Adam optimizer
            [TFnet,trailingAvg,trailingAvgSq] = adamupdate(...
                TFnet,gradients,trailingAvg,trailingAvgSq,iteration,learnRate);

            % Display the training progress
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            if progress == "training-progress"
                addpoints(lineLossTrain,iteration,loss)
                title("Epoch: " + epoch + ", Elapsed: " + string(D))
            end
            iteration = iteration + 1;

        end
        disp("Training loss after epoch " + epoch + ": " + loss);
    end
    if progress == "final-loss"
        plot(1:numIterations,lossByIteration)
        grid on
        title('Training Loss by Iteration')
        xlabel("Iteration")
        ylabel("Loss")
    end
end

 Time-Frequency Feature Embedding with Deep Metric Learning

13-261



Training loss after epoch 1: 1.4759
Training loss after epoch 2: 1.5684
Training loss after epoch 3: 1.0331
Training loss after epoch 4: 1.1621
Training loss after epoch 5: 0.70297
Training loss after epoch 6: 0.29956
Training loss after epoch 7: 0.42671
Training loss after epoch 8: 0.23963
Training loss after epoch 9: 0.021723
Training loss after epoch 10: 0.50336
Training loss after epoch 11: 0.34225
Training loss after epoch 12: 0.63325
Training loss after epoch 13: 0.31603
Training loss after epoch 14: 0.25883
Training loss after epoch 15: 0.52879
Training loss after epoch 16: 0.27623
Training loss after epoch 17: 0.070335
Training loss after epoch 18: 0.073039
Training loss after epoch 19: 0.2657
Training loss after epoch 20: 0.10312
Training loss after epoch 21: 0.33435
Training loss after epoch 22: 0.24089
Training loss after epoch 23: 0.083583
Training loss after epoch 24: 0.33138
Training loss after epoch 25: 0.006466
Training loss after epoch 26: 0.44036
Training loss after epoch 27: 0.028106
Training loss after epoch 28: 0.14215
Training loss after epoch 29: 0.018414
Training loss after epoch 30: 0.018228
Training loss after epoch 31: 0.026751
Training loss after epoch 32: 0.026275
Training loss after epoch 33: 0.13545
Training loss after epoch 34: 0.029467
Training loss after epoch 35: 0.0088911
Training loss after epoch 36: 0.12077
Training loss after epoch 37: 0.1113
Training loss after epoch 38: 0.14529
Training loss after epoch 39: 0.10718
Training loss after epoch 40: 0.10141
Training loss after epoch 41: 0.018227
Training loss after epoch 42: 0.0086456
Training loss after epoch 43: 0.025808
Training loss after epoch 44: 0.00021023
Training loss after epoch 45: 0.0013423
Training loss after epoch 46: 0.0020328
Training loss after epoch 47: 0.012152
Training loss after epoch 48: 0.00025792
Training loss after epoch 49: 0.0010626
Training loss after epoch 50: 0.0015668
Training loss after epoch 51: 0.00048469
Training loss after epoch 52: 0.00073284
Training loss after epoch 53: 0.00043141
Training loss after epoch 54: 0.0009649
Training loss after epoch 55: 0.00014656
Training loss after epoch 56: 0.00024468
Training loss after epoch 57: 0.00092313
Training loss after epoch 58: 0.00022878

13 Signal Processing Examples

13-262



Training loss after epoch 59: 6.3505e-05
Training loss after epoch 60: 5.0711e-05
Training loss after epoch 61: 0.0006025
Training loss after epoch 62: 0.00010356
Training loss after epoch 63: 0.00018479
Training loss after epoch 64: 0.00042666
Training loss after epoch 65: 6.88e-05
Training loss after epoch 66: 0.00019625
Training loss after epoch 67: 0.00064875
Training loss after epoch 68: 0.00017705
Training loss after epoch 69: 0.00086301
Training loss after epoch 70: 0.00044735
Training loss after epoch 71: 0.00099668
Training loss after epoch 72: 3.7804e-05
Training loss after epoch 73: 9.1751e-05
Training loss after epoch 74: 2.6748e-05
Training loss after epoch 75: 0.0012345
Training loss after epoch 76: 0.00019493
Training loss after epoch 77: 0.00058993
Training loss after epoch 78: 0.0024207
Training loss after epoch 79: 7.1345e-05
Training loss after epoch 80: 0.00015598
Training loss after epoch 81: 9.3623e-05
Training loss after epoch 82: 8.9839e-05
Training loss after epoch 83: 0.0024844
Training loss after epoch 84: 0.0001383
Training loss after epoch 85: 0.00027976
Training loss after epoch 86: 0.17246
Training loss after epoch 87: 0.61378
Training loss after epoch 88: 0.41423
Training loss after epoch 89: 0.35526
Training loss after epoch 90: 0.081963
Training loss after epoch 91: 0.09392
Training loss after epoch 92: 0.026856
Training loss after epoch 93: 0.18554
Training loss after epoch 94: 0.04293
Training loss after epoch 95: 0.0002686
Training loss after epoch 96: 0.0071139
Training loss after epoch 97: 0.0028931
Training loss after epoch 98: 0.029305
Training loss after epoch 99: 0.0080128
Training loss after epoch 100: 0.0018248
Training loss after epoch 101: 0.00012145
Training loss after epoch 102: 7.6166e-05
Training loss after epoch 103: 0.0001156
Training loss after epoch 104: 8.262e-05
Training loss after epoch 105: 0.00023958
Training loss after epoch 106: 0.00016227
Training loss after epoch 107: 0.00025268
Training loss after epoch 108: 0.0022929
Training loss after epoch 109: 0.00029386
Training loss after epoch 110: 0.00029691
Training loss after epoch 111: 0.00033467
Training loss after epoch 112: 5.31e-05
Training loss after epoch 113: 0.00013522
Training loss after epoch 114: 1.4335e-05
Training loss after epoch 115: 0.0015768
Training loss after epoch 116: 2.4165e-05

 Time-Frequency Feature Embedding with Deep Metric Learning

13-263



Training loss after epoch 117: 0.00031281
Training loss after epoch 118: 3.4592e-05
Training loss after epoch 119: 7.1151e-05
Training loss after epoch 120: 0.00020099
Training loss after epoch 121: 1.7647e-05
Training loss after epoch 122: 0.00010945
Training loss after epoch 123: 0.0012003
Training loss after epoch 124: 4.5947e-05
Training loss after epoch 125: 0.00043231
Training loss after epoch 126: 7.3228e-05
Training loss after epoch 127: 2.3522e-05
Training loss after epoch 128: 0.00014366
Training loss after epoch 129: 0.00010692
Training loss after epoch 130: 0.00066842
Training loss after epoch 131: 9.2536e-06
Training loss after epoch 132: 0.0007364
Training loss after epoch 133: 3.0709e-05
Training loss after epoch 134: 5.4056e-05
Training loss after epoch 135: 3.3361e-05
Training loss after epoch 136: 8.1937e-05
Training loss after epoch 137: 0.00012198
Training loss after epoch 138: 3.9838e-05
Training loss after epoch 139: 0.00025224
Training loss after epoch 140: 4.9974e-05
Training loss after epoch 141: 8.302e-05
Training loss after epoch 142: 2.009e-05
Training loss after epoch 143: 7.2674e-05
Training loss after epoch 144: 4.8355e-05
Training loss after epoch 145: 0.0008231
Training loss after epoch 146: 0.00017177
Training loss after epoch 147: 3.4427e-05
Training loss after epoch 148: 0.0095201
Training loss after epoch 149: 0.026009
Training loss after epoch 150: 0.071619

13 Signal Processing Examples

13-264



Test Data Embeddings

Obtain the embeddings for the test data. If you set trainEmbedder to false, you can load the
trained encoder and embeddings obtained using the helperEmbedTestFeatures function.

if trainEmbedder
    finalEmbeddingsTable = helperEmbedTestFeatures(TFnet,testDataPS,testLabelsPS);
else
    load('TFnet.mat'); %#ok<*UNRCH>
    load('finalEmbeddingsTable.mat');
end

Use a support vector machine (SVM) classifier with a Gaussian kernel to classify the embeddings.

template = templateSVM(...
    'KernelFunction', 'gaussian', ...
    'PolynomialOrder', [], ...
    'KernelScale', 4, ...
    'BoxConstraint', 1, ...
    'Standardize', true);
classificationSVM = fitcecoc(...
    finalEmbeddingsTable, ...
    "EEGClass", ...
    'Learners', template, ...
    'Coding', 'onevsone');

Show the final test performance of the trained encoder. The recall and precision performance for all
three classes is excellent. The learned feature embeddings provide nearly 100% recall and precision
for the normal (0), pre-seizure (1), and seizure classes (2). Each embedding represents a reduction in
the input size from 4097 samples to 256 samples.

predLabelsFinal = predict(classificationSVM,finalEmbeddingsTable);
testAccuracyFinal = sum(predLabelsFinal == testLabelsPS)/numel(testLabelsPS)*100

 Time-Frequency Feature Embedding with Deep Metric Learning

13-265



testAccuracyFinal = 100

hf = figure;
confusionchart(hf,testLabelsPS,predLabelsFinal,'RowSummary','row-normalized',...
    'ColumnSummary','column-normalized');
set(gca,'Title','Confusion Chart -- Trained Embeddings')

For completeness, test the cross-validation accuracy of the feature embeddings. Use five-fold cross
validation.

partitionedModel = crossval(classificationSVM, 'KFold', 5);
[validationPredictions, validationScores] = kfoldPredict(partitionedModel);
validationAccuracy =  ...
    (1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'))*100

validationAccuracy = single
    99

The cross-validation accuracy is also excellent at near 100%. Note that we have used all the 256
embeddings in the SVM model, but the embeddings returned by the encoder are always amenable to
further reduction by using feature selection techniques such as neighborhood component analysis,
minimum redundancy maximum relevance (MRMR), or principal component analysis. See
“Introduction to Feature Selection” (Statistics and Machine Learning Toolbox) for more details.

Summary

In this example, a time-frequency convolutional network was used as the basis for learning feature
embeddings using a deep metric model. Specifically, the normalized temperature-controlled cross-
entropy loss with cosine similarities was used to obtain the embeddings. The embeddings were then
used with a SVM with a Gaussian kernel to achieve near perfect test performance. There are a
number of ways this deep metric network can be optimized which are not explored in this example.
For example, the size of the embeddings can likely be reduced further without affecting performance

13 Signal Processing Examples

13-266



while achieving further dimensionality reduction. Additionally, there are a large number of similarity
(metrics) measures, loss functions, regularizers, and reducers which are not explored in this example.
Finally, the resulting embeddings are compatible with any machine learning algorithm. An SVM was
used in this example, but you can explore the feature embeddings in the Classification Learner app
and may find that another classification algorithm is more robust for your application.

References

[1] Andrzejak, Ralph G., Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and
Christian E. Elger. "Indications of Nonlinear Deterministic and Finite-Dimensional Structures in Time
Series of Brain Electrical Activity: Dependence on Recording Region and Brain State." Physical
Review E 64, no. 6 (2001). https://doi.org/10.1103/physreve.64.061907.

[2] Bhattacharyya, Abhijit, Ram Pachori, Abhay Upadhyay, and U. Acharya. "Tunable-Q Wavelet
Transform Based Multiscale Entropy Measure for Automated Classification of Epileptic EEG Signals."
Applied Sciences 7, no. 4 (2017): 385. https://doi.org/10.3390/app7040385.

[3] Chen, Ting, Simon Kornblith, Mohammed Norouzi, and Geoffrey Hinton. "A Simple Framework for
Contrastive Learning of Visual Representations." (2020). https://arxiv.org/abs/2002.05709

[4] He, Kaiming, Fan, Haoqi, Wu, Yuxin, Xie, Saining, Girschick, Ross. "Momentum Contrast for
Unsupervised Visual Representation Learning." (2020). https://arxiv.org/pdf/1911.05722.pdf

[6] Musgrave, Kevin. "PyTorch Metric Learning" https://kevinmusgrave.github.io/pytorch-metric-
learning/

[7] Türk, Ömer, and Mehmet Siraç Özerdem. “Epilepsy Detection by Using Scalogram Based
Convolutional Neural Network from EEG Signals.” Brain Sciences 9, no. 5 (2019): 115. https://
doi.org/10.3390/brainsci9050115.

[8] Van den Oord, Aaron, Li, Yazhe, and Vinyals, Oriol. "Representation Learning with Contrastive
Predictive Coding." (2019). https://arxiv.org/abs/1807.03748

function [grads,loss,state] = modelGradcontrastiveLoss(net,X,T)
% This function is only for use in the "Time-Frequency Feature Embedding
% with Deep Metric Learning" example. It may change or be removed in a
% future release.

% Copyright 2022, The Mathworks, Inc.
[y,state] = net.forward(X);
loss = contrastiveLoss(y,T);
grads = dlgradient(loss,net.Learnables);
loss = double(gather(extractdata(loss)));
end

function [out,info] = helperReadData(x,info)
% This function is only for use in the "Time-Frequency Feature Embedding
% with Deep Metric Learning" example. It may change or be removed in a
% future release.

 Time-Frequency Feature Embedding with Deep Metric Learning

13-267

https://doi.org/10.1103/physreve.64.061907
https://doi.org/10.3390/app7040385
https://arxiv.org/abs/2002.05709
https://arxiv.org/pdf/1911.05722.pdf
https://kevinmusgrave.github.io/pytorch-metric-learning/
https://kevinmusgrave.github.io/pytorch-metric-learning/
https://arxiv.org/abs/1807.03748


% Copyright 2022, The Mathworks, Inc.
mu = mean(x,2);
stdev = std(x,1,2);
z = (x-mu)./stdev;
out = {z,info.MemberName};
end

function [dlX,dlY] = processMB(Xcell,Ycell)
% This function is only for use in the "Time-Frequency Feature Embedding
% with Deep Metric Learning" example. It may change or be removed in a
% future release.

% Copyright 2022, The Mathworks, Inc.
Xcell = cellfun(@(x)reshape(x,1,1,[]),Xcell,'uni',false);
Ycell = cellfun(@(x)str2double(x),Ycell,'uni',false);
dlX = cat(2,Xcell{:});
dlY = cat(1,Ycell{:});
end

function testFeatureTable = helperEmbedTestFeatures(net,testdata,testlabels)
% This function is only for use in the "Time-Frequency Feature Embedding
% with Deep Metric Learning" example. It may change or be removed in a
% future release.

% Copyright 2022, The Mathworks, Inc.
testFeatures = zeros(length(testlabels),256,'single');
for ii = 1:length(testdata)
    yhat = predict(net,dlarray(reshape(testdata{ii},1,1,[]),'CBT'));
    yhat= extractdata(gather(yhat));
    testFeatures(ii,:) = yhat;
end
testFeatureTable = array2table(testFeatures);
testFeatureTable = addvars(testFeatureTable,testlabels,...
    'NewVariableNames',"EEGClass");
end

function loss = contrastiveLoss(features,targets)
% This function is for is only for use in the "Time-Frequency Feature
% Embedding with Deep Metric Learning" example. It may change or be removed
% in a future release.
%
% Replicates code in PyTorch Metric Learning 
% https://github.com/KevinMusgrave/pytorch-metric-learning.
% Python algorithms due to Kevin Musgrave

% Copyright 2022, The Mathworks, Inc. 
    loss = infoNCE(features,targets);
end

function loss = infoNCE(embed,labels)
    ref_embed = embed;
    [posR,posC,negR,negC] = convertToPairs(labels);
    dist = cosineSimilarity(embed,ref_embed);
    loss = pairBasedLoss(dist,posR,posC,negR,negC);
end

function [posR,posC,negR,negC] = convertToPairs(labels)

13 Signal Processing Examples

13-268



    Nr = length(labels);
    % The following provides a logical matrix which indicates where
    % the corresponding element (i,j) of the covariance matrix of
    % features comes from the same class or not. At each (i,j)
    % coming from the same class we have a 1, at each (i,j) from a
    % different class we have 0. Of course the diagonal is 1s.
    labels = stripdims(labels);
    matches = (labels == labels');
    % Logically negate the matches matrix to obtain differences.
    differences = ~matches;
    % We negate the diagonal of the matches matrix to avoid biasing
    % the learning. Later when we identify the positive and
    % negative indices, these diagonal elements will not be picked
    % up.
    matches(1:Nr+1:end) = false;
    [posR,posC,negR,negC] = getAllPairIndices(matches,differences);

end

function dist = cosineSimilarity(emb,ref_embed)
    emb = stripdims(emb);
    ref_embed = stripdims(ref_embed);
    normEMB = emb./sqrt(sum(emb.*emb,1));
    normREF = ref_embed./sqrt(sum(ref_embed.*ref_embed,1));
    dist = normEMB'*normREF;
end

function loss = pairBasedLoss(dist,posR,posC,negR,negC)
    if any([isempty(posR),isempty(posC),isempty(negR),isempty(negC)])
        loss = dlarray(zeros(1,1,'like',dist));
        return;
    end
    Temperature = 0.07;
    dtype = underlyingType(dist);
    idxPos = sub2ind(size(dist),posR,posC);
    pos_pair = dist(idxPos);
    pos_pair = reshape(pos_pair,[],1);
    idxNeg = sub2ind(size(dist),negR,negC);
    neg_pair = dist(idxNeg);
    neg_pair = reshape(neg_pair,[],1);
    pos_pair = pos_pair./Temperature;
    neg_pair = neg_pair./Temperature;
    n_per_p = negR' == posR;
    neg_pairs = neg_pair'.*n_per_p;
    neg_pairs(n_per_p==0) = -realmax(dtype);
    maxNeg = max(neg_pairs,[],2);
    maxPos = max(pos_pair,[],2);
    maxVal = max(maxPos,maxNeg);
    numerator = exp(pos_pair-maxVal);
    denominator = sum(exp(neg_pairs-maxVal),2)+numerator;
    logexp = log((numerator./denominator)+realmin(dtype));
    loss = mean(-logexp,'all');
end

function [posR,posC,negR,negC] = getAllPairIndices(matches,differences)
    % Here we just get the row and column indices of the anchor
    % positive and anchor negative elements.
    [posR, posC] = find(extractdata(matches));

 Time-Frequency Feature Embedding with Deep Metric Learning

13-269



    [negR,negC] = find(extractdata(differences));
end

See Also
Apps
Classification Learner

Functions
dlcwt | cwtfilters2array | cwt

Objects
cwtLayer | cwtfilterbank

Related Examples
• “Practical Introduction to Time-Frequency Analysis Using the Continuous Wavelet Transform”

(Wavelet Toolbox)
• “Time-Frequency Convolutional Network for EEG Data Classification” on page 13-271

13 Signal Processing Examples

13-270



Time-Frequency Convolutional Network for EEG Data
Classification

This example shows how to classify electroencephaligraph (EEG) time series from persons with and
without epilepsy using a time-frequency convolutional network. The convolutional network predicts
the class of the EEG data based on the continuous wavelet transform (CWT). The example compares
the time-frequency network against a 1-D convolutional network. Unlike deep learning networks that
use the magnitude or squared magnitude of the CWT (scalogram) as a preprocessing step, this
example uses a differentiable scalogram layer. With a differentiable scalogram layer inside the
network, you can put learnable operations before and after the scalogram. Layers of this type
significantly expand the architectural variations that are possible with time-frequency transforms.

Data -- Description, Attribution, and Download Instructions

The data used in this example is the Bonn EEG Data Set. The data is currently available at EEG Data
Download and The Bonn EEG time series download page. See The Bonn EEG time series download
page for legal conditions on the use of the data. The authors have kindly permitted the use of the data
in this example.

The data in this example were first analyzed and reported in:

Andrzejak, Ralph G., Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Christian
E. Elger. “Indications of Nonlinear Deterministic and Finite-Dimensional Structures in Time Series of
Brain Electrical Activity: Dependence on Recording Region and Brain State.” Physical Review E 64,
no. 6 (2001). https://doi.org/10.1103/physreve.64.061907

The data consists of five sets of 100 single-channel EEG recordings. The resulting single-channel EEG
recordings were selected from 128-channel EEG recordings after visually inspecting each channel for
obvious artifacts and satisfying a weak stationarity criterion. See the linked paper for details.

The original paper designates the class names for these five sets as A-E. Each recording is 23.6
seconds in duration sampled at 173.61 Hz. Each time series contains 4097 samples. The conditions
are as follows:

A — Normal subjects with eyes open

B — Normal subjects with eyes closed

C — Seizure-free recordings from patients with epilepsy. Recordings obtained from hippocampus in
the hemisphere opposite the epileptogenic zone

D — Seizure-free recordings from patients with epilepsy. Recordings obtained from epileptogenic
zone.

E — Recordings from patients with epilepsy showing seizure activity.

The zip files corresponding to this data are labeled as z.zip (A), o.zip (B), n.zip (C), f.zip (D), and s.zip
(E).

The example assumes you have downloaded and unzipped the zip files into folders named Z, O, N, F,
and S respectively. In MATLAB® you can do this by creating a parent folder and using that as the
OUTPUTDIR variable in the unzip command. This example uses the folder designated by MATLAB as

 Time-Frequency Convolutional Network for EEG Data Classification

13-271

https://www.ukbonn.de/en/epileptology/workgroups/lehnertz-workgroup-neurophysics/downloads/
https://www.ukbonn.de/en/epileptology/workgroups/lehnertz-workgroup-neurophysics/downloads/
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2001-indications-of-nonlinear-deterministic-and-finite-dimensional-structures-in-time-series-of-brain-electrical-activity-dependence-on-recording-regi?inheritRedirect=false&redirect=https://www.upf.edu/web/ntsa/downloads?p_p_id%3D101_INSTANCE_xvT6E4pczrBw%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1#.X5Ep-S337UI
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2001-indications-of-nonlinear-deterministic-and-finite-dimensional-structures-in-time-series-of-brain-electrical-activity-dependence-on-recording-regi?inheritRedirect=false&redirect=https://www.upf.edu/web/ntsa/downloads?p_p_id%3D101_INSTANCE_xvT6E4pczrBw%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1#.X5Ep-S337UI
https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2001-indications-of-nonlinear-deterministic-and-finite-dimensional-structures-in-time-series-of-brain-electrical-activity-dependence-on-recording-regi?inheritRedirect=false&redirect=https://www.upf.edu/web/ntsa/downloads?p_p_id%3D101_INSTANCE_xvT6E4pczrBw%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D1#.X5Ep-S337UI
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.061907
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.061907
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.061907
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.061907


tempdir as the parent folder. If you choose to use a different folder, adjust the value of parentDir
accordingly. The following code assumes that all the .zip files have been downloaded into parentDir.
Unzip the files by folder into a subfolder called BonnEEG.

parentDir = tempdir;
cd(parentDir)
mkdir("BonnEEG")
dataDir = fullfile(parentDir,"BonnEEG")

dataDir = 
"/tmp/BonnEEG"

unzip("z.zip",dataDir)
unzip("o.zip",dataDir)
unzip("n.zip",dataDir)
unzip("f.zip",dataDir)
unzip("s.zip",dataDir)

Prepare Data for Training

The individual EEG time series are stored as .txt files in each of the Z, N, O, F, and S folders under
dataDir. Use a tabularTextDatastore to read the data. Create a tabular text datastore and
create a categorical array of signal labels based on the folder names.

tds = tabularTextDatastore(dataDir,"IncludeSubfolders",true,"FileExtensions",".txt");

The zip files were created on the macOS. The unzip function often creates a folder called _MACOSX. If
this folder appears in dataDir, delete it.

extraTXT = contains(tds.Files,"__MACOSX");
tds.Files(extraTXT) = [];

Create labels for the data based on the first letter of the text file name.

labels = filenames2labels(tds.Files,"ExtractBetween",[1 1]);

Use the read object function to create a table containing the data. Reshape the signals as a cell array
of row vectors so they conform with the deep learning networks used in the example.

ii = 1;
eegData = cell(numel(labels),1);
while hasdata(tds)
    tsTable = read(tds);
    ts = tsTable.Var1;
    eegData{ii} = reshape(ts,1,[]);  
    ii = ii+1;
end

Given the five conditions present in the data, there are multiple meaningful and clinically informative
ways to partition the data. One relevant way is to group the Z and O labels (non-epileptic subjects
with eyes open and closed) as "Normal". Similarly, the two conditions recorded in epileptic subjects
without overt seizure activity (F and N) may be grouped as "Pre-seizure". Finally, we designate the
recordings obtained in epileptic subjects with seizure activity as "Seizure".

labels3Class = labels;
labels3Class = removecats(labels3Class,["F","N","O","S","Z"]);
labels3Class(labels == categorical("Z") | labels == categorical("O")) = ...
    categorical("Normal");

13 Signal Processing Examples

13-272



labels3Class(labels == categorical("F") | labels == categorical("N")) = ...
    categorical("Pre-seizure");
labels3Class(labels == categorical("S")) = categorical("Seizure");

Display the number of recordings in each of our derived categories. The summary shows three
imbalanced classes with 100 recordings in the "Seizure" category and 200 recordings in each of the
"Pre-seizure" and "Normal" categories.

summary(labels3Class)

     Normal           200 
     Pre-seizure      200 
     Seizure          100 

Partition the data into a training set, a test set, and a validation set consisting of 70%, 20%, and 10%
of the recordings, respectively.

idxSPN = splitlabels(labels3Class,[0.7 0.2 0.1]);
trainDataSPN = eegData(idxSPN{1});
trainLabelsSPN = labels3Class(idxSPN{1});
testDataSPN = eegData(idxSPN{2});
testLabelsSPN = labels3Class(idxSPN{2});
validationDataSPN = eegData(idxSPN{3});
validationLabelsSPN = labels3Class(idxSPN{3});

Examine the proportion of each condition across the three sets.

summary(trainLabelsSPN)

     Normal           140 
     Pre-seizure      140 
     Seizure           70 

summary(validationLabelsSPN)

     Normal           20 
     Pre-seizure      20 
     Seizure          10 

summary(testLabelsSPN)

     Normal           40 
     Pre-seizure      40 
     Seizure          20 

Because of the class imbalance, create weights proportional to the inverse class frequencies to use in
training the deep learning model. This mitigates the tendency of the model to become biased toward
more prevalent classes.

classwghts = numel(labels3Class)./(3*countcats(labels3Class));

Prior to training our time-frequency model, inspect the time series data and scalograms for the first
example from each class. The plotting is done by the helper function, helperExamplePlot.

helperExamplePlot(trainDataSPN,trainLabelsSPN)

 Time-Frequency Convolutional Network for EEG Data Classification

13-273



The scalogram is an ideal time-frequency transformation for time series data like EEG waveforms,
which feature both slowly-oscillating and transient phenomena.

Time-Frequency Deep Learning Network

Define a network that uses a time-frequency transformation of the input signal for classification.

netSPN = [sequenceInputLayer(1,"MinLength",4097,"Name","input","Normalization","zscore")
    convolution1dLayer(5,1,"stride",2)
    cwtLayer("SignalLength",2047,"IncludeLowpass",true,"Wavelet","amor")
    maxPooling2dLayer([5,10])
    convolution2dLayer([5,10],5,"Padding","same")
    maxPooling2dLayer([5,10])  
    batchNormalizationLayer
    reluLayer
    convolution2dLayer([5,10],10,"Padding","same")
    maxPooling2dLayer([2,4])   
    batchNormalizationLayer
    reluLayer
    flattenLayer
    globalAveragePooling1dLayer
    dropoutLayer(0.4)
    fullyConnectedLayer(3)
    softmaxLayer
    classificationLayer("Classes",unique(trainLabelsSPN),"ClassWeights",classwghts)
    ];

13 Signal Processing Examples

13-274



The network features an input layer, which normalizes the signals to have zero mean and unit
standard deviation. Unlike [1] on page 13-282, no preprocessing bandpass filter is used in this
network. Rather, a learnable 1-D convolutional layer is used prior to obtaining the scalogram. We use
a stride of 2 in the 1-D convolutional layer to downsample the size of the data along the time
dimension. This reduces the computational complexity of the following scalogram. The next layer,
cwtLayer (Wavelet Toolbox), obtains the scalogram (magnitude CWT) of the input signal. For each
input signal, the output of the CWT layer is a sequence of time-frequency maps. This layer is
configurable. In this case, we use the analytic Morlet wavelet and include the lowpass scaling
coefficients. See [3] on page 13-283 for another scalogram-based analysis of this data, and [2] on
page 13-282 for another wavelet-based analysis using the tunable Q-factor wavelet transform.

Subsequent to obtaining the scalogram, the network operates along both the time and frequency
dimensions of the scalogram with 2-D operations until the flattenLayer. After flattenLayer, the
model averages the output along the time dimension and uses a dropout layer to help prevent
overfitting. The fully connected layer reduces the output along the channel dimension to equal the
number of data classes (3).

In the classification layer, we use the class weights previously computed to mitigate any network bias
toward the underrepresented class.

Specify the network training options. Output the network with the best validation loss.

options = trainingOptions("adam", ...
    "MaxEpochs",40, ...
    "MiniBatchSize",20, ...
    "Shuffle","every-epoch",...
    "Plots","training-progress",...
    "ValidationData",{validationDataSPN,validationLabelsSPN},...
    "L2Regularization",1e-2,...
    "OutputNetwork","best-validation-loss",...
    "Verbose", false);

Train the network using the trainNetwork function. The training shows good agreement between
the training and validation data sets.

trainedNetSPN = trainNetwork(trainDataSPN,trainLabelsSPN,netSPN,options);

 Time-Frequency Convolutional Network for EEG Data Classification

13-275



After training completes, test the network on the held-out test set. Plot the confusion chart and
examine the network's recall and precision.

ypredSPN = trainedNetSPN.classify(testDataSPN);
sum(ypredSPN == testLabelsSPN)/numel(testLabelsSPN)

ans = 0.9700

hf = figure;
confusionchart(hf,testLabelsSPN,ypredSPN,"RowSummary","row-normalized","ColumnSummary","column-normalized")

13 Signal Processing Examples

13-276



The confusion chart shows good performance on the test set. The row summaries in the confusion
chart show the model's recall, while the column summaries show the precision. Both recall and
precision generally fall between 95 and 100 percent. Performance was generally better for the
"Seizure" and "Normal" classes than the "Pre-seizure" class.

1-D Convolutional Network

For reference, we compare the performance of the time-frequency deep learning network with a 1-D
convolutional network which uses the raw time series as inputs. To the extent possible, the layers
between the time-frequency network and time-domain network are kept equivalent. Note there are
many variations of deep learning networks which can operate on the raw time series data. The
inclusion of this particular network is presented as a point of reference and not intended as a
rigorous comparison of time series network performance with that of the time-frequency network.

netconvSPN = [sequenceInputLayer(1,"MinLength",4097,"Name","input","Normalization","zscore")
    convolution1dLayer(5,1,"stride",2)
    maxPooling1dLayer(10)
    batchNormalizationLayer
    reluLayer
    convolution1dLayer(5,5,"Padding","same")
    batchNormalizationLayer
    reluLayer
    convolution1dLayer(5,10,"Padding","same")
    maxPooling1dLayer(4)
    batchNormalizationLayer
    reluLayer
    globalAveragePooling1dLayer

 Time-Frequency Convolutional Network for EEG Data Classification

13-277



    dropoutLayer(0.4)
    fullyConnectedLayer(3)
    softmaxLayer
    classificationLayer("Classes",unique(trainLabelsSPN),"ClassWeights",classwghts)
    ];
trainedNetConvSPN = trainNetwork(trainDataSPN,trainLabelsSPN,netconvSPN,options);

The training shows good agreement between accuracy on the training set and the validation set.
However, the network accuracy during training is relatively poor. After training completes, test our
model on the held-out test set. Plot the confusion chart and examine the model"s recall and precision.

ypredconvSPN = classify(trainedNetConvSPN,testDataSPN);
sum(ypredconvSPN == testLabelsSPN)/numel(testLabelsSPN)

ans = 0.7000

hf = figure;
confusionchart(hf,testLabelsSPN,ypredconvSPN,"RowSummary","row-normalized","ColumnSummary","column-normalized")

13 Signal Processing Examples

13-278



The recall and precision performance of the network is not surprisingly substantially less accurate
than the time-frequency network.

Differentiating Pre-seizure vs Seizure

Another diagnostically useful partition of the data involves analyzing data only for the subjects with
epilepsy and splitting the data into pre-seizure vs seizure data. As was done in the previous section,
partition the data into training, test, and validation sets with 70%, 20%, and 10% splits of the data
into Pre-seizure and Seizure examples. First, create the new labels in order to partition the data.
Examine the number of examples in each class.

labelsPS = labels;
labelsPS = removecats(labelsPS,["F","N","O","S","Z"]);
labelsPS(labels == categorical("S")) = categorical("Seizure");
labelsPS(labels == categorical("F") | labels == categorical("N")) = categorical("Pre-seizure");
labelsPS(isundefined(labelsPS)) = [];
summary(labelsPS)

     Seizure          100 
     Pre-seizure      200 

The resulting classes are unbalanced with twice as many signals in the "Pre-seizure" category as in
the "Seizure" category. Partition the data and construct the class weights for the unbalanced
classification.

idxPS = splitlabels(labelsPS,[0.7 0.2 0.1]);
trainDataPS = eegData(idxPS{1});

 Time-Frequency Convolutional Network for EEG Data Classification

13-279



trainLabelsPS = labelsPS(idxPS{1});
testDataPS = eegData(idxPS{2});
testLabelsPS = labelsPS(idxPS{2});
validationDataPS = eegData(idxPS{3});
validationLabelsPS = labelsPS(idxPS{3});
classwghts = numel(labelsPS)./(2*countcats(labelsPS));

Use the same convolutional networks as in the previous analysis with modifications only in the fully
connected and classification layers required by the differing number of classes.

netPS = [sequenceInputLayer(1,"MinLength",4097,"Name","input","Normalization","zscore")
    convolution1dLayer(5,1,"stride",2)
    cwtLayer("SignalLength",2047,"IncludeLowpass",true,"Wavelet","amor")
    averagePooling2dLayer([5,10])
    convolution2dLayer([5,10],5,"Padding","same")
    maxPooling2dLayer([5,10])  
    batchNormalizationLayer
    reluLayer
    convolution2dLayer([5,10],10,"Padding","same")
    maxPooling2dLayer([2,4])   
    batchNormalizationLayer
    reluLayer
    flattenLayer
    globalAveragePooling1dLayer
    dropoutLayer(0.4)
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer("Classes",unique(trainLabelsPS),"ClassWeights",classwghts)
    ];

Train the network.

options = trainingOptions("adam", ...
    "MaxEpochs",40, ...
    "MiniBatchSize",32, ...
    "Shuffle","every-epoch",...
    "Plots","training-progress",...
    "ValidationData",{validationDataPS,validationLabelsPS},...
    "L2Regularization",1e-2,...
    "OutputNetwork","best-validation-loss",...
    "Verbose", false);
trainedNetPS = trainNetwork(trainDataPS,trainLabelsPS,netPS,options);

13 Signal Processing Examples

13-280



Examine the accuracy on the test set.

ypredPS = classify(trainedNetPS,testDataPS);
sum(ypredPS == testLabelsPS)/numel(testLabelsPS)

ans = 0.9667

hf = figure;
confusionchart(hf,testLabelsPS,ypredPS,"RowSummary","row-normalized","ColumnSummary","column-normalized")

 Time-Frequency Convolutional Network for EEG Data Classification

13-281



The time-frequency convolutional network shows excellent performance on the "Pre-seizure" vs
"Seizure" data.

Summary

In this example, a time-frequency convolutional network was used to classify EEG recordings in
persons with and without epilepsy. A crucial difference between this example and the scalogram
network used in [3] on page 13-283, was the use of a differentiable scalogram inside the deep
learning model. This flexibility enables us to combine 1-D and 2-D deep learning layers in the same
model, as well as place learnable operations before the time-frequency transform. The approach was
compared against analogous 1-D convolutional networks. The 1-D convolutional networks were
constructed to be as close to the time-frequency model as possible. It is likely that more optimal 1-D
convolutional or recurrent networks can be designed for this data. As previously mentioned, the focus
of the example was to construct a differentiable time-frequency network for real-world EEG data, not
to conduct an in-depth comparison of the time-frequency model against competing time series
models.

References

[1] Andrzejak, Ralph G., Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and
Christian E. Elger. “Indications of Nonlinear Deterministic and Finite-Dimensional Structures in Time
Series of Brain Electrical Activity: Dependence on Recording Region and Brain State.” Physical
Review E 64, no. 6 (2001). https://doi.org/10.1103/physreve.64.061907.

13 Signal Processing Examples

13-282



[2] Bhattacharyya, Abhijit, Ram Pachori, Abhay Upadhyay, and U. Acharya. “Tunable-Q Wavelet
Transform Based Multiscale Entropy Measure for Automated Classification of Epileptic EEG Signals.”
Applied Sciences 7, no. 4 (2017): 385. https://doi.org/10.3390/app7040385.

[3] Türk, Ömer, and Mehmet Siraç Özerdem. “Epilepsy Detection by Using Scalogram Based
Convolutional Neural Network from EEG Signals.” Brain Sciences 9, no. 5 (2019): 115. https://
doi.org/10.3390/brainsci9050115.

function helperExamplePlot(trainDataSPN,trainLabelsSPN)
% This function is for example use only. It may be changed or
% removed in a future release.
%
% Copyright 2022 The MathWorks, Inc.
    szidx = find(trainLabelsSPN == categorical("Seizure"),1,"first");
    psidx = find(trainLabelsSPN == categorical("Pre-seizure"),1,"first");
    nidx = find(trainLabelsSPN == categorical("Normal"),1,"first");
    Fs = 173.61;
    t = 0:1/Fs:(4097*1/Fs)-1/Fs;
    [scSZ,f] = cwt(trainDataSPN{szidx},Fs,"amor");
    scSZ = abs(scSZ);
    scPS = abs(cwt(trainDataSPN{psidx},Fs,"amor"));
    scN = abs(cwt(trainDataSPN{nidx},Fs,"amor"));
    tiledlayout(3,2)
    nexttile
    plot(t,trainDataSPN{szidx}), axis tight
    title("Seizure EEG")
    ylabel("Amplitude")
    nexttile
    surf(t,f,scSZ), shading interp, view(0,90)
    set(gca,"Yscale","log"), axis tight
    title("Scalogram -- Seizure EEG")
    ylabel("Hz")
    nexttile
    plot(t,trainDataSPN{psidx}),axis tight
    title("Pre-seizure EEG")
    ylabel("Amplitude")
    nexttile
    surf(t,f,scPS), shading interp, view(0,90)
    set(gca,"Yscale","log"),axis tight
    title("Scalogram -- Pre-seizure EEG")
    ylabel("Hz")
    nexttile
    plot(t,trainDataSPN{nidx}), axis tight
    title("Normal EEG")
    ylabel("Amplitude")
    xlabel("Time (Seconds)")
    nexttile
    surf(t,f,scN), shading interp, view(0,90)
    set(gca,"Yscale","log"),axis tight
    title("Scalogram -- Normal EEG")
    ylabel("Hz")

 Time-Frequency Convolutional Network for EEG Data Classification

13-283



    xlabel("Time (Seconds)")
end

See Also
Functions
dlcwt | cwtfilters2array | cwt

Objects
cwtLayer | cwtfilterbank

Related Examples
• “Practical Introduction to Time-Frequency Analysis Using the Continuous Wavelet Transform”

(Wavelet Toolbox)
• “Time-Frequency Feature Embedding with Deep Metric Learning” on page 13-256

13 Signal Processing Examples

13-284



Detect Anomalies In Signals Using deepSignalAnomalyDetector

This example shows how to to detect anomalies in signals using deepSignalAnomalyDetector
(Signal Processing Toolbox). The deepSignalAnomalyDetector object implements autoencoder
architectures that can be trained using semi-supervised or unsupervised learning. The detector can
find abnormal points or regions, or identify whole signals as anomalous. The object also provides
several convenient functions that you can use to visualize and analyze results.

Anomalies are data points that deviate from the overall pattern of an entire data set. Detecting
anomalies in time-series data has broad applications in domains such as manufacturing, predictive
maintenance, and human health monitoring. In many scenarios, manually labeling an entire data set
to train a model to detect anomalies is unrealistic, especially when the relevant data has many more
normal samples than abnormal ones. In those scenarios, anomaly detection based on semi-supervised
or unsupervised learning is a more viable solution.

deepSignalAnomalyDetector provides two types of autoencoder architecture. An autoencoder is a
deep neural network that is trained to replicate the input data at its output such that the
reconstruction error is as small as possible. The data used to train the autoencoder can consist
exclusively of normal samples or can include a small percentage of samples with anomalies. The data
does not have to be labeled. After you train the autoencoder, it can reconstruct test data, compute the
reconstruction error for each sample, and declare as anomalies those samples whose reconstruction
error surpasses a specified threshold.

Case 1: Detect Abnormal Heartbeat Sequences

This section uses the deepSignalAnomalyDetector object to detect abnormal heartbeat sequences
in data from the BIDMC Congestive Heart Failure Database [1]. The heartbeat collection has 5405
electrocardiogram (ECG) sequences of varying length, each sampled at 250 Hz and containing three
categories of heartbeat:

• N — Normal
• r — R-onT premature ventricular contraction
• V — Premature ventricular contraction

The data is labeled, but in this example you use the labels only for testing and performance
evaluation. The autoencoder training process is fully unsupervised.

Load Data

Download the hearbeat data from https://ssd.mathworks.com/supportfiles/SPT/data/
PhysionetBIDMC.zip using the downloadSupportFile function. The whole data set is approximately
2 MB in size. The ecgSignals contains signals and ecgLabels contains labels.

datasetZipFile = matlab.internal.examples.downloadSupportFile('SPT','data/PhysionetBIDMC.zip');
datasetFolder = fullfile(fileparts(datasetZipFile),'PhysionetBDMC');
if ~exist(datasetFolder,'dir')     
    unzip(datasetZipFile,datasetFolder);
end
ds1 = load(fullfile(datasetFolder,"chf07.mat"));
ecgSignals1 = ds1.ecgSignals

ecgSignals1=5405×1 cell array
    {146×1 double}

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-285

https://ssd.mathworks.com/supportfiles/SPT/data/PhysionetBIDMC.zip
https://ssd.mathworks.com/supportfiles/SPT/data/PhysionetBIDMC.zip


    {140×1 double}
    {139×1 double}
    {143×1 double}
    {143×1 double}
    {145×1 double}
    {147×1 double}
    {139×1 double}
    {143×1 double}
    {139×1 double}
    {146×1 double}
    {143×1 double}
    {144×1 double}
    {142×1 double}
    {142×1 double}
    {140×1 double}
      ⋮

ecgLabels1 = ds1.ecgLabels;
cnts = countlabels(ecgLabels1)

cnts=3×3 table
    Label    Count    Percent
    _____    _____    _______

      N      5288      97.835
      V         6     0.11101
      r       111      2.0537

Visualize typical waveforms corresponding to each of the three heartbeat categories.

helperPlotECG(ecgSignals1,ecgLabels1)

Get the indices corresponding to each category and split the data set into training and testing sets. In
the training set, include 60% of samples to maintain the natural anomaly distribution. Exclude class V
samples from the training set but include them in the test set. Including these samples in the test set
determines whether the autoencoder can detect previously unobserved anomaly types.

idxN = find(strcmp(ecgLabels1,"N"));
idxR = find(strcmp(ecgLabels1,"r"));
idxV = find(strcmp(ecgLabels1,"V"));
idxs = splitlabels(ecgLabels1,0.6,Exclude="V");

13 Signal Processing Examples

13-286



idxTrain = [idxs{1}];
idxTest = [idxs{2};idxV];

countlabels(ecgLabels1(idxTrain))

ans=2×3 table
    Label    Count    Percent
    _____    _____    _______

      N      3173     97.932 
      r        67     2.0679 

countlabels(ecgLabels1(idxTest))

ans=3×3 table
    Label    Count    Percent
    _____    _____    _______

      N      2115      97.691
      V         6     0.27714
      r        44      2.0323

Create and Train Detector

Create a deepSignalAnomalyDetector object with a long short-term memory (LSTM) model. Set
WindowLength to "fullSignal" to determine whether each complete signal segment is normal or
abnormal.

DLSTM1 = deepSignalAnomalyDetector(1,"lstm",WindowLength="fullSignal")

DLSTM1 = 
  deepSignalAnomalyDetectorLSTM with properties:

                IsTrained: 0
              NumChannels: 1

   Model Information
                ModelType: 'lstm'
       EncoderHiddenUnits: [32 16]
       DecoderHiddenUnits: [16 32]

   Threshold Information
                Threshold: []
          ThresholdMethod: 'contaminationFraction'
       ThresholdParameter: 0.0100

   Window Information
             WindowLength: 'fullSignal'
    WindowLossAggregation: 'mean'

Train the detector using the adaptive moment estimation (Adam) optimizer, which is one of the most
popular solvers for deep learning training. The maximum number of epochs often needs to be
adjusted according to the data set size and training process. Because the number of samples is large,
set MaxEpochs to 100.

opts = trainingOptions("adam", ...
    MaxEpochs=100, ...

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-287



    MiniBatchSize=500);
trainDetector(DLSTM1,ecgSignals1(idxTrain),opts);

Training on single GPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |         0.46 |          0.1 |          0.0010 |
|       9 |          50 |       00:00:14 |         0.21 |      2.2e-02 |          0.0010 |
|      17 |         100 |       00:00:29 |         0.20 |      2.0e-02 |          0.0010 |
|      25 |         150 |       00:00:45 |         0.18 |      1.6e-02 |          0.0010 |
|      34 |         200 |       00:01:00 |         0.17 |      1.4e-02 |          0.0010 |
|      42 |         250 |       00:01:15 |         0.17 |      1.4e-02 |          0.0010 |
|      50 |         300 |       00:01:29 |         0.17 |      1.4e-02 |          0.0010 |
|      59 |         350 |       00:01:44 |         0.16 |      1.3e-02 |          0.0010 |
|      67 |         400 |       00:01:59 |         0.16 |      1.2e-02 |          0.0010 |
|      75 |         450 |       00:02:13 |         0.14 |      1.0e-02 |          0.0010 |
|      84 |         500 |       00:02:27 |         0.10 |      4.6e-03 |          0.0010 |
|      92 |         550 |       00:02:42 |         0.09 |      3.9e-03 |          0.0010 |
|     100 |         600 |       00:02:56 |         0.10 |      4.6e-03 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.
Computing threshold...
Threshold computation completed.

Adjust Threshold

By default, the deepSignalAnomalyDetector object computes the threshold assuming that 1% of
the data in the training set are abnormal. This assumption is not always true, so you often need to
adjust the threshold by changing the automatic threshold method or by setting the threshold value
manually.

Use the plotLoss (Signal Processing Toolbox) function to visualize the losses of the training set and
the current threshold value. Each stem corresponds to the reconstruction error for one of the signals
in the training data set.

figure
plotLoss(DLSTM1,ecgSignals1(idxTrain))
ylim([0,0.1])

13 Signal Processing Examples

13-288



Based on the plotLoss output, set threshold value manually such that the few sporadic losses that
exceed the threshold are most likely anomalies.

updateDetector(DLSTM1, ...
    ThresholdMethod="Manual", ...
    Threshold=0.02)

To validate the choice of threshold, plot the distribution of the reconstruction errors for the normal
and the abnormal data using plotLossDistribution (Signal Processing Toolbox). The histogram to
the left of the threshold corresponds to the distribution of normal data. The histogram to the right of
the threshold corresponds to the distribution of abnormal data. The chosen threshold value
successfully separates the normal and abnormal groups.

% ecgSignals1(idxN) contains normal signals only
% ecgSignals1([idxR;idxV]) contains abnormal signals
plotLossDistribution(DLSTM1,ecgSignals1(idxN),ecgSignals1([idxR; idxV]))

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-289



Detect Anomalies and Evaluate Performance

Pick one sample from each category in the testing set and plot the reconstructed signal using
plotAnomalies (Signal Processing Toolbox) . The red lines represent signals the detector classifies
as abnormal. A good sign that the detector is successfully trained is that it can adequately
reconstruct normal signals and cannot adequately reconstruct abnormal signals.

figure(Position=[0 0 500 300])
idxNTest = union(idxN,idxTest); % Class N
plotAnomalies(DLSTM1,ecgSignals1(idxNTest(1)),PlotReconstruction=true)

13 Signal Processing Examples

13-290



figure(Position=[0 0 500 300])
idxVTest = union(idxV,idxTest); % Class V
plotAnomalies(DLSTM1,ecgSignals1(idxVTest(1)),PlotReconstruction=true)

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-291



figure(Position=[0 0 500 300])
idxRTest = union(idxR,idxTest); % Class r
plotAnomalies(DLSTM1,ecgSignals1(idxRTest(1)),PlotReconstruction=true)

Use the detect (Signal Processing Toolbox) object function of the detector with both training and
testing sets to detect anomalies and compute reconstruction losses.

[labelsTrainPred1,lossTrainPred1] = detect(DLSTM1,ecgSignals1(idxTrain));
[labelsTestPred1,lossTestPred1] = detect(DLSTM1,ecgSignals1(idxTest));

There are two different anomaly detection tasks.

• Detect anomalies contained in the training set, also known as outlier detection.
• Detect anomalies in new observations outside the training set, also known as novelty detection.

Analyze the performance of the trained autoencoder in the two tasks.

You can use a receiver operating characteristic (ROC) curve to evaluate the accuracy of a detector
over a range of decision thresholds. The area under the ROC curve (AUC) measures the overall
performance. The closer the AUC is to 1, the stronger the detection ability of the detector. Compute
the AUC using the rocmetrics function. The AUC is close to one for the outlier detection, and
slightly smaller but still very good for the novelty detection.

figure("Position",[0 0 600 300])
tiledlayout(1,2,TileSpacing="compact")
nexttile
rocc = rocmetrics(ecgLabels1(idxTrain)~="N",cell2mat(lossTrainPred1),true);
plot(rocc,ShowModelOperatingPoint=false)
title(["Training Set ROC Curve","(Outlier Detection)"])
nexttile

13 Signal Processing Examples

13-292



rocc = rocmetrics(ecgLabels1(idxTest)~="N",cell2mat(lossTestPred1),true);
plot(rocc,ShowModelOperatingPoint=false)
title(["Testing Set ROC Curve","(Novelty Detection)"])

Compute the detection accuracy with the previously specified threshold.

figure("Position",[0 0 1000 300])
tiledlayout(1,2,TileSpacing="compact")
nexttile
cm = confusionchart(ecgLabels1(idxTrain)~="N",cell2mat(labelsTrainPred1));
cm.RowSummary = "row-normalized";
title("Training Set Accuracy (Outlier Detection)")
nexttile
cm = confusionchart(ecgLabels1(idxTest)~="N",cell2mat(labelsTestPred1));
cm.RowSummary = "row-normalized";
title("Test Set Accuracy (Novelty Detection)")

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-293



Case 2: Detect Anomalous Points in Continuous Long Time Series

The previous section showed how to detect anomalies in data sets containing multiple signal
segments and determine whether each segment was abnormal or not. In this section the data set is a
single signal. The goal is to detect anomalies in the signal and the times at which they occur.

Use a deepSignalAnomalyDetector on a long ECG recording to detect anomalies caused by
ventricular tachycardia. The data is from the Sudden Cardiac Death Holter Database [2]. The ECG
signal has a sampling rate of 250 Hz.

Download and Prepare Data

Download the data from https://ssd.mathworks.com/supportfiles/SPT/data/PhysionetSDDB.zip using
the downloadSupportFile function. The data set contains two timetables. The timetable X contains
the ECG signal. Timetable Y contains labels that indicate whether each sample of the ECG signal is
normal. As in the previous section, you use the labels only to verify the accuracy of the detector.

datasetZipFile = matlab.internal.examples.downloadSupportFile('SPT','data/PhysionetSDDB.zip');
datasetFolder = fullfile(fileparts(datasetZipFile),'PhysionetSDDB');
if ~exist(datasetFolder,'dir')     
    unzip(datasetZipFile,datasetFolder);
end
ds2 = load(fullfile(datasetFolder,"sddb49.mat"));
ecgSignals2 = ds2.X;
ecgLabels2 = ds2.y;

Normalize the full signal and visualize it. Overlay the located anomalies. The anomaly detection in
this case is challenging because, as often happens in ECG recordings, the signal baseline drifts.
These changes in baseline level can easily be misclassified as anomalies.

A common approach to choose training data is to use a segment of the signal where it is evident that
there are no anomalies. In many situations, the beginning of a recording is usually normal, such as in
this ECG signal. Choose the first 200 seconds of the recording to train the model with purely normal
data. Use the rest of the recording to test the performance of the anomaly detector. The training data
contain segments with baseline drift, ideally, the detector learns and adapts to this pattern and
considers it normal.

dataProcessed = normalize(ecgSignals2);
figure
plot(dataProcessed.Time,dataProcessed.Variables)
hold on
plot(dataProcessed(ecgLabels2.anomaly,:).Time,dataProcessed(ecgLabels2.anomaly,:).Variables,".")
hold off
xlabel("Time (s)")
ylabel("Normalized ECG Amplitude")
title("sddb49 ECG Signal")
legend(["Signal" "Anomaly"])

13 Signal Processing Examples

13-294

https://ssd.mathworks.com/supportfiles/SPT/data/PhysionetSDDB.zip


Split the data set into training and testing sets.

fs = 250;
idxTrain2 = 1:200*fs;
idxTest2 =idxTrain2(end)+1:height(dataProcessed);
dataProcessedTrain = dataProcessed(idxTrain2,:);
labelsTrainTrue = ecgLabels2(idxTrain2,:);
dataProcessedTest = dataProcessed(idxTest2,:);
labelsTestTrue = ecgLabels2(idxTest2,:);

Create and Train Detector

Create a deepSignalAnomalyDetector with a convolutional autoencoder model.

The training set contains only normal data. So, it is reasonable to use the maximum reconstruction
error as a threshold when declaring a signal segment to be an anomaly. Set the ThresholdMethod
property to "max". To incorporate the complexity of the signal due to baseline drift, use a larger
network than the default. To detect anomalies over each sample of the signal, keep the window length
to its default value of one sample.

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-295



DCONV2 = deepSignalAnomalyDetector(1,"conv", ...
    FilterSize=32, ...
    NumFilters=16, ...
    NumDownsampleLayers=4, ...
    ThresholdMethod="max")

DCONV2 = 
  deepSignalAnomalyDetectorCNN with properties:

                IsTrained: 0
              NumChannels: 1

   Model Information
                ModelType: 'conv'
               FilterSize: 32
               NumFilters: 16
      NumDownsampleLayers: 4
         DownsampleFactor: 2
       DropoutProbability: 0.2000

   Threshold Information
                Threshold: []
          ThresholdMethod: 'max'
       ThresholdParameter: 1

   Window Information
             WindowLength: 1
            OverlapLength: 'auto'
    WindowLossAggregation: 'mean'

To ensure full training of the large network, set the maximum number of epochs to 500. To plot
training progress during training instead of presenting it in a table, set the Plots training option to
"training-progress" and Verbose to false.

opts = trainingOptions("adam",MaxEpochs=500,Plots="training-progress",Verbose=false);
trainDetector(DCONV2,dataProcessedTrain,opts)

13 Signal Processing Examples

13-296



Detect Anomalies and Evaluate Performance

Plot the reconstruction error distribution of the test signal and compare it to ground truth labels.
There is an obvious high loss peak corresponds to the location of an anomaly. The distribution also
contains multiple smaller fluctuations.

figure
tiledlayout(2,1)
nexttile
plotLoss(DCONV2,dataProcessed(idxTest2,:));
nexttile
stem(ecgLabels2{idxTest2,:},".")
grid on
yticks([0 1])
yticklabels({"Normal","Abnormal"})
title("Ground Truth Labels")
xlabel("Window Index")

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-297



View the signal reconstruction in a region of the test set with abnormal heartbeats and in a region of
the test set with baseline drift. The reconstructed signal follows the baseline very well and deviates
from the original signal only at anomaly points.

plotAnomalies(DCONV2,dataProcessed(250*fs:300*fs,:),PlotReconstruction=true)
title("Test Region with Abnormal Heartbeats")
grid on

13 Signal Processing Examples

13-298



plotAnomalies(DCONV2,dataProcessed(210*fs:250*fs,:),PlotReconstruction=true)
title("Test Region with Baseline Drift")

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-299



Case 3: Detect Anomalous Regions in Multichannel Signals

There are scenarios where the data contains multiple signals coming from different measurements.
These signals can include acceleration, temperature, and the rotational speed of a motor. You can
train the deepSignalAnomalyDetector object with multivariate signals and detect anomalies in
these multi-measurement observations.

Load and Prepare Data

Load the waveform data set WaveformData. The observations are arrays of size numChannels-by-
numTimeSteps, where numChannels is the number of channels and numTimeSteps is the number
of time steps in the sequence. Transpose the arrays so that the columns correspond to the time steps.
Display the first few cells of the data.

load WaveformData
data = cellfun(@(x)x',data,UniformOutput=false);
head(data)

    {103×3 double}
    {136×3 double}

13 Signal Processing Examples

13-300



    {140×3 double}
    {124×3 double}
    {127×3 double}
    {200×3 double}
    {141×3 double}
    {151×3 double}

Visualize the first few sequences in a plot.

numChannels = size(data{1},2);
tiledlayout(2,2)
for ii = 1:4
    nexttile
    stackedplot(data{ii},DisplayLabels="Channel " + (1:numChannels));
    title("Observation " + ii)
    xlabel("Time Step")
end

Partition the data into training and test partitions. Use 90% of the data for training and 10% for
testing.

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-301



numObservations = numel(data);
rng default
[idxTrain3,~,idxTest3] = dividerand(numObservations,0.9,0,0.1);
signalTrain3 = data(idxTrain3);
signalTest3 = data(idxTest3);

Create and Train Detector

Create a default anomaly detector and specify the number of channels as 3.

DCONV3 = deepSignalAnomalyDetector(3);
trainDetector(DCONV3,signalTrain3)

Training on single GPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |         1.92 |          1.9 |          0.0010 |
|       8 |          50 |       00:00:03 |         1.09 |          0.6 |          0.0010 |
|      15 |         100 |       00:00:06 |         1.03 |          0.5 |          0.0010 |
|      22 |         150 |       00:00:10 |         0.97 |          0.5 |          0.0010 |
|      29 |         200 |       00:00:14 |         0.91 |          0.4 |          0.0010 |
|      30 |         210 |       00:00:15 |         0.90 |          0.4 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.
Computing threshold...
Threshold computation completed.

Detect Anomalies and Evaluate Performance

To test the detector, select 50 data sequences at random and add artificial anomalies to them.
Randomly select 50 of the sequences to modify.

signalTest3New = signalTest3;
numAnomalousSequences = 50;
rng default
idx = randperm(numel(signalTest3),numAnomalousSequences);

Select a 20-sample region in a random channel of each chosen sequence and replace it with five times
the absolute value of its amplitude.

for ii = 1:numAnomalousSequences
    X = signalTest3New{idx(ii)};
    idxPatch = 40:60;
    nch = randi(3);
    OldRegion = X(idxPatch,nch);
    newRegion = 5*abs(OldRegion);
    X(idxPatch,nch) = newRegion;
    signalTest3New{idx(ii)} = X;
end

Use the anomaly detector to find the anomalous regions. Visualize the results for two of the signals.
The detector determines that an anomaly exists in a signal when any of its channels shows abnormal
behavior.

figure
plotAnomalies(DCONV3,signalTest3New{idx(2)})

13 Signal Processing Examples

13-302



figure
plotAnomalies(DCONV3,signalTest3New{idx(20)})

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-303



Conclusion

This example shows how to use a deepSignalAnomalyDetector object trained without labels to
detect point, region, or observation anomalies in signal segments, long signals, and multivariate
signals.

References

[1] Donald S. Baim, Wilson S. Colucci, E. Scott Monrad, Harton S. Smith, Richard F. Wright, Alyce
Lanoue, Diane F. Gauthier, Bernard J. Ransil, William Grossman W, and Eugene Braunwald. “Survival
of Patients with Severe Congestive Heart Failure Treated with Oral Milrinone.” Journal of the
American College of Cardiology, vol. 7, no. 3, (March 1986): 661–70. https://doi.org/10.1016/
S0735-1097(86)80478-8.

[2] Greenwald, Scott David. "Development and analysis of a ventricular fibrillation detector." (M.S.
thesis, MIT Dept. of Electrical Engineering and Computer Science, 1986).

[3] Goldberger, Ary L., Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov, Roger
G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley. “PhysioBank,

13 Signal Processing Examples

13-304



PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic
Signals.” Circulation 101, no. 23 (June 13, 2000): https://doi.org/10.1161/01.CIR.101.23.e215

Supporting Function

function helperPlotECG(ecgData,ecgLabels)
    figure(Position=[0 0 900 250])
    tiledlayout(1,3,TileSpacing="compact");
    classes = {"N","r","V"};
    for i=1:length(classes)
        x = ecgData(ecgLabels==classes{i});
        nexttile
        plot(x{4})
        xticks([0 70 length(x{4})])
        axis tight
        title("Signal with class "+classes{i})
    end
end

See Also
Functions
deepSignalAnomalyDetector

Objects
deepSignalAnomalyDetectorCNN | deepSignalAnomalyDetectorLSTM

Related Examples
• “Detect Anomalies in Machinery Using LSTM Autoencoder” on page 13-306

 Detect Anomalies In Signals Using deepSignalAnomalyDetector

13-305



Detect Anomalies in Machinery Using LSTM Autoencoder

This example shows how to detect anomalies in vibration data from an industrial machine using a
long short-term memory (LSTM) autoencoder implemented in the deepSignalAnomalyDetector
object from Signal Processing Toolbox™. The example is based on “Anomaly Detection in Industrial
Machinery Using Three-Axis Vibration Data” (Predictive Maintenance Toolbox). Refer to that example
for details about the data, the feature extraction, and alternative methods of anomaly detection.

Load Data

The data for this example consists of three-channel vibration measurements from a battery electrode
cutting machine, collected over several days of operation. Each channel corresponds to a vibration
axis. At one point during the data collection process, the machine has a scheduled maintenance. The
data collected after scheduled maintenance is assumed to represent normal operating conditions of
the machine. The data from before maintenance can represent normal or anomalous conditions.

Retrieve, unzip, and load the data into the workspace.

localfile = matlab.internal.examples.downloadSupportFile("predmaint", ...
    "anomalyDetection3axisVibration/v1/vibrationData.zip");
unzip(localfile,tempdir)
data = load(fullfile(tempdir,"FeatureEntire.mat"));
features = data.featureAll;

In the Predictive Maintenance Toolbox example, you use the Diagnostic Feature Designer (Predictive
Maintenance Toolbox) app to extract features from the raw data and select the features that are most
effective for diagnosing faulty conditions.

• From the first channel, select the crest factor, kurtosis, root-mean-square (RMS) value, and
standard deviation.

• From the second channel, select the mean, RMS value, skewness, and standard deviation.
• From the third channel, select the crest factor, signal to noise and distortion ratio (SINAD), signal-

to-noise ratio (SNR), and total harmonic distortion (THD).

In this example, you represent each signal by its associated set of 12 features. The data file labels
each signal as being extracted from data measured before or after the maintenance. Shorten the
variable names by removing the redundant phrase "_stats/Col1_". Display a few random rows of
the table.

for ik = 2:size(features,2)
    features.Properties.VariableNames(ik) = ...
        erase(features.Properties.VariableNames(ik),"_stats/Col1_");
end
head(features(randperm(height(features)),:))

    label     ch1CrestFactor    ch1Kurtosis    ch1RMS    ch1Std     ch2Mean      ch2RMS     ch2Skewness    ch2Std     ch3CrestFactor    ch3SINAD    ch3SNR     ch3THD 
    ______    ______________    ___________    ______    ______    __________    _______    ___________    _______    ______________    ________    _______    _______

    After         1.6853          1.7668       3.1232    3.1229     0.0033337    0.49073      1.5804       0.49073        9.8948        -9.2412     -9.0909    -5.4062
    After         1.9119          2.2294        2.753    2.7525    -0.0097274    0.50029      1.7341        0.5002        6.9006        -8.0354     -7.8494    -5.7064
    After         2.0892          2.9014       2.5194    2.5171     -0.010164    0.53292      3.9178       0.53283        6.9842        -9.0894     -8.9333    -5.4036
    After         1.7445          1.7777       3.0172    3.0161     -0.019713    0.70911      2.7898       0.70884        6.2546        -8.3171     -8.1375    -5.5683
    After         2.0058          1.7628       2.6241    2.6239     -0.039584    0.72208      5.0116         0.721        21.593        -13.534     -13.481    -5.5184
    After         1.7668          1.7662       2.9792    2.9789    -0.0034628    0.65523      2.7817       0.65522        6.8951        -8.3663     -8.1994      -5.83

13 Signal Processing Examples

13-306



    After         1.8217          2.0704       2.8893    2.8883     -0.055623    0.89943       3.615       0.89771         6.454        -7.9951     -7.8086     -5.737
    Before        2.8021          2.7288       1.8784    1.8782    -0.0020621     0.2861      2.1066       0.28609        9.0325         -15.02     -15.009    -10.604

Verify that about a third of the signals were collected before the maintenance.

countlabels(features)

ans=2×3 table
    label     Count    Percent
    ______    _____    _______

    Before     6218    35.245 
    After     11424    64.755 

Split the data into a training test containing 90% of the measurements taken at random and a test set
containing the rest. Reset the random number generator for reproducible results.

rng("default")
idx = splitlabels(features,0.9,"randomized");

fTrain = features(idx{1},:);
fTest = features(idx{2},:);

Define Detector Architecture

Use the deepSignalAnomalyDetector (Signal Processing Toolbox) object to create a long short-
term memory (LSTM) autoencoder. An autoencoder is a type of neural network that learns a
compressed representation of unlabeled sequence data. This autoencoder differs from the one in the
Predictive Maintenance Toolbox example in some details but produces similar results.

• Specify that each signal input to the detector has only one channel.
• Specify two encoder layers, one with 16 hidden units and the other with 32 hidden units, and one

decoder layer with 16 hidden units.
• Specify the WindowLength property of the detector so that it treats each input signal as a single

segment. Depending on the application, the detector can also be trained to detect anomalous
points or regions within each signal.

• Specify that the object computes the detection threshold using the mean window loss measured
over the entire training data set and multiplied by 0.8.

detector = deepSignalAnomalyDetector(1,"lstm", ...
    EncoderHiddenUnits=[16 32], ...
    DecoderHiddenUnits=16, ...
    WindowLength="fullSignal", ...
    ThresholdMethod="mean", ...
    ThresholdParameter=0.8);

Prepare Data for Training

Define a function to convert the data to a format suitable for input to the anomaly detector. The
function removes the categorical column from the data matrix, converts the numeric matrix to a cell
array in which each cell represents a matrix row, and transposes each cell.

t2c = @(in)cellfun(@transpose, ...
    mat2cell(in(:,2:end).Variables,ones(height(in),1)), ...
    UniformOutput=false);

 Detect Anomalies in Machinery Using LSTM Autoencoder

13-307



Specify Training Options

Train for 200 epochs with a mini-batch size of 500. Use the Adam solver.

options = trainingOptions("adam", ...
   Plots="training-progress", ...
   Verbose=false, ...
   MiniBatchSize=500,...
   MaxEpochs=200);

Train Detector

Use the trainDetector (Signal Processing Toolbox) function to train the LSTM autoencoder with
unlabeled data assumed to be normal. This is an example of unsupervised training.

trainAfter = fTrain(fTrain.label=="After",:);

trainDetector(detector,t2c(trainAfter),options)

Test Detector

When you give the trained autoencoder a testing data set, the object reconstructs each signal based
on what it learned during the training. The object then computes a reconstruction loss that measures
the deviation between the signal and its reconstruction and identifies a signal as anomalous when the
reconstruction error exceeds the specified threshold. The detect (Signal Processing Toolbox)
function outputs a logical array that is true for anomalous signals.

Count the anomalies in the testing data collected before the scheduled maintenance. Express the
number of anomalies as a percentage of the number of signals.

testBefore = fTest(fTest.label=="Before",:);

13 Signal Processing Examples

13-308



aBefore = cell2mat(detect(detector,t2c(testBefore)));
nBefore = sum(aBefore)/height(testBefore)*100

nBefore = 99.0354

Count the anomalies in the testing data collected after the scheduled maintenance. Express the
number of anomalies as a percentage of the number of signals and verify that the value is much
smaller than for the pre-maintenance data.

testAfter = fTest(fTest.label=="After",:);

aAfter = cell2mat(detect(detector,t2c(testAfter)));
nAfter = sum(aAfter)/height(testAfter)*100

nAfter = 2.6270

Visualize and characterize randomly chosen sample signals corresponding to normal and abnormal
conditions. The plotAnomalies (Signal Processing Toolbox) function displays the input signal and
its reconstruction by the autoencoder. The second output argument of the detect function is the
aggregated reconstruction loss for each input signal.

[~,lB] = detect(detector,t2c(testBefore));

ndN = find(~aBefore);
ndN = ndN(randi(length(ndN)));
plotAnomalies(detector,t2c(testBefore(ndN,:)), ...
    PlotReconstruction=true)
text(2,-3,"Signal " + ndN + ", Loss = " + lB(ndN))
ylim([-16 11])
grid on

 Detect Anomalies in Machinery Using LSTM Autoencoder

13-309



When the detector identifies a signal as anomalous, it shows that signal with a thicker line and in a
different color.

ndA = find(aBefore);
ndA = ndA(randi(length(ndA)));
plotAnomalies(detector,t2c(testBefore(ndA,:)), ...
    PlotReconstruction=true)
text(2,-3,"Signal " + ndA + ", Loss = " + lB(ndA))
ylim([-16 11])
grid on

13 Signal Processing Examples

13-310



Plot Loss and Vizualize Threshold

Use the plotLoss (Signal Processing Toolbox) function to plot the signal-by-signal reconstruction
loss for the testing data before and after the scheduled maintenance. As expected, the reconstruction
losses for the pre-maintenance data are much higher than for the post-maintenance data. The
function also displays the computed threshold.

clf
q = plotLoss(detector,t2c(fTest));
xl = xline(height(testBefore),":",LineWidth=2, ...
    DisplayName="Scheduled Maintenance");
legend(xl,Box="off")
ylim([0 15])

 Detect Anomalies in Machinery Using LSTM Autoencoder

13-311



The plotLossDistribution (Signal Processing Toolbox) function displays the cumulative
distribution function (CDF) and a histogram of the reconstruction losses that the detector computes.
Compare the reconstruction loss distribution for the post-maintenance testing data and the pre-
maintenance data. You can adjust the threshold to provide better separation between the normal data
and the anomalous data.

plotLossDistribution(detector,t2c(testAfter),t2c(testBefore))

13 Signal Processing Examples

13-312



The receiver operating characteristic (ROC) curve for a detector or classifier describes its
performance as the separation threshold varies. The area under the ROC curve (AUC) summarizes
the information given by the curve. An AUC value close to 1 indicates that the detector or classifier
performs well. Plot the ROC curve and compute the AOC for the anomaly detector in this example.

[~,lT] = detect(detector,t2c(fTest));
rocc = rocmetrics(fTest.label=="Before",cell2mat(lT),true);
plot(rocc,ShowModelOperatingPoint=false)

 Detect Anomalies in Machinery Using LSTM Autoencoder

13-313



Conclusion

This example introduces the deepSignalAnomalyDetector object and uses it to detect anomalies
in vibration data from an industrial machine.

See Also
Functions
deepSignalAnomalyDetector

Objects
deepSignalAnomalyDetectorCNN | deepSignalAnomalyDetectorLSTM

Related Examples
• “Detect Anomalies In Signals Using deepSignalAnomalyDetector” on page 13-285

13 Signal Processing Examples

13-314



Wireless Comm Examples

14



OFDM Autoencoder for Wireless Communications

This example shows how to model an end-to-end orthogonal frequency division modulation (OFDM)
communications system with an autoencoder to reliably transmit information bits over a wireless
channel.

Introduction

This example uses an autoencoder together with OFDM modulator and demodulator layers to design
and implement a multi-carrier communications system.

In this example, you will learn how to:

• Use the sequenceInputLayer function to train the network with multiple SNR values.
• Create OFDM modulation and demodulation layers using the ofdmmod (Communications Toolbox)

and ofdmdemod (Communications Toolbox) functions.
• Train a fully connected neural network with embedded OFDM modulation and demodulation.
• Separate the neural network into encoder and decoder networks.
• Run BLER simulations to compare error rate performance of a conventional OFDM link to an AI-

based OFDM link.

For an equivelent single-carrier communications system, see the “Autoencoders for Wireless
Communications” (Communications Toolbox) example.

OFDM-based Autoencoder System

This block diagram shows a wireless autoencoder communications system. The encoder (transmitter)
first maps each k set of information bits in a sequence into a message s such that s ∈ {0, …, M − 1},
where M = 2k to form T messages. Each of the T messages, s, is mapped to n real-valued channel
uses, x = f (s) ∈ ℝn, which results in an effective coding rate of R = k/n data bits per real channel use.
Then, two real channel uses are mapped into a complex symbol to create xc = g(s) ∈ ℂn/2. The
normalization layer of the encoder imposes constraints on x to further restrict the encoded symbols.
To illustrate possibilities, these constraints are implemented using the normalization layer:

• Energy constraint: ‖xi‖2
2 = 1, ∀i

• Average power constraint: E[ |xi |2 ] = 1, ∀i

Normalized symbols are mapped onto the OFDM subcarriers and passed through an AWGN channel.

14 Wireless Comm Examples

14-2



The transmitter encodes s and outputs encoded symbols, x. The channel impairs the encoded symbols
to generate y ∈ ℝn/2. The receiver decodes y and outputs estimate, s, of the transmitted message s.

The input message is a one-hot vector 1s ∈ ℝM, whose elements are all zeros except the sth one. The
AWGN channel adds noise to achieve the specified signal to noise power ratio, SNR.

Generate and Preprocess Data

The input to the transmitter is a random sequence of k bits. k bits can create M = 2k distinct
messages or input symbols. The input symbol is a categorical feature from the set of

0, 1, . . . , M − 1 . As the number of possible input symbols increases, the number of training
symbols must increase to give the network a chance to experience a large number of possible input
combinations. The same is true for the number of validation symbols. Set number of input bits to 2.

k = ;  % Information bits per symbol
M = 2^k;                % Size of information symbols set
numTrainSymbols = 2560 * M;
numValidationSymbols = 128 * M;

The autoencoder neural network best works with one-hot inputs and classifies each input symbol as
one of the categorical values, 0, 1, . . . , M − 1 . Convert random input symbols into a one-hot array
using onehotencode function and create labels of categorical values. Place the one-hot value to the
first dimension (rows) and input symbols to the second dimension (columns).

dTrain = randi([0 M-1],1,5)

dTrain = 1×5

     3     3     0     3     2

trainSymbolsTemp = onehotencode(dTrain,1,"ClassNames",0:M-1)

trainSymbolsTemp = 4×5

     0     0     1     0     0
     0     0     0     0     0
     0     0     0     0     1
     1     1     0     1     0

trainLabelsTemp = categorical(dTrain)

 OFDM Autoencoder for Wireless Communications

14-3



trainLabelsTemp = 1x5 categorical
     3      3      0      3      2 

Training the neural network at several SNR levels ensures that the autoencoder can handle a range
of SNR values without retraining. Set training SNR values as an array between -1 dB and 9 dB.
Generate multiple batches of training sequences, where each batch (cell) experiences a different
SNR. Set random number generator state for repeatable results for demonstration purposes only.

trainSNRVec = -1:2:9;     % Training SNR (dB)

rng(1234)
trainSymbols = cell(1,length(trainSNRVec));
trainLabels = cell(1,length(trainSNRVec));
validationSymbols = cell(1,length(trainSNRVec));
validationLabels = cell(1,length(trainSNRVec));
for p=1:length(trainSNRVec)
  dTrain = randi([0 M-1],1,numTrainSymbols);
  dValid = randi([0 M-1],1,numValidationSymbols);
  trainSymbols{p} = onehotencode(dTrain,1,"ClassNames",0:M-1);
  trainLabels{p} = categorical(dTrain);
  validationSymbols{p} = onehotencode(dValid,1,"ClassNames",0:M-1);
  validationLabels{p} = categorical(dValid);
end

Size of training symbols is M × NSym. Size of training labels is 1 × NSym.

numBatches = length(trainSymbols)

numBatches = 6

sizeTrainSymbols = size(trainSymbols{1})

sizeTrainSymbols = 1×2

           4       10240

sizeTrainLabels = size(trainLabels{1})

sizeTrainLabels = 1×2

           1       10240

Define and Train Neural Network Model

The second step of designing an AI-based system is to define and train the neural network model.

Define Neural Network

This example uses a modified version of the autoencoder neural network proposed in [2]. Set the
number of subcarriers, Nf f t, to 256. The two fully connected layers map k bits (in the form of length
M one-hot arrays) into n real numbers, resulting in a rate R = k/n communications system. After
normalization, the OFDM modulator layer maps these n real numbers into n/2 complex valued
symbols and assigns each symbol to a subcarrier. To ensure that OFDM modulator layer outputs full
OFDM symbols, set minimum input length, MinLength, of the sequence input layer in the third
dimension (T) to Nf f t. Therefore, the input to the neural network is a sequence of one-hot values with

14 Wireless Comm Examples

14-4



size M × Nf f t. This network uses the sequenceInputLayer function with M number of features
and Nf f t sequence length.

The reliability of the communication link can be increased through multiple uses of the channel for
the same information symbol, which is also known as coding gain. An autoencoder can learn to
leverage this increased number of channel uses, n > k. The following trains an OFDM-based (6,2)
autoencoder, which is equivalent to having a coding rate, R, of 1/3. Set n to 6.

Nfft          = ;   % Number of OFDM subcarriers

n             = ;      % (n/2) is the number of complex channel uses

CPLength      = ;      % Samples

normalization = ;   % Normalization "Energy" | "Average power"

ofdmAELayerGraph = [
  sequenceInputLayer(M,Name="One-hot input",MinLength=Nfft)
  
  fullyConnectedLayer(M,Name="fc_1")
  reluLayer(Name="relu_1")
  
  fullyConnectedLayer(n,Name="fc_2",BiasInitializer="narrow-normal")
  
  helperAEWOFDMNormalizationLayer(Method=normalization)

  helperAEWOFDMModLayer(Nfft,CPLength,Name="OFDM Mod");
  
  helperAEWOFDMAWGNLayer(SNR=trainSNRVec,SignalPower=1)
  
  helperAEWOFDMDemodLayer(Nfft,CPLength,Name="OFDM Demod");
  
  fullyConnectedLayer(M,Name="fc_3")
  reluLayer(Name="relu_2")
  
  fullyConnectedLayer(M,Name="fc_4")
  softmaxLayer(Name="softmax")
  
  classificationLayer(Name="classoutput")];

The following shows the output sizes for each layer in the autoencoder layer.

 OFDM Autoencoder for Wireless Communications

14-5



To see the full analysis of the network, check the box in the if statement.

if 
  analyzeNetwork(ofdmAELayerGraph) %#ok<UNRCH>
end

Train Neural Network

Set the training options for the autoencoder neural network and train the network using the
trainNetwork function. Training takes about 15 seconds on an AMD EPYC 7262 3.2 GHz 8C/16T.

% Set training options
options = trainingOptions('adam', ...
  InitialLearnRate=0.02, ...
  MaxEpochs=10, ...
  OutputNetwork="best-validation-loss", ...
  Shuffle='every-epoch', ...

14 Wireless Comm Examples

14-6



  ValidationData={validationSymbols,validationLabels}, ...
  LearnRateSchedule="piecewise", ...
  LearnRateDropPeriod=5, ...
  LearnRateDropFactor=0.1, ...
  ExecutionEnvironment="cpu", ...
  Plots='none', ...
  SequenceLength=Nfft);

% Train the autoencoder network
[trainedNet,trainInfo] = trainNetwork(trainSymbols,trainLabels,ofdmAELayerGraph,options);

|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:01 |       13.22% |       24.67% |       1.6775 |       1.4967 |          0.0200 |
|       2 |          50 |       00:00:05 |       74.15% |       72.56% |       0.4678 |       0.4751 |          0.0200 |
|       3 |         100 |       00:00:08 |       95.18% |       95.67% |       0.1513 |       0.1256 |          0.0200 |
|       4 |         150 |       00:00:12 |       97.14% |       96.65% |       0.0893 |       0.1177 |          0.0200 |
|       5 |         200 |       00:00:16 |       96.48% |       96.29% |       0.1010 |       0.1127 |          0.0200 |
|       7 |         250 |       00:00:20 |       96.29% |       96.48% |       0.0968 |       0.1106 |          0.0020 |
|       8 |         300 |       00:00:23 |       97.53% |       96.26% |       0.1039 |       0.1224 |          0.0020 |
|       9 |         350 |       00:00:27 |       96.61% |       96.39% |       0.1090 |       0.1210 |          0.0020 |
|      10 |         400 |       00:00:31 |       96.88% |       96.06% |       0.0999 |       0.1272 |          0.0020 |
|======================================================================================================================|
Training finished: Max epochs completed.

trainInfo.n = n;
trainInfo.k = k;
trainInfo.Normalization = normalization;

Plot the training progress. The validation accuracy quickly reaches more than 90% while the
validation loss keeps slowly decreasing. This behavior shows that the training SNR value was low
enough to cause some errors but not too low to avoid convergence. If SNR is too high that the
network does not experience any errors, then the autoencoder does not learn how to correct channel
impairments. A rule of thumb is to keep the validation accuracy between 85% and 95%. For
definitions of validation accuracy and validation loss, see “Monitor Deep Learning Training Progress”
on page 5-192 section.

figure
helperAEWPlotTrainingPerformance(trainInfo)

 OFDM Autoencoder for Wireless Communications

14-7



Separate the network into encoder and decoder parts. Encoder starts with the input layer and ends
after the OFDM modulator layer. Since the OFDM modulator changes the number of time samples
(adds cyclic-prefix), use dlnetwork for the encoder network.

for idxOFDMLayer = 1:length(trainedNet.Layers)
  if isa(trainedNet.Layers(idxOFDMLayer), 'helperAEWOFDMModLayer')
    break
  end
end
lgraph = layerGraph(trainedNet.Layers(1:idxOFDMLayer));
txNet = dlnetwork(lgraph);

Decoder starts with the OFDM demodulator layer and ends with the classification layer. Add a feature
input layer at the beginning. Since the OFDM demodulator changes the number of time samples
(removes cyclic-prefix), use dlnetwork for the decoder network.

for idxOFDMDemod = idxOFDMLayer+1:length(trainedNet.Layers)
  if isa(trainedNet.Layers(idxOFDMDemod), 'helperAEWOFDMDemodLayer')
    break
  end
end
firstLayerName = trainedNet.Layers(idxOFDMDemod).Name;
lgraph = addLayers(layerGraph(sequenceInputLayer(2,Name="rxin",MinLength=(Nfft+CPLength)*n/2)), ...
  trainedNet.Layers(idxOFDMDemod:end));
lgraph = connectLayers(lgraph,'rxin',firstLayerName);
lgraph = removeLayers(lgraph, 'classoutput');
rxNet = dlnetwork(lgraph);

14 Wireless Comm Examples

14-8



Use the plot object function of the trained network objects to show the layer graphs of the full
autoencoder, the encoder network, which is the transmitter, and the decoder network, which is the
receiver.

figure
tiledlayout(2,2)
nexttile([2 1])
plot(trainedNet)
title('Autoencoder')
nexttile
plot(txNet)
title('Encoder/Tx')
nexttile
plot(rxNet)
title('Decoder/Rx')

Compare BLER of OFDM-based Autoencoder and Conventional OFDM over AWGN Channel

Set up simulation parameters. The following parameters ensures the simulation runs in about one
minute while providing acceptable BLER results. Increase the SNR range and maximum number of
frames to get more reliable results for a wider range.

SNRVec = 0:2:8;
symbolsPerFrame = Nfft;
signalPower = 1;

Generate random integers in the [0 M-1] range that represents k random information bits. Encode
these information bits into complex symbols with helperAEWOFDMEncode function. The

 OFDM Autoencoder for Wireless Communications

14-9



helperAEWOFDMEncode function runs the encoder part of the autoencoder then maps the real
valued x vector into a complex valued xc vector such that the odd and even elements are mapped into
the in-phase and the quadrature component of a complex symbol, respectively, where
xc = x(1:2:end) + jx(2:2:end). In other words, treat the x array as an interleaved complex array.

Pass the complex symbols through an AWGN channel. Decode the channel impaired complex symbols
with the helperAEWOFDMDecode function. The following code runs the simulation for each SNR
point for at least 100 block errors or at most 2000 frames. If Parallel Computing Toolbox™ is installed
and a license is available, uncomment the parfor line to run the simulations on a parallel pool.

minNumErrors = 100;
maxNumFrames = 1000;
M = 2^k;
BLER = zeros(length(SNRVec),2);
t = tic;
%parfor snrIdx = 1:length(SNRVec)
for snrIdx = 1:length(SNRVec)
  SNR = SNRVec(snrIdx);
  disp("Simulating for SNR = " + SNR)
  
  numBlockErrors = 0;
  numConvSymbolErrors = 0;
  frameCnt = 0;
  while (numBlockErrors < minNumErrors) ...
      && (frameCnt < maxNumFrames)
    d = randi([0 M-1],symbolsPerFrame,1);         % Random information symbols
    % Run AE Tx
    x = helperAEWOFDMEncode(d,txNet);             % Encoder
    % Run Coded OFDM TX
    coded = repelem(d,round(n/k));                % Simple repetition code
    xqamCoded = qammod(coded,M,UnitAveragePower=true);
    xConvCoded = sqrt(Nfft) * ofdmmod(reshape(xqamCoded,round(n/k),[])',Nfft,CPLength);
    % Put both through the same channel
    y = awgn(x,SNR,signalPower);
    yConvCoded = awgn(xConvCoded,SNR,signalPower);
    % Run AE Rx
    dHat = helperAEWOFDMDecode(y,rxNet);          % Decoder
    % Run Coded OFDM Rx
    xqamHatCoded = ofdmdemod(yConvCoded,Nfft,CPLength);
    dConvHatCoded = qamdemod(xqamHatCoded',M,UnitAveragePower=true);
    dConvDecoded = mode(dConvHatCoded,1)';
    % Compute and contrast error rate
    numBlockErrors = numBlockErrors + sum(d ~= dHat);
    numConvSymbolErrors = numConvSymbolErrors + sum(d ~= dConvDecoded);
    frameCnt = frameCnt + 1;
  end
  BLER(snrIdx,:) = [numBlockErrors  numConvSymbolErrors] ...
    ./ (frameCnt*symbolsPerFrame);
end

Simulating for SNR = 0
Simulating for SNR = 2
Simulating for SNR = 4
Simulating for SNR = 6
Simulating for SNR = 8

14 Wireless Comm Examples

14-10

https://www.mathworks.com/products/parallel-computing.html


et = seconds(toc(t));
et.Format = 'mm:ss.SSS';
disp("Total simulation time: " + string(et))

Total simulation time: 01:35.237

Compare the results with that of an uncoded QPSK system with block length n = 6. For this n value,
the autoencoder can get more coding gain than a simple repetition code. Also, it provides about 5.5
dB gain as compared to an uncoded QPSK system with block length 6.

figure
EbNoVec = convertSNR([SNRVec 10],"snr","ebno",BitsPerSymbol=k);
semilogy(SNRVec,BLER,'-o')
hold on
% Calculate uncoded block error rate
pskBLER = 1-(1-berawgn(EbNoVec,'psk',2^k,'nondiff')).^n;
semilogy([SNRVec 10],pskBLER,'--x')
hold off
ylim([1e-4 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend(sprintf('AE-OFDM (%d,%d)',n,k),sprintf('Conv-OFDM (%d,%d)',n,k),sprintf('QPSK (%d,%d)',n,k))

Conclusions and Further Exploration

The BLER results show that by inserting the expert knowledge in the form of OFDM modulation and
demodulation to the neural network, an OFDM-based autoencoder can be trained. By allowing for

 OFDM Autoencoder for Wireless Communications

14-11



multiple channel uses per input symbol ( n > k ), the autoencoder can learn to obtain coding gain
better than the simple repetition codes.

Change n, k, Nf f t, CPLength, and normalization to train different autoencoders. Try different training
SNR values to optimize the training performance. See the help for the
helperAEWTrainOFDMAutoencoder function and the helperAEWOFDMAutoencoderBLER function.

The results are obtained using the following default settings for training and BLER simulations:

trainParams.Plots = 'none';
trainParams.Verbose = true;
trainParams.MaxEpochs = 10;
trainParams.InitialLearnRate = 0.08;
trainParams.LearnRateSchedule = 'piecewise';
trainParams.LearnRateDropPeriod = 5;
trainParams.LearnRateDropFactor = 0.1;
trainParams.SequenceLength = Nfft;

simParams.SNRVec = 0:2:12;
simParams.MinNumErrors = 100;
simParams.MaxNumFrames = 3000;
simParams.NumSymbolsPerFrame = Nfft;
simParams.SignalPower = 1;

Vary these parameters to train different autoencoders and test their BLER performance. Experiment
with different n, k, normalization, Nf f t and SNR values.

List of Helper Functions

• helperAEWOFDMAWGNLayer.m
• helperAEWOFDMNormalizationLayer.m
• helperAEWOFDMEncode.m
• helperAEWOFDMDecode.m
• helperAEWTrainOFDMAutoencoder.m
• helperAEWOFDMAutoencoderBLER.m

References

[1] T. O’Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," in IEEE
Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, Dec. 2017,
doi: 10.1109/TCCN.2017.2758370.

[2] A. Felix, S. Cammerer, S. Dörner, J. Hoydis and S. Ten Brink, "OFDM-Autoencoder for End-to-End
Learning of Communications Systems," 2018 IEEE 19th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), 2018, pp. 1-5, doi: 10.1109/SPAWC.2018.8445920.

See Also
ofdmmod | ofdmdemod | classificationLayer | sequenceInputLayer |
fullyConnectedLayer | reluLayer | softmaxLayer

14 Wireless Comm Examples

14-12



More About
• “Autoencoders for Wireless Communications” (Communications Toolbox)
• “CSI Feedback with Autoencoders” (Communications Toolbox)
• “Deep Learning in MATLAB” on page 1-2

 OFDM Autoencoder for Wireless Communications

14-13



Train DQN Agent for Beam Selection

This example shows how to train a deep Q-network (DQN) reinforcement learning agent to
accomplish the beam selection task in a 5G New Radio (NR) communications system. Instead of an
exhaustive beam search over all the beam pairs, the trained agent increases beam selection accuracy
by selecting the beam with highest signal strength while reducing the beam transition cost. When you
use an access network node (gNB) with four beams, simulation results in this example show the
trained agent selects beams with greater than 90% maximum possible signal strengths.

Introduction

To enable millimeter wave (mmWave) communications, beam management techniques must be used
due to the high pathloss and blockage experienced at high frequencies. Beam management is a set of
Layer 1 (physical layer) and Layer 2 (medium access control) procedures to establish and retain an
optimal beam pair (transmit beam and a corresponding receive beam) for good connectivity [1 on
page 14-19]. For examples of NR beam management procedures, see “NR SSB Beam Sweeping” (5G
Toolbox) and “NR Downlink Transmit-End Beam Refinement Using CSI-RS” (5G Toolbox).

This example considers beam selection procedures when a connection is established between the
user equipment (UE) and gNB. In 5G NR, the beam selection procedure for initial access consists of
beam sweeping, which requires exhaustive searches over all the beams on the transmitter and the
receiver sides, and then selection of the beam pair offering the strongest reference signal received
power (RSRP). Since mmWave communications require many antenna elements, implying many
beams, an exhaustive search over all beams becomes computationally expensive and increases the
initial access time.

To avoid repeatedly performing an exhaustive search and to reduce the communication overhead, this
example uses a reinforcement learning (RL) agent to perform beam selection using the GPS
coordinates of the receiver and the current beam angle while the UE moves around a track.

In this figure, the square represents the track that the UE (green circle) moves around, the red
triangle represents the location of the base station (gNB), the yellow squares represent the channel
scatterers, and the blue line represents the selected beam.

14 Wireless Comm Examples

14-14



For more information on DQN reinforcement learning agents, see “Deep Q-Network (DQN) Agents”
(Reinforcement Learning Toolbox).

Define Environment

To train a reinforcement learning agent, you must define the environment with which it will interact.
The reinforcement learning agent selects actions given observations. The goal of the reinforcement
learning algorithm is to find optimal actions that maximize the expected cumulative long-term reward
received from the environment during the task. For more information about reinforcement learning
agents, see “Reinforcement Learning Agents” (Reinforcement Learning Toolbox).

For the beam selection environment:

• The observations are represented by UE position information and the current beam selection.
• The actions are a selected beam out of four total beam angles from the gNB.
• The reward rt at time step t is given by:

rt = rrsrp + rθ
rrsrp = 0 . 9 × rsrp
rθ = − 0 . 1 × |θt− θt − 1 | .

rrsrp is a reward for the signal strength measured from the UE (rsrp) and rθ is a penalty for control
effort. θ is the beam angle in degrees.

 Train DQN Agent for Beam Selection

14-15



The environment is created from the RSRP data generated from in “Neural Network for Beam
Selection” (5G Toolbox). In the prerecorded data, receivers are randomly distributed on the perimeter
of a 6-meter square and configured with 16 beam pairs (four beams on each end, analog beamformed
with one RF chain). Using a MIMO scattering channel, the example considers 200 receiver locations
in the training set (nnBS_TrainingData.mat) and 100 receiver locations in the test sets
(nnBS_TestData.mat). The prerecorded data uses 2-D location coordinates.

The nnBS_TrainingData.mat file contains a matrix of receiver locations, locationMatTrain, and
an RSRP measurements of 16 beam pairs, rsrpMatTrain. Since receiver beam selection does not
significantly affect signal strength, you compute the mean RSRP for each base station antenna beam
for each UE location. Thus, the action space is four beam angles. You reorder the recorded data to
imitate the receiver moving clockwise around the base station.

To generate new training and test sets, set useSavedData to false. Be aware that regenerating
data can take up to a few hours.

% Set the random generator seed for reproducibility
rng(0)

useSavedData = true;
if useSavedData
    % Load data generated from Neural Network for Beam Selection example
    load nnBS_TrainingData
    load nnBS_TestData
    load nnBS_position
else
    % Generate data
    helperNNBSGenerateData(); %#ok
    position.posTX = prm.posTx;
    position.ScatPos = prm.ScatPos;
end
locationMat = locationMatTrain(1:4:end,:);

% Sort location in clockwise order
secLen = size(locationMat,1)/4;
[~,b1] = sort(locationMat(1:secLen,2));
[~,b2] = sort(locationMat(secLen+1:2*secLen,1));
[~,b3] = sort(locationMat(2*secLen+1:3*secLen,2),"descend");
[~,b4] = sort(locationMat(3*secLen+1:4*secLen,1),"descend");
idx = [b1;secLen+b2;2*secLen+b3;3*secLen+b4];

locationMat =  locationMat(idx,:);

% Compute average RSRP for each gNB beam and sort in clockwise order
avgRsrpMatTrain = rsrpMatTrain/4;    % prm.NRepeatSameLoc=4;
avgRsrpMatTrain = 100*avgRsrpMatTrain./max(avgRsrpMatTrain, [],"all");
avgRsrpMatTrain = avgRsrpMatTrain(:,:,idx);
avgRsrpMatTrain = mean(avgRsrpMatTrain,1);

% Angle rotation matrix: update for nBeams>4
txBeamAng = [-78,7,92,177];
rotAngleMat = [
    0 85 170 105
    85 0 85 170
    170 85 0 85
    105 170 85 0];
rotAngleMat = 100*rotAngleMat./max(rotAngleMat,[],"all");

14 Wireless Comm Examples

14-16



% Create training environment using generated data
envTrain = BeamSelectEnv(locationMat,avgRsrpMatTrain,rotAngleMat,position);

The environment is defined in the BeamSelectEnv supporting class, which is created using the
rlCreateEnvTemplate class. BeamSelectEnv.m is located in this example folder. The reward and
penalty functions are defined within and are updated as the agent interacts with the environment.

Create Agent

A DQN agent approximates the long-term reward for the given observations and actions by using a
rlVectorQValueFunction (Reinforcement Learning Toolbox) critic. Vector Q-value function
approximators have observations as inputs and state-action values as outputs. Each output element
represents the expected cumulative long-term reward for taking the corresponding discrete action
from the state indicated by the observation inputs.

The example uses the default critic network structures for the given observation and action
specification.

obsInfo = getObservationInfo(envTrain);
actInfo = getActionInfo(envTrain);
agent = rlDQNAgent(obsInfo,actInfo);

View the critic neural network.

criticNetwork = getModel(getCritic(agent));
analyzeNetwork(criticNetwork)

To foster expoloration, the DQN agent in this example optimizes with a learning rate of 0.001 and an
epsilon decay factor of 0.0001. For a full list of DQN hyperparameters and their descriptions, see
rlDQNAgentOptions (Reinforcement Learning Toolbox).

Specify the agent hyperparameters for training.

agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-3;
agent.AgentOptions.EpsilonGreedyExploration.EpsilonDecay = 1e-4;

Train Agent

To train the agent, first specify the training options using rlTrainingOptions (Reinforcement
Learning Toolbox). For this example, run each training session for at most 500 episodes, with each
episode lasting at most 200 time steps, corresponding to one full loop of the track.

trainOpts = rlTrainingOptions(...
    MaxEpisodes=500, ...
    MaxStepsPerEpisode=200, ...         % training data size = 200
    StopTrainingCriteria="AverageSteps", ...
    StopTrainingValue=500, ...
    Plots="training-progress"); 

Train the agent using the train (Reinforcement Learning Toolbox) function. Training this agent is a
computationally intensive process that takes several minutes to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false;
if doTraining

 Train DQN Agent for Beam Selection

14-17



    trainingStats = train(agent,envTrain,trainOpts); %#ok
else
    load("nnBS_RLAgent.mat")       
end

This figure shows the progression of the training. You can expect different results due to randomness
inherent to the training process.

Simulate Trained Agent

To validate the trained agent, rfirst set up a test environment with UE locations that the agent has not
seen in the training process.

locationMat = locationMatTest(1:4:end,:);

% Sort location in clockwise order
secLen = size(locationMat,1)/4;
[~,b1] = sort(locationMat(1:secLen,2));  
[~,b2] = sort(locationMat(secLen+1:2*secLen,1));
[~,b3] = sort(locationMat(2*secLen+1:3*secLen,2),"descend");
[~,b4] = sort(locationMat(3*secLen+1:4*secLen,1),"descend");
idx = [b1;secLen+b2;2*secLen+b3;3*secLen+b4];

locationMat =  locationMat(idx,:);

14 Wireless Comm Examples

14-18



% Compute average RSRP
avgRsrpMatTest = rsrpMatTest/4;  % 4 = prm.NRepeatSameLoc;
avgRsrpMatTest = 100*avgRsrpMatTest./max(avgRsrpMatTest, [],"all");
avgRsrpMatTest = avgRsrpMatTest(:,:,idx);
avgRsrpMatTest = mean(avgRsrpMatTest,1);

% Create test environment
envTest = BeamSelectEnv(locationMat,avgRsrpMatTest,rotAngleMat,position);

Simulate the environment with the trained agent. For more information on agent simulation, see
rlSimulationOptions (Reinforcement Learning Toolbox) and sim (Reinforcement Learning
Toolbox).

plot(envTest)
sim(envTest,agent,rlSimulationOptions("MaxSteps",100))

maxPosibleRsrp = sum(max(squeeze(avgRsrpMatTest)));
rsrpSim =  envTest.EpisodeRsrp;
disp("Agent RSRP/Maximum RSRP = " + rsrpSim/maxPosibleRsrp*100 +"%")

Agent RSRP/Maximum RSRP = 94.9399%

References

[1] 3GPP TR 38.802. "Study on New Radio Access Technology Physical Layer Aspects." 3rd
Generation Partnership Project; Technical Specification Group Radio Access Network.

 Train DQN Agent for Beam Selection

14-19



[2] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. Second
edition. Cambridge, MA: MIT Press, 2020.

See Also

More About
• “What Is Reinforcement Learning?” (Reinforcement Learning Toolbox)
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Deep Learning in MATLAB” on page 1-2
• “Neural Network for Beam Selection” (5G Toolbox)

14 Wireless Comm Examples

14-20



CSI Feedback with Autoencoders

This example shows how to use an autoencoder neural network to compress downlink channel state
information (CSI) over a clustered delay line (CDL) channel. CSI feedback is in the form of a raw
channel estimate array.

Introduction

In conventional 5G radio networks, CSI parameters are quantities related to the state of a channel
that are extracted from the channel estimate array. The CSI feedback includes several parameters,
such as the Channel Quality Indication (CQI), the precoding matrix indices (PMI) with different
codebook sets, and the rank indicator (RI). The UE uses the CSI reference signal (CSI-RS) to measure
and compute the CSI parameters. The user equipment (UE) reports CSI parameters to the access
network node (gNB) as feedback. Upon receiving the CSI parameters, the gNB schedules downlink
data transmissions with attributes such as modulation scheme, code rate, number of transmission
layers, and MIMO precoding. This figure shows an overview of a CSI-RS transmission, CSI feedback,
and the transmission of downlink data that is scheduled based on the CSI parameters.

The UE processes the channel estimate to reduce the amount of CSI feedback data. As an alternative
approach, the UE compresses and feeds back the channel estimate array. After receipt, the gNB
decompresses and processes the channel estimate to determine downlink data link parameters. The
compression and decompression can be achieved using an autoencoder neural network [1 on page
14-48, 2 on page 14-48]. This approach eliminates the use of existing quantized codebook and can
improve overall system performance.

This example uses a 5G downlink channel with these system parameters.

txAntennaSize = [2 2 2 1 1]; % rows, columns, polarizations, panels
rxAntennaSize = [2 1 1 1 1]; % rows, columns, polarizations, panels

 CSI Feedback with Autoencoders

14-21



rmsDelaySpread = 300e-9;     % s
maxDoppler = 5;              % Hz
nSizeGrid = 52;              % Number resource blocks (RB)
                             % 12 subcarriers per RB
subcarrierSpacing = 15;      % 15, 30, 60, 120 kHz
numTrainingChEst = 15000;

% Carrier definition
carrier = nrCarrierConfig;
carrier.NSizeGrid = nSizeGrid;
carrier.SubcarrierSpacing = subcarrierSpacing

carrier = 
  nrCarrierConfig with properties:

              NCellID: 1
    SubcarrierSpacing: 15
         CyclicPrefix: 'normal'
            NSizeGrid: 52
           NStartGrid: 0
                NSlot: 0
               NFrame: 0

   Read-only properties:
       SymbolsPerSlot: 14
     SlotsPerSubframe: 1
        SlotsPerFrame: 10

autoEncOpt.NumSubcarriers = carrier.NSizeGrid*12;
autoEncOpt.NumSymbols = carrier.SymbolsPerSlot;
autoEncOpt.NumTxAntennas = prod(txAntennaSize);
autoEncOpt.NumRxAntennas = prod(rxAntennaSize);

Generate and Preprocess Data

The first step of designing an AI-based system is to prepare training and testing data. For this
example, generate simulated channel estimates and preprocess the data. Use 5G Toolbox™ functions
to configure a CDL-C channel.

waveInfo = nrOFDMInfo(carrier);
samplesPerSlot = ...
  sum(waveInfo.SymbolLengths(1:waveInfo.SymbolsPerSlot));

channel = nrCDLChannel;
channel.DelayProfile = 'CDL-C';
channel.DelaySpread = rmsDelaySpread;       % s
channel.MaximumDopplerShift = maxDoppler;   % Hz
channel.RandomStream = "Global stream";
channel.TransmitAntennaArray.Size = txAntennaSize;
channel.ReceiveAntennaArray.Size = rxAntennaSize;
channel.ChannelFiltering = false;           % No filtering for 
                                            % perfect estimate
channel.NumTimeSamples = samplesPerSlot;    % 1 slot worth of samples
channel.SampleRate = waveInfo.SampleRate;

Simulate Channel

Run the channel and get the perfect channel estimate, Hest.

14 Wireless Comm Examples

14-22

https://www.mathworks.com/products/5g.html


[pathGains,sampleTimes] = channel();
pathFilters = getPathFilters(channel);
offset = nrPerfectTimingEstimate(pathGains,pathFilters);
Hest = nrPerfectChannelEstimate(carrier,pathGains,pathFilters, ...
  offset,sampleTimes);

The channel estimate matrix is an Nsubcarriers Nsymbols Nrx Ntx  array for each slot.

[nSub,nSym,nRx,nTx] = size(Hest)

nSub = 624

nSym = 14

nRx = 2

nTx = 8

Plot the channel response. The upper left plot shows the channel frequency response as a function of
time (symbols) for receive antenna 1 and transmit antenna 1. The lower left plot shows the channel
frequency response as a function of transmit antennas for symbol 1 and receive antenna 1. The upper
right plot shows the channel frequency response for all receive antennas for symbol 1 and transmit
antenna 1. The lower right plot shows the change in channel magnitude response as a function of
transmit antennas for all receive antennas for subcarrier 400 and symbol 1.

plotChannelResponse(Hest)

 CSI Feedback with Autoencoders

14-23



Preprocess Channel Estimate

Preprocess the channel estimate to reduce the size and convert it to a real-valued array. This figure
shows the channel estimate reduction preprocess.

14 Wireless Comm Examples

14-24



Assume that the channel coherence time is much larger than the slot time. Average the channel
estimate over a slot and obtain a Nsubcarriers 1 Nrx Ntx array.

Hmean = mean(Hest,2);

To enable operation on subcarriers and Tx antennas, move the Tx and Rx antenna dimensions to the
second and third dimensions, respectively.

Hmean = permute(Hmean,[1 4 3 2]);

To obtain the delay-angle representation of the channel, apply a 2-D discrete Fourier transform (DFT)
over subcarriers and Tx antennas for each Rx antenna and slot. To demonstrate the workflow and
reduce runtime, this subsection processes Rx channel 1 only.

Hdft2 = fft2(Hmean(:,:,1));

Since the multipath delay in the channel is limited, truncate the delay dimension to remove values
that do not carry information. The sampling period on the delay dimension is
Tdelay = 1/(Nsubcarriers * Fss), where Fss is subcarrier spacing. The expected RMS delay spread in
delay samples is τRMS/Tdelay, where τRMS is the RMS delay spread of the channel in seconds.

Tdelay = 1/(autoEncOpt.NumSubcarriers*carrier.SubcarrierSpacing*1e3);
rmsTauSamples = channel.DelaySpread / Tdelay;
maxTruncationFactor = floor(autoEncOpt.NumSubcarriers / rmsTauSamples);

Truncate the channel estimate to an even number of samples that is 10 times the expected RMS delay
spread. Increasing the truncationFactor value can decrease the performance loss due to
preprocessing. But, doing so increases the neural network complexity, number of required training

 CSI Feedback with Autoencoders

14-25



data points, and training time. A neural network with more learnable parameters might not converge
to a better solution.

truncationFactor = ;
maxDelay = round((channel.DelaySpread/Tdelay)*truncationFactor/2)*2

maxDelay = 28

autoEncOpt.MaxDelay = maxDelay;

Calculate the truncation indices and truncate the channel estimate.

midPoint = floor(nSub/2);
lowerEdge = midPoint - (nSub-maxDelay)/2 + 1;
upperEdge = midPoint + (nSub-maxDelay)/2;
Htemp = Hdft2([1:lowerEdge-1 upperEdge+1:end],:);

To get back to the subcarriers-Tx antennas domain, apply a 2-D inverse discrete Fourier transform
(IDFT) to the truncated array [2 on page 14-48]. This process effectively decimates the channel
estimate in the subcarrier axis.

Htrunc = ifft2(Htemp);

Separate the real and imaginary parts of the channel estimate to obtain a Ndelay Ntx 2  array.

HtruncReal = zeros(maxDelay,nTx,2);
HtruncReal(:,:,1) = real(Htrunc);
HtruncReal(:,:,2) = imag(Htrunc); %#ok<NASGU> 

Plot the channel estimate signal through the preprocessing steps. Images are scaled to help
visualization.

plotPreprocessingSteps(Hmean(:,:,1),Hdft2,Htemp,Htrunc,nSub,nTx, ...
  maxDelay)

Prepare Data in Bulk

The helperCSINetTrainingData helper function generates numTrainingChEst of preprocessed
Ndelay Ntx 2  channel estimates by using the process described in this section. The function saves

14 Wireless Comm Examples

14-26



each Ndelay Ntx 2  channel estimate as an individual file in the dataDir with the prefix of
trainingDataFilePrefix. If Parallel Computing Toolbox™ is available,
helperCSINetTrainingData function uses parfor to parallelize data generation. Data generation
takes less than three minutes on a PC with Intel® Xeon® W-2133 CPU @ 3.60GHz and running in
parallel on six workers.

dataDir = fullfile(exRoot(),"Data");
trainingDataFilePrefix = "nr_channel_est";
if validateTrainingFiles(dataDir,trainingDataFilePrefix, ...
    numTrainingChEst,autoEncOpt,channel,carrier) == false
  disp("Starting training data generation")
  tic
  autoEncOpt.Normalization = false;  % Do not normalize data yet
  
  helperCSINetTrainingData(dataDir,trainingDataFilePrefix, ...
    numTrainingChEst,carrier,channel,autoEncOpt);
  t = seconds(toc);
  t.Format = "hh:mm:ss";
  disp(string(t) + " - Finished training data generation")
end

Starting training data generation

6 workers running
00:00:12 -  8% Completed
00:00:23 - 16% Completed
00:00:35 - 24% Completed
00:00:46 - 32% Completed
00:00:58 - 40% Completed
00:01:09 - 48% Completed
00:01:21 - 56% Completed
00:01:32 - 64% Completed
00:01:44 - 72% Completed
00:01:56 - 80% Completed
00:02:07 - 88% Completed
00:02:19 - 96% Completed

00:02:26 - Finished training data generation

Create a signalDatastore (Signal Processing Toolbox) object to access the data. The signal
datastore uses individual files for each data point.

sds = signalDatastore( ...
  fullfile(dataDir,"processed",trainingDataFilePrefix+"_*"));

Load data into memory, calculate the mean value and standard deviation, and then use the mean and
standard deviation values to normalize the data.

HtruncRealCell = readall(sds);
HtruncReal = cat(4,HtruncRealCell{:});
meanVal = mean(HtruncReal,'all')

meanVal = single
    -0.0236

stdVal = std(HtruncReal,[],'all')

stdVal = single
    16.0657

 CSI Feedback with Autoencoders

14-27

https://www.mathworks.com/products/parallel-computing.html


Separate the data into training, validation, and test sets. Also, normalize the data to achieve zero
mean and a target standard deviation of 0.0212, which restricts most of the data to the range of [-0.5
0.5].

N = size(HtruncReal, 4);
numTrain = floor(N*10/15)

numTrain = 10000

numVal = floor(N*3/15)

numVal = 3000

numTest = floor(N*2/15)

numTest = 2000

targetStd = 0.0212;
HTReal = (HtruncReal(:,:,:,1:numTrain)-meanVal) ...
  /stdVal*targetStd+0.5;
HVReal = (HtruncReal(:,:,:,numTrain+(1:numVal))-meanVal) ...
  /stdVal*targetStd+0.5;
HTestReal = (HtruncReal(:,:,:,numTrain+numVal+(1:numTest))-meanVal) ...
  /stdVal*targetStd+0.5;
autoEncOpt.MeanVal = meanVal;
autoEncOpt.StdValue = stdVal;
autoEncOpt.TargetSTDValue = targetStd; %#ok<STRNU> 

Define and Train Neural Network Model

The second step of designing an AI-based system is to define and train the neural network model.

Define Neural Network

This example uses a modified version of the autoencoder neural network proposed in [1 on page 14-
48].

inputSize = [maxDelay nTx 2];  % Third dimension is real and imaginary parts
nLinear = prod(inputSize);
nEncoded = 64;

autoencoderLGraph = layerGraph([ ...
    % Encoder
    imageInputLayer(inputSize,"Name","Htrunc", ...
      "Normalization","none","Name","Enc_Input")

    convolution2dLayer([3 3],2,"Padding","same","Name","Enc_Conv")
    batchNormalizationLayer("Epsilon",0.001,"MeanDecay",0.99, ...
      "VarianceDecay",0.99,"Name","Enc_BN")
    leakyReluLayer(0.3,"Name","Enc_leakyRelu")

    flattenLayer("Name","Enc_flatten")

    fullyConnectedLayer(nEncoded,"Name","Enc_FC")

    sigmoidLayer("Name","Enc_Sigmoid")

    % Decoder
    fullyConnectedLayer(nLinear,"Name","Dec_FC")

14 Wireless Comm Examples

14-28



    functionLayer(@(x)dlarray(reshape(x,maxDelay,nTx,2,[]),'SSCB'), ...
      "Formattable",true,"Acceleratable",true,"Name","Dec_Reshape")
    ]);

autoencoderLGraph = ...
  helperCSINetAddResidualLayers(autoencoderLGraph, "Dec_Reshape");

autoencoderLGraph = addLayers(autoencoderLGraph, ...
    [convolution2dLayer([3 3],2,"Padding","same","Name","Dec_Conv") ...
    sigmoidLayer("Name","Dec_Sigmoid") ...
    regressionLayer("Name","Dec_Output")]);
autoencoderLGraph = ...
  connectLayers(autoencoderLGraph,"leakyRelu_2_3","Dec_Conv");

figure
plot(autoencoderLGraph)
title('CSI Compression Autoencoder')

 CSI Feedback with Autoencoders

14-29



Train Neural Network

Set the training options for the autoencoder neural network and train the network using the
trainNetwork function. Training takes less than 15 minutes on an AMD EPYC 7262 3.2 GHz 8C/16T
with 8 NVIDIA RTX A5000 GPUs with ExecutionEnvironment set to 'multi-gpu'. Set trainNow
to false to load the pretrained network. Note that the saved network works for the following
settings. If you change any of these settings, set trainNow to true.

txAntennaSize = [2 2 2 1 1]; % rows, columns, polarizations, panels
rxAntennaSize = [2 1 1 1 1]; % rows, columns, polarizations, panels
rmsDelaySpread = 300e-9;     % s
maxDoppler = 5;              % Hz
nSizeGrid = 52;              % Number resource blocks (RB)
                             % 12 subcarriers per RB
subcarrierSpacing = 15; 

trainNow = ;

miniBatchSize = 1000;
options = trainingOptions("adam", ...
    InitialLearnRate=0.0074, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=112, ...
    LearnRateDropFactor=0.6085, ...
    Epsilon=1e-7, ...
    MaxEpochs=1000, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    ValidationData={HVReal,HVReal}, ...
    ValidationFrequency=20, ...
    Verbose=false, ...
    ValidationPatience=20, ...
    OutputNetwork="best-validation-loss", ...
    ExecutionEnvironment="auto", ...
    Plots='training-progress') %#ok<NASGU> 

options = 
  TrainingOptionsADAM with properties:

             GradientDecayFactor: 0.9000
      SquaredGradientDecayFactor: 0.9990
                         Epsilon: 1.0000e-07
                InitialLearnRate: 0.0074
               LearnRateSchedule: 'piecewise'
             LearnRateDropFactor: 0.6085
             LearnRateDropPeriod: 112
                L2Regularization: 1.0000e-04
         GradientThresholdMethod: 'l2norm'
               GradientThreshold: Inf
                       MaxEpochs: 1000
                   MiniBatchSize: 1000
                         Verbose: 0
                VerboseFrequency: 50
                  ValidationData: {[28×8×2×3000 single]  [28×8×2×3000 single]}
             ValidationFrequency: 20
              ValidationPatience: 20
                         Shuffle: 'every-epoch'

14 Wireless Comm Examples

14-30



                  CheckpointPath: ''
             CheckpointFrequency: 1
         CheckpointFrequencyUnit: 'epoch'
            ExecutionEnvironment: 'auto'
                      WorkerLoad: []
                       OutputFcn: []
                           Plots: 'training-progress'
                  SequenceLength: 'longest'
            SequencePaddingValue: 0
        SequencePaddingDirection: 'right'
            DispatchInBackground: 0
         ResetInputNormalization: 1
    BatchNormalizationStatistics: 'population'
                   OutputNetwork: 'best-validation-loss'

if trainNow
  [net,trainInfo] = ...
    trainNetwork(HTReal,HTReal,autoencoderLGraph,options); %#ok<UNRCH> 
  save("csiTrainedNetwork_" ...
    + string(datetime("now","Format","dd_MM_HH_mm")), ...
    'net','trainInfo','options','autoEncOpt')
else
  helperCSINetDownloadData()
  autoEncOptCached = autoEncOpt;
  load("csiTrainedNetwork",'net','trainInfo','options','autoEncOpt')
  if autoEncOpt.NumSubcarriers ~= autoEncOptCached.NumSubcarriers ...
      || autoEncOpt.NumSymbols ~= autoEncOptCached.NumSymbols ...
      || autoEncOpt.NumTxAntennas ~= autoEncOptCached.NumTxAntennas ...
      || autoEncOpt.NumRxAntennas ~= autoEncOptCached.NumRxAntennas ...
      || autoEncOpt.MaxDelay ~= autoEncOptCached.MaxDelay
    error("CSIExample:Missmatch", ...
      "Saved network does not match settings. Set trainNow to true.")
  end
end

Files already exist. Skipping download and extract.

Test Trained Network

Use the predict function to process the test data.

HTestRealHat = predict(net,HTestReal);

Calculate the correlation and normalized mean squared error (NMSE) between the input and output
of the autoencoder network. The correlation is defined as

ρ = E 1
N ∑

n = 1

N |hn
Hhn|

‖hn‖2‖hn‖2

where hn is the channel estimate at the input of the autoencoder and hn is the channel estimate at the
output of the autoencoder. NMSE is defined as

NMSE = E
‖H − H‖2

2

‖H‖2
2

 CSI Feedback with Autoencoders

14-31



where H is the channel estimate at the input of the autoencoder and H is the channel estimate at the
output of the autoencoder.

rho = zeros(numTest,1);
nmse = zeros(numTest,1);
for n=1:numTest
    in = HTestReal(:,:,1,n) + 1i*(HTestReal(:,:,2,n));
    out = HTestRealHat(:,:,1,n) + 1i*(HTestRealHat(:,:,2,n));

    % Calculate correlation
    n1 = sqrt(sum(conj(in).*in,'all'));
    n2 = sqrt(sum(conj(out).*out,'all'));
    aa = abs(sum(conj(in).*out,'all'));
    rho(n) = aa / (n1*n2);

    % Calculate NMSE
    mse = mean(abs(in-out).^2,'all');
    nmse(n) = 10*log10(mse / mean(abs(in).^2,'all'));
end

figure
tiledlayout(2,1)
nexttile
histogram(rho,"Normalization","probability")
grid on
title(sprintf("Autoencoder Correlation (Mean \\rho = %1.5f)", ...
  mean(rho)))
xlabel("\rho"); ylabel("PDF")
nexttile
histogram(nmse,"Normalization","probability")
grid on
title(sprintf("Autoencoder NMSE (Mean NMSE = %1.2f dB)",mean(nmse)))
xlabel("NMSE (dB)"); ylabel("PDF")

14 Wireless Comm Examples

14-32



End-to-End CSI Feedback System

This figure shows the end-to-end processing of channel estimates for CSI feedback. The UE uses the
CSI-RS signal to estimate the channel response for one slot, Hest. The preprocessed channel estimate,
Htr, is encoded by using the encoder portion of the autoencoder to produce a 1-by-Nenc compressed
array. The compressed array is decompressed by the decoder portion of the autoencoder to obtain
Htr. Postprocessing Htr produces Hest.

 CSI Feedback with Autoencoders

14-33



To obtain the encoded array, split the autoencoder into two parts: the encoder network and the
decoder network.

[encNet,decNet] = helperCSINetSplitEncoderDecoder(net,"Enc_Sigmoid");
plotNetwork(net,encNet,decNet)

14 Wireless Comm Examples

14-34



Generate channel estimates.

nSlots = 100;
Hest = helperCSINetChannelEstimate(nSlots,carrier,channel);

Encode and decode the channel estimates with Normalization set to true.

autoEncOpt.Normalization = true;
codeword = helperCSINetEncode(encNet, Hest, autoEncOpt);
Hhat = helperCSINetDecode(decNet, codeword, autoEncOpt);

Calculate the correlation and NMSE for the end-to-end CSI feedback system.

 CSI Feedback with Autoencoders

14-35



H = squeeze(mean(Hest,2));
rhoE2E = zeros(nRx,nSlots);
nmseE2E = zeros(nRx,nSlots);
for rx=1:nRx
    for n=1:nSlots
        out = Hhat(:,rx,:,n);
        in = H(:,rx,:,n);
        rhoE2E(rx,n) = helperCSINetCorrelation(in,out);
        nmseE2E(rx,n) = helperNMSE(in,out);
    end
end
figure
tiledlayout(2,1)
nexttile
histogram(rhoE2E,"Normalization","probability")
grid on
title(sprintf("End-to-End Correlation (Mean \\rho = %1.5f)", ...
  mean(rhoE2E,'all')))
xlabel("\rho"); ylabel("PDF")
nexttile
histogram(nmseE2E,"Normalization","probability")
grid on
title(sprintf("End-to-End NMSE (Mean NMSE = %1.2f dB)", ...
  mean(nmseE2E,'all')))
xlabel("NMSE (dB)"); ylabel("PDF")

14 Wireless Comm Examples

14-36



Effect of Quantized Codewords

Practical systems require quantizing the encoded codeword by using a small number of bits. Simulate
the effect of quantization across the range of [2, 10] bits. The results show that 6-bits is enough to
closely approximate the single-precision performance.

 CSI Feedback with Autoencoders

14-37



maxVal = 1;
minVal = -1;
idxBits = 1;
nBitsVec = 2:10;
rhoQ = zeros(nRx,nSlots,length(nBitsVec));
nmseQ = zeros(nRx,nSlots,length(nBitsVec));
for numBits = nBitsVec
    disp("Running for " + numBits + " bit quantization")

    % Quantize between 0:2^n-1 to get bits
    qCodeword = uencode(double(codeword*2-1), numBits);

    % Get back the floating point, quantized numbers
    codewordRx = (single(udecode(qCodeword,numBits))+1)/2;
    Hhat = helperCSINetDecode(decNet, codewordRx, autoEncOpt);
    H = squeeze(mean(Hest,2));
    for rx=1:nRx
        for n=1:nSlots
            out = Hhat(:,rx,:,n);
            in = H(:,rx,:,n);
            rhoQ(rx,n,idxBits) = helperCSINetCorrelation(in,out);
            nmseQ(rx,n,idxBits) = helperNMSE(in,out);
        end
    end
    idxBits = idxBits + 1;
end

Running for 2 bit quantization
Running for 3 bit quantization
Running for 4 bit quantization
Running for 5 bit quantization
Running for 6 bit quantization
Running for 7 bit quantization
Running for 8 bit quantization

14 Wireless Comm Examples

14-38



Running for 9 bit quantization
Running for 10 bit quantization

figure
tiledlayout(2,1)
nexttile
plot(nBitsVec,squeeze(mean(rhoQ,[1 2])),'*-')
title("Correlation (Codeword-" + size(codeword,3) + ")")
xlabel("Number of Quantization Bits"); ylabel("\rho")
grid on
nexttile
plot(nBitsVec,squeeze(mean(nmseQ,[1 2])),'*-')
title("NMSE (Codeword-" + size(codeword,3) + ")")
xlabel("Number of Quantization Bits"); ylabel("NMSE (dB)")
grid on

Further Exploration

The autoencoder is able to compress a [624 8] single-precision complex channel estimate array into a
[64 1] single-precision array with a mean correlation factor of 0.99 and an NMSE of –16 dB. Using 6-

 CSI Feedback with Autoencoders

14-39



bit quantization requires only 384 bits of CSI feedback data, which equates to a compression ratio of
approximately 800:1.

display("Compression ratio is " + (624*8*32*2)/(64*6) + ":" + 1)

    "Compression ratio is 832:1"

Investigate the effect of truncationFactor on the system performance. Vary the 5G system
parameters, channel parameters, and number of encoded symbols and then find the optimum values
for the defined channel.

The “NR PDSCH Throughput Using Channel State Information Feedback” (5G Toolbox) example
shows how to use channel state information (CSI) feedback to adjust the physical downlink shared
channel (PDSCH) parameters and measure throughput. Replace the CSI feedback algorithm with the
CSI compression autoencoder and compare performance.

Helper Functions

Explore the helper functions to see the detailed implementation of the system.

Training Data Generation

helperCSINetChannelEstimate

helperCSINetTrainingData

Network Definition and Manipulation

helperCSINetLayerGraph

helperCSINetAddResidualLayers

helperCSINetSplitEncoderDecoder

CSI Processing

helperCSINetPreprocessChannelEstimate

helperCSINetPostprocessChannelEstimate

helperCSINetEncode

helperCSINetDecode

Performance Measurement

helperCSINetCorrelation

helperNMSE

Appendix: Optimize Hyperparameters with Experiment Manager

Use the Experiment Manager app to find the optimal parameters. CSITrainingProject.mlproj is
a preconfigured project. Extract the project.

if ~exist("CSITrainingProject","dir")
  projRoot = helperCSINetExtractProject();

14 Wireless Comm Examples

14-40



else
  projRoot = fullfile(exRoot(),"CSITrainingProject");
end

To open the project, start the Experiment Manager app and open the following file.

disp(fullfile(".","CSITrainingProject","CSITrainingProject.prj"))

.\CSITrainingProject\CSITrainingProject.prj

The Optimize Hyperparameters experiment uses Bayesian optimization with hyperparameter search
ranges specified as in the following figure. The experiment setup function is CSIAutoEncNN_setup.
The custom metric function is NMSE.

 CSI Feedback with Autoencoders

14-41



14 Wireless Comm Examples

14-42



The optimal parameters are 0.0074 for initial learning rate, 112 iterations for the learning rate drop
period, and 0.6085 for learning rate drop factor. After finding the optimal hyperparameters, train the
network with same parameters multiple times to find the best trained network. Increase the
maximum iterations by a factor of two.

 CSI Feedback with Autoencoders

14-43



14 Wireless Comm Examples

14-44



The sixth trial produced the best NMSE. This example uses this trained network as the saved
network.

Configuring Batch Mode

When execution Mode is set to Batch Sequential or Batch Simultaneous, training data must
be accessible to the workers in a location defined by the dataDir variable in the Prepare Data in
Bulk section. Set dataDir to a network location that is accessible by the workers. For more
information, see “Offload Experiments as Batch Jobs to Cluster” on page 6-21.

Local Functions
function plotChannelResponse(Hest)
%plotChannelResponse Plot channel response

figure
tiledlayout(2,2)
nexttile
waterfall(abs(Hest(:,:,1,1))')
xlabel("Subcarriers"); 
ylabel("Symbols"); 
zlabel("Channel Magnitude")
view(15,30)
colormap("cool")
title("Rx=1, Tx=1")
nexttile
plot(squeeze(abs(Hest(:,1,:,1))))
grid on
xlabel("Subcarriers"); 
ylabel("Channel Magnitude")
legend("Rx 1", "Rx 2")
title("Symbol=1, Tx=1")
nexttile
waterfall(squeeze(abs(Hest(:,1,1,:)))')
view(-45,75)
grid on
xlabel("Subcarriers"); 
ylabel("Tx"); 
zlabel("Channel Magnitude")
title("Symbol=1, Rx=1")
nexttile
nSubCarriers = size(Hest,1);
subCarrier = randi(nSubCarriers);
plot(squeeze(abs(Hest(subCarrier,1,:,:)))')
grid on
xlabel("Tx"); 
ylabel("Channel Magnitude")
legend("Rx 1", "Rx 2")
title("Subcarrier=" + subCarrier + ", Symbol=1")

 CSI Feedback with Autoencoders

14-45



end

function valid = validateTrainingFiles(dataDir,filePrefix,expN, ...
  opt,channel,carrier)
%validateTrainingFiles Validate training data files
%   V = validateTrainingFiles(DIR,PRE,N,OPT,CH,CR) checks the DIR directory
%   for training data files with a prefix of PRE. It checks if there are
%   N*OPT.NumRxAntennas files, channel configuration is same as CH, and
%   carrier configuration is same as CR.

valid = true;
files = dir(fullfile(dataDir,filePrefix+"*"));
if isempty(files)
  valid = false;
  return
end
if exist(fullfile(dataDir,"info.mat"),"file")
  infoStr = load(fullfile(dataDir,"info.mat"));
  if ~isequal(get(infoStr.channel),get(channel)) ...
      || ~isequal(infoStr.carrier,carrier)
    valid = false;
  end
else
  valid = false;
end
if valid
  valid = (expN == (length(files)*opt.NumRxAntennas));
  % Check size of Hest in the files
  load(fullfile(files(1).folder,files(1).name),'H')
  if ~isequal(size(H),[opt.NumSubcarriers opt.NumSymbols ...
      opt.NumRxAntennas opt.NumTxAntennas])
    valid = false;
  end
end
if ~valid
  disp("Removing invalid data directory: " + files(1).folder)
  rmdir(files(1).folder,'s')
end
end

function plotNetwork(net,encNet,decNet)
%plotNetwork Plot autoencoder network
%   plotNetwork(NET,ENC,DEC) plots the full autoencoder network together
%   with encoder and decoder networks.
fig = figure;
t1 = tiledlayout(1,2,'TileSpacing','Compact');
t2 = tiledlayout(t1,1,1,'TileSpacing','Tight');
t3 = tiledlayout(t1,2,1,'TileSpacing','Tight');
t3.Layout.Tile = 2;
nexttile(t2)
plot(net)
title("Autoencoder")
nexttile(t3)
plot(encNet)
title("Encoder")
nexttile(t3)
plot(decNet)
title("Decoder")

14 Wireless Comm Examples

14-46



pos = fig.Position;
pos(3) = pos(3) + 200;
pos(4) = pos(4) + 300;
pos(2) = pos(2) - 300;
fig.Position = pos;
end

function plotPreprocessingSteps(Hmean,Hdft2,Htemp,Htrunc, ...
  nSub,nTx,maxDelay)
%plotPreprocessingSteps Plot preprocessing workflow

hfig = figure;
hfig.Position(3) = hfig.Position(3)*2;
subplot(2,5,[1 6])
himg = imagesc(abs(Hmean)); 
himg.Parent.YDir = "normal"; 
himg.Parent.Position(3) = 0.05; 
himg.Parent.XTick=''; himg.Parent.YTick=''; 
xlabel(sprintf('Tx\nAntennas\n(%d)',nTx)); 
ylabel(sprintf('Subcarriers\n(%d)',nSub'));
title("Measured")
subplot(2,5,[2 7])
himg = image(abs(Hdft2)); 
himg.Parent.YDir = "normal"; 
himg.Parent.Position(3) = 0.05; 
himg.Parent.XTick=''; himg.Parent.YTick=''; 
title("2-D DFT")
xlabel(sprintf('Tx\nAngle\n(%d)',nTx)); 
ylabel(sprintf('Delay Samples\n(%d)',nSub'));
subplot(2,5,[3 8])
himg = image(abs(Htemp)); 
himg.Parent.YDir = "normal"; 
himg.Parent.Position(3) = 0.05; 
himg.Parent.Position(4) = himg.Parent.Position(4)*10*maxDelay/nSub; 
himg.Parent.Position(2) = (1 - himg.Parent.Position(4)) / 2;
himg.Parent.XTick=''; himg.Parent.YTick=''; 
xlabel(sprintf('Tx\nAngle\n(%d)',nTx)); 
ylabel(sprintf('Delay Samples\n(%d)',maxDelay'));
title("Truncated")
subplot(2,5,[4 9])
himg = imagesc(abs(Htrunc)); 
himg.Parent.YDir = "normal"; 
himg.Parent.Position(3) = 0.05; 
himg.Parent.Position(4) = himg.Parent.Position(4)*10*maxDelay/nSub; 
himg.Parent.Position(2) = (1 - himg.Parent.Position(4)) / 2;
himg.Parent.XTick=''; himg.Parent.YTick=''; 
xlabel(sprintf('Tx\nAntennas\n(%d)',nTx)); 
ylabel(sprintf('Subcarriers\n(%d)',maxDelay'));
title("2-D IDFT")
subplot(2,5,5)
himg = imagesc(real(Htrunc)); 
himg.Parent.YDir = "normal"; 
himg.Parent.Position(3) = 0.05; 
himg.Parent.Position(4) = himg.Parent.Position(4)*10*maxDelay/nSub; 
himg.Parent.Position(2) = himg.Parent.Position(2) + 0.18;
himg.Parent.XTick=''; himg.Parent.YTick=''; 
xlabel(sprintf('Tx\nAntennas\n(%d)',nTx)); 
ylabel(sprintf('Subcarriers\n(%d)',maxDelay'));

 CSI Feedback with Autoencoders

14-47



title("Real")
subplot(2,5,10)
himg = imagesc(imag(Htrunc)); 
himg.Parent.YDir = "normal"; 
himg.Parent.Position(3) = 0.05; 
himg.Parent.Position(4) = himg.Parent.Position(4)*10*maxDelay/nSub; 
himg.Parent.Position(2) = himg.Parent.Position(2) + 0.18;
himg.Parent.XTick=''; himg.Parent.YTick=''; 
xlabel(sprintf('Tx\nAntennas\n(%d)',nTx)); 
ylabel(sprintf('Subcarriers\n(%d)',maxDelay'));
title("Imaginary")
end

function rootDir = exRoot()
%exRoot Example root directory
rootDir = fileparts(which("helperCSINetLayerGraph"));
end

References

[1] Wen, Chao-Kai, Wan-Ting Shih, and Shi Jin. “Deep Learning for Massive MIMO CSI Feedback.”
IEEE Wireless Communications Letters 7, no. 5 (October 2018): 748–51. https://doi.org/10.1109/
LWC.2018.2818160.

[2] Zimaglia, Elisa, Daniel G. Riviello, Roberto Garello, and Roberto Fantini. “A Novel Deep Learning
Approach to CSI Feedback Reporting for NR 5G Cellular Systems.” In 2020 IEEE Microwave Theory
and Techniques in Wireless Communications (MTTW), 47–52. Riga, Latvia: IEEE, 2020. https://
doi.org/10.1109/MTTW51045.2020.9245055.

See Also

More About
• “Deep Learning in MATLAB” on page 1-2

14 Wireless Comm Examples

14-48



Modulation Classification by Using FPGA

This example shows how to deploy a pretrained convolutional neural network (CNN) for modulation
classification to the Xilinx™ Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit. The pretrained
network is trained by using generated synthetic, channel-impaired waveforms. To train the
trainedNet network, see “Modulation Classification with Deep Learning” on page 14-150.

Prerequisites

• Deep Learning Toolbox™
• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
• Communications Toolbox™
• Xilinx™ Zynq® UltraScale+™ MPSoC ZCU102 Evaluation Kit

Predict Modulation Type by Using CNN

The trained CNN in this example recognizes these eight digital and three analog modulation types:

• Binary phase shift keying (BPSK)
• Quadrature phase shift keying (QPSK)
• 8-ary phase shift keying (8-PSK)
• 16-ary quadrature amplitude modulation (16-QAM)
• 64-ary quadrature amplitude modulation (64-QAM)
• 4-ary pulse amplitude modulation (PAM4)
• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast FM (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

modulationTypes = categorical(["BPSK", "QPSK", "8PSK", ...
  "16QAM", "64QAM", "PAM4", "GFSK", "CPFSK", ...
  "B-FM", "DSB-AM", "SSB-AM"]);

Load the trained network.

load trainedModulationClassificationNetwork
trainedNet

trainedNet = 
  SeriesNetwork with properties:

         Layers: [28×1 nnet.cnn.layer.Layer]
     InputNames: {'Input Layer'}
    OutputNames: {'Output'}

The trained CNN takes 1024 channel-impaired samples and predicts the modulation type of each
frame. Generate several PAM4 frames that have Rician multipath fading, center frequency and

 Modulation Classification by Using FPGA

14-49



sampling time drift, and AWGN. To generate synthetic signals to test the CNN, use the following
functions. Then use the CNN to predict the modulation type of the frames.

• randi: Generate random bits
• pammod (Communications Toolbox) (Communications Toolbox) PAM4-modulate the bits
• rcosdesign (Signal Processing Toolbox) (Signal Processing Toolbox): Design a square-root raised

cosine pulse shaping filter
• filter: Pulse shape the symbols
• comm.RicianChannel (Communications Toolbox) (Communications Toolbox): Apply Rician

multipath channel
• comm.PhaseFrequencyOffset (Communications Toolbox) (Communications Toolbox): Apply

phase and frequency shift due to clock offset
• interp1: Apply timing drift due to clock offset
• awgn (Communications Toolbox) (Communications Toolbox): Add AWGN

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(123456)
% Random bits
d = randi([0 3], 1024, 1);
% PAM4 modulation
syms = pammod(d,4);
% Square-root raised cosine filter
filterCoeffs = rcosdesign(0.35,4,8);
tx = filter(filterCoeffs,1,upsample(syms,8));

% Channel
SNR = 30;
maxOffset = 5;
fc = 902e6;
fs = 200e3;
multipathChannel = comm.RicianChannel(...
    'SampleRate', fs, ...
    'PathDelays', [0 1.8 3.4] / 200e3, ...
    'AveragePathGains', [0 -2 -10], ...
    'KFactor', 4, ...
    'MaximumDopplerShift', 4);

frequencyShifter = comm.PhaseFrequencyOffset(...
    'SampleRate', fs);

% Apply an independent multipath channel
reset(multipathChannel)
outMultipathChan = multipathChannel(tx);

% Determine clock offset factor
clockOffset = (rand() * 2*maxOffset) - maxOffset;
C = 1 + clockOffset / 1e6;

% Add frequency offset
frequencyShifter.FrequencyOffset = -(C-1)*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift

14 Wireless Comm Examples

14-50



t = (0:length(tx)-1)' / fs;
newFs = fs * C;
tp = (0:length(tx)-1)' / newFs;
outTimeDrift = interp1(t, outFreqShifter, tp);

% Add noise
rx = awgn(outTimeDrift,SNR,0);

% Frame generation for classification
unknownFrames = helperModClassGetNNFrames(rx);

% Classification
[prediction1,score1] = classify(trainedNet,unknownFrames);

Return the classifier predictions, which are analogous to hard decisions. The network correctly
identifies the frames as PAM4 frames. For details on the generation of the modulated signals, see the
helperModClassGetModulator function.

The classifier also returns a vector of scores for each frame. The score corresponds to the probability
that each frame has the predicted modulation type. Plot the scores.

helperModClassPlotScores(score1,modulationTypes)

Waveform Generation for Training

Generate 10,000 frames for each modulation type, where 80% of the frames are used for training,
10% are used for validation and 10% are used for testing. Use the training and validation frames

 Modulation Classification by Using FPGA

14-51



during the network training phase. You obtain the final classification accuracy by using test frames.
Each frame is 1024 samples long and has a sample rate of 200 kHz. For digital modulation types,
eight samples represent a symbol. The network makes each decision based on single frames rather
than on multiple consecutive frames (as in video). Assume a center frequency of 902 MHz and 100
MHz for the digital and analog modulation types, respectively.

numFramesPerModType = 10000;
percentTrainingSamples = 80;
percentValidationSamples = 10;
percentTestSamples = 10;

sps = 8;                % Samples per symbol
spf = 1024;             % Samples per frame
symbolsPerFrame = spf / sps;
fs = 200e3;             % Sample rate
fc = [902e6 100e6];     % Center frequencies

Create Channel Impairments

Pass each frame through a channel by using:

• AWGN
• Rician multipath fading
• Clock offset, resulting in center frequency offset and sampling time drift

Because the network in this example makes decisions based on single frames, each frame must pass
through an independent channel AWGN.

The channel adds AWGN by using an SNR of 30 dB. Implement the channel by using the awgn
(Communications Toolbox) (Communications Toolbox) function.

Rician Multipath

The channel passes the signals through a Rician multipath fading channel by using the
comm.RicianChannel (Communications Toolbox) (Communications Toolbox) System object. Assume
a delay profile of [0 1.8 3.4] samples that have corresponding average path gains of [0 -2 -10] dB. The
K-factor is 4 and the maximum Doppler shift is 4 Hz, which is equivalent to a walking speed at 902
MHz. Implement the channel by using the following settings.

Clock Offset

Clock offset occurs because of the inaccuracies of internal clock sources of transmitters and
receivers. Clock offset causes the center frequency, which is used to downconvert the signal to
baseband, and the digital-to-analog converter sampling rate to differ from theoretical values. The
channel simulator uses the clock offset factor C, expressed as C=1+Δclock106, where Δclock is the
clock offset. For each frame, the channel generates a random Δclock value from a uniformly
distributed set of values in the range [−maxΔclock maxΔclock], where maxΔclock is the maximum
clock offset. Clock offset is measured in parts per million (ppm). For this example, assume a maximum
clock offset of 5 ppm.

maxDeltaOff = 5;
deltaOff = (rand()*2*maxDeltaOff) - maxDeltaOff;
C = 1 + (deltaOff/1e6);

Frequency Offset

14 Wireless Comm Examples

14-52



Subject each frame to a frequency offset based on clock offset factor C and the center frequency.
Implement the channel by using the comm.PhaseFrequencyOffset (Communications Toolbox)
(Communications Toolbox).

Sampling Rate Offset

Subject each frame to a sampling rate offset based on clock offset factor C. Implement the channel by
using the interp1 function to resample the frame at the new rate of C×fs.

Combined Channel

To apply all three channel impairments to the frames, use the helperModClassTestChannel object.

channel = helperModClassTestChannel(...
  'SampleRate', fs, ...
  'SNR', SNR, ...
  'PathDelays', [0 1.8 3.4] / fs, ...
  'AveragePathGains', [0 -2 -10], ...
  'KFactor', 4, ...
  'MaximumDopplerShift', 4, ...
  'MaximumClockOffset', 5, ...
  'CenterFrequency', 902e6)

channel = 
  helperModClassTestChannel with properties:

                    SNR: 30
        CenterFrequency: 902000000
             SampleRate: 200000
             PathDelays: [0 9.0000e-06 1.7000e-05]
       AveragePathGains: [0 -2 -10]
                KFactor: 4
    MaximumDopplerShift: 4
     MaximumClockOffset: 5

You can view basic information about the channel by using the info object function.

chInfo = info(channel)

chInfo = struct with fields:
               ChannelDelay: 6
     MaximumFrequencyOffset: 4510
    MaximumSampleRateOffset: 1

Waveform Generation

Create a loop that generates channel-impaired frames for each modulation type and stores the frames
with their corresponding labels in MAT files. By saving the data into files, you do not have to
eliminate the need to generate the data every time you run this example. You can also share the data
more effectively.

Remove a random number of samples from the beginning of each frame to remove transients and to
make sure that the frames have a random starting point with respect to the symbol boundaries.

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run

 Modulation Classification by Using FPGA

14-53



rng(1235)
tic

numModulationTypes = length(modulationTypes);

channelInfo = info(channel);
transDelay = 50;
dataDirectory = fullfile(tempdir,"ModClassDataFiles");
disp("Data file directory is " + dataDirectory);

fileNameRoot = "frame";

% Check if data files exist
dataFilesExist = false;
if exist(dataDirectory,'dir')
  files = dir(fullfile(dataDirectory,sprintf("%s*",fileNameRoot)));
  if length(files) == numModulationTypes*numFramesPerModType
    dataFilesExist = true;
  end
end

if ~dataFilesExist
  disp("Generating data and saving in data files...")
  [success,msg,msgID] = mkdir(dataDirectory);
  if ~success
    error(msgID,msg)
  end
  for modType = 1:numModulationTypes
    elapsedTime = seconds(toc);
    elapsedTime.Format = 'hh:mm:ss';
    fprintf('%s - Generating %s frames\n', ...
      elapsedTime, modulationTypes(modType))
    
    label = modulationTypes(modType);
    numSymbols = (numFramesPerModType / sps);
    dataSrc = helperModClassGetSource(modulationTypes(modType), sps, 2*spf, fs);
    modulator = helperModClassGetModulator(modulationTypes(modType), sps, fs);
    if contains(char(modulationTypes(modType)), {'B-FM','DSB-AM','SSB-AM'})
      % Analog modulation types use a center frequency of 100 MHz
      channel.CenterFrequency = 100e6;
    else
      % Digital modulation types use a center frequency of 902 MHz
      channel.CenterFrequency = 902e6;
    end
    
    for p=1:numFramesPerModType
      % Generate random data
      x = dataSrc();
      
      % Modulate
      y = modulator(x);
      
      % Pass through independent channels
      rxSamples = channel(y);
      
      % Remove transients from the beginning, trim to size, and normalize
      frame = helperModClassFrameGenerator(rxSamples, spf, spf, transDelay, sps);
      

14 Wireless Comm Examples

14-54



      % Save data file
      fileName = fullfile(dataDirectory,...
        sprintf("%s%s%03d",fileNameRoot,modulationTypes(modType),p));
      save(fileName,"frame","label")
    end
  end
else
  disp("Data files exist. Skip data generation.")
end

Data files exist. Skip data generation.

% Plot the amplitude of the real and imaginary parts of the example frames
% against the sample number
helperModClassPlotTimeDomain(dataDirectory,modulationTypes,fs)

% Plot the spectrogram of the example frames
helperModClassPlotSpectrogram(dataDirectory,modulationTypes,fs,sps)

 Modulation Classification by Using FPGA

14-55



Create a Datastore

To manage the files that contain the generated complex waveforms, use a signalDatastore object.
Datastores are especially useful when each individual file fits in memory, but the entire collection
does not necessarily fit.

frameDS = signalDatastore(dataDirectory,'SignalVariableNames',["frame","label"]);

Transform Complex Signals to Real Arrays

The deep learning network in this example looks for real inputs while the received signal has complex
baseband samples. Transform the complex signals into real-valued 4-D arrays. The output frames
have size 1-by-spf-by-2-by-N, where the first page (3rd dimension) is in-phase samples and the second
page is quadrature samples. When the convolutional filters are of size 1-by-spf, this approach ensures
that the information in the I and Q is mixed even in the convolutional layers and makes better use of
the phase information. See helperModClassIQAsPages.

frameDSTrans = transform(frameDS,@helperModClassIQAsPages);

Split into Training, Validation, and Test

Divide the frames into training, validation, and test data. See helperModClassSplitData.

splitPercentages = [percentTrainingSamples,percentValidationSamples,percentTestSamples];
[trainDSTrans,validDSTrans,testDSTrans] = helperModClassSplitData(frameDSTrans,splitPercentages);

Import Data Into Memory

14 Wireless Comm Examples

14-56



Neural network training is iterative. At every iteration, the datastore reads data from files and
transforms the data before updating the network coefficients. If the data fits into the memory of your
computer, importing the data from the files into the memory enables faster training by eliminating
this repeated read from file and transform process. Instead, the data is read from the files and
transformed once. Training this network using data files on disk takes about 110 minutes while
training using in-memory data takes about 50 minutes.

Import the data in the files into memory. The files have two variables: frame and label. Each read
call to the datastore returns a cell array, where the first element is the frame and the second element
is the label. To read frames and labels, use the transform functions helperModClassReadFrame
and helperModClassReadLabel. Use readall with the "UseParallel" option set to true to enable
parallel processing of the transform functions, if you have Parallel Computing Toolbox license.
Because the readall function, by default, concatenates the output of the read function over the first
dimension, return the frames in a cell array and manually concatenate over the fourth dimension.

% Read the training and validation frames into the memory
pctExists = parallelComputingLicenseExists();
trainFrames = transform(trainDSTrans, @helperModClassReadFrame);
rxTrainFrames = readall(trainFrames,"UseParallel",pctExists);
rxTrainFrames = cat(4, rxTrainFrames{:});
validFrames = transform(validDSTrans, @helperModClassReadFrame);
rxValidFrames = readall(validFrames,"UseParallel",pctExists);
rxValidFrames = cat(4, rxValidFrames{:});

% Read the training and validation labels into the memory
trainLabels = transform(trainDSTrans, @helperModClassReadLabel);
rxTrainLabels = readall(trainLabels,"UseParallel",pctExists);
validLabels = transform(validDSTrans, @helperModClassReadLabel);
rxValidLabels = readall(validLabels,"UseParallel",pctExists);
testFrames = transform(testDSTrans, @helperModClassReadFrame);
rxTestFrames = readall(testFrames,"UseParallel",pctExists);
rxTestFrames = cat(4, rxTestFrames{:});

% Read the test labels into the memory
YPred = transform(testDSTrans, @helperModClassReadLabel);
rxTestLabels = readall(YPred,"UseParallel",pctExists);

Create Target Object

Create a target object for your target device that has a vendor name and an interface to connect your
target device to the host computer. Interface options are JTAG (default) and Ethernet. Vendor options
are Intel or Xilinx. To program the device, use the installed Xilinx Vivado Design Suite over an
Ethernet connection.

hT = dlhdl.Target('Xilinx', Interface = 'Ethernet');

Create Workflow Object

Create an object of the dlhdl.Workflow class. When you create the object, specify the network and
the bitstream name. Specify the saved pretrained series network trainedAudioNet as the network.
Make sure that the bitstream name matches the data type and the FPGA board that you are
targeting. In this example, the target FPGA board is the Zynq UltraScale+ MPSoC ZCU102 board.
The bitstream uses a single data type.

hW = dlhdl.Workflow(Network = trainedNet, Bitstream = 'zcu102_single', Target = hT);

 Modulation Classification by Using FPGA

14-57

https://www.mathworks.com/products/parallel-computing.html


Compile trainedModulationClassification Network

To compile the trainedNet series network, run the compile function of the dlhdl.Workflow
object.

compile(hW)

### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### The network includes the following layers:
     1   'Input Layer'   Image Input             1×1024×2 images                                                   (SW Layer)
     2   'CNN1'          Convolution             16 1×8×2 convolutions with stride [1  1] and padding 'same'       (HW Layer)
     3   'BN1'           Batch Normalization     Batch normalization with 16 channels                              (HW Layer)
     4   'ReLU1'         ReLU                    ReLU                                                              (HW Layer)
     5   'MaxPool1'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
     6   'CNN2'          Convolution             24 1×8×16 convolutions with stride [1  1] and padding 'same'      (HW Layer)
     7   'BN2'           Batch Normalization     Batch normalization with 24 channels                              (HW Layer)
     8   'ReLU2'         ReLU                    ReLU                                                              (HW Layer)
     9   'MaxPool2'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
    10   'CNN3'          Convolution             32 1×8×24 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    11   'BN3'           Batch Normalization     Batch normalization with 32 channels                              (HW Layer)
    12   'ReLU3'         ReLU                    ReLU                                                              (HW Layer)
    13   'MaxPool3'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
    14   'CNN4'          Convolution             48 1×8×32 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    15   'BN4'           Batch Normalization     Batch normalization with 48 channels                              (HW Layer)
    16   'ReLU4'         ReLU                    ReLU                                                              (HW Layer)
    17   'MaxPool4'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
    18   'CNN5'          Convolution             64 1×8×48 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    19   'BN5'           Batch Normalization     Batch normalization with 64 channels                              (HW Layer)
    20   'ReLU5'         ReLU                    ReLU                                                              (HW Layer)
    21   'MaxPool5'      Max Pooling             1×2 max pooling with stride [1  2] and padding [0  0  0  0]       (HW Layer)
    22   'CNN6'          Convolution             96 1×8×64 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    23   'BN6'           Batch Normalization     Batch normalization with 96 channels                              (HW Layer)
    24   'ReLU6'         ReLU                    ReLU                                                              (HW Layer)
    25   'AP1'           Average Pooling         1×32 average pooling with stride [1  1] and padding [0  0  0  0]  (HW Layer)
    26   'FC1'           Fully Connected         11 fully connected layer                                          (HW Layer)
    27   'SoftMax'       Softmax                 softmax                                                           (HW Layer)
    28   'Output'        Classification Output   crossentropyex with '16QAM' and 10 other classes                  (SW Layer)
                                                                                                                 
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool1' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool2' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool3' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool4' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Optimizing network: Non-symmetric stride of layer with name 'MaxPool5' made symmetric as it produces an equivalent result, and only symmetric strides are supported.
### Notice: The layer 'Input Layer' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'SoftMax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software.
### Notice: The layer 'Output' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software.
### Compiling layer group: CNN1>>ReLU6 ...
### Compiling layer group: CNN1>>ReLU6 ... complete.
### Compiling layer group: AP1 ...
### Compiling layer group: AP1 ... complete.
### Compiling layer group: FC1 ...
### Compiling layer group: FC1 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 

14 Wireless Comm Examples

14-58



    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "4.0 MB"        
    "OutputResultOffset"        "0x00400000"     "4.0 MB"        
    "SchedulerDataOffset"       "0x00800000"     "4.0 MB"        
    "SystemBufferOffset"        "0x00c00000"     "28.0 MB"       
    "InstructionDataOffset"     "0x02800000"     "4.0 MB"        
    "ConvWeightDataOffset"      "0x02c00000"     "4.0 MB"        
    "FCWeightDataOffset"        "0x03000000"     "4.0 MB"        
    "EndOffset"                 "0x03400000"     "Total: 52.0 MB"

### Network compilation complete.

ans = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}

Program Bitstream onto FPGA and Download Network Weights

To deploy the network on the Zynq® UltraScale+™ MPSoC ZCU102 hardware, run the deploy
function of the dlhdl.Workflow object. This function uses the output of the compile function to
program the FPGA board by using the programming file.The function also downloads the network
weights and biases. The deploy function verifies the Xilinx Vivado tool and the supported tool version.
It then starts programming the FPGA device by using the bitstream, displays progress messages, and
the time it takes to deploy the network.

deploy(hW)

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 11-Nov-2021 15:39:14
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 11-Nov-2021 15:39:14

Results

Classify five inputs from the test data set and compare the prediction results to the classification
results from the Deep Learning Toolbox™. The YPred variable is the classification results from the
Deep learning Toolbox™. The fpga_prediction variable is the classification result from the FPGA.

numtestFrames = size(rxTestFrames,4);
numView = 5;
listIndex = randperm(numtestFrames,numView);
testDataBatch = rxTestFrames(:,:,:,listIndex);
YPred = classify(trainedNet,testDataBatch);
[scores,speed] = predict(hW,testDataBatch, Profile ='on');

### Finished writing input activations.
### Running in multi-frame mode with 5 inputs.

              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s

 Modulation Classification by Using FPGA

14-59



                         -------------             -------------              ---------        ---------       ---------
Network                     656546                  0.00298                       5            3248357            338.6
    CNN1                     11922                  0.00005 
    MaxPool1                 33524                  0.00015 
    CNN2                     16136                  0.00007 
    MaxPool2                 74772                  0.00034 
    CNN3                     11929                  0.00005 
    MaxPool3                 79074                  0.00036 
    CNN4                      8185                  0.00004 
    MaxPool4                112135                  0.00051 
    CNN5                      6866                  0.00003 
    MaxPool5                145626                  0.00066 
    CNN6                      5077                  0.00002 
    AP1                     144501                  0.00066 
    FC1                       6763                  0.00003 
 * The clock frequency of the DL processor is: 220MHz

[~,idx] = max(scores, [],2);
fpga_prediction = trainedNet.Layers(end).Classes(idx);

Compare the prediction results from Deep Learning Toolbox™ and the FPGA side by side. The
prediction results from the FPGA match the prediction results from Deep Learning Toolbox™. In this
table, the ground truth prediction is the Deep Learning Toolbox™ prediction.

fprintf('%12s %24s\n','Ground Truth','FPGA Prediction');for i= 1:size(fpga_prediction,1)
fprintf('%s %24s\n',YPred(i),fpga_prediction(i)); end

Ground Truth          FPGA Prediction

PAM4                     PAM4
BPSK                     BPSK
DSB-AM                   DSB-AM
SSB-AM                   SSB-AM
8PSK                     8PSK

References

1 O'Shea, T. J., J. Corgan, and T. C. Clancy. "Convolutional Radio Modulation Recognition
Networks." Preprint, submitted June 10, 2016. https://arxiv.org/abs/1602.04105

2 O'Shea, T. J., T. Roy, and T. C. Clancy. "Over-the-Air Deep Learning Based Radio Signal
Classification." IEEE Journal of Selected Topics in Signal Processing. Vol. 12, Number 1, 2018,
pp. 168–179.

3 Liu, X., D. Yang, and A. E. Gamal. "Deep Neural Network Architectures for Modulation
Classification." Preprint, submitted January 5, 2018. https://arxiv.org/abs/1712.00443v3

See Also

More About
• “Modulation Classification with Deep Learning” on page 14-150
• “Deep Learning in MATLAB” on page 1-2

14 Wireless Comm Examples

14-60

https://arxiv.org/abs/1602.04105
https://arxiv.org/abs/1712.00443v3


Neural Network for Digital Predistortion Design - Online
Training

This example shows how to create an online training neural network digital predistortion (DPD)
system to offset the effects of nonlinearities in a power amplifier (PA) using a custom training loop.
The custom training loop contains

• OFDM signal generation,
• NN-DPD processing,
• PA measurements using a VST,
• Performance metric calculation, and
• Weight update control logic.

Introduction

Nonlinear behavior in PAs result in severe signal distortions and cause challenges for error-free
reception of the high-frequency and high-bandwidth signals commonly transmitted in 5G NR [1] on
page 14-78. DPD of the transmitted signal is a technique used to compensate for PA nonlinearities
that distort the signal. The “Neural Network for Digital Predistortion Design - Offline Training”
(Communications Toolbox) example focuses on the offline training of a neural network DPD. In the
offline training system, once the training is done, the NN-DPD weights are kept constant. If the PA
characteristics change, the system performance may suffer.

In an online training system, the NN-DPD weights can be updated based on predetermined
performance metrics. This diagram shows the online training system. There are two NN-DPDs in this
system. The NN-DPD-Forward is used in the signal path to apply digital predistortion to the signals.
The input of this NN-DPD is the oversampled communication signal and its output is connected to the
PA. The NN-DPD-Train is used to update the NN-DPD weights and biases. Its input signal is the PA
output and the training target is the PA input. As a result, the NN-DPD is trained as the inverse of the
PA.

 Neural Network for Digital Predistortion Design - Online Training

14-61



The following is the flow diagram of the online training system. When the system first starts running,
NN-DPD weights are initialized randomly. As a result, the output of the NN-DPD is not a valid signal.
Bypass the NN-DPD-Forward until the NN-DPD-Train trains to an initial valid state. Once the
initialization is done, pass the signals through the NN-DPD-Forward. Calculate normalized mean
square error (NMSE) using the signal at the input of the NN-DPD-Forward and at the output of the
PA. If the NMSE is higher than a threshold, then update the NN-DPD-Train weights and biases using
the current frame's I/Q samples. Once the update finishes, copy the weights and biases to the NN-
DPD-Forward. If the NMSE is lower than the threshold, then do not update the NN-DPD-Train. The
NN-DPD updates are done asynchronously.

14 Wireless Comm Examples

14-62



Generate Oversampled OFDM Signals

Generate OFDM-based signals to excite the PA. This example uses a 5G-like OFDM waveform. Set the
bandwidth of the signal to 100 MHz. Choosing a larger bandwidth signal causes the PA to introduce
more nonlinear distortion and yields greater benefit from the addition of the DPD. Generate six
OFDM symbols, where each subcarrier carries a 16-QAM symbol, using the ofdmmod
(Communications Toolbox) and qammod (Communications Toolbox) function. Save the 16-QAM
symbols as a reference to calculate the EVM performance. To capture effects of higher order
nonlinearities, the example oversamples the PA input by a factor of 5.

bw = 100e6;       % Hz
symPerFrame = 6;  % OFDM symbols per frame
M = 16;           % Each OFDM subcarrier contains a 16-QAM symbol
osf = 5;          % oversampling factor for PA input

% OFDM parameters
ofdmParams = helperOFDMParameters(bw,osf);

 Neural Network for Digital Predistortion Design - Online Training

14-63



numDataCarriers = (ofdmParams.fftLength - ofdmParams.NumGuardBandCarrier - 1);
nullIdx = [1:ofdmParams.NumGuardBandCarrier/2+1 ...
  ofdmParams.fftLength-ofdmParams.NumGuardBandCarrier/2+1:ofdmParams.fftLength]';
Fs = ofdmParams.SampleRate;

% Random data
x = randi([0 M-1],numDataCarriers,symPerFrame);

% OFDM with 16-QAM in data subcarriers
qamRefSym = qammod(x, M);
dpdInput = single(ofdmmod(qamRefSym/osf,ofdmParams.fftLength,ofdmParams.cpLength,...
  nullIdx,OversamplingFactor=osf));

NN-DPD

NN-DPD has three fully connected hidden layers followed by a fully connected output layer. Memory
length and degree of nonlinearity determine the input length, as described in the “Power Amplifier
Characterization” (Communications Toolbox) example. Set the memory depth to 5 and degree of
nonlinearity to 5. Custom training loops require dlnetwork objects. Create a dlnetwork for the NN-
DPD-Forward and another for the NN-DPD-Train.

memDepth = 5;            % Memory depth of the DPD (or PA model)
nonlinearDegree = 5;     % Nonlinear polynomial degree
inputLayerDim = 2*memDepth+(nonlinearDegree-1)*memDepth;
numNeuronsPerLayer = 40;

layers = [...
  featureInputLayer(inputLayerDim,'Name','input')

  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear1')
  leakyReluLayer(0.01,'Name','leakyRelu1')

  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear2')
  leakyReluLayer(0.01,'Name','leakyRelu2')

  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear3')
  leakyReluLayer(0.01,'Name','leakyRelu3')

  fullyConnectedLayer(2,'Name','linearOutput')];

netTrain = dlnetwork(layers);
netForward = dlnetwork(layers);

The input to the NN-DPD is preprocessed as described in “Neural Network for Digital Predistortion
Design - Offline Training” (Communications Toolbox) example. Create input preprocessing objects for
both NN-DPDs.

inputProcTrain = helperNNDPDInputLayer(memDepth,nonlinearDegree);
inputProcForward = helperNNDPDInputLayer(memDepth,nonlinearDegree);

Since the dlnetTrain and dlnetForward are not trained yet, bypass the NN-DPD.

dpdOutput = dpdInput;

Power Amplifier

Choose the data source for the system. This example uses an NXP Airfast LDMOS Doherty PA, which
is connected to a local NI VST, as described in the “Power Amplifier Characterization”

14 Wireless Comm Examples

14-64



(Communications Toolbox) example. If you do not have access to a PA, run the example with saved
data or simulated PA. Simulated PA uses a neural network PA model, which is trained using data
captured from the PA using an NI VST.

dataSource = ;

Pass the signal through the PA and measure the output signal using an NI VST. Lower target input
power values may cause less distortion.

if strcmp(dataSource,"NI VST")

  targetInputPower = ; % dBm
  VST = helperVSTDriver('VST_01');
  VST.DUTExpectedGain     = 29;                % dB
  VST.ExternalAttenuation = 30;                % dB
  VST.DUTTargetInputPower = targetInputPower;  % dBm
  VST.CenterFrequency     = 3.7e9;             % Hz

  % Send the signals to the PA and collect the outputs
  paOutput = helperNNDPDPAMeasure(dpdOutput,Fs,VST);
elseif strcmp(dataSource,"Simulated PA")
  load paModelNN.mat netPA memDepthPA nonlinearDegreePA scalingFactorPA
  inputProcPA = helperNNDPDInputLayer(memDepthPA,nonlinearDegreePA);
  inputProcPAMP = helperNNDPDInputLayer(memDepthPA,nonlinearDegreePA);

  X = process(inputProcPA,dpdOutput*scalingFactorPA);
  Y = predict(netPA,X);
  paOutput = complex(Y(:,1), Y(:,2));
  paOutput = paOutput / scalingFactorPA;
else
  load nndpdInitTrainingData paOutput dpdInput
  dpdOutput = dpdInput;
end

Custom Training Loop

Create a custom training loop to train the NN-DPD-Train to an initial valid state. Custom training loop
has these parts:

• for-loop over epochs
• mini-batch queue to handle mini-batch selection
• while-loop over mini-batches
• model gradients, state, and loss evaluation
• network parameter update
• learning rate control
• training information logging

Run the epoch loop for maxNumEpochs. Set minibatch size to miniBatchSize. Larger values of
mini-batch size yields to faster training but may require larger learning rate. Set the initial learning
rate to initLearnRate and update the learning rate each learnRateDropPeriod number of epochs by a
factor of learnRateDropFactor. Also, set a minimum learning rate value to avoid training to practically
stop.

% Training options
maxNumEpochs = 40;

 Neural Network for Digital Predistortion Design - Online Training

14-65



miniBatchSize = 4096;        % I/Q samples
initLearnRate = 2e-2;
minLearnRate = 1e-5;
learnRateDropPeriod = 20;    % Epochs
learnRateDropFactor = 0.2;

iterationsPerBatch = floor(length(dpdOutput)/miniBatchSize);

References [2] on page 14-78 and [3] on page 14-78 describe the benefit of normalizing the input
signal to avoid the gradient explosion problem and ensure that the neural network converges to a
better solution. Normalization requires obtaining a unity standard deviation and zero mean. For this
example, the communication signals already have zero mean, so normalize only the standard
deviation. Later, you need to denormalize the NN-DPD output values by using the same scaling factor.

scalingFactor = 1/std(dpdOutput);

Preprocess input and ouput signals.

trainInputMtx = process(inputProcTrain, ...
  paOutput*scalingFactor);

trainOutputBatchC = dpdOutput*scalingFactor;
trainOutputBatchR = [real(trainOutputBatchC) imag(trainOutputBatchC)];

Create two arrayDatastore objects and combine them to represent the input and target
relationship. The dsInput stores the input signal, X, and the dsOutput stores the target signals, T,
for the NN-DPD-Train.

dsInput = arrayDatastore(trainInputMtx, ...
  IterationDimension=1,ReadSize=miniBatchSize);
dsOutput = arrayDatastore(trainOutputBatchR, ...
  IterationDimension=1,ReadSize=miniBatchSize);
cds = combine(dsInput,dsOutput);

Create a minibatchqueue object to automate the mini batch fetching. First dimension is time
dimension and is labeled as batch, B, to instruct the network to interpret every individual timestep as
an independent observation. Second dimension is the features dimension and is labeled as C. Since
the data size is small, the training loop runs faster on CPU. Set OutputEnvironment for both input
and target data as 'cpu'.

mbq = minibatchqueue(cds,...
  MiniBatchSize=miniBatchSize,...
  PartialMiniBatch="discard",...
  MiniBatchFormat=["BC","BC"],...
  OutputEnvironment={'cpu','cpu'});

For each iteration, fetch input and target data from the mini-batch queue. Evaluate the model
gradients, state, and loss using dlfeval function with custom modelLoss on page 14-79 function.
Then update the network parameters using the Adam optimizer function, adamupdate. For more
information on custom training loops, see “Define Custom Training Loops, Loss Functions, and
Networks” on page 19-223.

When running the example, you have the option of using a pretrained network by setting the
trainNow variable to false. Training is desirable to match the network to your simulation
configuration. If using a different PA, signal bandwidth, or target input power level, retrain the
network. Training the neural network on an Intel® Xeon® W-2133 CPU @ 3.60GHz takes less than 3
minutes.

14 Wireless Comm Examples

14-66



trainNow = ;
if trainNow
  % Initialize training progress monitor
  monitor = trainingProgressMonitor;
  monitor.Info = ["LearningRate","Epoch","Iteration"];
  monitor.Metrics = "TrainingLoss";
  monitor.XLabel = "Iteration";
  groupSubPlot(monitor,"Loss","TrainingLoss");
  monitor.Status = "Running";
  plotUpdateFrequency = 10;

  % Initialize training loop
  averageGrad = [];
  averageSqGrad = [];
  learnRate = initLearnRate;
  iteration = 1;

  for epoch = 1:maxNumEpochs
    shuffle(mbq)

    % Update learning rate
    if mod(epoch,learnRateDropPeriod) == 0
      learnRate = learnRate * learnRateDropFactor;
    end

    % Loop over mini-batches
    while hasdata(mbq) && ~monitor.Stop
      % Process one mini-batch of data
      [X,T] = next(mbq);

      % Evaluate model gradients and loss
      [lossTrain,gradients] = dlfeval(@modelLoss,netTrain,X,T);

      % Update network parameters
      [netTrain,averageGrad,averageSqGrad] = ...
        adamupdate(netTrain,gradients,averageGrad,averageSqGrad, ...
        iteration,learnRate);

      if mod(iteration,plotUpdateFrequency) == 0
        updateInfo(monitor, ...
          LearningRate=learnRate, ...
          Epoch=string(epoch) + " of " + string(maxNumEpochs), ...
          Iteration=string(iteration));
        recordMetrics(monitor,iteration, ...
          TrainingLoss=10*log10(lossTrain));
      end

      iteration = iteration + 1;
    end
    if monitor.Stop
      break
    end
    monitor.Progress = 100*epoch/maxNumEpochs;
  end
  if monitor.Stop
    monitor.Status = "User terminated";
  else

 Neural Network for Digital Predistortion Design - Online Training

14-67



    monitor.Status = "Done";
  end
else
  load offlineTrainedNNDPDR2023a netTrain learnRate learnRateDropFactor ...
    learnRateDropPeriod maxNumEpochs miniBatchSize scalingFactor ...
    symPerFrame monitor averageGrad averageSqGrad
end

Online Training with HIL

Convert the previous custom training loop to an online training loop with hardware-in-the-loop
processing, where the hardware is the PA. Perform following modifications:

• Add OFDM signal generation,
• Copy NN-DPD-Train learnables to NN-DPD-Forward and apply predistortion using the forward

function,
• Send the predistorted signal to PA and measure the output,
• Compute performance metric, which is NMSE,

14 Wireless Comm Examples

14-68



• If the performance metric is out of spec, then update the NN-DPD-Train learnables with the
custom loop shown in the Custom Training Loop on page 14-65 section without epoch processing,

• Add memory polynomial based DPD for comparison using comm.DPDCoefficientEstimator
(Communications Toolbox) and comm.DPD (Communications Toolbox) System objects.

Run the online training loop for maxNumFrames frames. Set the target NMSE to targetNMSE dB
with a margin of targetNMSEMargin dB. The margin creates a hysteresis where the training is
stopped if NMSE is less than targetNMSE-targetNMSEMargin and started if NMSE is greater than
targetNMSE+targetNMSEMargin.

maxNumFrames = 200;           % Frames
if strcmp(dataSource,"NI VST") || strcmp(dataSource,"Saved data")
  targetNMSE = -33.5;         % dB
else
  targetNMSE = -30.0;         % dB
end
targetNMSEMargin = 0.5;       % dB

Initialize NN-DPD-Forward.

netForward.Learnables = netTrain.Learnables;

Configure the learning rate schedule. Start with learnRate and drop by a factor of
learnRateDropFactor every learnRateDropPeriod frames.

learnRateDropPeriod = 100;
learnRateDropFactor = 0.5;
learnRate = 0.0001;

Initialize memory polynomial based DPD.

polynomialType = ; 
estimator = comm.DPDCoefficientEstimator( ...
  DesiredAmplitudeGaindB=0, ...
  PolynomialType=polynomialType, ...
  Degree=nonlinearDegree, ...
  MemoryDepth=memDepth, ...
  Algorithm='Least squares');
coef = estimator(dpdOutput,paOutput);

Warning: Rank deficient, rank = 9, tol =  1.112653e-03.

dpdMem = comm.DPD(PolynomialType=polynomialType, ...
  Coefficients=coef);

If trainNow is true and dataSource is not "Saved data", run the online training loop.

trainNow = ;
if trainNow && ~strcmp(dataSource,"Saved data")
  % Turn off warning for the loop
  warnState = warning('off','MATLAB:rankDeficientMatrix');
  clup = onCleanup(@()warning(warnState));

  % Initialize training progress monitor
  monitor = trainingProgressMonitor;
  monitor.Info = ["LearningRate","Frames","Iteration"];

 Neural Network for Digital Predistortion Design - Online Training

14-69



  monitor.Metrics = ["TrainingLoss","NMSE","NMSE_MP"];
  monitor.XLabel = "Iteration";
  groupSubPlot(monitor,"Loss","TrainingLoss");
  groupSubPlot(monitor,"System Metric",{"NMSE","NMSE_MP"});
  monitor.Status = "Running";
  plotUpdateFrequency = 10;

  % Reset input preprocessing objects
  reset(inputProcTrain);
  reset(inputProcForward);

  numFrames = 1;
  iteration = 1;
  maxNumIterations = maxNumFrames*iterationsPerBatch;
  updateFrameCounter = 1;
  while numFrames < maxNumFrames && ~monitor.Stop
    % Generate OFDM I/Q samples
    x = randi([0 M-1], numDataCarriers, symPerFrame);
    qamRefSym = qammod(x, M);
    dpdInput = single(ofdmmod(qamRefSym/osf,ofdmParams.fftLength,ofdmParams.cpLength,...
      nullIdx,OversamplingFactor=osf));

    dpdInputMtx = process(inputProcForward,dpdInput*scalingFactor);

    % Send one frame of data to NN-DPD
    X = dlarray(dpdInputMtx, "BC"); % B: batch size; C: number of features (dimension in input layer of the neural network)
    [Y,~] = forward(netForward,X);
    dpdOutput = (extractdata(Y))';
    dpdOutput = complex(dpdOutput(:,1), dpdOutput(:,2));
    % Normalize output signal
    dpdOutput = dpdOutput / scalingFactor;

    % Send one frame of data to memory polynomial DPD
    dpdOutputMP = dpdMem(dpdInput);
    
    % Send DPD outputs through PA
    if strcmp(dataSource,"NI VST")
      paOutput = helperNNDPDPAMeasure(dpdOutput,Fs,VST);
      paOutputMP = helperNNDPDPAMeasure(dpdOutputMP,Fs,VST);
    else % "Simulated PA"
      paInputMtx = process(inputProcPA,dpdOutput*scalingFactorPA);
      paOutput = predict(netPA,paInputMtx);
      paOutput = complex(paOutput(:,1), paOutput(:,2));
      paOutput = paOutput / scalingFactorPA;

      paInputMtxMP = process(inputProcPAMP,dpdOutputMP*scalingFactorPA);
      paOutputMP = predict(netPA,paInputMtxMP);
      paOutputMP = complex(paOutputMP(:,1), paOutputMP(:,2));
      paOutputMP = paOutputMP / scalingFactorPA;
    end

    % Compute NMSE
    nmseNN = localNMSE(dpdInput, paOutput);
    nmseMP = localNMSE(dpdInput, paOutputMP);

    % Check if NMSE is too large
    if updateNNDPDWeights(nmseNN,targetNMSE,targetNMSEMargin)
      % Need to update the weights/biases of the neural network DPD

14 Wireless Comm Examples

14-70



      % Preprocess input and output of the NN
      trainInputMtx = process(inputProcForward, ...
        paOutput*scalingFactor);
      trainOutputBatchC = dpdOutput*scalingFactor;
      trainOutputBatchR = [real(trainOutputBatchC) imag(trainOutputBatchC)];

      % Create combined data store
      dsInput = arrayDatastore(trainInputMtx, ...
        IterationDimension=1,ReadSize=miniBatchSize);
      dsOutput = arrayDatastore(trainOutputBatchR, ...
        IterationDimension=1,ReadSize=miniBatchSize);
      cds = combine(dsInput,dsOutput);

      % Create mini-batch queue for the combined data store
      mbq = minibatchqueue(cds,...
        MiniBatchSize=miniBatchSize,...
        PartialMiniBatch="discard",...
        MiniBatchFormat=["BC","BC"],...
        OutputEnvironment={'cpu','cpu'});

      % Update learning rate based on the schedule
      if mod(updateFrameCounter, learnRateDropPeriod) == 0 ...
          && learnRate > minLearnRate
        learnRate = learnRate*learnRateDropFactor;
      end

      % Loop over mini-batches
      while hasdata(mbq) && ~monitor.Stop
        % Process one mini-batch of data
        [X,T] = next(mbq);

        % Evaluate the model gradients, state, and loss
        [lossTrain,gradients] = dlfeval(@modelLoss,netTrain,X,T);

        % Update the network parameters
        [netTrain,averageGrad,averageSqGrad] = ...
          adamupdate(netTrain,gradients,averageGrad,averageSqGrad, ...
          iteration,learnRate);

        iteration = iteration + 1;
        if mod(iteration,plotUpdateFrequency) == 0 && hasdata(mbq)
          % Every plotUpdateFrequency iterations, update training monitor
          updateInfo(monitor, ...
            LearningRate=learnRate, ...
            Frames=string(numFrames) + " of " + string(maxNumFrames), ...
            Iteration=string(iteration) + " of " + string(maxNumIterations));

          recordMetrics(monitor,iteration, ...
            TrainingLoss=10*log10(lossTrain));

          monitor.Progress = 100*iteration/maxNumIterations;
        end
      end

      netForward.Learnables = netTrain.Learnables;

      % Update memory polynomial DPD

 Neural Network for Digital Predistortion Design - Online Training

14-71



      coef = estimator(dpdOutputMP,paOutputMP);
      dpdMem.Coefficients = coef;

      updateFrameCounter = updateFrameCounter + 1;
    else
      iteration = iteration + iterationsPerBatch;
    end

    updateInfo(monitor, ...
      LearningRate=learnRate, ...
      Frames=string(numFrames)+" of "+string(maxNumFrames), ...
      Iteration=string(iteration)+" of "+string(maxNumIterations));

    recordMetrics(monitor, iteration, ...
      TrainingLoss=10*log10(lossTrain), ...
      NMSE=nmseNN, ...
      NMSE_MP=nmseMP);

    monitor.Progress = 100*numFrames/maxNumFrames;
    numFrames = numFrames + 1;
  end
  if monitor.Stop
    monitor.Status = "User terminated";
  else
    monitor.Status = "Done";
  end
  if strcmp(dataSource,"NI VST")
    release(VST)
  end
  clear clup
else
  % Load saved results
    load onlineTrainedNNDPDR2023a netTrain learnRate learnRateDropFactor ...
      learnRateDropPeriod maxNumEpochs miniBatchSize scalingFactor ...
      symPerFrame monitor averageGrad averageSqGrad
    load onlineStartNNDPDPAData dpdOutput dpdOutputMP paOutput paOutputMP qamRefSym nmseNN nmseMP
end

14 Wireless Comm Examples

14-72



The online training progress shows that the NN-DPD can achieve about 7 dB better average NMSE as
compared to the memory polynomial DPD. Horizontal regions in the Loss plot show the regions where
the NN-DPD weights were kept constant.

Compare Neural Network and Memory Polynomial DPDs

Compare the PA output spectrums for the NN-DPD and memory polynomial DPD. Plot the power
spectrum for PA output with NN-DPD and memory polynomial DPD. The NN-DPD achieves more
sideband suppression as compared to the memory polynomial DPD.

pspectrum(paOutput,Fs,'MinThreshold',-120)
hold on
pspectrum(paOutputMP,Fs,'MinThreshold',-120)
hold off
legend("NN-DPD","Memory Polynomial")
title("Power Spectrum of PA Output")

 Neural Network for Digital Predistortion Design - Online Training

14-73



Calculate ACPR and EVM values and show the results. The NN-DPD achieves about 6 dB better ACPR
and NMSE as compared to the memory polynomial DPD. The percent EVM for the NN-DPD is about
half of the memory polynomial DPD.

acprNNDPD = localACPR(paOutput,Fs,bw);
acprMPDPD = localACPR(paOutputMP,Fs,bw);
evmNNDPD = localEVM(paOutput,qamRefSym(:),ofdmParams);
evmMPDPD = localEVM(paOutputMP,qamRefSym(:),ofdmParams);

% Create a table to display results
evm = [evmMPDPD;evmNNDPD];
acpr = [acprMPDPD;acprNNDPD];
nmse = [nmseMP; nmseNN];
disp(table(acpr,nmse,evm, ...
  'VariableNames', ...
  {'ACPR_dB','NMSE_dB','EVM_percent'}, ...
  'RowNames', ...
  {'Memory Polynomial DPD','Neural Network DPD'}))

                             ACPR_dB    NMSE_dB    EVM_percent
                             _______    _______    ___________

    Memory Polynomial DPD    -33.695    -27.373        3.07   
    Neural Network DPD       -39.237    -33.276      1.5996   

14 Wireless Comm Examples

14-74



Appendix: Neural Network Model of PA

Train a neural network PA model (NN-PA) to use for online simulations. NN-PA has three fully
connected hidden layers followed by a fully connected output layer. Set the memory depth to 5 and
degree of nonlinearity to 5.

memDepthPA = 5;            % Memory depth of the DPD (or PA model)
nonlinearDegreePA = 5;     % Nonlinear polynomial degree
inputLayerDim = 2*memDepthPA+(nonlinearDegreePA-1)*memDepthPA;
numNeuronsPerLayer = 40;

layers = [...
  featureInputLayer(inputLayerDim,'Name','input')

  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear1')
  leakyReluLayer(0.01,'Name','leakyRelu1')

  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear2')
  leakyReluLayer(0.01,'Name','leakyRelu2')

  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear3')
  leakyReluLayer(0.01,'Name','leakyRelu3')

  fullyConnectedLayer(2,'Name','linearOutput')
  
  regressionLayer("Name","regressionoutput")
  ];

Create input preprocessing objects for both NN-DPDs.

inputProcPA = helperNNDPDInputLayer(memDepthPA,nonlinearDegreePA);

Load the training data collected at the input and output of the PA.

load nndpdInitTrainingData paOutput dpdInput Fs
paInput = dpdInput;

Preprocess the input and output signals.

scalingFactorPA = 1/std(paInput);

trainInputMtx = process(inputProcPA, ...
  paInput*scalingFactorPA);

trainOutputBatchC = paOutput*scalingFactorPA;
trainOutputBatchR = [real(trainOutputBatchC) imag(trainOutputBatchC)];

Train the NN-PA

options = trainingOptions('adam', ...
    MaxEpochs=1000, ...
    MiniBatchSize=4096*2, ...
    InitialLearnRate=2e-2, ...
    LearnRateDropFactor=0.5, ...
    LearnRateDropPeriod=50, ...
    LearnRateSchedule='piecewise', ...
    Shuffle='every-epoch', ...
    ExecutionEnvironment='cpu', ...

 Neural Network for Digital Predistortion Design - Online Training

14-75



    Plots='training-progress', ...
    Verbose=false);

When running the example, you have the option of using a pretrained network by setting the
trainNow variable to false. Training is desirable to match the network to your simulation
configuration. If using a different PA, signal bandwidth, or target input power level, retrain the
network. Training the neural network on an Intel® Xeon® W-2133 CPU @ 3.60GHz takes about 30
minutes.

trainNow = ;
if trainNow
  [netPA,trainInfo] = trainNetwork(trainInputMtx,trainOutputBatchR,layers,options); %#ok<UNRCH> 
  lg = layerGraph(netPA);
  lg = lg.removeLayers('regressionoutput');
  dlnetPA = dlnetwork(lg);
else
  load paModelNN netPA dlnetPA memDepthPA nonlinearDegreePA
end

Compare Neural Network and Memory Polynomial PAs

Compare the PA output spectrums for the NN-PA and memory polynomial PA. Since a DPD tries to
model the inverse of a PA, use comm.DPD and comm.DPDCoefficientEstimator to model a
memory polynomial PA by reversing the paOutput and paInput inputs to the estimator.

estimator = comm.DPDCoefficientEstimator( ...
  DesiredAmplitudeGaindB=0, ...
  PolynomialType=polynomialType, ...
  Degree=nonlinearDegreePA, ...
  MemoryDepth=memDepthPA, ...
  Algorithm='Least squares');
coef = estimator(paOutput,paInput);

Warning: Rank deficient, rank = 9, tol =  1.107855e-03.

paMem = comm.DPD(PolynomialType=polynomialType, ...
  Coefficients=coef);
paOutputMP = paMem(paInput);

paInputMtx = process(inputProcPA,dpdInput*scalingFactorPA);
X = dlarray(paInputMtx, "BC");
[Y,~] = forward(dlnetPA,X);
paOutputNN = (extractdata(Y))';
paOutputNN = double(complex(paOutputNN(:,1), paOutputNN(:,2)));
% Normalize output signal
paOutputNN = paOutputNN / scalingFactorPA;

pspectrum(paOutput,Fs,'MinThreshold',-120)
hold on
pspectrum(paOutputMP,Fs,'MinThreshold',-120)
pspectrum(paOutputNN,Fs,'MinThreshold',-120)
hold off
legend("Original","Memory Polynomial","NN-PA")
title("Power Spectrum of PA Output")

14 Wireless Comm Examples

14-76



Calculate ACPR, NMSE and EVM values and show the results. The NN-PA model better approximates
the PA as compared to the memory polynomial model.

acprPA = localACPR(paOutput,Fs,bw);
acprMPPA = localACPR(paOutputMP,Fs,bw);
acprNNPA = localACPR(paOutputNN,Fs,bw);

[evmPA,rxQAMSymPA] = localEVM(paOutput,[],ofdmParams);
[evmMPPA,rxQAMSymMP] = localEVM(paOutputMP,[],ofdmParams);
[evmNNPA,rxQAMSymNN] = localEVM(paOutputNN,[],ofdmParams);

nmsePA = localNMSE(paOutput,paOutput);
nmseMPPA = localNMSE(paOutputMP,paOutput);
nmseNNPA = localNMSE(paOutputNN,paOutput);

% Create a table to display results
evm = [evmPA;evmMPPA;evmNNPA];
acpr = [acprPA;acprMPPA;acprNNPA];
nmse = [nmsePA;nmseMPPA;nmseNNPA];
disp(table(acpr,nmse,evm, ...
  'VariableNames', ...
  {'ACPR_dB','NMSE_dB','EVM_percent'}, ...
  'RowNames', ...
  {'Original','Memory Polynomial PA','Neural Network PA'}))

                            ACPR_dB    NMSE_dB    EVM_percent
                            _______    _______    ___________

 Neural Network for Digital Predistortion Design - Online Training

14-77



    Original                -28.736       -Inf      6.7036   
    Memory Polynomial PA     -30.14    -27.182      5.8891   
    Neural Network PA       -28.874    -34.643      6.5409   

References

[1] C. Tarver, L. Jiang, A. Sefidi and J. R. Cavallaro, "Neural Network DPD via Backpropagation
through a Neural Network Model of the PA," 2019 53rd Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, USA, 2019, pp. 358-362, doi: 10.1109/
IEEECONF44664.2019.9048910.

[2] J. Sun, J. Wang, L. Guo, J. Yang and G. Gui, "Adaptive Deep Learning Aided Digital Predistorter
Considering Dynamic Envelope," IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp.
4487-4491, April 2020, doi: 10.1109/TVT.2020.2974506.

[3] J. Sun, W. Shi, Z. Yang, J. Yang and G. Gui, "Behavioral Modeling and Linearization of Wideband RF
Power Amplifiers Using BiLSTM Networks for 5G Wireless Systems," in IEEE Transactions on
Vehicular Technology, vol. 68, no. 11, pp. 10348-10356, Nov. 2019, doi: 10.1109/TVT.2019.2925562.

Appendix: Helper Functions

Signal Measurement and Input Processing

• helperNNDPDPAMeasure
• helperNNDPDInputLayer

Performance Evaluation and Comparison

• localNMSE on page 14-78
• localACPR on page 14-79
• localEVM on page 14-78

Local Functions

Normalized mean squared error (NMSE)

function nmseIndB = localNMSE(input,output)
%localNMSE Normalized mean squared error (NMSE)
%   E = localNMSE(X,Y) calculates the NMSE between X and Y.

nmse = sum(abs(input-output).^2) / sum(abs(input).^2);
nmseIndB = 10*log10(nmse);
end

Error vector magnitude (EVM)

function [rmsEVM,rxQAMSym] = localEVM(paOutput,qamRefSym,ofdmParams)
%localEVM Error vector magnitude (EVM)
%   [E,Y] = localEVM(X,REF,PARAMS) calculates EVM for signal, X, given the
%   reference signal, REF. X is OFDM modulated based on PARAMS.

14 Wireless Comm Examples

14-78



% Downsample and demodulate
waveform = ofdmdemod(paOutput,ofdmParams.fftLength,ofdmParams.cpLength,...
    ofdmParams.cpLength,[1:ofdmParams.NumGuardBandCarrier/2+1 ...
     ofdmParams.fftLength-ofdmParams.NumGuardBandCarrier/2+1:ofdmParams.fftLength]',...
     OversamplingFactor=ofdmParams.OversamplingFactor);
rxQAMSym = waveform(:)*ofdmParams.OversamplingFactor;

if isempty(qamRefSym)
  M = 16;
  qamRefSym = qammod(qamdemod(rxQAMSym,M),M);
end

% Compute EVM
evm = comm.EVM;
rmsEVM = evm(qamRefSym,rxQAMSym);
end

Adjacent channel power ratio (ACPR)

function acpr = localACPR(paOutput,sr,bw)
%localACPR Adjacent channel power ratio (ACPR)
%   A = localACPR(X,R,BW) calculates the ACPR value for the input signal X,
%   for an assumed signal bandwidth of BW. The sampling rate of X is R.

acprModel = comm.ACPR(...
  'SampleRate',sr, ...
  'MainChannelFrequency',0, ...
  'MainMeasurementBandwidth',bw, ...
  'AdjacentChannelOffset',[-bw bw], ...
  'AdjacentMeasurementBandwidth',bw);
acpr = acprModel(double(paOutput));
acpr = mean(acpr);
end

Model gradients and loss

function [loss,gradients,state] = modelLoss(net,X,T)
%modelLoss Mean square error (MSE) loss
%   [L,S,G] = modelLoss(NET,X,Y) calculates loss, L, state, S, and
%   gradient, G, for dlnetwork NET for input X and target output T.

% Output of dlnet using forward function
[Y,state] = forward(net,X);

loss = mse(Y,T);
gradients = dlgradient(loss,net.Learnables);

loss = extractdata(loss);
end

Check if NN-DPD weights needs to be updated

function flag = updateNNDPDWeights(nmse,targetNMSE,targetNMSEMargin)
%updateNNDPDWeights Check if weights need to be updated
%   U = updateNNDPDWeights(NMSE,TARGET,MARGIN) checks if the NN-DPD weights

 Neural Network for Digital Predistortion Design - Online Training

14-79



%   need to be updated based on the measured NMSE value using the target
%   NMSE, TARGET, and target NMSE margin, MARGIN. MARGIN ensures that the
%   update flag does not change due to measurement noise. 

persistent updateFlag
if isempty(updateFlag)
  updateFlag = true;
end

if updateFlag && (nmse < targetNMSE - targetNMSEMargin)
  updateFlag = false;
elseif ~updateFlag && (nmse > targetNMSE + targetNMSEMargin)
  updateFlag = true;
end

flag = updateFlag;
end

See Also
Functions
adamupdate | dlfeval | featureInputLayer | fullyConnectedLayer | reluLayer |
trainNetwork | trainingOptions | ofdmmod | ofdmdemod | qammod | qamdemod

Objects
arrayDatastore | dlnetwork | minibatchqueue | comm.DPD |
comm.DPDCoefficientEstimator | comm.EVM | comm.ACPR

More About
• “Deep Learning in MATLAB” on page 1-2
• “Neural Network for Digital Predistortion Design - Offline Training” on page 14-81

14 Wireless Comm Examples

14-80



Neural Network for Digital Predistortion Design - Offline
Training

This example shows how to use a neural network to apply digital predistortion (DPD) to offset the
effects of nonlinearities in a power amplifier (PA). The example focuses on offline training of the
neural network-based DPD (NN-DPD). In this example, you

• Generate OFDM signals.
• Send these signals through an actual PA and measure the output.
• Train an NN-DPD.
• Predistort the OFDM signal with the NN-DPD, send this distorted signal through the actual PA,

and measure the output to evaluate the effectiveness of the NN-DPD.
• Compare the results to memory polynomial DPD.

Introduction

Nonlinear behavior in PAs result in severe signal distortions and cause challenges for error-free
reception of the high-frequency and high-bandwidth signals commonly transmitted in 5G NR [1 on
page 14-94]. DPD of the transmitted signal is a technique used to compensate for PA nonlinearities
that distort the signal. Typically, the PA nonlinear behavior is characterized in advance and DPD
applies an inverse predistortion using some form of memory polynomials [2 on page 14-94]. For
instance, see the “Digital Predistortion to Compensate for Power Amplifier Nonlinearities”
(Communications Toolbox) example. Experimentation with neural network-based DPD techniques
shows promising results that offer better performance than the traditional memory polynomial DPD
[1 on page 14-94] [3 on page 14-94] [4 on page 14-95].

This diagram shows the offline training workflow. First, train an NN-DPD by using the input and
output signals of the PA. Then, use the trained NN-DPD.

The upper path shows the neural network training workflow. During training, measure the input to
the PA, u, and the output of the PA, x. To train the neural network as the inverse of the PA and use it
for DPD, use x as the input signal and u as the target signal. This architecture is also called indirect
learning [7 on page 14-95].

The lower path shows the deployed workflow with the trained NN-DPD inserted before the PA. In this
configuration, the NN-DPD inputs the oversampled signal u and output, y, as the input to the PA. The
PA output z is the linearized signal.

 Neural Network for Digital Predistortion Design - Offline Training

14-81



NN-DPD Structure

Design an augmented real-valued time-delay neural network (ARVTDNN) as described in [4 on page
14-95]. ARVTDNN has multiple fully connected layers and an augmented input.

The memory polynomial model has been commonly applied in the behavioral modeling and
predistortion of PAs with memory effects. This equation shows the PA memory polynomial.

x n = f u n = ∑m = 0
M − 1∑k = 0

K − 1cmu n−m u n−m k

The output is a function of the delayed versions of the input signal, u(n), and also powers of the
amplitudes of u(n) and its delayed versions.

Since a neural network can approximate any function provided that it has enough layers and neurons
per layer, you can input u(n) to the neural network and approximate f (u(n)). The neural network can
input u(n−m) and |u(n−m)|k to decrease the required complexity.

The NN-DPD has multiple fully connected layers. The input layer inputs the in-phase and quadrature
components (Iin/Qin) of the complex baseband samples. The Iin/Qin samples and m delayed versions
are used as part of the input to account for the memory in the PA model. Also, the amplitudes of the
Iin/Qin samples up to the kth power are fed as input to account for the nonlinearity of the PA.

14 Wireless Comm Examples

14-82



During training,

Iin(n) = ℜ (x(n))
Qin(n) = ℑ (x(n))
Iout(n) = ℜ (u(n))
Qout(n) = ℑ (u(n)),

while during deployment (inference),

Iin(n) = ℜ (u(n))
Qin(n) = ℑ (u(n))
Iout(n) = ℜ (y(n))
Qout(n) = ℑ (y(n)),

where ℜ and ℑ are the real and imaginary part operators, respectively.

 Neural Network for Digital Predistortion Design - Offline Training

14-83



Generate Training Data

Generate training, validation, and test data. Use the training and validation data to train the NN-DPD.
Use the test data to evaluate the NN-DPD performance.

Choose Data Source and Bandwidth

Choose the data source for the system. This example uses an NXP Airfast LDMOS Doherty PA, which
is connected to a local NI VST, as described in the “Power Amplifier Characterization”
(Communications Toolbox) example. If you do not have access to a PA, run the example with saved
data.

dataSource = ;

Generate Oversampled OFDM Signals

Generate OFDM-based signals to excite the PA. This example uses a 5G-like OFDM waveform. Choose
the bandwidth of the signal. Choosing a larger bandwidth signal causes the PA to introduce more
nonlinear distortion and yields greater benefit from the addition of DPD. Generate six OFDM symbols,
where each subcarrier carries a 16-QAM symbol, using the ofdmmod (Communications Toolbox) and
qammod (Communications Toolbox) function. Save the 16-QAM symbols as a reference to calculate
the EVM performance. To capture effects of higher order nonlinearities, the example oversamples the
PA input by a factor of 7.

if strcmp(dataSource,"NI VST")

  bw = ;       % Hz
  numOFDMSym = 6;   % 6 OFDM symbols per frame
  M = 16;           % Each OFDM subcarrier contains a 16-QAM symbol
  osf = 7;          % oversampling factor for PA input
  ofdmParams = helperOFDMParameters(bw,osf);
  Fs = ofdmParams.SampleRate;
  [paInputTrain,qamRefSymTrain] = ...
    helperNNDPDGenerateOFDM(ofdmParams,numOFDMSym,M);

Pass the signal through the PA and measure the output signal. Lower target input power values may
cause less distortion. For this setup, when the signal is predistorted, 5 dBm is the maximum value the
NI PXIe-4139 SMU described in the “Power Amplifier Characterization” (Communications Toolbox)
example can support without saturation.

  targetInputPower = ;  % dBm
  VST = helperVSTDriver('VST_01');
  VST.DUTExpectedGain     = 29;                % dB
  VST.ExternalAttenuation = 30;                % dB
  VST.DUTTargetInputPower = targetInputPower;  % dBm
  VST.CenterFrequency     = 3.7e9;             % Hz

  % Send the signals to the PA and collect the outputs
  paOutputTrain = helperNNDPDPAMeasure(paInputTrain,Fs,VST);

Repeat the same procedure to generate validation and test data.

  % Generate validation data
  [paInputVal,qamRefSymVal] = ...
    helperNNDPDGenerateOFDM(ofdmParams,numOFDMSym,M);

14 Wireless Comm Examples

14-84



  paOutputVal = helperNNDPDPAMeasure(paInputVal,Fs,VST);
  % Generate test data
  [paInputTest,qamRefSymTest] = ...
    helperNNDPDGenerateOFDM(ofdmParams,numOFDMSym,M);
  paOutputTest = helperNNDPDPAMeasure(paInputTest,Fs,VST);

  if 
    % Select true to save data for saved data workflow
    save savedData bw numOFDMSym M ofdmParams sr targetInputPower ...
      qamRefSymTrain paInputTrain paOutputTrain qamRefSymVal ...
      paInputVal paOutputVal qamRefSymTest paInputTest paOutputTest %#ok<UNRCH> 
  end
elseif strcmp(dataSource,"Saved Data")
  helperNNDPDDownloadData()
  load("savedDataNIVST100MHz");
  % Backwards compatibility updates
  ofdmParams.OversamplingFactor = ofdmParams.osr;
  ofdmParams.SampleRate = ofdmParams.SampleRate*ofdmParams.osr;
  Fs = ofdmParams.SampleRate;
end

Starting download of data files from:
    https://www.mathworks.com/supportfiles/spc/NNDPD/NNDPD_deeplearning_uploads_R2023a.zip
Download complete. Extracting files.
Extract complete.

[5 on page 14-95] and [6 on page 14-95] describe the benefit of normalizing the input signal to
avoid the gradient explosion problem and ensure that the neural network converges to a better
solution. Normalization requires obtaining a unity standard deviation and zero mean. For this
example, the communication signals already have zero mean, so normalize only the standard
deviation. Later, you need to denormalize the NN-DPD output values by using the same scaling factor.

scalingFactor = 1/std(paInputTrain);

paInputTrainNorm = paInputTrain*scalingFactor;
paOutputTrainNorm = paOutputTrain*scalingFactor;
paInputValNorm = paInputVal*scalingFactor;
paOutputValNorm = paOutputVal*scalingFactor;
paInputTestNorm = paInputTest*scalingFactor;
paOutputTestNorm = paOutputTest*scalingFactor;

Implement and Train NN-DPD

Before training the neural network DPD, select the memory depth and degree of nonlinearity. For
purposes of comparison, specify a memory depth of 5 and a nonlinear polynomial degree of 5, as in
the “Power Amplifier Characterization” (Communications Toolbox) example, and will be used to
compare performance. Then implement the network described in Neural Network DPD Structure on
page 14-82 section.

memDepth = 5;            % Memory depth of the DPD (or PA model)
nonlinearDegree = 5;     % Nonlinear polynomial degree
inputLayerDim = 2*memDepth+(nonlinearDegree-1)*memDepth;
numNeuronsPerLayer = 40;

lgraph = [...
  featureInputLayer(inputLayerDim,'Name','input')

 Neural Network for Digital Predistortion Design - Offline Training

14-85



  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear1')
  leakyReluLayer(0.01,'Name','leakyRelu1')

  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear2')
  leakyReluLayer(0.01,'Name','leakyRelu2')

  fullyConnectedLayer(numNeuronsPerLayer,'Name','linear3')
  leakyReluLayer(0.01,'Name','leakyRelu3')

  fullyConnectedLayer(2,'Name','linearOutput')
  regressionLayer('Name','output')];

Prepare Input Data Vector

Create the input vector. During training and validation, use the PA output as NN-DPD input and the
PA input as the NN-DPD output.

% Create input layer arrays for each time step as a matrix for training,
% validation and test signals.
inputProc = helperNNDPDInputLayer(memDepth,nonlinearDegree);
inputTrainMtx = process(inputProc,paOutputTrainNorm);
inputTrainMtx = inputTrainMtx(memDepth+1:end,:);
reset(inputProc)
inputValMtx = process(inputProc,paOutputValNorm);
inputValMtx = inputValMtx(memDepth+1:end,:);
reset(inputProc)
inputTestMtx = process(inputProc,paInputTestNorm);
inputTestMtx = inputTestMtx(memDepth+1:end,:);

% Create outputs as two element [I Q] vectors for each time step
outputTrainMtx = [real(paInputTrainNorm(memDepth+1:end,:)), ...
  imag(paInputTrainNorm(memDepth+1:end,:))];
outputValMtx = [real(paInputValNorm(memDepth+1:end,:)), ...
  imag(paInputValNorm(memDepth+1:end,:))];
outputTestMtx = [real(paOutputTestNorm(memDepth+1:end,:)), ...
  imag(paOutputTestNorm(memDepth+1:end,:))];

Train Neural Network

Train the neural network offline using the trainNetwork function. First, define the training options
using the trainingOptions function and set hyperparameters. Use the Adam optimizer with a mini-
batch size of 1024. The initial learning rate is 4e-4 and decreases by a factor of 0.95 every five
epochs. Evaluate the training performance using validation every two epochs. If the validation
accuracy does not increase for five validations, stop training. Use Experiment Manager to optimize
hyperparameters.

maxEpochs = 200;
miniBatchSize = 1024;
iterPerEpoch = floor(size(inputTrainMtx, 1)/miniBatchSize);

options = trainingOptions('adam', ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate=4e-4, ...
    LearnRateDropFactor=0.95, ...
    LearnRateDropPeriod=5, ...
    LearnRateSchedule='piecewise', ...
    Shuffle='every-epoch', ...

14 Wireless Comm Examples

14-86



    OutputNetwork='best-validation-loss', ...
    ValidationData={inputValMtx,outputValMtx}, ...
    ValidationFrequency=2*iterPerEpoch, ...
    ValidationPatience=5, ...
    ExecutionEnvironment='cpu', ...
    Plots='training-progress', ...
    Verbose=false);

When running the example, you have the option of using a pretrained network by setting the
trainNow variable to false. Training is desirable to match the network to your simulation
configuration. If using a different PA, signal bandwidth, or target input power level, retrain the
network. Training the neural network on an Intel® Xeon(R) W-2133 CPU takes about 6 minutes to
satisfy the early stopping criteria specified above.

trainNow = ;
if trainNow
  netDPD = trainNetwork(inputTrainMtx,outputTrainMtx,lgraph,options); %#ok<UNRCH> 

  if 
    % Select true to save data for saved data workflow
    save savedNet netDPD
  end
else
  load('savedNetNIVST100MHz');
end

The following shows the training process with the given options. Random initialization of the weights
for different layers affects the training process. To obtain the best root mean squared error (RMSE)
for the final validation, train the same network a few times.

 Neural Network for Digital Predistortion Design - Offline Training

14-87



Test NN-DPD

This figure shows how to check the performance of the NN-DPD. To test the NN-DPD, pass the test
signal through the NN-DPD and the PA and examine these performance metrics:

• Normalized mean square error (NMSE), measured between the input to the NN-DPD and output
of the PA

• Adjacent channel power ratio (ACPR), measured at the output of the PA by using the comm.ACPR
(Communications Toolbox) System object

• Percent RMS error vector magnitude (EVM), measured by comparing the OFDM demodulation
output to the 16-QAM modulated symbols by using the comm.EVM (Communications Toolbox)
System object

Perform these tests for both the NN-DPD and also the memory polynomial DPD described in the
“Digital Predistortion to Compensate for Power Amplifier Nonlinearities” (Communications Toolbox)
example.

14 Wireless Comm Examples

14-88



if strcmp(dataSource,"NI VST")
  % Pass signal through NN-DPD
  dpdOutNN = predict(netDPD,inputTestMtx,ExecutionEnvironment="cpu");
  dpdOutNN = [zeros(memDepth,1);...
    double(complex(dpdOutNN(:,1),dpdOutNN(:,2)))];
  dpdOutNN = dpdOutNN/scalingFactor;
  paOutputNN = helperNNDPDPAMeasure(dpdOutNN,Fs,VST);

  % Pass signal through memory polynomial DPD
  dpdOutMP = helperNNDPDMemoryPolynomial(paInputTest,paInputTrain, ...
    paOutputTrain,nonlinearDegree,memDepth);
  paOutputMP = helperNNDPDPAMeasure(dpdOutMP,Fs,VST);

  if 
    % Select true to save data for saved data workflow
    save savedTestResults paOutputNN dpdOutNN dpdOutMP paOutputMP %#ok<UNRCH> 
  end
elseif strcmp(dataSource,"Saved Data")
  load('savedTestResultsNIVST100MHz_R2023a');
end

% Evaluate performance with NN-DPD
acprNNDPD = localACPR(paOutputNN,Fs,bw);
nmseNNDPD = localNMSE(paInputTest,paOutputNN);
evmNNDPD = localEVM(paOutputNN,qamRefSymTest,ofdmParams);
% Evaluate the performance without DPD
acprNoDPD = localACPR(paOutputTest,Fs,bw);
nmseNoDPD = localNMSE(paInputTest,paOutputTest);
evmNoDPD = localEVM(paOutputTest,qamRefSymTest,ofdmParams);
% Evaluate the performance with memory polynomial DPD
acprMPDPD = localACPR(paOutputMP,Fs,bw);
nmseMPDPD = localNMSE(paInputTest,paOutputMP);
evmMPDPD = localEVM(paOutputMP,qamRefSymTest,ofdmParams);
% Create a table to display results
evm = [evmNoDPD;evmMPDPD;evmNNDPD];
acpr = [acprNoDPD;acprMPDPD;acprNNDPD];
nmse = [nmseNoDPD;nmseMPDPD;nmseNNDPD];
disp(table(acpr,nmse,evm, ...
  'VariableNames', ...

 Neural Network for Digital Predistortion Design - Offline Training

14-89



  {'ACPR_dB','NMSE_dB','EVM_percent'}, ...
  'RowNames', ...
  {'No DPD','Memory Polynomial DPD','Neural Network DPD'}))

                             ACPR_dB    NMSE_dB    EVM_percent
                             _______    _______    ___________

    No DPD                   -28.837    -22.063       5.859   
    Memory Polynomial DPD    -34.707    -28.507      2.5138   
    Neural Network DPD       -38.866    -31.708      1.9311   

sa = helperPACharPlotSpectrum(...
  [paOutputTest paOutputMP paOutputNN], ...
  {'No DPD','Memory Polynomial DPD', ...
  'Neural Network DPD'}, ...
  ofdmParams.OversamplingFactor,"Modulated",[-130 -50]);

As the PA heats, the performance characteristics change. Send bursty signals through the PA
repeatedly and plot system performance as a function of time. Each measurement takes about 6 s.
Every 600 s, stop for 300 s to allow the PA to cool down. The plot shows that the system performance
degrades with repeated use and recovers after the cooldown period. This behavior shows that after
some time, the PA characteristics might change and the DPD might not provide the required system
performance, such as a maximum EVM value. If the EVM value exceeds the allowed maximum value,
the neural network needs to be retrained to adapt to the changing PA characteristics.

14 Wireless Comm Examples

14-90



runRepeatedBurstTest = ;
if strcmp(dataSource,"NI VST") && runRepeatedBurstTest
  numMeas = 500;
  measTime = 6;
  acprNNDPD = zeros(numMeas,1);
  nmseNNDPD = zeros(numMeas,1);
  evmNNDPD = zeros(numMeas,1);
  [acprLine,nmseLine,evmLine] = initFigure();
  tStart = tic;
  cnt = 1;
  for p=1:numMeas
    % Pass signal through NN-DPD
    dpdOutNN = predict(netDPD,inputTestMtx,ExecutionEnvironment="cpu");
    dpdOutNN = [zeros(memDepth,1);...
      double(complex(dpdOutNN(:,1), dpdOutNN(:,2)))];
    paInput = dpdOutNN/scalingFactor;

    % Pass signals through PA
    paOutputNN = helperNNDPDPAMeasure(paInput,Fs,VST);

    % Evaluate performance with NN-DPD
    acprNNDPD(cnt) = localACPR(paOutputNN,Fs,bw);
    nmseNNDPD(cnt) = localNMSE(paInputTest,paOutputNN);
    evmNNDPD(cnt) = localEVM(paOutputNN,qamRefSymTest,ofdmParams);
    updateFigure(acprLine,nmseLine,evmLine, ...
      acprNNDPD(cnt),nmseNNDPD(cnt),evmNNDPD(cnt),tStart);
    cnt = cnt +1;

    if mod(p,100) == 0
      for q=1:50
        pause(measTime)
        acprNNDPD(cnt) = NaN;
        nmseNNDPD(cnt) = NaN;
        evmNNDPD(cnt) = NaN;
        updateFigure(acprLine,nmseLine,evmLine, ...
          acprNNDPD(cnt),nmseNNDPD(cnt),evmNNDPD(cnt),tStart);
        cnt = cnt +1;
      end
    end
  end
else
  load('savedRepeatTestResultsNIVST100MHz');
  figure
  numMeas = length(acprNNDPD);
  t = (0:numMeas-1)*6;
  subplot(3,1,1)
  plot(t,acprNNDPD)
  grid on
  title("NN-DPD Performance over Many Bursts")
  ylabel("ACPR")
  subplot(3,1,2)
  plot(t,nmseNNDPD)
  grid on
  ylabel("NMSE")
  subplot(3,1,3)
  plot(t,evmNNDPD)
  grid on

 Neural Network for Digital Predistortion Design - Offline Training

14-91



  ylabel("EVM")
  xlabel('t (s)')
end

if strcmp(dataSource,"NI VST")
  release(VST)
end

Further Exploration

This example demonstrates how to train a NN-DPD by using measured data from a PA. For the given
PA, target input power level, and driving signal, the NN-DPD is able to provide better performance
than memory polynomial DPD.

You can try changing the number of neurons per layer, number of hidden layers and target input
power level and see the effect of these parameters on the NN-DPD performance. You can also try
different input signals, such as OFDM signals with different bandwidth. You can also generate
standard-specific signals using the Wireless Waveform Generator app.

14 Wireless Comm Examples

14-92



Helper Functions

OFDM Signal Generation

• helperNNDPDGenerateOFDM

Signal Measurement and Input Processing

• helperNNDPDPAMeasure
• helperNNDPDInputLayer

Performance Evaluation and Comparison

• localNMSE on page 14-93
• localACPR on page 14-93
• localEVM on page 14-93
• helperNNDPDMemoryPolynomial

Local Functions

function acpr = localACPR(paOutput,sr,bw)
%localACPR Adjacent channel power ratio (ACPR)
%   A = localACPR(X,R,BW) calculates the ACPR value for the input signal X,
%   for an assumed signal bandwidth of BW. The sampling rate of X is R.

acprModel = comm.ACPR(...
  'SampleRate',sr, ...
  'MainChannelFrequency',0, ...
  'MainMeasurementBandwidth',bw, ...
  'AdjacentChannelOffset',[-bw bw], ...
  'AdjacentMeasurementBandwidth',bw);
acpr = acprModel(paOutput);
acpr = mean(acpr);
end

function nmseIndB = localNMSE(input,output)
%localNMSE Normalized mean squared error (NMSE)
%   E = localNMSE(X,Y) calculates the NMSE between X and Y.

nmse = sum(abs(input-output).^2) / sum(abs(input).^2);
nmseIndB = 10*log10(nmse);
end

function [rmsEVM,rxQAMSym] = localEVM(paOutput,qamRefSym,ofdmParams)
%localEVM Error vector magnitude (EVM)
%   [E,Y] = localEVM(X,REF,PARAMS) calculates EVM for signal, X, given the
%   reference signal, REF. X is OFDM modulated based on PARAMS.

% Downsample and demodulate
waveform = ofdmdemod(paOutput,ofdmParams.fftLength,ofdmParams.cpLength,...
    ofdmParams.cpLength,[1:ofdmParams.NumGuardBandCarrier/2+1 ...

 Neural Network for Digital Predistortion Design - Offline Training

14-93



     ofdmParams.fftLength-ofdmParams.NumGuardBandCarrier/2+1:ofdmParams.fftLength]',...
     OversamplingFactor=ofdmParams.OversamplingFactor);
rxQAMSym = waveform(:)*ofdmParams.OversamplingFactor;

% Compute EVM
evm = comm.EVM;
rmsEVM = evm(qamRefSym,rxQAMSym);
end

function [acprLine,nmseLine,evmLine] = initFigure()
%initFigure Initialize repeat runs figure

  figure
  subplot(3,1,1)
  acprLine = animatedline;
  grid on
  ylabel("ACPR (dB)")
  title("NN-DPD Performance Over Many Bursts")
  subplot(3,1,2)
  nmseLine = animatedline;
  grid on
  ylabel("NMSE (dB)")
  subplot(3,1,3)
  evmLine = animatedline;
  grid on
  ylabel("EVM (%)")
  xlabel("t (s)")
end

function updateFigure(acprLine,nmseLine,evmLine,acprNNDPD,nmseNNDPD,evmNNDPD,tStart)
%updateFigure Update repeat runs figure

    addpoints(acprLine,toc(tStart),acprNNDPD)
    addpoints(nmseLine,toc(tStart),nmseNNDPD)
    addpoints(evmLine,toc(tStart),evmNNDPD)
    drawnow limitrate
end

References

[1] Tarver, Chance, Liwen Jiang, Aryan Sefidi, and Joseph R. Cavallaro. “Neural Network DPD via
Backpropagation through a Neural Network Model of the PA.” In 2019 53rd Asilomar Conference on
Signals, Systems, and Computers, 358–62. Pacific Grove, CA, USA: IEEE, 2019. https://doi.org/
10.1109/IEEECONF44664.2019.9048910.

[2] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John Pastalan. “A
Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers.” IEEE
Transactions on Signal Processing 54, no. 10 (October 2006): 3852–60. https://doi.org/10.1109/
TSP.2006.879264.

[3] Wu, Yibo, Ulf Gustavsson, Alexandre Graell i Amat, and Henk Wymeersch. “Residual Neural
Networks for Digital Predistortion.” In GLOBECOM 2020 - 2020 IEEE Global Communications

14 Wireless Comm Examples

14-94



Conference, 01–06. Taipei, Taiwan: IEEE, 2020. https://doi.org/10.1109/
GLOBECOM42002.2020.9322327.

[4] Wang, Dongming, Mohsin Aziz, Mohamed Helaoui, and Fadhel M. Ghannouchi. “Augmented Real-
Valued Time-Delay Neural Network for Compensation of Distortions and Impairments in Wireless
Transmitters.” IEEE Transactions on Neural Networks and Learning Systems 30, no. 1 (January
2019): 242–54. https://doi.org/10.1109/TNNLS.2018.2838039.

[5] Sun, Jinlong, Juan Wang, Liang Guo, Jie Yang, and Guan Gui. “Adaptive Deep Learning Aided
Digital Predistorter Considering Dynamic Envelope.” IEEE Transactions on Vehicular Technology 69,
no. 4 (April 2020): 4487–91. https://doi.org/10.1109/TVT.2020.2974506.

[6] Sun, Jinlong, Wenjuan Shi, Zhutian Yang, Jie Yang, and Guan Gui. “Behavioral Modeling and
Linearization of Wideband RF Power Amplifiers Using BiLSTM Networks for 5G Wireless Systems.”
IEEE Transactions on Vehicular Technology 68, no. 11 (November 2019): 10348–56. https://doi.org/
10.1109/TVT.2019.2925562.

[7] Paaso, Henna, and Aarne Mammela. “Comparison of Direct Learning and Indirect Learning
Predistortion Architectures.” In 2008 IEEE International Symposium on Wireless Communication
Systems, 309–13. Reykjavik: IEEE, 2008. https://doi.org/10.1109/ISWCS.2008.4726067.

See Also
Functions
featureInputLayer | fullyConnectedLayer | reluLayer | trainNetwork |
trainingOptions

Objects
comm.DPD | comm.DPDCoefficientEstimator | comm.OFDMModulator |
comm.OFDMDemodulator | comm.EVM | comm.ACPR

More About
• “Deep Learning in MATLAB” on page 1-2
• “Neural Network for Digital Predistortion Design - Online Training” on page 14-61

 Neural Network for Digital Predistortion Design - Offline Training

14-95



Neural Network for Beam Selection

This example shows how to use a neural network to reduce the overhead in the beam selection task.
In the example, you use only the location of the receiver rather than knowledge of the communication
channels. Instead of an exhaustive beam search over all the beam pairs, you can reduce beam
sweeping overhead by searching among the selected K beam pairs. Considering a system with a total
of 16 beam pairs, simulation results in this example show the designed machine learning algorithm
can achieve an accuracy of 90% by performing an exhaustive search over only half of the beam pairs.

Introduction

To enable millimeter wave (mmWave) communications, beam management techniques must be used
due to the high pathloss and blockage experienced at high frequencies. Beam management is a set of
Layer 1 (physical layer) and Layer 2 (medium access control) procedures to establish and retain an
optimal beam pair (transmit beam and a corresponding receive beam) for good connectivity [1 on
page 14-115]. For simulations of 5G New Radio (NR) beam management procedures, see the “NR
SSB Beam Sweeping” (5G Toolbox) and “NR Downlink Transmit-End Beam Refinement Using CSI-RS”
(5G Toolbox) examples.

This example considers beam selection procedures when a connection is established between the
user equipment (UE) and access network node (gNB). In 5G NR, the beam selection procedure for
initial access consists of beam sweeping, which requires exhaustive searches over all the beams on
the transmitter and the receiver sides, and then selection of the beam pair offering the strongest
reference signal received power (RSRP). Since mmWave communications require many antenna
elements, implying many beams, an exhaustive search over all beams becomes computationally
expensive and increases the initial access time.

To avoid repeatedly performing an exhaustive search and to reduce the communication overhead,
machine learning has been applied to the beam selection problem. Typically, the beam selection
problem is posed as a classification task, where the target output is the best beam pair index. The
extrinsic information, including lidar, GPS signals, and roadside camera images, is used as input to
the machine learning algorithms [2 on page 14-115]-[6 on page 14-115]. Specifically, given this out-of-
band information, a trained machine learning model recommends a set of K good beam pairs. Instead
of an exhaustive search over all the beam pairs, the simulation reduces beam sweeping overhead by
searching only among the selected K beam pairs.

This example uses a neural network to perform beam selection using only the GPS coordinates of the
receiver. Fixing the locations of the transmitter and the scatterers, the example generates a set of
training samples: Each sample consists of a receiver location (GPS data) and the true optimal beam
pair index (found by performing exhaustive search over all the beam pairs at transmit and receive
ends). The example designs and trains a neural network that uses the location of the receiver as the
input and the true optimal beam pair index as the correct label. During the testing phase, the neural
network first outputs K good beam pairs. An exhaustive search over these K beam pairs is followed,
and the beam pair with the highest average RSRP is selected as the final predicted beam pair by the
neural network.

The example measures the effectiveness of the proposed method using two metrics: average RSRP
and top-K accuracy [2 on page 14-115]-[6 on page 14-115]. This figure shows the main processing
steps.

14 Wireless Comm Examples

14-96



rng(211);                           % Set RNG state for repeatability

Generate Training Data

In the prerecorded data, receivers are randomly distributed on the perimeter of a 6-meter square and
configured with 16 beam pairs (four beams on each end, analog beamformed with 1 RF chain). After
setting up a MIMO scattering channel, the example considers 200 different receiver locations in the
training set and 100 different receiver locations in the test sets. The prerecorded data uses 2-D
location coordinates. Specifically, the third GPS coordinate of each sample is always zero. As in the NR
SSB Beam Sweeping example, for each location, SSB-based beam sweeping is performed for an
exhaustive search over all 16 beam pairs. Since AWGN is added during the exhaustive search, for
each location, the example runs four different trials and determines the true optimal beam pair by
picking the beam pair with the highest average RSRP.

To generate new training and test sets, you can adjust the useSavedData and SaveData logicals. Be
aware that regenerating data takes a significant amount of time.

useSavedData = true;
saveData = false;

if useSavedData
    load nnBS_prm.mat;              % Load beam selection system parameters
    load nnBS_TrainingData.mat;     % Load prerecorded training samples 
    %   (input: receiver's location; output: optimal beam pair indices)
    load nnBS_TestData.mat;         % Load prerecorded test samples
else

 Neural Network for Beam Selection

14-97



Configure Frequency and Beam Sweeping Angles

    prm.NCellID = 1;                    % Cell ID
    prm.FreqRange = 'FR1';              % Frequency range: 'FR1' or 'FR2'   
    
    prm.CenterFreq = 2.5e9;             % Hz    
    prm.SSBlockPattern = 'Case B';      % Case A/B/C/D/E    
    prm.SSBTransmitted = [ones(1,4) zeros(1,0)]; % 4/8 or 64 in length
        
    prm.TxArraySize = [8 8];            % Transmit array size, [rows cols]
    prm.TxAZlim = [-163 177];           % Transmit azimuthal sweep limits
    prm.TxELlim = [-90 0];              % Transmit elevation sweep limits
    
    prm.RxArraySize = [2 2];            % Receive array size, [rows cols]    
    prm.RxAZlim = [-177 157];           % Receive azimuthal sweep limits
    prm.RxELlim = [0 90];               % Receive elevation sweep limits
    
    prm.ElevationSweep = false;         % Enable/disable elevation sweep
    prm.SNRdB = 30;                     % SNR, dB
    prm.RSRPMode = 'SSSwDMRS';          % {'SSSwDMRS', 'SSSonly'}
    
    prm = validateParams(prm);

Synchronization Signal Burst Configuration

    txBurst = nrWavegenSSBurstConfig;
    txBurst.BlockPattern = prm.SSBlockPattern;
    txBurst.TransmittedBlocks = prm.SSBTransmitted;
    txBurst.Period = 20;
    txBurst.SubcarrierSpacingCommon = prm.SubcarrierSpacingCommon;

Scatterer Configuration

    c = physconst('LightSpeed');   % Propagation speed
    prm.lambda = c/prm.CenterFreq; % Wavelength
    
    prm.rightCoorMax = 10;    % Maximum x-coordinate
    prm.topCoorMax = 10;      % Maximum y-coordinate
    prm.posTx = [3.5;4.2;0];  % Transmit array position, [x;y;z], meters           

    % Scatterer locations
    % Generate scatterers at random positions
    Nscat = 10;        % Number of scatterers 
    azRange = prm.TxAZlim(1):prm.TxAZlim(2);
    elRange = -90:90;    
            
    % More evenly spaced scatterers
    randAzOrder = round(linspace(1, length(azRange), Nscat));
    azAngInSph = azRange(randAzOrder(1:Nscat));   
    
    % Consider a 2-D area, i.e., the elevation angle is zero
    elAngInSph = zeros(size(azAngInSph));
    r = 2;            % radius
    [x,y,z] = sph2cart(deg2rad(azAngInSph),deg2rad(elAngInSph),r);
    prm.ScatPos = [x;y;z] + [prm.rightCoorMax/2;prm.topCoorMax/2;0];

14 Wireless Comm Examples

14-98



Antenna Array Configuration

    % Transmit array
    if prm.IsTxURA
        % Uniform rectangular array
        arrayTx = phased.URA(prm.TxArraySize,0.5*prm.lambda, ...
            'Element',phased.IsotropicAntennaElement('BackBaffled',true));
    else
        % Uniform linear array
        arrayTx = phased.ULA(prm.NumTx, ...
            'ElementSpacing',0.5*prm.lambda, ...
            'Element',phased.IsotropicAntennaElement('BackBaffled',true));
    end

    % Receive array
    if prm.IsRxURA
        % Uniform rectangular array
        arrayRx = phased.URA(prm.RxArraySize,0.5*prm.lambda, ...
            'Element',phased.IsotropicAntennaElement);
    else
        % Uniform linear array
        arrayRx = phased.ULA(prm.NumRx, ...
            'ElementSpacing',0.5*prm.lambda, ...
            'Element',phased.IsotropicAntennaElement);
    end

Determine Tx/Rx Positions

    % Receiver locations
    % Training data: X points around a rectangle: each side has X/4 random points
    % X: X/4 for around square, X/10 for validation => lcm(4,10) = 20 smallest
    NDiffLocTrain = 200;
    pointsEachSideTrain = NDiffLocTrain/4;
    prm.NDiffLocTrain = NDiffLocTrain;
    
    locationX = 2*ones(pointsEachSideTrain, 1);
    locationY = 2 + (8-2)*rand(pointsEachSideTrain, 1);
    
    locationX = [locationX; 2 + (8-2)*rand(pointsEachSideTrain, 1)];
    locationY = [locationY; 8*ones(pointsEachSideTrain, 1)];
    
    locationX = [locationX; 8*ones(pointsEachSideTrain, 1)];
    locationY = [locationY; 2 + (8-2)*rand(pointsEachSideTrain, 1)];  
    
    locationX = [locationX; 2 + (8-2)*rand(pointsEachSideTrain, 1)];
    locationY = [locationY; 2*ones(pointsEachSideTrain, 1)];   
    
    locationZ = zeros(size(locationX));
    locationMat = [locationX locationY locationZ];

    % Fixing receiver's location, run repeated simulations to consider
    % different realizations of AWGN
    prm.NRepeatSameLoc = 4;

    locationMatTrain = repelem(locationMat,prm.NRepeatSameLoc, 1);

    % Test data: Y points around a rectangle: each side has Y/4 random points
    % Different data than test, but a smaller number

 Neural Network for Beam Selection

14-99



    NDiffLocTest = 100;
    pointsEachSideTest = NDiffLocTest/4;
    prm.NDiffLocTest = NDiffLocTest;
    
    locationX = 2*ones(pointsEachSideTest, 1);
    locationY = 2 + (8-2)*rand(pointsEachSideTest, 1);
    
    locationX = [locationX; 2 + (8-2)*rand(pointsEachSideTest, 1)];
    locationY = [locationY; 8*ones(pointsEachSideTest, 1)];
    
    locationX = [locationX; 8*ones(pointsEachSideTest, 1)];
    locationY = [locationY; 2 + (8-2)*rand(pointsEachSideTest, 1)];  
    
    locationX = [locationX; 2 + (8-2)*rand(pointsEachSideTest, 1)];
    locationY = [locationY; 2*ones(pointsEachSideTest, 1)];   
    
    locationZ = zeros(size(locationX));
    locationMat = [locationX locationY locationZ];

    locationMatTest = repelem(locationMat,prm.NRepeatSameLoc,1);
    
    [optBeamPairIdxMatTrain,rsrpMatTrain] = hGenDataMIMOScatterChan('training',locationMatTrain,prm,txBurst,arrayTx,arrayRx,311);
    [optBeamPairIdxMatTest,rsrpMatTest] = hGenDataMIMOScatterChan('test',locationMatTest,prm,txBurst,arrayTx,arrayRx,411);
    
    % Save generated data
    if saveData
        save('nnBS_prm.mat','prm');
        save('nnBS_TrainingData.mat','optBeamPairIdxMatTrain','rsrpMatTrain','locationMatTrain');
        save('nnBS_TestData.mat','optBeamPairIdxMatTest','rsrpMatTest','locationMatTest');
    end
end

Plot Transmitter and Scatterer Locations

figure
scatter(prm.posTx(1),prm.posTx(2),100,'r^','filled');
hold on;
scatter(prm.ScatPos(1,:),prm.ScatPos(2,:),100,[0.9290 0.6940 0.1250],'s','filled');
xlim([0 10])
ylim([0 10])
title('Transmitter and Scatterers Positions')
legend('Transmitter','Scatterers')
xlabel('x (m)')
ylabel('y (m)')

14 Wireless Comm Examples

14-100



Data Processing and Visualization

Next, label the beam pair with the highest average RSRP as the true optimal beam pair. Convert one-
hot encoding labels to categorical data to use for classification. Finally, augment the categorical data
so that it has 16 classes total to match the possible number of beam pairs (although classes may have
unequal number of elements). The augmentation is to ensure that the output of the neural network
has the desired dimension 16.

Process Training Data

% Choose the best beam pair by picking the one with the highest average RSRP
% (taking average over NRepeatSameLoc different trials at each location)
avgOptBeamPairIdxCellTrain = cell(size(optBeamPairIdxMatTrain, 1)/prm.NRepeatSameLoc, 1);
avgOptBeamPairIdxScalarTrain = zeros(size(optBeamPairIdxMatTrain, 1)/prm.NRepeatSameLoc, 1);
for locIdx = 1:size(optBeamPairIdxMatTrain, 1)/prm.NRepeatSameLoc
    avgRsrp = squeeze(rsrpMatTrain(:,:,locIdx));
    [~, targetBeamIdx] = max(avgRsrp(:));
    avgOptBeamPairIdxScalarTrain(locIdx) = targetBeamIdx;
    avgOptBeamPairIdxCellTrain{locIdx} = num2str(targetBeamIdx);
end

% Even though there are a total of 16 beam pairs, due to the fixed topology
% (transmitter/scatterers/receiver locations), it is possible
% that some beam pairs are never selected as an optimal beam pair
%
% Therefore, we augment the categories so 16 classes total are in the data
% (although some classes may have zero elements)

 Neural Network for Beam Selection

14-101



allBeamPairIdxCell = cellstr(string((1:prm.numBeams^2)'));
avgOptBeamPairIdxCellTrain = categorical(avgOptBeamPairIdxCellTrain, allBeamPairIdxCell);
NBeamPairInTrainData = numel(categories(avgOptBeamPairIdxCellTrain)); % Should be 16

Process Testing Data

% Decide the best beam pair by picking the one with the highest avg. RSRP
avgOptBeamPairIdxCellTest = cell(size(optBeamPairIdxMatTest, 1)/prm.NRepeatSameLoc, 1);
avgOptBeamPairIdxScalarTest = zeros(size(optBeamPairIdxMatTest, 1)/prm.NRepeatSameLoc, 1);
for locIdx = 1:size(optBeamPairIdxMatTest, 1)/prm.NRepeatSameLoc
    avgRsrp = squeeze(rsrpMatTest(:,:,locIdx));
    [~, targetBeamIdx] = max(avgRsrp(:));
    avgOptBeamPairIdxScalarTest(locIdx) = targetBeamIdx;
    avgOptBeamPairIdxCellTest{locIdx} = num2str(targetBeamIdx);
end
% Augment the categories such that the data has 16 classes total
avgOptBeamPairIdxCellTest = categorical(avgOptBeamPairIdxCellTest, allBeamPairIdxCell);
NBeamPairInTestData = numel(categories(avgOptBeamPairIdxCellTest)); % Should be 16

Create Input/Output Data for Neural Network

trainDataLen = size(locationMatTrain, 1)/prm.NRepeatSameLoc;
trainOut = avgOptBeamPairIdxCellTrain;
sampledLocMatTrain = locationMatTrain(1:prm.NRepeatSameLoc:end, :);
trainInput = sampledLocMatTrain(1:trainDataLen, :);

% Take 10% data out of test data as validation data
valTestDataLen = size(locationMatTest, 1)/prm.NRepeatSameLoc;
valDataLen = round(0.1*size(locationMatTest, 1))/prm.NRepeatSameLoc;
testDataLen = valTestDataLen-valDataLen;
  
% Randomly shuffle the test data such that the distribution of the
% extracted validation data is closer to test data
rng(111)
shuffledIdx = randperm(prm.NDiffLocTest); 
avgOptBeamPairIdxCellTest = avgOptBeamPairIdxCellTest(shuffledIdx);
avgOptBeamPairIdxScalarTest = avgOptBeamPairIdxScalarTest(shuffledIdx);
rsrpMatTest = rsrpMatTest(:,:,shuffledIdx);

valOut = avgOptBeamPairIdxCellTest(1:valDataLen, :);
testOutCat = avgOptBeamPairIdxCellTest(1+valDataLen:end, :);

sampledLocMatTest = locationMatTest(1:prm.NRepeatSameLoc:end, :);
sampledLocMatTest = sampledLocMatTest(shuffledIdx, :);

valInput = sampledLocMatTest(1:valDataLen, :);
testInput = sampledLocMatTest(valDataLen+1:end, :);

Plot Optimal Beam Pair Distribution for Training Data

Plot the location and the optimal beam pair for each training sample (200 in total). Each color
represents one beam pair index. In other words, the data points with the same color belong to the
same class. Increase the training data set to possibly include each beam pair value, though the actual
distribution of the beam pairs would depend on the scatterer and transmitter locations.

figure
rng(111)    % for colors in plot
color = rand(NBeamPairInTrainData, 3);

14 Wireless Comm Examples

14-102



uniqueOptBeamPairIdx = unique(avgOptBeamPairIdxScalarTrain);
for n = 1:length(uniqueOptBeamPairIdx)
    beamPairIdx = find(avgOptBeamPairIdxScalarTrain == uniqueOptBeamPairIdx(n));
    locX = sampledLocMatTrain(beamPairIdx, 1);
    locY = sampledLocMatTrain(beamPairIdx, 2);
    scatter(locX, locY, [], color(n, :)); 
    hold on;
end
scatter(prm.posTx(1),prm.posTx(2),100,'r^','filled');
scatter(prm.ScatPos(1,:),prm.ScatPos(2,:),100,[0.9290 0.6940 0.1250],'s','filled');
hold off
xlabel('x (m)')
ylabel('y (m)')
xlim([0 10])
ylim([0 10])
title('Optimal Beam Pair Indices (Training Data)')

figure
histogram(trainOut)
title('Histogram of Optimal Beam Pair Indices (Training Data)')
xlabel('Beam Pair Index')
ylabel('Number of Occurrences')

 Neural Network for Beam Selection

14-103



Plot Optimal Beam Pair Distribution for Validation Data

figure
rng(111)    % for colors in plot
color = rand(NBeamPairInTestData, 3);
uniqueOptBeamPairIdx = unique(avgOptBeamPairIdxScalarTest(1:valDataLen));
for n = 1:length(uniqueOptBeamPairIdx)
    beamPairIdx = find(avgOptBeamPairIdxScalarTest(1:valDataLen) == uniqueOptBeamPairIdx(n));
    locX = sampledLocMatTest(beamPairIdx, 1);
    locY = sampledLocMatTest(beamPairIdx, 2);
    scatter(locX, locY, [], color(n, :)); 
    hold on;
end
scatter(prm.posTx(1),prm.posTx(2),100,'r^','filled');
scatter(prm.ScatPos(1,:),prm.ScatPos(2,:),100,[0.9290 0.6940 0.1250],'s','filled');
hold off
xlabel('x (m)')
ylabel('y (m)')
xlim([0 10])
ylim([0 10])
title('Optimal Beam Pair Indices (Validation Data)')

14 Wireless Comm Examples

14-104



figure
histogram(valOut)
title('Histogram of Optimal Beam Pair Indices (Validation Data)')
xlabel('Beam Pair Index')
ylabel('Number of Occurrences')

 Neural Network for Beam Selection

14-105



Plot Optimal Beam Pair Distribution for Test Data

figure
rng(111)    % for colors in plots
color = rand(NBeamPairInTestData, 3);
uniqueOptBeamPairIdx = unique(avgOptBeamPairIdxScalarTest(1+valDataLen:end));
for n = 1:length(uniqueOptBeamPairIdx)
    beamPairIdx = find(avgOptBeamPairIdxScalarTest(1+valDataLen:end) == uniqueOptBeamPairIdx(n));
    locX = sampledLocMatTest(beamPairIdx, 1);
    locY = sampledLocMatTest(beamPairIdx, 2);
    scatter(locX, locY, [], color(n, :)); 
    hold on;
end
scatter(prm.posTx(1),prm.posTx(2),100,'r^','filled');
scatter(prm.ScatPos(1,:),prm.ScatPos(2,:),100,[0.9290 0.6940 0.1250],'s','filled');
hold off
xlabel('x (m)')
ylabel('y (m)')
xlim([0 10])
ylim([0 10])
title('Optimal Beam Pair Indices (Test Data)')

14 Wireless Comm Examples

14-106



figure
histogram(testOutCat)
title('Histogram of Optimal Beam Pair Indices (Test Data)')
xlabel('Beam Pair Index')
ylabel('Number of Occurrences')

 Neural Network for Beam Selection

14-107



Design and Train Neural Network

Train a neural network with four hidden layers. The design is motivated by [3 on page 14-115] (four
hidden layers) and [5 on page 14-115] (two hidden layers with 128 neurons in each layer) in which
the receiver locations are also considered as the input to the neural network. To enable training,
adjust the doTraining logical.

This example also provides an option to weight the classes. Classes that occur more frequently have
smaller weights and classes that occur less frequently have larger weights. To use class weighting,
adjust the useDiffClassWeights logical.

Modify the network to experiment with different designs. If you modify one of the provided data sets,
you must retrain the network with the modified data sets. Retraining the network can take a
significant amount of time. Adjust the saveNet logical to use the trained network in subsequent runs.

doTraining = false;
useDiffClassWeights = false;
saveNet = false;

if doTraining    
    if useDiffClassWeights
        catCount = countcats(trainOut);
        catFreq = catCount/length(trainOut);
        nnzIdx = (catFreq ~= 0);
        medianCount = median(catFreq(nnzIdx));
        classWeights = 10*ones(size(catFreq));
        classWeights(nnzIdx) = medianCount./catFreq(nnzIdx);

14 Wireless Comm Examples

14-108



        filename = 'nnBS_trainedNetwWeighting.mat';
    else
        classWeights = ones(1,NBeamPairInTestData);
        filename = 'nnBS_trainedNet.mat';        
    end
    
    % Neural network design
    layers = [ ...
        featureInputLayer(3,'Name','input','Normalization','rescale-zero-one') 
        
        fullyConnectedLayer(96,'Name','linear1')
        leakyReluLayer(0.01,'Name','leakyRelu1')
        
        fullyConnectedLayer(96,'Name','linear2')
        leakyReluLayer(0.01,'Name','leakyRelu2')    
    
        fullyConnectedLayer(96,'Name','linear3')
        leakyReluLayer(0.01,'Name','leakyRelu3') 
    
        fullyConnectedLayer(96,'Name','linear4')
        leakyReluLayer(0.01,'Name','leakyRelu4')  
    
        fullyConnectedLayer(NBeamPairInTrainData,'Name','linear5')
        softmaxLayer('Name','softmax')
        classificationLayer('ClassWeights',classWeights,'Classes',allBeamPairIdxCell,'Name','output')];
    
    maxEpochs = 1000;
    miniBatchSize = 256;
    
    options = trainingOptions('adam', ...
        'MaxEpochs',maxEpochs, ...
        'MiniBatchSize',miniBatchSize, ...
        'InitialLearnRate',1e-4, ...    
        'ValidationData',{valInput,valOut}, ...
        'ValidationFrequency',500, ...
        'OutputNetwork', 'best-validation-loss', ...
        'Shuffle','every-epoch', ...
        'Plots','training-progress', ...
        'ExecutionEnvironment','cpu', ...
        'Verbose',0);
    
    % Train the network
    net = trainNetwork(trainInput,trainOut,layers,options);

    if saveNet
        save(filename,'net');
    end
else
    if useDiffClassWeights
        load 'nnBS_trainedNetwWeighting.mat';
    else
        load 'nnBS_trainedNet.mat';
    end
end

 Neural Network for Beam Selection

14-109



Compare Different Approaches: Top-K Accuracy

This section tests the trained network with unseen test data considering the top-K accuracy metric.
The top-K accuracy metric has been widely used in the neural network-based beam selection task [2
on page 14-115]-[6 on page 14-115].

Given a receiver location, the neural network first outputs K recommended beam pairs. Then it
performs an exhaustive sequential search on these K beam pairs and selects the one with the highest
average RSRP as the final prediction. If the true optimal beam pair is the final selected beam pair,
then a successful prediction occurs. Equivalently, a success occurs when the true optimal beam pair
is one of the K recommended beam pairs by the neural network.

Three benchmarks are compared. Each scheme produces the K recommended beam pairs.

1 KNN - For a test sample, this method first collects K closest training samples based on GPS
coordinates. The method then recommends all the beam pairs associated with these K training
samples. Since each training sample has a corresponding optimal beam pair, the number of beam
pairs recommended is at most K(some beam pairs might be the same).

2 Statistical Info [5 on page 14-115] - This method first ranks all the beam pairs according to their
relative frequency in the training set, and then always selects the first K beam pairs.

3 Random [5 on page 14-115] - For a test sample, this method randomly chooses K beam pairs.

The plot shows that for K = 8, the accuracy is already more than 90%, which highlights the
effectiveness of using the trained neural network for the beam selection task. When K = 16, every
scheme (except KNN) is relaxed to the exhaustive search over all the 16 beam pairs, and hence
achieves an accuracy of 100%. However, when K = 16, KNN considers 16 closest training samples,
and the number of distinct beam pairs from these samples is often less than 16. Hence, KNN does not
achieve an accuracy of 100%.

rng(111)    % for repeatability of the "Random" policy
testOut = avgOptBeamPairIdxScalarTest(1+valDataLen:end, :);
statisticCount = countcats(testOutCat);
predTestOutput = predict(net,testInput,'ExecutionEnvironment','cpu');

K = prm.numBeams^2;
accNeural = zeros(1,K);
accKNN = zeros(1,K);
accStatistic = zeros(1,K);
accRandom = zeros(1,K);                
for k = 1:K    
    predCorrectNeural = zeros(testDataLen,1);      
    predCorrectKNN = zeros(testDataLen,1); 
    predCorrectStats = zeros(testDataLen,1);  
    predCorrectRandom = zeros(testDataLen,1);
    knnIdx = knnsearch(trainInput,testInput,'K',k);

    for n = 1:testDataLen 
        trueOptBeamIdx = testOut(n);  

        % Neural Network
        [~, topKPredOptBeamIdx] = maxk(predTestOutput(n, :),k);
        if sum(topKPredOptBeamIdx == trueOptBeamIdx) > 0 
            % if true, then the true correct index belongs to one of the K predicted indices
            predCorrectNeural(n,1) = 1;
        end 

14 Wireless Comm Examples

14-110



        
        % KNN
        neighborsIdxInTrainData = knnIdx(n,:);
        topKPredOptBeamIdx= avgOptBeamPairIdxScalarTrain(neighborsIdxInTrainData);      
        if sum(topKPredOptBeamIdx == trueOptBeamIdx) > 0 
            % if true, then the true correct index belongs to one of the K predicted indices
            predCorrectKNN(n,1) = 1;
        end  
        
        % Statistical Info
        [~, topKPredOptBeamIdx] = maxk(statisticCount,k);
        if sum(topKPredOptBeamIdx == trueOptBeamIdx) > 0 
            % if true, then the true correct index belongs to one of the K predicted indices
            predCorrectStats(n,1) = 1;
        end           
        
        % Random
        topKPredOptBeamIdx = randperm(prm.numBeams*prm.numBeams,k);
        if sum(topKPredOptBeamIdx == trueOptBeamIdx) > 0 
            % if true, then the true correct index belongs to one of the K predicted indices
            predCorrectRandom(n,1) = 1;
        end                  

    end

    accNeural(k)    = sum(predCorrectNeural)/testDataLen*100;
    accKNN(k)       = sum(predCorrectKNN)/testDataLen*100;
    accStatistic(k) = sum(predCorrectStats)/testDataLen*100;
    accRandom(k)    = sum(predCorrectRandom)/testDataLen*100;    
    
end

figure
lineWidth = 1.5;
colorNeural = [0 0.4470 0.7410];
colorKNN = [0.8500 0.3250 0.0980];
colorStats = [0.4940 0.1840 0.5560];
colorRandom = [0.4660 0.6740 0.1880];
plot(1:K,accNeural,'--*','LineWidth',lineWidth,'Color',colorNeural)
hold on
plot(1:K,accKNN,'--o','LineWidth',lineWidth,'Color',colorKNN)
plot(1:K,accStatistic,'--s','LineWidth',lineWidth,'Color',colorStats)
plot(1:K,accRandom,'--d','LineWidth',lineWidth,'Color',colorRandom)
hold off
grid on
xticks(1:K)
xlabel('$K$','interpreter','latex')
ylabel('Top-$K$ Accuracy','interpreter','latex')
title('Performance Comparison of Different Beam Pair Selection Schemes')
legend('Neural Network','KNN','Statistical Info','Random','Location','best')

 Neural Network for Beam Selection

14-111



Compare Different Approaches: Average RSRP

Using unseen test data, compute the average RSRP achieved by the neural network and the three
benchmarks. The plot shows that using the trained neural network results in an average RSRP close
to the optimal exhaustive search.

rng(111)    % for repeatability of the "Random" policy
K = prm.numBeams^2;
rsrpOptimal = zeros(1,K);
rsrpNeural = zeros(1,K);
rsrpKNN = zeros(1,K);
rsrpStatistic = zeros(1,K);
rsrpRandom = zeros(1,K);
for k = 1:K
    rsrpSumOpt = 0;
    rsrpSumNeural = 0;
    rsrpSumKNN = 0;
    rsrpSumStatistic = 0;
    rsrpSumRandom = 0;
    
    knnIdx = knnsearch(trainInput,testInput,'K',k);

    for n = 1:testDataLen
        % Exhaustive Search
        trueOptBeamIdx = testOut(n);  
        rsrp = rsrpMatTest(:,:,valDataLen+n);
        rsrpSumOpt = rsrpSumOpt + rsrp(trueOptBeamIdx);

14 Wireless Comm Examples

14-112



        
        % Neural Network
        [~, topKPredOptCatIdx] = maxk(predTestOutput(n, :),k);    
        rsrpSumNeural = rsrpSumNeural + max(rsrp(topKPredOptCatIdx));         
      
        % KNN
        neighborsIdxInTrainData = knnIdx(n,:);
        topKPredOptBeamIdxKNN = avgOptBeamPairIdxScalarTrain(neighborsIdxInTrainData);    
        rsrpSumKNN = rsrpSumKNN + max(rsrp(topKPredOptBeamIdxKNN));  
        
        % Statistical Info
        [~, topKPredOptCatIdxStat] = maxk(statisticCount,k);
        rsrpSumStatistic = rsrpSumStatistic + max(rsrp(topKPredOptCatIdxStat));
        
        % Random
        topKPredOptBeamIdxRand = randperm(prm.numBeams*prm.numBeams,k);
        rsrpSumRandom = rsrpSumRandom + max(rsrp(topKPredOptBeamIdxRand));        
    end    
    rsrpOptimal(k)  = rsrpSumOpt/testDataLen/prm.NRepeatSameLoc;
    rsrpNeural(k)   = rsrpSumNeural/testDataLen/prm.NRepeatSameLoc;
    rsrpKNN(k)      = rsrpSumKNN/testDataLen/prm.NRepeatSameLoc;
    rsrpStatistic(k) = rsrpSumStatistic/testDataLen/prm.NRepeatSameLoc;
    rsrpRandom(k)   = rsrpSumRandom/testDataLen/prm.NRepeatSameLoc;
end

figure
lineWidth = 1.5;
plot(1:K,rsrpOptimal,'--h','LineWidth',lineWidth,'Color',[0.6350 0.0780 0.1840]);
hold on
plot(1:K,rsrpNeural,'--*','LineWidth',lineWidth,'Color',colorNeural)
plot(1:K,rsrpKNN,'--o','LineWidth',lineWidth,'Color',colorKNN)
plot(1:K,rsrpStatistic,'--s','LineWidth',lineWidth,'Color',colorStats)
plot(1:K,rsrpRandom,'--d','LineWidth',lineWidth, 'Color',colorRandom)
hold off
grid on
xticks(1:K)
xlabel('$K$','interpreter','latex')
ylabel('Average RSRP')
title('Performance Comparison of Different Beam Pair Selection Schemes')
legend('Exhaustive Search','Neural Network','KNN','Statistical Info','Random','Location','best')

 Neural Network for Beam Selection

14-113



Compare the end values for the optimal, neural network, and KNN approaches.

[rsrpOptimal(end-3:end); rsrpNeural(end-3:end); rsrpKNN(end-3:end);]

ans = 3×4

   80.7363   80.7363   80.7363   80.7363
   80.7363   80.7363   80.7363   80.7363
   80.5067   80.5068   80.5069   80.5212

The performance gap between KNN and the optimal methods indicates that the KNN might not
perform well even when a larger set of beam pairs is considered, say, 256.

Plot Confusion Matrix

We observe that the classes with fewer elements are negatively impacted with the trained network.
Using different weights for different classes could avoid this. Explore the same with the
useDiffClassWeights logical and specify custom weights per class.

predLabels = classify(net,testInput,'ExecutionEnvironment','cpu');
figure;
cm = confusionchart(testOutCat,predLabels);
title('Confusion Matrix')

14 Wireless Comm Examples

14-114



Conclusion and Further Exploration

This example describes the application of a neural network to the beam selection task for a 5G NR
system. You can design and train a neural network that outputs a set of K good beam pairs. Beam
sweeping overhead can be reduced by an exhaustive search only on those selected K beam pairs.

The example allows you to specify the scatterers in a MIMO channel. To see the impact of the channel
on the beam selection, experiment with different scenarios. The example also provides presaved
datasets that can be used to experiment with different network structures and training
hyperparameters.

From simulation results, for the prerecorded MIMO scattering channel for 16 beam pairs, the
proposed algorithm can achieve a top-K accuracy of 90% when K = 8. This indicates with the neural
network it is sufficient to perform an exhaustive search over only half of all the beam pairs, reducing
the beam sweeping overhead by 50%. Experiment with varying other system parameters to see the
efficacy of the network by regenerating data, then retraining and retesting the network.

References

1 3GPP TR 38.802, "Study on New Radio access technology physical layer aspects." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.

2 Klautau, A., González-Prelcic, N., and Heath, R. W., "LIDAR data for deep learning-based
mmWave beam-selection," IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 909–912, Jun.
2019.

 Neural Network for Beam Selection

14-115



3 Heng, Y., and Andrews, J. G., "Machine Learning-Assisted Beam Alignment for mmWave Systems,"
2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/
GLOBECOM38437.2019.9013296.

4 Klautau, A., Batista, P., González-Prelcic, N., Wang, Y., and Heath, R. W., "5G MIMO Data for
Machine Learning: Application to Beam-Selection Using Deep Learning," 2018 Information
Theory and Applications Workshop (ITA), 2018, pp. 1-9, doi: 10.1109/ITA.2018.8503086.

5 Matteo, Z., <https://github.com/ITU-AI-ML-in-5G-Challenge/PS-012-ML5G-PHY-Beam-
Selection_BEAMSOUP> (This is the team achieving the highest test score in the ITU Artificial
Intelligence/Machine Learning in 5G Challenge in 2020).

6 Sim, M. S., Lim, Y., Park, S. H., Dai, L., and Chae, C., "Deep Learning-Based mmWave Beam
Selection for 5G NR/6G With Sub-6 GHz Channel Information: Algorithms and Prototype
Validation," IEEE Access, vol. 8, pp. 51634-51646, 2020.

Local Function
function prm = validateParams(prm)
% Validate user specified parameters and return updated parameters
%
% Only cross-dependent checks are made for parameter consistency.

    if strcmpi(prm.FreqRange,'FR1')
        if prm.CenterFreq > 7.125e9 || prm.CenterFreq < 410e6
            error(['Specified center frequency is outside the FR1 ', ...
                   'frequency range (410 MHz - 7.125 GHz).']);
        end
        if strcmpi(prm.SSBlockPattern,'Case D') ||  ...
           strcmpi(prm.SSBlockPattern,'Case E')
            error(['Invalid SSBlockPattern for selected FR1 frequency ' ...
                'range. SSBlockPattern must be one of ''Case A'' or ' ...
                '''Case B'' or ''Case C'' for FR1.']);
        end
        if ~((length(prm.SSBTransmitted)==4) || ...
             (length(prm.SSBTransmitted)==8))
            error(['SSBTransmitted must be a vector of length 4 or 8', ...
                   'for FR1 frequency range.']);
        end
        if (prm.CenterFreq <= 3e9) && (length(prm.SSBTransmitted)~=4)
            error(['SSBTransmitted must be a vector of length 4 for ' ...
                   'center frequency less than or equal to 3GHz.']);
        end
        if (prm.CenterFreq > 3e9) && (length(prm.SSBTransmitted)~=8)
            error(['SSBTransmitted must be a vector of length 8 for ', ...
                   'center frequency greater than 3GHz and less than ', ...
                   'or equal to 7.125GHz.']);
        end
    else % 'FR2'
        if prm.CenterFreq > 52.6e9 || prm.CenterFreq < 24.25e9
            error(['Specified center frequency is outside the FR2 ', ...
                   'frequency range (24.25 GHz - 52.6 GHz).']);
        end
        if ~(strcmpi(prm.SSBlockPattern,'Case D') || ...
                strcmpi(prm.SSBlockPattern,'Case E'))
            error(['Invalid SSBlockPattern for selected FR2 frequency ' ...
                'range. SSBlockPattern must be either ''Case D'' or ' ...
                '''Case E'' for FR2.']);
        end

14 Wireless Comm Examples

14-116

https://github.com/ITU-AI-ML-in-5G-Challenge/PS-012-ML5G-PHY-Beam-Selection_BEAMSOUP
https://github.com/ITU-AI-ML-in-5G-Challenge/PS-012-ML5G-PHY-Beam-Selection_BEAMSOUP


        if length(prm.SSBTransmitted)~=64
            error(['SSBTransmitted must be a vector of length 64 for ', ...
                   'FR2 frequency range.']);
        end
    end

    % Number of beams at transmit/receive ends
    prm.numBeams = sum(prm.SSBTransmitted);
    
    prm.NumTx = prod(prm.TxArraySize);
    prm.NumRx = prod(prm.RxArraySize);    
    if prm.NumTx==1 || prm.NumRx==1
        error(['Number of transmit or receive antenna elements must be', ... 
               ' greater than 1.']);
    end
    prm.IsTxURA = (prm.TxArraySize(1)>1) && (prm.TxArraySize(2)>1);
    prm.IsRxURA = (prm.RxArraySize(1)>1) && (prm.RxArraySize(2)>1);
    
    if ~( strcmpi(prm.RSRPMode,'SSSonly') || ...
          strcmpi(prm.RSRPMode,'SSSwDMRS') )
        error(['Invalid RSRP measuring mode. Specify either ', ...
               '''SSSonly'' or ''SSSwDMRS'' as the mode.']);
    end

    % Select SCS based on SSBlockPattern
    switch lower(prm.SSBlockPattern)
        case 'case a'
            scs = 15;
            cbw = 10;
            scsCommon = 15;
        case {'case b', 'case c'}
            scs = 30;
            cbw = 25;
            scsCommon = 30;
        case 'case d'
            scs = 120;
            cbw = 100;
            scsCommon = 120;
        case 'case e'
            scs = 240;
            cbw = 200;
            scsCommon = 120;
    end
    prm.SCS = scs;
    prm.ChannelBandwidth = cbw;
    prm.SubcarrierSpacingCommon = scsCommon;
end

See Also
Functions
featureInputLayer | fullyConnectedLayer | reluLayer | trainNetwork |
trainingOptions

Objects
phased.ULA | phased.URA | phased.IsotropicAntennaElement

 Neural Network for Beam Selection

14-117



More About
• “Deep Learning in MATLAB” on page 1-2
• “NR SSB Beam Sweeping” (5G Toolbox)

14 Wireless Comm Examples

14-118



Spectrum Sensing with Deep Learning to Identify 5G and LTE
Signals

This example shows how to train a semantic segmentation network using deep learning for spectrum
monitoring. One of the uses of spectrum monitoring is to characterize spectrum occupancy. The
neural network in this example is trained to identify 5G NR and LTE signals in a wideband
spectrogram.

Introduction

Computer vision uses the semantic segmentation technique to identify objects and their locations in
an image or a video. In wireless signal processing, the objects of interest are wireless signals, and the
locations of the objects are the frequency and time occupied by the signals. In this example we apply
the semantic segmentation technique to wireless signals to identify spectral content in a wideband
spectrogram.

In the following, you will:

1 Generate training signals.
2 Apply transfer learning to a semantic segmentation network to identify 5G NR and LTE signals in

time and frequency.
3 Test the trained network with synthetic signals.
4 Use an SDR to test the network with over the air (OTA) signals.

Generate Training Data

One advantage of wireless signals in the deep learning domain is the fact that the signals are
synthesized. Also, we have highly reliable channel and RF impairment models. As a result, instead of
collecting and manually labeling signals, you can generate 5G NR signals using 5G Toolbox™ and LTE
signals using LTE Toolbox™ functions. You can pass these signals through standards-specified
channel models to create the training data.

Train the network with frames that contain only 5G NR or LTE signals and then shift these signals in
frequency randomly within the band of interest. Each frame is 40 ms long, which is the duration of 40
subframes. The network assumes that the 5G NR or LTE signal occupies the same band for the whole
frame duration. To test the network performance, create frames that contain both 5G NR and LTE
signals on distinct random bands within the band of interest.

Use a sampling rate of 61.44 MHz. This rate is high enough to process most of the latest standard
signals and several low-cost software defined radio (SDR) systems can sample at this rate providing
about 50 MHz of useful bandwidth. To monitor a wider band, you can increase the sample rate,
regenerate training frames and retrain the network.

Use the helperSpecSenseTrainingData function to generate training frames. This function
generates 5G NR signals using the helperSpecSenseNRSignal function and LTE signals using the
helperSpecSenseLTESignal function. This table lists 5G NR variable signal parameters.

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

14-119



This table lists LTE variable signal parameters.

Use the nrCDLChannel (5G Toolbox) and the lteFadingChannel (LTE Toolbox) functions to add
channel impairments. For details of the channel configurations, see the
helperSpecSenseTrainingData function. This table lists channel parameters.

The helperSpecSenseTrainingData function uses the helperSpecSenseSpectrogramImage
function to create spectrogram images from complex baseband signals. Calculate the spectrograms
using an FFT length of 4096. Generate 256 by 256 RGB images. This image size allows a large
enough batch of images to fit in memory during training while providing enough resolution in time
and frequency. If your GPU does not have sufficient memory, you can resize the images to smaller
sizes or reduce the training batch size.

The generateTrainData variable determines whether training data is to be downloaded or
generated. Choosing "Use downloaded data" sets the generateTrainData variable to false.
Choosing "Generate training data" sets the generateTrainData variable to true to generate the
training data from scratch. Data generation may take several hours depending on the configuration of
your computer. Using a PC with Intel® Xeon® W-2133 CPU @ 3.60GHz and creating a parallel pool
with six workers with the Parallel Computing Toolbox™, training data generation takes about an hour.
Choose "Train network now" to train the network. This process takes about 20 minutes with the same
PC and NVIDIA® Titan V GPU. Choose "Use trained network" to skip network training. Instead, the
example downloads the trained network.

Use 900 frames from each set of signals: 5G NR only, LTE only and 5G NR and LTE both. If you
increase the number of possible values for the system parameters, increase the number of training
frames.

imageSize = [256 256];    % pixels
sampleRate = 61.44e6;     % Hz
numSubFrames = 40;        % corresponds to 40 ms
frameDuration = numSubFrames*1e-3;    % seconds
trainDir = fullfile(pwd,'TrainingData');

14 Wireless Comm Examples

14-120



generateTrainData = ;

trainNow = ;
if ~generateTrainData || ~trainNow
  helperSpecSenseDownloadData()
end

Starting download of data files from:
    https://www.mathworks.com/supportfiles/spc/SpectrumSensing/SpectrumSenseTrainingDataNetwork.tar.gz
Download complete. Extracting files.
Extract complete.

if generateTrainData
  numFramesPerStandard = 900;
  helperSpecSenseTrainingData(numFramesPerStandard,imageSize,trainDir,numSubFrames,sampleRate);
end

Load Training Data

Use the imageDatastore function to load training images with the spectrogram of 5G NR and LTE
signals. The imageDatastore function enables you to efficiently load a large collection of images
from disk. Spectrogram images are stored in .png files.

imds = imageDatastore(trainDir,'IncludeSubfolders',false,'FileExtensions','.png');

Use the pixelLabelDatastore (Computer Vision Toolbox) function to load spectrogram pixel label
image data. Each pixel is labeled as one of "NR", "LTE" or "Noise". A pixel label datastore
encapsulates the pixel label data and the label ID to a class name mapping. Pixel labels are stored
in .hdf files.

classNames = ["NR" "LTE" "Noise"];
pixelLabelID = [127 255 0];
pxdsTruth = pixelLabelDatastore(trainDir,classNames,pixelLabelID,...
  'IncludeSubfolders',false,'FileExtensions','.hdf');

Analyze Dataset Statistics

To see the distribution of class labels in the training dataset, use the countEachLabel (Computer
Vision Toolbox) function to count the number of pixels by class label, and plot the pixel counts by
class.

tbl = countEachLabel(pxdsTruth);
frequency = tbl.PixelCount/sum(tbl.PixelCount);
figure
bar(1:numel(classNames),frequency)
grid on
xticks(1:numel(classNames)) 
xticklabels(tbl.Name)
xtickangle(45)
ylabel('Frequency')

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

14-121



Ideally, all classes would have an equal number of observations. However, with wireless signals it is
common for the classes in the training set to be imbalanced. 5G NR signals may have larger
bandwidth than LTE signals, and noise fills the background. Because the learning is biased in favor of
the dominant classes, imbalance in the number of observations per class can be detrimental to the
learning process. In the Balance Classes Using Class Weighting on page 14-123 section, class
weighting is used to mitigate bias caused by imbalance in the number of observations per class.

Prepare Training, Validation, and Test Sets

The deep neural network uses 80% of the single signal images from the dataset for training and, 20%
of the images for validation. The helperSpecSensePartitionData function randomly splits the
image and pixel label data into training and validation sets.

[imdsTrain,pxdsTrain,imdsVal,pxdsVal] = helperSpecSensePartitionData(imds,pxdsTruth,[80 20]);
cdsTrain = combine(imdsTrain,pxdsTrain);
cdsVal = combine(imdsVal,pxdsVal);

% Apply a transform to resize the image and pixel label data to the desired
% size.
cdsTrain = transform(cdsTrain, @(data)preprocessTrainingData(data,imageSize));
cdsVal = transform(cdsVal, @(data)preprocessTrainingData(data,imageSize));

Train Deep Neural Network

Use the deeplabv3plusLayers (Computer Vision Toolbox) function to create a semantic
segmentation neural network. Choose resnet50 as the base network and specify the input image
size (number of pixels used to represent time and frequency axes) and the number of classes. If the
Deep Learning Toolbox™ Model for ResNet-50 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing resnet50 at the command line. If the required support package is installed, then the function
returns a DAGNetwork object.

14 Wireless Comm Examples

14-122



baseNetwork = ;
lgraph = deeplabv3plusLayers(imageSize,numel(classNames),baseNetwork);

Balance Classes Using Class Weighting

To improve training when classes in the training set are not balanced, you can use class weighting to
balance the classes. Use the pixel label counts computed earlier with the countEachLabel function
and calculate the median frequency class weights.

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq;

Specify the class weights using a pixelClassificationLayer (Computer Vision Toolbox).

pxLayer = pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights',classWeights);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

Select Training Options

Configure training using the trainingOptions function to specify the stochastic gradient descent
with momentum (SGDM) optimization algorithm and the hyper-parameters used for SGDM. To get the
best performance from the network, you can use the Experiment Manager to optimize training
options.

opts = trainingOptions("sgdm",...
  MiniBatchSize = 40,...
  MaxEpochs = 20, ...
  LearnRateSchedule = "piecewise",...
  InitialLearnRate = 0.02,...
  LearnRateDropPeriod = 10,...
  LearnRateDropFactor = 0.1,...
  ValidationData = cdsVal,...
  ValidationPatience = 5,...
  Shuffle="every-epoch",...
  OutputNetwork = "best-validation-loss",...
  Plots = 'training-progress')

opts = 
  TrainingOptionsSGDM with properties:

                        Momentum: 0.9000
                InitialLearnRate: 0.0200
               LearnRateSchedule: 'piecewise'
             LearnRateDropFactor: 0.1000
             LearnRateDropPeriod: 10
                L2Regularization: 1.0000e-04
         GradientThresholdMethod: 'l2norm'
               GradientThreshold: Inf
                       MaxEpochs: 20
                   MiniBatchSize: 40
                         Verbose: 1
                VerboseFrequency: 50
                  ValidationData: [1×1 matlab.io.datastore.TransformedDatastore]
             ValidationFrequency: 50
              ValidationPatience: 5
                         Shuffle: 'every-epoch'
                  CheckpointPath: ''

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

14-123



             CheckpointFrequency: 1
         CheckpointFrequencyUnit: 'epoch'
            ExecutionEnvironment: 'auto'
                      WorkerLoad: []
                       OutputFcn: []
                           Plots: 'training-progress'
                  SequenceLength: 'longest'
            SequencePaddingValue: 0
        SequencePaddingDirection: 'right'
            DispatchInBackground: 0
         ResetInputNormalization: 1
    BatchNormalizationStatistics: 'population'
                   OutputNetwork: 'best-validation-loss'

Train the network using the combined training data store, cdsTrain. The combined training data
store contains single signal frames and true pixel labels.

if trainNow
  [net,trainInfo] = trainNetwork(cdsTrain,lgraph,opts); %#ok<UNRCH> 
else
  load specSenseTrainedNet net
end

Test with Synthetic Signals

Test the network signal identification performance using signals that contain both 5G NR and LTE
signals. Use the semanticseg (Computer Vision Toolbox) function to get the pixel estimates of the
spectrogram images in the test data set. Use the evaluateSemanticSegmentation (Computer
Vision Toolbox) function to compute various metrics to evaluate the quality of the semantic
segmentation results.

dataDir = fullfile(trainDir,'LTE_NR');
imds = imageDatastore(dataDir,'IncludeSubfolders',false,'FileExtensions','.png');
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 900 images.

pxdsTruth = pixelLabelDatastore(dataDir,classNames,pixelLabelID,...
  'IncludeSubfolders',false,'FileExtensions','.hdf');
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 900 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.88609          0.87117       0.79066      0.79601        0.65623  

Plot the normalized confusion matrix for all test frames.

14 Wireless Comm Examples

14-124



cm = confusionchart(metrics.ConfusionMatrix.Variables, ...
  classNames, Normalization='row-normalized');
cm.Title = 'Normalized Confusion Matrix';

Plot the histogram of the per-image intersection over union (IoU). For each class, IoU is the ratio of
correctly classified pixels to the total number of ground truth and predicted pixels in that class.

imageIoU = metrics.ImageMetrics.MeanIoU;
figure
histogram(imageIoU)
grid on
xlabel('IoU')
ylabel('Number of Frames')
title('Frame Mean IoU')

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

14-125



Inspecting low SNR frames shows that the spectrogram images do not contain visual features that
can help the network identify the low SNR frames correctly. Repeat the same process, considering
only the frames with average SNR of 50dB or 100dB and ignoring the frames with average SNR of
40dB.

files = dir(fullfile(dataDir,'*.mat'));
dataFiles = {};
labelFiles = {};
for p=1:numel(files)
  load(fullfile(files(p).folder,files(p).name),'params');
  if params.SNRdB > 40
    [~,name] = fileparts(files(p).name);
    dataFiles = [dataFiles; fullfile(files(p).folder,[name '.png'])]; %#ok<AGROW>
    labelFiles = [labelFiles; fullfile(files(p).folder,[name '.hdf'])]; %#ok<AGROW>
  end
end
imds = imageDatastore(dataFiles);
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);

Running semantic segmentation network
-------------------------------------
* Processed 608 images.

pxdsTruth = pixelLabelDatastore(labelFiles,classNames,pixelLabelID);
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 608 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

14 Wireless Comm Examples

14-126



       0.94487          0.94503       0.89799      0.89582        0.74699  

Considering only the set of frames with higher SNR, replot the normalized confusion matrix and
observe the improved network accuracy.

cm = confusionchart(metrics.ConfusionMatrix.Variables, ...
  classNames, Normalization='row-normalized');
cm.Title = 'Normalized Confusion Matrix';

Considering only the set of frames with higher SNR, replot the per-image IoU histogram and observe
the improved distribution.

imageIoU = metrics.ImageMetrics.MeanIoU;
figure
histogram(imageIoU)
grid on
xlabel('IoU')
ylabel('Number of Frames')
title('Frame Mean IoU')

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

14-127



Identify 5G NR and LTE Signals in Spectrogram

Visualize the received spectrum, true labels, and predicted labels for the image with index 602.

imgIdx = 602;
rcvdSpectrogram = readimage(imds,imgIdx);
trueLabels = readimage(pxdsTruth,imgIdx);
predictedLabels = readimage(pxdsResults,imgIdx);
figure
helperSpecSenseDisplayResults(rcvdSpectrogram,trueLabels,predictedLabels, ...
  classNames,sampleRate,0,frameDuration)

14 Wireless Comm Examples

14-128



figure
helperSpecSenseDisplayIdentifiedSignals(rcvdSpectrogram,predictedLabels, ...
  classNames,sampleRate,0,frameDuration)

Test with Over-the-Air Signals

Test the performance of the trained network using over-the-air signal captures. Find a nearby base
station and tune the center frequency of your radio to cover the band of the signals you want to
identify. This example sets the center frequency to 2.35 GHz. If you have at least one ADALM-PLUTO
radio and have installed Communication Toolbox Support Package for ADALM-PLUTO Radio, you can
run this section of the code. In case you do not have access to an ADALM-PLUTO radio, this example
shows results of a test conducted using captured signals.

runSDRSection = false;
if helperIsPlutoSDRInstalled()  
  radios = findPlutoRadio();
  if length(radios) >= 1
    runSDRSection = true;
  else
    disp("At least one ADALM-PLUTO radios is needed. Skipping SDR test.")
  end
else
    disp("Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.")
    disp("Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.")
    disp("Skipping SDR test.")
end

Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.

Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.

Skipping SDR test.

if runSDRSection
  % Set up PlutoSDR receiver

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

14-129

https://www.mathworks.com/hardware-support/adalm-pluto-radio.html


  rx = sdrrx('Pluto');
  rx.CenterFrequency = 2.35e9;
  rx.BasebandSampleRate = sampleRate;
  rx.SamplesPerFrame = frameDuration*rx.BasebandSampleRate;
  rx.OutputDataType = 'single';
  rx.EnableBurstMode = true;
  rx.NumFramesInBurst = 1;
  Nfft = 4096;
  overlap = 10;

  meanAllScores = zeros([imageSize numel(classNames)]);
  segResults = zeros([imageSize 10]);
  for frameCnt=1:10
    rxWave = rx();
    rxSpectrogram = helperSpecSenseSpectrogramImage(rxWave,Nfft,sampleRate,imageSize);

    [segResults(:,:,frameCnt),scores,allScores] = semanticseg(rxSpectrogram,net);
    meanAllScores = (meanAllScores*(frameCnt-1) + allScores) / frameCnt;
  end
  release(rx)

  [~,predictedLabels] = max(meanAllScores,[],3);
  figure
  helperSpecSenseDisplayResults(rxSpectrogram,[],predictedLabels,classNames,...
    sampleRate,rx.CenterFrequency,frameDuration)
  figure
  freqBand = helperSpecSenseDisplayIdentifiedSignals(rxSpectrogram,predictedLabels,...
    classNames,sampleRate,rx.CenterFrequency,frameDuration)
else
  figure
  imshow('lte_capture_result1.png')
  figure
  imshow('lte_capture_result2.png')
  figure
  imshow('nr_capture_result1.png')
  figure
  imshow('nr_capture_result2.png')
end

14 Wireless Comm Examples

14-130



 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

14-131



Conclusions and Further Exploration

The trained network can distinguish 5G NR and LTE signals including two example captures from
real base stations. The network may not be able to identify every captured signal correctly. In such
cases, enhance the training data either by generating more representative synthetic signals or
capturing over-the-air signals and including these in the training set.

You can use the LTE “Cell Search, MIB and SIB1 Recovery” (LTE Toolbox) and the “NR Cell Search
and MIB and SIB1 Recovery” (5G Toolbox) examples to identify LTE and 5G NR base stations
manually to capture training data, respectively.

14 Wireless Comm Examples

14-132



If you need to monitor wider bands of spectrum, increase the sampleRate, regenerate the training
data and retrain the network.

Supporting Functions

function data = preprocessTrainingData(data, imageSize)
% Resize the training image and associated pixel label image.
data{1} = imresize(data{1},imageSize);
data{2} = imresize(data{2},imageSize);
end

See Also
classificationLayer | featureInputLayer | fullyConnectedLayer | reluLayer |
softmaxLayer | pixelLabelDatastore | countEachLabel | pixelClassificationLayer

More About
• “Deep Learning in MATLAB” on page 1-2

 Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals

14-133



Autoencoders for Wireless Communications

This example shows how to model an end-to-end communications system with an autoencoder to
reliably transmit information bits over a wireless channel.

Introduction

A traditional autoencoder is an unsupervised neural network that learns how to efficiently compress
data, which is also called encoding. The autoencoder also learns how to reconstruct the data from the
compressed representation such that the difference between the original data and the reconstructed
data is minimal.

Traditional wireless communication systems are designed to provide reliable data transfer over a
channel that impairs the transmitted signals. These systems have multiple components such as
channel coding, modulation, equalization, synchronization, etc. Each component is optimized
independently based on mathematical models that are simplified to arrive at closed form expressions.
On the contrary, an autoencoder jointly optimizes the transmitter and the receiver as a whole. This
joint optimization has the potential of providing a better performance than the traditional systems [1]
on page 14-148,[2] on page 14-148.

Traditional autoencoders are usually used to compress images, in other words remove redundancies
in an image and reduce its dimension. A wireless communication system on the other hand uses
channel coding and modulation techniques to add redundancy to the information bits. With this added
redundancy, the system can recover the information bits that are impaired by the wireless channel.
So, a wireless autoencoder actually adds redundancy and tries to minimize the number of errors in
the received information for a given channel while learning to apply both channel coding and
modulation in an unsupervised way.

Basic Autoencoder System

The following is the block diagram of a wireless autoencoder system. The encoder (transmitter) first
maps k information bits into a message s such that s ∈ {1, …, M}, where M = 2k. Then message s is
mapped to n real number to create x = f (s) ∈ ℝn. The last layer of the encoder imposes constraints on
x to further restrict the encoded symbols. The following are possible such constraints and are
implemented using the normalization layer:

• Energy constraint: ‖x‖2
2 ≤ n

• Average power constraint: E[ |xi |2 ] ≤ 1, ∀i

14 Wireless Comm Examples

14-134



Define the communication rate of this system as R = k/n [bits/channel use], where (n,k) means that
the system sends one of M = 2k messages using n channel uses. The channel impairs encoded (i.e.
transmitted) symbols to generate y ∈ ℝn. The decoder (i.e. receiver) produces an estimate, s, of the
transmitted message, s.

The input message is defined as a one-hot vector 1s ∈ ℝM, which is defined as a vector whose
elements are all zeros except the sth one. The channel is additive white Gaussian noise (AWGN) that
adds noise to achieve a given energy per data bit to noise power density ratio, Eb/No.

The autoencoder maps k data bits into n channel uses, which results in an effective coding rate of
R = k/n data bits per channel use. Then, 2 channel uses are mapped into a symbol, which results in 2
channel uses per symbol. Map the channel uses per channel symbol value to the BitsPerSymbol
parameter of the AWGN channel.

Define a (7,4) autoencoder network with energy normalization and a training Eb/No of 3 dB. In [1] on
page 14-148, authors showed that two fully connected layers for both the encoder (transmitter) and
the decoder (receiver) provides the best results with minimal complexity. Input layer
(featureInputLayer) accepts a one-hot vector of length M. The encoder has two fully connected
layers (fullyConnectedLayer). The first one has M inputs and M outputs and is followed by an
ReLU layer (reluLayer). The second fully connected layer has M inputs and n outputs and is
followed by the normalization layer (helperAEWNormalizationLayer.m). The encoder layers are
followed by the AWGN channel layer (helperAEWAWGNLayer.m). The output of the channel is passed
to the decoder layers. The first decoder layer is a fully connected layer that has n inputs and M
outputs and is followed by an ReLU layer. The second fully connected layer has M inputs and M
outputs and is followed by a softmax layer (softmaxLayer), which outputs the probability of each M
symbols. The classification layer (classificationLayer) outputs the most probable transmitted
symbol from 0 to M-1.

k = 4;    % number of input bits
M = 2^k;  % number of possible input symbols
n = 7;    % number of channel uses
EbNo = 3; % Eb/No in dB

% Convert Eb/No to channel Eb/No values using the code rate
R = k/n;
EbNoChannel = EbNo + 10*log10(R);

wirelessAutoencoder = [

 Autoencoders for Wireless Communications

14-135



  featureInputLayer(M,"Name","One-hot input","Normalization","none")
  
  fullyConnectedLayer(M,"Name","fc_1")
  reluLayer("Name","relu_1")
  
  fullyConnectedLayer(n,"Name","fc_2")
  
  helperAEWNormalizationLayer("Method", "Energy", "Name", "wnorm")
  
  helperAEWAWGNLayer("Name","channel", ...
    "NoiseMethod","EbNo", ...
    "EbNo",EbNoChannel, ...
    "BitsPerSymbol",2, ... % channel use per channel symbol
    "SignalPower",1)
  
  fullyConnectedLayer(M,"Name","fc_3")
  reluLayer("Name","relu_2")
  
  fullyConnectedLayer(M,"Name","fc_4")
  softmaxLayer("Name","softmax")
  
  classificationLayer("Name","classoutput")]

wirelessAutoencoder = 
  11x1 Layer array with layers:

     1   'One-hot input'   Feature Input            16 features
     2   'fc_1'            Fully Connected          16 fully connected layer
     3   'relu_1'          ReLU                     ReLU
     4   'fc_2'            Fully Connected          7 fully connected layer
     5   'wnorm'           Wireless Normalization   Energy normalization layer
     6   'channel'         AWGN Channel             AWGN channel with EbNo = 0.56962
     7   'fc_3'            Fully Connected          16 fully connected layer
     8   'relu_2'          ReLU                     ReLU
     9   'fc_4'            Fully Connected          16 fully connected layer
    10   'softmax'         Softmax                  softmax
    11   'classoutput'     Classification Output    crossentropyex

The helperAEWTrainWirelessAutoencoder.m function defines such a network based on the (n,k),
normalization method and the Eb/No values.

Train Autoencoder

Run the helperAEWTrainWirelessAutoencoder.m function to train a (2,2) autoencoder with
energy normalization. This function uses the trainingOptions function to select

• Adam (adaptive moment estimation) optimizer,
• Initial learning rate of 0.08,
• Maximum epochs of 10,
• Minibatch size of 100*M,
• Piecewise learning schedule with drop period of 5 and drop factor of 0.1.

Then, the helperAEWTrainWirelessAutoencoder.m function runs the trainNetwork function to
train the autoencoder network with the selected options. Finally, this function separates the network
into encoder and decoder parts. Encoder starts with the input layer and ends after the normalization

14 Wireless Comm Examples

14-136



layer. Decoder starts after the channel layer and ends with the classification layer. A feature input
layer is added at the beginning of the decoder.

Train the autoencoder with an Eb/No value that is low enough to result in some errors but not too low
such that the training algorithm cannot extract any useful information from the received symbols, y.
Set Eb/No to 3 dB.

n = 2;                      % number of channel uses
k = 2;                      % number of input bits
EbNo = 3;                   % dB
normalization = "Energy";   % Normalization "Energy" | "Average power"

[txNet(1),rxNet(1),infoTemp,wirelessAutoEncoder(1)] = ...
  helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
infoTemp.n = n;
infoTemp.k = k;
infoTemp.EbNo = EbNo;
infoTemp.Normalization = normalization;
info = infoTemp;

Plot the training progress. The validation accuracy quickly reaches more than 90% while the
validation loss keeps slowly decreasing. This behavior shows that the training Eb/No value was low
enough to cause some errors but not too low to avoid convergence. For definitions of validation
accuracy and validation loss, see “Monitor Deep Learning Training Progress” on page 5-192 section.

figure
helperAEWPlotTrainingPerformance(info(1))

 Autoencoders for Wireless Communications

14-137



Use the plot object function of the trained network objects to show the layer graphs of the full
autoencoder, the encoder network, i.e. the transmitter, and the decoder network, i.e. the receiver.

figure
tiledlayout(2,2)
nexttile([2 1])
plot(wirelessAutoEncoder(1))
title('Autoencoder')
nexttile
plot(txNet(1))
title('Encoder/Tx')
nexttile
plot(rxNet(1))
title('Decoder/Rx')

Simulate BLER Performance

Simulate the block error rate (BLER) performance of the (2,2) autoencoder. Set up simulation
parameters.

simParams.EbNoVec = 0:0.5:8;
simParams.MinNumErrors = 10;
simParams.MaxNumFrames = 300;
simParams.NumSymbolsPerFrame = 10000;
simParams.SignalPower = 1;

Generate random integers in the [0 M-1] range that represents k random information bits. Encode
these information bits into complex symbols with helperAEWEncode function. The

14 Wireless Comm Examples

14-138



helperAEWEncode function runs the encoder part of the autoencoder then maps the real valued x
vector into a complex valued xc vector such that the odd and even elements are mapped into the in-
phase and the quadrature component of a complex symbol, respectively, where
xc = x(1:2:end) + jx(2:2:end). In other words, treat the x array as an interleaved complex array.

Pass the complex symbols through an AWGN channel. Decode the channel impaired complex symbols
with the helperAEWDecode function. The following code runs the simulation for each Eb/No point for
at least 10 block errors. To obtain more accurate results, increase minimum number of errors to at
least 100. If Parallel Computing Toolbox™ is installed and a license is available, uncomment the
parfor line to run the simulations on a parallel pool.

Plot the constellation learned by the autoencoder to send symbols through the AWGN channel
together with the received constellation. For a (2,2) configuration, autoencoder learns a QPSK
(M = 2k = 4) constellation with a phase rotation.

R = k/n;
EbNoChannelVec = simParams.EbNoVec + 10*log10(R);
M = 2^k;
txConst = comm.ConstellationDiagram(ShowReferenceConstellation=false, ...
  ShowLegend=true, ChannelNames={'Tx Constellation'});
rxConst = comm.ConstellationDiagram(ShowReferenceConstellation=false, ...
  ShowLegend=true, ChannelNames={'Rx Constellation'});
BLER = zeros(size(EbNoChannelVec));
%parfor trainingEbNoIdx = 1:length(EbNoChannelVec)
for trainingEbNoIdx = 1:length(EbNoChannelVec)
  EbNo = EbNoChannelVec(trainingEbNoIdx);
  chan = comm.AWGNChannel("BitsPerSymbol",2, ...
    "EbNo", EbNo, "SamplesPerSymbol", 1, "SignalPower", 1);

  numBlockErrors = 0;
  frameCnt = 0;
  while (numBlockErrors < simParams.MinNumErrors) ...
      && (frameCnt < simParams.MaxNumFrames)

    d = randi([0 M-1],simParams.NumSymbolsPerFrame,1);    % Random information bits
    x = helperAEWEncode(d,txNet(1));                      % Encoder
    txConst(x)
    y = chan(x);                                          % Channel
    rxConst(y)
    dHat = helperAEWDecode(y,rxNet(1));                   % Decoder

    numBlockErrors = numBlockErrors + sum(d ~= dHat);
    frameCnt = frameCnt + 1;
  end
  BLER(trainingEbNoIdx) = numBlockErrors / (frameCnt*simParams.NumSymbolsPerFrame);
end

 Autoencoders for Wireless Communications

14-139

https://www.mathworks.com/products/parallel-computing.html


14 Wireless Comm Examples

14-140



Compare the results with that of an uncoded QPSK system with block length n=2. For this n value,
the autoencoder gets the same BLER as an uncoded QPSK system.

figure
semilogy(simParams.EbNoVec,BLER,'-')
hold on
% Calculate uncoded block error rate (R=k/n=1)
pskBLER = 1-(1-berawgn(EbNoChannelVec,'psk',2^k,'nondiff')).^n;
semilogy(simParams.EbNoVec,pskBLER,'--')
hold off
ylim([1e-4 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend(sprintf('AE (%d,%d)',n,k),sprintf('QPSK (%d,%d)',n,k))

 Autoencoders for Wireless Communications

14-141



The well formed constellation together with the BLER results show that training for 10 epochs is
enough to get a satisfactory convergence.

Compare Constellation Diagrams

Compare learned constellations of several autoencoders normalized to unit energy and unit average
power. Train (2,4) autoencoder normalized to unit energy.

n = 2;      % number of channel uses
k = 4;      % number of input bits
EbNo = 9;   % dB
normalization = "Energy";

[txNet(2),rxNet(2),infoTemp,wirelessAutoEncoder(2)] = ...
  helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
infoTemp.n = n;
infoTemp.k = k;
infoTemp.EbNo = EbNo;
infoTemp.Normalization = normalization;
info(2) = infoTemp;

Train (2,4) autoencoder normalized to unit average power.

n = 2;      % number of channel uses
k = 4;      % number of input bits
EbNo = 6;   % dB
normalization = "Average power";

14 Wireless Comm Examples

14-142



[txNet(3),rxNet(3),infoTemp,wirelessAutoEncoder(3)] = ...
  helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
infoTemp.n = n;
infoTemp.k = k;
infoTemp.EbNo = EbNo;
infoTemp.Normalization = normalization;
info(3) = infoTemp;

Train (7,4) autoencoder normalized to unit energy.

n = 7;      % number of channel uses
k = 4;      % number of input bits
EbNo = 3;   % dB
normalization = "Energy";

[txNet(4),rxNet(4),infoTemp,wirelessAutoEncoder(4)] = ...
  helperAEWTrainWirelessAutoencoder(n,k,normalization,EbNo);
infoTemp.n = n;
infoTemp.k = k;
infoTemp.EbNo = EbNo;
infoTemp.Normalization = normalization;
info(4) = infoTemp;

Plot the constellation using the helperAEWPlotConstellation.m function. The trained (2,2)
autoencoder converges on a QPSK constellation with a phase shift as the optimal constellation for the
channel conditions experienced. The (2,4) autoencoder with energy normalization converges to a
16PSK constellation with a phase shift. Note that, energy normalization forces every symbol to have
unit energy and places the symbols on the unit circle. Given this constraint, best constellation is a
PSK constellation with equal angular distance between symbols. The (2,4) autoencoder with average
power normalization converges to a three-tier constellation of 1-6-9 symbols. Average power
normalization forces the symbols to have unity average power over time. This constraint results in an
APSK constellation, which is different than the conventional QAM or APSK schemes. Note that, this
network configuration may also converge to a two-tier constellation with 7-9 symbols based on the
random initial condition used during training. The last plot shows the 2-D mapping of the 7-D
constellation generated by the (7,4) autoencoder with energy constraint. 2-D mapping is obtained
using the t-Distributed Stochastic Neighbor Embedding (t-SNE) method (see tsne (Statistics and
Machine Learning Toolbox) function).

figure
subplot(2,2,1)
helperAEWPlotConstellation(txNet(1))
title(sprintf('(%d,%d) %s',info(1).n,info(1).k,info(1).Normalization))
subplot(2,2,2)
helperAEWPlotConstellation(txNet(2))
title(sprintf('(%d,%d) %s',info(2).n,info(2).k,info(2).Normalization))
subplot(2,2,3)
helperAEWPlotConstellation(txNet(3))
title(sprintf('(%d,%d) %s',info(3).n,info(3).k,info(3).Normalization))
subplot(2,2,4)
helperAEWPlotConstellation(txNet(4),'t-sne')
title(sprintf('(%d,%d) %s',info(4).n,info(4).k,info(4).Normalization))

 Autoencoders for Wireless Communications

14-143



Compare BLER Performance of Autoencoders with Coded and Uncoded QPSK

Simulate the BLER performance of a (7,4) autoencoder with that of (7,4) Hamming code with QPSK
modulation for both hard decision and maximum likelihood (ML) decoding. Use uncoded (4,4) QPSK
as a baseline. (4,4) uncoded QPSK is basically a QPSK modulated system that sends blocks of 4 bits
and measures BLER. The data for the following figures is obtained using
helperAEWSimulateBLER.mlx and helperAEWPrepareAutoencoders.mlx files.

load codedBLERResults.mat
figure
qpsk44BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^4;
semilogy(simParams.EbNoVec,qpsk44BLERTh,':*')
hold on
semilogy(simParams.EbNoVec,qpsk44BLER,':o')
semilogy(simParams.EbNoVec,hammingHard74BLER,'--s')
semilogy(simParams.EbNoVec,ae74eBLER,'-')
semilogy(simParams.EbNoVec,hammingML74BLER,'--d')
hold off
ylim([1e-5 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend('Theoretical Uncoded QPSK (4,4)','Uncoded QPSK (4,4)','Hamming (7,4) Hard Decision', ...
  'Autoencoder (7,4)','Hamming (7,4) ML','Location','southwest')
title('BLER comparison of (7,4) Autoencoder')

14 Wireless Comm Examples

14-144



As expected, hard decision (7,4) Hamming code with QPSK modulation provides about 0.6 dB Eb/No
advantage over uncoded QPSK, while the ML decoding of (7,4) Hamming code with QPSK modulation
provides another 1.5 dB advantage for a BLER of 10−3. The (7,4) autoencoder BLER performance
approaches the ML decoding of (7,4) Hamming code, when trained with 3 dB Eb/No. This BLER
performance shows that the autoencoder is able to learn not only modulation but also channel coding
to achieve a coding gain of about 2 dB for a coding rate of R=4/7.

Next, simulate the BLER performance of autoencoders with R=1 with that of uncoded QPSK systems.
Use uncoded (2,2) and (8,8) QPSK as baselines. Compare BLER performance of these systems with
that of (2,2), (4,4) and (8,8) autoencoders.

load uncodedBLERResults.mat
qpsk22BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^2;
semilogy(simParams.EbNoVec,qpsk22BLERTh,':*')
hold on
semilogy(simParams.EbNoVec,qpsk88BLER,'--*')
qpsk88BLERTh = 1-(1-berawgn(simParams.EbNoVec,'psk',4,'nondiff')).^8;
semilogy(simParams.EbNoVec,qpsk88BLERTh,':o')
semilogy(simParams.EbNoVec,ae22eBLER,'-o')
semilogy(simParams.EbNoVec,ae44eBLER,'-d')
semilogy(simParams.EbNoVec,ae88eBLER,'-s')
hold off
ylim([1e-5 1])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')

 Autoencoders for Wireless Communications

14-145



legend('Uncoded QPSK (2,2)','Uncoded QPSK (8,8)','Theoretical Uncoded QPSK (8,8)', ...
  'Autoencoder (2,2)','Autoencoder (4,4)','Autoencoder (8,8)','Location','southwest')
title('BLER performance of R=1 Autoencoders')

Bit error rate of QPSK is the same for both (8,8) and (2,2) cases. However, the BLER depends on the
block length, n, and gets worse as n increases as given by BLER = 1− (1− BER)n. As expected, BLER
performance of (8,8) QPSK is worse than the (2,2) QPSK system. The BLER performance of (2,2)
autoencoder matches the BLER performance of (2,2) QPSK. On the other hand, (4,4) and (8,8)
autoencoders optimize the channel coder and the constellation jointly to obtain a coding gain with
respect to the corresponding uncoded QPSK systems.

Effect of Training Eb/No on BLER Performance

Train the (7,4) autoencoder with energy normalization under different Eb/No values and compare the
BLER performance. To extend the BLER curve, set simParams.EbNoVec to -2:0.5:8.

n = 7;
k = 4;
normalization = 'Energy';
traningEbNoVec = -3:5:7;
simParams.EbNoVec = 0:4;
for trainingEbNoIdx = 1:length(traningEbNoVec)
  trainingEbNo = traningEbNoVec(trainingEbNoIdx);
  [txNetVec{trainingEbNoIdx},rxNetVec{trainingEbNoIdx},infoVec{trainingEbNoIdx},trainedNetVec{trainingEbNoIdx}] = ...
    helperAEWTrainWirelessAutoencoder(n,k,normalization,trainingEbNo); %#ok<SAGROW> 
  BLERVec{trainingEbNoIdx} = helperAEWAutoencoderBLER(txNetVec{trainingEbNoIdx},rxNetVec{trainingEbNoIdx},simParams); %#ok<SAGROW> 
end

14 Wireless Comm Examples

14-146



Plot the BLER performance together with theoretical upper bound for hard decision decoded
Hamming (7,4) code and simulated BLER of maximum likelihood decoded (MLD) Hamming (7,4)
code. The BLER performance of the (7,4) autoencoder gets closer to the Hamming (7,4) code with
MLD as the training Eb/No decreases from 10 dB to 1 dB, at which point it almost matches the MLD
Hamming (7,4) code.

berHamming = bercoding(simParams.EbNoVec,'hamming','hard',n);
blerHamming = 1-(1-berHamming).^k;
hammingBLER = load('codedBLERResults');
figure
semilogy(simParams.EbNoVec,blerHamming,':k')
legendStr = sprintf('(%d,%d) Hamming HDD Upper',n,k);
hold on
linespec = {'-*','-d','-o','-s',};
for trainingEbNoIdx=length(traningEbNoVec):-1:1
  semilogy(simParams.EbNoVec,BLERVec{trainingEbNoIdx},linespec{trainingEbNoIdx})
  legendStr = [legendStr {sprintf('(%d,%d) AE - Training Eb/No=%1.1f', ...
    n,k,traningEbNoVec(trainingEbNoIdx))}]; %#ok<AGROW> 
end
semilogy(hammingBLER.simParams.EbNoVec,hammingBLER.hammingML74BLER,'--vk')
legendStr = [legendStr {'Hamming (7,4) MLD'}];
hold off
xlim([min(simParams.EbNoVec) max(simParams.EbNoVec)])
grid on
xlabel('E_b/N_o (dB)')
ylabel('BLER')
legend(legendStr{:},'location','southwest')

 Autoencoders for Wireless Communications

14-147



Conclusions and Further Exploration

The BLER results show that it is possible for autoencoders to learn joint coding and modulation
schemes in an unsupervised way. It is even possible to train an autoencoder with R=1 to obtain a
coding gain as compared to traditional methods. The example also shows the effect of
hyperparameters such as Eb/No on the BLER performance.

The results are obtained using the following default settings for training and BLER simulations:

trainParams.Plots = 'none';
trainParams.Verbose = false;
trainParams.MaxEpochs = 10;
trainParams.InitialLearnRate = 0.08;
trainParams.LearnRateSchedule = 'piecewise';
trainParams.LearnRateDropPeriod = 5;
trainParams.LearnRateDropFactor = 0.1;
trainParams.MiniBatchSize = 100*2^k;

simParams.EbNoVec = -2:0.5:8;
simParams.MinNumErrors = 100;
simParams.MaxNumFrames = 300;
simParams.NumSymbolsPerFrame = 10000;
simParams.SignalPower = 1;

Vary these parameters to train different autoencoders and test their BLER performance. Experiment
with different n, k, normalization and Eb/No values. See the help for
helperAEWTrainWirelessAutoencoder.m, helperAEWPrepareAutoencoders.mlx and
helperAEWAutoencoderBLER.m for more information.

List of Helper Functions

• helperAEWAWGNLayer.m
• helperAEWNormalizationLayer.m
• helperAEWEncode.m
• helperAEWDecode.m
• helperAEWTrainWirelessAutoencoder.m
• helperAEWPlotConstellation.m
• helperAEWPlotTrainingPerformance.m
• helperAEWAutoencoderBLER.m
• helperAEWPrepareAutoencoders.mlx
• helperAEWSimulateBLER.mlx

References

[1] T. O’Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," in IEEE
Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, Dec. 2017,
doi: 10.1109/TCCN.2017.2758370.

14 Wireless Comm Examples

14-148



[2] S. Dörner, S. Cammerer, J. Hoydis and S. t. Brink, "Deep Learning Based Communication Over the
Air," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 132-143, Feb. 2018,
doi: 10.1109/JSTSP.2017.2784180.

See Also
classificationLayer | featureInputLayer | fullyConnectedLayer | reluLayer |
softmaxLayer

More About
• “Deep Learning in MATLAB” on page 1-2

 Autoencoders for Wireless Communications

14-149



Modulation Classification with Deep Learning

This example shows how to use a convolutional neural network (CNN) for modulation classification.
You generate synthetic, channel-impaired waveforms. Using the generated waveforms as training
data, you train a CNN for modulation classification. You then test the CNN with software-defined
radio (SDR) hardware and over-the-air signals.

Predict Modulation Type Using CNN

The trained CNN in this example recognizes these eight digital and three analog modulation types:

• Binary phase shift keying (BPSK)
• Quadrature phase shift keying (QPSK)
• 8-ary phase shift keying (8-PSK)
• 16-ary quadrature amplitude modulation (16-QAM)
• 64-ary quadrature amplitude modulation (64-QAM)
• 4-ary pulse amplitude modulation (PAM4)
• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast FM (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

modulationTypes = categorical(["BPSK", "QPSK", "8PSK", ...
  "16QAM", "64QAM", "PAM4", "GFSK", "CPFSK", ...
  "B-FM", "DSB-AM", "SSB-AM"]);

First, load the trained network. For details on network training, see the Training a CNN on page 14-
160 section.

load trainedModulationClassificationNetwork
trainedNet

trainedNet = 
  SeriesNetwork with properties:

         Layers: [28×1 nnet.cnn.layer.Layer]
     InputNames: {'Input Layer'}
    OutputNames: {'Output'}

The trained CNN takes 1024 channel-impaired samples and predicts the modulation type of each
frame. Generate several PAM4 frames that are impaired with Rician multipath fading, center
frequency and sampling time drift, and AWGN. Use following function to generate synthetic signals to
test the CNN. Then use the CNN to predict the modulation type of the frames.

• randi: Generate random bits
• pammod (Communications Toolbox) PAM4-modulate the bits
• rcosdesign (Signal Processing Toolbox): Design a square-root raised cosine pulse shaping filter

14 Wireless Comm Examples

14-150



• filter: Pulse shape the symbols
• comm.RicianChannel (Communications Toolbox): Apply Rician multipath channel
• comm.PhaseFrequencyOffset (Communications Toolbox): Apply phase and/or frequency shift

due to clock offset
• interp1: Apply timing drift due to clock offset
• awgn (Communications Toolbox): Add AWGN

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(123456)
% Random bits
d = randi([0 3], 1024, 1);
% PAM4 modulation
syms = pammod(d,4);
% Square-root raised cosine filter
filterCoeffs = rcosdesign(0.35,4,8);
tx = filter(filterCoeffs,1,upsample(syms,8));

% Channel
SNR = 30;
maxOffset = 5;
fc = 902e6;
fs = 200e3;
multipathChannel = comm.RicianChannel(...
  'SampleRate', fs, ...
  'PathDelays', [0 1.8 3.4] / 200e3, ...
  'AveragePathGains', [0 -2 -10], ...
  'KFactor', 4, ...
  'MaximumDopplerShift', 4);

frequencyShifter = comm.PhaseFrequencyOffset(...
  'SampleRate', fs);

% Apply an independent multipath channel
reset(multipathChannel)
outMultipathChan = multipathChannel(tx);

% Determine clock offset factor
clockOffset = (rand() * 2*maxOffset) - maxOffset;
C = 1 + clockOffset / 1e6;

% Add frequency offset
frequencyShifter.FrequencyOffset = -(C-1)*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift
t = (0:length(tx)-1)' / fs;
newFs = fs * C;
tp = (0:length(tx)-1)' / newFs;
outTimeDrift = interp1(t, outFreqShifter, tp);

% Add noise
rx = awgn(outTimeDrift,SNR,0);

% Frame generation for classification
unknownFrames = helperModClassGetNNFrames(rx);

 Modulation Classification with Deep Learning

14-151



% Classification
[prediction1,score1] = classify(trainedNet,unknownFrames);

Return the classifier predictions, which are analogous to hard decisions. The network correctly
identifies the frames as PAM4 frames. For details on the generation of the modulated signals, see
helperModClassGetModulator function.

prediction1

prediction1 = 7×1 categorical
     PAM4 
     PAM4 
     PAM4 
     PAM4 
     PAM4 
     PAM4 
     PAM4 

The classifier also returns a vector of scores for each frame. The score corresponds to the probability
that each frame has the predicted modulation type. Plot the scores.

helperModClassPlotScores(score1,modulationTypes)

14 Wireless Comm Examples

14-152



Before we can use a CNN for modulation classification, or any other task, we first need to train the
network with known (or labeled) data. The first part of this example shows how to use
Communications Toolbox™ features, such as modulators, filters, and channel impairments, to
generate synthetic training data. The second part focuses on defining, training, and testing the CNN
for the task of modulation classification. The third part tests the network performance with over-the-
air signals using software defined radio (SDR) platforms.

Waveform Generation for Training

Generate 10,000 frames for each modulation type, where 80% is used for training, 10% is used for
validation and 10% is used for testing. We use training and validation frames during the network
training phase. Final classification accuracy is obtained using test frames. Each frame is 1024
samples long and has a sample rate of 200 kHz. For digital modulation types, eight samples represent
a symbol. The network makes each decision based on single frames rather than on multiple
consecutive frames (as in video). Assume a center frequency of 902 MHz and 100 MHz for the digital
and analog modulation types, respectively.

 Modulation Classification with Deep Learning

14-153



To run this example quickly, use the trained network and generate a small number of training frames.
To train the network on your computer, choose the "Train network now" option (i.e. set trainNow to
true).

trainNow = ;
if trainNow == true
  numFramesPerModType = 10000;
else
  numFramesPerModType = 200;
end
percentTrainingSamples = 80;
percentValidationSamples = 10;
percentTestSamples = 10;

sps = 8;                % Samples per symbol
spf = 1024;             % Samples per frame
symbolsPerFrame = spf / sps;
fs = 200e3;             % Sample rate
fc = [902e6 100e6];     % Center frequencies

Create Channel Impairments

Pass each frame through a channel with

• AWGN
• Rician multipath fading
• Clock offset, resulting in center frequency offset and sampling time drift

Because the network in this example makes decisions based on single frames, each frame must pass
through an independent channel.

AWGN

The channel adds AWGN with an SNR of 30 dB. Implement the channel using awgn (Communications
Toolbox) function.

Rician Multipath

The channel passes the signals through a Rician multipath fading channel using the
comm.RicianChannel (Communications Toolbox) System object™. Assume a delay profile of [0 1.8
3.4] samples with corresponding average path gains of [0 -2 -10] dB. The K-factor is 4 and the
maximum Doppler shift is 4 Hz, which is equivalent to a walking speed at 902 MHz. Implement the
channel with the following settings.

Clock Offset

Clock offset occurs because of the inaccuracies of internal clock sources of transmitters and
receivers. Clock offset causes the center frequency, which is used to downconvert the signal to
baseband, and the digital-to-analog converter sampling rate to differ from the ideal values. The
channel simulator uses the clock offset factor C, expressed as C = 1 +

Δclock
106 , where Δclock is the clock

offset. For each frame, the channel generates a random Δclock value from a uniformly distributed set
of values in the range [−maxΔclock maxΔclock], where maxΔclock is the maximum clock offset. Clock
offset is measured in parts per million (ppm). For this example, assume a maximum clock offset of 5
ppm.

14 Wireless Comm Examples

14-154



maxDeltaOff = 5;
deltaOff = (rand()*2*maxDeltaOff) - maxDeltaOff;
C = 1 + (deltaOff/1e6);

Frequency Offset

Subject each frame to a frequency offset based on clock offset factor C and the center frequency.
Implement the channel using comm.PhaseFrequencyOffset (Communications Toolbox).

Sampling Rate Offset

Subject each frame to a sampling rate offset based on clock offset factor C. Implement the channel
using the interp1 function to resample the frame at the new rate of C × fs.

Combined Channel

Use the helperModClassTestChannel object to apply all three channel impairments to the frames.

channel = helperModClassTestChannel(...
  'SampleRate', fs, ...
  'SNR', SNR, ...
  'PathDelays', [0 1.8 3.4] / fs, ...
  'AveragePathGains', [0 -2 -10], ...
  'KFactor', 4, ...
  'MaximumDopplerShift', 4, ...
  'MaximumClockOffset', 5, ...
  'CenterFrequency', 902e6)

channel = 
  helperModClassTestChannel with properties:

                    SNR: 30
        CenterFrequency: 902000000
             SampleRate: 200000
             PathDelays: [0 9.0000e-06 1.7000e-05]
       AveragePathGains: [0 -2 -10]
                KFactor: 4
    MaximumDopplerShift: 4
     MaximumClockOffset: 5

You can view basic information about the channel using the info object function.

chInfo = info(channel)

chInfo = struct with fields:
               ChannelDelay: 6
     MaximumFrequencyOffset: 4510
    MaximumSampleRateOffset: 1

 Modulation Classification with Deep Learning

14-155



Waveform Generation

Create a loop that generates channel-impaired frames for each modulation type and stores the frames
with their corresponding labels in MAT files. By saving the data into files, you eliminate the need to
generate the data every time you run this example. You can also share the data more effectively.

Remove a random number of samples from the beginning of each frame to remove transients and to
make sure that the frames have a random starting point with respect to the symbol boundaries.

% Set the random number generator to a known state to be able to regenerate
% the same frames every time the simulation is run
rng(1235)
tic

numModulationTypes = length(modulationTypes);

channelInfo = info(channel);
transDelay = 50;
pool = getPoolSafe();
if ~isa(pool,"parallel.ClusterPool")
  dataDirectory = fullfile(tempdir,"ModClassDataFiles");
else
  dataDirectory = uigetdir("","Select network location to save data files");
end
disp("Data file directory is " + dataDirectory)

Data file directory is C:\TEMP\ModClassDataFiles

fileNameRoot = "frame";

% Check if data files exist
dataFilesExist = false;
if exist(dataDirectory,'dir')
  files = dir(fullfile(dataDirectory,sprintf("%s*",fileNameRoot)));
  if length(files) == numModulationTypes*numFramesPerModType
    dataFilesExist = true;
  end
end

if ~dataFilesExist
  disp("Generating data and saving in data files...")
  [success,msg,msgID] = mkdir(dataDirectory);
  if ~success
    error(msgID,msg)
  end
  for modType = 1:numModulationTypes
    elapsedTime = seconds(toc);
    elapsedTime.Format = 'hh:mm:ss';
    fprintf('%s - Generating %s frames\n', ...
      elapsedTime, modulationTypes(modType))
    
    label = modulationTypes(modType);
    numSymbols = (numFramesPerModType / sps);
    dataSrc = helperModClassGetSource(modulationTypes(modType), sps, 2*spf, fs);
    modulator = helperModClassGetModulator(modulationTypes(modType), sps, fs);
    if contains(char(modulationTypes(modType)), {'B-FM','DSB-AM','SSB-AM'})
      % Analog modulation types use a center frequency of 100 MHz
      channel.CenterFrequency = 100e6;

14 Wireless Comm Examples

14-156



    else
      % Digital modulation types use a center frequency of 902 MHz
      channel.CenterFrequency = 902e6;
    end
    
    for p=1:numFramesPerModType
      % Generate random data
      x = dataSrc();
      
      % Modulate
      y = modulator(x);
      
      % Pass through independent channels
      rxSamples = channel(y);
      
      % Remove transients from the beginning, trim to size, and normalize
      frame = helperModClassFrameGenerator(rxSamples, spf, spf, transDelay, sps);
      
      % Save data file
      fileName = fullfile(dataDirectory,...
        sprintf("%s%s%03d",fileNameRoot,modulationTypes(modType),p));
      save(fileName,"frame","label")
    end
  end
else
  disp("Data files exist. Skip data generation.")
end

Generating data and saving in data files...

00:00:00 - Generating BPSK frames
00:00:02 - Generating QPSK frames
00:00:03 - Generating 8PSK frames
00:00:05 - Generating 16QAM frames
00:00:06 - Generating 64QAM frames
00:00:08 - Generating PAM4 frames
00:00:10 - Generating GFSK frames
00:00:11 - Generating CPFSK frames
00:00:13 - Generating B-FM frames
00:00:24 - Generating DSB-AM frames
00:00:26 - Generating SSB-AM frames

% Plot the amplitude of the real and imaginary parts of the example frames
% against the sample number
helperModClassPlotTimeDomain(dataDirectory,modulationTypes,fs)

 Modulation Classification with Deep Learning

14-157



% Plot the spectrogram of the example frames
helperModClassPlotSpectrogram(dataDirectory,modulationTypes,fs,sps)

14 Wireless Comm Examples

14-158



Create a Datastore

Use a signalDatastore object to manage the files that contain the generated complex waveforms.
Datastores are especially useful when each individual file fits in memory, but the entire collection
does not necessarily fit.

frameDS = signalDatastore(dataDirectory,'SignalVariableNames',["frame","label"]);

Transform Complex Signals to Real Arrays

The deep learning network in this example expects real inputs while the received signal has complex
baseband samples. Transform the complex signals into real valued 4-D arrays. The output frames
have size 1-by-spf-by-2-by-N, where the first page (3rd dimension) is in-phase samples and the second
page is quadrature samples. When the convolutional filters are of size 1-by-spf, this approach ensures
that the information in the I and Q gets mixed even in the convolutional layers and makes better use
of the phase information. See helperModClassIQAsPages for details.

frameDSTrans = transform(frameDS,@helperModClassIQAsPages);

 Modulation Classification with Deep Learning

14-159



Split into Training, Validation, and Test

Next divide the frames into training, validation, and test data. See helperModClassSplitData for
details.

splitPercentages = [percentTrainingSamples,percentValidationSamples,percentTestSamples];
[trainDSTrans,validDSTrans,testDSTrans] = helperModClassSplitData(frameDSTrans,splitPercentages);

Import Data into Memory

Neural network training is iterative. At every iteration, the datastore reads data from files and
transforms the data before updating the network coefficients. If the data fits into the memory of your
computer, importing the data from the files into the memory enables faster training by eliminating
this repeated read from file and transform process. Instead, the data is read from the files and
transformed once. Training this network using data files on disk takes about 110 minutes while
training using in-memory data takes about 50 min.

Import all the data in the files into memory. The files have two variables: frame and label and each
read call to the datastore returns a cell array, where the first element is the frame and the second
element is the label. Use the transform functions helperModClassReadFrame and
helperModClassReadLabel to read frames and labels. Use readall with "UseParallel" option set
to true to enable parallel processing of the transform functions, in case you have Parallel Computing
Toolbox™ license. Since readall function, by default, concatenates the output of the read function
over the first dimension, return the frames in a cell array and manually concatenate over the 4th
dimension.

% Read the training and validation frames into the memory
pctExists = parallelComputingLicenseExists();
trainFrames = transform(trainDSTrans, @helperModClassReadFrame);
rxTrainFrames = readall(trainFrames,"UseParallel",pctExists);
rxTrainFrames = cat(4, rxTrainFrames{:});
validFrames = transform(validDSTrans, @helperModClassReadFrame);
rxValidFrames = readall(validFrames,"UseParallel",pctExists);
rxValidFrames = cat(4, rxValidFrames{:});

% Read the training and validation labels into the memory
trainLabels = transform(trainDSTrans, @helperModClassReadLabel);
rxTrainLabels = readall(trainLabels,"UseParallel",pctExists);
validLabels = transform(validDSTrans, @helperModClassReadLabel);
rxValidLabels = readall(validLabels,"UseParallel",pctExists);

Train the CNN

This example uses a CNN that consists of six convolution layers and one fully connected layer. Each
convolution layer except the last is followed by a batch normalization layer, rectified linear unit
(ReLU) activation layer, and max pooling layer. In the last convolution layer, the max pooling layer is
replaced with an average pooling layer. The output layer has softmax activation. For network design
guidance, see “Deep Learning Tips and Tricks” on page 1-87.

modClassNet = helperModClassCNN(modulationTypes,sps,spf);

Next configure TrainingOptionsSGDM to use an SGDM solver with a mini-batch size of 1024. Set
the maximum number of epochs to 20, since a larger number of epochs provides no further training
advantage. By default, the 'ExecutionEnvironment' property is set to 'auto', where the
trainNetwork function uses a GPU if one is available or uses the CPU, if not. To use the GPU, you
must have a Parallel Computing Toolbox license. Set the initial learning rate to 2x10−1. Reduce the

14 Wireless Comm Examples

14-160

https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html


learning rate by a factor of 1.25 every 7 epochs. Set 'Plots' to 'training-progress' to plot the
training progress. On an NVIDIA® GeForce RTX 3080 GPU, the network takes approximately 3
minutes to train.

maxEpochs = 20;
miniBatchSize = 1024;
options = helperModClassTrainingOptions(maxEpochs,miniBatchSize,...
  numel(rxTrainLabels),rxValidFrames,rxValidLabels);

Either train the network or use the already trained network. By default, this example uses the trained
network.

if trainNow == true
  elapsedTime = seconds(toc);
  elapsedTime.Format = 'hh:mm:ss';
  fprintf('%s - Training the network\n', elapsedTime)
  trainedNet = trainNetwork(rxTrainFrames,rxTrainLabels,modClassNet,options);
else
  load trainedModulationClassificationNetwork
end

As the plot of the training progress shows, the network converges in about 20 epochs to more than
97% accuracy.

Evaluate the trained network by obtaining the classification accuracy for the test frames. The results
show that the network achieves about 97% accuracy for this group of waveforms.

 Modulation Classification with Deep Learning

14-161



elapsedTime = seconds(toc);
elapsedTime.Format = 'hh:mm:ss';
fprintf('%s - Classifying test frames\n', elapsedTime)

00:00:50 - Classifying test frames

% Read the test frames into the memory
testFrames = transform(testDSTrans, @helperModClassReadFrame);
rxTestFrames = readall(testFrames,"UseParallel",pctExists);
rxTestFrames = cat(4, rxTestFrames{:});

% Read the test labels into the memory
testLabels = transform(testDSTrans, @helperModClassReadLabel);
rxTestLabels = readall(testLabels,"UseParallel",pctExists);

rxTestPred = classify(trainedNet,rxTestFrames);
testAccuracy = mean(rxTestPred == rxTestLabels);
disp("Test accuracy: " + testAccuracy*100 + "%")

Test accuracy: 97.7273%

Plot the confusion matrix for the test frames. As the matrix shows, the network confuses 16-QAM and
64-QAM frames. This problem is expected since each frame carries only 128 symbols and 16-QAM is a
subset of 64-QAM. The network also confuses QPSK and 8-PSK frames, since the constellations of
these modulation types look similar once phase-rotated due to the fading channel and frequency
offset.

figure
cm = confusionchart(rxTestLabels, rxTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';
cm.Parent.Position = [cm.Parent.Position(1:2) 950 550];

14 Wireless Comm Examples

14-162



Test with SDR

Test the performance of the trained network with over-the-air signals using the
helperModClassSDRTest function. To perform this test, you must have dedicated SDRs for
transmission and reception. You can use two ADALM-PLUTO radios, or one ADALM-PLUTO radio for
transmission and one USRP® radio for reception. You must “Install Support Package for Analog
Devices ADALM-PLUTO Radio” (Communications Toolbox Support Package for Analog Devices
ADALM-Pluto Radio). If you are using a USRP® radio, you must also “Install Communications Toolbox
Support Package for USRP Radio” (Communications Toolbox Support Package for USRP Radio). The
helperModClassSDRTest function uses the same modulation functions as used for generating the
training signals, and then transmits them using an ADALM-PLUTO radio. Instead of simulating the
channel, capture the channel-impaired signals using the SDR that is configured for signal reception
(ADALM-PLUTO or USRP® radio). Use the trained network with the same classify function used
previously to predict the modulation type. Running the next code segment produces a confusion
matrix and prints out the test accuracy.

radioPlatform = ;

switch radioPlatform
  case "ADALM-PLUTO"
    if helperIsPlutoSDRInstalled() == true
      radios = findPlutoRadio();
      if length(radios) >= 2
        helperModClassSDRTest(radios);
      else
        disp('Selected radios not found. Skipping over-the-air test.')
      end

 Modulation Classification with Deep Learning

14-163



    end
  case {"USRP B2xx","USRP X3xx","USRP N2xx"}
    if (helperIsUSRPInstalled() == true) && (helperIsPlutoSDRInstalled() == true)
      txRadio = findPlutoRadio();
      rxRadio = findsdru();
      switch radioPlatform
        case "USRP B2xx"
          idx = contains({rxRadio.Platform}, {'B200','B210'});
        case "USRP X3xx"
          idx = contains({rxRadio.Platform}, {'X300','X310'});
        case "USRP N2xx"
          idx = contains({rxRadio.Platform}, 'N200/N210/USRP2');
      end
      rxRadio = rxRadio(idx);
      if (length(txRadio) >= 1) && (length(rxRadio) >= 1)
        helperModClassSDRTest(rxRadio);
      else
        disp('Selected radios not found. Skipping over-the-air test.')
      end
    end
end

When using two stationary ADALM-PLUTO radios separated by about 2 feet, the network achieves
99% overall accuracy with the following confusion matrix. Results will vary based on experimental
setup.

14 Wireless Comm Examples

14-164



Further Exploration

It is possible to optimize the hyperparameters parameters, such as number of filters, filter size, or
optimize the network structure, such as adding more layers, using different activation layers, etc. to
improve the accuracy.

Communication Toolbox provides many more modulation types and channel impairments. For more
information see “Modulation” (Communications Toolbox) and “Propagation and Channel Models”
(Communications Toolbox) sections. You can also add standard specific signals with LTE Toolbox,
WLAN Toolbox, and 5G Toolbox. You can also add radar signals with Phased Array System Toolbox.

helperModClassGetModulator function provides the MATLAB® functions used to generate modulated
signals. You can also explore the following functions and System objects for more details:

• helperModClassGetModulator.m
• helperModClassTestChannel.m
• helperModClassGetSource.m
• helperModClassFrameGenerator.m
• helperModClassCNN.m
• helperModClassTrainingOptions.m

Helper Files

function pool = getPoolSafe()
if exist("gcp","file") && license('test','distrib_computing_toolbox')
  pool = gcp;
  if isempty(pool)
    pool = parpool;
  end
else
  pool = [];
end
end

References

1 O'Shea, T. J., J. Corgan, and T. C. Clancy. "Convolutional Radio Modulation Recognition
Networks." Preprint, submitted June 10, 2016. https://arxiv.org/abs/1602.04105

2 O'Shea, T. J., T. Roy, and T. C. Clancy. "Over-the-Air Deep Learning Based Radio Signal
Classification." IEEE Journal of Selected Topics in Signal Processing. Vol. 12, Number 1, 2018,
pp. 168–179.

3 Liu, X., D. Yang, and A. E. Gamal. "Deep Neural Network Architectures for Modulation
Classification." Preprint, submitted January 5, 2018. https://arxiv.org/abs/1712.00443v3

See Also
trainingOptions | trainNetwork

More About
• “Deep Learning in MATLAB” on page 1-2

 Modulation Classification with Deep Learning

14-165

https://www.mathworks.com/products/lte.html
https://www.mathworks.com/products/wlan.html
https://www.mathworks.com/products/5g.html
https://www.mathworks.com/products/phased-array.html
https://arxiv.org/abs/1602.04105
https://arxiv.org/abs/1712.00443v3


Training and Testing a Neural Network for LLR Estimation

This example shows how to generate signals and channel impairments to train a neural network,
called LLRNet, to estimate exact log likelihood ratios (LLR).

Most modern communication systems, such as 5G New Radio (NR) and Digital Video Broadcasting for
Satellite, Second Generation (DVB-S.2) use forward error correction algorithms that benefit from soft
demodulated bit values. These systems calculate soft bit values using the LLR approach. LLR is
defined as the log of the ratio of probability of a bit to be 0 to the probability of a bit to be 1 or

li ≜ log
Pr(ci = 0|s)
Pr(ci = 1|s) , i = 1, . . . , k

where s is an k-bit received symbol, and ci is the ithbit of the symbol. Assuming an additive white
Gaussian noise (AWGN) channel, the exact computation of the LLR expression is

li ≜ log
∑s ∈ ci

0exp −
‖s− s‖2

2

σ2

∑s ∈ ci
1exp −

‖s− s‖2
2

σ2

where σ2 is the noise variance. Exponential and logarithmic calculations are very costly especially in
embedded systems. Therefore, most practical systems use the max-log approximation. For a given
array x, the max-log approximation is

log ∑
j

exp − x j
2 ≈ max

j
− x j

2 .

Substituting this in the exact LLR expression results in the max-log LLR approximation [1] on page
14-175

li ≈
1
σ2 min

s ∈ Ci
1
‖s− s‖2

2− min
s ∈ Ci

0
‖s− s‖2

2 .

LLRNet uses a neural network to estimate the exact LLR values given the baseband complex received
symbol for a given SNR value. A shallow network with a small number of hidden layers has the
potential to estimate the exact LLR values at a complexity similar to the approximate LLR algorithm
[1] on page 14-175.

Compare Exact LLR, Max-Log Approximate LLR and LLRNet for M-ary QAM

5G NR uses M-ary QAM modulation. This section explores the accuracy of LLRNet in estimating the
LLR values for 16-, 64-, and 256-QAM modulation. Assume an M-ary QAM system that operates under
AWGN channel conditions. This assumption is valid even when the channel is frequency selective but
symbols are equalized. The following shows calculated LLR values for the following three algorithms:

• Exact LLR
• Max-log approximate LLR

14 Wireless Comm Examples

14-166



• LLRNet

16-QAM LLR Estimation Performance

Calculate exact and approximate LLR values for symbol values that cover the 99.7% (±3σ) of the
possible received symbols. Assuming AWGN, 99.7% (±3σ) of the received signals will be in the range

max
s ∈ C

Re(s) + 3σ min
s ∈ C

Re(s)− 3σ + i max
s ∈ C

Im(s) + 3σ min
s ∈ C

Im(s)− 3σ . Generate uniformly

distributed I/Q symbols over this space and use qamdemod (Communications Toolbox) function to
calculate exact LLR and approximate LLR values.

M = 16;             % Modulation order
k = log2(M);        % Bits per symbols
SNRValues = -5:5:5; % in dB
numSymbols = 1e4;
numSNRValues = length(SNRValues);
symOrder = llrnetQAMSymbolMapping(M);

const = qammod(0:15,M,symOrder,'UnitAveragePower',1);
maxConstReal = max(real(const));
maxConstImag = max(imag(const));

numBits = numSymbols*k;
exactLLR = zeros(numBits,numSNRValues);
approxLLR = zeros(numBits,numSNRValues);
rxSym = zeros(numSymbols,numSNRValues);
for snrIdx = 1:numSNRValues
    SNR = SNRValues(snrIdx);
    noiseVariance = 10^(-SNR/10);
    sigma = sqrt(noiseVariance);
    
    maxReal = maxConstReal + 3*sigma;
    minReal = -maxReal;
    maxImag = maxConstImag + 3*sigma;
    minImag = -maxImag;
    
    r = (rand(numSymbols,1)*(maxReal-minReal)+minReal) + ...
        1i*(rand(numSymbols,1)*(maxImag-minImag)+minImag);
    rxSym(:,snrIdx) = r;
    
    exactLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
        'UnitAveragePower',1,'OutputType','llr','NoiseVariance',noiseVariance);
    approxLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
        'UnitAveragePower',1,'OutputType','approxllr','NoiseVariance',noiseVariance);
end

Set Up and Train Neural Network

Set up a shallow neural network with one input layer, one hidden layer, and one output layer. Input a
received symbol to the network and train it to estimate the exact LLR values. Since the network
expects real inputs, create a two column vector, where the first column is the real values of the
received symbol and the second column is the imaginary values of the received symbol. Also, the
output must be a k × N vector, where k is the number of bits per symbol and N is the number of
symbols.

nnInput = zeros(numSymbols,2,numSNRValues);
nnOutput = zeros(numSymbols,k,numSNRValues);

 Training and Testing a Neural Network for LLR Estimation

14-167



for snrIdx = 1:numSNRValues
    rxTemp = rxSym(:,snrIdx);
    rxTemp = [real(rxTemp) imag(rxTemp)];
    nnInput(:,:,snrIdx) = rxTemp;
    
    llrTemp = exactLLR(:,snrIdx);
    nnOutput(:,:,snrIdx) = reshape(llrTemp, k, numSymbols)';
end

For 16-QAM symbols, the hidden layer has 8 neurons and the output layer has 4 neurons, which
corresponds to the number of bits per symbol. The llrnetNeuralNetwork function returns a
preconfigured neural network. Train the neural network for three different SNR values. Use the exact
LLR values calculated using the qamdemod function as the expected output values.

hiddenLayerSize = 8;
trainedNetworks = cell(1,numSNRValues);
for snrIdx=1:numSNRValues
    fprintf('Training neural network for SNR = %1.1fdB\n', ...
        SNRValues(snrIdx))
    x = nnInput(:,:,snrIdx)';
    y = nnOutput(:,:,snrIdx)';
    
    MSExactLLR = mean(y(:).^2);
    fprintf('\tMean Square LLR = %1.2f\n', MSExactLLR)
    
    % Train the Network. Use parallel pool, if available. Train three times
    % and pick the best one.
    mse = inf;
    for p=1:3
        netTemp = llrnetNeuralNetwork(hiddenLayerSize);
        if parallelComputingLicenseExists()
            [netTemp,tr] = train(netTemp,x,y,'useParallel','yes');
        else
            [netTemp,tr] = train(netTemp,x,y);
        end
        % Test the Network
        predictedLLRSNR = netTemp(x);
        mseTemp = perform(netTemp,y,predictedLLRSNR);
        fprintf('\t\tTrial %d: MSE = %1.2e\n', p, mseTemp)
        if mse > mseTemp
            mse = mseTemp;
            net = netTemp;
        end
    end
    
    % Store the trained network
    trainedNetworks{snrIdx} = net;
    fprintf('\tBest MSE = %1.2e\n', mse)
end

Training neural network for SNR = -5.0dB

    Mean Square LLR = 4.43

        Trial 1: MSE = 7.44e-05
        Trial 2: MSE = 6.90e-05
        Trial 3: MSE = 6.81e-05

    Best MSE = 6.81e-05

14 Wireless Comm Examples

14-168



Training neural network for SNR = 0.0dB

    Mean Square LLR = 15.74

        Trial 1: MSE = 1.86e-03
        Trial 2: MSE = 4.04e-04
        Trial 3: MSE = 9.05e-05

    Best MSE = 9.05e-05

Training neural network for SNR = 5.0dB

    Mean Square LLR = 60.01

        Trial 1: MSE = 8.59e-03
        Trial 2: MSE = 2.19e-02
        Trial 3: MSE = 2.14e-02

    Best MSE = 8.59e-03

Performance metric for this network is mean square error (MSE). The final MSE values show that the
neural network converges to an MSE value that is at least 40 dB less than the mean square exact LLR
values. Note that, as SNR increases so do the LLR values, which results in relatively higher MSE
values.

Results for 16-QAM

Compare the LLR estimates of LLRNet to that of exact LLR and approximate LLR. Simulate 1e4 16-
QAM symbols and calculate LLR values using all three methods. Do not use the symbols that we
generated in the previous section so as not to give LLRNet an unfair advantage, since those symbols
were used to train the LLRNet.

numBits = numSymbols*k;
d = randi([0 1], numBits, 1);

txSym = qammod(d,M,symOrder,'InputType','bit','UnitAveragePower',1);

exactLLR = zeros(numBits,numSNRValues);
approxLLR = zeros(numBits,numSNRValues);
predictedLLR = zeros(numBits,numSNRValues);
rxSym = zeros(length(txSym),numSNRValues);
for snrIdx = 1:numSNRValues
    SNR = SNRValues(snrIdx);
    sigmas = 10^(-SNR/10);
    r = awgn(txSym,SNR);
    rxSym(:,snrIdx) = r;
    
    exactLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
        'UnitAveragePower',1,'OutputType','llr','NoiseVariance',sigmas);
    approxLLR(:,snrIdx) = qamdemod(r,M,symOrder,...
        'UnitAveragePower',1,'OutputType','approxllr','NoiseVariance',sigmas);
    
    net = trainedNetworks{snrIdx};
    x = [real(r) imag(r)]';
    tempLLR = net(x);
    predictedLLR(:,snrIdx) = reshape(tempLLR, numBits, 1);
end

qam16Results.exactLLR = exactLLR;

 Training and Testing a Neural Network for LLR Estimation

14-169



qam16Results.approxLLR = approxLLR;
qam16Results.predictedLLR = predictedLLR;
qam16Results.RxSymbols = rxSym;
qam16Results.M = M;
qam16Results.SNRValues = SNRValues;
qam16Results.HiddenLayerSize = hiddenLayerSize;
qam16Results.NumSymbols = numSymbols;

The following figure shows exact LLR, max-log approximate LLR, and LLRNet estimate of LLR values
versus the real part of the received symbol for odd bits. LLRNet matches the exact LLR values even
for low SNR values.

llrnetPlotLLR(qam16Results,'16-QAM LLR Comparison')

64-QAM and 256-QAM LLR Estimation Performance

Check if the LLRNet can estimate the LLR values for higher order QAM. Repeat the same process you
followed for 16-QAM for 64-QAM and 256-QAM using the llrnetQAMLLR helper function. The
following figures show exact LLR, max-log approximate LLR, and LLRNet estimate of LLR values
versus the real part of the received symbol for odd bits.

14 Wireless Comm Examples

14-170



trainNow = ;
if trainNow
    % Parameters for 64-QAM
    simParams(1).M = 64; %#ok<UNRCH>
    simParams(1).SNRValues = 0:5:10;
    simParams(1).HiddenLayerSize = 16;
    simParams(1).NumSymbols = 1e4;
    simParams(1).UseReLU = false;
    
    % Parameters for 256-QAM
    simParams(2).M = 256;
    simParams(2).SNRValues = 0:10:20;
    simParams(2).HiddenLayerSize = 32;
    simParams(2).NumSymbols = 1e4;
    simParams(2).UseReLU = false;
    
    simResults = llrnetQAMLLR(simParams);
    llrnetPlotLLR(simResults(1),sprintf('%d-QAM LLR Comparison',simResults(1).M))
    llrnetPlotLLR(simResults(2),sprintf('%d-QAM LLR Comparison',simResults(2).M))
else
    load('llrnetQAMPerformanceComparison.mat', 'simResults')
    for p=1:length(simResults)
        llrnetPlotLLR(simResults(p),sprintf('%d-QAM LLR Comparison',simResults(p).M))
    end
end

 Training and Testing a Neural Network for LLR Estimation

14-171



14 Wireless Comm Examples

14-172



DVB-S.2 Packet Error Rate

DVB-S.2 system uses a soft demodulator to generate inputs for the LDPC decoder. Simulate the
packet error rate (PER) of a DVB-S.2 system with 16-APSK modulation and 2/3 LDPC code using
exact LLR, approximate LLR, and LLRNet using llrNetDVBS2PER function. This function uses the
comm.PSKDemodulator (Communications Toolbox) System object™ and the dvbsapskdemod
(Communications Toolbox) function to calculate exact and approximate LLR values and the
comm.AWGNChannel (Communications Toolbox) System object to simulate the channel.

Set simulateNow to true (or select "Simulate" in the dropdown) to run the PER simulations for the
values of subsystemType, EsNoValues, and numSymbols using the llrnetDVBS2PER function. If
Parallel Computing Toolbox™ is installed, this function uses the parfor command to run the
simulations in parallel. On an Intel® Xeon® W-2133 CPU @ 3.6GHz and running a “Run Code on
Parallel Pools” (Parallel Computing Toolbox) of size 6, the simulation takes about 40 minutes. Set
simulateNow to false (or select "Plot saved results" in the dropdown), to load the PER results for
the values of subsystemType='16APSK 2/3', EsNoValues=8.6:0.1:8.9, and
numSymbols=10000.

 Training and Testing a Neural Network for LLR Estimation

14-173

https://www.mathworks.com/products/parallel-computing.html


Set trainNow to true (or select "Train LLRNet" in the dropdown) to train LLR neural networks for
each value of EsNoValues, for the given subsystemType and numSymbols. If Parallel Computing
Toolbox is installed, the train function can be called with the optional name-value pair
'useParallel' set to 'yes' to run the simulations in parallel. On an Intel Xeon W-2133 CPU @
3.6GHz and running a “Run Code on Parallel Pools” (Parallel Computing Toolbox) of size 6, the
simulation takes about 21 minutes. Set trainNow to false (or select "Use saved networks" in the
dropdown) to load LLR neural networks trained for subsystemType='16APSK 2/3',
EsNoValues=8.6:0.1:8.9.

For more information on the DVB-S.2 PER simulation, see the “DVB-S.2 Link, Including LDPC Coding
in Simulink” (Communications Toolbox) example. For more information on training the network, refer
to the llrnetTrainDVBS2LLRNetwork function and [1] on page 14-175.

simulateNow = ;
if simulateNow
    subsystemType = '16APSK 2/3'; %#ok<UNRCH>
    EsNoValues = 8.6:0.1:8.9;     % in dB
    numFrames = 10000;
    numErrors = 200;
    

    trainNow = ;
    if trainNow && (~strcmp(subsystemType,'16APSK 2/3') || ~isequal(EsNoValues,8.6:0.1:9))
        % Train the networks for each EsNo value
        numTrainSymbols = 1e4;
        hiddenLayerSize = 64;
        llrNets = llrnetTrainDVBS2LLRNetwork(subsystemType, EsNoValues, numTrainSymbols, hiddenLayerSize);
    else
        load('llrnetDVBS2Networks','llrNets','subsystemType','EsNoValues');
    end
    
    % Simulate PER with exact LLR, approximate LLR, and LLRNet
    [perLLR,perApproxLLR,perLLRNet] = llrnetDVBS2PER(subsystemType,EsNoValues,llrNets,numFrames,numErrors);
    llrnetPlotLLRvsEsNo(perLLR,perApproxLLR,perLLRNet,EsNoValues,subsystemType)
else
    load('llrnetDVBS2PERResults.mat','perApproxLLR','perLLR','perLLRNet',...
        'subsystemType','EsNoValues');
    llrnetPlotLLRvsEsNo(perLLR,perApproxLLR,perLLRNet,EsNoValues,subsystemType)
end

14 Wireless Comm Examples

14-174

https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html


The results show that the LLRNet almost matches the performance of exact LLR without using any
expensive operations such as logarithm and exponential.

Further Exploration

Try different modulation and coding schemes for the DVB-S.2 system. The full list of modulation types
and coding rates are given in the “DVB-S.2 Link, Including LDPC Coding in Simulink”
(Communications Toolbox) example. You can also try different sizes for the hidden layer of the
network to reduce the number of operations and measure the performance loss as compared to exact
LLR.

The example uses these helper functions. Examine these files to learn about details of the
implementation.

• llrnetDVBS2PER.m: Simulate DVB-S.2 PER using exact LLR, approximate LLR, and LLRNet LLR
• llrnetTrainDVBS2LLRNetwork.m: Train neural networks for DVB-S.2 LLR estimation
• llrnetQAMLLR.m: Train neural networks for M-ary QAM LLR estimation and calculate exact LLR,

approximate LLR, and LLRNet LLR
• llrnetNeuralNetwork.m: Configure a shallow neural network for LLR estimation

References

 Training and Testing a Neural Network for LLR Estimation

14-175



[1] O. Shental and J. Hoydis, ""Machine LLRning": Learning to Softly Demodulate," 2019 IEEE
Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 2019, pp. 1-7.

See Also

More About
• “Deep Learning in MATLAB” on page 1-2

14 Wireless Comm Examples

14-176



Design a Deep Neural Network with Simulated Data to Detect
WLAN Router Impersonation

This example shows how to design a radio frequency (RF) fingerprinting convolutional neural
network (CNN) with simulated data. You train the CNN with simulated wireless local area network
(WLAN) beacon frames from known and unknown routers for RF fingerprinting. You then compare
the media access control (MAC) address of received signals and the RF fingerprint detected by the
CNN to detect WLAN router impersonators.

For more information on how to test the designed neural network with signals captured from real Wi-
Fi® routers, see the “Test a Deep Neural Network with Captured Data to Detect WLAN Router
Impersonation” (Communications Toolbox) example.

Detect Router Impersonation Using RF Fingerprinting

Router impersonation is a form of attack on a WLAN network where a malicious agent tries to
impersonate a legitimate router and trick network users to connect to it. Security identification
solutions based on simple digital identifiers, such as MAC addresses, IP addresses, and SSID, are not
effective in detecting such an attack. These identifiers can be easily spoofed. Therefore, a more
secure solution uses other information, such as the RF signature of the radio link, in addition to these
simple digital identifiers.

A wireless transmitter-receiver pair creates a unique RF signature at the receiver that is a
combination of the channel and RF impairments. RF Fingerprinting is the process of distinguishing
transmitting radios in a shared spectrum through these signatures. In [1] on page 14-190, authors
designed a deep learning (DL) network that consumes raw baseband in-phase/quadrature (IQ)
samples and identifies the transmitting radio. The network can identify the transmitting radios if the
RF impairments are dominant or the channel profile stays constant during the operation time. Most
WLAN networks have fixed routers that create a static channel profile when the receiver location is
also fixed. In such a scenario, the deep learning network can identify router impersonators by
comparing the received signal's RF fingerprint and MAC address pair to that of the known routers.

This example simulates a WLAN system with several fixed routers and a fixed observer using the
WLAN Toolbox™ and trains a neural network (NN) with the simulated data using Deep Learning
Toolbox™.

System Description

Assume an indoor space with a number of trusted routers with known MAC addresses, which we will
refer to as known routers. Also, assume that unknown routers may enter the observation area, some
of which may be router impersonators. The class "Unknown" represents any transmitting device that
is not contained in the known set. The following figure shows a scenario where there are three known
routers. The observer collects non-high throughput (non-HT) beacon signals from these routers and
uses the (legacy) long training field (L-LTF) to identify the RF fingerprint. Transmitted L-LTF signals
are the same for all routers that enable the algorithm to avoid any data dependency. Since the routers
and the observer are fixed, the RF fingerprints (combination of multipath channel profile and RF
impairments) RF1, RF2, and RF3 do not vary in time. Unknown router data is a collection of random
RF fingerprints, which are different than the known routers.

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

14-177



The following figure shows a user connected to a router and a mobile hot spot. After training, the
observer receives beacon frames and decodes the MAC address. Also, the observer extracts the L-LTF
signal and uses this signal to classify the RF fingerprint of the source of the beacon frame. If the MAC
address and the RF fingerprint match, as in the case of Router 1, Router 2, and Router3, then the
observer declares the source as a "known" router. If the MAC address of the beacon is not in the
database and the RF fingerprint does not match any of the known routers, as in the case of a mobile
hot spot, then the observer declares the source as an "unknown" router.

14 Wireless Comm Examples

14-178



The following figure shows a router impersonator in action. A router impersonator (a.k.a. evil twin)
can replicate the MAC address of a known router and transmit beacon frames. Then, the hacker can
jam the original router and force the user to connect to the evil twin. The observer receives the
beacon frames from the evil twin too and decodes the MAC address. The decoded MAC address
matches the MAC address of a known router but the RF fingerprint does not match. The observer
declares the source as a router impersonator.

Set System Parameters

Generate a dataset of 5,000 Non-HT WLAN beacon frames for each router. Use MAC addresses as
labels for the known routers; the remaining are labeled as "Unknown". A NN is trained to classify the
known routers as well as to detect any unknown ones. Split the dataset into training, validation, and
test, where the splitting ratios are 80%, 10%, and 10%, respectively. Consider an SNR of 20 dB,
working on the 5 GHz band. The number of simulated devices is set to 4 but it can be modified by
choosing a different value for numKnownRouters. Set the number of unknown routers more than the
known ones to represent in the dataset the variability in the unknown router RF fingerprints.

numKnownRouters = 4;
numUnknownRouters = 10;
numTotalRouters = numKnownRouters+numUnknownRouters;
SNR = 20;                 % dB
channelNumber = 153;      % WLAN channel number
channelBand = 5;          % GHz
frameLength = 160;        % L-LTF sequence length in samples

By default, this example downloads training data and trained network from https://
www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar.
If you do not have an Internet connection, you can download the file manually on a computer that is
connected to the Internet and save to the same directory as the current example files.

To run this example quickly, download the pretrained network and generate a small number of
frames, for example 10. To train the network on your computer, choose the "Train network now"
option (i.e. set trainNow to true). Generating 5000 frames of data takes about 50 minutes on an
Intel® Xeon® W-2133 CPU @ 3.6 GHz with 64 GB memory. Training this network takes about 20

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

14-179

https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar
https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar


seconds with an NVIDIA® GeForce RTX 3080 GPU and about 3 minutes with an Intel® Xeon®
W-2133 CPU @ 3.6 GHz.

trainNow = ;

if trainNow
  numTotalFramesPerRouter = 5000; %#ok<UNRCH>
else
  numTotalFramesPerRouter = 10;
  rfFingerprintingDownloadData('simulated')
end

Starting download of data files from:
    https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar
Download and extracting files done

numTrainingFramesPerRouter = numTotalFramesPerRouter*0.8;
numValidationFramesPerRouter = numTotalFramesPerRouter*0.1;
numTestFramesPerRouter = numTotalFramesPerRouter*0.1;

Generate WLAN Waveforms

Wi-Fi routers that implement 802.11a/g/n/ac protocols transmit beacon frames in the 5 GHz band to
broadcast their presence and capabilities using the OFDM non-HT format. The beacon frame consists
of two main parts: preamble (SYNC) and payload (DATA). The preamble has two parts: short training
and long training. In this example, the payload contains the same bits except the MAC address for
each router. The CNN uses the L-LTF part of the preamble as training units. Reusing the L-LTF signal
for RF fingerprinting provides an overhead-free fingerprinting solution. Use wlanMACFrameConfig
(WLAN Toolbox), wlanMACFrame (WLAN Toolbox), wlanNonHTConfig (WLAN Toolbox), and
wlanWaveformGenerator (WLAN Toolbox) functions to generate WLAN beacon frames.

% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;

% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon', ...
  "ManagementConfig", frameBodyConfig);

% Generate Beacon frame bits
[~, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

% Create a wlanNONHTConfig object, 20 MHz bandwidth and MCS 1 are used
nonHTConfig = wlanNonHTConfig(...
  'ChannelBandwidth', "CBW20",...
  "MCS", 1,...
  "PSDULength", mpduLength);

The rfFingerprintingNonHTFrontEnd object performs front-end processing including extracting the
L-LTF signal. The object is configured with a channel bandwidth of 20 MHz to process non-HT
signals.

rxFrontEnd = rfFingerprintingNonHTFrontEnd('ChannelBandwidth', 'CBW20');

fc = wlanChannelFrequency(channelNumber, channelBand);
fs = wlanSampleRate(nonHTConfig);

14 Wireless Comm Examples

14-180



Setup Channel and RF Impairments

Pass each frame through a channel with

• Rayleigh multipath fading
• Radio impairments, such as phase noise, frequency offset and DC offset
• AWGN

Rayleigh Multipath and AWGN

The channel passes the signals through a Rayleigh multipath fading channel using the
comm.RayleighChannel (Communications Toolbox) System object™. Assume a delay profile of [0
1.8 3.4] samples with corresponding average path gains of [0 -2 -10] dB. Since the channel is static,
set maximum Doppler shift to zero to make sure that the channel does not change for the same radio.
Implement the multipath channel with these settings. Add noise using the awgn (Communications
Toolbox) function,

multipathChannel = comm.RayleighChannel(...
  'SampleRate', fs, ...
  'PathDelays', [0 1.8 3.4]/fs, ...
  'AveragePathGains', [0 -2 -10], ...
  'MaximumDopplerShift', 0);

Radio Impairments

The RF impairments, and their corresponding range of values are:

• Phase noise [0.01, 0.3] rms (degrees)
• Frequency offset [-4, 4] ppm
• DC offset: [-50, -32] dBc

See helperRFImpairments on page 14-190 function for more details on RF impairment simulation.
This function uses comm.PhaseFrequencyOffset (Communications Toolbox) and
comm.PhaseNoise (Communications Toolbox) System objects.

phaseNoiseRange = [0.01, 0.3];
freqOffsetRange = [-4, 4];
dcOffsetRange = [-50, -32];

rng(123456)  % Fix random generator

% Assign random impairments to each simulated radio within the previously
% defined ranges
radioImpairments = repmat(...
  struct('PhaseNoise', 0, 'DCOffset', 0, 'FrequencyOffset', 0), ...
  numTotalRouters, 1);
for routerIdx = 1:numTotalRouters
  radioImpairments(routerIdx).PhaseNoise = ...
    rand*(phaseNoiseRange(2)-phaseNoiseRange(1)) + phaseNoiseRange(1);
  radioImpairments(routerIdx).DCOffset = ...
    rand*(dcOffsetRange(2)-dcOffsetRange(1)) + dcOffsetRange(1);
  radioImpairments(routerIdx).FrequencyOffset = ...
    fc/1e6*(rand*(freqOffsetRange(2)-freqOffsetRange(1)) + freqOffsetRange(1));
end

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

14-181



Apply Channel Impairments and Generate Data Frames for Training

Apply the RF and channel impairments defined previously. Reset the channel object for each radio to
generate an independent channel. Use rfFingerprintingNonHTFrontEnd function to process the
received frames. Finally, extract the L-LTF from every transmitted WLAN frame. Split the received L-
LTF signals into training, validation and test sets.

% Create variables that will store the training, validation and testing
% datasets
xTrainingFrames = zeros(frameLength, numTrainingFramesPerRouter*numTotalRouters);
xValFrames = zeros(frameLength, numValidationFramesPerRouter*numTotalRouters);
xTestFrames = zeros(frameLength, numTestFramesPerRouter*numTotalRouters);

% Index vectors for train, validation and test data units
trainingIndices = 1:numTrainingFramesPerRouter;
validationIndices = 1:numValidationFramesPerRouter;
testIndices = 1:numTestFramesPerRouter;

tic
generatedMACAddresses = strings(numTotalRouters, 1);
rxLLTF = zeros(frameLength, numTotalFramesPerRouter);     % Received L-LTF sequences
for routerIdx = 1:numTotalRouters
  
  % Generate a 12-digit random hexadecimal number as a MAC address for
  % known routers. Set the MAC address of all unknown routers to
  % 'AAAAAAAAAAAA'.
  if (routerIdx<=numKnownRouters)
    generatedMACAddresses(routerIdx) = string(dec2hex(bi2de(randi([0 1], 12, 4)))');
  else
    generatedMACAddresses(routerIdx) = 'AAAAAAAAAAAA';
  end
  elapsedTime = seconds(toc);
  elapsedTime.Format = 'hh:mm:ss';
  fprintf('%s - Generating frames for router %d with MAC address %s\n', ...
    elapsedTime, routerIdx, generatedMACAddresses(routerIdx))

  % Set MAC address into the wlanFrameConfig object
  beaconFrameConfig.Address2 = generatedMACAddresses(routerIdx);
  
  % Generate beacon frame bits
  beacon = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');
  
  txWaveform = wlanWaveformGenerator(beacon, nonHTConfig);
  
  txWaveform = helperNormalizeFramePower(txWaveform);
  
  % Add zeros to account for channel delays
  txWaveform = [txWaveform; zeros(160,1)]; %#ok<AGROW>
  
  % Reset multipathChannel object to generate a new static channel
  reset(multipathChannel)
  
  frameCount= 0;
  while frameCount<numTotalFramesPerRouter
    
    rxMultipath = multipathChannel(txWaveform);
    
    rxImpairment = helperRFImpairments(rxMultipath, radioImpairments(routerIdx), fs);

14 Wireless Comm Examples

14-182



    
    rxSig = awgn(rxImpairment,SNR,0);
    
    % Detect the WLAN packet and return the received L-LTF signal using
    % rfFingerprintingNonHTFrontEnd object
    [valid, ~, ~, ~, ~, LLTF] = rxFrontEnd(rxSig);
    
    % Save successfully received L-LTF signals
    if valid
      frameCount=frameCount+1;
      rxLLTF(:,frameCount) = LLTF;
    end
    
    if mod(frameCount,500) == 0
      elapsedTime = seconds(toc);
      elapsedTime.Format = 'hh:mm:ss';
      fprintf('%s - Generated %d/%d frames\n', ...
        elapsedTime, frameCount, numTotalFramesPerRouter)
    end
  end
  
  rxLLTF = rxLLTF(:, randperm(numTotalFramesPerRouter));
  
  % Split data into training, validation and test
  xTrainingFrames(:, trainingIndices+(routerIdx-1)*numTrainingFramesPerRouter) ...
    = rxLLTF(:, trainingIndices);
  xValFrames(:, validationIndices+(routerIdx-1)*numValidationFramesPerRouter)...
    = rxLLTF(:, validationIndices+ numTrainingFramesPerRouter);
  xTestFrames(:, testIndices+(routerIdx-1)*numTestFramesPerRouter)...
    = rxLLTF(:, testIndices + numTrainingFramesPerRouter+numValidationFramesPerRouter);
end

00:00:00 - Generating frames for router 1 with MAC address 4DA3EE3C8968
00:00:00 - Generating frames for router 2 with MAC address B1077CFE3777
00:00:01 - Generating frames for router 3 with MAC address DB28133A97BF
00:00:01 - Generating frames for router 4 with MAC address B8AF375DAC0F
00:00:01 - Generating frames for router 5 with MAC address AAAAAAAAAAAA
00:00:01 - Generating frames for router 6 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 7 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 8 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 9 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 10 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 11 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 12 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 13 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 14 with MAC address AAAAAAAAAAAA

% Label received frames. Label the first numKnownRouters with their MAC
% address. Label the rest with "Unknown”.
labels = generatedMACAddresses;
labels(generatedMACAddresses == generatedMACAddresses(numTotalRouters)) = "Unknown";

yTrain = repelem(labels, numTrainingFramesPerRouter);
yVal = repelem(labels, numValidationFramesPerRouter);
yTest = repelem(labels, numTestFramesPerRouter);

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

14-183



Create Real-Valued Input Matrices

The Deep Learning model only works on real numbers. Thus, I and Q are split into two separate
columns. Then, the data is rearranged into a frameLength X 2 x 1 x numFrames array, as required by
the Deep Learning Toolbox. Additionally, the training set is shuffled, and the label variables are saved
as categorical variables.

% Rearrange datasets into a one-column vector
xTrainingFrames = xTrainingFrames(:);
xValFrames = xValFrames(:);
xTestFrames = xTestFrames(:);

% Separate between I and Q
xTrainingFrames = [real(xTrainingFrames), imag(xTrainingFrames)];
xValFrames = [real(xValFrames), imag(xValFrames)];
xTestFrames = [real(xTestFrames), imag(xTestFrames)];

% Reshape training data into a frameLength x 2 x 1 x
% numTrainingFramesPerRouter*numTotalRouters matrix
xTrainingFrames = permute(...
  reshape(xTrainingFrames,[frameLength,numTrainingFramesPerRouter*numTotalRouters, 2, 1]),...
  [1 3 4 2]);

% Shuffle data
vr = randperm(numTotalRouters*numTrainingFramesPerRouter);
xTrainingFrames = xTrainingFrames(:,:,:,vr);

% Create label vector and shuffle
yTrain = categorical(yTrain(vr));

% Reshape validation data into a frameLength x 2 x 1 x
% numValidationFramesPerRouter*numTotalRouters matrix
xValFrames = permute(...
  reshape(xValFrames,[frameLength,numValidationFramesPerRouter*numTotalRouters, 2, 1]),...
  [1 3 4 2]);

% Create label vector
yVal = categorical(yVal);

% Reshape test dataset into a numTestFramesPerRouter*numTotalRouter matrix
xTestFrames = permute(...
  reshape(xTestFrames,[frameLength,numTestFramesPerRouter*numTotalRouters, 2, 1]),...
  [1 3 4 2]); %#ok<NASGU>

% Create label vector
yTest = categorical(yTest); %#ok<NASGU>

Train the Neural Network

This example uses a neural network (NN) architecture that consists of two convolutional and three
fully connected layers. The intuition behind this design is that the first layer will learn features
independently in I and Q. Note that the filter sizes are 1x7. Then, the next layer will use a filter size of
2x7 that will extract features combining I and Q together. Finally, the last three fully connected layers
will behave as a classifier using the extracted features in the previous layers [1] on page 14-190.

poolSize = [2 1];
strideSize = [2 1];

14 Wireless Comm Examples

14-184

https://www.mathworks.com/products/deep-learning.html


layers = [
  imageInputLayer([frameLength 2 1], 'Normalization', 'none', 'Name', 'Input Layer')
  
  convolution2dLayer([7 1], 50, 'Padding', [1 0], 'Name', 'CNN1')
  batchNormalizationLayer('Name', 'BN1')
  leakyReluLayer('Name', 'LeakyReLu1')
  maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool1')
  
  convolution2dLayer([7 2], 50, 'Padding', [1 0], 'Name', 'CNN2')
  batchNormalizationLayer('Name', 'BN2')
  leakyReluLayer('Name', 'LeakyReLu2')
  maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool2')
  
  fullyConnectedLayer(256, 'Name', 'FC1')
  leakyReluLayer('Name', 'LeakyReLu3')
  dropoutLayer(0.5, 'Name', 'DropOut1')
  
  fullyConnectedLayer(80, 'Name', 'FC2')
  leakyReluLayer('Name', 'LeakyReLu4')
  dropoutLayer(0.5, 'Name', 'DropOut2')
  
  fullyConnectedLayer(numKnownRouters+1, 'Name', 'FC3')
  softmaxLayer('Name', 'SoftMax')
  classificationLayer('Name', 'Output')
  ]

layers = 
  18×1 Layer array with layers:

     1   'Input Layer'   Image Input             160×2×1 images
     2   'CNN1'          2-D Convolution         50 7×1 convolutions with stride [1  1] and padding [1  1  0  0]
     3   'BN1'           Batch Normalization     Batch normalization
     4   'LeakyReLu1'    Leaky ReLU              Leaky ReLU with scale 0.01
     5   'MaxPool1'      2-D Max Pooling         2×1 max pooling with stride [2  1] and padding [0  0  0  0]
     6   'CNN2'          2-D Convolution         50 7×2 convolutions with stride [1  1] and padding [1  1  0  0]
     7   'BN2'           Batch Normalization     Batch normalization
     8   'LeakyReLu2'    Leaky ReLU              Leaky ReLU with scale 0.01
     9   'MaxPool2'      2-D Max Pooling         2×1 max pooling with stride [2  1] and padding [0  0  0  0]
    10   'FC1'           Fully Connected         256 fully connected layer
    11   'LeakyReLu3'    Leaky ReLU              Leaky ReLU with scale 0.01
    12   'DropOut1'      Dropout                 50% dropout
    13   'FC2'           Fully Connected         80 fully connected layer
    14   'LeakyReLu4'    Leaky ReLU              Leaky ReLU with scale 0.01
    15   'DropOut2'      Dropout                 50% dropout
    16   'FC3'           Fully Connected         5 fully connected layer
    17   'SoftMax'       Softmax                 softmax
    18   'Output'        Classification Output   crossentropyex

Configure the training options to use the ADAM optimizer with a mini-batch size of 512. By default,
'ExecutionEnvironment' is set to 'auto', which uses a GPU for training if one is available.
Otherwise, trainNetwork uses a CPU for training. To explicitly set the execution environment, set
'ExecutionEnvironment' to one of 'cpu', 'gpu', 'multi-gpu', or 'parallel'.

if trainNow
  
  miniBatchSize = 512; %#ok<UNRCH>
  iterPerEpoch = floor(numTrainingFramesPerRouter*numTotalRouters/miniBatchSize);
  

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

14-185



  % Training options
  options = trainingOptions('adam', ...
    'MaxEpochs',5, ...
    'ValidationData',{xValFrames, yVal}, ...
    'ValidationFrequency',iterPerEpoch, ...
    'Verbose',false, ...
    'InitialLearnRate', 0.004, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor', 0.5, ...
    'LearnRateDropPeriod', 2, ...
    'MiniBatchSize', miniBatchSize, ...
    'Plots','training-progress', ...
    'Shuffle','every-epoch');
  
  % Train the network
  simNet = trainNetwork(xTrainingFrames, yTrain, layers, options);
else
  % Load trained network (simNet), testing dataset (xTestFrames and
  % yTest) and the used MACAddresses (generatedMACAddresses)
  load('rfFingerprintingSimulatedDataTrainedNN_R2023a.mat',...
    'generatedMACAddresses',...
    'simNet',...
    'xTestFrames',...
    'yTest')
end

As the plot of the training progress shows, the network converges in about 2 epochs to almost 100%
accuracy. The final accuracy is 100%.

14 Wireless Comm Examples

14-186



Classify test frames and calculate the final accuracy of the neural network.

% Obtain predicted classes for xTestFrames
yTestPred = classify(simNet,xTestFrames);

% Calculate test accuracy
testAccuracy = mean(yTest == yTestPred);
disp("Test accuracy: " + testAccuracy*100 + "%")

Test accuracy: 100%

Plot the confusion matrix for the test frames. As mentioned before, perfect classification accuracy is
achieved with the synthetic dataset.

figure
cm = confusionchart(yTest, yTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

14-187



Detect Router Impersonator

Generate beacon frames with the known MAC addresses and one unknown MAC address. Generate a
new set of RF impairments and multipath channel. Since the impairments are all new, the RF
fingerprint for these frames should be classified as "Unknown". The frames with known MAC
addresses represent router impersonators while the frames with unknown MAC addresses are simply
unknown routers.

framesPerRouter = 4;
knownMACAddresses = generatedMACAddresses(1:numKnownRouters);

% Assign random impairments to each simulated radio within the previously
% defined ranges
for routerIdx = 1:numTotalRouters
  radioImpairments(routerIdx).PhaseNoise = rand*( phaseNoiseRange(2)-phaseNoiseRange(1) ) + phaseNoiseRange(1);
  radioImpairments(routerIdx).DCOffset = rand*( dcOffsetRange(2)-dcOffsetRange(1) ) + dcOffsetRange(1);
  radioImpairments(routerIdx).FrequencyOffset = fc/1e6*(rand*( freqOffsetRange(2)-freqOffsetRange(1) ) + freqOffsetRange(1));
end
% Reset multipathChannel object to generate a new static channel
reset(multipathChannel)

% Run for all known routers and one unknown
for macIndex = 1:(numKnownRouters+1)
  
  beaconFrameConfig.Address2 = generatedMACAddresses(macIndex);
  
  % Generate Beacon frame bits
  beacon = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');
  
  txWaveform = wlanWaveformGenerator(beacon, nonHTConfig);
  
  txWaveform = helperNormalizeFramePower(txWaveform);
  
  % Add zeros to account for channel delays
  txWaveform = [txWaveform; zeros(160,1)]; %#ok<AGROW>
  
  % Create an unseen multipath channel. In other words, create an unseen
  % RF fingerprint.
  reset(multipathChannel)
  
  frameCount= 0;
  while frameCount<framesPerRouter
    
    rxMultipath = multipathChannel(txWaveform);
    
    rxImpairment = helperRFImpairments(rxMultipath, radioImpairments(routerIdx), fs);
    
    rxSig = awgn(rxImpairment,SNR,0);
    
    % Detect the WLAN packet and return the received L-LTF signal using
    % rfFingerprintingNonHTFrontEnd object
    [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar, LLTF] = ...
      rxFrontEnd(rxSig);
    
    if payloadFull
      frameCount = frameCount+1;
      recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...

14 Wireless Comm Examples

14-188



        noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');
      
      % Decode and evaluate recovered bits
      mpduCfg = wlanMPDUDecode(recBits, cfgNonHT);
      
      % Separate I and Q and reshape for neural network
      LLTF= [real(LLTF), imag(LLTF)];
      LLTF = permute(reshape(LLTF,frameLength ,[] , 2, 1), [1 3 4 2]);
      
      ypred = classify(simNet, LLTF);
      
      if sum(contains(knownMACAddresses, mpduCfg.Address2)) ~= 0
        if categorical(convertCharsToStrings(mpduCfg.Address2))~=ypred
          disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED"))
        else
          disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))
        end
      else
        disp(strcat("MAC Address ", mpduCfg.Address2," is not recognized, unknown device"))
      end
    end

    % Reset multipathChannel object to generate a new static channel
    reset(multipathChannel)
  end
end

MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device

Further Exploration

You can test the system under different channel and RF impairments by modifying the

• Multipath profile (PathDelays and AveragePathGains properties of Rayleigh channel object),
• Channel noise level (SNR input of awgn function),
• RF impairments (phaseNoiseRange, freqOffsetRange, and dcOffsetRange variables).

You can also modify the neural network structure by changing

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

14-189



• Convolutional layer parameters (filter size, number of filters, padding),
• Number of fully connected layers,
• Number of convolutional layers.

Appendix: Helper Functions

function [impairedSig] = helperRFImpairments(sig, radioImpairments, fs)
% helperRFImpairments Apply RF impairments
%   IMPAIREDSIG = helperRFImpairments(SIG, RADIOIMPAIRMENTS, FS) returns signal
%   SIG after applying the impairments defined by RADIOIMPAIRMENTS
%   structure at the sample rate FS.

% Apply frequency offset
fOff = comm.PhaseFrequencyOffset('FrequencyOffset', radioImpairments.FrequencyOffset,  'SampleRate', fs);

% Apply phase noise
phaseNoise = helperGetPhaseNoise(radioImpairments);
phNoise = comm.PhaseNoise('Level', phaseNoise, 'FrequencyOffset', abs(radioImpairments.FrequencyOffset));

impFOff = fOff(sig);
impPhNoise = phNoise(impFOff);

% Apply DC offset
impairedSig = impPhNoise + 10^(radioImpairments.DCOffset/10);

end

function [phaseNoise] = helperGetPhaseNoise(radioImpairments)
% helperGetPhaseNoise Get phase noise value
load('Mrms.mat','Mrms','MyI','xI');
[~, iRms] = min(abs(radioImpairments.PhaseNoise - Mrms));
[~, iFreqOffset] = min(abs(xI - abs(radioImpairments.FrequencyOffset)));
phaseNoise = -abs(MyI(iRms, iFreqOffset));
end

Selected Bibliography

[1] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis and K. Chowdhury, "ORACLE: Optimized
Radio clAssification through Convolutional neuraL nEtworks," IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, Paris, France, 2019, pp. 370-378.

See Also

More About
• “Deep Learning in MATLAB” on page 1-2

14 Wireless Comm Examples

14-190



Test a Deep Neural Network with Captured Data to Detect
WLAN Router Impersonation

This example shows how to train a radio frequency (RF) fingerprinting convolutional neural network
(CNN) with captured data. You capture wireless local area network (WLAN) beacon frames from real
routers using a software defined radio (SDR). You program a second SDR to transmit unknown
beacon frames and capture them. You train the CNN using these captured signals. You then program
a software-defined radio (SDR) as a router impersonator that transmits beacon signals with the media
access control (MAC) address of one of the known routers and use the CNN to identify it as an
impersonator.

For more information on router impersonation and validation of the network design with simulated
data, see the “Design a Deep Neural Network with Simulated Data to Detect WLAN Router
Impersonation” (Communications Toolbox) example.

Train with Captured Data

Collect a dataset of 802.11a/g/n/ac OFDM non-high throughput (non-HT) beacon frames from real
WLAN routers. As described in the “Design a Deep Neural Network with Simulated Data to Detect
WLAN Router Impersonation” (Communications Toolbox) example, only the legacy long training field
(L-LTF) field present in preambles are used as training units in order to avoid any data dependency.

In this example, the data was collected using the scenario depicted in the following figure. The
observer is a stationary ADALM-PLUTO radio. Known router data was collected as follows:

1 Set the observer's center frequency based on the WLAN channel used by the routers
2 Receive a beacon frame
3 Extract the L-LTF signal
4 Decode the MAC address to use as the label
5 Save the L-LTF signal together with its label
6 Repeat steps 2-5 to collect numFramesPerRouter frames from numKnownRouters routers.

Unknown router beacon frames are simulated using a mobile ADALM-PLUTO radio as a transmitter.
This radio repeatedly transmits beacon frames with a random MAC address. Unknown router data
was collected as follows:

1 Generate beacon frames with a random MAC address
2 Start transmitting the beacon frames repeatedly using the ADALM-PLUTO radio
3 Collect NUMFRAMES beacon frames
4 Extract the L-LTF signal
5 Save the L-LTF frames with label "Unknown"
6 Move the radio to another location
7 Repeat steps 3-6 to collect data from NUMLOC locations

This combined dataset of known and unknown routers is used to train the same DL model as in the
“Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation”
(Communications Toolbox) example.

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

14-191



This example downloads training data and trained network from https://www.mathworks.com/
supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar. If you do not have an
Internet connection, you can download the file manually on a computer that is connected to the
Internet and save to the same directory as the current example files. For privacy reasons, MAC
addresses have been anonymized in the downloaded data. To replicate the results of this example,
capture your own data as described in Appendix: Known and Unknown Router Data Collection on
page 14-200.

rfFingerprintingDownloadData('captured')

Starting download of data files from:
    https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar
Download and extracting files done

To run this example quickly, use the downloaded pretrained network. To train the network on your
computer, choose the "Train network now" option (i.e. set trainNow to true). Training this network
takes about 25 seconds with an NVIDIA® GeForce RTX 3080 GPU and about 2 minutes with an
Intel® Xeon W-2133 CPU @ 3.6 GHz.

trainNow = ;  %#ok<*UNRCH> 

This example uses data from four known routers. The dataset contains 3600 frames per router, where
90% is used as training frames and 10% is used as test frames.

numKnownRouters = 4;
numFramesPerRouter = 3600;
numTrainingFramesPerRouter = numFramesPerRouter * 0.9;
numTestFramesPerRouter = numFramesPerRouter * 0.1;
frameLength = 160;

14 Wireless Comm Examples

14-192

https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar
https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar


Preprocess Known and Unknown Router Data

Separate collected complex baseband data into its in-phase and quadrature components and reshape
it into a frameLength x 2 x 1 x numFramesPerRouter*numKnownRouters matrix. Repeat the same
process for the unknown router data. The following code uses previously collected and pre-processed
data. To use your own data, first collect data as described in Appendix: Known and Unknown Router
Data Collection on page 14-200. Copy the new data files named
rfFingerprintingCapturedDataUser.mat and
rfFingerprintingCapturedUnknownFramesUser.mat to the same directory as this example.
Then update the load commands to load these files.

if trainNow
  % Load known router data
  load('rfFingerprintingCapturedData.mat')
  
  % Create label vectors
  yTrain = repelem(MACAddresses, numTrainingFramesPerRouter);
  yTest = repelem(MACAddresses, numTestFramesPerRouter);
  
  % Separate between I and Q
  numTrainingSamples = numTrainingFramesPerRouter*numKnownRouters*frameLength;
  xTrainingFrames = xTrainingFrames(1:numTrainingSamples,1);
  xTrainingFrames = [real(xTrainingFrames), imag(xTrainingFrames)];
  numTestSamples = numTestFramesPerRouter*numKnownRouters*frameLength;
  xTestFrames = xTestFrames(1:numTestSamples,1);
  xTestFrames = [real(xTestFrames), imag(xTestFrames)];
  
  % Reshape dataset into an frameLength x 2 x 1 x numTrainingFramesPerRouter*numKnownRouters matrix
  xTrainingFrames = permute(...
    reshape(xTrainingFrames,[frameLength,numTrainingFramesPerRouter*numKnownRouters, 2, 1]),...
    [1 3 4 2]);
  
  % Reshape dataset into an frameLength x 2 x 1 x numTestFramesPerRouter*numKnownRouters matrix
  xTestFrames = permute(...
    reshape(xTestFrames,[frameLength,numTestFramesPerRouter*numKnownRouters, 2, 1]),...
    [1 3 4 2]);
  
  % Load unknown router data
  load('rfFingerprintingCapturedUnknownFrames.mat')
  
  % Number of training units
  numUnknownFrames = size(unknownFrames, 4);
  
  % Split data into 90% training and 10% test
  numUnknownTrainingFrames = floor(numUnknownFrames*0.9);
  numUnknownTest = numUnknownFrames - numUnknownTrainingFrames;
  
  % Add ADALM-PLUTO data into training and test datasets
  xTrainingFrames(:,:,:,(1:numUnknownTrainingFrames) + numTrainingFramesPerRouter*numKnownRouters) ...
    = unknownFrames(:,:,:, 1:numUnknownTrainingFrames);
  xTestFrames(:,:,:,(1:numUnknownTest) + numTestFramesPerRouter*numKnownRouters) ...
    = unknownFrames(:,:,:, (1:numUnknownTest) + numUnknownTrainingFrames);
  
  % Shuffle data
  vr = randperm(numKnownRouters*numTrainingFramesPerRouter+numUnknownTrainingFrames);
  xTrainingFrames = xTrainingFrames(:,:,:,vr);
  

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

14-193



  % Add "unknown" label and shuffle
  yTrain = [yTrain, repmat("Unknown", [1, numUnknownTrainingFrames])];
  yTrain = categorical(yTrain(vr));
  
  yTest = [yTest, repmat("Unknown", [1, numUnknownTest])];
  yTest = categorical(yTest);
end

Train the CNN

Use the same NN architecture and training options as in the training with simulated data example.

poolSize = [2 1];
strideSize = [2 1];
% Create network architecture
layers = [
  imageInputLayer([frameLength 2 1], 'Normalization', 'none', 'Name', 'Input Layer')
  
  convolution2dLayer([7 1], 50, 'Padding', [1 0], 'Name', 'CNN1')
  batchNormalizationLayer('Name', 'BN1')
  leakyReluLayer('Name', 'LeakyReLu1')
  maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool1')
  
  convolution2dLayer([7 2], 50, 'Padding', [1 0], 'Name', 'CNN2')
  batchNormalizationLayer('Name', 'BN2')
  leakyReluLayer('Name', 'LeakyReLu2')
  maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool2')
  
  fullyConnectedLayer(256, 'Name', 'FC1')
  leakyReluLayer('Name', 'LeakyReLu3')
  dropoutLayer(0.5, 'Name', 'DropOut1')
  
  fullyConnectedLayer(80, 'Name', 'FC2')
  leakyReluLayer('Name', 'LeakyReLu4')
  dropoutLayer(0.5, 'Name', 'DropOut2')
  
  fullyConnectedLayer(numKnownRouters+1, 'Name', 'FC3')
  softmaxLayer('Name', 'SoftMax')
  classificationLayer('Name', 'Output')
  ];

Configure the training options to use ADAM optimizer with a mini-batch size of 256. Use test frames
for validation since optimization of hyperparameters were done in [1] on page 14-201.

By default, ExecutionEnvironment is set to 'auto', which uses a GPU for training if one is
available. Otherwise, trainNetwork uses the CPU for training. To explicitly set the execution
environment, set ExecutionEnvironment to one of 'cpu', 'gpu', 'multi-gpu', or 'parallel'.

if trainNow
  miniBatchSize = 256;
  iterPerEpoch = floor((numTrainingFramesPerRouter*numKnownRouters + numUnknownTrainingFrames)/miniBatchSize);

  options = trainingOptions('adam', ...
    'MaxEpochs', 12, ...
    'ValidationData',{xTestFrames, yTest}, ...
    'ValidationFrequency', iterPerEpoch, ...
    'Verbose',false, ...
    'LearnRateSchedule','piecewise', ...

14 Wireless Comm Examples

14-194



    'InitialLearnRate', 0.001, ...
    'LearnRateDropFactor', 0.5, ...
    'LearnRateDropPeriod', 2, ...
    'MiniBatchSize', miniBatchSize, ...
    'Plots','training-progress', ...
    'Shuffle', 'every-epoch');
  
  % Train the network
  capturedDataNet = trainNetwork(xTrainingFrames, yTrain, layers, options);
else
  load('rfFingerprintingCapturedDataTrainedNN_R2023a.mat','capturedDataNet','xTestFrames','yTest','MACAddresses')
end

The following plot shows the training progress of the network run on a computer with a single
NVIDIA GeForce RTX 3080 GPU, where the network converged in 12 epochs to 100% accuracy.

Generate the confusion matrix.

figure
yTestPred = classify(capturedDataNet,xTestFrames,ExecutionEnvironment='cpu');
cm = confusionchart(yTest, yTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

14-195



Test with SDR

Test the performance of the trained network on the class "Unknown". Generate beacon frames with
MAC addresses of the known routers and one unknown router. Transmit these frames using an
ADALM-PLUTO radio and receive using another ADALM-PLUTO radio. Since the channel and RF
impairments created between these two radios are different than the ones created between the real
routers and the observer, the neural network should classify all of the received signals as "Unknown".
If the received MAC address is a known one, then the system declares the source as a router
impersonator. If the received MAC address is an unknown one, then the system declares the source
as an unknown router. To perform this test, you need two ADALM-PLUTO radios for transmission and
reception. Also, you need to install Communication Toolbox Support Package for ADALM-PLUTO
Radio.

Waveform Generation

Generate a transmission waveform consisting of beacon frames with different MAC addresses. The
transmitter repeatedly transmits these WLAN frames. The receiver captures the WLAN frames and
determines if it is a router impersonator using the received MAC address and RF fingerprint detected
by the trained NN.

14 Wireless Comm Examples

14-196

https://www.mathworks.com/hardware-support/adalm-pluto-radio.html
https://www.mathworks.com/hardware-support/adalm-pluto-radio.html


chanBW='CBW20';     % Channel Bandwidth
osf = 2;            % Oversampling Factor
frameLength=160;    % Frame Length in samples
% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;

% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon');
beaconFrameConfig.ManagementConfig = frameBodyConfig;

% Create interpolation and decimation objects
decimator = dsp.FIRDecimator('DecimationFactor',osf);

% Save known MAC addresses
knownMACAddresses = MACAddresses;
MACAddressesToSimulate = [MACAddresses, "ABCDEFABCDEF"];

% Create WLAN waveform with the MAC addresses of known routers and an
% unknown router
txWaveform = zeros(1540,5);
for i = 1:length(MACAddressesToSimulate)
  
  % Set MAC Address
  beaconFrameConfig.Address2 = MACAddressesToSimulate(i);
  
  % Generate Beacon frame bits
  [beacon, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');
  
  nonHTcfg = wlanNonHTConfig(...
    'ChannelBandwidth', chanBW,...
    "MCS", 1,...
    "PSDULength", mpduLength);
  txWaveform(:,i) = [wlanWaveformGenerator(beacon, nonHTcfg); zeros(20,1)];
end

txWaveform = txWaveform(:);

% Get center frequency for channel 153 in 5 GHz band
fc = wlanChannelFrequency(153, 5);
fs = wlanSampleRate(nonHTcfg);

txSig  = resample(txWaveform,osf,1);

% Samples per frame in Burst Mode
spf = length(txSig)/length(MACAddressesToSimulate);

runSDRSection = false;
if helperIsPlutoSDRInstalled()  
  radios = findPlutoRadio();
  if length(radios) >= 2
    runSDRSection = true;
  else
    disp("Two ADALM-PLUTO radios are needed. Skipping SDR test.")
  end
else
    disp("Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.")
    disp("Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.")
    disp("Skipping SDR test.")

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

14-197



end

if runSDRSection
  % Set up PlutoSDR transmitter
  deviceNameSDR = 'Pluto';
  txGain = 0;
  txSDR = sdrtx(deviceNameSDR);
  txSDR.RadioID = 'usb:0';
  txSDR.BasebandSampleRate = fs*osf;
  txSDR.CenterFrequency = fc;
  txSDR.Gain = txGain;
  
  % Set up PlutoSDR Receiver
  rxSDR = sdrrx(deviceNameSDR);
  rxSDR.RadioID = 'usb:1';
  rxSDR.BasebandSampleRate = txSDR.BasebandSampleRate;
  rxSDR.CenterFrequency = txSDR.CenterFrequency;
  rxSDR.GainSource ='Manual';
  rxSDR.Gain = 30;
  rxSDR.OutputDataType = 'double';
  rxSDR.EnableBurstMode=true;
  rxSDR.NumFramesInBurst = 20;
  rxSDR.SamplesPerFrame = osf*spf;
end

L-LTF for Classification

The L-LTF sequence present in each beacon frame preamble is used as input units to the NN.
rfFingerprintingNonHTFrontEnd System object™ is used to detect the WLAN packets, perform
synchronization tasks and, extract the L-LTF sequences and data. In addition, the MAC address is
also decoded. In addition, the data is pre-processed and classified using the trained network.

if runSDRSection
  numLLTF = 20;       % Number of L-LTF captured for Testing
  
  rxFrontEnd = rfFingerprintingNonHTFrontEnd('ChannelBandwidth', 'CBW20');
  
  disp("The known MAC addresses are:");
  disp(knownMACAddresses)
  
  % Set PlutoSDR to transmit repeatedly
  disp('Starting transmitter')
  transmitRepeat(txSDR, txSig);
  
  % Captured Frames counter
  numCapturedFrames = 0;
  
  disp('Starting receiver')
  % Loop until numLLTF frames are collected
  while numCapturedFrames < numLLTF
    
    % Receive data using PlutoSDR
    rxSig = rxSDR();

    rxSig = decimator(rxSig);
    
    % Perform front-end processing and payload buffering

14 Wireless Comm Examples

14-198



    [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar, LLTF] = ...
      rxFrontEnd(rxSig);
    
    if payloadFull
      
      % Recover payload bits
      recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...
        noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');
      
      % Decode and evaluate recovered bits
      [mpduCfg, ~, success] = wlanMPDUDecode(recBits, cfgNonHT);
      
      if success == wlanMACDecodeStatus.Success
        % Update counter
        numCapturedFrames = numCapturedFrames+1;
        
        % Create real-valued input
        LLTF = [real(LLTF), imag(LLTF)];
        LLTF = permute(reshape(LLTF,frameLength ,[] , 2, 1), [1 3 4 2]);
        
        ypred = classify(capturedDataNet, LLTF);
        
        if sum(contains(knownMACAddresses, mpduCfg.Address2)) ~= 0
          if categorical(convertCharsToStrings(mpduCfg.Address2))~=ypred
            disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED"))
          else
            disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))
          end
        else
          disp(strcat("MAC Address ", mpduCfg.Address2," is not recognized, unknown device"));
        end
      end
    end
  end
  release(txSDR)
end

The known MAC addresses are:

    "71B63A2D0B83"    "A3F8AC0F2253"    "EF11D125044A"    "F636A97E07E7"

Starting transmitter

## Establishing connection to hardware. This process can take several seconds.
## Waveform transmission has started successfully and will repeat indefinitely. 
## Call the release method to stop the transmission.

Starting receiver

## Establishing connection to hardware. This process can take several seconds.

MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

14-199



MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

Further Exploration

Capture data from your own routers as explained in Appendix: Known and Unknown Router Data
Collection, on page 14-200 train the neural network with this data, and test the performance of the
network.

Appendix: Helper Functions

• rfFingerprintingRouterDataCollection
• rfFingerprintingUnknownClassDataCollectionTx
• rfFingerprintingUnknownClassDataCollectionRx
• rfFingerprintingNonHTFrontEnd
• rfFingerprintingNonHTReceiver

Appendix: Known and Unknown Router Data Collection

Use rfFingerprintingRouterDataCollection to collect data from known (i.e. trusted) routers.
This function extracts L-LTF signals present in 802.11a/g/n/ac OFDM Non-HT beacons frames
transmitted from commercial 802.11 hardware. For more information see the “OFDM Beacon
Receiver Using Software-Defined Radio” (Communications Toolbox Support Package for USRP Radio)
example. L-LTF signals and corresponding router MAC addresses are used to train the RF
fingerprinting neural network. This method works best if the routers and their antennas are fixed and
hard to move unintentionally. For example, in most office environments, routers are mounted on the
ceiling. Follow these steps:

1 Connect an ADALM-PLUTO radio to your PC to use as the observer radio.
2 Place the radio in a central location where it can receive signals from as many routers as

possible. Fix the radio so that it does not move. If possible, place the observer radio on the
ceiling or high on a wall.

3 Determine the channel number of the routers. You can use a Wi-Fi® analyzer app on your phone
to find out the channel numbers.

4 Start data collection by running "rfFingerprintingRouterDataCollection(channel)"
where channel is the Wi-Fi channel number

5 Monitor the "max(abs(LLTF))" value. If it is above 1.2 or smaller than 0.01, adjust the gain of the
receiver using the GAIN input of rfFingerprintingRouterDataCollection function.

14 Wireless Comm Examples

14-200



Use the helper functions rfFingerprintingUnknownClassDataCollectionTx and
rfFingerprintingUnknownClassDataCollectionRx to collect data from unknown routers.
These functions set two ADALM-PLUTO radios to transmit and receive L-LTF signals. The received
signals are combined with the known router signals to train the neural network. You need two
ADALM-PLUTO radios, preferably connected to two separate PCs. Follow these steps:

1 Connect an ADALM-PLUTO radio to a stationary PC to act as the unknown router.
2 Start transmissions by running "rfFingerprintingUnknownClassDataCollectionTx".
3 Connect another ADALM-PLUTO radio to a mobile PC to act as the observer.
4 Start data collection by running "rfFingerprintingUnknownClassDataCollectionRx". This

function by default collects 200 frames per location. Each location represents a different
unknown router.

5 When the function instructs you to move to a new location, move the observer radio to a new
location. By default, this function collects data from 10 locations.

6 If the observer does not receive any beacons or it rarely receives beacons, move the observer
closer to the transmitter.

7 Once the data collection is done, call "release(sdrTransmitter)" in the transmitting radio's
MATLAB® session.

Selected Bibliography

[1] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis and K. Chowdhury, "ORACLE: Optimized
Radio clAssification through Convolutional neuraL nEtworks," IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, Paris, France, 2019, pp. 370-378.

See Also

More About
• “Deep Learning in MATLAB” on page 1-2

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

14-201





Audio Examples

15



Transfer Learning with Pretrained Audio Networks

This example shows how to use transfer learning to retrain YAMNet, a pretrained convolutional
neural network, to classify a new set of audio signals. To get started with audio deep learning from
scratch, see “Classify Sound Using Deep Learning” (Audio Toolbox).

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
signals.

Audio Toolbox™ additionally provides the classifySound (Audio Toolbox) function, which
implements necessary preprocessing for YAMNet and convenient postprocessing to interpret the
results. Audio Toolbox also provides the pretrained VGGish network (vggish (Audio Toolbox)) as well
as the vggishEmbeddings (Audio Toolbox) function, which implements preprocessing and
postprocessing for the VGGish network.

Create Data

Generate 100 white noise signals, 100 brown noise signals, and 100 pink noise signals. Each signal
represents a duration of 0.98 seconds assuming a 16 kHz sample rate.

fs = 16e3;
duration = 0.98;
N = duration*fs;
numSignals = 100;

wNoise = 2*rand([N,numSignals]) - 1;
wLabels = repelem(categorical("white"),numSignals,1);

bNoise = filter(1,[1,-0.999],wNoise);
bNoise = bNoise./max(abs(bNoise),[],"all");
bLabels = repelem(categorical("brown"),numSignals,1);

pNoise = pinknoise([N,numSignals]);
pLabels = repelem(categorical("pink"),numSignals,1);

Split the data into training and test sets. Normally, the training set consists of most of the data.
However, to illustrate the power of transfer learning, you will use only a few samples for training and
the majority for validation.

15 Audio Examples

15-2



K = ;

trainAudio = [wNoise(:,1:K),bNoise(:,1:K),pNoise(:,1:K)];
trainLabels = [wLabels(1:K);bLabels(1:K);pLabels(1:K)];

validationAudio = [wNoise(:,K+1:end),bNoise(:,K+1:end),pNoise(:,K+1:end)];
validationLabels = [wLabels(K+1:end);bLabels(K+1:end);pLabels(K+1:end)];

fprintf("Number of samples per noise color in train set = %d\n" + ...
        "Number of samples per noise color in validation set = %d\n",K,numSignals-K);

Number of samples per noise color in train set = 5
Number of samples per noise color in validation set = 95

Extract Features

Use yamnetPreprocess (Audio Toolbox) to extract log-mel spectrograms from both the training set
and the validation set using the same parameters as the YAMNet model was trained on.

trainFeatures = yamnetPreprocess(trainAudio,fs);
validationFeatures = yamnetPreprocess(validationAudio,fs);

Transfer Learning

To load the pretrained network, call yamnet (Audio Toolbox). If the Audio Toolbox model for YAMNet
is not installed, then the function provides a link to the location of the network weights. To download
the model, click the link. Unzip the file to a location on the MATLAB path. The YAMNet model can
classify audio into one of 521 sound categories, including white noise and pink noise (but not brown
noise).

net = yamnet;
net.Layers(end).Classes

ans = 521×1 categorical
     Speech 
     Child speech, kid speaking 
     Conversation 
     Narration, monologue 
     Babbling 
     Speech synthesizer 
     Shout 
     Bellow 
     Whoop 
     Yell 
     Children shouting 
     Screaming 
     Whispering 
     Laughter 
     Baby laughter 
     Giggle 
     Snicker 
     Belly laugh 
     Chuckle, chortle 
     Crying, sobbing 
     Baby cry, infant cry 
     Whimper 
     Wail, moan 

 Transfer Learning with Pretrained Audio Networks

15-3



     Sigh 
     Singing 
     Choir 
     Yodeling 
     Chant 
     Mantra 
     Child singing 
      ⋮

Prepare the model for transfer learning by first converting the network to a layerGraph. Use
replaceLayer to replace the fully-connected layer with an untrained fully-connected layer. Replace
the classification layer with a classification layer that classifies the input as "white", "pink", or
"brown". See “List of Deep Learning Layers” on page 1-43 for deep learning layers supported in
MATLAB®.

uniqueLabels = unique(trainLabels);
numLabels = numel(uniqueLabels);

lgraph = layerGraph(net.Layers);

lgraph = replaceLayer(lgraph,"dense",fullyConnectedLayer(numLabels,Name="dense"));
lgraph = replaceLayer(lgraph,"Sound",classificationLayer(Name="Sounds",Classes=uniqueLabels));

To define training options, use trainingOptions.

options = trainingOptions("adam",ValidationData={single(validationFeatures),validationLabels});

To train the network, use trainNetwork. The network achieves a validation accuracy of 100% using
only 5 signals per noise type.

trainNetwork(single(trainFeatures),trainLabels,lgraph,options);

Training on single CPU.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:01 |       20.00% |       88.42% |       1.1922 |       0.6651 |          0.0010 |
|      30 |          30 |       00:00:14 |      100.00% |      100.00% |   5.0068e-06 |       0.0003 |          0.0010 |
|======================================================================================================================|
Training finished: Max epochs completed.

15 Audio Examples

15-4



Speech Command Recognition in Simulink

This example shows a Simulink® model that detects the presence of speech commands in audio. The
model uses a pretrained convolutional neural network to recognize a given set of commands.

Speech Command Recognition Model

The model recognizes these speech commands:

• "yes"
• "no"
• "up"
• "down"
• "left"
• "right"
• "on"
• "off"
• "stop"
• "go"

The model uses a pretrained convolutional deep learning network. Refer to the example “Train
Speech Command Recognition Model Using Deep Learning” (Audio Toolbox) for details on the
architecture of this network and how you train it.

Open the model.

model = "speechCommandRecognition";
open_system(model)

The model breaks the audio stream into one-second overlapping segments. A bark spectrogram is
computed from each segment. The spectrograms are fed to the pretrained network.

 Speech Command Recognition in Simulink

15-5



Use the manual switch to select either a live stream from your microphone or read commands stored
in audio files. For commands on file, use the rotary switch to select one of three commands (Go, Yes,
or Stop).

Auditory Spectrogram Extraction

The deep learning network was trained on auditory spectrograms computed using an
audioFeatureExtractor (Audio Toolbox). The Auditory Spectrogram block in the model has been
configured to extract the same features as the network was trained on.

Run the model

Simulate the model for 20 seconds.

set_param(model,StopTime="20");
open_system(model + "/Time Scope")
sim(model);

The recognized command is printed in the display block. The network activations, which give a level
of confidence in the different supported commands, are displayed in a time scope.

Close the model.

15 Audio Examples

15-6



close_system(model,0)

 Speech Command Recognition in Simulink

15-7



Speaker Identification Using Custom SincNet Layer and Deep
Learning

In this example, you train three convolutional neural networks (CNNs) to perform speaker
verification and then compare the performances of the architectures. The architectures of the three
CNNs are all equivalent except for the first convolutional layer in each:

1 In the first architecture, the first convolutional layer is a "standard" convolutional layer,
implemented using convolution2dLayer.

2 In the second architecture, the first convolutional layer is a constant sinc filterbank, implemented
using a custom layer.

3 In the third architecture, the first convolutional layer is a trainable sinc filterbank, implemented
using a custom layer. This architecture is referred to as SincNet [1] on page 15-21.

[1] on page 15-21 shows that replacing the standard convolutional layer with a filterbank layer leads
to faster training convergence and higher accuracy. [1] on page 15-21 also shows that making the
parameters of the filter bank learnable yields additional performance gains.

Introduction

Speaker identification is a prominent research area with a variety of applications including forensics
and biometric authentication. Many speaker identification systems depend on precomputed features
such as i-vectors or MFCCs, which are then fed into machine learning or deep learning networks for
classification. Other deep learning speech systems bypass the feature extraction stage and feed the
audio signal directly to the network. In such end-to-end systems, the network directly learns low-level
audio signal characteristics.

In this example, you first train a traditional end-to-end speaker identification CNN. The filters learned
tend to have random shapes that do not correspond to perceptual evidence or knowledge of how the
human ear works, especially in scenarios where the amount of training data is limited [1] on page 15-
21. You then replace the first convolutional layer in the network with a custom sinc filterbank layer
that introduces structure and constraints based on perceptual evidence. Finally, you train the SincNet
architecture, which adds learnability to the sinc filterbank parameters.

The three neural network architectures explored in the example are summarized as follows:

1 Standard Convolutional Neural Network - The input waveform is directly connected to a
randomly initialized convolutional layer which attempts to learn features and capture
characteristics from the raw audio frames.

2 ConstantSincLayer - The input waveform is convolved with a set of fixed-width sinc functions
(bandpass filters) equally spaced on the mel scale.

3 SincNetLayer - The input waveform is convolved with a set of sinc functions whose parameters
are learned by the network. In the SincNet architecture, the network tunes parameters of the
sinc functions while training.

This example defines and trains the three neural networks proposed above and evaluates their
performance on the LibriSpeech Dataset [2] on page 15-21.

15 Audio Examples

15-8



Data Set

Download Dataset

In this example, you use a subset of the LibriSpeech Dataset [2] on page 15-21. The LibriSpeech
Dataset is a large corpus of read English speech sampled at 16 kHz. The data is derived from
audiobooks read from the LibriVox project.

dataFolder = tempdir;

dataset = fullfile(dataFolder,"LibriSpeech","train-clean-100");
if ~datasetExists(dataset)
    filename = "train-clean-100.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    gunzip(url,dataFolder);
    unzippedFile = fullfile(dataset,filename);
    untar(unzippedFile{1}(1:end-3),dataset);
end

Create an audioDatastore object to access the LibriSpeech audio data.

ads = audioDatastore(dataset,IncludeSubfolders=true);

Extract the speaker label from the file path.

ads.Labels = categorical(extractBetween(ads.Files,fullfile(dataset,filesep),filesep));

The full dev-train-100 dataset is around 6 GB of data. To run this example quickly, set
speedupExample to true.

speedupExample = ;
if speedupExample
    allSpeakers = unique(ads.Labels);
    subsetSpeakers = allSpeakers(1:50);
    ads = subset(ads,ismember(ads.Labels,subsetSpeakers));
    ads.Labels = removecats(ads.Labels);
end
ads = splitEachLabel(ads,0.1);

Split the audio files into training and test data. 80% of the audio files are assigned to the training set
and 20% are assigned to the test set.

[adsTrain,adsTest] = splitEachLabel(ads,0.8);

Sample Speech Signal

Plot one of the audio files and listen to it.

[audioIn,dsInfo] = read(adsTrain);
Fs = dsInfo.SampleRate;

sound(audioIn,Fs)

t = (1/Fs)*(0:length(audioIn)-1);

plot(t,audioIn)
title("Audio Sample")

 Speaker Identification Using Custom SincNet Layer and Deep Learning

15-9



xlabel("Time (s)")
ylabel("Amplitude")
grid on

Reset the training datastore.

reset(adsTrain)

Data Preprocessing

CNNs expect inputs to have consistent dimensions. You will preprocess the audio by removing
regions of silence and then break the remaining speech into 200 ms frames with 40 ms overlap.

Set the parameters for preprocessing.

frameDuration = 200e-3;
overlapDuration = 40e-3;
frameLength = floor(Fs*frameDuration); 
overlapLength = round(Fs*overlapDuration);

Use the supporting function, preprocessAudioData on page 15-21, to preprocess the training and
test data. Define a transform on the audio datastores to perform the preprocessing, then use readall
to preprocess the entire datasets and place the preprocessed data into memory. If you have Parallel
Computing Toolbox™, you can spread the computational load across workers. XTrain and XTest

15 Audio Examples

15-10



contain the train and test speech frames, respectively. TTrain and TTest contain the train and test
labels, respectively.

pFlag = ~isempty(ver("parallel"));

adsTrainTransform = transform(adsTrain,@(x){preprocessAudioData(x,frameLength,overlapLength,Fs)});
XTrain = readall(adsTrainTransform,UseParallel=pFlag);

Replicate the labels so that each 200 ms chunk has a corresponding label.

chunksPerFile = cellfun(@(x)size(x,4),XTrain);
TTrain = repelem(adsTrain.Labels,chunksPerFile,1);

Concatenate the training set into an array.

XTrain = cat(4,XTrain{:});

Perform the same preprocessing steps to the test set.

adsTestTransform = transform(adsTest,@(x){preprocessAudioData(x,frameLength,overlapLength,Fs)});
XTest = readall(adsTestTransform,UseParallel=true);
chunksPerFile = cellfun(@(x)size(x,4),XTest);
TTest = repelem(adsTest.Labels,chunksPerFile,1);
XTest = cat(4,XTest{:});

Standard CNN

Define Layers

The standard CNN is inspired by the neural network architecture in [1] on page 15-21.

numFilters = 80;
filterLength = 251;
numSpeakers = numel(unique(removecats(ads.Labels)));

layers = [ 
    imageInputLayer([1 frameLength 1])
    
    % First convolutional layer
    
    convolution2dLayer([1 filterLength],numFilters)
    batchNormalizationLayer
    leakyReluLayer(0.2)
    maxPooling2dLayer([1 3])
    
    % This layer is followed by 2 convolutional layers
    
    convolution2dLayer([1 5],60)
    batchNormalizationLayer
    leakyReluLayer(0.2)
    maxPooling2dLayer([1 3])
    
    convolution2dLayer([1 5],60)
    batchNormalizationLayer
    leakyReluLayer(0.2)
    maxPooling2dLayer([1 3])

    % This is followed by 3 fully-connected layers
    

 Speaker Identification Using Custom SincNet Layer and Deep Learning

15-11



    fullyConnectedLayer(256)
    batchNormalizationLayer
    leakyReluLayer(0.2)
    
    fullyConnectedLayer(256)
    batchNormalizationLayer
    leakyReluLayer(0.2)

    fullyConnectedLayer(256)
    batchNormalizationLayer
    leakyReluLayer(0.2)

    fullyConnectedLayer(numSpeakers)
    softmaxLayer
    classificationLayer];

Analyze the layers of the neural network using the analyzeNetwork function

analyzeNetwork(layers)

Train Network

Train the neural network for 15 epochs using adam optimization. Shuffle the training data before
every epoch. The training options for the neural network are set using trainingOptions. Use the
test data as the validation data to observe how the network performance improves as training
progresses.

numEpochs = 15;
miniBatchSize = 128;
validationFrequency = floor(numel(TTrain)/miniBatchSize);

options = trainingOptions("adam", ...
    Shuffle="every-epoch", ...
    MiniBatchSize=miniBatchSize, ...
    Plots="training-progress", ...
    Verbose=false,MaxEpochs=numEpochs, ...
    ValidationData={XTest,categorical(TTest)}, ...
    ValidationFrequency=validationFrequency);

To train the network, call trainNetwork.

[convNet,convNetInfo] = trainNetwork(XTrain,TTrain,layers,options);

15 Audio Examples

15-12



Inspect Frequency Response of First Convolutional Layer

Plot the magnitude frequency response of nine filters learned from the standard CNN network. The
shape of these filters is not intuitive and does not correspond to perceptual knowledge. The next
section explores the effect of using constrained filter shapes.

F = squeeze(convNet.Layers(2,1).Weights);
H = zeros(size(F));
Freq = zeros(size(F));

for ii = 1:size(F,2)
   [h,f] = freqz(F(:,ii),1,251,Fs);
    H(:,ii) = abs(h);
    Freq(:,ii) = f;
end
idx = linspace(1,size(F,2),9);
idx = round(idx);

figure
for jj = 1:9
   subplot(3,3,jj)
   plot(Freq(:,idx(jj)),H(:,idx(jj)))
   sgtitle("Frequency Response of Learned Standard CNN Filters")
   xlabel("Frequency (Hz)")
end

 Speaker Identification Using Custom SincNet Layer and Deep Learning

15-13



Constant Sinc Filterbank

In this section, you replace the first convolutional layer in the standard CNN with a constant sinc
filterbank layer. The constant sinc filterbank layer convolves the input frames with a bank of fixed
bandpass filters. The bandpass filters are a linear combination of two sinc filters in the time domain.
The frequencies of the bandpass filters are spaced linearly on the mel scale.

Define Layers

The implementation for the constant sinc filterbank layer can be found in the
constantSincLayer.m file (attached to this example). Define parameters for a
ConstantSincLayer. Use 80 filters and a filter length of 251.

numFilters = 80;
filterLength = 251;
numChannels = 1;
name = "constant_sinc";

Change the first convolutional layer from the standard CNN to the ConstantSincLayer and keep
the other layers unchanged.

cSL = constantSincLayer(numFilters,filterLength,Fs,numChannels,name)

cSL = 
  constantSincLayer with properties:

15 Audio Examples

15-14



                Name: 'constant_sinc'
          NumFilters: 80
          SampleRate: 16000
        FilterLength: 251
         NumChannels: []
             Filters: [1×251×1×80 single]
    MinimumFrequency: 50
    MinimumBandwidth: 50
    StartFrequencies: [0.0019 0.0032 0.0047 0.0062 0.0078 0.0094 0.0111 0.0128 0.0145 0.0164 0.0183 0.0202 0.0222 0.0243 0.0264 0.0286 0.0309 0.0332 0.0356 0.0381 0.0407 0.0433 0.0460 0.0488 0.0517 0.0547 0.0578 0.0610 0.0643 0.0677 0.0712 0.0748 … ]
          Bandwidths: [0.0028 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0041 0.0042 0.0043 0.0045 0.0046 0.0047 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0061 0.0063 0.0065 0.0067 0.0069 0.0071 0.0073 0.0075 … ]

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

layers(2) = cSL;

Train Network

Train the network using the trainNetwork function. Use the same training options defined
previously.

[constSincNet,constSincInfo] = trainNetwork(XTrain,TTrain,layers,options);

 Speaker Identification Using Custom SincNet Layer and Deep Learning

15-15



Inspect Frequency Response of First Convolutional Layer

The plotNFilters method plots the magnitude frequency response of n filters with equally spaced
filter indices. Plot the magnitude frequency response of nine filters in the ConstantSincLayer.

figure
n = 9;
plotNFilters(constSincNet.Layers(2),n)

SincNet

In this section, you use a trainable SincNet layer as the first convolutional layer in your network. The
SincNet layer convolves the input frames with a bank of bandpass filters. The bandwidth and the
initial frequencies of the SincNet filters are initialized as equally spaced in the mel scale. The SincNet
layer attempts to learn better parameters for these bandpass filters within the neural network
framework.

Define Layers

The implementation for the SincNet layer filterbank layer can be found in the sincNetLayer.m file
(attached to this example). Define parameters for a SincNetLayer. Use 80 filters and a filter length
of 251.

numFilters = 80;
filterLength = 251;

15 Audio Examples

15-16



numChannels = 1; 
name = "sinc";

Replace the ConstantSincLayer from the previous network with the SincNetLayer. This new
layer has two learnable parameters: FilterFrequencies and FilterBandwidths.

sNL = sincNetLayer(numFilters,filterLength,Fs,numChannels,name)

sNL = 
  sincNetLayer with properties:

                 Name: 'sinc'
           NumFilters: 80
           SampleRate: 16000
         FilterLength: 251
          NumChannels: []
               Window: [0.0800 0.0801 0.0806 0.0813 0.0823 0.0836 0.0852 0.0871 0.0893 0.0917 0.0945 0.0975 0.1008 0.1043 0.1082 0.1123 0.1167 0.1214 0.1263 0.1315 0.1369 0.1426 0.1485 0.1547 0.1612 0.1679 0.1748 0.1819 0.1893 0.1969 0.2047 0.2127 … ]
           TimeStamps: [-0.0078 -0.0077 -0.0077 -0.0076 -0.0076 -0.0075 -0.0074 -0.0074 -0.0073 -0.0073 -0.0072 -0.0071 -0.0071 -0.0070 -0.0069 -0.0069 -0.0068 -0.0067 -0.0067 -0.0066 -0.0066 -0.0065 -0.0064 -0.0064 -0.0063 -0.0063 -0.0062 -0.0061 … ]
     MinimumFrequency: 50
     MinimumBandwidth: 50

   Learnable Parameters
    FilterFrequencies: [0.0019 0.0032 0.0047 0.0062 0.0078 0.0094 0.0111 0.0128 0.0145 0.0164 0.0183 0.0202 0.0222 0.0243 0.0264 0.0286 0.0309 0.0332 0.0356 0.0381 0.0407 0.0433 0.0460 0.0488 0.0517 0.0547 0.0578 0.0610 0.0643 0.0677 0.0712 0.0748 … ]
     FilterBandwidths: [0.0028 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0041 0.0042 0.0043 0.0045 0.0046 0.0047 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0061 0.0063 0.0065 0.0067 0.0069 0.0071 0.0073 0.0075 … ]

   State Parameters
    No properties.

  Show all properties

layers(2) = sNL;

Train Network

Train the network using the trainNetwork function. Use the same training options defined
previously.

[sincNet,sincNetInfo] = trainNetwork(XTrain,TTrain,layers,options);

 Speaker Identification Using Custom SincNet Layer and Deep Learning

15-17



Inspect Frequency Response of First Convolutional Layer

Use the plotNFilters method of SincNetLayer to visualize the magnitude frequency response of
nine filters with equally spaced indices learned by SincNet.

figure
plotNFilters(sincNet.Layers(2),9)

15 Audio Examples

15-18



Results Summary

Accuracy

The table summarizes the frame accuracy for all three neural networks.

NetworkType = ["Standard CNN";"Constant Sinc Layer";"SincNet Layer"];
Accuracy = [convNetInfo.FinalValidationAccuracy;constSincInfo.FinalValidationAccuracy;sincNetInfo.FinalValidationAccuracy];

resultsSummary = table(NetworkType,Accuracy)

resultsSummary=3×2 table
         NetworkType         Accuracy
    _____________________    ________

    "Standard CNN"            71.202 
    "Constant Sinc Layer"     75.455 
    "SincNet Layer"           78.395 

Performance with Respect to Epochs

Plot the accuracy on the test set against the epoch number to see how well the networks learn as the
number of epochs increase. SincNet outperforms the ConstantSincLayer network, especially
during the early stages of training. This shows that updating the parameters of the bandpass filters

 Speaker Identification Using Custom SincNet Layer and Deep Learning

15-19



within the neural network framework leads to faster convergence. This behavior is only observed
when the dataset is large enough, so it might not be seen when speedupExample is set to true.

epoch = linspace(0,numEpochs,numel(sincNetInfo.ValidationAccuracy(~isnan(sincNetInfo.ValidationAccuracy))));
epoch = [epoch,numEpochs];

sinc_valAcc = [sincNetInfo.ValidationAccuracy(~isnan(sincNetInfo.ValidationAccuracy)),...
    sincNetInfo.FinalValidationAccuracy];
const_sinc_valAcc = [constSincInfo.ValidationAccuracy(~isnan(constSincInfo.ValidationAccuracy)),...
    constSincInfo.FinalValidationAccuracy];
conv_valAcc = [convNetInfo.ValidationAccuracy(~isnan(convNetInfo.ValidationAccuracy)),...
    convNetInfo.FinalValidationAccuracy];

figure
plot(epoch,sinc_valAcc,"-*",MarkerSize=4)
hold on
plot(epoch,const_sinc_valAcc,"-*",MarkerSize=4)
plot(epoch,conv_valAcc,"-*",MarkerSize=4)
ylabel("Frame-Level Accuracy (Test Set)")
xlabel("Epoch")
xlim([0 numEpochs+0.3])
title("Frame-Level Accuracy Versus Epoch")
legend("sincNet","constantSincLayer","conv2dLayer",Location="southeast")
grid on

15 Audio Examples

15-20



In the figure above, the final frame accuracy is a bit different from the frame accuracy that is
computed in the last iteration. While training, the batch normalization layers perform normalization
over mini-batches. However, at the end of training, the batch normalization layers normalize over the
entire training data, which results in a slight change in performance.

Supporting Functions

function xp = preprocessAudioData(x,frameLength,overlapLength,Fs)

speechIdx = detectSpeech(x,Fs);
xp = zeros(1,frameLength,1,0);

for ii = 1:size(speechIdx,1)
    % Isolate speech segment
    audioChunk = x(speechIdx(ii,1):speechIdx(ii,2));

    % Split into 200 ms chunks
    audioChunk = buffer(audioChunk,frameLength,overlapLength);
    audioChunk = reshape(audioChunk,1,frameLength,1,size(audioChunk,2));

    % Concatenate with existing audio
    xp = cat(4,xp,audioChunk);
end
end

References

[1] M. Ravanelli and Y. Bengio, "Speaker Recognition from Raw Waveform with SincNet," 2018 IEEE
Spoken Language Technology Workshop (SLT), Athens, Greece, 2018, pp. 1021-1028, doi: 10.1109/
SLT.2018.8639585.

[2] V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public
domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brisbane, QLD, 2015, pp. 5206-5210, doi: 10.1109/ICASSP.2015.7178964

 Speaker Identification Using Custom SincNet Layer and Deep Learning

15-21



Dereverberate Speech Using Deep Learning Networks

This example shows how to train a U-Net fully convolutional network (FCN) [1] on page 15-45 to
dereverberate a speech signals.

Introduction

Reverberation occurs when a speech signal is reflected off objects in space, causing multiple
reflections to build up and eventually leads to degradation of speech quality. Dereverberation is the
process of reducing the reverberation effects in a speech signal.

Dereverberate Speech Signal Using Pretrained Network

Before going into the training process in detail, use a pretrained network to dereverberate a speech
signal.

Download the pretrained network. This network was trained on 56-speaker versions of the training
datasets. The example walks through training on the 28-speaker version.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","dereverbnet.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"derevernet");
load(fullfile(netFolder,"dereverbNet.mat"));

Listen to a clean speech signal sampled at 16 kHz.

[cleanAudio,fs] = audioread("clean_speech_signal.wav");

sound(cleanAudio,fs)

An acoustic path can be modelled using a room impulse response. You can model reverberation by
convolving an anechoic signal with a room impulse response.

Load and plot a room impulse response.

[rirAudio,fsR] = audioread("room_impulse_response.wav");

tAxis = (1/fsR)*(0:numel(rirAudio)-1);

figure
plot(tAxis,rirAudio)
xlabel("Time (s)")
ylabel("Amplitude")
grid on

15 Audio Examples

15-22



Convolve the clean speech with the room impulse response to obtain reverberated speech. Align the
lengths and amplitudes of the reverberated and clean speech signals.

revAudio = conv(cleanAudio,rirAudio);

revAudio = revAudio(1:numel(cleanAudio));
revAudio = revAudio.*(max(abs(cleanAudio))/max(abs(revAudio)));

Listen to the reverberated speech signal.

sound(revAudio,fs)

The input to the pretrained network is the log-magnitude short-time Fourier transform (STFT) of the
reverberant audio. The network predicts the log-magnitude STFT of the dereverberated input. To
estimate the original time-domain audio signal, you perform an inverse STFT and assume the phase
of the reverberant audio.

Use the following parameters to compute the STFT.

params.WindowdowLength = 512;
params.Window = hamming(params.WindowdowLength,"periodic");
params.OverlapLength = round(0.75*params.WindowdowLength);
params.FFTLength = params.WindowdowLength;

 Dereverberate Speech Using Deep Learning Networks

15-23



Use stft to compute the one-sided log-magnitude STFT. Use single precision when computing
features to better utilize memory usage and to speed up the training. Even though the one-sided
STFT yields 257 frequency bins, consider only 256 bins and ignore the highest frequency bin.

revAudio = single(revAudio);    
audioSTFT = stft(revAudio,Window=params.Window,OverlapLength=params.OverlapLength, ...
                FFTLength=params.FFTLength,FrequencyRange="onesided"); 
Eps = realmin("single");
reverbFeats = log(abs(audioSTFT(1:end-1,:)) + Eps);

Extract the phase of the STFT.

phaseOriginal = angle(audioSTFT(1:end-1,:));

Each input will have dimensions 256-by-256 (frequency bins by time steps). Split the log-magnitude
STFT into segments of 256 time-steps.

params.NumSegments = 256;
params.NumFeatures = 256;
totalFrames = size(reverbFeats,2);
chunks = ceil(totalFrames/params.NumSegments);
reverbSTFTSegments = mat2cell(reverbFeats,params.NumFeatures, ...
    [params.NumSegments*ones(1,chunks - 1),(totalFrames - (chunks-1)*params.NumSegments)]);
reverbSTFTSegments{chunks} = reverbFeats(:,end-params.NumSegments + 1:end);

Scale the segmented features to the range [-1,1]. Retain the minimum and maximum values used to
scale for reconstructing the dereverberated signal.

minVals = num2cell(cellfun(@(x)min(x,[],"all"),reverbSTFTSegments));
maxVals = num2cell(cellfun(@(x)max(x,[],"all"),reverbSTFTSegments));

featNorm = cellfun(@(feat,minFeat,maxFeat)2.*(feat - minFeat)./(maxFeat - minFeat) - 1, ...
    reverbSTFTSegments,minVals,maxVals,UniformOutput=false);

Reshape the features so that chunks are along the fourth dimension.

featNorm = reshape(cell2mat(featNorm),params.NumFeatures,params.NumSegments,1,chunks);

Predict the log-magnitude spectra of the reverberated speech signal using the pretrained network.

predictedSTFT4D = predict(dereverbNet,featNorm);

Reshape to 3-dimensions and scale the predicted STFTs to the original range using the saved
minimum-maximum pairs.

predictedSTFT = squeeze(mat2cell(predictedSTFT4D,params.NumFeatures,params.NumSegments,1,ones(1,chunks)))';
featDeNorm = cellfun(@(feat,minFeat,maxFeat) (feat + 1).*(maxFeat-minFeat)./2 + minFeat, ...
    predictedSTFT,minVals,maxVals,UniformOutput=false);

Reverse the log-scaling.

predictedSTFT = cellfun(@exp,featDeNorm,UniformOutput=false);

Concatenate the predicted 256-by-256 magnitude STFT segments to obtain the magnitude
spectrogram of original length.

predictedSTFTAll = predictedSTFT(1:chunks - 1);
predictedSTFTAll = cat(2,predictedSTFTAll{:});
predictedSTFTAll(:,totalFrames - params.NumSegments + 1:totalFrames) = predictedSTFT{chunks};

15 Audio Examples

15-24



Before taking the inverse STFT, append zeros to the predicted log-magnitude spectrum and the phase
in lieu of the highest frequency bin which was excluded when preparing input features.

nCount = size(predictedSTFTAll,3);
predictedSTFTAll = cat(1,predictedSTFTAll,zeros(1,totalFrames,nCount));
phase = cat(1,phaseOriginal,zeros(1,totalFrames,nCount));

Use the inverse STFT function to reconstruct the dereverberated time-domain speech signal using
the predicted log-magnitude STFT and the phase of reverberant speech signal.

oneSidedSTFT = predictedSTFTAll.*exp(1j*phase);
dereverbedAudio = istft(oneSidedSTFT, ...
    Window=params.Window,OverlapLength=params.OverlapLength, ...
    FFTLength=params.FFTLength,ConjugateSymmetric=true, ...
    FrequencyRange="onesided");

dereverbedAudio = dereverbedAudio./max(abs([dereverbedAudio;revAudio]));
dereverbedAudio = [dereverbedAudio;zeros(length(revAudio) - numel(dereverbedAudio), 1)];

Listen to the dereverberated audio signal.

sound(dereverbedAudio,fs)

Plot the clean, reverberant, and dereverberated speech signals.

t = (1/fs)*(0:numel(cleanAudio)-1);

figure
tiledlayout(3,1)

nexttile
plot(t,cleanAudio)
xlabel("Time (s)")
grid on
subtitle("Clean Speech Signal")

nexttile
plot(t,revAudio)
xlabel("Time (s)")
grid on
subtitle("Revereberated Speech Signal")

nexttile
plot(t,dereverbedAudio)
xlabel("Time (s)")
grid on
subtitle("Derevereberated Speech Signal")

 Dereverberate Speech Using Deep Learning Networks

15-25



Visualize the spectrograms of the clean, reverberant, and dereverberated speech signals.

figure(Position=[100,100,800,800])

tiledlayout(3,1)

nexttile
spectrogram(cleanAudio,params.Window,params.OverlapLength,params.FFTLength,fs,"yaxis");
subtitle("Clean")

nexttile
spectrogram(revAudio,params.Window,params.OverlapLength,params.FFTLength,fs,"yaxis");  
subtitle("Reverberated")
 
nexttile
spectrogram(dereverbedAudio,params.Window,params.OverlapLength,params.FFTLength,fs,"yaxis");  
subtitle("Predicted (Dereverberated)")

15 Audio Examples

15-26



Download the Dataset

This example uses the Reverberant Speech Database [2] on page 15-45 and the corresponding Clean
Speech Database [3] on page 15-45 to train the network.

Download the clean speech data set.

url1 = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/2791/clean_trainset_28spk_wav.zip";
url2 = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/2791/clean_testset_wav.zip";

 Dereverberate Speech Using Deep Learning Networks

15-27



downloadFolder = tempdir;
cleanDataFolder = fullfile(downloadFolder,"DS_10283_2791");

if ~datasetExists(cleanDataFolder)
    disp("Downloading data set (6 GB) ...")
    unzip(url1,cleanDataFolder)
    unzip(url2,cleanDataFolder)
end

Downloading data set (6 GB) ...

Download the reverberated speech dataset.

url3 = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/2031/reverb_trainset_28spk_wav.zip";
url4 = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/2031/reverb_testset_wav.zip";
downloadFolder = tempdir;
reverbDataFolder = fullfile(downloadFolder,"DS_10283_2031");

if ~datasetExists(reverbDataFolder)
    disp("Downloading data set (6 GB) ...")
    unzip(url3,reverbDataFolder)
    unzip(url4,reverbDataFolder)
end

Downloading data set (6 GB) ...

Data Preprocessing and Feature Extraction

Once the data is downloaded, preprocess the downloaded data and extract features before training
the DNN model:

1 Synthetically generate reverberant data using the reverberator object
2 Split each speech signal into small segments of 2.072s duration
3 Discard segments which contain significant silent regions
4 Extract log-magnitude STFTs as predictor and target features
5 Scale and reshape features

First, create two audioDatastore objects that point to the clean and reverberant speech datasets.

adsCleanTrain = audioDatastore(fullfile(cleanDataFolder,"clean_trainset_28spk_wav"),IncludeSubfolders=true);
adsReverbTrain = audioDatastore(fullfile(reverbDataFolder,"reverb_trainset_28spk_wav"),IncludeSubfolders=true);

Synthetic Reverberant Speech Data Generation

The amount of reverberation in the original data is relatively small. You will augment the reverberant
speech data with significant reverberation effects using the reverberator object.

Create an audioDatastore that points to the clean speech dataset allocated for synthetic
reverberant data generation.

adsSyntheticCleanTrain = subset(adsCleanTrain,10e3+1:length(adsCleanTrain.Files));
adsCleanTrain = subset(adsCleanTrain,1:10e3);
adsReverbTrain = subset(adsReverbTrain,1:10e3);

Resample from 48 kHz to 16 kHz.

15 Audio Examples

15-28



adsSyntheticCleanTrain = transform(adsSyntheticCleanTrain,@(x)resample(x,16e3,48e3));
adsCleanTrain = transform(adsCleanTrain,@(x)resample(x,16e3,48e3));
adsReverbTrain = transform(adsReverbTrain,@(x)resample(x,16e3,48e3));

Combine the two audio datastores, maintaining the correspondence between the clean and
reverberant speech samples.

adsCombinedTrain = combine(adsCleanTrain,adsReverbTrain);

The applyReverb on page 15-40 function creates a reverberator object, updates the pre delay,
decay factor, and wet-dry mix parameters as specified, and then applies reverberation. Use
audioDataAugmenter to create synthetically generated reverberant data.

augmenter = audioDataAugmenter(AugmentationMode="independent",NumAugmentations=1,ApplyAddNoise=0, ...
    ApplyTimeStretch=0,ApplyPitchShift=0,ApplyVolumeControl=0,ApplyTimeShift=0);
algorithmHandle = @(y,preDelay,decayFactor,wetDryMix,samplingRate) ...
    applyReverb(y,preDelay,decayFactor,wetDryMix,samplingRate);

addAugmentationMethod(augmenter,"Reverb",algorithmHandle, ...
    AugmentationParameter={'PreDelay','DecayFactor','WetDryMix','SamplingRate'}, ...
    ParameterRange={[0.15,0.25],[0.2,0.5],[0.3,0.45],[16000,16000]})

augmenter.ReverbProbability = 1;
disp(augmenter)

  audioDataAugmenter with properties:

               AugmentationMode: "independent"
    AugmentationParameterSource: 'random'
               NumAugmentations: 1
               ApplyTimeStretch: 0
                ApplyPitchShift: 0
             ApplyVolumeControl: 0
                  ApplyAddNoise: 0
                 ApplyTimeShift: 0
                    ApplyReverb: 1
                  PreDelayRange: [0.1500 0.2500]
               DecayFactorRange: [0.2000 0.5000]
                 WetDryMixRange: [0.3000 0.4500]
              SamplingRateRange: [16000 16000]

Create a new audioDatastore corresponding to synthetically generated reverberant data by calling
transform to apply data augmentation.

adsSyntheticReverbTrain = transform(adsSyntheticCleanTrain,@(y)deal(augment(augmenter,y,16e3).Audio{1}));

Combine the two audio datastores.

adsSyntheticCombinedTrain = combine(adsSyntheticCleanTrain,adsSyntheticReverbTrain);

Next, based on the dimensions of the input features to the network, segment the audio into chunks of
2.072 s duration with an overlap of 50%.

Having too many silent segments can adversely affect the DNN model training. Remove the segments
which are mostly silent (more than 50% of the duration) and exclude those from the model training.
Do not completely remove silence because the model will not be robust to silent regions and slight
reverberation effects could be identified as silence. detectSpeech can identify the start and end

 Dereverberate Speech Using Deep Learning Networks

15-29



points of silent regions. After these two steps, the feature extraction process can be carried out as
explained in the first section. helperFeatureExtract on page 15-41 implements these steps.

Define the feature extraction parameters. By setting speedupExample to true, you choose a small
subset of the datasets to perform the subsequent steps.

speedupExample = ;
params.fs = 16000;
params.WindowdowLength = 512;
params.Window = hamming(params.WindowdowLength,"periodic");
params.OverlapLength = round(0.75*params.WindowdowLength);
params.FFTLength = params.WindowdowLength;
samplesPerMs = params.fs/1000;
params.samplesPerImage = (24+256*8)*samplesPerMs;
params.shiftImage = params.samplesPerImage/2;
params.NumSegments = 256;
params.NumFeatures = 256

params = struct with fields:
    WindowdowLength: 512
             Window: [512×1 double]
      OverlapLength: 384
          FFTLength: 512
        NumSegments: 256
        NumFeatures: 256
                 fs: 16000
    samplesPerImage: 33152
         shiftImage: 16576

To speed up processing, distribute the preprocessing and feature extraction task across multiple
workers using parfor.

Determine the number of partitions for the dataset. If you do not have Parallel Computing Toolbox™,
use a single partition.

if ~isempty(ver("parallel"))
    pool = gcp;
    numPar = numpartitions(adsCombinedTrain,pool);
else
    numPar = 1;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

For each partition, read from the datastore, preprocess the audio signal, and then extract the
features.

if speedupExample
    adsCombinedTrain = shuffle(adsCombinedTrain); %#ok
    adsCombinedTrain = subset(adsCombinedTrain,1:200);
    
    adsSyntheticCombinedTrain = shuffle(adsSyntheticCombinedTrain);
    adsSyntheticCombinedTrain = subset(adsSyntheticCombinedTrain,1:200);
end

15 Audio Examples

15-30



allCleanFeatures = cell(1,numPar);
allReverbFeatures = cell(1,numPar);

parfor iPartition = 1:numPar
    combinedPartition = partition(adsCombinedTrain,numPar,iPartition);
    combinedSyntheticPartition = partition(adsSyntheticCombinedTrain,numPar,iPartition);
        
    cPartitionSize = numel(combinedPartition.UnderlyingDatastores{1}.UnderlyingDatastores{1}.Files);
    cSyntheticPartitionSize = numel(combinedSyntheticPartition.UnderlyingDatastores{1}.UnderlyingDatastores{1}.Files);
    partitionSize = cPartitionSize + cSyntheticPartitionSize;
    
    cleanFeaturesPartition = cell(1,partitionSize);    
    reverbFeaturesPartition = cell(1,partitionSize);  
    
    for idx = 1:partitionSize
        if idx <= cPartitionSize
            audios = read(combinedPartition);
        else
            audios = read(combinedSyntheticPartition);
        end
        cleanAudio = single(audios(:,1));
        reverbAudio = single(audios(:,2));
        [featuresClean,featuresReverb] = helperFeatureExtract(cleanAudio,reverbAudio,false,params);
        cleanFeaturesPartition{idx} = featuresClean;
        reverbFeaturesPartition{idx} = featuresReverb;
    end
    allCleanFeatures{iPartition} = cat(2,cleanFeaturesPartition{:});
    allReverbFeatures{iPartition} = cat(2,reverbFeaturesPartition{:});
end

Analyzing and transferring files to the workers ...done.

allCleanFeatures = cat(2,allCleanFeatures{:});
allReverbFeatures = cat(2,allReverbFeatures{:});

Normalize the extracted features to the range [-1,1] and then reshape as explained in the first
section, using the featureNormalizeAndReshape on page 15-42 function.

trainClean = featureNormalizeAndReshape(allCleanFeatures);
trainReverb = featureNormalizeAndReshape(allReverbFeatures);

Now that you have extracted the log-magnitude STFT features from the training datasets, follow the
same procedure to extract features from the validation datasets. For reconstruction purposes, retain
the phase of the reverberant speech samples of the validation dataset. In addition, retain the audio
data for both the clean and reverberant speech samples in the validation set to use in the evaluation
process (next section).

adsCleanVal = audioDatastore(fullfile(cleanDataFolder,"clean_testset_wav"),IncludeSubfolders=true);
adsReverbVal = audioDatastore(fullfile(reverbDataFolder,"reverb_testset_wav"),IncludeSubfolders=true);

Resample from 48 kHz to 16 kHz.

adsCleanVal = transform(adsCleanVal,@(x)resample(x,16e3,48e3));
adsReverbVal = transform(adsReverbVal,@(x)resample(x,16e3,48e3));

adsCombinedVal = combine(adsCleanVal,adsReverbVal); 

 Dereverberate Speech Using Deep Learning Networks

15-31



if speedupExample
    adsCombinedVal = shuffle(adsCombinedVal);%#ok
    adsCombinedVal = subset(adsCombinedVal,1:50);
end

allValCleanFeatures = cell(1,numPar);
allValReverbFeatures = cell(1,numPar);
allValReverbPhase = cell(1,numPar);
allValCleanAudios = cell(1,numPar);
allValReverbAudios = cell(1,numPar);

parfor iPartition = 1:numPar
    combinedPartition = partition(adsCombinedVal,numPar,iPartition);
    
    partitionSize = numel(combinedPartition.UnderlyingDatastores{1}.UnderlyingDatastores{1}.Files);
    
    cleanFeaturesPartition = cell(1,partitionSize);    
    reverbFeaturesPartition = cell(1,partitionSize);  
    reverbPhasePartition = cell(1,partitionSize); 
    cleanAudiosPartition = cell(1,partitionSize); 
    reverbAudiosPartition = cell(1,partitionSize);

    for idx = 1:partitionSize
        audios = read(combinedPartition);
        
        cleanAudio = single(audios(:,1));
        reverbAudio = single(audios(:,2));
        
        [a,b,c,d,e] = helperFeatureExtract(cleanAudio,reverbAudio,true,params);
        
        cleanFeaturesPartition{idx} = a;
        reverbFeaturesPartition{idx} = b;  
        reverbPhasePartition{idx} = c;
        cleanAudiosPartition{idx} = d;
        reverbAudiosPartition{idx} = e;
    end
    allValCleanFeatures{iPartition} = cat(2,cleanFeaturesPartition{:});
    allValReverbFeatures{iPartition} = cat(2,reverbFeaturesPartition{:});
    allValReverbPhase{iPartition} = cat(2,reverbPhasePartition{:});
    allValCleanAudios{iPartition} = cat(2,cleanAudiosPartition{:});
    allValReverbAudios{iPartition} = cat(2,reverbAudiosPartition{:});
end

allValCleanFeatures = cat(2,allValCleanFeatures{:});
allValReverbFeatures = cat(2,allValReverbFeatures{:});
allValReverbPhase = cat(2,allValReverbPhase{:});
allValCleanAudios = cat(2,allValCleanAudios{:});
allValReverbAudios = cat(2,allValReverbAudios{:});

valClean = featureNormalizeAndReshape(allValCleanFeatures);

Retain the minimum and maximum values of each feature of the reverberant validation set. You will
use these values in the reconstruction process.

[valReverb,valMinMaxPairs] = featureNormalizeAndReshape(allValReverbFeatures);

15 Audio Examples

15-32



Define Neural Network Architecture

A fully convolutional network architecture named U-Net was adapted for this speech dereverberation
task as proposed in [1] on page 15-45. "U-Net" is an encoder-decoder network with skip
connections. In the U-Net model, each layer downsamples its input (stride of 2) until a bottleneck
layer is reached (encoding path). In subsequent layers, the input is upsampled by each layer until the
output is returned to the original shape (decoding path). To minimize the loss of low-level information
during the downsampling process, connections are made between the mirrored layers by directly
concatenating outputs of corresponding layers (skip connections).

Define the network architecture and return the layer graph with connections.

params.WindowdowLength = 512;
params.FFTLength = params.WindowdowLength;
params.NumFeatures = params.FFTLength/2;
params.NumSegments = 256;
    
filterH = 6;
filterW = 6;
numChannels = 1;
nFilters = [64,128,256,512,512,512,512,512];

inputLayer = imageInputLayer([params.NumFeatures,params.NumSegments,numChannels], ...
    Normalization="none",Name="input");
layers = inputLayer;

% U-Net squeezing path
layers = [layers;
    convolution2dLayer([filterH,filterW],nFilters(1),Stride=2,Padding="same",Name="conv"+string(1));
    leakyReluLayer(0.2,Name="leaky-relu"+string(1))];
        
for ii = 2:8
    layers =  [layers;
        convolution2dLayer([filterH,filterW],nFilters(ii),Stride=2,Padding="same",Name="conv"+string(ii));
        batchNormalizationLayer(Name="batchnorm"+string(ii))];%#ok
    if ii ~= 8
        layers = [layers;leakyReluLayer(0.2,Name="leaky-relu"+string(ii))];%#ok
    else
        layers = [layers;reluLayer(Name="relu"+string(ii))];%#ok
    end
end

% U-Net expanding path
for ii = 7:-1:0
    nChannels = numChannels;
    if ii > 0
        nChannels = nFilters(ii);
    end
    layers = [layers;
        transposedConv2dLayer([filterH,filterW],nChannels,Stride=2,Cropping="same",Name="deconv"+string(ii))];%#ok
    if ii > 0
        layers = [layers;batchNormalizationLayer(Name="de-batchnorm"+string(ii))];%#ok
    end
    if ii > 4
        layers = [layers;dropoutLayer(0.5,Name="de-dropout"+string(ii))];%#ok
    end
    if ii > 0

 Dereverberate Speech Using Deep Learning Networks

15-33



        layers = [layers;
            reluLayer(Name="de-relu"+string(ii));
            concatenationLayer(3,2,Name="concat"+string(ii))];%#ok
    else
        layers = [layers;tanhLayer(Name="de-tanh"+string(ii))];%#ok
    end
end

layers = [layers;regressionLayer(Name="output")];

unetLayerGraph = layerGraph(layers); 

% Define skip-connections
for ii = 1:7
    unetLayerGraph = connectLayers(unetLayerGraph,"leaky-relu"+string(ii),"concat"+string(ii)+"/in2");
end

Use analyzeNetwork to view the model architecture. This is a good way to visualize the connections
between layers.

analyzeNetwork(unetLayerGraph); 

Train the Network

You will use the mean squared error (MSE) between the log-magnitude spectra of the dereverberated
speech sample (output of the model) and the corresponding clean speech sample (target) as the loss
function. Use the adam optimizer and a mini-batch size of 128 for the training. Allow the model to
train for a maximum of 50 epochs. If the validation loss doesn't improve for 5 consecutive epochs,
terminate the training process. Reduce the learning rate by a factor of 10 every 15 epochs.

Define the training options as below. Change the execution environment and whether to perform
background dispatching depending on your hardware availability and whether you have access to
Parallel Computing Toolbox™.

initialLearnRate = 8e-4;
miniBatchSize = 64;

options = trainingOptions("adam", ...
        MaxEpochs=50, ...
        InitialLearnRate=initialLearnRate, ...
        MiniBatchSize=miniBatchSize, ...
        Shuffle="every-epoch", ...
        Plots="training-progress", ...
        Verbose=false, ...
        ValidationFrequency=max(1,floor(size(trainReverb,4)/miniBatchSize)), ...
        ValidationPatience=5, ...
        LearnRateSchedule="piecewise", ...
        LearnRateDropFactor=0.1, ... 
        LearnRateDropPeriod=15, ...
        ExecutionEnvironment="gpu", ...
        DispatchInBackground=true, ...
        ValidationData={valReverb,valClean});

Train the network.

dereverbNet = trainNetwork(trainReverb,trainClean,unetLayerGraph,options);

15 Audio Examples

15-34



Evaluate Network Performance

Prediction and Reconstruction

Predict the log-magnitude spectra of the validation set.

predictedSTFT4D = predict(dereverbNet,valReverb);

Use the helperReconstructPredictedAudios on page 15-42 function to reconstruct the predicted
speech. This function performs actions outlined in the first section.

params.WindowdowLength = 512;
params.Window = hamming(params.WindowdowLength,"periodic");
params.OverlapLength = round(0.75*params.WindowdowLength);
params.FFTLength = params.WindowdowLength;
params.fs = 16000;

dereverbedAudioAll = helperReconstructPredictedAudios(predictedSTFT4D,valMinMaxPairs,allValReverbPhase,allValReverbAudios,params);

Visualize the log-magnitude STFTs of the clean, reverberant, and corresponding dereverberated
speech signals.

figure(Position=[100,100,1024,1200])

tiledlayout(3,1)

nexttile
imagesc(squeeze(allValCleanFeatures{1}))    
set(gca,Ydir="normal")
subtitle("Clean")
xlabel("Time")
ylabel("Frequency")

 Dereverberate Speech Using Deep Learning Networks

15-35



colorbar

nexttile
imagesc(squeeze(allValReverbFeatures{1}))
set(gca,Ydir="normal")
subtitle("Reverberated")
xlabel("Time")
ylabel("Frequency")
colorbar

nexttile
imagesc(squeeze(predictedSTFT4D(:,:,:,1)))
set(gca,Ydir="normal")
subtitle("Predicted (Dereverberated)")
xlabel("Time")
ylabel("Frequency")
caxis([-1,1])
colorbar

15 Audio Examples

15-36



 Dereverberate Speech Using Deep Learning Networks

15-37



Evaluation Metrics

You will use a subset of objective measures used in [1] on page 15-45 to evaluate the performance of
the network. These metrics are computed on the time-domain signals.

• Cepstrum distance (CD) - Provides an estimate of the log spectral distance between two spectra
(predicted and clean). Smaller values indicate better quality.

• Log likelihood ratio (LLR) - Linear predictive coding (LPC) based objective measurement. Smaller
values indicate better quality.

Compute these measurements for the reverberant speech and the dereverberated speech signals.

[summaryMeasuresReconstructed,allMeasuresReconstructed] = calculateObjectiveMeasures(dereverbedAudioAll,allValCleanAudios,params.fs);
[summaryMeasuresReverb,allMeasuresReverb] = calculateObjectiveMeasures(allValReverbAudios,allValCleanAudios,params.fs);
disp(summaryMeasuresReconstructed)

       avgCdMean: 3.8310
     avgCdMedian: 3.3536
      avgLlrMean: 0.9103
    avgLlrMedian: 0.8007

disp(summaryMeasuresReverb)

       avgCdMean: 4.2591
     avgCdMedian: 3.6336
      avgLlrMean: 0.9726
    avgLlrMedian: 0.8714

The histograms illustrate the distribution of mean CD, mean SRMR and mean LLR of the reverberant
and dereverberated data.

figure(Position=[50,50,1100,1300])

tiledlayout(2,1)

nexttile
histogram(allMeasuresReverb.cdMean,10)
hold on
histogram(allMeasuresReconstructed.cdMean,10)
subtitle("Mean Cepstral Distance Distribution")
ylabel("Count")
xlabel("Mean CD")
legend("Reverberant (Original)","Dereverberated (Predicted)")

nexttile
histogram(allMeasuresReverb.llrMean,10)
hold on
histogram(allMeasuresReconstructed.llrMean,10)
subtitle("Mean Log Likelihood Ratio Distribution")
ylabel("Count")
xlabel("Mean LLR")
legend("Reverberant (Original)","Dereverberated (Predicted)")

15 Audio Examples

15-38



 Dereverberate Speech Using Deep Learning Networks

15-39



Supporting Functions

Apply Reverberation

function yOut = applyReverb(y,preDelay,decayFactor,wetDryMix,fs)
% This function generates reverberant speech data using the reverberator
% object
%
% inputs:
% y                                - clean speech sample
% preDelay, decayFactor, wetDryMix - reverberation parameters
% fs                               - sampling rate of y
%
% outputs:
% yOut - corresponding reveberated speech sample

revObj = reverberator(SampleRate=fs, ...
    DecayFactor=decayFactor, ...
    WetDryMix=wetDryMix, ...
    PreDelay=preDelay);
yOut = revObj(y);
yOut = yOut(1:length(y),1);
end

Extract Features Batch

function [featuresClean,featuresReverb,phaseReverb,cleanAudios,reverbAudios] ...
    = helperFeatureExtract(cleanAudio,reverbAudio,isVal,params)
% This function performs the preprocessing and features extraction task on
% the audio files used for dereverberation model training and testing.
%
% inputs:
% cleanAudio  - the clean audio file (reference)
% reverbAudio - corresponding reverberant speech file
% isVal       - Boolean flag indicating if it is the validation set
% params      - a structure containing feature extraction parameters
%
% outputs:
% featuresClean  - log-magnitude STFT features of clean audio
% featuresReverb - log-magnitude STFT features of reverberant audio
% phaseReverb    - phase of STFT of reverberant audio
% cleanAudios    - 2.072s-segments of clean audio file used for feature extraction
% reverbAudios   - 2.072s-segments of corresponding reverberant audio

assert(length(cleanAudio) == length(reverbAudio));
nSegments = floor((length(reverbAudio) - (params.samplesPerImage - params.shiftImage))/params.shiftImage);

featuresClean = {};
featuresReverb = {};
phaseReverb = {};
cleanAudios = {};
reverbAudios = {};
nGood = 0;
nonSilentRegions = detectSpeech(reverbAudio, params.fs);
nonSilentRegionIdx = 1;
totalRegions = size(nonSilentRegions, 1);

15 Audio Examples

15-40



for cid = 1:nSegments
    start = (cid - 1)*params.shiftImage + 1;
    en = start + params.samplesPerImage - 1;

    nonSilentSamples = 0;
    while nonSilentRegionIdx < totalRegions && nonSilentRegions(nonSilentRegionIdx, 2) < start
        nonSilentRegionIdx = nonSilentRegionIdx + 1;
    end

    nonSilentStart = nonSilentRegionIdx;
    while nonSilentStart <= totalRegions && nonSilentRegions(nonSilentStart, 1) <= en
        nonSilentDuration = min(en, nonSilentRegions(nonSilentStart,2)) - max(start,nonSilentRegions(nonSilentStart,1)) + 1;
        nonSilentSamples = nonSilentSamples + nonSilentDuration;
        nonSilentStart = nonSilentStart + 1;
    end

    nonSilentPerc = nonSilentSamples * 100 / (en - start + 1);
    silent = nonSilentPerc < 50;

    reverbAudioSegment = reverbAudio(start:en);
    if ~silent
        nGood = nGood + 1;
        cleanAudioSegment = cleanAudio(start:en);
        assert(length(cleanAudioSegment)==length(reverbAudioSegment),"Lengths do not match after chunking")

        % Clean Audio
        [featsUnit, ~] = featureExtract(cleanAudioSegment, params);
        featuresClean{nGood} = featsUnit; %#ok

        % Reverb Audio
        [featsUnit, phaseUnit] = featureExtract(reverbAudioSegment, params);
        featuresReverb{nGood} = featsUnit; %#ok
        if isVal
            phaseReverb{nGood} = phaseUnit; %#ok
            reverbAudios{nGood} = reverbAudioSegment;%#ok
            cleanAudios{nGood} = cleanAudioSegment;%#ok
        end
    end
end
end

Extract Features

function [features, phase, lastFBin] = featureExtract(audio, params)
% Function to extract features for a speech file
audio = single(audio);

audioSTFT = stft(audio,Window=params.Window,OverlapLength=params.OverlapLength, ...
    FFTLength=params.FFTLength,FrequencyRange="onesided");

phase = single(angle(audioSTFT(1:end-1,:)));
features = single(log(abs(audioSTFT(1:end-1,:)) + 10e-30));
lastFBin = audioSTFT(end,:);

end

 Dereverberate Speech Using Deep Learning Networks

15-41



Normalize and Reshape Features

function [featNorm,minMaxPairs] = featureNormalizeAndReshape(feats)
% function to normalize features - range [-1, 1] and reshape to 4
% dimensions
%
% inputs:
% feats - 3-dimensional array of extracted features
%
% outputs:
% featNorm - normalized and reshaped features
% minMaxPairs - array of original min and max pairs used for normalization

nSamples = length(feats);
minMaxPairs = zeros(nSamples,2,"single");
featNorm = zeros([size(feats{1}),nSamples],"single");
parfor i = 1:nSamples
    feat = feats{i};
    maxFeat = max(feat,[],"all");
    minFeat = min(feat,[],"all");
    featNorm(:,:,i) = 2.*(feat - minFeat)./(maxFeat - minFeat) - 1;
    minMaxPairs(i,:) = [minFeat,maxFeat];
end
featNorm = reshape(featNorm,size(featNorm,1),size(featNorm,2),1,size(featNorm,3));
end

Reconstruct Predicted Audio

function dereverbedAudioAll = helperReconstructPredictedAudios(predictedSTFT4D,minMaxPairs,reverbPhase,reverbAudios,params)
% This function will reconstruct the 2.072s long audios predicted by the
% model using the predicted log-magnitude spectrogram and the phase of the
% reverberant audio file
%
% inputs:
% predictedSTFT4D - Predicted 4-dimensional STFT log-magnitude features
% minMaxPairs     - Original minimum/maximum value pairs used in normalization
% reverbPhase     - Array of phases of STFT of reverberant audio files
% reverbAudios    - 2.072s-segments of corresponding reverberant audios
% params          - Structure containing feature extraction parameters

predictedSTFT = squeeze(predictedSTFT4D);
denormalizedFeatures = zeros(size(predictedSTFT),"single");
for ii = 1:size(predictedSTFT,3)
    feat = predictedSTFT(:,:,ii);
    maxFeat = minMaxPairs(ii,2);
    minFeat = minMaxPairs(ii,1);
    denormalizedFeatures(:,:,ii) = (feat + 1).*(maxFeat-minFeat)./2 + minFeat;
end

predictedSTFT = exp(denormalizedFeatures);

nCount = size(predictedSTFT,3);
dereverbedAudioAll = cell(1,nCount);

15 Audio Examples

15-42



nSeg = params.NumSegments;
win = params.Window;
ovrlp = params.OverlapLength;
FFTLength = params.FFTLength;
parfor ii = 1:nCount
    % Append zeros to the highest frequency bin
    stftUnit = predictedSTFT(:,:,ii);
    stftUnit = cat(1,stftUnit, zeros(1,nSeg));
    phase = reverbPhase{ii};
    phase = cat(1,phase,zeros(1,nSeg));

    oneSidedSTFT = stftUnit.*exp(1j*phase);
    dereverbedAudio = istft(oneSidedSTFT, ...
        Window=win,OverlapLength=ovrlp, ...
        FFTLength=FFTLength,ConjugateSymmetric=true,...
        FrequencyRange="onesided");

    dereverbedAudioAll{ii} = dereverbedAudio./max(max(abs(dereverbedAudio)),max(abs(reverbAudios{ii})));
end
end

Calculate Objective Measures

function [summaryMeasures,allMeasures] = calculateObjectiveMeasures(reconstructedAudios,cleanAudios,fs)
% This function computes the objective measures on time-domain signals.
%
% inputs:
% reconstructedAudios - An array of audio files to evaluate.
% cleanAudios - An array of reference audio files
% fs - Sampling rate of audio files
%
% outputs:
% summaryMeasures - Global means of CD, LLR individual mean and median values
% allMeasures - Individual mean and median values

    nAudios = length(reconstructedAudios);
    cdMean = zeros(nAudios,1);
    cdMedian = zeros(nAudios,1);
    llrMean = zeros(nAudios,1);
    llrMedian = zeros(nAudios,1);

    parfor k = 1 : nAudios
      y = reconstructedAudios{k};
      x = cleanAudios{k};

      y = y./max(abs(y));
      x = x./max(abs(x));

      [cdMean(k),cdMedian(k)] = cepstralDistance(x,y,fs);
      [llrMean(k),llrMedian(k)] = lpcLogLikelihoodRatio(y,x,fs);
    end
    
    summaryMeasures.avgCdMean = mean(cdMean);
    summaryMeasures.avgCdMedian = mean(cdMedian);
    summaryMeasures.avgLlrMean = mean(llrMean);
    summaryMeasures.avgLlrMedian = mean(llrMedian);   
    
    allMeasures.cdMean = cdMean;

 Dereverberate Speech Using Deep Learning Networks

15-43



    allMeasures.llrMean = llrMean;
end

Cepstral Distance
function [meanVal, medianVal] = cepstralDistance(x,y,fs)
    x = x/sqrt(sum(x.^2));
    y = y/sqrt(sum(y.^2));

    width = round(0.025*fs);
    shift = round(0.01*fs);

    nSamples = length(x);
    nFrames = floor((nSamples - width + shift)/shift);
    win = window(@hanning,width);

    winIndex = repmat((1:width)',1,nFrames) + repmat((0:nFrames - 1)*shift,width,1);

    xFrames = x(winIndex).*win;
    yFrames = y(winIndex).*win;

    xCeps = cepstralReal(xFrames,width);
    yCeps = cepstralReal(yFrames,width);

    dist = (xCeps - yCeps).^2;
    cepsD = 10/log(10)*sqrt(2*sum(dist(2:end,:),1) + dist(1,:));
    cepsD = max(min(cepsD,10),0);

    meanVal = mean(cepsD);
    medianVal = median(cepsD);
end

Real Cepstrum
function realC = cepstralReal(x,width)
    width2p = 2^nextpow2(width);
    powX = abs(fft(x,width2p));

    lowCutoff = max(powX(:))*10^-5;
    powX  = max(powX,lowCutoff);

    realC = real(ifft(log(powX)));
    order = 24;
    realC = realC(1:order + 1,:);
    realC = realC - mean(realC,2);
end

LPC Log-Likelihood Ratio
function [meanLlr,medianLlr] = lpcLogLikelihoodRatio(x,y,fs)
    order = 12;
    width = round(0.025*fs);
    shift = round(0.01*fs);

    nSamples = length(x);
    nFrames = floor((nSamples - width + shift)/shift);
    win = window(@hanning,width);

    winIndex = repmat((1:width)',1,nFrames) + repmat((0:nFrames - 1)*shift,width,1);

15 Audio Examples

15-44



    xFrames = x(winIndex).*win;
    yFrames = y(winIndex).*win;

    lpcX = realLpc(xFrames,width,order);
    [lpcY,realY] = realLpc(yFrames,width,order);

    llr = zeros(nFrames,1);
    for n = 1:nFrames
      R = toeplitz(realY(1:order+1,n));
      num = lpcX(:,n)'*R*lpcX(:,n);
      den = lpcY(:,n)'*R*lpcY(:,n);  
      llr(n) = log(num/den);
    end

    llr = sort(llr);
    llr = llr(1:ceil(nFrames*0.95));
    llr = max(min(llr,2),0);

    meanLlr = mean(llr);
    medianLlr = median(llr);
end

Real Linear Prection Coefficients

function [lpcCoeffs, realX] = realLpc(xFrames,width,order)
    width2p = 2^nextpow2(width);
    X = fft(xFrames,width2p);

    Rx = ifft(abs(X).^2);
    Rx = Rx./width; 
    realX = real(Rx);

    lpcX = levinson(realX,order);
    lpcCoeffs = real(lpcX');
end

References

[1] Ernst, O., Chazan, S.E., Gannot, S., & Goldberger, J. (2018). Speech Dereverberation Using Fully
Convolutional Networks. 2018 26th European Signal Processing Conference (EUSIPCO), 390-394.

[2] https://datashare.is.ed.ac.uk/handle/10283/2031

[3] https://datashare.is.ed.ac.uk/handle/10283/2791

[4] https://github.com/MuSAELab/SRMRToolbox

 Dereverberate Speech Using Deep Learning Networks

15-45

https://datashare.is.ed.ac.uk/handle/10283/2031
https://datashare.is.ed.ac.uk/handle/10283/2791
https://github.com/MuSAELab/SRMRToolbox


Speaker Recognition Using x-vectors

Speaker recognition answers the question "Who is speaking?". Speaker recognition is usually divided
into two tasks: speaker identification and speaker verification. In speaker identification, a speaker is
recognized by comparing their speech to a closed set of templates. In speaker verification, a speaker
is recognized by comparing the likelihood that the speech belongs to a particular speaker against a
predetermined threshold. Traditional machine learning methods perform well at these tasks in ideal
conditions. For examples of speaker identification using traditional machine learning methods, see
“Speaker Identification Using Pitch and MFCC” (Audio Toolbox) and “Speaker Verification Using i-
Vectors” (Audio Toolbox). Audio Toolbox™ provides ivectorSystem (Audio Toolbox) which
encapsulates the ability to train an i-vector system, enroll speakers or other audio labels, evaluate the
system for a decision threshold, and identify or verify speakers or other audio labels.

In adverse conditions, the deep learning approach of x-vectors has been shown to achieve state-of-
the-art results for many scenarios and applications [1] on page 15-57. The x-vector system is an
evolution of i-vectors originally developed for the task of speaker verification.

In this example, you develop an x-vector system. First, you train a time-delay neural network (TDNN)
to perform speaker identification. Then you train the traditional backends for an x-vector-based
speaker verification system: an LDA projection matrix and a PLDA model. You then perform speaker
verification using the TDNN and the backend dimensionality reduction and scoring. The x-vector
system backend, or classifier, is the same as developed for i-vector systems. For details on the
backend, see “Speaker Verification Using i-Vectors” (Audio Toolbox) and ivectorSystem (Audio
Toolbox).

In “Speaker Diarization Using x-vectors” (Audio Toolbox), you use the x-vector system trained in this
example to perform speaker diarization. Speaker diarization answers the question, "Who spoke
when?".

Throughout this example, you will find live controls on tunable parameters. Changing the controls
does not rerun the example. If you change a control, you must rerun the example.

Data Set Management

This example uses a subset of the LibriSpeech Dataset [2] on page 15-57. The LibriSpeech Dataset is
a large corpus of read English speech sampled at 16 kHz. The data is derived from audiobooks read
from the LibriVox project. Download the 100-hour subset of the LibriSpeech training data, the clean
development set, and the clean test set.

dataFolder = tempdir;

datasetTrain = fullfile(dataFolder,"LibriSpeech","train-clean-100");
if ~datasetExists(datasetTrain)
    filename = "train-clean-100.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    gunzip(url,dataFolder);
    unzippedFile = fullfile(dataFolder,filename);
    untar(unzippedFile{1}(1:end-3),dataFolder);
end

datasetDev = fullfile(dataFolder,"LibriSpeech","dev-clean");
if ~datasetExists(datasetDev)
    filename = "dev-clean.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;

15 Audio Examples

15-46



    gunzip(url,dataFolder);
    unzippedFile = fullfile(dataFolder,filename);
    untar(unzippedFile{1}(1:end-3),dataFolder);
end

datasetTest = fullfile(dataFolder,"LibriSpeech","test-clean");
if ~datasetExists(datasetTest)
    filename = "test-clean.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    gunzip(url,dataFolder);
    unzippedFile = fullfile(dataFolder,filename);
    untar(unzippedFile{1}(1:end-3),dataFolder);
end

Create audioDatastore (Audio Toolbox) objects that point to the data. The speaker labels are
encoded in the file names. Split the datastore into train, validation, and test sets. You will use these
sets to train, validate, and test a TDNN.

adsTrain = audioDatastore(datasetTrain,IncludeSubfolders=true);
adsTrain.Labels = categorical(extractBetween(adsTrain.Files,fullfile(datasetTrain,filesep),filesep));

adsDev = audioDatastore(datasetDev,IncludeSubfolders=true);
adsDev.Labels = categorical(extractBetween(adsDev.Files,fullfile(datasetDev,filesep),filesep));

adsEvaluate = audioDatastore(datasetTest,IncludeSubfolders=true);
adsEvaluate.Labels = categorical(extractBetween(adsEvaluate.Files,fullfile(datasetTest,filesep),filesep));

Separate the audioDatastore objects into five sets:

• adsTrain - Contains training set for the TDNN and backend classifier.
• adsValidation - Contains validation set to evaluate TDNN training progress.
• adsTest - Contains test set to evaluate the TDNN performance for speaker identification.
• adsEnroll - Contains enrollment set to evaluate the detection error tradeoff of the x-vector

system for speaker verification.
• adsDET - Contains evaluation set used to determine the detection error tradeoff of the x-vector

system for speaker verification.

[adsTrain,adsValidation,adsTest] = splitEachLabel(adsTrain,0.8,0.1,0.1,"randomized");

[adsEnroll,adsLeftover] = splitEachLabel(adsEvaluate,3,"randomized");

adsDET = audioDatastore([adsLeftover.Files;adsDev.Files]);
adsDET.Labels = [adsLeftover.Labels;adsDev.Labels];

You can reduce the training and detection error trade-off datasets used in this example to speed up
the runtime at the cost of performance. In general, reducing the data set is a good practice for
development and debugging.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,5);
    adsValidation = splitEachLabel(adsValidation,2);
    adsDET = splitEachLabel(adsDET,5);
end

 Speaker Recognition Using x-vectors

15-47



Feature Extraction

Create an audioFeatureExtractor (Audio Toolbox) object to extract 30 MFCCs from 30 ms Hann
windows with a 10 ms hop. The sample rate of the data set is 16 kHz.

fs = 16e3;

windowDuration = ;

hopDuration = ;
windowSamples = round(windowDuration*fs);
hopSamples = round(hopDuration*fs);
overlapSamples = windowSamples - hopSamples;

numCoeffs = ;
afe = audioFeatureExtractor( ...
    SampleRate=fs, ...
    Window=hann(windowSamples,"periodic"), ...
    OverlapLength=overlapSamples, ...
    mfcc=true);
setExtractorParameters(afe,"mfcc",NumCoeffs=numCoeffs)

Create a transform datastore that applies preprocessing to the audio and outputs features. The
supporting function, xVectorPreprocess on page 15-57, performs speech detection, extract features
from regions of speech. When the parameter Segment is set to false, the detect regions of speech
are concatenated together.

adsTrainTransform = transform(adsTrain,@(x)xVectorPreprocess(x,afe,Segment=false,MinimumDuration=0.5));
features = preview(adsTrainTransform)

features = 1×1 cell array
    {30×363 single}

In a loop, extract all features from the training set. If you have Parallel Computing Toolbox™, then the
computations are spread across multiple workers.

numPar = numpartitions(adsTrain);
features = cell(1,numPar);
parfor ii = 1:numPar
    adsPart = partition(adsTrainTransform,numPar,ii);
    N = numel(adsPart.UnderlyingDatastores{1}.Files);
    f = cell(1,N);
    for jj = 1:N
        f{jj} = read(adsPart);
    end
    features{ii} = cat(2,f{:});
end

Concatenate the features and then save the global mean and standard deviation in a struct. You will
use these factors to normalize features.

features = cat(2,features{:});
features = cat(2,features{:});
factors = struct("Mean",mean(features,2),"STD",std(features,0,2));
clear features f

Create a new transform datastore for the training set, this time specifying the normalization factors
and Segment as true. Now, features are normalized by the global mean and standard deviation, and

15 Audio Examples

15-48



then the file-level mean. The individual speech regions detected are not concatenated. The output is a
table with the first variable containing feature matrices and the second variable containing the label.

adsTrainTransform = transform(adsTrain,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);
featuresTable = preview(adsTrainTransform)

featuresTable=3×2 table
       features        labels
    _______________    ______

    {30×142 single}     1034 
    {30×64  single}     1034 
    {30×157 single}     1034 

Apply the same transformation to the validation, test, enrollment, and DET sets.

adsValidationTransform = transform(adsValidation,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);
adsTestTransform = transform(adsTest,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);
adsEnrollTransform = transform(adsEnroll,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);
adsDETTransform = transform(adsDET,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);

x-vector Feature Extraction Model

In this example, you define the x-vector feature extractor model [1] on page 15-57 as a layer graph
and train it using a custom training loop. This paradigm enables you to preprocess the mini-batches
and trim the sequences to a consistent length.

The table summarizes the architecture of the network described in [1] on page 15-57 and
implemented in this example. T is the total number of frames (feature vectors over time) in an audio
signal. N is the number of classes (speakers) in the training set.

 Speaker Recognition Using x-vectors

15-49



Define the network. You can change the model size by increasing or decreasing the numFilters
parameter.

numFilters = ;
dropProb = 0.2;
numClasses = numel(unique(adsTrain.Labels));
layers = [
    sequenceInputLayer(afe.FeatureVectorLength,MinLength=15,Name="input")

    convolution1dLayer(5,numFilters,DilationFactor=1,Name="conv_1")
    batchNormalizationLayer(Name="BN_1")
    dropoutLayer(dropProb,Name="drop_1")
    reluLayer(Name="act_1")

    convolution1dLayer(3,numFilters,DilationFactor=2,Name="conv_2")
    batchNormalizationLayer(Name="BN_2")
    dropoutLayer(dropProb,Name="drop_2")
    reluLayer(Name="act_2")

    convolution1dLayer(3,numFilters,DilationFactor=3,Name="conv_3")
    batchNormalizationLayer(Name="BN_3")
    dropoutLayer(dropProb,Name="drop_3")
    reluLayer(Name="act_3")

    convolution1dLayer(1,numFilters,DilationFactor=1,Name="conv_4")
    batchNormalizationLayer(Name="BN_4")

15 Audio Examples

15-50



    dropoutLayer(dropProb,Name="drop_4")
    reluLayer(Name="act_4")

    convolution1dLayer(1,1500,DilationFactor=1,Name="conv_5")
    batchNormalizationLayer(Name="BN_5")
    dropoutLayer(dropProb,Name="drop_5")
    reluLayer(Name="act_5")

    statisticsPooling1dLayer(Name="statistics_pooling")

    fullyConnectedLayer(numFilters,Name="fc_1")
    batchNormalizationLayer(Name="BN_6")
    dropoutLayer(dropProb,Name="drop_6")
    reluLayer(Name="act_6")

    fullyConnectedLayer(numFilters,Name="fc_2")
    batchNormalizationLayer(Name="BN_7")
    dropoutLayer(dropProb,Name="drop_7")
    reluLayer(Name="act_7")

    fullyConnectedLayer(numClasses,Name="fc_3")
    softmaxLayer(Name="softmax")
    ];

dlnet = dlnetwork(layerGraph(layers));

The model requires statistical pooling which is implemented as a custom layer and placed in your
current folder when you open this example. Display the contents of the custom layer.

type("statisticsPooling1dLayer.m")

classdef statisticsPooling1dLayer < nnet.layer.Layer & nnet.layer.Formattable
    % This class is only for use in this example. It may be changed or
    % removed in a future release. 

    methods
        function this = statisticsPooling1dLayer(options)
            arguments
                options.Name = ''
            end
            this.Name = options.Name;
        end
        
        function X = predict(~, X)
            X = dlarray(stripdims([mean(X,3);std(X,0,3)]),"CB");
        end
        function X = forward(~, X)
            X = X + 0.0001*rand(size(X),"single");
            X = dlarray(stripdims([mean(X,3);std(X,0,3)]),"CB");
        end
    end
    
end

Train Model

Use minibatchqueue to create a mini-batch queue for the training data. Set the mini-batch size as
appropriate for your hardware.

 Speaker Recognition Using x-vectors

15-51



miniBatchSize = ;
mbq = minibatchqueue(adsTrainTransform, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat=["CTB",""], ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    OutputEnvironment="auto");

Set the number of training epochs, the initial learn rate, the learn rate drop period, the learn rate
drop factor, and the validations per epoch.

numEpochs = ;

learnRate = ;
gradDecay = 0.5;
sqGradDecay = 0.999;
trailingAvg = [];
trailingAvgSq = [];

LearnRateDropPeriod = ;

LearnRateDropFactor = ;

To display training progress, initialize the supporting object progressPlotter. The supporting
object, progressPlotter, is placed in your current folder when you open this example.

Run the training loop.

classes = unique(adsTrain.Labels);
pp = progressPlotter(string(classes));

iteration = 0;
for epoch = 1:numEpochs
    
    % Shuffle mini-batch queue
    shuffle(mbq)
    
    while hasdata(mbq)
        
        % Update iteration counter
        iteration = iteration + 1;
        
        % Get mini-batch from mini-batch queue
        [dlX,Y] = next(mbq);

        % Evaluate the model gradients, state, and loss using dlfeval and the modelGradients function
        [gradients,dlnet.State,loss,predictions] = dlfeval(@modelGradients,dlnet,dlX,Y);

        % Update the network parameters using the Adam optimizer
        [dlnet,trailingAvg,trailingAvgSq] = adamupdate(dlnet,gradients, ...
            trailingAvg,trailingAvgSq,iteration,learnRate,gradDecay,sqGradDecay,eps("single"));

        % Update the training progress plot
        updateTrainingProgress(pp,Epoch=epoch,Iteration=iteration,LearnRate=learnRate,Predictions=predictions,Targets=Y,Loss=loss)

    end

15 Audio Examples

15-52



    % Pass validation data through model
    [predictionValidation,labelsValidation] = predictBatch(dlnet,adsValidationTransform);
    predictionValidation = onehotdecode(predictionValidation,string(classes),1);

    % Update the training progress plot with validation results
    updateValidation(pp,Iteration=iteration,Predictions=predictionValidation,Targets=labelsValidation)

    % Update learn rate
    if rem(epoch,LearnRateDropPeriod)==0
        learnRate = learnRate*LearnRateDropFactor;
    end
    
end

Evaluate the TDNN speaker recognition accuracy using the held-out test set. The supporting
function, predictBatch, parallelizes the prediction computation if you have Parallel Computing
Toolbox™. Decode the predictions and then compute the prediction accuracy.

[predictionTest,targetTest] = predictBatch(dlnet,adsTestTransform);

predictionTest = onehotdecode(predictionTest,string(classes),1);

accuracy = mean(targetTest(:)==predictionTest(:))

accuracy = 0.9460

 Speaker Recognition Using x-vectors

15-53



Train x-vector System Backend

In the x-vector system for speaker verification, the TDNN you just trained is used to output an
embedding layer. The output from the embedding layer ("fc_1" in this example) are the "x-vectors"
in an x-vector system.

The backend (or classifier) of an x-vector system is the same as the backend of an i-vector system. For
details on the algorithms, see ivectorSystem (Audio Toolbox) and “Speaker Verification Using i-
Vectors” (Audio Toolbox).

15 Audio Examples

15-54



Extract x-vectors from the train set.

[xvecsTrain,labelsTrain] = predictBatch(dlnet,adsTrainTransform,Outputs="fc_1");

Create a linear discriminant analysis (LDA) projection matrix to reduce the dimensionality of the x-
vectors. LDA attempts to minimize the intra-class variance and maximize the variance between
speakers.

numEigenvectors = ;

projMat = helperTrainProjectionMatrix(xvecsTrain,labelsTrain,numEigenvectors);

Apply the LDA projection matrix to the x-vectors.

xvecsTrainP = projMat*xvecsTrain;

Train a G-PLDA model to perform scoring.

numIterations = ;

numDimensions = ;
plda = helperTrainPLDA(xvecsTrainP,labelsTrain,numIterations,numDimensions);

Evaluate x-vector System

Speaker verification systems verify that a speaker is who they purport to be. Before a speaker can be
verified, they must be enrolled in the system. Enrollment in the system means that the system has a
template x-vector representation of the speaker.

Enroll Speakers

Extract x-vectors from the held-out data set, adsEnroll.

[xvecsEnroll,labelsEnroll] = predictBatch(dlnet,adsEnrollTransform,Outputs="fc_1");

Apply the LDA projection matrix to the x-vectors.

xvecsEnrollP = projMat*xvecsEnroll;

Create template x-vectors for each speaker by averaging the x-vectors of individual speakers across
enrollment files.

uniqueLabels = unique(labelsEnroll);
enrollmentTable = cell2table(cell(0,2),VariableNames=["xvector","NumSamples"]);
for ii = 1:numel(uniqueLabels)
    idx = uniqueLabels(ii)==labelsEnroll;
    wLocalMean = mean(xvecsEnrollP(:,idx),2);
    localTable = table({wLocalMean},(sum(idx)), ...
        VariableNames=["xvector","NumSamples"], ...
        RowNames=string(uniqueLabels(ii)));
    enrollmentTable = [enrollmentTable;localTable]; %#ok<AGROW>
end

Speaker verification systems require you to set a threshold that balances the probability of a false
acceptance (FA) and the probability of a false rejection (FR), according to the requirements of your
application. To determine the threshold that meets your FA/FR requirements, evaluate the detection
error tradeoff of the system.

 Speaker Recognition Using x-vectors

15-55



[xvecsDET,labelsDET] = predictBatch(dlnet,adsDETTransform,Outputs="fc_1");

xvecsDETP = projMat*xvecsDET;

detTable = helperDetectionErrorTradeoff(xvecsDETP,labelsDET,enrollmentTable,plda);

Plot the results of the detection error tradeoff evaluation for both PLDA scoring and cosine similarity
scoring (CSS).

figure
plot(detTable.PLDA.Threshold,detTable.PLDA.FAR, ...
    detTable.PLDA.Threshold,detTable.PLDA.FRR)
eer = helperEqualErrorRate(detTable.PLDA);
title(["Speaker Verification","Detection Error Tradeoff","PLDA Scoring","Equal Error Rate = " + eer]);
xlabel("Threshold")
ylabel("Error Rate")
legend(["FAR","FRR"])

figure
plot(detTable.CSS.Threshold,detTable.CSS.FAR, ...
    detTable.CSS.Threshold,detTable.CSS.FRR)
eer = helperEqualErrorRate(detTable.CSS);
title(["Speaker Verification","Detection Error Tradeoff","Cosine Similarity Scoring","Equal Error Rate = " + eer]);
xlabel("Threshold")
ylabel("Error Rate")
legend(["FAR","FRR"])

15 Audio Examples

15-56



References

[1] Snyder, David, et al. "x-vectors: Robust DNN Embeddings for Speaker Recognition." 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp.
5329–33. DOI.org (Crossref), doi:10.1109/ICASSP.2018.8461375.

[2] V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public
domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brisbane, QLD, 2015, pp. 5206-5210, doi: 10.1109/ICASSP.2015.7178964

Supporting Functions

Feature Extraction and Normalization

function [output,myInfo] = xVectorPreprocess(audioData,afe,myInfo,nvargs)
% This function is only for use in this example. It may be changed or
% removed in a future release.
arguments
    audioData
    afe
    myInfo = []
    nvargs.Factors = []

 Speaker Recognition Using x-vectors

15-57



    nvargs.Segment = true;
    nvargs.MinimumDuration = 1;
    nvargs.UseGPU = false;
end

% Place on GPU if requested
if nvargs.UseGPU
    audioData = gpuArray(audioData);
end

% Scale
audioData = audioData/max(abs(audioData(:)));

% Protect against NaNs
audioData(isnan(audioData)) = 0;

% Determine regions of speech
mergeDur = 0.2; % seconds
idx = detectSpeech(audioData,afe.SampleRate,MergeDistance=afe.SampleRate*mergeDur);

% If a region is less than MinimumDuration seconds, drop it.
if nvargs.Segment
    idxToRemove = (idx(:,2)-idx(:,1))<afe.SampleRate*nvargs.MinimumDuration;
    idx(idxToRemove,:) = [];
end

% Extract features
numSegments = size(idx,1);
features = cell(numSegments,1);
for ii = 1:numSegments
    temp = (single(extract(afe,audioData(idx(ii,1):idx(ii,2)))))';
    if isempty(temp)
        temp = zeros(30,15,"single");
    end
    features{ii} = temp;
end

% Standardize features
if ~isempty(nvargs.Factors)
    features = cellfun(@(x)(x-nvargs.Factors.Mean)./nvargs.Factors.STD,features,UniformOutput=false);
end

% Cepstral mean subtraction (for channel noise)
if ~isempty(nvargs.Factors)
    fileMean = mean(cat(2,features{:}),"all");
    features = cellfun(@(x)x - fileMean,features,UniformOutput=false);
end

if ~nvargs.Segment
    features = {cat(2,features{:})};
end
if isempty(myInfo)
    output = features;
else
    labels = repelem(myInfo.Label,numel(features),1);

    output = table(features,labels);

15 Audio Examples

15-58



end
end

Calculate Model Gradients and Updated State

function [gradients,state,loss,YPred] = modelGradients(dlnet,X,Y)
% This function is only for use in this example. It may be changed or
% removed in a future release.

[YPred,state] = forward(dlnet,X);

loss = crossentropy(YPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);

loss = double(gather(extractdata(loss)));

end

Preprocess Mini-Batch

function [sequences,labels] = preprocessMiniBatch(sequences,labels)
% This function is only for use in this example. It may be changed or
% removed in a future release.

trimDimension = 2;
lengths = cellfun(@(x)size(x,trimDimension),sequences);
minLength = min(lengths);
sequences = cellfun(@(x)randomTruncate(x,trimDimension,minLength),sequences,UniformOutput=false);
sequences = cat(3,sequences{:});
        
labels = cat(2,labels{:});
labels = onehotencode(labels,1);
labels(isnan(labels)) = 0;
end

Randomly Truncate Audio Signals to Specified Length

function y = randomTruncate(x,dim,minLength)
% This function is only for use in this example. It may be changed or
% removed in a future release.
N = size(x,dim);
if N > minLength
    start = randperm(N-minLength,1);
    if dim==1
        y = x(start:start+minLength-1,:);
    elseif dim ==2
        y = x(:,start:start+minLength-1);
    end
else
    y = x;
end
end

Predict Batch

function [xvecs,labels] = predictBatch(dlnet,ds,nvargs)
arguments
    dlnet
    ds

 Speaker Recognition Using x-vectors

15-59



    nvargs.Outputs = [];
end
if ~isempty(ver("parallel"))
    pool = gcp;
    numPartition = numpartitions(ds,pool);
else
    numPartition = 1;
end
xvecs = [];
labels = [];
outputs = nvargs.Outputs;
parfor partitionIndex = 1:numPartition
    dsPart = partition(ds,numPartition,partitionIndex);
    partitionFeatures = [];
    partitionLabels = [];
    while hasdata(dsPart)
        atable = read(dsPart);
        F = atable.features;
        L = atable.labels;
        for kk = 1:numel(L)
            if isempty(outputs)
                f = gather(extractdata(predict(dlnet,(dlarray(F{kk},"CTB")))));
            else
                f = gather(extractdata(predict(dlnet,(dlarray(F{kk},"CTB")),Outputs=outputs)));
            end
            l = L(kk);
            partitionFeatures = [partitionFeatures,f];
            partitionLabels = [partitionLabels,l];
        end
    end
    xvecs = [xvecs,partitionFeatures];
    labels = [labels,partitionLabels];
end
end

15 Audio Examples

15-60



Speaker Diarization Using x-vectors

Speaker diarization is the process of partitioning an audio signal into segments according to speaker
identity. It answers the question "who spoke when" without prior knowledge of the speakers and,
depending on the application, without prior knowledge of the number of speakers.

Speaker diarization has many applications, including: enhancing speech transcription by structuring
text according to active speaker, video captioning, content retrieval (what did Jane say?) and speaker
counting (how many speakers were present in the meeting?).

In this example, you perform speaker diarization using a pretrained x-vector system [1] on page 15-
74 to characterize regions of audio and agglomerative hierarchical clustering (AHC) to group similar
regions of audio [2] on page 15-74. To see how the x-vector system was defined and trained, see
“Speaker Recognition Using x-vectors” (Audio Toolbox).

Download Pretrained Speaker Diarization System

Download the pretrained speaker diarization system and supporting files. The total size is
approximately 22 MB.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SpeakerDiarization.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"SpeakerDiarization");

addpath(netFolder)

Load an audio signal and a table containing ground truth annotations. The signal consists of five
speakers. Listen to the audio signal and plot its time-domain waveform.

[audioIn,fs] = audioread("exampleconversation.flac");
load("exampleconversationlabels.mat")
audioIn = audioIn./max(abs(audioIn));
sound(audioIn,fs)

t = (0:size(audioIn,1)-1)/fs;

figure(1)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis tight

 Speaker Diarization Using x-vectors

15-61



Extract x-vectors

In this example, you used a pretrained x-vector system based on [1] on page 15-74. To see how the x-
vector system was defined and trained, see “Speaker Recognition Using x-vectors” (Audio Toolbox).

Load Pretrained x-Vector System

Load the lightweight pretrained x-vector system. The x-vector system consists of:

• afe - an audioFeatureExtractor (Audio Toolbox) object to extract mel frequency cepstral
coefficients (MFCCs).

• factors - a struct containing the mean and standard deviation of MFCCs determined from a
representative data set. These factors are used to standardize the MFCCs.

• dlnet - a trained dlnetwork. The network is used to extract x-vectors from the MFCCs.
• projMat - a trained projection matrix to reduce the dimensionality of x-vectors.
• plda - a trained PLDA model for scoring x-vectors.

xvecsys = load("xvectorSystem.mat");

Extract Standardized Acoustic Features

Extract standardized MFCC features from the audio data. View the feature distributions to confirm
that the standardization factors learned from a separate data set approximately standardize the

15 Audio Examples

15-62



features derived in this example. A standard distribution has a mean of zero and a standard deviation
of 1.

features = single((extract(xvecsys.afe,audioIn)-xvecsys.factors.Mean')./xvecsys.factors.STD');

figure(2)
histogram(features)
xlabel("Standardized MFCC")

Extract x-Vectors

Each acoustic feature vector represents approximately 0.01 seconds of audio data. Group the
features into approximately 2 second segments with 0.1 second hops between segments.

featureVectorHopDur = (numel(xvecsys.afe.Window) - xvecsys.afe.OverlapLength)/xvecsys.afe.SampleRate;

segmentDur = ;

segmentHopDur = ;

segmentLength = round(segmentDur/featureVectorHopDur);
segmentHop = round(segmentHopDur/featureVectorHopDur);

idx = 1:segmentLength;

 Speaker Diarization Using x-vectors

15-63



featuresSegmented = [];
while idx(end) < size(features,1)
    featuresSegmented = cat(3,featuresSegmented,features(idx,:));
    idx = idx + segmentHop;
end

Extract x-vectors from each segment. x-vectors correspond to the output from the first fully-
connected layer in the x-vector model trained in “Speaker Recognition Using x-vectors” (Audio
Toolbox). The first fully-connected layer is the first segment-level layer after statistics are calculated
for the time-dilated frame-level layers. Visualize the x-vectors over time.

xvecs = zeros(512,size(featuresSegmented,3));
for sample = 1:size(featuresSegmented,3)
    dlX = dlarray(featuresSegmented(:,:,sample),"TCB");
    xvecs(:,sample) = predict(xvecsys.dlnet,dlX,Outputs="fc_1");
end

figure(3)
surf(xvecs',EdgeColor="none")
view([90,-90])
axis([1 size(xvecs,1) 1 size(xvecs,2)])
xlabel("Features")
ylabel("Segment")

15 Audio Examples

15-64



Apply the pretrained linear discriminant analysis (LDA) projection matrix to reduce the
dimensionality of the x-vectors and then visualize the x-vectors over time.

x = xvecsys.projMat*xvecs;

figure(4)
surf(x',EdgeColor="none")
view([90,-90])
axis([1 size(x,1) 1 size(x,2)])
xlabel("Features")
ylabel("Segment")

Cluster x-vectors

An x-vector system learns to extract compact representations (x-vectors) of speakers. Cluster the x-
vectors to group similar regions of audio using either agglomerative hierarchical clustering
(clusterdata (Statistics and Machine Learning Toolbox)) or k-means clustering (kmeans (Statistics
and Machine Learning Toolbox)). [2] on page 15-74 suggests using agglomerative heirarchical
clustering with PLDA scoring as the distance measurement. K-means clustering using a cosine
similarity score is also commonly used. Assume prior knowledge of the the number of speakers in the
audio. Set the maximum clusters to the number of known speakers + 1 so that the background is
clustered independently.

 Speaker Diarization Using x-vectors

15-65



knownNumberOfSpeakers = numel(unique(groundTruth.Label));
maxclusters = knownNumberOfSpeakers + 1;

clusterMethod = ;
switch clusterMethod
    case "agglomerative - PLDA scoring"
        T = clusterdata(x',Criterion="distance",distance=@(a,b)helperPLDAScorer(a,b,xvecsys.plda),linkage="average",maxclust=maxclusters);
    case "agglomerative - CSS scoring"
        T = clusterdata(x',Criterion="distance",distance="cosine",linkage="average",maxclust=maxclusters);
    case "kmeans - CSS scoring"
        T = kmeans(x',maxclusters,Distance="cosine");
end

Plot the cluster decisions over time.

figure(5)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight
ylabel("Amplitude")
xlabel("Time (s)")

nexttile
plot(T)
axis tight
ylabel("Cluster Index")
xlabel("Segment")

15 Audio Examples

15-66



To isolate segments of speech corresponding to clusters, map the segments back to audio samples.
Plot the results.

mask = zeros(size(audioIn,1),1);
start = round((segmentDur/2)*fs);

segmentHopSamples = round(segmentHopDur*fs);

mask(1:start) = T(1);
start = start + 1;
for ii = 1:numel(T)
    finish = start + segmentHopSamples;
    mask(start:start + segmentHopSamples) = T(ii);
    start = finish + 1;
end
mask(finish:end) = T(end);

figure(6)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight

 Speaker Diarization Using x-vectors

15-67



nexttile
plot(t,mask)
ylabel("Cluster Index")
axis tight
xlabel("Time (s)")

Use detectSpeech (Audio Toolbox) to determine speech regions. Use sigroi2binmask (Signal
Processing Toolbox) to convert speech regions to a binary voice activity detection (VAD) mask. Call
detectSpeech a second time without any arguments to plot the detected speech regions.

mergeDuration = ;
VADidx = detectSpeech(audioIn,fs,MergeDistance=fs*mergeDuration);

VADmask = sigroi2binmask(VADidx,numel(audioIn));

figure(7)
detectSpeech(audioIn,fs,MergeDistance=fs*mergeDuration)

15 Audio Examples

15-68



Apply the VAD mask to the speaker mask and plot the results. A cluster index of 0 indicates a region
of no speech.

mask = mask.*VADmask;

figure(8)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight

nexttile
plot(t,mask)
ylabel("Cluster Index")
axis tight
xlabel("Time (s)")

 Speaker Diarization Using x-vectors

15-69



In this example, you assume each detected speech region belongs to a single speaker. If more than
two labels are present in a speech region, merge them to the most frequently occuring label.

maskLabels = zeros(size(VADidx,1),1);
for ii = 1:size(VADidx,1)
    maskLabels(ii) = mode(mask(VADidx(ii,1):VADidx(ii,2)),"all");
    mask(VADidx(ii,1):VADidx(ii,2)) = maskLabels(ii);
end

figure(9)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight

nexttile
plot(t,mask)
ylabel("Cluster Index")
axis tight
xlabel("Time (s)")

15 Audio Examples

15-70



Count the number of remaining speaker clusters.

uniqueSpeakerClusters = unique(maskLabels);
numSpeakers = numel(uniqueSpeakerClusters)

numSpeakers = 5

Visualize Diarization Results

Create a signalMask (Signal Processing Toolbox) object and then plot the speaker clusters. Label
the plot with the ground truth labels. The cluster labels are color coded with a key on the right of the
plot. The true labels are printed above the plot.

msk = signalMask(table(VADidx,categorical(maskLabels)));

figure(10)
plotsigroi(msk,audioIn,true)
axis([0 numel(audioIn) -1 1])

trueLabel = groundTruth.Label;
for ii = 1:numel(trueLabel)  
    text(VADidx(ii,1),1.1,trueLabel(ii),FontWeight="bold")
end

 Speaker Diarization Using x-vectors

15-71



Choose a cluster to inspect and then use binmask (Signal Processing Toolbox) to isolate the speaker.
Plot the isolated speech signal and listen to the speaker cluster.

speakerToInspect = ;

cutOutSilenceFromAudio = ;

bmsk = binmask(msk,numel(audioIn));

audioToPlay = audioIn;
if cutOutSilenceFromAudio
    audioToPlay(~bmsk(:,speakerToInspect)) = [];
end
sound(audioToPlay,fs)

figure(11)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight
ylabel("Amplitude")

nexttile

15 Audio Examples

15-72



plot(t,audioIn.*bmsk(:,speakerToInspect))
axis tight
xlabel("Time (s)")
ylabel("Amplitude")
title("Speaker Group "+speakerToInspect)

Diarization System Evaluation

The common metric for speaker diarization systems is the diarization error rate (DER). The DER is
the sum of the miss rate (classifying speech as non-speech), the false alarm rate (classifying non-
speech as speech) and the speaker error rate (confusing one speaker's speech for another).

In this simple example, the miss rate and false alarm rate are trivial problems. You evaluate the
speaker error rate only.

Map each true speaker to the corresponding best-fitting speaker cluster. To determine the speaker
error rate, count the number of mismatches between the true speakers and the best-fitting speaker
clusters, and then divide by the number of true speaker regions.

uniqueLabels = unique(trueLabel);
guessLabels = maskLabels;
uniqueGuessLabels = unique(guessLabels);

totalNumErrors = 0;

 Speaker Diarization Using x-vectors

15-73



for ii = 1:numel(uniqueLabels)
    isSpeaker = uniqueLabels(ii)==trueLabel;
    minNumErrors = inf;
    
    for jj = 1:numel(uniqueGuessLabels)
        groupCandidate = uniqueGuessLabels(jj) == guessLabels;
        numErrors = nnz(isSpeaker - groupCandidate);
        if numErrors < minNumErrors
            minNumErrors = numErrors;
            bestCandidate = jj;
        end
        minNumErrors = min(minNumErrors,numErrors);
    end
    uniqueGuessLabels(bestCandidate) = [];
    totalNumErrors = totalNumErrors + minNumErrors;
    if isempty(uniqueGuessLabels)
        break
    end
end
SpeakerErrorRate = totalNumErrors/numel(trueLabel)

SpeakerErrorRate = 0

References

[1] Snyder, David, et al. “X-Vectors: Robust DNN Embeddings for Speaker Recognition.” 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp.
5329–33. DOI.org (Crossref), doi:10.1109/ICASSP.2018.8461375.

[2] Sell, G., Snyder, D., McCree, A., Garcia-Romero, D., Villalba, J., Maciejewski, M., Manohar, V.,
Dehak, N., Povey, D., Watanabe, S., Khudanpur, S. (2018) Diarization is Hard: Some Experiences and
Lessons Learned for the JHU Team in the Inaugural DIHARD Challenge. Proc. Interspeech 2018,
2808-2812, DOI: 10.21437/Interspeech.2018-1893.

15 Audio Examples

15-74



Train Spoken Digit Recognition Network Using Out-of-Memory
Audio Data

This example trains a spoken digit recognition network on out-of-memory audio data using a
transformed datastore. In this example, you apply a random pitch shift to audio data used to train a
convolutional neural network (CNN). For each training iteration, the audio data is augmented using
the audioDataAugmenter (Audio Toolbox) object and then features are extracted using the
audioFeatureExtractor (Audio Toolbox) object. The workflow in this example applies to any
random data augmentation used in a training loop. The workflow also applies when the underlying
audio data set or training features do not fit in memory.

Data

Download the Free Spoken Digit Data Set (FSDD). FSDD consists of 2000 recordings of four speakers
saying the numbers 0 through 9 in English.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"FSDD");

Create an audioDatastore (Audio Toolbox) that points to the dataset.

ads = audioDatastore(dataset,IncludeSubfolders=true);

Decode the file names to set the labels on the datastore. Display the classes and the number of
examples in each class.

[~,filenames] = fileparts(ads.Files);
ads.Labels = categorical(extractBefore(filenames,'_'));
summary(ads.Labels)

     0      200 
     1      200 
     2      200 
     3      200 
     4      200 
     5      200 
     6      200 
     7      200 
     8      200 
     9      200 

Split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain 20%
for the test set. You use the training set to train the model and the test set to validate the trained
model.

rng default
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
    Label    Count
    _____    _____

 Train Spoken Digit Recognition Network Using Out-of-Memory Audio Data

15-75



      0       160 
      1       160 
      2       160 
      3       160 
      4       160 
      5       160 
      6       160 
      7       160 
      8       160 
      9       160 

countEachLabel(adsTest)

ans=10×2 table
    Label    Count
    _____    _____

      0       40  
      1       40  
      2       40  
      3       40  
      4       40  
      5       40  
      6       40  
      7       40  
      8       40  
      9       40  

Reduce Training Dataset

To train the network with the entire dataset and achieve the highest possible accuracy, set
speedupExample to false. To run this example quickly, set speedupExample to true.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,2);
    adsTest = splitEachLabel(adsTest,2);
end

Transformed Training Datastore

Data Augmentation

Augment the training data by applying pitch shifting with an audioDataAugmenter (Audio Toolbox)
object.

Create an audioDataAugmenter. The augmenter applies pitch shifting on an input audio signal with
a 0.5 probability. The augmenter selects a random pitch shifting value in the range [–12 12]
semitones.

augmenter = audioDataAugmenter( ...
    PitchShiftProbability=0.5, ...
    SemitoneShiftRange=[-12 12], ...
    TimeShiftProbability=0, ...

15 Audio Examples

15-76



    VolumeControlProbability=0, ...
    AddNoiseProbability=0);

Set custom pitch-shifting parameters. Use identity phase locking and preserve formants using
spectral envelope estimation with 30th order cepstral analysis.

setAugmenterParams(augmenter,"shiftPitch",LockPhase=true,PreserveFormants=true,CepstralOrder=30);

Create a transformed datastore that applies data augmentation to the training data.

fs = 8000;
adsAugTrain = transform(adsTrain,@(y)deal(augment(augmenter,y,fs).Audio{1}));

Mel Spectrogram Feature Extraction

The CNN accepts mel-frequency spectrograms.

Define parameters used to extract mel-frequency spectrograms. Use 220 ms windows with 10 ms
hops between windows. Use a 2048-point DFT and 40 frequency bands.

frameDuration = 0.22;
frameLength = round(frameDuration*fs);

hopDuration = 0.01;
hopLength = round(hopDuration*fs);

segmentLength = 8192;

numBands = 40;
fftLength = 2048;

Create an audioFeatureExtractor (Audio Toolbox) object to compute mel-frequency spectrograms
from input audio signals.

afe = audioFeatureExtractor(melSpectrum=true,SampleRate=fs, ...
    Window=hamming(frameLength,"periodic"),OverlapLength=frameLength - hopLength, ...
    FFTLength=fftLength);

Set the parameters for the mel-frequency spectrogram.

setExtractorParameters(afe,"melSpectrum",NumBands=numBands,FrequencyRange=[50 fs/2],WindowNormalization=true);

Create a transformed datastore that computes mel-frequency spectrograms from pitch-shifted audio
data. The supporting function, getSpeechSpectrogram on page 15-80, standardizes the recording
length and normalizes the amplitude of the audio input. getSpeechSpectrogram uses the
audioFeatureExtractor object (afe) to obtain the log-based mel-frequency spectrograms.

adsSpecTrain = transform(adsAugTrain,@(x)getSpeechSpectrogram(x,afe,segmentLength));

Training Labels

Use an arrayDatastore to hold the training labels.

labelsTrain = arrayDatastore(adsTrain.Labels);

Combined Training Datastore

Create a combined datastore that points to the mel-frequency spectrogram data and the
corresponding labels.

 Train Spoken Digit Recognition Network Using Out-of-Memory Audio Data

15-77



tdsTrain = combine(adsSpecTrain,labelsTrain);

Validation Data

The validation dataset fits into memory. Precompute validation features.

adsTestT = transform(adsTest,@(x){getSpeechSpectrogram(x,afe,segmentLength)});
XTest = readall(adsTestT);
XTest = cat(4,XTest{:});

Get the validation labels.

YTest = adsTest.Labels;

Define CNN Architecture

Construct a small CNN as an array of layers. Use convolutional and batch normalization layers, and
downsample the feature maps using max pooling layers. To reduce the possibility of the network
memorizing specific features of the training data, add a small amount of dropout to the input to the
last fully connected layer.

sz = size(XTest);
specSize = sz(1:2);
imageSize = [specSize 1];

numClasses = numel(categories(YTest));

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer(imageSize,Normalization="none")

    convolution2dLayer(5,numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2)

15 Audio Examples

15-78



    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer(Classes=categories(YTest));
    ];

Set the hyperparameters to use in training the network. Use a mini-batch size of 128 and a learning
rate of 1e-4. Specify 'adam' optimization. To use the parallel pool to read the transformed datastore,
set DispatchInBackground to true. For more information, see trainingOptions.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    InitialLearnRate=1e-4, ...
    MaxEpochs=60, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=30, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData={XTest,YTest}, ...
    ValidationFrequency=ceil(numel(adsTrain.Files)/miniBatchSize), ...
    ValidationPatience=5, ...
    ExecutionEnvironment="auto", ...
    DispatchInBackground=true);

Train the network by passing the transformed training datastore to trainNetwork.

trainedNet = trainNetwork(tdsTrain,layers,options);

Use the trained network to predict the digit labels for the test set.

 Train Spoken Digit Recognition Network Using Out-of-Memory Audio Data

15-79



[Ypredicted,probs] = classify(trainedNet,XTest);
cnnAccuracy = sum(Ypredicted==YTest)/numel(YTest)*100

cnnAccuracy = 95.5000

Summarize the performance of the trained network on the test set with a confusion chart. Display the
precision and recall for each class by using column and row summaries. The table at the bottom of
the confusion chart shows the precision values. The table to the right of the confusion chart shows
the recall values.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5]);
confusionchart(YTest,Ypredicted, ...
    Title="Confusion Chart for DCNN", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

Supporting Functions

Get Speech Spectrograms

function X = getSpeechSpectrogram(x,afe,segmentLength)
% getSpeechSpectrogram(x,afe,params) computes a speech spectrogram for the
% signal x using the audioFeatureExtractor afe.

x = scaleAndResize(single(x),segmentLength);

spec = extract(afe,x).';

X = log10(spec + 1e-6);

15 Audio Examples

15-80



end

Normalize and Resize

function x = scaleAndResize(x,segmentLength)
% scaleAndResize(x,segmentLength) scales x by its max absolute value and forces
% its length to be segmentLength by trimming or zero-padding.

L = segmentLength;
N = size(x,1);
if N > L
    x = x(1:L,:);
elseif N < L
    pad = L - N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1);x;zeros(postpad,1)];
end
x = x./max(abs(x));

end

 Train Spoken Digit Recognition Network Using Out-of-Memory Audio Data

15-81



Train Spoken Digit Recognition Network Using Out-of-Memory
Features

This example trains a spoken digit recognition network on out-of-memory auditory spectrograms
using a transformed datastore. In this example, you extract auditory spectrograms from audio using
audioDatastore (Audio Toolbox) and audioFeatureExtractor (Audio Toolbox), and you write
them to disk. You then use a signalDatastore (Signal Processing Toolbox) to access the features
during training. The workflow is useful when the training features do not fit in memory. In this
workflow, you only extract features once, which speeds up your workflow if you are iterating on the
deep learning model design.

Data

Download the Free Spoken Digit Data Set (FSDD). FSDD consists of 2000 recordings of four speakers
saying the numbers 0 through 9 in English.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"FSDD");

Create an audioDatastore that points to the dataset.

ads = audioDatastore(dataset,IncludeSubfolders=true);

Display the classes and the number of examples in each class.

[~,filenames] = fileparts(ads.Files);
ads.Labels = categorical(extractBefore(filenames,'_'));
summary(ads.Labels)

     0      200 
     1      200 
     2      200 
     3      200 
     4      200 
     5      200 
     6      200 
     7      200 
     8      200 
     9      200 

Split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain 20%
for the test set. You use the training set to train the model and the test set to validate the trained
model.

rng default
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
    Label    Count
    _____    _____

15 Audio Examples

15-82



      0       160 
      1       160 
      2       160 
      3       160 
      4       160 
      5       160 
      6       160 
      7       160 
      8       160 
      9       160 

countEachLabel(adsTest)

ans=10×2 table
    Label    Count
    _____    _____

      0       40  
      1       40  
      2       40  
      3       40  
      4       40  
      5       40  
      6       40  
      7       40  
      8       40  
      9       40  

Reduce Training Dataset

To train the network with the entire dataset and achieve the highest possible accuracy, set
speedupExample to false. To run this example quickly, set speedupExample to true.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,2);
    adsTest = splitEachLabel(adsTest,2);
end

Set up Auditory Spectrogram Extraction

The CNN accepts mel-frequency spectrograms.

Define parameters used to extract mel-frequency spectrograms. Use 220 ms windows with 10 ms
hops between windows. Use a 2048-point DFT and 40 frequency bands.

fs = 8000;

frameDuration = 0.22;
frameLength = round(frameDuration*fs);

hopDuration = 0.01;
hopLength = round(hopDuration*fs);

segmentLength = 8192;

 Train Spoken Digit Recognition Network Using Out-of-Memory Features

15-83



numBands = 40;
fftLength = 2048;

Create an audioFeatureExtractor (Audio Toolbox) object to compute mel-frequency spectrograms
from input audio signals.

afe = audioFeatureExtractor(melSpectrum=true,SampleRate=fs, ...
    Window=hamming(frameLength,"periodic"),OverlapLength=frameLength - hopLength, ...
    FFTLength=fftLength);

Set the parameters for the mel-frequency spectrogram.

setExtractorParameters(afe,"melSpectrum",NumBands=numBands,FrequencyRange=[50 fs/2],WindowNormalization=true);

Create a transformed datastore that computes mel-frequency spectrograms from audio data. The
supporting function, getSpeechSpectrogram on page 15-87, standardizes the recording length
and normalizes the amplitude of the audio input. getSpeechSpectrogram uses the
audioFeatureExtractor object afe to obtain the log-based mel-frequency spectrograms.

adsSpecTrain = transform(adsTrain,@(x)getSpeechSpectrogram(x,afe,segmentLength));

Write Auditory Spectrograms to Disk

Use writeall (Audio Toolbox) to write auditory spectrograms to disk. Set UseParallel to true to
perform writing in parallel.

outputLocation = fullfile(tempdir,"FSDD_Features");
writeall(adsSpecTrain,outputLocation,WriteFcn=@myCustomWriter,UseParallel=true);

Set up Training Signal Datastore

Create a signalDatastore that points to the out-of-memory features. The read function returns a
spectrogram/label pair.

sds = signalDatastore(outputLocation,IncludeSubfolders=true, ...
    SignalVariableNames=["spec","label"],ReadOutputOrientation="row");

Validation Data

The validation dataset fits into memory. Precompute validation features.

adsTestT = transform(adsTest,@(x){getSpeechSpectrogram(x,afe,segmentLength)});
XTest = readall(adsTestT);
XTest = cat(4,XTest{:});

Get the validation labels.

YTest = adsTest.Labels;

Define CNN Architecture

Construct a small CNN as an array of layers. Use convolutional and batch normalization layers, and
downsample the feature maps using max pooling layers. To reduce the possibility of the network
memorizing specific features of the training data, add a small amount of dropout to the input to the
last fully connected layer.

sz = size(XTest);
specSize = sz(1:2);

15 Audio Examples

15-84



imageSize = [specSize 1];

numClasses = numel(categories(YTest));

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer(imageSize,Normalization="none")

    convolution2dLayer(5,numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2)

    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer(Classes=categories(YTest));
    ];

Set the hyperparameters to use in training the network. Use a mini-batch size of 50 and a learning
rate of 1e-4. Specify 'adam' optimization. To use the parallel pool to read the transformed datastore,
set DispatchInBackground to true. For more information, see trainingOptions.

miniBatchSize = 50;
options = trainingOptions("adam", ...
    InitialLearnRate=1e-4, ...
    MaxEpochs=30, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=15, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData={XTest,YTest}, ...

 Train Spoken Digit Recognition Network Using Out-of-Memory Features

15-85



    ValidationFrequency=ceil(numel(adsTrain.Files)/miniBatchSize), ...
    ExecutionEnvironment="auto", ...
    DispatchInBackground=true);

Train the network by passing the training datastore to trainNetwork.

trainedNet = trainNetwork(sds,layers,options);

Use the trained network to predict the digit labels for the test set.

[Ypredicted,probs] = classify(trainedNet,XTest);
cnnAccuracy = sum(Ypredicted==YTest)/numel(YTest)*100

cnnAccuracy = 96

Summarize the performance of the trained network on the test set with a confusion chart. Display the
precision and recall for each class by using column and row summaries. The table at the bottom of
the confusion chart shows the precision values. The table to the right of the confusion chart shows
the recall values.

figure(Units="normalized",Position=[0.2 0.2 1.5 1.5]);
confusionchart(YTest,Ypredicted, ...
    Title="Confusion Chart for DCNN", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

15 Audio Examples

15-86



Supporting Functions

Get Speech Spectrograms

function X = getSpeechSpectrogram(x,afe,segmentLength)
% getSpeechSpectrogram(x,afe,params) computes a speech spectrogram for the
% signal x using the audioFeatureExtractor afe.

x = scaleAndResize(single(x),segmentLength);

spec = extract(afe,x).';

X = log10(spec + 1e-6);

end

Scale and Resize

function x = scaleAndResize(x,segmentLength)
% scaleAndResize(x,segmentLength) scales x by its max absolute value and forces
% its length to be segmentLength by trimming or zero-padding.

L = segmentLength;
N = size(x,1);
if N > L
    x = x(1:L,:);
elseif N < L
    pad = L - N;

 Train Spoken Digit Recognition Network Using Out-of-Memory Features

15-87



    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1);x;zeros(postpad,1)];
end
x = x./max(abs(x));

end

Custom Write Function

function myCustomWriter(spec,writeInfo,~)
% myCustomWriter(spec,writeInfo,~) writes an auditory spectrogram/label
% pair to MAT files.

filename = strrep(writeInfo.SuggestedOutputName,".wav",".mat");
label = writeInfo.ReadInfo.Label;
save(filename,"label","spec");

end

15 Audio Examples

15-88



Keyword Spotting in Noise Code Generation with Intel MKL-
DNN

This example demonstrates code generation for keyword spotting using a Bidirectional Long Short-
Term Memory (BiLSTM) network and mel frequency cepstral coefficient (MFCC) feature extraction.
MATLAB® Coder™ with Deep Learning Support enables the generation of a standalone executable
(.exe) file. Communication between the MATLAB® (.mlx) file and the generated executable file
occurs over asynchronous User Datagram Protocol (UDP). The incoming speech signal is displayed
using a timescope. A mask is shown as a blue rectangle surrounding spotted instances of the
keyword, YES. For more details on MFCC feature extraction and deep learning network training, visit
“Keyword Spotting in Noise Using MFCC and LSTM Networks” (Audio Toolbox).

Example Requirements

• MATLAB® Coder Interface for Deep Learning Support Package
• Intel® Xeon® processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2)
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Environment variables for Intel MKL-DNN

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Pretrained Network Keyword Spotting Using MATLAB and Streaming Audio from
Microphone

The sample rate of the pretrained network is 16 kHz. Set the window length to 512 samples, with an
overlap length of 384 samples, and a hop length defined as the difference between the window and
overlap lengths. Define the rate at which the mask is estimated. A mask is generated once for every
numHopsPerUpdate audio frames.

fs = 16e3;
windowLength = 512;
overlapLength = 384;
hopLength = windowLength - overlapLength;
numHopsPerUpdate = 16;
maskLength = hopLength*numHopsPerUpdate;

Create an audioFeatureExtractor (Audio Toolbox) object to perform MFCC feature extraction.

afe = audioFeatureExtractor('SampleRate',fs, ...
                            'Window',hann(windowLength,'periodic'), ...
                            'OverlapLength',overlapLength, ...
                            'mfcc',true, ...
                            'mfccDelta',true, ...
                            'mfccDeltaDelta',true);   

Download and load the pretrained network, as well as the mean (M) and the standard deviation (S)
vectors used for Feature Standardization.

url = 'http://ssd.mathworks.com/supportfiles/audio/KeywordSpotting.zip';
downloadNetFolder = './';
netFolder = fullfile(downloadNetFolder,'KeywordSpotting');
if ~exist(netFolder,'dir')

 Keyword Spotting in Noise Code Generation with Intel MKL-DNN

15-89



    disp('Downloading pretrained network and audio files (4 files - 7 MB) ...')
    unzip(url,downloadNetFolder)
end
load(fullfile(netFolder,'KWSNet.mat'),"KWSNet","M","S");

Call generateMATLABFunction (Audio Toolbox) on the audioFeatureExtractor (Audio Toolbox)
object to create the feature extraction function. You will use this function in the processing loop.

generateMATLABFunction(afe,'generateKeywordFeatures','IsStreaming',true);

Define an Audio Device Reader (Audio Toolbox) that can read audio from your microphone. Set the
frame length equal to the hop length. This enables you to compute a new set of features for every
new audio frame from the microphone.

frameLength = hopLength;
adr = audioDeviceReader('SampleRate',fs, ...
                        'SamplesPerFrame',frameLength);

Create a Time Scope (DSP System Toolbox) to visualize the speech signals and estimated mask.

scope = timescope('SampleRate',fs, ...
                  'TimeSpanSource','property', ...
                  'TimeSpan',5, ...
                  'TimeSpanOverrunAction','Scroll', ...
                  'BufferLength',fs*5*2, ...
                  'ShowLegend',true, ...
                  'ChannelNames',{'Speech','Keyword Mask'}, ...
                  'YLimits',[-1.2 1.2], ...
                  'Title','Keyword Spotting');

Initialize a buffer for the audio data, a buffer for the computed features, and a buffer to plot the input
audio and the output speech mask.

dataBuff = dsp.AsyncBuffer(windowLength);
featureBuff = dsp.AsyncBuffer(numHopsPerUpdate);
plotBuff = dsp.AsyncBuffer(numHopsPerUpdate*windowLength);

Perform keyword spotting on speech received from your microphone. To run the loop indefinitely, set
timeLimit to Inf. To stop the simulation, close the scope.

timeLimit = 20;
show(scope);
tic
while toc < timeLimit && isVisible(scope)
    
    data = adr();
    write(dataBuff,data);
    write(plotBuff,data);  
        
    frame = read(dataBuff,windowLength,overlapLength);
    features = generateKeywordFeatures(frame,fs);
    write(featureBuff,features.');

    if featureBuff.NumUnreadSamples == numHopsPerUpdate
        
        featureMatrix = read(featureBuff);
        featureMatrix(~isfinite(featureMatrix)) = 0;       
        featureMatrix = (featureMatrix - M)./S;

15 Audio Examples

15-90



                
        [keywordNet, v] = classifyAndUpdateState(KWSNet,featureMatrix.');
                
        v = double(v) - 1;
        v = repmat(v,hopLength,1);
        v = v(:);
        v = mode(v);
        predictedMask = repmat(v,numHopsPerUpdate*hopLength,1);
        
        data = read(plotBuff);        
        scope([data,predictedMask]);
        
        drawnow limitrate;
    end
end

release(adr)
hide(scope)

The helperKeywordSpotting supporting function encapsulates capturing the audio, feature
extraction and network prediction process demonstrated previously. To make feature extraction
compatible with code generation, feature extraction is handled by the generated
generateKeywordFeatures function. To make the network compatible with code generation, the
supporting function uses the coder.loadDeepLearningNetwork (MATLAB Coder) (MATLAB
Coder) function to load the network.

The supporting function uses a dsp.UDPSender (DSP System Toolbox) System object to send the
input data along with the output mask predicted by the network to MATLAB. The MATLAB script uses
the dsp.UDPReceiver (DSP System Toolbox) System object to receive the input data along with the
output mask predicted by the network running in the supporting function.

Generate Executable on Desktop

Create a code generation configuration object to generate an executable. Specify the target language
as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the MKL-DNN library. Attach
the deep learning configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('mkldnn');
cfg.DeepLearningConfig = dlcfg;

Generate the C++ main file required to produce the standalone executable.

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

Generate helperKeywordSpotting, a supporting function that encapsulates the audio capture,
feature extraction, and network prediction processes. You get a warning in the code generation logs
that you can disregard because helperKeywordSpotting has an infinite loop that continously looks
for an audio frame from MATLAB.

codegen helperKeywordSpotting -config cfg -report

Warning: Function 'helperKeywordSpotting' does not terminate due to an infinite loop.

 Keyword Spotting in Noise Code Generation with Intel MKL-DNN

15-91



Warning in ==> helperKeywordSpotting Line: 73 Column: 1
Code generation successful (with warnings): View report

Prepare Dependencies and Run the Generated Executable

In this section, you generate all the required dependency files and put them into a single folder.
During the build process, MATLAB Coder generates buildInfo.mat, a file that contains the
compilation and run-time dependency information for the standalone executable.

Set the project name to helperKeywordSpotting.

projName = 'helperKeywordSpotting';
packageName = [projName,'Package'];
if ispc
    exeName = [projName,'.exe'];
else
    exeName = projName;
end

Load buildinfo.mat and use packNGo (MATLAB Coder) to produce a .zip package.

load(['codegen',filesep,'exe',filesep,projName,filesep,'buildInfo.mat']);
packNGo(buildInfo,'fileName',[packageName,'.zip'],'minimalHeaders',false);

Unzip the package and place the executable file in the unzipped directory.

unzip([packageName,'.zip'],packageName);
copyfile(exeName, packageName,'f');

To invoke a standalone executable that depends on the MKL-DNN Dynamic Link Library, append the
path to the MKL-DNN library location to the environment variable PATH.

setenv('PATH',[getenv('INTEL_MKLDNN'),filesep,'lib',pathsep,getenv('PATH')]);

Run the generated executable.

if ispc
    system(['start cmd /k "title ',packageName,' && cd ',packageName,' && ',exeName]);
else
    cd(packageName);
    system(['./',exeName,' &']);
    cd ..;
end

Perform Keyword Spotting Using Deployed Code

Create a dsp.UDPReceiver (DSP System Toolbox) System object to receive speech data and the
predicted speech mask from the standalone executable. Each UDP packet received from the
executable consists of maskLength mask samples and speech samples. The maximum message
length for the dsp.UDPReceiver (DSP System Toolbox) object is 65507 bytes. Calculate the buffer
size to accommodate the maximum number of UDP packets.

sizeOfFloatInBytes = 4;
speechDataLength = maskLength; 
numElementsPerUDPPacket = maskLength + speechDataLength;

maxUDPMessageLength = floor(65507/sizeOfFloatInBytes);
samplesPerPacket = 1 + numElementsPerUDPPacket; 

15 Audio Examples

15-92



numPackets = floor(maxUDPMessageLength/samplesPerPacket);
bufferSize = numPackets*samplesPerPacket*sizeOfFloatInBytes;

UDPReceive = dsp.UDPReceiver('LocalIPPort',20000, ...
    'MessageDataType','single', ...
    'MaximumMessageLength',samplesPerPacket, ...
    'ReceiveBufferSize',bufferSize);

To run the keyword spotting indefinitely, set timelimit to Inf. To stop the simulation, close the
scope.

tic;
timelimit = 20;
show(scope);

while toc < timelimit && isVisible(scope)
    data = UDPReceive();
    if ~isempty(data)
        plotMask = data(1:maskLength);
        plotAudio = data(maskLength+1 : maskLength+speechDataLength);
        scope([plotAudio,plotMask]);
    end
    drawnow limitrate;
end

hide(scope);

Release the system objects and terminate the standalone executable.

release(UDPReceive);
release(scope);
if ispc
    system(['taskkill /F /FI "WindowTitle eq ',projName,'* " /T']);
else
    system(['killall ',exeName]);
end

SUCCESS: The process with PID 4644 (child process of PID 21188) has been terminated. 
SUCCESS: The process with PID 20052 (child process of PID 21188) has been terminated. 
SUCCESS: The process with PID 21188 (child process of PID 22940) has been terminated. 

Evaluate Execution Time Using Alternative MEX Function Workflow

A similar workflow involves using a MEX file instead of the standalone executable. Perform MEX
profiling to measure the computation time for the workflow.

Create a code generation configuration object to generate the MEX function. Specify the target
language as C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the MKL-DNN library. Attach
the deep learning configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('mkldnn');
cfg.DeepLearningConfig = dlcfg;

Call codegen to generate the MEX function for profileKeywordSpotting.

 Keyword Spotting in Noise Code Generation with Intel MKL-DNN

15-93



inputAudioFrame = ones(hopLength,1,'single');
codegen profileKeywordSpotting -config cfg -args {inputAudioFrame} -report

Code generation successful: View report

Measure the execution time of the MATLAB code.

x = pinknoise(hopLength,1,'single');
numPredictCalls = 100;
totalNumCalls = numPredictCalls*numHopsPerUpdate;
exeTimeStart = tic;
for call = 1:totalNumCalls
    [outputMask,inputData,plotFlag] = profileKeywordSpotting(x);
end
exeTime = toc(exeTimeStart);
fprintf('MATLAB execution time per %d ms of audio = %0.4f ms\n',int32(1000*numHopsPerUpdate*hopLength/fs),(exeTime/numPredictCalls)*1000);

MATLAB execution time per 128 ms of audio = 24.9238 ms

Measure the execution time of the MEX function.

exeTimeMexStart = tic; 
for call = 1:totalNumCalls
    [outputMask,inputData,plotFlag] = profileKeywordSpotting_mex(x);
end
exeTimeMex = toc(exeTimeMexStart);
fprintf('MEX execution time per %d ms of audio = %0.4f ms\n',int32(1000*numHopsPerUpdate*hopLength/fs),(exeTimeMex/numPredictCalls)*1000);

MEX execution time per 128 ms of audio = 5.2710 ms

Compare total execution time of the standalone executable approach with the MEX function
approach. This performance test is done on a machine using an NVIDIA Quadro® P620 (Version 26)
GPU and an Intel Xeon W-2133 CPU running at 3.60 GHz.

PerformanceGain = exeTime/exeTimeMex

PerformanceGain = 4.7285

15 Audio Examples

15-94



Keyword Spotting in Noise Code Generation on Raspberry Pi

This example demonstrates code generation for keyword spotting using a Bidirectional Long Short-
Term Memory (BiLSTM) network and mel frequency cepstral coefficient (MFCC) feature extraction on
Raspberry Pi™. MATLAB® Coder™ with Deep Learning Support enables the generation of a
standalone executable (.elf) file on Raspberry Pi. Communication between MATLAB® (.mlx) file and
the generated executable file occurs over asynchronous User Datagram Protocol (UDP). The incoming
speech signal is displayed using a timescope. A mask is shown as a blue rectangle surrounding
spotted instances of the keyword, YES. For more details on MFCC feature extraction and deep
learning network training, visit “Keyword Spotting in Noise Using MFCC and LSTM Networks”
(Audio Toolbox).

Example Requirements

• MATLAB® Coder Interface for Deep Learning Support Package
• ARM processor that supports the NEON extension
• ARM Compute Library version 20.02.1 (on the target ARM hardware)
• Environment variables for the compilers and libraries

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Pretrained Network Keyword Spotting Using MATLAB® and Streaming Audio from
Microphone

The sample rate of the pretrained network is 16 kHz. Set the window length to 512 samples, with an
overlap length of 384 samples, and a hop length defined as the difference between the window and
overlap lengths. Define the rate at which the mask is estimated. A mask is generated once for every
numHopsPerUpdate audio frames.

fs = 16e3;
windowLength = 512;
overlapLength = 384;
hopLength = windowLength - overlapLength;

numHopsPerUpdate = 16;
maskLength = hopLength * numHopsPerUpdate;

Create an audioFeatureExtractor (Audio Toolbox) object to perform MFCC feature extraction.

afe = audioFeatureExtractor('SampleRate',fs, ...
                            'Window',hann(windowLength,'periodic'), ...
                            'OverlapLength',overlapLength, ...
                            'mfcc',true, ...
                            'mfccDelta',true, ...
                            'mfccDeltaDelta',true); 

Download and load the pretrained network, as well as the mean (M) and the standard deviation (S)
vectors used for feature standardization.

url = 'http://ssd.mathworks.com/supportfiles/audio/KeywordSpotting.zip';
downloadNetFolder = './';
netFolder = fullfile(downloadNetFolder,'KeywordSpotting');
if ~exist(netFolder,'dir')

 Keyword Spotting in Noise Code Generation on Raspberry Pi

15-95



    disp('Downloading pretrained network and audio files (4 files - 7 MB) ...')
    unzip(url,downloadNetFolder)
end
load(fullfile(netFolder,'KWSNet.mat'),"KWSNet","M","S");

Call generateMATLABFunction (Audio Toolbox) on the audioFeatureExtractor (Audio Toolbox)
object to create the feature extraction function.

generateMATLABFunction(afe,'generateKeywordFeatures','IsStreaming',true);

Define an Audio Device Reader (Audio Toolbox) System object™ to read audio from your microphone.
Set the frame length equal to the hop length. This enables the computation of a new set of features
for every new audio frame received from the microphone.

frameLength = hopLength;
adr = audioDeviceReader('SampleRate',fs, ...
                        'SamplesPerFrame',frameLength,'OutputDataType','single');

Create a Time Scope (DSP System Toolbox) to visualize the speech signals and estimated mask.

scope = timescope('SampleRate',fs, ...
                  'TimeSpanSource','property', ...
                  'TimeSpan',5, ...
                  'TimeSpanOverrunAction','Scroll', ...
                  'BufferLength',fs*5*2, ...
                  'ShowLegend',true, ...
                  'ChannelNames',{'Speech','Keyword Mask'}, ...
                  'YLimits',[-1.2 1.2], ...
                  'Title','Keyword Spotting');

Initialize a buffer for the audio data, a buffer for the computed features, and a buffer to plot the input
audio and the output speech mask.

dataBuff = dsp.AsyncBuffer(windowLength);
featureBuff = dsp.AsyncBuffer(numHopsPerUpdate);
plotBuff = dsp.AsyncBuffer(numHopsPerUpdate*windowLength);

Perform keyword spotting on speech received from your microphone. To run the loop indefinitely, set
timeLimit to Inf. To stop the simulation, close the scope.

show(scope);
timeLimit = 20;
tic
while toc < timeLimit && isVisible(scope)
    
    data = adr();
    write(dataBuff,data);
    write(plotBuff,data);
    
    frame = read(dataBuff,windowLength,overlapLength);
    features = generateKeywordFeatures(frame,fs);
    write(featureBuff,features.');

    if featureBuff.NumUnreadSamples == numHopsPerUpdate
        
        featureMatrix = read(featureBuff);
        featureMatrix(~isfinite(featureMatrix)) = 0;
        featureMatrix = (featureMatrix - M)./S;

15 Audio Examples

15-96



        
        [keywordNet,v] = classifyAndUpdateState(KWSNet,featureMatrix.');
        
        v = double(v) - 1;
        v = repmat(v,hopLength,1);
        v = v(:);
        v = mode(v);
        v = repmat(v,numHopsPerUpdate * hopLength,1);
        
        data = read(plotBuff);
        scope([data,v]);
        
        drawnow limitrate;
    end
end
hide(scope)

The helperKeywordSpottingRaspi supporting function encapsulates the feature extraction and
network prediction process demonstrated previously. To make feature extraction compatible with
code generation, feature extraction is handled by the generated generateKeywordFeatures
function. To make the network compatible with code generation, the supporting function uses the
coder.loadDeepLearningNetwork (MATLAB Coder) function to load the network.

The supporting function uses a dsp.UDPReceiver (DSP System Toolbox) System object to receive
the captured audio from MATLAB® and uses a dsp.UDPSender (DSP System Toolbox) System object
to send the input speech signal along with the estimated mask predicted by the network to
MATLAB®. Similarly, the MATLAB® live script uses the dsp.UDPSender (DSP System Toolbox)
System object to send the captured speech signal to the executable running on Raspberry Pi and the
dsp.UDPReceiver (DSP System Toolbox) System object to receive the speech signal and estimated
mask from Raspberry Pi.

Generate Executable on Raspberry Pi

Replace the hostIPAddress with your machine's address. Your Raspberry Pi sends the input speech
signal and estimated mask to the specified IP address.

hostIPAddress = coder.Constant('172.18.230.30');

Create a code generation configuration object to generate an executable program. Specify the target
language as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the ARM compute library that is
on your Raspberry Pi. Specify the architecture of the Raspberry Pi and attach the deep learning
configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '20.02.1';
cfg.DeepLearningConfig = dlcfg;

Use the Raspberry Pi Support Package function, raspi, to create a connection to your Raspberry Pi.
In the following code, replace:

 Keyword Spotting in Noise Code Generation on Raspberry Pi

15-97



• raspiname with the name of your Raspberry Pi
• pi with your user name
• password with your password

r = raspi('raspiname','pi','password');

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;

Generate the C++ main file required to produce the standalone executable.

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

Generate C++ code for helperKeywordSpottingRaspi on your Raspberry Pi.

codegen -config cfg helperKeywordSpottingRaspi -args {hostIPAddress} -report 

 Deploying code. This may take a few minutes. 
Warning: Function 'helperKeywordSpottingRaspi' does not terminate due to an infinite loop.

Warning in ==> helperKeywordSpottingRaspi Line: 78 Column: 1
Code generation successful (with warnings): View report

Perform Keyword Spotting Using Deployed Code

Create a command to open the helperKeywordSpottingRaspi application on Raspberry Pi. Use
system to send the command to your Raspberry Pi.

applicationName = 'helperKeywordSpottingRaspi';

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName',applicationName);
targetDirPath = applicationDirPaths{1}.directory;

exeName = strcat(applicationName,'.elf');
command = ['cd ',targetDirPath,'; ./',exeName,' &> 1 &'];

system(r,command);

Create a dsp.UDPSender (DSP System Toolbox) System object to send audio captured in MATLAB®
to your Raspberry Pi. Update the targetIPAddress for your Raspberry Pi. Raspberry Pi receives
the captured audio from the same port using the dsp.UDPReceiver (DSP System Toolbox) System
object.

targetIPAddress = '172.18.231.92';
UDPSend = dsp.UDPSender('RemoteIPPort',26000,'RemoteIPAddress',targetIPAddress); 

Create a dsp.UDPReceiver (DSP System Toolbox) System object to receive speech data and the
predicted speech mask from your Raspberry Pi. Each UDP packet received from the Raspberry Pi
consists of maskLength mask and speech samples. The maximum message length for the

15 Audio Examples

15-98



dsp.UDPReceiver (DSP System Toolbox) object is 65507 bytes. Calculate the buffer size to
accommodate the maximum number of UDP packets.

sizeOfFloatInBytes = 4;
speechDataLength = maskLength; 
numElementsPerUDPPacket = maskLength + speechDataLength;
maxUDPMessageLength = floor(65507/sizeOfFloatInBytes);
numPackets = floor(maxUDPMessageLength/numElementsPerUDPPacket);
bufferSize = numPackets*numElementsPerUDPPacket*sizeOfFloatInBytes;

UDPReceive = dsp.UDPReceiver("LocalIPPort",21000, ...  
    "MessageDataType","single", ...
    "MaximumMessageLength",1+numElementsPerUDPPacket, ...
    "ReceiveBufferSize",bufferSize);

Spot the keyword as long as time scope is open or until the time limit is reached. To stop the live
detection before the time limit is reached, close the time scope.

tic;
show(scope);
timelimit = 20;
while toc < timelimit && isVisible(scope)
    x = adr();
    UDPSend(x);
    data = UDPReceive(); 
    if ~isempty(data)
        mask = data(1:maskLength);
        dataForPlot = data(maskLength + 1 : numElementsPerUDPPacket);
        scope([dataForPlot,mask]);        
    end
    drawnow limitrate;
end 

Release the system objects and terminate the standalone executable.

hide(scope)
release(UDPSend)
release(UDPReceive)
release(scope)
release(adr)
stopExecutable(codertarget.raspi.raspberrypi,exeName)

Evaluate Execution Time Using Alternative PIL Function Workflow

To evaluate execution time taken by standalone executable on Raspberry Pi, use a PIL (processor-in-
loop) workflow. To perform PIL profiling, generate a PIL function for the supporting function
profileKeywordSpotting. The profileKeywordSpotting is equivalent to
helperKeywordSpottingRaspi, except that the former returns the speech and predicted speech
mask while the latter sends the same parameters using UDP. The time taken by the UDP calls is less
than 1 ms, which is relatively small compared to the overall execution time.

Create a code generation configuration object to generate the PIL function.

cfg = coder.config('lib','ecoder',true);
cfg.VerificationMode = 'PIL';

Set the ARM compute library and architecture.

 Keyword Spotting in Noise Code Generation on Raspberry Pi

15-99



dlcfg = coder.DeepLearningConfig('arm-compute');
cfg.DeepLearningConfig = dlcfg ;
cfg.DeepLearningConfig.ArmArchitecture = 'armv7';
cfg.DeepLearningConfig.ArmComputeVersion = '20.02.1';

Set up the connection with your target hardware.

if (~exist('r','var'))
  r = raspi('raspiname','pi','password');
end
hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Set the build directory and target language.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;
cfg.TargetLang = 'C++';

Enable profiling and generate the PIL code. A MEX file named profileKeywordSpotting_pil is
generated in your current folder.

cfg.CodeExecutionProfiling = true;
codegen -config cfg profileKeywordSpotting -args {pinknoise(hopLength,1,'single')} -report

 Deploying code. This may take a few minutes. 
### Connectivity configuration for function 'profileKeywordSpotting': 'Raspberry Pi'
Location of the generated elf : /home/pi/remoteBuildDir/MATLAB_ws/R2022a/W/Ex/ExampleManager/sporwal.Bdoc22a.j1844576/deeplearning_shared-ex18742368/codegen/lib/profileKeywordSpotting/pil
Code generation successful: View report

Evaluate Raspberry Pi Execution Time

Call the generated PIL function multiple times to get the average execution time.

numPredictCalls = 10;
totalCalls = numHopsPerUpdate * numPredictCalls;

x = pinknoise(hopLength,1,'single');
for k = 1:totalCalls
    [maskReceived,inputSignal,plotFlag] = profileKeywordSpotting_pil(x);
end

### Starting application: 'codegen\lib\profileKeywordSpotting\pil\profileKeywordSpotting.elf'
    To terminate execution: clear profileKeywordSpotting_pil
### Launching application profileKeywordSpotting.elf...
    Execution profiling data is available for viewing. Open Simulation Data Inspector.
    Execution profiling report available after termination.

Terminate the PIL execution.

clear profileKeywordSpotting_pil

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

    Execution profiling report: report(getCoderExecutionProfile('profileKeywordSpotting'))

Generate an execution profile report to evaluate execution time.

executionProfile = getCoderExecutionProfile('profileKeywordSpotting');
report(executionProfile, ...

15 Audio Examples

15-100



       'Units','Seconds', ...
       'ScaleFactor','1e-03', ...
       'NumericFormat','%0.4f')

ans = 
'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex18742368\codegen\lib\profileKeywordSpotting\html\orphaned\ExecutionProfiling_d43d66431b443d29.html'

 Keyword Spotting in Noise Code Generation on Raspberry Pi

15-101



Plot the Execution Time of each frame from the generated report.

Processing of the first frame took ~20 ms due to initialization overhead costs. The spikes in the time
graph at every 16th frame (numHopsPerUpdate) correspond to the computationally intensive predict
function called every 16th frame. The maximum execution time is ~30 ms, which is below the 128 ms
budget for real-time streaming. The performance is measuerd on Raspberry Pi 4 Model B Rev 1.1.

15 Audio Examples

15-102



Speech Command Recognition Code Generation on Raspberry
Pi

This example shows how to deploy feature extraction and a convolutional neural network (CNN) for
speech command recognition to Raspberry Pi™. To generate the feature extraction and network code,
you use MATLAB Coder™, MATLAB® Support Package for Raspberry Pi Hardware, and the ARM®
Compute Library. In this example, the generated code is an executable on your Raspberry Pi, which is
called by a MATLAB script that displays the predicted speech command along with the signal and
auditory spectrogram. Interaction between the MATLAB script and the executable on your Raspberry
Pi is handled using the user datagram protocol (UDP). For details about audio preprocessing and
network training, see “Train Speech Command Recognition Model Using Deep Learning” (Audio
Toolbox).

Prerequisites

• MATLAB Coder Interface for Deep Learning Libraries
• ARM processor that supports the NEON extension
• ARM Compute Library version 20.02.1 (on the target ARM hardware)
• Environment variables for the compilers and libraries

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Streaming Demonstration in MATLAB

Use the same parameters for the feature extraction pipeline and classification as developed in “Train
Speech Command Recognition Model Using Deep Learning” (Audio Toolbox).

Define the same sample rate the network was trained on (16 kHz). Define the classification rate and
the number of audio samples input per frame. The feature input to the network is a Bark spectrogram
that corresponds to 1 second of audio data. The Bark spectrogram is calculated for 25 ms windows
with 10 ms hops. Calculate the number of individual spectrums in each spectrogram.

fs = 16000;
classificationRate = 20;
samplesPerCapture = fs/classificationRate;

segmentDuration = 1;
segmentSamples = round(segmentDuration*fs);

frameDuration = 0.025;
frameSamples = round(frameDuration*fs);

hopDuration = 0.010;
hopSamples = round(hopDuration*fs);

numSpectrumPerSpectrogram = floor((segmentSamples-frameSamples)/hopSamples) + 1;

Create an audioFeatureExtractor (Audio Toolbox) object to extract 50-band Bark spectrograms
without window normalization. Calculate the number of elements in each spectrogram.

afe = audioFeatureExtractor( ...
    'SampleRate',fs, ...

 Speech Command Recognition Code Generation on Raspberry Pi

15-103



    'FFTLength',512, ...
    'Window',hann(frameSamples,'periodic'), ...
    'OverlapLength',frameSamples - hopSamples, ...
    'barkSpectrum',true);

numBands = 50;
setExtractorParameters(afe,'barkSpectrum','NumBands',numBands,'WindowNormalization',false);

numElementsPerSpectrogram = numSpectrumPerSpectrogram*numBands;

Load the pretrained CNN and labels.

load('commandNet.mat')
labels = trainedNet.Layers(end).Classes;
NumLabels = numel(labels);
BackGroundIdx = find(labels == 'background'); 

Define buffers and decision thresholds to post process network predictions.

probBuffer = single(zeros([NumLabels,classificationRate/2]));
YBuffer = single(NumLabels * ones(1, classificationRate/2)); 

countThreshold = ceil(classificationRate*0.2);
probThreshold = single(0.7);

Create an audioDeviceReader (Audio Toolbox) object to read audio from your device. Create a
dsp.AsyncBuffer (DSP System Toolbox) object to buffer the audio into chunks.

adr = audioDeviceReader('SampleRate',fs,'SamplesPerFrame',samplesPerCapture,'OutputDataType','single');
audioBuffer = dsp.AsyncBuffer(fs);

Create a dsp.MatrixViewer (DSP System Toolbox) object and a timescope (DSP System Toolbox)
object to display the results.

matrixViewer = dsp.MatrixViewer("ColorBarLabel","Power per band (dB/Band)",...
    "XLabel","Frames",...
    "YLabel","Bark Bands", ...
    "Position",[400 100 600 250], ...
    "ColorLimits",[-4 2.6445], ...
    "AxisOrigin","Lower left corner", ...
    "Name","Speech Command Recognition using Deep Learning");

timeScope = timescope("SampleRate",fs, ...
    "YLimits",[-1 1], ...
    "Position",[400 380 600 250], ...
    "Name","Speech Command Recognition Using Deep Learning", ...
    "TimeSpanSource","Property", ...
    "TimeSpan",1, ...
    "BufferLength",fs, ...
    "YLabel","Amplitude", ...
    "ShowGrid",true);

Show the time scope and matrix viewer. Detect commands as long as both the time scope and matrix
viewer are open or until the time limit is reached. To stop the live detection before the time limit is
reached, close the time scope window or matrix viewer window.

show(timeScope)
show(matrixViewer)

15 Audio Examples

15-104



timeLimit = 10;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    % Capture audio
    x = adr();
    write(audioBuffer,x);
    y = read(audioBuffer,fs,fs-samplesPerCapture);
    
    % Compute auditory features
    features = extract(afe,y);
    auditoryFeatures = log10(features + 1e-6);
    
    % Perform prediction
    probs = predict(trainedNet, auditoryFeatures);      
    [~, YPredicted] = max(probs);
    
    % Perform statistical post processing
    YBuffer = [YBuffer(2:end),YPredicted];
    probBuffer = [probBuffer(:,2:end),probs(:)];

    [YModeIdx, count] = mode(YBuffer);
    maxProb = max(probBuffer(YModeIdx,:));

    if YModeIdx == single(BackGroundIdx) || single(count) < countThreshold || maxProb < probThreshold
        speechCommandIdx = BackGroundIdx;
    else
        speechCommandIdx = YModeIdx;
    end
    
    % Update plots
    matrixViewer(auditoryFeatures');
    timeScope(x);

    if (speechCommandIdx == BackGroundIdx)
        timeScope.Title = ' ';
    else
        timeScope.Title = char(labels(speechCommandIdx));
    end
    drawnow limitrate 
end   

Hide the scopes.

hide(matrixViewer)
hide(timeScope)

Prepare MATLAB Code for Deployment

To create a function to perform feature extraction compatible with code generation, call
generateMATLABFunction (Audio Toolbox) on the audioFeatureExtractor object. The
generateMATLABFunction object function creates a standalone function that performs equivalent
feature extraction and is compatible with code generation.

generateMATLABFunction(afe,'extractSpeechFeatures')

 Speech Command Recognition Code Generation on Raspberry Pi

15-105



The HelperSpeechCommandRecognitionRasPi supporting function encapsulates the feature
extraction and network prediction process demonstrated previously. So that the feature extraction is
compatible with code generation, feature extraction is handled by the generated
extractSpeechFeatures function. So that the network is compatible with code generation, the
supporting function uses the coder.loadDeepLearningNetwork (MATLAB Coder) function to load
the network. The supporting function uses a dsp.UDPReceiver (DSP System Toolbox) system object
to send the auditory spectrogram and the index corresponding to the predicted speech command
from Raspberry Pi to MATLAB. The supporting function uses the dsp.UDPReceiver (DSP System
Toolbox) system object to receive the audio captured by your microphone in MATLAB.

Generate Executable on Raspberry Pi

Replace the hostIPAddress with your machine's address. Your Raspberry Pi sends auditory
spectrograms and the predicted speech command to this IP address.

hostIPAddress = coder.Constant('172.18.230.30');

Create a code generation configuration object to generate an executable program. Specify the target
language as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the ARM compute library that is
on your Raspberry Pi. Specify the architecture of the Raspberry Pi and attach the deep learning
configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '20.02.1';
cfg.DeepLearningConfig = dlcfg;

Use the Raspberry Pi Support Package function, raspi, to create a connection to your Raspberry Pi.
In the following code, replace:

• raspiname with the name of your Raspberry Pi
• pi with your user name
• password with your password

r = raspi('raspiname','pi','password');

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;

Use an auto generated C++ main file for the generation of a standalone executable.

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

15 Audio Examples

15-106



Call codegen (MATLAB Coder) to generate C++ code and the executable on your Raspberry Pi. By
default, the Raspberry Pi application name is the same as the MATLAB function.

codegen -config cfg HelperSpeechCommandRecognitionRasPi -args {hostIPAddress} -report -v

 Deploying code. This may take a few minutes. 
### Compiling function(s) HelperSpeechCommandRecognitionRasPi ...
------------------------------------------------------------------------
Location of the generated elf : /home/pi/remoteBuildDir/MATLAB_ws/R2022a/W/Ex/ExampleManager/sporwal.Bdoc22a.j1844576/deeplearning_shared-ex00376115
### Using toolchain: GNU GCC Embedded Linux
### 'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\exe\HelperSpeechCommandRecognitionRasPi\HelperSpeechCommandRecognitionRasPi_rtw.mk' is up to date
### Building 'HelperSpeechCommandRecognitionRasPi': make  -j$(($(nproc)+1)) -Otarget -f HelperSpeechCommandRecognitionRasPi_rtw.mk all

------------------------------------------------------------------------
### Generating compilation report ...
Warning: Function 'HelperSpeechCommandRecognitionRasPi' does not terminate due to an infinite
loop.

Warning in ==> HelperSpeechCommandRecognitionRasPi Line: 86 Column: 1
Code generation successful (with warnings): View report

Initialize Application on Raspberry Pi

Create a command to open the HelperSpeechCommandRasPi application on Raspberry Pi.
Use system to send the command to your Raspberry Pi.

applicationName = 'HelperSpeechCommandRecognitionRasPi';

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName',applicationName);
targetDirPath = applicationDirPaths{1}.directory;

exeName = strcat(applicationName,'.elf');
command = ['cd ' targetDirPath '; ./' exeName ' &> 1 &'];

system(r,command);

Create a dsp.UDPReceiver (DSP System Toolbox) system object to send audio captured in MATLAB
to your Raspberry Pi. Update the targetIPAddress for your Raspberry Pi. Raspberry Pi receives
the captured audio from the same port using the dsp.UDPReceiver (DSP System Toolbox) system
object.

targetIPAddress = '172.18.231.92';
UDPSend = dsp.UDPSender('RemoteIPPort',26000,'RemoteIPAddress',targetIPAddress); 

Create a dsp.UDPReceiver (DSP System Toolbox) system object to receive auditory features and
the predicted speech command index from your Raspberry Pi. Each UDP packet received from the
Raspberry Pi consists of auditory features in column-major order followed by the predicted speech
command index. The maximum message length for the dsp.UDPReceiver object is 65507 bytes.
Calculate the buffer size to accommodate the maximum number of UDP packets.

sizeOfFloatInBytes = 4;
maxUDPMessageLength = floor(65507/sizeOfFloatInBytes);
samplesPerPacket = 1 + numElementsPerSpectrogram; 
numPackets = floor(maxUDPMessageLength/samplesPerPacket);
bufferSize = numPackets*samplesPerPacket*sizeOfFloatInBytes;

UDPReceive = dsp.UDPReceiver("LocalIPPort",21000, ...  
    "MessageDataType","single", ...

 Speech Command Recognition Code Generation on Raspberry Pi

15-107



    "MaximumMessageLength",samplesPerPacket, ...
    "ReceiveBufferSize",bufferSize);

Reduce initialization overhead by sending a frame of zeros to the executable running on your
Raspberry Pi.

UDPSend(zeros(samplesPerCapture,1,"single"));

Perform Speech Command Recognition Using Deployed Code

Detect commands as long as both the time scope and matrix viewer are open or until the time limit is
reached. To stop the live detection before the time limit is reached, close the time scope or matrix
viewer window.

show(timeScope)
show(matrixViewer)

timeLimit = 20;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    % Capture audio and send that to RasPi
    x = adr();
    UDPSend(x);
    
    % Receive data packet from RasPi
    udpRec = UDPReceive();
    
    if ~isempty(udpRec)
        % Extract predicted index, the last sample of received UDP packet
        speechCommandIdx = udpRec(end); 
        
        % Extract auditory spectrogram
        spec = reshape(udpRec(1:numElementsPerSpectrogram), [numBands, numSpectrumPerSpectrogram]);
        
        % Display time domain signal and auditory spectrogram    
        timeScope(x)
        matrixViewer(spec)
        
        if speechCommandIdx == BackGroundIdx
            timeScope.Title = ' ';
        else
            timeScope.Title = char(labels(speechCommandIdx));
        end
        
        drawnow limitrate 
    end
end

hide(matrixViewer)
hide(timeScope)

15 Audio Examples

15-108



To stop the executable on your Raspberry Pi, use stopExecutable. Release the UDP objects.

stopExecutable(codertarget.raspi.raspberrypi,exeName)

release(UDPSend)
release(UDPReceive)

Profile Using PIL Workflow

You can measure the execution time taken on the Raspberry Pi using a processor-in-the-loop (PIL)
workflow of Embedded Coder®. The ProfileSpeechCommandRecognitionRaspi supporting
function is the equivalent of the HelperSpeechCommandRecognitionRaspi function, except that the
former returns the speech command index and auditory spectrogram while the latter sends the same
parameters using UDP. The time taken by the UDP calls is less than 1 ms, which is relatively small
compared to the overall execution time.

Create a PIL configuration object.

 Speech Command Recognition Code Generation on Raspberry Pi

15-109



cfg = coder.config('lib','ecoder',true);
cfg.VerificationMode = 'PIL';

Set the ARM compute library and architecture.

dlcfg = coder.DeepLearningConfig('arm-compute');
cfg.DeepLearningConfig = dlcfg ;
cfg.DeepLearningConfig.ArmArchitecture = 'armv7';
cfg.DeepLearningConfig.ArmComputeVersion = '19.05';

Set up the connection with your target hardware.

if (~exist('r','var'))
  r = raspi('raspiname','pi','password');
end
hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Set the build directory and target language.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;
cfg.TargetLang = 'C++';

Enable profiling and then generate the PIL code. A MEX file named
ProfileSpeechCommandRecognition_pil is generated in your current folder.

cfg.CodeExecutionProfiling = true;
codegen -config cfg ProfileSpeechCommandRecognitionRaspi -args {rand(samplesPerCapture, 1, 'single')} -report -v

 Deploying code. This may take a few minutes. 
### Compiling function(s) ProfileSpeechCommandRecognitionRaspi ...
### Connectivity configuration for function 'ProfileSpeechCommandRecognitionRaspi': 'Raspberry Pi'
### Using toolchain: GNU GCC Embedded Linux
### Creating 'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\lib\ProfileSpeechCommandRecognitionRaspi\coderassumptions\lib\ProfileSpeechCommandRecognitionRaspi_ca.mk' ...
### Building 'ProfileSpeechCommandRecognitionRaspi_ca': make  -j$(($(nproc)+1)) -Otarget -f ProfileSpeechCommandRecognitionRaspi_ca.mk all
### Using toolchain: GNU GCC Embedded Linux
### Creating 'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\lib\ProfileSpeechCommandRecognitionRaspi\pil\ProfileSpeechCommandRecognitionRaspi_rtw.mk' ...
### Building 'ProfileSpeechCommandRecognitionRaspi': make  -j$(($(nproc)+1)) -Otarget -f ProfileSpeechCommandRecognitionRaspi_rtw.mk all
Location of the generated elf : /home/pi/remoteBuildDir/MATLAB_ws/R2022a/W/Ex/ExampleManager/sporwal.Bdoc22a.j1844576/deeplearning_shared-ex00376115/codegen/lib/ProfileSpeechCommandRecognitionRaspi/pil
------------------------------------------------------------------------
### Using toolchain: GNU GCC Embedded Linux
### 'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\lib\ProfileSpeechCommandRecognitionRaspi\ProfileSpeechCommandRecognitionRaspi_rtw.mk' is up to date
### Building 'ProfileSpeechCommandRecognitionRaspi': make  -j$(($(nproc)+1)) -Otarget -f ProfileSpeechCommandRecognitionRaspi_rtw.mk all

------------------------------------------------------------------------
### Generating compilation report ...
Code generation successful: View report

Evaluate Raspberry Pi Execution Time

Call the generated PIL function multiple times to get the average execution time.

testDur = 50e-3;
numCalls = 100;

for k = 1:numCalls
    x = pinknoise(fs*testDur,'single');

15 Audio Examples

15-110



    [speechCommandIdx, auditoryFeatures] = ProfileSpeechCommandRecognitionRaspi_pil(x);
end

### Starting application: 'codegen\lib\ProfileSpeechCommandRecognitionRaspi\pil\ProfileSpeechCommandRecognitionRaspi.elf'
    To terminate execution: clear ProfileSpeechCommandRecognitionRaspi_pil
### Launching application ProfileSpeechCommandRecognitionRaspi.elf...
    Execution profiling data is available for viewing. Open Simulation Data Inspector.
    Execution profiling report available after termination.

Terminate the PIL execution.

clear ProfileSpeechCommandRecognitionRaspi_pil 

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

    Execution profiling report: report(getCoderExecutionProfile('ProfileSpeechCommandRecognitionRaspi'))

Generate an execution profile report to evaluate execution time.

executionProfile = getCoderExecutionProfile('ProfileSpeechCommandRecognitionRaspi');
report(executionProfile, ...
       'Units','Seconds', ...
       'ScaleFactor','1e-03', ...
       'NumericFormat','%0.4f')  

ans = 
'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\lib\ProfileSpeechCommandRecognitionRaspi\html\orphaned\ExecutionProfiling_d82c7024f87064b9.html'

 Speech Command Recognition Code Generation on Raspberry Pi

15-111



The maximum execution time taken by the ProfileSpeechCommandRecognitionRaspi function is
nearly twice the average execution time. You can notice that the execution time is maximum for the
first call of the PIL function and it is due to the initialization happening in the first call. The average
execution time is approximately 20 ms, which is below the 50 ms budget (audio capture time). The
performance is measured on Raspberry Pi 4 Model B Rev 1.1.

15 Audio Examples

15-112



Speech Command Recognition Code Generation with Intel MKL-
DNN

This example shows how to deploy feature extraction and a convolutional neural network (CNN) for
speech command recognition on Intel® processors. To generate the feature extraction and network
code, you use MATLAB® Coder™ and the Intel® Math Kernel Library for Deep Neural Networks
(MKL-DNN). In this example, the generated code is a MATLAB executable (MEX) function, which is
called by a MATLAB script that displays the predicted speech command along with the time domain
signal and auditory spectrogram. For details about audio preprocessing and network training, see
“Train Speech Command Recognition Model Using Deep Learning” (Audio Toolbox).

Prerequisites

• The MATLAB Coder Interface for Deep Learning Libraries support package
• Xeon processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2)
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Environment variables for Intel MKL-DNN

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Streaming Demonstration in MATLAB

Use the same parameters for the feature extraction pipeline and classification as developed in “Train
Speech Command Recognition Model Using Deep Learning” (Audio Toolbox).

Define the same sample rate the network was trained on (16 kHz). Define the classification rate and
the number of audio samples input per frame. The feature input to the network is a Bark spectrogram
that corresponds to 1 second of audio data. The Bark spectrogram is calculated for 25 ms windows
with 10 ms hops.

fs = 16000; 
classificationRate = 20;
samplesPerCapture = fs/classificationRate;

segmentDuration = 1;
segmentSamples = round(segmentDuration*fs);

frameDuration = 0.025;
frameSamples = round(frameDuration*fs);

hopDuration = 0.010;
hopSamples = round(hopDuration*fs);

Create an audioFeatureExtractor (Audio Toolbox) object to extract 50-band Bark spectrograms
without window normalization.

afe = audioFeatureExtractor( ...
    'SampleRate',fs, ...
    'FFTLength',512, ...
    'Window',hann(frameSamples,'periodic'), ...
    'OverlapLength',frameSamples - hopSamples, ...
    'barkSpectrum',true);

 Speech Command Recognition Code Generation with Intel MKL-DNN

15-113



numBands = 50;
setExtractorParameters(afe,'barkSpectrum','NumBands',numBands,'WindowNormalization',false);

Load the pretrained convolutional neural network and labels.

load('commandNet.mat')
labels = trainedNet.Layers(end).Classes;
numLabels = numel(labels);
backgroundIdx = find(labels == 'background'); 

Define buffers and decision thresholds to post process network predictions.

probBuffer = single(zeros([numLabels,classificationRate/2]));
YBuffer = single(numLabels * ones(1, classificationRate/2)); 

countThreshold = ceil(classificationRate*0.2);
probThreshold = single(0.7);

Create an audioDeviceReader (Audio Toolbox) object to read audio from your device. Create a
dsp.AsyncBuffer (DSP System Toolbox) object to buffer the audio into chunks.

adr = audioDeviceReader('SampleRate',fs,'SamplesPerFrame',samplesPerCapture,'OutputDataType','single');
audioBuffer = dsp.AsyncBuffer(fs);

Create a dsp.MatrixViewer (DSP System Toolbox) object and a timescope (DSP System Toolbox)
object to display the results.

matrixViewer = dsp.MatrixViewer("ColorBarLabel","Power per band (dB/Band)", ...
    "XLabel","Frames", ...
    "YLabel","Bark Bands", ...
    "Position",[400 100 600 250], ...
    "ColorLimits",[-4 2.6445], ...
    "AxisOrigin",'Lower left corner', ...
    "Name","Speech Command Recognition Using Deep Learning");

timeScope = timescope('SampleRate', fs, ...
    'YLimits',[-1 1], 'Position', [400 380 600 250], ...
    'Name','Speech Command Recognition Using Deep Learning', ...
    'TimeSpanSource','Property', ...
    'TimeSpan',1, ...
    'BufferLength',fs);

timeScope.YLabel = 'Amplitude';
timeScope.ShowGrid = true;

Show the time scope and matrix viewer. Detect commands as long as both the time scope and matrix
viewer are open or until the time limit is reached. To stop the live detection before the time limit is
reached, close the time scope window or matrix viewer window.

show(timeScope)
show(matrixViewer)
timeLimit = 10;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    %% Capture Audio
    x = adr();

15 Audio Examples

15-114



    write(audioBuffer,x);
    y = read(audioBuffer,fs,fs-samplesPerCapture);
    
    % Compute auditory features
    features = extract(afe,y);
    auditory_features = log10(features + 1e-6);
    
    % Transpose to get the auditory spectrum
    auditorySpectrum = auditory_features';
    
    % Perform prediction
    probs = predict(trainedNet, auditory_features);      
    [~, YPredicted] = max(probs);
    
    % Perform statistical post processing
    YBuffer = [YBuffer(2:end),YPredicted];
    probBuffer = [probBuffer(:,2:end),probs(:)];

    [YMode_idx, count] = mode(YBuffer);
    count = single(count);
    maxProb = max(probBuffer(YMode_idx,:));

    if (YMode_idx == single(backgroundIdx) || count < countThreshold || maxProb < probThreshold)
        speechCommandIdx = backgroundIdx;
    else
        speechCommandIdx = YMode_idx;
    end
    
    % Update plots
    matrixViewer(auditorySpectrum);
    timeScope(x);

    if (speechCommandIdx == backgroundIdx)
        timeScope.Title = ' ';
    else
        timeScope.Title = char(labels(speechCommandIdx));
    end
    drawnow
end 

Hide the scopes.

hide(matrixViewer)
hide(timeScope)

Prepare MATLAB Code for Deployment

To create a function to perform feature extraction compatible with code generation, call
generateMATLABFunction (Audio Toolbox) on the audioFeatureExtractor object. The
generateMATLABFunction object function creates a standalone function that performs equivalent
feature extraction and is compatible with code generation.

generateMATLABFunction(afe,'extractSpeechFeatures')

The HelperSpeechCommandRecognition supporting function encapsulates the feature extraction and
network prediction process demonstrated previously. So that the feature extraction is compatible with
code generation, feature extraction is handled by the generated extractSpeechFeatures function.

 Speech Command Recognition Code Generation with Intel MKL-DNN

15-115



So that the network is compatible with code generation, the supporting function uses the
coder.loadDeepLearningNetwork (MATLAB Coder) function to load the network.

Use the HelperSpeechCommandRecognition function to perform live detection of speech commands.

show(timeScope)
show(matrixViewer)
timeLimit = 10;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    x = adr();    
        
    [speechCommandIdx, auditorySpectrum] = HelperSpeechCommandRecognition(x);  
        
    matrixViewer(auditorySpectrum);
    timeScope(x);
   
    if (speechCommandIdx == backgroundIdx)
        timeScope.Title = ' ';
    else
        timeScope.Title = char(labels(speechCommandIdx));
    end
    drawnow
end

Hide the scopes.

hide(timeScope)
hide(matrixViewer)

Generate MATLAB Executable

Create a code generation configuration object for generation of an executable program. Specify the
target language as C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the MKL-DNN library. Attach
the configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('mkldnn');
cfg.DeepLearningConfig = dlcfg;

Call codegen (MATLAB Coder) to generate C++ code for the HelperSpeechCommandRecognition
function. Specify the configuration object and prototype arguments. A MEX file named
HelperSpeechCommandRecognition_mex is generated to your current folder.

codegen HelperSpeechCommandRecognition -config cfg -args {rand(samplesPerCapture, 1, 'single')} -profile -report -v

### Compiling function(s) HelperSpeechCommandRecognition ...
------------------------------------------------------------------------
[1/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWTensorBase.cpp /Fobuild\win64\MWTensorBase.obj

15 Audio Examples

15-116



MWTensorBase.cpp
[2/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWElementwiseAffineLayer.cpp /Fobuild\win64\MWElementwiseAffineLayer.obj
MWElementwiseAffineLayer.cpp
[3/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWMaxPoolingLayer.cpp /Fobuild\win64\MWMaxPoolingLayer.obj
MWMaxPoolingLayer.cpp
[4/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWInputLayerImpl.cpp /Fobuild\win64\MWInputLayerImpl.obj
MWInputLayerImpl.cpp
[5/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWInputLayer.cpp /Fobuild\win64\MWInputLayer.obj
MWInputLayer.cpp
[6/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWOutputLayer.cpp /Fobuild\win64\MWOutputLayer.obj
MWOutputLayer.cpp
[7/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWFCLayer.cpp /Fobuild\win64\MWFCLayer.obj
MWFCLayer.cpp
[8/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWCNNLayer.cpp /Fobuild\win64\MWCNNLayer.obj
MWCNNLayer.cpp
[9/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWOutputLayerImpl.cpp /Fobuild\win64\MWOutputLayerImpl.obj
MWOutputLayerImpl.cpp
[10/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWFusedConvReLULayer.cpp /Fobuild\win64\MWFusedConvReLULayer.obj
MWFusedConvReLULayer.cpp
[11/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWMaxPoolingLayerImpl.cpp /Fobuild\win64\MWMaxPoolingLayerImpl.obj
MWMaxPoolingLayerImpl.cpp
[12/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition_data.cpp /Fobuild\win64\HelperSpeechCommandRecognition_data.obj
HelperSpeechCommandRecognition_data.cpp
[13/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition_terminate.cpp /Fobuild\win64\HelperSpeechCommandRecognition_terminate.obj
HelperSpeechCommandRecognition_terminate.cpp
[14/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  colon.cpp /Fobuild\win64\colon.obj
colon.cpp
[15/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition_initialize.cpp /Fobuild\win64\HelperSpeechCommandRecognition_initialize.obj
HelperSpeechCommandRecognition_initialize.cpp
[16/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWElementwiseAffineLayerImpl.cpp /Fobuild\win64\MWElementwiseAffineLayerImpl.obj
MWElementwiseAffineLayerImpl.cpp
[17/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  rt_nonfinite.cpp /Fobuild\win64\rt_nonfinite.obj
rt_nonfinite.cpp
[18/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWFCLayerImpl.cpp /Fobuild\win64\MWFCLayerImpl.obj
MWFCLayerImpl.cpp
[19/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWFusedConvReLULayerImpl.cpp /Fobuild\win64\MWFusedConvReLULayerImpl.obj
MWFusedConvReLULayerImpl.cpp
[20/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  eml_int_forloop_overflow_check.cpp /Fobuild\win64\eml_int_forloop_overflow_check.obj
eml_int_forloop_overflow_check.cpp
[21/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWSoftmaxLayerImpl.cpp /Fobuild\win64\MWSoftmaxLayerImpl.obj
MWSoftmaxLayerImpl.cpp
[22/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  stft.cpp /Fobuild\win64\stft.obj
stft.cpp
[23/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  sort.cpp /Fobuild\win64\sort.obj
sort.cpp
[24/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWSoftmaxLayer.cpp /Fobuild\win64\MWSoftmaxLayer.obj
MWSoftmaxLayer.cpp
[25/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  extractSpeechFeatures.cpp /Fobuild\win64\extractSpeechFeatures.obj
extractSpeechFeatures.cpp
[26/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition.cpp /Fobuild\win64\HelperSpeechCommandRecognition.obj
HelperSpeechCommandRecognition.cpp
[27/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  DeepLearningNetwork.cpp /Fobuild\win64\DeepLearningNetwork.obj
DeepLearningNetwork.cpp
[28/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  sortIdx.cpp /Fobuild\win64\sortIdx.obj
sortIdx.cpp
[29/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  interface\_coder_HelperSpeechCommandRecognition_api.cpp /Fobuild\win64\_coder_HelperSpeechCommandRecognition_api.obj
_coder_HelperSpeechCommandRecognition_api.cpp
[30/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWCNNLayerImpl.cpp /Fobuild\win64\MWCNNLayerImpl.obj

 Speech Command Recognition Code Generation with Intel MKL-DNN

15-117



MWCNNLayerImpl.cpp
[31/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  permute.cpp /Fobuild\win64\permute.obj
permute.cpp
[32/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  predict.cpp /Fobuild\win64\predict.obj
predict.cpp
[33/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  interface\_coder_HelperSpeechCommandRecognition_info.cpp /Fobuild\win64\_coder_HelperSpeechCommandRecognition_info.obj
_coder_HelperSpeechCommandRecognition_info.cpp
[34/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition_mexutil.cpp /Fobuild\win64\HelperSpeechCommandRecognition_mexutil.obj
HelperSpeechCommandRecognition_mexutil.cpp
[35/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWTargetNetworkImpl.cpp /Fobuild\win64\MWTargetNetworkImpl.obj
MWTargetNetworkImpl.cpp
[36/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  interface\_coder_HelperSpeechCommandRecognition_mex.cpp /Fobuild\win64\_coder_HelperSpeechCommandRecognition_mex.obj
_coder_HelperSpeechCommandRecognition_mex.cpp
[37/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  indexShapeCheck.cpp /Fobuild\win64\indexShapeCheck.obj
indexShapeCheck.cpp
[38/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\version\cpp_mexapi_version.cpp /Fobuild\win64\cpp_mexapi_version.obj
cpp_mexapi_version.cpp
[39/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWCustomLayerForMKLDNN.cpp /Fobuild\win64\MWCustomLayerForMKLDNN.obj
MWCustomLayerForMKLDNN.cpp
[40/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWMkldnnUtils.cpp /Fobuild\win64\MWMkldnnUtils.obj
MWMkldnnUtils.cpp
[41/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  mtimes.cpp /Fobuild\win64\mtimes.obj
mtimes.cpp
[42/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  computeDFT.cpp /Fobuild\win64\computeDFT.obj
computeDFT.cpp
[43/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  formatSTFTOutput.cpp /Fobuild\win64\formatSTFTOutput.obj
formatSTFTOutput.cpp
[44/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  AsyncBuffer.cpp /Fobuild\win64\AsyncBuffer.obj
AsyncBuffer.cpp
[45/45] link build\win64\MWCNNLayer.obj build\win64\MWElementwiseAffineLayer.obj build\win64\MWFCLayer.obj build\win64\MWFusedConvReLULayer.obj build\win64\MWInputLayer.obj build\win64\MWMaxPoolingLayer.obj build\win64\MWOutputLayer.obj build\win64\MWSoftmaxLayer.obj build\win64\MWTensorBase.obj build\win64\MWElementwiseAffineLayerImpl.obj build\win64\MWFCLayerImpl.obj build\win64\MWFusedConvReLULayerImpl.obj build\win64\MWInputLayerImpl.obj build\win64\MWMaxPoolingLayerImpl.obj build\win64\MWOutputLayerImpl.obj build\win64\MWSoftmaxLayerImpl.obj build\win64\MWCNNLayerImpl.obj build\win64\MWTargetNetworkImpl.obj build\win64\MWMkldnnUtils.obj build\win64\MWCustomLayerForMKLDNN.obj build\win64\HelperSpeechCommandRecognition_data.obj build\win64\rt_nonfinite.obj build\win64\HelperSpeechCommandRecognition_initialize.obj build\win64\HelperSpeechCommandRecognition_terminate.obj build\win64\HelperSpeechCommandRecognition.obj build\win64\DeepLearningNetwork.obj build\win64\colon.obj build\win64\extractSpeechFeatures.obj build\win64\stft.obj build\win64\indexShapeCheck.obj build\win64\mtimes.obj build\win64\permute.obj build\win64\predict.obj build\win64\_coder_HelperSpeechCommandRecognition_api.obj build\win64\_coder_HelperSpeechCommandRecognition_mex.obj build\win64\computeDFT.obj build\win64\eml_int_forloop_overflow_check.obj build\win64\formatSTFTOutput.obj build\win64\sort.obj build\win64\sortIdx.obj build\win64\AsyncBuffer.obj build\win64\HelperSpeechCommandRecognition_mexutil.obj build\win64\_coder_HelperSpeechCommandRecognition_info.obj build\win64\cpp_mexapi_version.obj /nologo /manifest   /DLL /LIBPATH:"Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\lib\win64\microsoft" libmx.lib libmex.lib libmat.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib libMatlabDataArray.lib libMatlabEngine.lib  /out:"HelperSpeechCommandRecognition_mex.mexw64" /LIBPATH:"Z:\32\sporwal.Bdoc21b.j1648568\matlab\bin\win64" /LIBPATH:"Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\lib\win64\microsoft" libiomp5md.lib libmwblas.lib libemlrt.lib libcovrt.lib libut.lib libmwmathutil.lib  "Z:\32\sporwal.Bdoc21b.j1648568\matlab\lib\win64\mwdnnl.lib"
   Creating library HelperSpeechCommandRecognition_mex.lib and object HelperSpeechCommandRecognition_mex.exp

------------------------------------------------------------------------
### Generating compilation report ...
Code generation successful: View report

Perform Speech Command Recognition Using Deployed Code

Show the time scope and matrix viewer. Detect commands using the generated MEX for as long as
both the time scope and matrix viewer are open or until the time limit is reached. To stop the live
detection before the time limit is reached, close the time scope window or matrix viewer window.

show(timeScope)
show(matrixViewer)

timeLimit = 20;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    x = adr();    
        
    [speechCommandIdx, auditorySpectrum] = HelperSpeechCommandRecognition_mex(x);
        
    matrixViewer(auditorySpectrum);
    timeScope(x);
   
    if (speechCommandIdx == backgroundIdx)
        timeScope.Title = ' ';

15 Audio Examples

15-118



    else
        timeScope.Title = char(labels(speechCommandIdx));
    end
    drawnow
end

hide(matrixViewer)
hide(timeScope)

Evaluate MEX Execution Time

Use tic and toc to compare the execution time to run the simulation completely in MATLAB with
the execution time of the MEX function.

Measure the performance of the simulation code.

testDur = 50e-3;
x = pinknoise(fs*testDur,'single');

 Speech Command Recognition Code Generation with Intel MKL-DNN

15-119



numLoops = 100;
tic
for k = 1:numLoops
    [speechCommandIdx, auditory_features] = HelperSpeechCommandRecognition(x);
end
exeTime = toc;
fprintf('SIM execution time per 50 ms of audio = %0.4f ms\n',(exeTime/numLoops)*1000);

SIM execution time per 50 ms of audio = 6.8212 ms

Measure the performance of the MEX code.

tic
for k = 1:numLoops
    [speechCommandIdx, auditory_features] = HelperSpeechCommandRecognition_mex(x);
end
exeTimeMex = toc;
fprintf('MEX execution time per 50 ms of audio = %0.4f ms\n',(exeTimeMex/numLoops)*1000);

MEX execution time per 50 ms of audio = 1.3347 ms

Evaluate the performance gained from using the MEX function. This performance test is performed
on a machine using NVIDIA Quadro P620 (Version 26) GPU and Intel(R) Xeon(R) W-2133 CPU running
at 3.60 GHz.

PerformanceGain = exeTime/exeTimeMex

PerformanceGain = 5.1107

15 Audio Examples

15-120



Train Generative Adversarial Network (GAN) for Sound
Synthesis

This example shows how to train and use a generative adversarial network (GAN) to generate sounds.

Introduction

In generative adversarial networks, a generator and a discriminator compete against each other to
improve the generation quality.

GANs have generated significant interest in the field of audio and speech processing. Applications
include text-to-speech synthesis, voice conversion, and speech enhancement.

This example trains a GAN for unsupervised synthesis of audio waveforms. The GAN in this example
generates percussive sounds. The same approach can be followed to generate other types of sound,
including speech.

Synthesize Audio with Pre-Trained GAN

Before you train a GAN from scratch, use a pretrained GAN generator to synthesize percussive
sounds.

Download the pretrained generator.

matFileName = "drumGeneratorWeights.mat";
loc = matlab.internal.examples.downloadSupportFile("audio","GanAudioSynthesis/" + matFileName);
copyfile(loc,pwd)

The function synthesizePercussiveSound on page 15-141 calls a pretrained network to
synthesize a percussive sound sampled at 16 kHz. The synthesizePercussiveSound function is
included at the end of this example.

Synthesize a percussive sound and listen to it.

synthsound = synthesizePercussiveSound;

fs = 16e3;
sound(synthsound,fs)

Plot the synthesized percussive sound.

t = (0:length(synthsound)-1)/fs;
plot(t,synthsound)
grid on
xlabel("Time (s)")
title("Synthesized Percussive Sound")

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-121



You can use the percussive sounds synthesizer with other audio effects to create more complex
applications. For example, you can apply reverberation to the synthesized percussive sounds.

Create a reverberator (Audio Toolbox) object and open its parameter tuner UI. This UI enables you
to tune the reverberator parameters as the simulation runs.

reverb = reverberator(SampleRate=fs);
parameterTuner(reverb);

15 Audio Examples

15-122



Create a timescope (DSP System Toolbox) object to visualize the percussive sounds.

ts = timescope(SampleRate=fs, ...
    TimeSpanSource="Property", ...
    TimeSpanOverrunAction="Scroll", ...
    TimeSpan=10, ...
    BufferLength=10*256*64, ...
    ShowGrid=true, ...
    YLimits=[-1 1]);

In a loop, synthesize the percussive sounds and apply reverberation. Use the parameter tuner UI to
tune reverberation. If you want to run the simulation for a longer time, increase the value of the
loopCount parameter.

loopCount = 20;
for ii = 1:loopCount
    synthsound = synthesizePercussiveSound;
    synthsound = reverb(synthsound);
    ts(synthsound(:,1));
    soundsc(synthsound,fs)
    pause(0.5)
end

Train the GAN

Now that you have seen the pretrained percussive sounds generator in action, you can investigate the
training process in detail.

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-123



A GAN is a type of deep learning network that generates data with characteristics similar to the
training data.

A GAN consists of two networks that train together, a generator and a discriminator:

• Generator - Given a vector or random values as input, this network generates data with the same
structure as the training data. It is the generator's job to fool the discriminator.

• Discriminator - Given batches of data containing observations from both the training data and the
generated data, this network attempts to classify the observations as real or generated.

To maximize the performance of the generator, maximize the loss of the discriminator when given
generated data. That is, the objective of the generator is to generate data that the discriminator
classifies as real. To maximize the performance of the discriminator, minimize the loss of the
discriminator when given batches of both real and generated data. Ideally, these strategies result in a
generator that generates convincingly realistic data and a discriminator that has learned strong
feature representations that are characteristic of the training data.

In this example, you train the generator to create fake time-frequency short-time Fourier transform
(STFT) representations of percussive sounds. You train the discriminator to identify whether an STFT
was synthesized by the generator or computed from a real audio signal. You create the real STFTs by
computing the STFT of short recordings of real percussive sounds.

Load Training Data

Train a GAN using the Freesound One-Shot Percussive Sounds dataset [2] on page 15-143. Download
and extract the dataset. Remove any files with licenses that prohibit commercial use.

url1 = "https://zenodo.org/record/4687854/files/one_shot_percussive_sounds.zip";
url2 = "https://zenodo.org/record/4687854/files/licenses.txt";
downloadFolder = tempdir;

percussivesoundsFolder = fullfile(downloadFolder,"one_shot_percussive_sounds");
licensefilename = fullfile(percussivesoundsFolder,"licenses.txt");
if ~datasetExists(percussivesoundsFolder)
    disp("Downloading Freesound One-Shot Percussive Sounds Dataset (112.6 MB) ...")
    unzip(url1,downloadFolder)
    websave(licensefilename,url2);
    removeRestrictiveLicence(percussivesoundsFolder,licensefilename)
end

Create an audioDatastore (Audio Toolbox) object that points to the dataset.

15 Audio Examples

15-124



ads = audioDatastore(percussivesoundsFolder,IncludeSubfolders=true);

Define Generator Network

Define a network that generates STFTs from 1-by-1-by-100 arrays of random values. Create a network
that upscales 1-by-1-by-100 arrays to 128-by-128-by-1 arrays using a fully connected layer followed
by a reshape layer and a series of transposed convolution layers with ReLU layers.

This figure shows the dimensions of the signal as it travels through the generator. The generator
architecture is defined in Table 4 of [1] on page 15-143.

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-125



15 Audio Examples

15-126



The generator network is defined in modelGenerator, which is included at the end of this example.

Define Discriminator Network

Define a network that classifies real and generated 128-by-128 STFTs.

Create a network that takes 128-by-128 images and outputs a scalar prediction score using a series of
convolution layers with leaky ReLU layers followed by a fully connected layer.

This figure shows the dimensions of the signal as it travels through the discriminator. The
discriminator architecture is defined in Table 5 of [1] on page 15-143.

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-127



15 Audio Examples

15-128



The discriminator network is defined in modelDiscriminator on page 15-138, which is included at
the end of this example.

Generate Real Percussive Sounds Training Data

Generate STFT data from the percussive sound signals in the datastore.

Define the STFT parameters.

fftLength = 256;
win = hann(fftLength,"periodic");
overlapLength = 128;

To speed up processing, distribute the feature extraction across multiple workers using parfor.

First, determine the number of partitions for the dataset. If you do not have Parallel Computing
Toolbox™, use a single partition.

if canUseParallelPool
    pool = gcp;
    numPar = numpartitions(ads,pool);
else
    numPar = 1;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to parallel pool with 6 workers.

For each partition, read from the datastore and compute the STFT.

parfor ii = 1:numPar

    subds = partition(ads,numPar,ii);
    STrain = zeros(fftLength/2+1,128,1,numel(subds.Files));
    
    for idx = 1:numel(subds.Files)
        
        % Read audio
        [x,xinfo] = read(subds);

        % Preprocess
        x = preprocessAudio(single(x),xinfo.SampleRate);

        % STFT
        S0 = stft(x,Window=win,OverlapLength=overlapLength,FrequencyRange="onesided");
        
        % Magnitude
        S = abs(S0);

        STrain(:,:,:,idx) = S;
    end
    STrainC{ii} = STrain;
end

Analyzing and transferring files to the workers ...done.

Convert the output to a four-dimensional array with STFTs along the fourth dimension.

STrain = cat(4,STrainC{:});

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-129



Convert the data to the log scale to better align with human perception.

STrain = log(STrain + 1e-6);

Normalize training data to have zero mean and unit standard deviation.

Compute the STFT mean and standard deviation of each frequency bin.

SMean = mean(STrain,[2 3 4]);
SStd = std(STrain,1,[2 3 4]);

Normalize each frequency bin.

STrain = (STrain-SMean)./SStd;

The computed STFTs have unbounded values. Following the approach in [1] on page 15-143, make
the data bounded by clipping the spectra to 3 standard deviations and rescaling to [-1 1].

STrain = STrain/3;
Y = reshape(STrain,numel(STrain),1);
Y(Y<-1) = -1;
Y(Y>1) = 1;
STrain = reshape(Y,size(STrain));

Discard the last frequency bin to force the number of STFT bins to a power of two (which works well
with convolutional layers).

STrain = STrain(1:end-1,:,:,:);

Permute the dimensions in preparation for feeding to the discriminator.

STrain = permute(STrain,[2 1 3 4]);

Specify Training Options

Train with a mini-batch size of 64 for 1000 epochs.

maxEpochs = 1000;
miniBatchSize = 64;

Compute the number of iterations required to consume the data.

numIterationsPerEpoch = floor(size(STrain,4)/miniBatchSize);

Specify the options for Adam optimization. Set the learn rate of the generator and discriminator to
0.0002. For both networks, use a gradient decay factor of 0.5 and a squared gradient decay factor of
0.999.

learnRateGenerator = 0.0002;
learnRateDiscriminator = 0.0002;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™.

executionEnvironment = ;

15 Audio Examples

15-130



Initialize the generator and discriminator weights. The initializeGeneratorWeights and
initializeDiscriminatorWeights functions return random weights obtained using Glorot
uniform initialization. The functions are included at the end of this example.

generatorParameters = initializeGeneratorWeights;
discriminatorParameters = initializeDiscriminatorWeights;

Train Model

Train the model using a custom training loop. Loop over the training data and update the network
parameters at each iteration.

For each epoch, shuffle the training data and loop over mini-batches of data.

For each mini-batch:

• Generate a dlarray object containing an array of random values for the generator network.
• For GPU training, convert the data to a gpuArray (Parallel Computing Toolbox) object.
• Evaluate the model gradients using dlfeval and the helper functions,

modelDiscriminatorGradients and modelGeneratorGradients.
• Update the network parameters using the adamupdate function.

Initialize the parameters for Adam.

trailingAvgGenerator = [];
trailingAvgSqGenerator = [];
trailingAvgDiscriminator = [];
trailingAvgSqDiscriminator = [];

Depending on your machine, training this network can take hours. To skip training, set doTraining
to false.

doTraining = ;

You can set saveCheckpoints to true to save the updated weights and states to a MAT file every
ten epochs. You can then use this MAT file to resume training if it is interrupted.

saveCheckpoints = ;

Specify the length of the generator input.

numLatentInputs = 100;

Train the GAN. This can take multiple hours to run.

iteration = 0;

for epoch = 1:maxEpochs

    % Shuffle the data.
    idx = randperm(size(STrain,4));
    STrain = STrain(:,:,:,idx);

    % Loop over mini-batches.
    for index = 1:numIterationsPerEpoch

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-131



        
        iteration = iteration + 1;

        % Read mini-batch of data.
        dlX = STrain(:,:,:,(index-1)*miniBatchSize+1:index*miniBatchSize);
        dlX = dlarray(dlX,"SSCB");
        
        % Generate latent inputs for the generator network.
        Z = 2 * ( rand(1,1,numLatentInputs,miniBatchSize,"single") - 0.5 ) ;
        dlZ = dlarray(Z);

        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlZ = gpuArray(dlZ);
            dlX = gpuArray(dlX);
        end
        
        % Evaluate the discriminator gradients using dlfeval and the
        % modelDiscriminatorGradients helper function.
        gradientsDiscriminator = ...
            dlfeval(@modelDiscriminatorGradients,discriminatorParameters,generatorParameters,dlX,dlZ);
        
        % Update the discriminator network parameters.
        [discriminatorParameters,trailingAvgDiscriminator,trailingAvgSqDiscriminator] = ...
            adamupdate(discriminatorParameters,gradientsDiscriminator, ...
            trailingAvgDiscriminator,trailingAvgSqDiscriminator,iteration, ...
            learnRateDiscriminator,gradientDecayFactor,squaredGradientDecayFactor);

        % Generate latent inputs for the generator network.
        Z = 2 * ( rand(1,1,numLatentInputs,miniBatchSize,"single") - 0.5 ) ;
        dlZ = dlarray(Z);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlZ = gpuArray(dlZ);
        end
        
        % Evaluate the generator gradients using dlfeval and the
        % |modelGeneratorGradients| helper function.
        gradientsGenerator  = ...
            dlfeval(@modelGeneratorGradients,discriminatorParameters,generatorParameters,dlZ);
        
        % Update the generator network parameters.
        [generatorParameters,trailingAvgGenerator,trailingAvgSqGenerator] = ...
            adamupdate(generatorParameters,gradientsGenerator, ...
            trailingAvgGenerator,trailingAvgSqGenerator,iteration, ...
            learnRateGenerator,gradientDecayFactor,squaredGradientDecayFactor);
    end

    % Every 10 epochs, save a training snapshot to a MAT file.
    if mod(epoch,10)==0
        disp("Epoch " + epoch + " out of " + maxEpochs + " complete.");
        if saveCheckpoints
            % Save checkpoint in case training is interrupted.
            save("audiogancheckpoint.mat", ...
                "generatorParameters","discriminatorParameters", ...
                "trailingAvgDiscriminator","trailingAvgSqDiscriminator", ...
                "trailingAvgGenerator","trailingAvgSqGenerator","iteration");

15 Audio Examples

15-132



        end
    end
end

Epoch 10 out of 1000 complete.
Epoch 20 out of 1000 complete.
Epoch 30 out of 1000 complete.
Epoch 40 out of 1000 complete.
Epoch 50 out of 1000 complete.
Epoch 60 out of 1000 complete.
Epoch 70 out of 1000 complete.
Epoch 80 out of 1000 complete.
Epoch 90 out of 1000 complete.
Epoch 100 out of 1000 complete.
Epoch 110 out of 1000 complete.
Epoch 120 out of 1000 complete.
Epoch 130 out of 1000 complete.
Epoch 140 out of 1000 complete.
Epoch 150 out of 1000 complete.
Epoch 160 out of 1000 complete.
Epoch 170 out of 1000 complete.
Epoch 180 out of 1000 complete.
Epoch 190 out of 1000 complete.
Epoch 200 out of 1000 complete.
Epoch 210 out of 1000 complete.
Epoch 220 out of 1000 complete.
Epoch 230 out of 1000 complete.
Epoch 240 out of 1000 complete.
Epoch 250 out of 1000 complete.
Epoch 260 out of 1000 complete.
Epoch 270 out of 1000 complete.
Epoch 280 out of 1000 complete.
Epoch 290 out of 1000 complete.
Epoch 300 out of 1000 complete.
Epoch 310 out of 1000 complete.
Epoch 320 out of 1000 complete.
Epoch 330 out of 1000 complete.
Epoch 340 out of 1000 complete.
Epoch 350 out of 1000 complete.
Epoch 360 out of 1000 complete.
Epoch 370 out of 1000 complete.
Epoch 380 out of 1000 complete.
Epoch 390 out of 1000 complete.
Epoch 400 out of 1000 complete.
Epoch 410 out of 1000 complete.
Epoch 420 out of 1000 complete.
Epoch 430 out of 1000 complete.
Epoch 440 out of 1000 complete.
Epoch 450 out of 1000 complete.
Epoch 460 out of 1000 complete.
Epoch 470 out of 1000 complete.
Epoch 480 out of 1000 complete.
Epoch 490 out of 1000 complete.
Epoch 500 out of 1000 complete.
Epoch 510 out of 1000 complete.
Epoch 520 out of 1000 complete.
Epoch 530 out of 1000 complete.
Epoch 540 out of 1000 complete.

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-133



Epoch 550 out of 1000 complete.
Epoch 560 out of 1000 complete.
Epoch 570 out of 1000 complete.
Epoch 580 out of 1000 complete.
Epoch 590 out of 1000 complete.
Epoch 600 out of 1000 complete.
Epoch 610 out of 1000 complete.
Epoch 620 out of 1000 complete.
Epoch 630 out of 1000 complete.
Epoch 640 out of 1000 complete.
Epoch 650 out of 1000 complete.
Epoch 660 out of 1000 complete.
Epoch 670 out of 1000 complete.
Epoch 680 out of 1000 complete.
Epoch 690 out of 1000 complete.
Epoch 700 out of 1000 complete.
Epoch 710 out of 1000 complete.
Epoch 720 out of 1000 complete.
Epoch 730 out of 1000 complete.
Epoch 740 out of 1000 complete.
Epoch 750 out of 1000 complete.
Epoch 760 out of 1000 complete.
Epoch 770 out of 1000 complete.
Epoch 780 out of 1000 complete.
Epoch 790 out of 1000 complete.
Epoch 800 out of 1000 complete.
Epoch 810 out of 1000 complete.
Epoch 820 out of 1000 complete.
Epoch 830 out of 1000 complete.
Epoch 840 out of 1000 complete.
Epoch 850 out of 1000 complete.
Epoch 860 out of 1000 complete.
Epoch 870 out of 1000 complete.
Epoch 880 out of 1000 complete.
Epoch 890 out of 1000 complete.
Epoch 900 out of 1000 complete.
Epoch 910 out of 1000 complete.
Epoch 920 out of 1000 complete.
Epoch 930 out of 1000 complete.
Epoch 940 out of 1000 complete.
Epoch 950 out of 1000 complete.
Epoch 960 out of 1000 complete.
Epoch 970 out of 1000 complete.
Epoch 980 out of 1000 complete.
Epoch 990 out of 1000 complete.
Epoch 1000 out of 1000 complete.

Synthesize Sounds

Now that you have trained the network, you can investigate the synthesis process in more detail.

15 Audio Examples

15-134



The trained percussive sound generator synthesizes short-time Fourier transform (STFT) matrices
from input arrays of random values. An inverse STFT (ISTFT) operation converts the time-frequency
STFT to a synthesized time-domain audio signal.

If you skipped training, load the weights of a pretrained generator.

if ~doTraining
    load(matFileName,"generatorParameters","SMean","SStd");
end

The generator takes 1-by-1-by-100 vectors of random values as an input. Generate a sample input
vector.

dlZ = dlarray(2*(rand(1,1,numLatentInputs,1,"single") - 0.5));

Pass the random vector to the generator to create an STFT image. generatorParameters is a
structure containing the weights of the pretrained generator.

dlXGenerated = modelGenerator(dlZ,generatorParameters);

Convert the STFT dlarray to a single-precision matrix.

S = dlXGenerated.extractdata;

Transpose the STFT to align its dimensions with the istft function.

S = S.';

The STFT is a 128-by-128 matrix, where the first dimension represents 128 frequency bins linearly
spaced from 0 to 8 kHz. The generator was trained to generate a one-sided STFT from an FFT length
of 256, with the last bin omitted. Reintroduce that bin by inserting a row of zeros into the STFT.

S = [S;zeros(1,128)];

Revert the normalization and scaling steps used when you generated the STFTs for training.

S = S * 3;
S = (S.*SStd) + SMean;

Convert the STFT from the log domain to the linear domain.

S = exp(S);

Convert the STFT from one-sided to two-sided.

S = [S;S(end-1:-1:2,:)];

Pad with zeros to remove window edge-effects.

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-135



S = [zeros(256,100),S,zeros(256,100)];

The STFT matrix does not contain any phase information. Use a fast version of the Griffin-Lim
algorithm with 20 iterations to estimate the signal phase and produce audio samples.

myAudio = stftmag2sig(S,256, ...
    FrequencyRange="twosided", ...
    Window=hann(256,"periodic"), ...
    OverlapLength=128, ...
    MaxIterations=20, ...
    Method="fgla");
myAudio = myAudio./max(abs(myAudio),[],"all");
myAudio = myAudio(128*100:end-128*100);

Listen to the synthesized percussive sound.

sound(gather(myAudio),fs)

Plot the synthesized percussive sound.

t = (0:length(myAudio)-1)/fs;
plot(t,myAudio)
grid on
xlabel("Time (s)")
title("Synthesized GAN Sound")

Plot the STFT of the synthesized percussive sound.

15 Audio Examples

15-136



figure
stft(myAudio,fs,Window=hann(256,"periodic"),OverlapLength=128);

Model Generator Function

The modelGenerator function upscales 1-by-1-by-100 arrays (dlX) to 128-by-128-by-1 arrays (dlY).
parameters is a structure holding the weights of the generator layers. The generator architecture is
defined in Table 4 of [1] on page 15-143.

function dlY = modelGenerator(dlX,parameters)

dlY = fullyconnect(dlX,parameters.FC.Weights,parameters.FC.Bias,Dataformat="SSCB");

dlY = reshape(dlY,[1024 4 4 size(dlY,2)]);
dlY = permute(dlY,[3 2 1 4]);
dlY = relu(dlY);

dlY = dltranspconv(dlY,parameters.Conv1.Weights,parameters.Conv1.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = relu(dlY);

dlY = dltranspconv(dlY,parameters.Conv2.Weights,parameters.Conv2.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = relu(dlY);

dlY = dltranspconv(dlY,parameters.Conv3.Weights,parameters.Conv3.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = relu(dlY);

dlY = dltranspconv(dlY,parameters.Conv4.Weights,parameters.Conv4.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = relu(dlY);

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-137



dlY = dltranspconv(dlY,parameters.Conv5.Weights,parameters.Conv5.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = tanh(dlY);
end

Model Discriminator Function

The modelDiscriminator function takes 128-by-128 images and outputs a scalar prediction score.
The discriminator architecture is defined in Table 5 of [1].

function dlY = modelDiscriminator(dlX,parameters)

dlY = dlconv(dlX,parameters.Conv1.Weights,parameters.Conv1.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);

dlY = dlconv(dlY,parameters.Conv2.Weights,parameters.Conv2.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);

dlY = dlconv(dlY,parameters.Conv3.Weights,parameters.Conv3.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);

dlY = dlconv(dlY,parameters.Conv4.Weights,parameters.Conv4.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);

dlY = dlconv(dlY,parameters.Conv5.Weights,parameters.Conv5.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);
 
dlY = stripdims(dlY);
dlY = permute(dlY,[3 2 1 4]);
dlY = reshape(dlY,4*4*64*16,numel(dlY)/(4*4*64*16));

weights = parameters.FC.Weights;
bias = parameters.FC.Bias;
dlY = fullyconnect(dlY,weights,bias,Dataformat="CB");

end

Model Discriminator Gradients Function

The modelDiscriminatorGradients functions takes as input the generator and discriminator
parameters generatorParameters and discriminatorParameters, a mini-batch of input data X,
and an array of random values Z, and returns the gradients of the discriminator loss with respect to
the learnable parameters in the networks.

function gradientsDiscriminator = modelDiscriminatorGradients(discriminatorParameters,generatorParameters,X,Z)

% Calculate the predictions for real data with the discriminator network.
Y = modelDiscriminator(X,discriminatorParameters);

% Calculate the predictions for generated data with the discriminator network.
Xgen = modelGenerator(Z,generatorParameters);
Ygen = modelDiscriminator(dlarray(Xgen,"SSCB"),discriminatorParameters);

% Calculate the GAN loss.
lossDiscriminator = ganDiscriminatorLoss(Y,Ygen);

% For each network, calculate the gradients with respect to the loss.

15 Audio Examples

15-138



gradientsDiscriminator = dlgradient(lossDiscriminator,discriminatorParameters);

end

Model Generator Gradients Function

The modelGeneratorGradients function takes as input the discriminator and generator learnable
parameters and an array of random values Z, and returns the gradients of the generator loss with
respect to the learnable parameters in the networks.

function gradientsGenerator = modelGeneratorGradients(discriminatorParameters,generatorParameters,Z)

% Calculate the predictions for generated data with the discriminator network.
Xgen = modelGenerator(Z,generatorParameters);
Ygen = modelDiscriminator(dlarray(Xgen,"SSCB"),discriminatorParameters);

% Calculate the GAN loss
lossGenerator = ganGeneratorLoss(Ygen);

% For each network, calculate the gradients with respect to the loss.
gradientsGenerator = dlgradient(lossGenerator,generatorParameters);

end

Discriminator Loss Function

The objective of the discriminator is to not be fooled by the generator. To maximize the probability
that the discriminator successfully discriminates between the real and generated images, minimize
the discriminator loss function. The loss function for the generator follows the DCGAN approach
highlighted in [1] on page 15-143.

function  lossDiscriminator = ganDiscriminatorLoss(dlYPred,dlYPredGenerated)

fake = dlarray(zeros(1,size(dlYPred,2)));
real = dlarray(ones(1,size(dlYPred,2)));

D_loss = mean(sigmoid_cross_entropy_with_logits(dlYPredGenerated,fake));
D_loss = D_loss + mean(sigmoid_cross_entropy_with_logits(dlYPred,real));
lossDiscriminator  = D_loss / 2;
end

Generator Loss Function

The objective of the generator is to generate data that the discriminator classifies as "real". To
maximize the probability that images from the generator are classified as real by the discriminator,
minimize the generator loss function. The loss function for the generator follows the deep
convolutional generative adverarial network (DCGAN) approach highlighted in [1] on page 15-143.

function lossGenerator = ganGeneratorLoss(dlYPredGenerated)
real = dlarray(ones(1,size(dlYPredGenerated,2)));
lossGenerator = mean(sigmoid_cross_entropy_with_logits(dlYPredGenerated,real));
end

Discriminator Weights Initializer

initializeDiscriminatorWeights initializes discriminator weights using the Glorot algorithm.

function discriminatorParameters = initializeDiscriminatorWeights

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-139



filterSize = [5 5];
dim = 64;

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 1 dim]);
bias = zeros(1,1,dim,"single");
discriminatorParameters.Conv1.Weights = dlarray(weights);
discriminatorParameters.Conv1.Bias = dlarray(bias);

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) dim 2*dim]);
bias = zeros(1,1,2*dim,"single");
discriminatorParameters.Conv2.Weights = dlarray(weights);
discriminatorParameters.Conv2.Bias = dlarray(bias);

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 2*dim 4*dim]);
bias = zeros(1,1,4*dim,"single");
discriminatorParameters.Conv3.Weights = dlarray(weights);
discriminatorParameters.Conv3.Bias = dlarray(bias);

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 4*dim 8*dim]);
bias = zeros(1,1,8*dim,"single");
discriminatorParameters.Conv4.Weights = dlarray(weights);
discriminatorParameters.Conv4.Bias = dlarray(bias);

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 8*dim 16*dim]);
bias = zeros(1,1,16*dim,"single");
discriminatorParameters.Conv5.Weights = dlarray(weights);
discriminatorParameters.Conv5.Bias = dlarray(bias);

% fully connected
weights = iGlorotInitialize([1,4 * 4 * dim * 16]);
bias = zeros(1,1,"single");
discriminatorParameters.FC.Weights = dlarray(weights);
discriminatorParameters.FC.Bias = dlarray(bias);
end

Generator Weights Initializer

initializeGeneratorWeights initializes generator weights using the Glorot algorithm.

function generatorParameters = initializeGeneratorWeights

dim = 64;

% Dense 1
weights = iGlorotInitialize([dim*256,100]);
bias = zeros(dim*256,1,"single");
generatorParameters.FC.Weights = dlarray(weights);
generatorParameters.FC.Bias = dlarray(bias);

filterSize = [5 5];

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 8*dim 16*dim]);

15 Audio Examples

15-140



bias = zeros(1,1,dim*8,"single");
generatorParameters.Conv1.Weights = dlarray(weights);
generatorParameters.Conv1.Bias = dlarray(bias);

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 4*dim 8*dim]);
bias = zeros(1,1,dim*4,"single");
generatorParameters.Conv2.Weights = dlarray(weights);
generatorParameters.Conv2.Bias = dlarray(bias);

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 2*dim 4*dim]);
bias = zeros(1,1,dim*2,"single");
generatorParameters.Conv3.Weights = dlarray(weights);
generatorParameters.Conv3.Bias = dlarray(bias);

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) dim 2*dim]);
bias = zeros(1,1,dim,"single");
generatorParameters.Conv4.Weights = dlarray(weights);
generatorParameters.Conv4.Bias = dlarray(bias);

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 1 dim]);
bias = zeros(1,1,1,"single");
generatorParameters.Conv5.Weights = dlarray(weights);
generatorParameters.Conv5.Bias = dlarray(bias);
end

Synthesize Percussive Sound

synthesizePercussiveSound uses a pretrained network to synthesize percussive sounds.

function y = synthesizePercussiveSound

persistent pGeneratorParameters pMean pSTD
if isempty(pGeneratorParameters)
    % If the MAT file does not exist, download it
    filename = "drumGeneratorWeights.mat";
    load(filename,"SMean","SStd","generatorParameters");
    pMean = SMean;
    pSTD  = SStd;
    pGeneratorParameters = generatorParameters;
end

% Generate random vector
dlZ = dlarray(2 * ( rand(1,1,100,1,"single") - 0.5 ));

% Generate spectrograms
dlXGenerated = modelGenerator(dlZ,pGeneratorParameters);

% Convert from dlarray to single
S = dlXGenerated.extractdata;

S = S.';
% Zero-pad to remove edge effects
S = [S ; zeros(1,128)];

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-141



% Reverse steps from training
S = S * 3;
S = (S.*pSTD) + pMean;
S = exp(S);

% Make it two-sided
S = [S ; S(end-1:-1:2,:)];
% Pad with zeros at end and start
S = [zeros(256,100) S zeros(256,100)];

% Reconstruct the signal using a fast Griffin-Lim algorithm.
myAudio = stftmag2sig(S,256, ...
    FrequencyRange="twosided", ...
    Window=hann(256,"periodic"), ...
    OverlapLength=128, ...
    MaxIterations=20, ...
    Method="fgla");
myAudio = myAudio./max(abs(myAudio),[],"all");
y = myAudio(128*100:end-128*100);
end

Utility Functions

function out = sigmoid_cross_entropy_with_logits(x,z)
out = max(x, 0) - x .* z + log(1 + exp(-abs(x)));
end

function w = iGlorotInitialize(sz)
if numel(sz) == 2
    numInputs = sz(2);
    numOutputs = sz(1);
else
    numInputs = prod(sz(1:3));
    numOutputs = prod(sz([1 2 4]));
end
multiplier = sqrt(2 / (numInputs + numOutputs));
w = multiplier * sqrt(3) * (2 * rand(sz,"single") - 1);
end

function out = preprocessAudio(in,fs)
% Ensure mono
in = mean(in,2);

% Resample to 16kHz
x = resample(in,16e3,fs);

% Cut or pad to have approximately 1-second length plus padding to ensure
% 128 analysis windows for an STFT with 256-point window and 128-point
% overlap.
y = trimOrPad(x,16513);

% Normalize
out = y./max(abs(y));

end

function y = trimOrPad(x,n)

15 Audio Examples

15-142



%trimOrPad Trim or pad audio
%
% y = trimOrPad(x,n) trims or pads the input x to n samples along the first
% dimension. If x is trimmed, it is trimmed equally on the front and back.
% If x is padded, it is padded equally on the front and back with zeros.
% For odd-length trimming or padding, the extra sample is trimmed or padded
% from the back.

a = size(x,1);
if a < n
    frontPad = floor((n-a)/2);
    backPad = n - a - frontPad;
    y = [zeros(frontPad,size(x,2),like=x);x;zeros(backPad,size(x,2),like=x)];
elseif a > n
    frontTrim = floor((a-n)/2) + 1;
    backTrim = a - n - frontTrim;
    y = x(frontTrim:end-backTrim,:);
else
    y = x;
end

end

function removeRestrictiveLicence(percussivesoundsFolder,licensefilename)
%removeRestrictiveLicense Remove restrictive license

% Parse the licenses file that maps ids to license. Create a table to hold the info.
f = fileread(licensefilename);
K = jsondecode(f);
fns = fields(K);
T = table(Size=[numel(fns),4], ...
    VariableTypes=["string","string","string","string"], ...
    VariableNames=["ID","FileName","UserName","License"]);
for ii = 1:numel(fns)
    fn = string(K.(fns{ii}).name);
    li = string(K.(fns{ii}).license);
    id = extractAfter(string(fns{ii}),"x");
    un = string(K.(fns{ii}).username);
    T(ii,:) = {id,fn,un,li};
end

% Remove any files that prohibit commercial use. Find the file inside the
% appropriate folder, and then delete it.
unsupportedLicense = "http://creativecommons.org/licenses/by-nc/3.0/";
fileToRemove = T.ID(strcmp(T.License,unsupportedLicense));
for ii = 1:numel(fileToRemove)
    fileInfo = dir(fullfile(percussivesoundsFolder,"**",fileToRemove(ii)+".wav"));
    delete(fullfile(fileInfo.folder,fileInfo.name))
end

end

Reference

[1] Donahue, C., J. McAuley, and M. Puckette. 2019. "Adversarial Audio Synthesis." ICLR.

 Train Generative Adversarial Network (GAN) for Sound Synthesis

15-143



[2] Ramires, Antonio, Pritish Chandna, Xavier Favory, Emilia Gomez, and Xavier Serra. "Neural
Percussive Synthesis Parameterised by High-Level Timbral Features." ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020. https://doi.org/
10.1109/icassp40776.2020.9053128.

15 Audio Examples

15-144



Sequential Feature Selection for Audio Features

This example shows a typical workflow for feature selection applied to the task of spoken digit
recognition.

In sequential feature selection, you train a network on a given feature set and then incrementally add
or remove features until the highest accuracy is reached [1] on page 15-157. In this example, you
apply sequential forward selection to the task of spoken digit recognition using the Free Spoken Digit
Dataset [2] on page 15-157.

Streaming Spoken Digit Recognition

To motivate the example, begin by loading a pretrained network, the audioFeatureExtractor
(Audio Toolbox) object used to train the network, and normalization factors for the features.

load("network_Audio_SequentialFeatureSelection.mat","bestNet","afe","normalizers");

Create an audioDeviceReader (Audio Toolbox) to read audio from a microphone. Create three
dsp.AsyncBuffer (DSP System Toolbox) objects: one to buffer audio read from your microphone,
one to buffer short-term energy of the input audio for speech detection, and one to buffer predictions.

fs = afe.SampleRate;

deviceReader = audioDeviceReader(SampleRate=fs,SamplesPerFrame=256);

audioBuffer = dsp.AsyncBuffer(fs*3);
steBuffer = dsp.AsyncBuffer(1000);
predictionBuffer = dsp.AsyncBuffer(5);

Create a plot to display the streaming audio, the probability the network outputs during inference,
and the prediction.

fig = figure;

streamAxes = subplot(3,1,1);
streamPlot = plot(zeros(fs,1));
ylabel("Amplitude")
xlabel("Time (s)")
title("Audio Stream")
streamAxes.XTick = [0,fs];
streamAxes.XTickLabel = [0,1];
streamAxes.YLim = [-1,1];

analyzedAxes = subplot(3,1,2);
analyzedPlot = plot(zeros(fs/2,1));
title("Analyzed Segment")
ylabel("Amplitude")
xlabel("Time (s)")
set(gca,XTickLabel=[])
analyzedAxes.XTick = [0,fs/2];
analyzedAxes.XTickLabel = [0,0.5];
analyzedAxes.YLim = [-1,1];

probabilityAxes = subplot(3,1,3);
probabilityPlot = bar(0:9,0.1*ones(1,10));
axis([-1,10,0,1])

 Sequential Feature Selection for Audio Features

15-145



ylabel("Probability")
xlabel("Class")

Perform streaming digit recognition (digits 0 through 9) for 20 seconds. While the loop runs, speak
one of the digits and test its accuracy.

First, define a short-term energy threshold under which to assume a signal contains no speech.

steThreshold = 0.015;
idxVec = 1:fs;
tic
while toc < 20
    
    % Read in a frame of audio from your device.
    audioIn = deviceReader();
    
    % Write the audio into a the buffer.
    write(audioBuffer,audioIn);
    
    % While 200 ms of data is unused, continue this loop.
    while audioBuffer.NumUnreadSamples > 0.2*fs
        
        % Read 1 second from the audio buffer. Of that 1 second, 800 ms
        % is rereading old data and 200 ms is new data.
        audioToAnalyze = read(audioBuffer,fs,0.8*fs);
        
        % Update the figure to plot the current audio data.
        streamPlot.YData = audioToAnalyze;

        ste = mean(abs(audioToAnalyze));
        write(steBuffer,ste);
        if steBuffer.NumUnreadSamples > 5
            abc = sort(peek(steBuffer));
            steThreshold = abc(round(0.4*numel(abc)));
        end
        if ste > steThreshold
            
            % Use the detectSpeeech function to determine if a region of speech
            % is present.
            idx = detectSpeech(audioToAnalyze,fs);
            
            % If a region of speech is present, perform the following.
            if ~isempty(idx)
                % Zero out all parts of the signal except the speech
                % region, and trim to 0.5 seconds.
                audioToAnalyze = trimOrPad(audioToAnalyze(idx(1,1):idx(1,2)),fs/2);
                
                % Normalize the audio.
                audioToAnalyze = audioToAnalyze/max(abs(audioToAnalyze));
                
                % Update the analyzed segment plot
                analyzedPlot.YData = audioToAnalyze;

                % Extract the features and transpose them so that time is
                % across columns.
                features = (extract(afe,audioToAnalyze))';

                % Normalize the features.

15 Audio Examples

15-146



                features = (features - normalizers.Mean) ./ normalizers.StandardDeviation;
                
                % Call classify to determine the probabilities and the
                % winning label.
                features(isnan(features)) = 0;
                [label,probs] = classify(bestNet,features);
                
                % Update the plot with the probabilities and the winning
                % label.
                probabilityPlot.YData = probs;
                write(predictionBuffer,probs);

                if predictionBuffer.NumUnreadSamples == predictionBuffer.Capacity
                    lastTen = peek(predictionBuffer);
                    [~,decision] = max(mean(lastTen.*hann(size(lastTen,1)),1));
                    probabilityAxes.Title.String = num2str(decision-1);
                end
            end
        else
            % If the signal energy is below the threshold, assume no speech
            % detected.
             probabilityAxes.Title.String = "";
             probabilityPlot.YData = 0.1*ones(10,1);
             analyzedPlot.YData = zeros(fs/2,1);
             reset(predictionBuffer)
        end
        
        drawnow limitrate
    end
end

 Sequential Feature Selection for Audio Features

15-147



The remainder of the example illustrates how the network used in the streaming detection was
trained and how the features fed into the network were chosen.

Create Train and Validation Data Sets

Download the Free Spoken Digit Dataset (FSDD) [2] on page 15-157. FSDD consists of short audio
files with spoken digits (0-9).

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"FSDD");

Create an audioDatastore (Audio Toolbox) to point to the recordings. Get the sample rate of the
data set.

ads = audioDatastore(dataset,IncludeSubfolders=true);
[~,adsInfo] = read(ads);
fs = adsInfo.SampleRate;

The first element of the file names is the digit spoken in the file. Get the first element of the file
names, convert them to categorical, and then set the Labels property of the audioDatastore.

[~,filenames] = cellfun(@(x)fileparts(x),ads.Files,UniformOutput=false);
ads.Labels = categorical(string(cellfun(@(x)x(1),filenames)));

To split the datastore into a development set and a validation set, use splitEachLabel (Audio
Toolbox). Allocate 80% of the data for development and the remaining 20% for validation.

15 Audio Examples

15-148



[adsTrain,adsValidation] = splitEachLabel(ads,0.8);

Set Up Audio Feature Extractor

Create an audioFeatureExtractor (Audio Toolbox) object to extract audio features over 30 ms
windows with an update rate of 10 ms. Set all features you would like to test in this example to true.

win = hamming(round(0.03*fs),"periodic");
overlapLength = round(0.02*fs);

afe = audioFeatureExtractor( ...
    Window=win, ...
    OverlapLength=overlapLength, ...
    SampleRate=fs, ...
    ...
    linearSpectrum=false, ...
    melSpectrum=false, ...
    barkSpectrum=false, ...
    erbSpectrum=false, ...
    ...
    mfcc=true, ...
    mfccDelta=true, ...
    mfccDeltaDelta=true, ...
    gtcc=true, ...
    gtccDelta=true, ...
    gtccDeltaDelta=true, ...
    ...
    spectralCentroid=true, ...
    spectralCrest=true, ...
    spectralDecrease=true, ...
    spectralEntropy=true, ...
    spectralFlatness=true, ...
    spectralFlux=true, ...
    spectralKurtosis=true, ...
    spectralRolloffPoint=true, ...
    spectralSkewness=true, ...
    spectralSlope=true, ...
    spectralSpread=true, ...
    ...
    pitch=false, ...
    harmonicRatio=false, ...
    zerocrossrate=false, ...
    shortTimeEnergy=false);

Define Layers and Training Options

Define the “List of Deep Learning Layers” on page 1-43 and trainingOptions used in this example.
The first layer, sequenceInputLayer, is just a placeholder. Depending on which features you test
during sequential feature selection, the first layer is replaced with a sequenceInputLayer of the
appropriate size.

numUnits = ;
layers = [ ...
    sequenceInputLayer(1)
    bilstmLayer(numUnits,OutputMode="last")
    fullyConnectedLayer(numel(categories(adsTrain.Labels)))
    softmaxLayer

 Sequential Feature Selection for Audio Features

15-149



    classificationLayer];

options = trainingOptions("adam", ...
    LearnRateSchedule="piecewise", ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    MaxEpochs=20);

Sequential Feature Selection

In the basic form of sequential feature selection, you train a network on a given feature set and then
incrementally add or remove features until the accuracy no longer improves [1] on page 15-157.

Forward Selection

Consider a simple case of forward selection on a set of four features. In the first forward selection
loop, each of the four features are tested independently by training a network and comparing their
validation accuracy. The feature that resulted in the highest validation accuracy is noted. In the
second forward selection loop, the best feature from the first loop is combined with each of the
remaining features. Now each pair of features is used for training. If the accuracy in the second loop
did not improve over the accuracy in the first loop, the selection process ends. Otherwise, a new best
feature set is selected. The forward selection loop continues until the accuracy no longer improves.

Backward Selection

In backward feature selection, you begin by training on a feature set that consists of all features and
test whether or not accuracy improves as you remove features.

15 Audio Examples

15-150



Run Sequential Feature Selection

The helper functions (sequentialFeatureSelection on page 15-154,
trainAndValidateNetwork on page 15-153, and trimOrPad on page 15-156) implement forward or
backward sequential feature selection. Specify the training datastore, validation datastore, audio
feature extractor, network layers, network options, and direction. As a general rule, choose forward if
you anticipate a small feature set or backward if you anticipate a large feature set.

direction = ;
[logbook,bestFeatures,bestNet,normalizers] = sequentialFeatureSelection(adsTrain,adsValidation,afe,layers,options,direction);

The logbook output from HelperFeatureExtractor is a table containing all feature
configurations tested and the corresponding validation accuracy.

logbook

logbook=62×2 table
                                  Features                                   Accuracy
    _____________________________________________________________________    ________

    "mfccDelta, spectralKurtosis, spectralRolloffPoint"                       98.25  
    "mfccDelta, spectralRolloffPoint"                                         97.75  
    "mfccDelta, spectralEntropy, spectralRolloffPoint"                        97.75  
    "mfccDelta, spectralDecrease, spectralKurtosis, spectralRolloffPoint"     97.25  
    "mfccDelta, mfccDeltaDelta"                                                  97  
    "mfccDelta, gtccDeltaDelta, spectralRolloffPoint"                            97  
    "mfcc, mfccDelta, spectralKurtosis, spectralRolloffPoint"                    97  
    "mfcc, mfccDelta"                                                         96.75  
    "mfccDelta, gtccDeltaDelta, spectralKurtosis, spectralRolloffPoint"       96.75  
    "mfccDelta, spectralRolloffPoint, spectralSlope"                           96.5  
    "mfccDelta"                                                               96.25  
    "mfccDelta, spectralKurtosis"                                             96.25  
    "mfccDelta, spectralSpread"                                               96.25  
    "mfccDelta, spectralDecrease, spectralRolloffPoint"                       96.25  
    "mfccDelta, spectralFlatness, spectralKurtosis, spectralRolloffPoint"     96.25  
    "mfccDelta, gtccDeltaDelta"                                                  96  

 Sequential Feature Selection for Audio Features

15-151



      ⋮

The bestFeatures output from sequentialFeatureSelection contains a struct with the optimal
features set to true.

bestFeatures

bestFeatures = struct with fields:
                    mfcc: 0
               mfccDelta: 1
          mfccDeltaDelta: 0
                    gtcc: 0
               gtccDelta: 0
          gtccDeltaDelta: 0
        spectralCentroid: 0
           spectralCrest: 0
        spectralDecrease: 0
         spectralEntropy: 0
        spectralFlatness: 0
            spectralFlux: 0
        spectralKurtosis: 1
    spectralRolloffPoint: 1
        spectralSkewness: 0
           spectralSlope: 0
          spectralSpread: 0

You can set your audioFeatureExtractor using the struct.

set(afe,bestFeatures)
afe

afe = 
  audioFeatureExtractor with properties:

   Properties
                     Window: [240×1 double]
              OverlapLength: 160
                 SampleRate: 8000
                  FFTLength: []
    SpectralDescriptorInput: 'linearSpectrum'
        FeatureVectorLength: 15

   Enabled Features
     mfccDelta, spectralKurtosis, spectralRolloffPoint

   Disabled Features
     linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDeltaDelta
     gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest, spectralDecrease
     spectralEntropy, spectralFlatness, spectralFlux, spectralSkewness, spectralSlope, spectralSpread
     pitch, harmonicRatio, zerocrossrate, shortTimeEnergy

   To extract a feature, set the corresponding property to true.
   For example, obj.mfcc = true, adds mfcc to the list of enabled features.

15 Audio Examples

15-152



sequentialFeatureSelection also outputs the best performing network and the normalization
factors that correspond to the chosen features. To save the network, configured
audioFeatureExtractor, and normalization factors, uncomment this line:

% save('network_Audio_SequentialFeatureSelection.mat','bestNet','afe','normalizers')

Conclusion

This example illustrates a workflow for sequential feature selection for a Recurrent Neural Network
(LSTM or BiLSTM). It could easily be adapted for CNN and RNN-CNN workflows.

Supporting Functions

Train and Validate Network

function [trueLabels,predictedLabels,net,normalizers] = trainAndValidateNetwork(adsTrain,adsValidation,afe,layers,options)
% Train and validate a network.
%
%   INPUTS:
%   adsTrain      - audioDatastore object that points to training set
%   adsValidation - audioDatastore object that points to validation set
%   afe           - audioFeatureExtractor object.
%   layers        - Layers of LSTM or BiLSTM network
%   options       - trainingOptions object
%
%   OUTPUTS:
%   trueLabels      - true labels of validation set
%   predictedLabels - predicted labels of validation set
%   net             - trained network
%   normalizers     - normalization factors for features under test

% Copyright 2019 The MathWorks, Inc.

% Convert the data to tall arrays.
tallTrain = tall(adsTrain);
tallValidation = tall(adsValidation);

% Extract features from the training set. Reorient the features so that
% time is along rows to be compatible with sequenceInputLayer.
fs = afe.SampleRate;
tallTrain = cellfun(@(x)trimOrPad(x,fs/2),tallTrain,UniformOutput=false);
tallTrain = cellfun(@(x)x/max(abs(x),[],"all"),tallTrain,UniformOutput=false);
tallFeaturesTrain = cellfun(@(x)extract(afe,x),tallTrain,UniformOutput=false);
tallFeaturesTrain = cellfun(@(x)x',tallFeaturesTrain,UniformOutput=false);  %#ok<NASGU>
[~,featuresTrain] = evalc('gather(tallFeaturesTrain)'); % Use evalc to suppress command-line output.

tallValidation = cellfun(@(x)trimOrPad(x,fs/2),tallValidation,UniformOutput=false);
tallValidation = cellfun(@(x)x/max(abs(x),[],'all'),tallValidation,UniformOutput=false);
tallFeaturesValidation = cellfun(@(x)extract(afe,x),tallValidation,UniformOutput=false);
tallFeaturesValidation = cellfun(@(x)x',tallFeaturesValidation,UniformOutput=false); %#ok<NASGU>
[~,featuresValidation] = evalc('gather(tallFeaturesValidation)'); % Use evalc to suppress command-line output.

% Use the training set to determine the mean and standard deviation of each
% feature. Normalize the training and validation sets.
allFeatures = cat(2,featuresTrain{:});
M = mean(allFeatures,2,"omitnan");

 Sequential Feature Selection for Audio Features

15-153



S = std(allFeatures,0,2,"omitnan");
featuresTrain = cellfun(@(x)(x-M)./S,featuresTrain,UniformOutput=false);
for ii = 1:numel(featuresTrain)
    idx = find(isnan(featuresTrain{ii}));
    if ~isempty(idx)
        featuresTrain{ii}(idx) = 0;
    end
end
featuresValidation = cellfun(@(x)(x-M)./S,featuresValidation,UniformOutput=false);
for ii = 1:numel(featuresValidation)
    idx = find(isnan(featuresValidation{ii}));
    if ~isempty(idx)
        featuresValidation{ii}(idx) = 0;
    end
end

% Replicate the labels of the train and validation sets so that they are in
% one-to-one correspondence with the sequences.
labelsTrain = adsTrain.Labels;

% Update input layer for the number of features under test.
layers(1) = sequenceInputLayer(size(featuresTrain{1},1));

% Train the network.
net = trainNetwork(featuresTrain,labelsTrain,layers,options);

% Evaluate the network. Call classify to get the predicted labels for each
% sequence.
predictedLabels = classify(net,featuresValidation);
trueLabels = adsValidation.Labels;

% Save the normalization factors as a struct.
normalizers.Mean = M;
normalizers.StandardDeviation = S;
end

Sequential Feature Selection

function [logbook,bestFeatures,bestNet,bestNormalizers] = sequentialFeatureSelection(adsTrain,adsValidate,afeThis,layers,options,direction)
%
%   INPUTS:
%   adsTrain    - audioDatastore object that points to training set
%   adsValidate - audioDatastore object that points to validation set
%   afe         - audioFeatureExtractor object. Set all features to test to true
%   layers      - Layers of LSTM or BiLSTM network
%   options     - trainingOptions object
%   direction   - SFS direction, specify as 'forward' or 'backward'
%
%   OUTPUTS:
%   logbook         - table containing feature configurations tested and corresponding validation accuracies
%   bestFeatures    - struct containg best feature configuration
%   bestNet         - Trained network with highest validation accuracy
%   bestNormalizers - Feature normalization factors for best features

% Copyright 2019 The MathWorks, Inc.

15 Audio Examples

15-154



afe = copy(afeThis);
featuresToTest = fieldnames(info(afe));
N = numel(featuresToTest);
bestValidationAccuracy = 0;

% Set the initial feature configuration: all on for backward selection
% or all off for forward selection.
featureConfig = info(afe);
for i = 1:N
    if strcmpi(direction,"backward")
        featureConfig.(featuresToTest{i}) = true;
    else
        featureConfig.(featuresToTest{i}) = false;
    end
end

% Initialize logbook to track feature configuration and accuracy.
logbook = table(featureConfig,0,VariableNames=["Feature Configuration","Accuracy"]);

% Perform sequential feature evaluation.
wrapperIdx = 1;
bestAccuracy = 0;
while wrapperIdx <= N
    % Create a cell array containing all feature configurations to test
    % in the current loop.
    featureConfigsToTest = cell(numel(featuresToTest),1);
    for ii = 1:numel(featuresToTest)
        if strcmpi(direction,"backward")
            featureConfig.(featuresToTest{ii}) = false;
        else
            featureConfig.(featuresToTest{ii}) = true;
        end
        featureConfigsToTest{ii} = featureConfig;
        if strcmpi(direction,"backward")
            featureConfig.(featuresToTest{ii}) = true;
        else
            featureConfig.(featuresToTest{ii}) = false;
        end
    end

    % Loop over every feature set.
    for ii = 1:numel(featureConfigsToTest)

        % Determine the current feature configuration to test. Update
        % the feature afe.
        currentConfig = featureConfigsToTest{ii};
        set(afe,currentConfig)

        % Train and get k-fold cross-validation accuracy for current
        % feature configuration.
        [trueLabels,predictedLabels,net,normalizers] = trainAndValidateNetwork(adsTrain,adsValidate,afe,layers,options);
        valAccuracy = mean(trueLabels==predictedLabels)*100;
        if valAccuracy > bestValidationAccuracy
            bestValidationAccuracy = valAccuracy;
            bestNet = net;
            bestNormalizers = normalizers;
        end

 Sequential Feature Selection for Audio Features

15-155



        % Update Logbook
        result = table(currentConfig,valAccuracy,VariableNames=["Feature Configuration","Accuracy"]);
        logbook = [logbook;result]; %#ok<AGROW> 

    end

    % Determine and print the setting with the best accuracy. If accuracy
    % did not improve, end the run.
    [a,b] = max(logbook{:,"Accuracy"});
    if a <= bestAccuracy
        wrapperIdx = inf;
    else
        wrapperIdx = wrapperIdx + 1;
    end
    bestAccuracy = a;

    % Update the features-to-test based on the most recent winner.
    winner = logbook{b,"Feature Configuration"};
    fn = fieldnames(winner);
    tf = structfun(@(x)(x),winner);
    if strcmpi(direction,"backward")
        featuresToRemove = fn(~tf);
    else
        featuresToRemove = fn(tf);
    end
    for ii = 1:numel(featuresToRemove)
        loc =  strcmp(featuresToTest,featuresToRemove{ii});
        featuresToTest(loc) = [];
        if strcmpi(direction,"backward")
            featureConfig.(featuresToRemove{ii}) = false;
        else
            featureConfig.(featuresToRemove{ii}) = true;
        end
    end

end

% Sort the logbook and make it more readable.
logbook(1,:) = []; % Delete placeholder first row.
logbook = sortrows(logbook,"Accuracy","descend");
bestFeatures = logbook{1,"Feature Configuration"};
m = logbook{:,"Feature Configuration"};
fn = fieldnames(m);
myString = strings(numel(m),1);
for wrapperIdx = 1:numel(m)
    tf = structfun(@(x)(x),logbook{wrapperIdx,"Feature Configuration"});
    myString(wrapperIdx) = strjoin(fn(tf),", ");
end
logbook = table(myString,logbook{:,"Accuracy"},VariableNames=["Features","Accuracy"]);
end

Trim or Pad

function y = trimOrPad(x,n)
% y = trimOrPad(x,n) trims or pads the input x to n samples. If x is
% trimmed, it is trimmed equally on the front and back. If x is padded, it is

15 Audio Examples

15-156



% padded equally on the front and back with zeros. For odd-length trimming or
% padding, the extra sample is trimmed or padded from the back.

% Copyright 2019 The MathWorks, Inc.
a = size(x,1);
if a < n
    frontPad = floor((n-a)/2);
    backPad = n - a - frontPad;
    y = [zeros(frontPad,1);x;zeros(backPad,1)];
elseif a > n
    frontTrim = floor((a-n)/2)+1;
    backTrim = a - n - frontTrim;
    y = x(frontTrim:end-backTrim);
else
    y = x;
end
end

References

[1] Jain, A., and D. Zongker. "Feature Selection: Evaluation, Application, and Small Sample
Performance." IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 19, Issue 2,
1997, pp. 153-158.

[2] Jakobovski. “Jakobovski/Free-Spoken-Digit-Dataset.” GitHub, May 30, 2019. https://github.com/
Jakobovski/free-spoken-digit-dataset.

 Sequential Feature Selection for Audio Features

15-157



Acoustic Scene Recognition Using Late Fusion

This example shows how to create a multi-model late fusion system for acoustic scene recognition.
The example trains a convolutional neural network (CNN) using mel spectrograms and an ensemble
classifier using wavelet scattering. The example uses the TUT dataset for training and evaluation [1]
on page 15-172.

Introduction

Acoustic scene classification (ASC) is the task of classifying environments from the sounds they
produce. ASC is a generic classification problem that is foundational for context awareness in
devices, robots, and many other applications [1] on page 15-172. Early attempts at ASC used mel-
frequency cepstral coefficients (mfcc (Audio Toolbox)) and Gaussian mixture models (GMMs) to
describe their statistical distribution. Other popular features used for ASC include zero crossing rate,
spectral centroid (spectralCentroid (Audio Toolbox)), spectral rolloff (spectralRolloffPoint
(Audio Toolbox)), spectral flux (spectralFlux (Audio Toolbox) ), and linear prediction coefficients
(lpc (Signal Processing Toolbox)) [5] on page 15-172. Hidden Markov models (HMMs) were trained
to describe the temporal evolution of the GMMs. More recently, the best performing systems have
used deep learning, usually CNNs, and a fusion of multiple models. The most popular feature for top-
ranked systems in the DCASE 2017 contest was the mel spectrogram (melSpectrogram (Audio
Toolbox)). The top-ranked systems in the challenge used late fusion and data augmentation to help
their systems generalize.

To illustrate a simple approach that produces reasonable results, this example trains a CNN using
mel spectrograms and an ensemble classifier using wavelet scattering. The CNN and ensemble
classifier produce roughly equivalent overall accuracy, but perform better at distinguishing different
acoustic scenes. To increase overall accuracy, you merge the CNN and ensemble classifier results
using late fusion.

Load Acoustic Scene Recognition Data Set

To run the example, you must first download the data set [1] on page 15-172. The full data set is
approximately 15.5 GB. Depending on your machine and internet connection, downloading the data
can take about 4 hours.

downloadFolder = tempdir;
dataset = fullfile(downloadFolder,"TUT-acoustic-scenes-2017");

if ~datasetExists(dataset)
    disp("Downloading TUT-acoustic-scenes-2017 (15.5 GB) ...")
    HelperDownload_TUT_acoustic_scenes_2017(dataset);
end

Read in the development set metadata as a table. Name the table variables FileName,
AcousticScene, and SpecificLocation.

trainMetaData = readtable(fullfile(dataset,"TUT-acoustic-scenes-2017-development","meta"), ...
    Delimiter={'\t'}, ...
    ReadVariableNames=false);
trainMetaData.Properties.VariableNames = ["FileName","AcousticScene","SpecificLocation"];
head(trainMetaData)

ans=8×3 table
             FileName             AcousticScene    SpecificLocation

15 Audio Examples

15-158



    __________________________    _____________    ________________

    {'audio/b020_90_100.wav' }      {'beach'}          {'b020'}    
    {'audio/b020_110_120.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_100_110.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_40_50.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_50_60.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_30_40.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_160_170.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_170_180.wav'}      {'beach'}          {'b020'}    

testMetaData = readtable(fullfile(dataset,"TUT-acoustic-scenes-2017-evaluation","meta"), ...
    Delimiter={'\t'}, ...
    ReadVariableNames=false);
testMetaData.Properties.VariableNames = ["FileName","AcousticScene","SpecificLocation"];
head(testMetaData)

ans=8×3 table
         FileName         AcousticScene    SpecificLocation
    __________________    _____________    ________________

    {'audio/1245.wav'}      {'beach'}          {'b174'}    
    {'audio/1456.wav'}      {'beach'}          {'b174'}    
    {'audio/1318.wav'}      {'beach'}          {'b174'}    
    {'audio/967.wav' }      {'beach'}          {'b174'}    
    {'audio/203.wav' }      {'beach'}          {'b174'}    
    {'audio/777.wav' }      {'beach'}          {'b174'}    
    {'audio/231.wav' }      {'beach'}          {'b174'}    
    {'audio/768.wav' }      {'beach'}          {'b174'}    

Note that the specific recording locations in the test set do not intersect with the specific recording
locations in the development set. This makes it easier to validate that the trained models can
generalize to real-world scenarios.

sharedRecordingLocations = intersect(testMetaData.SpecificLocation,trainMetaData.SpecificLocation);
disp("Number of specific recording locations in both train and test sets = " + numel(sharedRecordingLocations))

Number of specific recording locations in both train and test sets = 0

The first variable of the metadata tables contains the file names. Concatenate the file names with the
file paths.

trainFilePaths = fullfile(dataset,"TUT-acoustic-scenes-2017-development",trainMetaData.FileName);

testFilePaths = fullfile(dataset,"TUT-acoustic-scenes-2017-evaluation",testMetaData.FileName);

There may be files listed in the metadata that are not present in the data set. Remove the filepaths
and acoustic scene labels that correspond to the missing files.

ads = audioDatastore(dataset,IncludeSubfolders=true);
allFiles = ads.Files;

trainIdxToRemove = ~ismember(trainFilePaths,allFiles);
trainFilePaths(trainIdxToRemove) = [];
trainLabels = categorical(trainMetaData.AcousticScene);
trainLabels(trainIdxToRemove) = [];

 Acoustic Scene Recognition Using Late Fusion

15-159



testIdxToRemove = ~ismember(testFilePaths,allFiles);
testFilePaths(testIdxToRemove) = [];
testLabels = categorical(testMetaData.AcousticScene);
testLabels(testIdxToRemove) = [];

Create audio datastores for the train and test sets. Set the Labels property of the audioDatastore
(Audio Toolbox) to the acoustic scene. Call countEachLabel (Audio Toolbox) to verify an even
distribution of labels in both the train and test sets.

adsTrain = audioDatastore(trainFilePaths, ...
    Labels=trainLabels, ...
    IncludeSubfolders=true);
display(countEachLabel(adsTrain))

  15×2 table

         Label          Count
    ________________    _____

    beach                312 
    bus                  312 
    cafe/restaurant      312 
    car                  312 
    city_center          312 
    forest_path          312 
    grocery_store        312 
    home                 312 
    library              312 
    metro_station        312 
    office               312 
    park                 312 
    residential_area     312 
    train                312 
    tram                 312 

adsTest = audioDatastore(testFilePaths, ...
    Labels=categorical(testMetaData.AcousticScene), ...
    IncludeSubfolders=true);
display(countEachLabel(adsTest))

  15×2 table

         Label          Count
    ________________    _____

    beach                108 
    bus                  108 
    cafe/restaurant      108 
    car                  108 
    city_center          108 
    forest_path          108 
    grocery_store        108 
    home                 108 
    library              108 
    metro_station        108 
    office               108 
    park                 108 

15 Audio Examples

15-160



    residential_area     108 
    train                108 
    tram                 108 

You can reduce the data set used in this example to speed up the run time at the cost of performance.
In general, reducing the data set is a good practice for development and debugging. Set
speedupExample to true to reduce the data set.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,20);
    adsTest = splitEachLabel(adsTest,10);
end

Call read (Audio Toolbox) to get the data and sample rate of a file from the train set. Audio in the
database has consistent sample rate and duration. Normalize the audio and listen to it. Display the
corresponding label.

[data,adsInfo] = read(adsTrain);
data = data./max(data,[],"all");

fs = adsInfo.SampleRate;
sound(data,fs)

disp("Acoustic scene = " + string(adsTrain.Labels(1)))

Acoustic scene = beach

Call reset (Audio Toolbox) to return the datastore to its initial condition.

reset(adsTrain)

Feature Extraction for CNN

Each audio clip in the dataset consists of 10 seconds of stereo (left-right) audio. The feature
extraction pipeline and the CNN architecture in this example are based on [3] on page 15-172.
Hyperparameters for the feature extraction, the CNN architecture, and the training options were
modified from the original paper using a systematic hyperparameter optimization workflow.

First, convert the audio to mid-side encoding. [3] on page 15-172 suggests that mid-side encoded data
provides better spatial information that the CNN can use to identify moving sources (such as a train
moving across an acoustic scene).

dataMidSide = [sum(data,2),data(:,1)-data(:,2)];

Divide the signal into one-second segments with overlap. The final system uses a probability-weighted
average on the one-second segments to predict the scene for each 10-second audio clip in the test
set. Dividing the audio clips into one-second segments makes the network easier to train and helps
prevent overfitting to specific acoustic events in the training set. The overlap helps to ensure all
combinations of features relative to one another are captured by the training data. It also provides
the system with additional data that can be mixed uniquely during augmentation.

segmentLength = 1;
segmentOverlap = 0.5;

[dataBufferedMid,~] = buffer(dataMidSide(:,1),round(segmentLength*fs),round(segmentOverlap*fs),"nodelay");

 Acoustic Scene Recognition Using Late Fusion

15-161



[dataBufferedSide,~] = buffer(dataMidSide(:,2),round(segmentLength*fs),round(segmentOverlap*fs),"nodelay");
dataBuffered = zeros(size(dataBufferedMid,1),size(dataBufferedMid,2)+size(dataBufferedSide,2));
dataBuffered(:,1:2:end) = dataBufferedMid;
dataBuffered(:,2:2:end) = dataBufferedSide;

Use melSpectrogram (Audio Toolbox) to transform the data into a compact frequency-domain
representation. Define parameters for the mel spectrogram as suggested by [3] on page 15-172.

windowLength = 2048;
samplesPerHop = 1024;
samplesOverlap = windowLength - samplesPerHop;
fftLength = 2*windowLength;
numBands = 128;

melSpectrogram operates along channels independently. To optimize processing time, call
melSpectrogram with the entire buffered signal.

spec = melSpectrogram(dataBuffered,fs, ...
    Window=hamming(windowLength,"periodic"), ...
    OverlapLength=samplesOverlap, ...
    FFTLength=fftLength, ...
    NumBands=numBands);

Convert the mel spectrogram into the logarithmic scale.

spec = log10(spec+eps);

Reshape the array to dimensions (Number of bands)-by-(Number of hops)-by-(Number of channels)-
by-(Number of segments). When you feed an image into a neural network, the first two dimensions
are the height and width of the image, the third dimension is the channels, and the fourth dimension
separates the individual images.

X = reshape(spec,size(spec,1),size(spec,2),size(data,2),[]);

Call melSpectrogram without output arguments to plot the mel spectrogram of the mid channel for
the first six of the one-second increments.

tiledlayout(3,2)
for channel = 1:2:11
    nexttile
    melSpectrogram(dataBuffered(:,channel),fs, ...
        Window=hamming(windowLength,"periodic"), ...
        OverlapLength=samplesOverlap, ...
        FFTLength=fftLength, ...
        NumBands=numBands);
    title("Segment " + ceil(channel/2))
end

15 Audio Examples

15-162



The helper function HelperSegmentedMelSpectrograms on page 15-171 performs the feature
extraction steps outlined above.

To speed up processing, extract mel spectrograms of all audio files in the datastores using tall
arrays. Unlike in-memory arrays, tall arrays remain unevaluated until you request that the
calculations be performed using the gather function. This deferred evaluation enables you to work
quickly with large data sets. When you eventually request the output using gather, MATLAB
combines the queued calculations where possible and takes the minimum number of passes through
the data. If you have Parallel Computing Toolbox™, you can use tall arrays in your local MATLAB
session, or on a local parallel pool. You can also run tall array calculations on a cluster if you have
MATLAB® Parallel Server™ installed.

If you do not have Parallel Computing Toolbox™, the code in this example still runs.

train_set_tall = tall(adsTrain);
xTrain = cellfun(@(x)HelperSegmentedMelSpectrograms(x,fs, ...
    SegmentLength=segmentLength, ...
    SegmentOverlap=segmentOverlap, ...
    WindowLength=windowLength, ...
    HopLength=samplesPerHop, ...
    NumBands=numBands, ...
    FFTLength=fftLength), ...
    train_set_tall, ...

 Acoustic Scene Recognition Using Late Fusion

15-163



    UniformOutput=false);
xTrain = gather(xTrain);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

- Pass 1 of 1: Completed in 3 min 56 sec
Evaluation completed in 3 min 56 sec

xTrain = cat(4,xTrain{:});

test_set_tall = tall(adsTest);
xTest = cellfun(@(x)HelperSegmentedMelSpectrograms(x,fs, ...
    SegmentLength=segmentLength, ...
    SegmentOverlap=segmentOverlap, ...
    WindowLength=windowLength, ...
    HopLength=samplesPerHop, ...
    NumBands=numBands, ...
    FFTLength=fftLength), ...
    test_set_tall, ...
    UniformOutput=false);
xTest = gather(xTest);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 26 sec
Evaluation completed in 1 min 26 sec

xTest = cat(4,xTest{:});

Replicate the labels of the training and test sets so that they are in one-to-one correspondence with
the segments.

numSegmentsPer10seconds = size(dataBuffered,2)/2;
yTrain = repmat(adsTrain.Labels,1,numSegmentsPer10seconds)';
yTrain = yTrain(:);
yTest = repmat(adsTest.Labels,1,numSegmentsPer10seconds)';
yTest = yTest(:);

Data Augmentation for CNN

The DCASE 2017 dataset contains a relatively small number of acoustic recordings for the task, and
the development set and evaluation set were recorded at different specific locations. As a result, it is
easy to overfit to the data during training. One popular method to reduce overfitting is mixup. In
mixup, you augment your dataset by mixing the features of two different classes. When you mix the
features, you mix the labels in equal proportion. That is:

x∼ = λxi + 1− λ x j

y∼ = λyi + 1− λ y j

Mixup was reformulated by [2] on page 15-172 as labels drawn from a probability distribution instead
of mixed labels. The implementation of mixup in this example is a simplified version of mixup: each
spectrogram is mixed with a spectrogram of a different label with lambda set to 0.5. The original and
mixed datasets are combined for training.

xTrainExtra = xTrain;
yTrainExtra = yTrain;

15 Audio Examples

15-164



lambda = 0.5;
for ii = 1:size(xTrain,4)
    
    % Find all available spectrograms with different labels.
    availableSpectrograms = find(yTrain~=yTrain(ii));
    
    % Randomly choose one of the available spectrograms with a different label.
    numAvailableSpectrograms = numel(availableSpectrograms);
    idx = randi([1,numAvailableSpectrograms]);
    
    % Mix.
    xTrainExtra(:,:,:,ii) = lambda*xTrain(:,:,:,ii) + (1-lambda)*xTrain(:,:,:,availableSpectrograms(idx));
    
    % Specify the label as randomly set by lambda.
    if rand > lambda
        yTrainExtra(ii) = yTrain(availableSpectrograms(idx));
    end
end
xTrain = cat(4,xTrain,xTrainExtra);
yTrain = [yTrain;yTrainExtra];

Call summary to display the distribution of labels for the augmented training set.

summary(yTrain)

     beach                 11769 
     bus                   11904 
     cafe/restaurant       11873 
     car                   11820 
     city_center           11886 
     forest_path           11936 
     grocery_store         11914 
     home                  11923 
     library               11817 
     metro_station         11804 
     office                11922 
     park                  11871 
     residential_area      11704 
     train                 11773 
     tram                  11924 

Define and Train CNN

Define the CNN architecture. This architecture is based on [1] on page 15-172 and modified through
trial and error. See “List of Deep Learning Layers” on page 1-43 to learn more about deep learning
layers available in MATLAB®.

imgSize = [size(xTrain,1),size(xTrain,2),size(xTrain,3)];
numF = 32;
layers = [ ...
    imageInputLayer(imgSize)
    
    batchNormalizationLayer
    
    convolution2dLayer(3,numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,numF,Padding="same")

 Acoustic Scene Recognition Using Late Fusion

15-165



    batchNormalizationLayer
    reluLayer 
    
    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,8*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,8*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    globalAveragePooling2dLayer
    
    dropoutLayer(0.5)
    
    fullyConnectedLayer(15)
    softmaxLayer
    classificationLayer];

Define trainingOptions for the CNN. These options are based on [3] on page 15-172 and modified
through a systematic hyperparameter optimization workflow.

miniBatchSize = 128;
tuneme = 128;
lr = 0.05*miniBatchSize/tuneme;
options = trainingOptions( ...
    "sgdm", ...
    Momentum=0.9, ...
    L2Regularization=0.005, ...
    ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=8, ...
    Shuffle="every-epoch", ...
    ...
    Plots="training-progress", ...
    Verbose=false, ...
    ...
    InitialLearnRate=lr, ...
    LearnRateSchedule="piecewise", ...

15 Audio Examples

15-166



    LearnRateDropPeriod=2, ...
    LearnRateDropFactor=0.2, ...
    ...
    ValidationData={xTest,yTest}, ...
    ValidationFrequency=floor(size(xTrain,4)/miniBatchSize));

Call trainNetwork to train the network.

trainedNet = trainNetwork(xTrain,yTrain,layers,options);

Evaluate CNN

Call predict to predict responses from the trained network using the held-out test set.

cnnResponsesPerSegment = predict(trainedNet,xTest);

Average the responses over each 10-second audio clip.

classes = trainedNet.Layers(end).Classes;
numFiles = numel(adsTest.Files);

counter = 1;
cnnResponses = zeros(numFiles,numel(classes));
for channel = 1:numFiles
    cnnResponses(channel,:) = sum(cnnResponsesPerSegment(counter:counter+numSegmentsPer10seconds-1,:),1)/numSegmentsPer10seconds;
    counter = counter + numSegmentsPer10seconds;
end

For each 10-second audio clip, choose the maximum of the predictions, then map it to the
corresponding predicted location.

[~,classIdx] = max(cnnResponses,[],2);
cnnPredictedLabels = classes(classIdx);

 Acoustic Scene Recognition Using Late Fusion

15-167



Call confusionchart to visualize the accuracy on the test set.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,cnnPredictedLabels, ...
    title=["Test Accuracy - CNN","Average Accuracy = " + mean(adsTest.Labels==cnnPredictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

Feature Extraction for Ensemble Classifier

Wavelet scattering has been shown in [4] on page 15-172 to provide a good representation of acoustic
scenes. Define a waveletScattering (Wavelet Toolbox) object. The invariance scale and quality
factors were determined through trial and error.

sf = waveletScattering(SignalLength=size(data,1), ...
                       SamplingFrequency=fs, ...
                       InvarianceScale=0.75, ...
                       QualityFactors=[4 1]);

Convert the audio signal to mono, and then call featureMatrix (Wavelet Toolbox) to return the
scattering coefficients for the scattering decomposition framework, sf.

dataMono = mean(data,2);
scatteringCoeffients = featureMatrix(sf,dataMono,Transform="log");

Average the scattering coefficients over the 10-second audio clip.

featureVector = mean(scatteringCoeffients,2);
disp("Number of wavelet features per 10-second clip = " + numel(featureVector));

Number of wavelet features per 10-second clip = 286

15 Audio Examples

15-168



The helper function HelperWaveletFeatureVector on page 15-172 performs the above steps. Use
a tall array with cellfun and HelperWaveletFeatureVector to parallelize the feature
extraction. Extract wavelet feature vectors for the train and test sets.

scatteringTrain = cellfun(@(x)HelperWaveletFeatureVector(x,sf),train_set_tall,UniformOutput=false);
xTrain = gather(scatteringTrain);
xTrain = cell2mat(xTrain')';

scatteringTest = cellfun(@(x)HelperWaveletFeatureVector(x,sf),test_set_tall,UniformOutput=false);
xTest = gather(scatteringTest);
xTest = cell2mat(xTest')';

Define and Train Ensemble Classifier

Use fitcensemble to create a trained classification ensemble model (ClassificationEnsemble).

subspaceDimension = min(150,size(xTrain,2) - 1);
numLearningCycles = 30;
classificationEnsemble = fitcensemble(xTrain,adsTrain.Labels, ...
    Method="Subspace", ...
    NumLearningCycles=numLearningCycles, ...
    Learners="discriminant", ...
    NPredToSample=subspaceDimension, ...
    ClassNames=removecats(unique(adsTrain.Labels)));

Evaluate Ensemble Classifier

For each 10-second audio clip, call predict to return the labels and the weights, then map it to the
corresponding predicted location. Call confusionchart to visualize the accuracy on the test set.

[waveletPredictedLabels,waveletResponses] = predict(classificationEnsemble,xTest);

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,waveletPredictedLabels, ...
    title=["Test Accuracy - Wavelet Scattering","Average Accuracy = " + mean(adsTest.Labels==waveletPredictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

 Acoustic Scene Recognition Using Late Fusion

15-169



fprintf('Average accuracy of classifier = %0.2f\n',mean(adsTest.Labels==waveletPredictedLabels)*100)

Average accuracy of classifier = 75.74

Apply Late Fusion

For each 10-second clip, calling predict on the wavelet classifier and the CNN returns a vector
indicating the relative confidence in their decision. Multiply the waveletResponses with the
cnnResponses to create a late fusion system.

fused = waveletResponses.*cnnResponses;
[~,classIdx] = max(fused,[],2);

predictedLabels = classes(classIdx);

Evaluate Late Fusion

Call confusionchart to visualize the fused classification accuracy.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,predictedLabels, ...
    Title=["Test Accuracy - Fusion","Average Accuracy = " + mean(adsTest.Labels==predictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

15 Audio Examples

15-170



Supporting Functions

HelperSegmentedMelSpectrograms

function X = HelperSegmentedMelSpectrograms(x,fs,varargin)
% Copyright 2019-2021 The MathWorks, Inc.
p = inputParser;
addParameter(p,WindowLength=1024);
addParameter(p,HopLength=512);
addParameter(p,NumBands=128);
addParameter(p,SegmentLength=1);
addParameter(p,SegmentOverlap=0);
addParameter(p,FFTLength=1024);
parse(p,varargin{:})
params = p.Results;

x = [sum(x,2),x(:,1)-x(:,2)];
x = x./max(max(x));

[xb_m,~] = buffer(x(:,1),round(params.SegmentLength*fs),round(params.SegmentOverlap*fs),"nodelay");
[xb_s,~] = buffer(x(:,2),round(params.SegmentLength*fs),round(params.SegmentOverlap*fs),"nodelay");
xb = zeros(size(xb_m,1),size(xb_m,2)+size(xb_s,2));
xb(:,1:2:end) = xb_m;
xb(:,2:2:end) = xb_s;

spec = melSpectrogram(xb,fs, ...
    Window=hamming(params.WindowLength,"periodic"), ...
    OverlapLength=params.WindowLength - params.HopLength, ...

 Acoustic Scene Recognition Using Late Fusion

15-171



    FFTLength=params.FFTLength, ...
    NumBands=params.NumBands, ...
    FrequencyRange=[0,floor(fs/2)]);
spec = log10(spec+eps);

X = reshape(spec,size(spec,1),size(spec,2),size(x,2),[]);
end

HelperWaveletFeatureExtractor

function features = HelperWaveletFeatureVector(x,sf)
% Copyright 2019-2021 The MathWorks, Inc.
x = mean(x,2);
features = featureMatrix(sf,x,Transform="log");
features = mean(features,2);
end

References

[1] A. Mesaros, T. Heittola, and T. Virtanen. Acoustic Scene Classification: an Overview of DCASE
2017 Challenge Entries. In proc. International Workshop on Acoustic Signal Enhancement, 2018.

[2] Huszar, Ferenc. "Mixup: Data-Dependent Data Augmentation." InFERENCe. November 03, 2017.
Accessed January 15, 2019. https://www.inference.vc/mixup-data-dependent-data-augmentation/.

[3] Han, Yoonchang, Jeongsoo Park, and Kyogu Lee. "Convolutional neural networks with binaural
representations and background subtraction for acoustic scene classification." the Detection and
Classification of Acoustic Scenes and Events (DCASE) (2017): 1-5.

[4] Lostanlen, Vincent, and Joakim Anden. Binaural scene classification with wavelet scattering.
Technical Report, DCASE2016 Challenge, 2016.

[5] A. J. Eronen, V. T. Peltonen, J. T. Tuomi, A. P. Klapuri, S. Fagerlund, T. Sorsa, G. Lorho, and J.
Huopaniemi, "Audio-based context recognition," IEEE Trans. on Audio, Speech, and Language
Processing, vol 14, no. 1, pp. 321-329, Jan 2006.

[6] TUT Acoustic scenes 2017, Development dataset

[7] TUT Acoustic scenes 2017, Evaluation dataset

See Also
trainNetwork | trainingOptions | classify | layerGraph | batchNormalizationLayer |
convolution2dLayer

Related Examples
• “List of Deep Learning Layers” on page 1-43

15 Audio Examples

15-172

https://www.inference.vc/mixup-data-dependent-data-augmentation/
https://zenodo.org/record/400515
https://zenodo.org/record/1040168


• “Deep Learning Tips and Tricks” on page 1-87
• “Deep Learning in MATLAB” on page 1-2

 Acoustic Scene Recognition Using Late Fusion

15-173



Keyword Spotting in Noise Using MFCC and LSTM Networks

This example shows how to identify a keyword in noisy speech using a deep learning network. In
particular, the example uses a Bidirectional Long Short-Term Memory (BiLSTM) network and mel
frequency cepstral coefficients (MFCC).

Introduction

Keyword spotting (KWS) is an essential component of voice-assist technologies, where the user
speaks a predefined keyword to wake-up a system before speaking a complete command or query to
the device.

This example trains a KWS deep network with feature sequences of mel-frequency cepstral
coefficients (MFCC). The example also demonstrates how network accuracy in a noisy environment
can be improved using data augmentation.

This example uses long short-term memory (LSTM) networks, which are a type of recurrent neural
network (RNN) well-suited to study sequence and time-series data. An LSTM network can learn long-
term dependencies between time steps of a sequence. An LSTM layer (lstmLayer) can look at the
time sequence in the forward direction, while a bidirectional LSTM layer (bilstmLayer) can look at
the time sequence in both forward and backward directions. This example uses a bidirectional LSTM
layer.

The example uses the google Speech Commands Dataset to train the deep learning model. To run the
example, you must first download the data set. If you do not want to download the data set or train
the network, then you can download and use a pretrained network by opening this example in
MATLAB® and running the Spot Keyword with Pretrained Network section.

Spot Keyword with Pretrained Network

Before going into the training process in detail, you will download and use a pretrained keyword
spotting network to identify a keyword.

In this example, the keyword to spot is YES.

Read a test signal where the keyword is uttered.

[audioIn,fs] = audioread("keywordTestSignal.wav");
sound(audioIn,fs)

Download and load the pretrained network, the mean (M) and standard deviation (S) vectors used for
feature normalization, as well as 2 audio files used for validating the network later in the example.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","KeywordSpotting.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"KeywordSpotting");
load(fullfile(netFolder,"KWSNet.mat"));

Create an audioFeatureExtractor (Audio Toolbox) object to perform feature extraction.

windowLength = 512;
overlapLength = 384;
afe = audioFeatureExtractor(SampleRate=fs, ...

15 Audio Examples

15-174



    Window=hann(windowLength,"periodic"),OverlapLength=overlapLength, ...
    mfcc=true,mfccDelta=true,mfccDeltaDelta=true);

Extract features from the test signal and normalize them.

features = extract(afe,audioIn);

features = (features - M)./S;

Compute the keyword spotting binary mask. A mask value of one corresponds to a segment where the
keyword was spotted.

mask = classify(KWSNet,features.');

Each sample in the mask corresponds to 128 samples from the speech signal (windowLength -
overlapLength).

Expand the mask to the length of the signal.

mask = repmat(mask,windowLength-overlapLength,1);
mask = double(mask) - 1;
mask = mask(:);

Plot the test signal and the mask.

figure
audioIn = audioIn(1:length(mask));
t = (0:length(audioIn)-1)/fs;
plot(t,audioIn)
grid on
hold on
plot(t, mask)
legend("Speech","YES")

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-175



Listen to the spotted keyword.

sound(audioIn(mask==1),fs)

Detect Commands Using Streaming Audio from Microphone

Test your pre-trained command detection network on streaming audio from your microphone. Try
saying random words, including the keyword (YES).

Call generateMATLABFunction (Audio Toolbox) on the audioFeatureExtractor object to create
the feature extraction function. You will use this function in the processing loop.

generateMATLABFunction(afe,"generateKeywordFeatures",IsStreaming=true);

Define an audio device reader that can read audio from your microphone. Set the frame length to the
hop length. This enables you to compute a new set of features for every new audio frame from the
microphone.

hopLength = windowLength - overlapLength;
frameLength = hopLength;
adr = audioDeviceReader(SampleRate=fs,SamplesPerFrame=frameLength);

Create a scope for visualizing the speech signal and the estimated mask.

scope = timescope(SampleRate=fs, ...
    TimeSpanSource="property", ...

15 Audio Examples

15-176



    TimeSpan=5, ...
    TimeSpanOverrunAction="Scroll", ...
    BufferLength=fs*5*2, ...
    ShowLegend=true, ...
    ChannelNames={'Speech','Keyword Mask'}, ...
    YLimits=[-1.2,1.2], ...
    Title="Keyword Spotting");

Define the rate at which you estimate the mask. You will generate a mask once every
numHopsPerUpdate audio frames.

numHopsPerUpdate = 16;

Initialize a buffer for the audio.

dataBuff = dsp.AsyncBuffer(windowLength);

Initialize a buffer for the computed features.

featureBuff = dsp.AsyncBuffer(numHopsPerUpdate);

Initialize a buffer to manage plotting the audio and the mask.

plotBuff = dsp.AsyncBuffer(numHopsPerUpdate*windowLength);

To run the loop indefinitely, set timeLimit to Inf. To stop the simulation, close the scope.

timeLimit = 20;

tic
while toc < timeLimit

    data = adr();
    write(dataBuff,data);
    write(plotBuff,data);

    frame = read(dataBuff,windowLength,overlapLength);
    features = generateKeywordFeatures(frame,fs);
    write(featureBuff,features.');

    if featureBuff.NumUnreadSamples == numHopsPerUpdate
        featureMatrix = read(featureBuff);
        featureMatrix(~isfinite(featureMatrix)) = 0;
        featureMatrix = (featureMatrix - M)./S;

        [keywordNet,v] = classifyAndUpdateState(KWSNet,featureMatrix.');
        v = double(v) - 1;
        v = repmat(v,hopLength,1);
        v = v(:);
        v = mode(v);
        v = repmat(v,numHopsPerUpdate*hopLength,1);

        data = read(plotBuff);
        scope([data,v]);

        if ~isVisible(scope)
            break;
        end
    end

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-177



end
hide(scope)

In the rest of the example, you will learn how to train the keyword spotting network.

Training Process Summary

The training process goes through the following steps:

1 Inspect a "gold standard" keyword spotting baseline on a validation signal.
2 Create training utterances from a noise-free dataset.
3 Train a keyword spotting LSTM network using MFCC sequences extracted from those

utterances.
4 Check the network accuracy by comparing the validation baseline to the output of the network

when applied to the validation signal.
5 Check the network accuracy for a validation signal corrupted by noise.
6 Augment the training dataset by injecting noise to the speech data using audioDataAugmenter

(Audio Toolbox).
7 Retrain the network with the augmented dataset.
8 Verify that the retrained network now yields higher accuracy when applied to the noisy validation

signal.

15 Audio Examples

15-178



Inspect the Validation Signal

You use a sample speech signal to validate the KWS network. The validation signal consists 34
seconds of speech with the keyword YES appearing intermittently.

Load the validation signal.

[audioIn,fs] = audioread(fullfile(netFolder,"KeywordSpeech-16-16-mono-34secs.flac"));

Listen to the signal.

sound(audioIn,fs)

Visualize the signal.

figure
t = (1/fs)*(0:length(audioIn)-1);
plot(t,audioIn);
grid on
xlabel("Time (s)")
title("Validation Speech Signal")

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-179



Inspect the KWS Baseline

Load the KWS baseline. This baseline was obtained using speech2text and Signal Labeler (Signal
Processing Toolbox). For a related example, see “Label Spoken Words in Audio Signals” (Signal
Processing Toolbox).

load("KWSBaseline.mat","KWSBaseline")

The baseline is a logical vector of the same length as the validation audio signal. Segments in
audioIn where the keyword is uttered are set to one in KWSBaseline.

Visualize the speech signal along with the KWS baseline.

fig = figure;
plot(t,[audioIn,KWSBaseline'])
grid on
xlabel("Time (s)")
legend("Speech","KWS Baseline",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
title("Validation Signal")

Listen to the speech segments identified as keywords.

sound(audioIn(KWSBaseline),fs)

15 Audio Examples

15-180

https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text


The objective of the network that you train is to output a KWS mask of zeros and ones like this
baseline.

Load Speech Commands Data Set

Download and extract the Google Speech Commands Dataset [1] on page 15-199.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","google_speech.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"google_speech");

Create an audioDatastore (Audio Toolbox) that points to the data set.

ads = audioDatastore(dataset,LabelSource="foldername",Includesubfolders=true);
ads = shuffle(ads);

The dataset contains background noise files that are not used in this example. Use subset (Audio
Toolbox) to create a new datastore that does not have the background noise files.

isBackNoise = ismember(ads.Labels,"background");
ads = subset(ads,~isBackNoise);

The dataset has approximately 65,000 one-second long utterances of 30 short words (including the
keyword YES). Get a breakdown of the word distribution in the datastore.

countEachLabel(ads)

ans=30×2 table
    Label     Count
    ______    _____

    bed       1713 
    bird      1731 
    cat       1733 
    dog       1746 
    down      2359 
    eight     2352 
    five      2357 
    four      2372 
    go        2372 
    happy     1742 
    house     1750 
    left      2353 
    marvin    1746 
    nine      2364 
    no        2375 
    off       2357 
      ⋮

Split ads into two datastores: The first datastore contains files corresponding to the keyword. The
second datastore contains all the other words.

keyword = "yes";
isKeyword = ismember(ads.Labels,keyword);
adsKeyword = subset(ads,isKeyword);
adsOther = subset(ads,~isKeyword);

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-181



To train the network with the entire dataset and achieve the highest possible accuracy, set
speedupExample to false. To run this example quickly, set speedupExample to true.

speedupExample = ;
if speedupExample
    % Reduce the dataset by a factor of 20
    adsKeyword = splitEachLabel(adsKeyword,round(numel(adsKeyword.Files)/20));
    numUniqueLabels = numel(unique(adsOther.Labels));
    adsOther = splitEachLabel(adsOther,round(numel(adsOther.Files)/numUniqueLabels/20));
end

Get a breakdown of the word distribution in each datastore. Shuffle the adsOther datastore so that
consecutive reads return different words.

countEachLabel(adsKeyword)

ans=1×2 table
    Label    Count
    _____    _____

     yes     2377 

countEachLabel(adsOther)

ans=29×2 table
    Label     Count
    ______    _____

    bed       1713 
    bird      1731 
    cat       1733 
    dog       1746 
    down      2359 
    eight     2352 
    five      2357 
    four      2372 
    go        2372 
    happy     1742 
    house     1750 
    left      2353 
    marvin    1746 
    nine      2364 
    no        2375 
    off       2357 
      ⋮

adsOther = shuffle(adsOther);

Create Training Sentences and Labels

The training datastores contain one-second speech signals where one word is uttered. You will create
more complex training speech utterances that contain a mixture of the keyword along with other
words.

Here is an example of a constructed utterance. Read one keyword from the keyword datastore and
normalize it to have a maximum value of one.

15 Audio Examples

15-182



yes = read(adsKeyword);
yes = yes/max(abs(yes));

The signal has non-speech portions (silence, background noise, etc.) that do not contain useful speech
information. This example removes silence using detectSpeech (Audio Toolbox).

Get the start and end indices of the useful portion of the signal.

speechIndices = detectSpeech(yes,fs);

Randomly select the number of words to use in the synthesized training sentence. Use a maximum of
10 words.

numWords = randi([0,10]);

Randomly pick the location at which the keyword occurs.

keywordLocation = randi([1,numWords+1]);

Read the desired number of non-keyword utterances, and construct the training sentence and mask.

sentence = [];
mask = [];
for index = 1:numWords+1
    if index == keywordLocation
        sentence = [sentence;yes]; %#ok
        newMask = zeros(size(yes));
        newMask(speechIndices(1,1):speechIndices(1,2)) = 1;
        mask = [mask;newMask]; %#ok
    else
        other = read(adsOther);
        other = other./max(abs(other));
        sentence = [sentence;other]; %#ok
        mask = [mask;zeros(size(other))]; %#ok
    end
end

Plot the training sentence along with the mask.

figure
t = (1/fs)*(0:length(sentence)-1);
fig = figure;
plot(t,[sentence,mask])
grid on
xlabel("Time (s)")
legend("Training Signal","Mask",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
title("Example Utterance")

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-183



Listen to the training sentence.

sound(sentence,fs)

Extract Features

This example trains a deep learning network using 39 MFCC coefficients (13 MFCC, 13 delta and 13
delta-delta coefficients).

Define parameters required for MFCC extraction.

windowLength = 512;
overlapLength = 384;

Create an audioFeatureExtractor object to perform the feature extraction.

afe = audioFeatureExtractor(SampleRate=fs, ...
    Window=hann(windowLength,"periodic"),OverlapLength=overlapLength, ...
    mfcc=true,mfccDelta=true,mfccDeltaDelta=true);

Extract the features.

featureMatrix = extract(afe,sentence);
size(featureMatrix)

15 Audio Examples

15-184



ans = 1×2

   478    39

Note that you compute MFCC by sliding a window through the input, so the feature matrix is shorter
than the input speech signal. Each row in featureMatrix corresponds to 128 samples from the
speech signal (windowLength - overlapLength).

Compute a mask of the same length as featureMatrix.

hopLength = windowLength - overlapLength;
range = hopLength*(1:size(featureMatrix,1)) + hopLength;
featureMask = zeros(size(range));
for index = 1:numel(range)
    featureMask(index) = mode(mask((index-1)*hopLength+1:(index-1)*hopLength+windowLength));
end

Extract Features from Training Dataset

Sentence synthesis and feature extraction for the whole training dataset can be quite time-
consuming. To speed up processing, if you have Parallel Computing Toolbox™, partition the training
datastore, and process each partition on a separate worker.

Select a number of datastore partitions.

numPartitions = 6;

Initialize cell arrays for the feature matrices and masks.

TrainingFeatures = {};
TrainingMasks= {};

Perform sentence synthesis, feature extraction, and mask creation using parfor.

emptyCategories = categorical([1 0]);
emptyCategories(:) = [];

tic
parfor ii = 1:numPartitions

    subadsKeyword = partition(adsKeyword,numPartitions,ii);
    subadsOther = partition(adsOther,numPartitions,ii);

    count = 1;
    localFeatures = cell(length(subadsKeyword.Files),1);
    localMasks = cell(length(subadsKeyword.Files),1);

    while hasdata(subadsKeyword)

        % Create a training sentence
        [sentence,mask] = synthesizeSentence(subadsKeyword,subadsOther,fs,windowLength);

        % Compute mfcc features
        featureMatrix = extract(afe, sentence);
        featureMatrix(~isfinite(featureMatrix)) = 0;

        % Create mask

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-185



        range = hopLength*(1:size(featureMatrix,1)) + hopLength;
        featureMask = zeros(size(range));
        for index = 1:numel(range)
            featureMask(index) = mode(mask((index-1)*hopLength+1:(index-1)*hopLength+windowLength));
        end

        localFeatures{count} = featureMatrix;
        localMasks{count} = [emptyCategories,categorical(featureMask)];

        count = count + 1;
    end

    TrainingFeatures = [TrainingFeatures;localFeatures];
    TrainingMasks = [TrainingMasks;localMasks];
end

Analyzing and transferring files to the workers ...done.

disp("Training feature extraction took " + toc + " seconds.")

Training feature extraction took 41.0509 seconds.

It is good practice to normalize all features to have zero mean and unity standard deviation. Compute
the mean and standard deviation for each coefficient and use them to normalize the data.

sampleFeature = TrainingFeatures{1};
numFeatures = size(sampleFeature,2);
featuresMatrix = cat(1,TrainingFeatures{:});
if speedupExample
    load(fullfile(netFolder,"keywordNetNoAugmentation.mat"),"keywordNetNoAugmentation","M","S");
else
    M = mean(featuresMatrix);
    S = std(featuresMatrix);
end
for index = 1:length(TrainingFeatures)
    f = TrainingFeatures{index};
    f = (f - M)./S;
    TrainingFeatures{index} = f.'; %#ok
end

Extract Validation Features

Extract MFCC features from the validation signal.

featureMatrix = extract(afe, audioIn);
featureMatrix(~isfinite(featureMatrix)) = 0;

Normalize the validation features.

FeaturesValidationClean = (featureMatrix - M)./S;
range = hopLength*(1:size(FeaturesValidationClean,1)) + hopLength;

Construct the validation KWS mask.

featureMask = zeros(size(range));
for index = 1:numel(range)
    featureMask(index) = mode(KWSBaseline((index-1)*hopLength+1:(index-1)*hopLength+windowLength));
end
BaselineV = categorical(featureMask);

15 Audio Examples

15-186



Define the LSTM Network Architecture

LSTM networks can learn long-term dependencies between time steps of sequence data. This
example uses the bidirectional LSTM layer bilstmLayer to look at the sequence in both forward and
backward directions.

Specify the input size to be sequences of size numFeatures. Specify two hidden bidirectional LSTM
layers with an output size of 150 and output a sequence. This command instructs the bidirectional
LSTM layer to map the input time series into 150 features that are passed to the next layer. Specify
two classes by including a fully connected layer of size 2, followed by a softmax layer and a
classification layer.

layers = [ ...
    sequenceInputLayer(numFeatures)
    bilstmLayer(150,OutputMode="sequence")
    bilstmLayer(150,OutputMode="sequence")
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer
    ];

Define Training Options

Specify the training options for the classifier. Set MaxEpochs to 10 so that the network makes 10
passes through the training data. Set MiniBatchSize to 64 so that the network looks at 64 training
signals at a time. Set Plots to "training-progress" to generate plots that show the training
progress as the number of iterations increases. Set Verbose to false to disable printing the table
output that corresponds to the data shown in the plot. Set Shuffle to "every-epoch" to shuffle the
training sequence at the beginning of each epoch. Set LearnRateSchedule to "piecewise" to
decrease the learning rate by a specified factor (0.1) every time a certain number of epochs (5) has
passed. Set ValidationData to the validation predictors and targets.

This example uses the adaptive moment estimation (ADAM) solver. ADAM performs better with
recurrent neural networks (RNNs) like LSTMs than the default stochastic gradient descent with
momentum (SGDM) solver.

maxEpochs = 10;
miniBatchSize = 64;
options = trainingOptions("adam", ...
    InitialLearnRate=1e-4, ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    ValidationFrequency=floor(numel(TrainingFeatures)/miniBatchSize), ...
    ValidationData={FeaturesValidationClean.',BaselineV}, ...
    Plots="training-progress", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=5);

Train the LSTM Network

Train the LSTM network with the specified training options and layer architecture using
trainNetwork. Because the training set is large, the training process can take several minutes.

[keywordNetNoAugmentation,netInfo] = trainNetwork(TrainingFeatures,TrainingMasks,layers,options);

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-187



if speedupExample
    load(fullfile(netFolder,"keywordNetNoAugmentation.mat"),"keywordNetNoAugmentation","M","S");
end

Check Network Accuracy for Noise-Free Validation Signal

Estimate the KWS mask for the validation signal using the trained network.

v = classify(keywordNetNoAugmentation,FeaturesValidationClean.');

Calculate and plot the validation confusion matrix from the vectors of actual and estimated labels.

figure
confusionchart(BaselineV,v, ...
    Title="Validation Accuracy", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

15 Audio Examples

15-188



Convert the network output from categorical to double.

v = double(v) - 1;
v = repmat(v,hopLength,1);
v = v(:);

Listen to the keyword areas identified by the network.

sound(audioIn(logical(v)),fs)

Visualize the estimated and expected KWS masks.

baseline = double(BaselineV) - 1;
baseline = repmat(baseline,hopLength,1);
baseline = baseline(:);

t = (1/fs)*(0:length(v)-1);
fig = figure;
plot(t,[audioIn(1:length(v)),v,0.8*baseline])
grid on
xlabel("Time (s)")
legend("Training Signal","Network Mask","Baseline Mask",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-189



l(2).LineWidth = 2;
title("Results for Noise-Free Speech")

Check Network Accuracy for a Noisy Validation Signal

You will now check the network accuracy for a noisy speech signal. The noisy signal was obtained by
corrupting the clean validation signal by additive white Gaussian noise.

Load the noisy signal.

[audioInNoisy,fs] = audioread(fullfile(netFolder,"NoisyKeywordSpeech-16-16-mono-34secs.flac"));
sound(audioInNoisy,fs)

Visualize the signal.

figure
t = (1/fs)*(0:length(audioInNoisy)-1);
plot(t,audioInNoisy)
grid on
xlabel("Time (s)")
title("Noisy Validation Speech Signal")

15 Audio Examples

15-190



Extract the feature matrix from the noisy signal.

featureMatrixV = extract(afe, audioInNoisy);
featureMatrixV(~isfinite(featureMatrixV)) = 0;
FeaturesValidationNoisy = (featureMatrixV - M)./S;

Pass the feature matrix to the network.

v = classify(keywordNetNoAugmentation,FeaturesValidationNoisy.');

Compare the network output to the baseline. Note that the accuracy is lower than the one you got for
a clean signal.

figure
confusionchart(BaselineV,v, ...
    Title="Validation Accuracy - Noisy Speech", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-191



Convert the network output from categorical to double.

v = double(v) - 1;
v = repmat(v,hopLength,1);
v = v(:);

Listen to the keyword areas identified by the network.

sound(audioIn(logical(v)),fs)

Visualize the estimated and baseline masks.

t = (1/fs)*(0:length(v)-1);
fig = figure;
plot(t,[audioInNoisy(1:length(v)),v,0.8*baseline])
grid on
xlabel("Time (s)")
legend("Training Signal","Network Mask","Baseline Mask",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
l(2).LineWidth = 2;
title("Results for Noisy Speech - No Data Augmentation")

15 Audio Examples

15-192



Perform Data Augmentation

The trained network did not perform well on a noisy signal because the trained dataset contained
only noise-free sentences. You will rectify this by augmenting your dataset to include noisy sentences.

Use audioDataAugmenter (Audio Toolbox) to augment your dataset.

ada = audioDataAugmenter(TimeStretchProbability=0,PitchShiftProbability=0, ...
    VolumeControlProbability=0,TimeShiftProbability=0, ...
    SNRRange=[-1,1],AddNoiseProbability=0.85);

With these settings, the audioDataAugmenter object corrupts an input audio signal with white
Gaussian noise with a probability of 85%. The SNR is randomly selected from the range [-1 1] (in dB).
There is a 15% probability that the augmenter does not modify your input signal.

As an example, pass an audio signal to the augmenter.

reset(adsKeyword)
x = read(adsKeyword);
data = augment(ada,x,fs)

data=1×2 table
         Audio          AugmentationInfo
    ________________    ________________

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-193



    {16000×1 double}       1×1 struct   

Inspect the AugmentationInfo variable in data to verify how the signal was modified.

data.AugmentationInfo

ans = struct with fields:
    SNR: 0.3410

Reset the datastores.

reset(adsKeyword)
reset(adsOther)

Initialize the feature and mask cells.

TrainingFeatures = {};
TrainingMasks = {};

Perform feature extraction again. Each signal is corrupted by noise with a probability of 85%, so your
augmented dataset has approximately 85% noisy data and 15% noise-free data.

tic
parfor ii = 1:numPartitions

    subadsKeyword = partition(adsKeyword,numPartitions,ii);
    subadsOther = partition(adsOther,numPartitions,ii);

    count = 1;
    localFeatures = cell(length(subadsKeyword.Files),1);
    localMasks = cell(length(subadsKeyword.Files),1);

    while hasdata(subadsKeyword)

        [sentence,mask] = synthesizeSentence(subadsKeyword,subadsOther,fs,windowLength);

        % Corrupt with noise
        augmentedData = augment(ada,sentence,fs);
        sentence = augmentedData.Audio{1};

        % Compute mfcc features
        featureMatrix = extract(afe, sentence);
        featureMatrix(~isfinite(featureMatrix)) = 0;

        range = hopLength*(1:size(featureMatrix,1)) + hopLength;
        featureMask = zeros(size(range));
        for index = 1:numel(range)
            featureMask(index) = mode(mask((index-1)*hopLength+1:(index-1)*hopLength+windowLength));
        end

        localFeatures{count} = featureMatrix;
        localMasks{count} = [emptyCategories,categorical(featureMask)];

        count = count + 1;
    end

    TrainingFeatures = [TrainingFeatures;localFeatures];

15 Audio Examples

15-194



    TrainingMasks = [TrainingMasks;localMasks];
end
disp("Training feature extraction took " + toc + " seconds.")

Training feature extraction took 35.6612 seconds.

Compute the mean and standard deviation for each coefficient; use them to normalize the data.

sampleFeature = TrainingFeatures{1};
numFeatures = size(sampleFeature,2);
featuresMatrix = cat(1,TrainingFeatures{:});
if speedupExample
    load(fullfile(netFolder,"KWSNet.mat"),"KWSNet","M","S");
else
    M = mean(featuresMatrix);
    S = std(featuresMatrix);
end
for index = 1:length(TrainingFeatures)
    f = TrainingFeatures{index};
    f = (f - M) ./ S;
    TrainingFeatures{index} = f.'; %#ok
end

Normalize the validation features with the new mean and standard deviation values.

FeaturesValidationNoisy = (featureMatrixV - M)./S;

Retrain Network with Augmented Dataset

Recreate the training options. Use the noisy baseline features and mask for validation.

options = trainingOptions("adam", ...
    InitialLearnRate=1e-4, ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    ValidationFrequency=floor(numel(TrainingFeatures)/miniBatchSize), ...
    ValidationData={FeaturesValidationNoisy.',BaselineV}, ...
    Plots="training-progress", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=5);

Train the network.

[KWSNet,netInfo] = trainNetwork(TrainingFeatures,TrainingMasks,layers,options);

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-195



if speedupExample
    load(fullfile(netFolder,"KWSNet.mat"));
end

Verify the network accuracy on the validation signal.

v = classify(KWSNet,FeaturesValidationNoisy.');

Compare the estimated and expected KWS masks.

figure
confusionchart(BaselineV,v, ...
    Title="Validation Accuracy with Data Augmentation", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

15 Audio Examples

15-196



Listen to the identified keyword regions.

v = double(v) - 1;
v = repmat(v,hopLength,1);
v = v(:);

sound(audioIn(logical(v)),fs)

Visualize the estimated and expected masks.

fig = figure;
plot(t,[audioInNoisy(1:length(v)),v,0.8*baseline])
grid on
xlabel("Time (s)")
legend("Training Signal","Network Mask","Baseline Mask",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
l(2).LineWidth = 2;
title("Results for Noisy Speech - With Data Augmentation")

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-197



Supporting Functions

Synthesize Sentence
function [sentence,mask] = synthesizeSentence(adsKeyword,adsOther,fs,minlength)

% Read one keyword
keyword = read(adsKeyword);
keyword = keyword./max(abs(keyword));

% Identify region of interest
speechIndices = detectSpeech(keyword,fs);
if isempty(speechIndices) || diff(speechIndices(1,:)) <= minlength
    speechIndices = [1,length(keyword)];
end
keyword = keyword(speechIndices(1,1):speechIndices(1,2));

% Pick a random number of other words (between 0 and 10)
numWords = randi([0,10]);
% Pick where to insert keyword
loc = randi([1,numWords+1]);
sentence = [];
mask = [];
for index = 1:numWords+1
    if index==loc

15 Audio Examples

15-198



        sentence = [sentence;keyword];
        newMask = ones(size(keyword));
        mask = [mask;newMask];
    else
        other = read(adsOther);
        other = other./max(abs(other));
        sentence = [sentence;other];
        mask = [mask;zeros(size(other))];
    end
end
end

References

[1] Warden P. "Speech Commands: A public dataset for single-word speech recognition", 2017.
Available from https://storage.googleapis.com/download.tensorflow.org/data/
speech_commands_v0.01.tar.gz. Copyright Google 2017. The Speech Commands Dataset is licensed
under the Creative Commons Attribution 4.0 license.

See Also
bilstmLayer | trainNetwork | trainingOptions | sequenceInputLayer

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Keyword Spotting in Noise Using MFCC and LSTM Networks

15-199

https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz


Speech Emotion Recognition

This example illustrates a simple speech emotion recognition (SER) system using a BiLSTM network.
You begin by downloading the data set and then testing the trained network on individual files. The
network was trained on a small German-language database [1] on page 15-212.

The example walks you through training the network, which includes downloading, augmenting, and
training the dataset. Finally, you perform leave-one-speaker-out (LOSO) 10-fold cross validation to
evaluate the network architecture.

The features used in this example were chosen using sequential feature selection, similar to the
method described in “Sequential Feature Selection for Audio Features” (Audio Toolbox).

Download Data Set

Download the Berlin Database of Emotional Speech [1] on page 15-212. The database contains 535
utterances spoken by 10 actors intended to convey one of the following emotions: anger, boredom,
disgust, anxiety/fear, happiness, sadness, or neutral. The emotions are text independent.

dataFolder = tempdir;
dataset = fullfile(dataFolder,"Emo-DB");
if ~datasetExists(dataset)
    url = "http://emodb.bilderbar.info/download/download.zip";
    disp("Downloading Emo-DB (40.5 MB) ...")
    unzip(url,dataset)
end

Downloading Emo-DB (40.5 MB) ...

Create an audioDatastore (Audio Toolbox) that points to the audio files.

ads = audioDatastore(fullfile(dataset,"wav"));

The file names are codes indicating the speaker ID, text spoken, emotion, and version. The website
contains a key for interpreting the code and additional information about the speakers such as
gender and age. Create a table with the variables Speaker and Emotion. Decode the file names into
the table.

filepaths = ads.Files;
emotionCodes = cellfun(@(x)x(end-5),filepaths,UniformOutput=false);
emotions = replace(emotionCodes,["W","L","E","A","F","T","N"], ...
    ["Anger","Boredom","Disgust","Anxiety/Fear","Happiness","Sadness","Neutral"]);

speakerCodes = cellfun(@(x)x(end-10:end-9),filepaths,UniformOutput=false);
labelTable = cell2table([speakerCodes,emotions],VariableNames=["Speaker","Emotion"]);
labelTable.Emotion = categorical(labelTable.Emotion);
labelTable.Speaker = categorical(labelTable.Speaker);
summary(labelTable)

Variables:

    Speaker: 535×1 categorical

        Values:

            03       49   

15 Audio Examples

15-200



            08       58   
            09       43   
            10       38   
            11       55   
            12       35   
            13       61   
            14       69   
            15       56   
            16       71   

    Emotion: 535×1 categorical

        Values:

            Anger             127   
            Anxiety/Fear       69   
            Boredom            81   
            Disgust            46   
            Happiness          71   
            Neutral            79   
            Sadness            62   

labelTable is in the same order as the files in audioDatastore. Set the Labels property of the
audioDatastore to the labelTable.

ads.Labels = labelTable;

Perform Speech Emotion Recognition

Download and load the pretrained network, the audioFeatureExtractor (Audio Toolbox) object
used to train the network, and normalization factors for the features. This network was trained using
all speakers in the data set except speaker 03.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SpeechEmotionRecognition.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"SpeechEmotionRecognition");
load(fullfile(netFolder,"network_Audio_SER.mat"));

The sample rate set on the audioFeatureExtractor corresponds to the sample rate of the data
set.

fs = afe.SampleRate;

Select a speaker and emotion, then subset the datastore to only include the chosen speaker and
emotion. Read from the datastore and listen to the file.

speaker = ;

emotion = ;

adsSubset = subset(ads,ads.Labels.Speaker==speaker & ads.Labels.Emotion==emotion);

audio = read(adsSubset);
sound(audio,fs)

Use the audioFeatureExtractor object to extract the features and then transpose them so that
time is along rows. Normalize the features and then convert them to 20-element sequences with 10-

 Speech Emotion Recognition

15-201



element overlap, which corresponds to approximately 600 ms windows with 300 ms overlap. Use the
supporting function, HelperFeatureVector2Sequence on page 15-209, to convert the array of feature
vectors to sequences.

features = (extract(afe,audio))';

featuresNormalized = (features - normalizers.Mean)./normalizers.StandardDeviation;

numOverlap = ;
featureSequences = HelperFeatureVector2Sequence(featuresNormalized,20,numOverlap);

Feed the feature sequences into the network for prediction. Compute the mean prediction and plot
the probability distribution of the chosen emotions as a pie chart. You can try different speakers,
emotions, sequence overlap, and prediction average to test the network's performance. To get a
realistic approximation of the network's performance, use speaker 03, which the network was not
trained on.

YPred = double(predict(net,featureSequences));

average = ;
switch average
    case "mean"
        probs = mean(YPred,1);
    case "median"
        probs = median(YPred,1);
    case "mode"
        probs = mode(YPred,1);
end

pie(probs./sum(probs),string(net.Layers(end).Classes))

15 Audio Examples

15-202



The remainder of the example illustrates how the network was trained and validated.

Train Network

The 10-fold cross validation accuracy of a first attempt at training was about 60% because of
insufficient training data. A model trained on the insufficient data overfits some folds and underfits
others. To improve overall fit, increase the size of the dataset using audioDataAugmenter (Audio
Toolbox). 50 augmentations per file was chosen empirically as a good tradeoff between processing
time and accuracy improvement. You can decrease the number of augmentations to speed up the
example.

Create an audioDataAugmenter object. Set the probability of applying pitch shifting to 0.5 and use
the default range. Set the probability of applying time shifting to 1 and use a range of [-0.3,0.3]
seconds. Set the probability of adding noise to 1 and specify the SNR range as [-20,40] dB.

numAugmentations = ;
augmenter = audioDataAugmenter(NumAugmentations=numAugmentations, ...
    TimeStretchProbability=0, ...
    VolumeControlProbability=0, ...
    ...
    PitchShiftProbability=0.5, ...
    ...
    TimeShiftProbability=1, ...

 Speech Emotion Recognition

15-203



    TimeShiftRange=[-0.3,0.3], ...
    ...
    AddNoiseProbability=1, ...
    SNRRange=[-20,40]);

Create a new folder in your current folder to hold the augmented data set.

currentDir = pwd;
writeDirectory = fullfile(currentDir,"augmentedData");
mkdir(writeDirectory)

For each file in the audio datastore:

1 Create 50 augmentations.
2 Normalize the audio to have a max absolute value of 1.
3 Write the augmented audio data as a WAV file. Append _augK to each of the file names, where K

is the augmentation number. To speed up processing, use parfor and partition the datastore.

This method of augmenting the database is time consuming and space consuming. However, when
iterating on choosing a network architecture or feature extraction pipeline, this upfront cost is
generally advantageous.

N = numel(ads.Files)*numAugmentations;

reset(ads)

numPartitions = 18;

tic
parfor ii = 1:numPartitions
    adsPart = partition(ads,numPartitions,ii);
    while hasdata(adsPart)
        [x,adsInfo] = read(adsPart);
        data = augment(augmenter,x,fs);

        [~,fn] = fileparts(adsInfo.FileName);
        for i = 1:size(data,1)
            augmentedAudio = data.Audio{i};
            augmentedAudio = augmentedAudio/max(abs(augmentedAudio),[],"all");
            augNum = num2str(i);
            if numel(augNum)==1
                iString = ['0',augNum];
            else
                iString = augNum;
            end
            audiowrite(fullfile(writeDirectory,sprintf('%s_aug%s.wav',fn,iString)),augmentedAudio,fs);
        end
    end
end
disp("Augmentation complete in " + round(toc/60,2) + " minutes.")

Augmentation complete in 3.84 minutes.

Create an audio datastore that points to the augmented data set. Replicate the rows of the label table
of the original datastore NumAugmentations times to determine the labels of the augmented
datastore.

15 Audio Examples

15-204



adsAug = audioDatastore(writeDirectory);
adsAug.Labels = repelem(ads.Labels,augmenter.NumAugmentations,1);

Create an audioFeatureExtractor (Audio Toolbox) object. Set Window to a periodic 30 ms
Hamming window, OverlapLength to 0, and SampleRate to the sample rate of the database. Set
gtcc, gtccDelta, mfccDelta, and spectralCrest to true to extract them. Set
SpectralDescriptorInput to melSpectrum so that the spectralCrest is calculated for the mel
spectrum.

win = hamming(round(0.03*fs),"periodic");
overlapLength = 0;

afe = audioFeatureExtractor( ...
    Window=win, ...
    OverlapLength=overlapLength, ...
    SampleRate=fs, ...
    ...
    gtcc=true, ...
    gtccDelta=true, ...
    mfccDelta=true, ...
    ...
    SpectralDescriptorInput="melSpectrum", ...
    spectralCrest=true);

Train for Deployment

When you train for deployment, use all available speakers in the data set. Set the training datastore
to the augmented datastore.

adsTrain = adsAug;

Convert the training audio datastore to a tall array. If you have Parallel Computing Toolbox™, the
extraction is automatically parallelized. If you do not have Parallel Computing Toolbox™, the code
continues to run.

tallTrain = tall(adsTrain);

Extract the training features and reorient the features so that time is along rows to be compatible
with sequenceInputLayer.

featuresTallTrain = cellfun(@(x)extract(afe,x),tallTrain,UniformOutput=false);
featuresTallTrain = cellfun(@(x)x',featuresTallTrain,UniformOutput=false);
featuresTrain = gather(featuresTallTrain);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

- Pass 1 of 1: Completed in 1 min 7 sec
Evaluation completed in 1 min 7 sec

Use the training set to determine the mean and standard deviation of each feature.

allFeatures = cat(2,featuresTrain{:});
M = mean(allFeatures,2,"omitnan");
S = std(allFeatures,0,2,"omitnan");

featuresTrain = cellfun(@(x)(x-M)./S,featuresTrain,UniformOutput=false);

 Speech Emotion Recognition

15-205



Buffer the feature vectors into sequences so that each sequence consists of 20 feature vectors with
overlaps of 10 feature vectors.

featureVectorsPerSequence = 20;
featureVectorOverlap = 10;
[sequencesTrain,sequencePerFileTrain] = HelperFeatureVector2Sequence(featuresTrain,featureVectorsPerSequence,featureVectorOverlap);

Replicate the labels of the training and validation sets so that they are in one-to-one correspondence
with the sequences. Not all speakers have utterances for all emotions. Create an empty
categorical array that contains all the emotional categories and append it to the validation labels
so that the categorical array contains all emotions.

labelsTrain = repelem(adsTrain.Labels.Emotion,[sequencePerFileTrain{:}]);

emptyEmotions = ads.Labels.Emotion;
emptyEmotions(:) = [];

Define a BiLSTM network using bilstmLayer. Place a dropoutLayer before and after the
bilstmLayer to help prevent overfitting.

dropoutProb1 = 0.3;
numUnits = 200;
dropoutProb2 = 0.6;
layers = [ ...
    sequenceInputLayer(afe.FeatureVectorLength)
    dropoutLayer(dropoutProb1)
    bilstmLayer(numUnits,OutputMode="last")
    dropoutLayer(dropoutProb2)
    fullyConnectedLayer(numel(categories(emptyEmotions)))
    softmaxLayer
    classificationLayer];

Define training options using trainingOptions.

miniBatchSize = 512;
initialLearnRate = 0.005;
learnRateDropPeriod = 2;
maxEpochs = 3;
options = trainingOptions("adam", ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate=initialLearnRate, ...
    LearnRateDropPeriod=learnRateDropPeriod, ...
    LearnRateSchedule="piecewise", ...
    MaxEpochs=maxEpochs, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    Plots="Training-Progress");

Train the network using trainNetwork.

net = trainNetwork(sequencesTrain,labelsTrain,layers,options);

15 Audio Examples

15-206



To save the network, configured audioFeatureExtractor, and normalization factors, set
saveSERSystem to true.

saveSERSystem = ;
if saveSERSystem
    normalizers.Mean = M;
    normalizers.StandardDeviation = S;
    save("network_Audio_SER.mat","net","afe","normalizers")
end

Training for System Validation

To provide an accurate assessment of the model you created in this example, train and validate using
leave-one-speaker-out (LOSO) k-fold cross validation. In this method, you train using k− 1 speakers
and then validate on the left-out speaker. You repeat this procedure k times. The final validation
accuracy is the average of the k folds.

Create a variable that contains the speaker IDs. Determine the number of folds: 1 for each speaker.
The database contains utterances from 10 unique speakers. Use summary to display the speaker IDs
(left column) and the number of utterances they contribute to the database (right column).

speaker = ads.Labels.Speaker;
numFolds = numel(speaker);
summary(speaker)

     03      49 
     08      58 
     09      43 
     10      38 
     11      55 
     12      35 

 Speech Emotion Recognition

15-207



     13      61 
     14      69 
     15      56 
     16      71 

The helper function HelperTrainAndValidateNetwork on page 15-210 performs the steps outlined
above for all 10 folds and returns the true and predicted labels for each fold. Call
HelperTrainAndValidateNetwork with the audioDatastore, the augmented audioDatastore,
and the audioFeatureExtractor.

[labelsTrue,labelsPred] = HelperTrainAndValidateNetwork(ads,adsAug,afe);

Print the accuracy per fold and plot the 10-fold confusion chart.

for ii = 1:numel(labelsTrue)
    foldAcc = mean(labelsTrue{ii}==labelsPred{ii})*100;
    disp("Fold " + ii + ", Accuracy = " + round(foldAcc,2))
end

Fold 1, Accuracy = 65.31
Fold 2, Accuracy = 68.97
Fold 3, Accuracy = 79.07
Fold 4, Accuracy = 71.05
Fold 5, Accuracy = 72.73
Fold 6, Accuracy = 74.29
Fold 7, Accuracy = 67.21
Fold 8, Accuracy = 85.51
Fold 9, Accuracy = 71.43
Fold 10, Accuracy = 67.61

labelsTrueMat = cat(1,labelsTrue{:});
labelsPredMat = cat(1,labelsPred{:});

figure
cm = confusionchart(labelsTrueMat,labelsPredMat, ...
    Title=["Confusion Matrix for 10-Fold Cross-Validation","Average Accuracy = " round(mean(labelsTrueMat==labelsPredMat)*100,1)], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
sortClasses(cm,categories(emptyEmotions))

15 Audio Examples

15-208



Supporting Functions

Convert Array of Feature Vectors to Sequences
function [sequences,sequencePerFile] = HelperFeatureVector2Sequence(features,featureVectorsPerSequence,featureVectorOverlap)
    % Copyright 2019 MathWorks, Inc.
    if featureVectorsPerSequence <= featureVectorOverlap
        error("The number of overlapping feature vectors must be less than the number of feature vectors per sequence.")
    end

    if ~iscell(features)
        features = {features};
    end
    hopLength = featureVectorsPerSequence - featureVectorOverlap;
    idx1 = 1;
    sequences = {};
    sequencePerFile = cell(numel(features),1);
    for ii = 1:numel(features)
        sequencePerFile{ii} = floor((size(features{ii},2) - featureVectorsPerSequence)/hopLength) + 1;
        idx2 = 1;
        for j = 1:sequencePerFile{ii}
            sequences{idx1,1} = features{ii}(:,idx2:idx2 + featureVectorsPerSequence - 1); %#ok<AGROW>
            idx1 = idx1 + 1;
            idx2 = idx2 + hopLength;
        end

 Speech Emotion Recognition

15-209



    end
end

Train and Validate Network

function [trueLabelsCrossFold,predictedLabelsCrossFold] = HelperTrainAndValidateNetwork(varargin)
    % Copyright 2019 The MathWorks, Inc.
    if nargin == 3
        ads = varargin{1};
        augads = varargin{2};
        extractor = varargin{3};
    elseif nargin == 2
        ads = varargin{1};
        augads = varargin{1};
        extractor = varargin{2};
    end
    speaker = categories(ads.Labels.Speaker);
    numFolds = numel(speaker);
    emptyEmotions = (ads.Labels.Emotion);
    emptyEmotions(:) = [];

    % Loop over each fold.
    trueLabelsCrossFold = {};
    predictedLabelsCrossFold = {};
    
    for i = 1:numFolds
        
        % 1. Divide the audio datastore into training and validation sets.
        % Convert the data to tall arrays.
        idxTrain           = augads.Labels.Speaker~=speaker(i);
        augadsTrain        = subset(augads,idxTrain);
        augadsTrain.Labels = augadsTrain.Labels.Emotion;
        tallTrain          = tall(augadsTrain);
        idxValidation        = ads.Labels.Speaker==speaker(i);
        adsValidation        = subset(ads,idxValidation);
        adsValidation.Labels = adsValidation.Labels.Emotion;
        tallValidation       = tall(adsValidation);

        % 2. Extract features from the training set. Reorient the features
        % so that time is along rows to be compatible with
        % sequenceInputLayer.
        tallTrain         = cellfun(@(x)x/max(abs(x),[],"all"),tallTrain,UniformOutput=false);
        tallFeaturesTrain = cellfun(@(x)extract(extractor,x),tallTrain,UniformOutput=false);
        tallFeaturesTrain = cellfun(@(x)x',tallFeaturesTrain,UniformOutput=false);  %#ok<NASGU>
        [~,featuresTrain] = evalc('gather(tallFeaturesTrain)'); % Use evalc to suppress command-line output.
        tallValidation         = cellfun(@(x)x/max(abs(x),[],"all"),tallValidation,UniformOutput=false);
        tallFeaturesValidation = cellfun(@(x)extract(extractor,x),tallValidation,"UniformOutput",false);
        tallFeaturesValidation = cellfun(@(x)x',tallFeaturesValidation,UniformOutput=false); %#ok<NASGU>
        [~,featuresValidation] = evalc('gather(tallFeaturesValidation)'); % Use evalc to suppress command-line output.

        % 3. Use the training set to determine the mean and standard
        % deviation of each feature. Normalize the training and validation
        % sets.
        allFeatures = cat(2,featuresTrain{:});
        M = mean(allFeatures,2,"omitnan");
        S = std(allFeatures,0,2,"omitnan");
        featuresTrain = cellfun(@(x)(x-M)./S,featuresTrain,UniformOutput=false);
        for ii = 1:numel(featuresTrain)

15 Audio Examples

15-210



            idx = find(isnan(featuresTrain{ii}));
            if ~isempty(idx)
                featuresTrain{ii}(idx) = 0;
            end
        end
        featuresValidation = cellfun(@(x)(x-M)./S,featuresValidation,UniformOutput=false);
        for ii = 1:numel(featuresValidation)
            idx = find(isnan(featuresValidation{ii}));
            if ~isempty(idx)
                featuresValidation{ii}(idx) = 0;
            end
        end

        % 4. Buffer the sequences so that each sequence consists of twenty
        % feature vectors with overlaps of 10 feature vectors.
        featureVectorsPerSequence = 20;
        featureVectorOverlap = 10;
        [sequencesTrain,sequencePerFileTrain] = HelperFeatureVector2Sequence(featuresTrain,featureVectorsPerSequence,featureVectorOverlap);
        [sequencesValidation,sequencePerFileValidation] = HelperFeatureVector2Sequence(featuresValidation,featureVectorsPerSequence,featureVectorOverlap);

        % 5. Replicate the labels of the train and validation sets so that
        % they are in one-to-one correspondence with the sequences.
        labelsTrain = [emptyEmotions;augadsTrain.Labels];
        labelsTrain = labelsTrain(:);
        labelsTrain = repelem(labelsTrain,[sequencePerFileTrain{:}]);

        % 6. Define a BiLSTM network.
        dropoutProb1 = 0.3;
        numUnits     = 200;
        dropoutProb2 = 0.6;
        layers = [ ...
            sequenceInputLayer(size(sequencesTrain{1},1))
            dropoutLayer(dropoutProb1)
            bilstmLayer(numUnits,OutputMode="last")
            dropoutLayer(dropoutProb2)
            fullyConnectedLayer(numel(categories(emptyEmotions)))
            softmaxLayer
            classificationLayer];

        % 7. Define training options.
        miniBatchSize       = 512;
        initialLearnRate    = 0.005;
        learnRateDropPeriod = 2;
        maxEpochs           = 3;
        options = trainingOptions("adam", ...
            MiniBatchSize=miniBatchSize, ...
            InitialLearnRate=initialLearnRate, ...
            LearnRateDropPeriod=learnRateDropPeriod, ...
            LearnRateSchedule="piecewise", ...
            MaxEpochs=maxEpochs, ...
            Shuffle="every-epoch", ...
            Verbose=false);

        % 8. Train the network.
        net = trainNetwork(sequencesTrain,labelsTrain,layers,options);

        % 9. Evaluate the network. Call classify to get the predicted labels
        % for each sequence. Get the mode of the predicted labels of each

 Speech Emotion Recognition

15-211



        % sequence to get the predicted labels of each file.
        predictedLabelsPerSequence = classify(net,sequencesValidation);
        trueLabels = categorical(adsValidation.Labels);
        predictedLabels = trueLabels;
        idx1 = 1;
        for ii = 1:numel(trueLabels)
            predictedLabels(ii,:) = mode(predictedLabelsPerSequence(idx1:idx1 + sequencePerFileValidation{ii} - 1,:),1);
            idx1 = idx1 + sequencePerFileValidation{ii};
        end
        trueLabelsCrossFold{i} = trueLabels; %#ok<AGROW>
        predictedLabelsCrossFold{i} = predictedLabels; %#ok<AGROW>
    end
end

References

[1] Burkhardt, F., A. Paeschke, M. Rolfes, W.F. Sendlmeier, and B. Weiss, "A Database of German
Emotional Speech." In Proceedings Interspeech 2005. Lisbon, Portugal: International Speech
Communication Association, 2005.

See Also
bilstmLayer | trainNetwork | trainingOptions | sequenceInputLayer

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

15 Audio Examples

15-212



Spoken Digit Recognition with Wavelet Scattering and Deep
Learning

This example shows how to classify spoken digits using both machine and deep learning techniques.
In the example, you perform classification using wavelet time scattering with a support vector
machine (SVM) and with a long short-term memory (LSTM) network. You also apply Bayesian
optimization to determine suitable hyperparameters to improve the accuracy of the LSTM network. In
addition, the example illustrates an approach using a deep convolutional neural network (CNN) and
mel-frequency spectrograms.

Data

Clone or download the Free Spoken Digit Dataset (FSDD), available at https://github.com/Jakobovski/
free-spoken-digit-dataset. FSDD is an open data set, which means that it can grow over time. This
example uses the version committed on January 29, 2019, which consists of 2000 recordings in
English of the digits 0 through 9 obtained from four speakers. In this version, two of the speakers are
native speakers of American English, one speaker is a nonnative speaker of English with a Belgian
French accent, and one speaker is a nonnative speaker of English with a German accent. The data is
sampled at 8000 Hz.

Use audioDatastore to manage data access and ensure the random division of the recordings into
training and test sets. Set the location property to the location of the FSDD recordings folder on
your computer. In this example, the data is stored in a folder under tempdir.

pathToRecordingsFolder = fullfile(tempdir,'free-spoken-digit-dataset','recordings');
location = pathToRecordingsFolder;

Point audioDatastore to that location.

ads = audioDatastore(location);

The helper function helpergenLabels creates a categorical array of labels from the FSDD files. The
source code for helpergenLabels is listed in the appendix. List the classes and the number of
examples in each class.

ads.Labels = helpergenLabels(ads);
summary(ads.Labels)

     0      300 
     1      300 
     2      300 
     3      300 
     4      300 
     5      300 
     6      300 
     7      300 
     8      300 
     9      300 

The FSDD data set consists of 10 balanced classes with 200 recordings each. The recordings in the
FSDD are not of equal duration. The FSDD is not prohibitively large, so read through the FSDD files
and construct a histogram of the signal lengths.

LenSig = zeros(numel(ads.Files),1);
nr = 1;

 Spoken Digit Recognition with Wavelet Scattering and Deep Learning

15-213



while hasdata(ads)
    digit = read(ads);
    LenSig(nr) = numel(digit);
    nr = nr+1;
end
reset(ads)
histogram(LenSig)
grid on
xlabel('Signal Length (Samples)')
ylabel('Frequency')

The histogram shows that the distribution of recording lengths is positively skewed. For classification,
this example uses a common signal length of 8192 samples, a conservative value that ensures that
truncating longer recordings does not cut off speech content. If the signal is greater than 8192
samples (1.024 seconds) in length, the recording is truncated to 8192 samples. If the signal is less
than 8192 samples in length, the signal is prepadded and postpadded symmetrically with zeros out to
a length of 8192 samples.

15 Audio Examples

15-214



Wavelet Time Scattering

Use waveletScattering (Wavelet Toolbox) to create a wavelet time scattering framework using an
invariant scale of 0.22 seconds. In this example, you create feature vectors by averaging the
scattering transform over all time samples. To have a sufficient number of scattering coefficients per
time window to average, set OversamplingFactor to 2 to produce a four-fold increase in the
number of scattering coefficients for each path with respect to the critically downsampled value.

sf = waveletScattering('SignalLength',8192,'InvarianceScale',0.22,...
    'SamplingFrequency',8000,'OversamplingFactor',2);

Split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain 20%
for the test set. The training data is for training the classifier based on the scattering transform. The
test data is for validating the model.

rng default;
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
    Label    Count
    _____    _____

      0       240 
      1       240 
      2       240 
      3       240 
      4       240 
      5       240 
      6       240 
      7       240 
      8       240 
      9       240 

countEachLabel(adsTest)

ans=10×2 table
    Label    Count
    _____    _____

      0       60  
      1       60  
      2       60  
      3       60  
      4       60  
      5       60  
      6       60  
      7       60  
      8       60  
      9       60  

The helper function helperReadSPData truncates or pads the data to a length of 8192 and
normalizes each recording by its maximum value. The source code for helperReadSPData is listed
in the appendix. Create an 8192-by-1600 matrix where each column is a spoken-digit recording.

 Spoken Digit Recognition with Wavelet Scattering and Deep Learning

15-215



Xtrain = [];
scatds_Train = transform(adsTrain,@(x)helperReadSPData(x));
while hasdata(scatds_Train)
    smat = read(scatds_Train);
    Xtrain = cat(2,Xtrain,smat);
    
end

Repeat the process for the test set. The resulting matrix is 8192-by-400.

Xtest = [];
scatds_Test = transform(adsTest,@(x)helperReadSPData(x));
while hasdata(scatds_Test)
    smat = read(scatds_Test);
    Xtest = cat(2,Xtest,smat);
    
end

Apply the wavelet scattering transform to the training and test sets.

Strain = sf.featureMatrix(Xtrain);
Stest = sf.featureMatrix(Xtest);

Obtain the mean scattering features for the training and test sets. Exclude the zeroth-order
scattering coefficients.

TrainFeatures = Strain(2:end,:,:);
TrainFeatures = squeeze(mean(TrainFeatures,2))';
TestFeatures = Stest(2:end,:,:);
TestFeatures = squeeze(mean(TestFeatures,2))';

SVM Classifier

Now that the data has been reduced to a feature vector for each recording, the next step is to use
these features for classifying the recordings. Create an SVM learner template with a quadratic
polynomial kernel. Fit the SVM to the training data.

template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 2, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);
classificationSVM = fitcecoc(...
    TrainFeatures, ...
    adsTrain.Labels, ...
    'Learners', template, ...
    'Coding', 'onevsone', ...
    'ClassNames', categorical({'0'; '1'; '2'; '3'; '4'; '5'; '6'; '7'; '8'; '9'}));

Use k-fold cross-validation to predict the generalization accuracy of the model based on the training
data. Split the training set into five groups.

partitionedModel = crossval(classificationSVM, 'KFold', 5);
[validationPredictions, validationScores] = kfoldPredict(partitionedModel);
validationAccuracy = (1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'))*100

validationAccuracy = 97.4167

15 Audio Examples

15-216



The estimated generalization accuracy is approximately 97%. Use the trained SVM to predict the
spoken-digit classes in the test set.

predLabels = predict(classificationSVM,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 97.1667

Summarize the performance of the model on the test set with a confusion chart. Display the precision
and recall for each class by using column and row summaries. The table at the bottom of the
confusion chart shows the precision values for each class. The table to the right of the confusion
chart shows the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccscat = confusionchart(adsTest.Labels,predLabels);
ccscat.Title = 'Wavelet Scattering Classification';
ccscat.ColumnSummary = 'column-normalized';
ccscat.RowSummary = 'row-normalized';

The scattering transform coupled with a SVM classifier classifies the spoken digits in the test set with
an accuracy of 98% (or an error rate of 2%).

Long Short-Term Memory (LSTM) Networks

An LSTM network is a type of recurrent neural network (RNN). RNNs are neural networks that are
specialized for working with sequential or temporal data such as speech data. Because the wavelet

 Spoken Digit Recognition with Wavelet Scattering and Deep Learning

15-217



scattering coefficients are sequences, they can be used as inputs to an LSTM. By using scattering
features as opposed to the raw data, you can reduce the variability that your network needs to learn.

Modify the training and testing scattering features to be used with the LSTM network. Exclude the
zeroth-order scattering coefficients and convert the features to cell arrays.

TrainFeatures = Strain(2:end,:,:);
TrainFeatures = squeeze(num2cell(TrainFeatures,[1 2]));
TestFeatures = Stest(2:end,:,:);
TestFeatures = squeeze(num2cell(TestFeatures, [1 2]));

Construct a simple LSTM network with 512 hidden layers.

[inputSize, ~] = size(TrainFeatures{1});
YTrain = adsTrain.Labels;

numHiddenUnits = 512;
numClasses = numel(unique(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Set the hyperparameters. Use Adam optimization and a mini-batch size of 50. Set the maximum
number of epochs to 300. Use a learning rate of 1e-4. You can turn off the training progress plot if
you do not want to track the progress using plots. The training uses a GPU by default if one is
available. Otherwise, it uses a CPU. For more information, see trainingOptions.

maxEpochs = 300;
miniBatchSize = 50;

options = trainingOptions('adam', ...
    'InitialLearnRate',0.0001,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'SequenceLength','shortest', ...
    'Shuffle','every-epoch',...
    'Verbose', false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(TrainFeatures,YTrain,layers,options);

predLabels = classify(net,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 96.3333

Bayesian Optimization

Determining suitable hyperparameter settings is often one of the most difficult parts of training a
deep network. To mitigate this, you can use Bayesian optimization. In this example, you optimize the
number of hidden layers and the initial learning rate by using Bayesian techniques. Create a new

15 Audio Examples

15-218



directory to store the MAT-files containing information about hyperparameter settings and the
network along with the corresponding error rates.

YTrain = adsTrain.Labels;
YTest = adsTest.Labels;

if ~exist("results/",'dir')
    mkdir results
end

Initialize the variables to be optimized and their value ranges. Because the number of hidden layers
must be an integer, set 'type' to 'integer'.

optVars = [
    optimizableVariable('InitialLearnRate',[1e-5, 1e-1],'Transform','log')
    optimizableVariable('NumHiddenUnits',[10, 1000],'Type','integer')
    ];

Bayesian optimization is computationally intensive and can take several hours to finish. For the
purposes of this example, set optimizeCondition to false to download and use predetermined
optimized hyperparameter settings. If you set optimizeCondition to true, the objective function
helperBayesOptLSTM is minimized using Bayesian optimization. The objective function, listed in the
appendix, is the error rate of the network given specific hyperparameter settings. The loaded settings
are for the objective function minimum of 0.02 (2% error rate).

ObjFcn = helperBayesOptLSTM(TrainFeatures,YTrain,TestFeatures,YTest);

optimizeCondition = false;
if optimizeCondition
    BayesObject = bayesopt(ObjFcn,optVars,...
            'MaxObjectiveEvaluations',15,...
            'IsObjectiveDeterministic',false,...
            'UseParallel',true);
else
    url = 'http://ssd.mathworks.com/supportfiles/audio/SpokenDigitRecognition.zip';
    downloadNetFolder = tempdir;
    netFolder = fullfile(downloadNetFolder,'SpokenDigitRecognition');
    if ~exist(netFolder,'dir')
        disp('Downloading pretrained network (1 file - 12 MB) ...')
        unzip(url,downloadNetFolder)
    end
    load(fullfile(netFolder,'0.02.mat'));
end

Downloading pretrained network (1 file - 12 MB) ...

If you perform Bayesian optimization, figures similar to the following are generated to track the
objective function values with the corresponding hyperparameter values and the number of
iterations. You can increase the number of Bayesian optimization iterations to ensure that the global
minimum of the objective function is reached.

 Spoken Digit Recognition with Wavelet Scattering and Deep Learning

15-219



15 Audio Examples

15-220



Use the optimized values for the number of hidden units and initial learning rate and retrain the
network.

numHiddenUnits = 768;
numClasses = numel(unique(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

maxEpochs = 300;
miniBatchSize = 50;

options = trainingOptions('adam', ...
    'InitialLearnRate',2.198827960269379e-04,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'SequenceLength','shortest', ...
    'Shuffle','every-epoch',...
    'Verbose', false, ...
    'Plots','training-progress');

net = trainNetwork(TrainFeatures,YTrain,layers,options);

 Spoken Digit Recognition with Wavelet Scattering and Deep Learning

15-221



predLabels = classify(net,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 97.5000

As the plot shows, using Bayesian optimization yields an LSTM with a higher accuracy.

Deep Convolutional Network Using Mel-Frequency Spectrograms

As another approach to the task of spoken digit recognition, use a deep convolutional neural network
(DCNN) based on mel-frequency spectrograms to classify the FSDD data set. Use the same signal
truncation/padding procedure as in the scattering transform. Similarly, normalize each recording by
dividing each signal sample by the maximum absolute value. For consistency, use the same training
and test sets as for the scattering transform.

Set the parameters for the mel-frequency spectrograms. Use the same window, or frame, duration as
in the scattering transform, 0.22 seconds. Set the hop between windows to 10 ms. Use 40 frequency
bands.

segmentDuration = 8192*(1/8000);
frameDuration = 0.22;
hopDuration = 0.01;
numBands = 40;

Reset the training and test datastores.

reset(adsTrain);
reset(adsTest);

The helper function helperspeechSpectrograms, defined at the end of this example, uses
melSpectrogram to obtain the mel-frequency spectrogram after standardizing the recording length
and normalizing the amplitude. Use the logarithm of the mel-frequency spectrograms as the inputs to
the DCNN. To avoid taking the logarithm of zero, add a small epsilon to each element.

epsil = 1e-6;
XTrain = helperspeechSpectrograms(adsTrain,segmentDuration,frameDuration,hopDuration,numBands);

Computing speech spectrograms...
Processed 500 files out of 2400
Processed 1000 files out of 2400
Processed 1500 files out of 2400
Processed 2000 files out of 2400
...done

XTrain = log10(XTrain + epsil);

XTest = helperspeechSpectrograms(adsTest,segmentDuration,frameDuration,hopDuration,numBands);

Computing speech spectrograms...
Processed 500 files out of 600
...done

XTest = log10(XTest + epsil);

YTrain = adsTrain.Labels;
YTest = adsTest.Labels;

15 Audio Examples

15-222



Define DCNN Architecture

Construct a small DCNN as an array of layers. Use convolutional and batch normalization layers, and
downsample the feature maps using max pooling layers. To reduce the possibility of the network
memorizing specific features of the training data, add a small amount of dropout to the input to the
last fully connected layer.

sz = size(XTrain);
specSize = sz(1:2);
imageSize = [specSize 1];

numClasses = numel(categories(YTrain));

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer(imageSize)

    convolution2dLayer(5,numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,2*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2)

    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer('Classes',categories(YTrain));
    ];

Set the hyperparameters to use in training the network. Use a mini-batch size of 50 and a learning
rate of 1e-4. Specify Adam optimization. Because the amount of data in this example is relatively
small, set the execution environment to 'cpu' for reproducibility. You can also train the network on
an available GPU by setting the execution environment to either 'gpu' or 'auto'. For more
information, see trainingOptions.

 Spoken Digit Recognition with Wavelet Scattering and Deep Learning

15-223



miniBatchSize = 50;
options = trainingOptions('adam', ...
    'InitialLearnRate',1e-4, ...
    'MaxEpochs',30, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ExecutionEnvironment','cpu');

Train the network.

trainedNet = trainNetwork(XTrain,YTrain,layers,options);

Use the trained network to predict the digit labels for the test set.

[Ypredicted,probs] = classify(trainedNet,XTest,'ExecutionEnvironment','CPU');
cnnAccuracy = sum(Ypredicted==YTest)/numel(YTest)*100

cnnAccuracy = 98.1667

Summarize the performance of the trained network on the test set with a confusion chart. Display the
precision and recall for each class by using column and row summaries. The table at the bottom of
the confusion chart shows the precision values. The table to the right of the confusion chart shows
the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(YTest,Ypredicted);
ccDCNN.Title = 'Confusion Chart for DCNN';
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';

15 Audio Examples

15-224



The DCNN using mel-frequency spectrograms as inputs classifies the spoken digits in the test set
with an accuracy rate of approximately 98% as well.

Summary

This example shows how to use different machine and deep learning approaches for classifying
spoken digits in the FSDD. The example illustrated wavelet scattering paired with both an SVM and a
LSTM. Bayesian techniques were used to optimize LSTM hyperparameters. Finally, the example
shows how to use a CNN with mel-frequency spectrograms.

The goal of the example is to demonstrate how to use MathWorks® tools to approach the problem in
fundamentally different but complementary ways. All workflows use audioDatastore to manage
flow of data from disk and ensure proper randomization.

All approaches used in this example performed equally well on the test set. This example is not
intended as a direct comparison between the various approaches. For example, you can also use
Bayesian optimization for hyperparameter selection in the CNN. An additional strategy that is useful
in deep learning with small training sets like this version of the FSDD is to use data augmentation.
How manipulations affect class is not always known, so data augmentation is not always feasible.
However, for speech, established data augmentation strategies are available through
audioDataAugmenter.

In the case of wavelet time scattering, there are also a number of modifications you can try. For
example, you can change the invariant scale of the transform, vary the number of wavelet filters per
filter bank, and try different classifiers.

 Spoken Digit Recognition with Wavelet Scattering and Deep Learning

15-225



Appendix: Helper Functions

function Labels = helpergenLabels(ads)
% This function is only for use in Wavelet Toolbox examples. It may be
% changed or removed in a future release.
tmp = cell(numel(ads.Files),1);
expression = "[0-9]+_";
for nf = 1:numel(ads.Files)
    idx = regexp(ads.Files{nf},expression);
    tmp{nf} = ads.Files{nf}(idx);
end
Labels = categorical(tmp);
end

function x = helperReadSPData(x)
% This function is only for use Wavelet Toolbox examples. It may change or
% be removed in a future release.

N = numel(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = x./max(abs(x));

end

function x = helperBayesOptLSTM(X_train, Y_train, X_val, Y_val)
% This function is only for use in the
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.
x = @valErrorFun;

    function [valError,cons, fileName] = valErrorFun(optVars)
        %% LSTM Architecture
        [inputSize,~] = size(X_train{1});
        numClasses = numel(unique(Y_train));

        layers = [ ...
            sequenceInputLayer(inputSize)
            bilstmLayer(optVars.NumHiddenUnits,'OutputMode','last') % Using number of hidden layers value from optimizing variable
            fullyConnectedLayer(numClasses)
            softmaxLayer
            classificationLayer];
        
        % Plots not displayed during training
        options = trainingOptions('adam', ...
            'InitialLearnRate',optVars.InitialLearnRate, ... % Using initial learning rate value from optimizing variable
            'MaxEpochs',300, ...
            'MiniBatchSize',30, ...
            'SequenceLength','shortest', ...
            'Shuffle','never', ...
            'Verbose', false);
        

15 Audio Examples

15-226



        %% Train the network
        net = trainNetwork(X_train, Y_train, layers, options);
        %% Training accuracy
        X_val_P = net.classify(X_val);
        accuracy_training  = sum(X_val_P == Y_val)./numel(Y_val);
        valError = 1 - accuracy_training;
        %% save results of network and options in a MAT file in the results folder along with the error value
        fileName = fullfile('results', num2str(valError) + ".mat");
        save(fileName,'net','valError','options')     
        cons = [];
    end % end for inner function
end % end for outer function

function X = helperspeechSpectrograms(ads,segmentDuration,frameDuration,hopDuration,numBands)
% This function is only for use in the 
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.
%
% helperspeechSpectrograms(ads,segmentDuration,frameDuration,hopDuration,numBands)
% computes speech spectrograms for the files in the datastore ads.
% segmentDuration is the total duration of the speech clips (in seconds),
% frameDuration the duration of each spectrogram frame, hopDuration the
% time shift between each spectrogram frame, and numBands the number of
% frequency bands.
disp("Computing speech spectrograms...");

numHops = ceil((segmentDuration - frameDuration)/hopDuration);
numFiles = length(ads.Files);
X = zeros([numBands,numHops,1,numFiles],'single');

for i = 1:numFiles
    
    [x,info] = read(ads);
    x = normalizeAndResize(x);
    fs = info.SampleRate;
    frameLength = round(frameDuration*fs);
    hopLength = round(hopDuration*fs);
    
    spec = melSpectrogram(x,fs, ...
        'Window',hamming(frameLength,'periodic'), ...
        'OverlapLength',frameLength - hopLength, ...
        'FFTLength',2048, ...
        'NumBands',numBands, ...
        'FrequencyRange',[50,4000]);
    
    % If the spectrogram is less wide than numHops, then put spectrogram in
    % the middle of X.
    w = size(spec,2);
    left = floor((numHops-w)/2)+1;
    ind = left:left+w-1;
    X(:,ind,1,i) = spec;
    
    if mod(i,500) == 0
        disp("Processed " + i + " files out of " + numFiles)
    end
    
end

 Spoken Digit Recognition with Wavelet Scattering and Deep Learning

15-227



disp("...done");

end

%--------------------------------------------------------------------------
function x = normalizeAndResize(x)
% This function is only for use in the 
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.

N = numel(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = x./max(abs(x));
end

Copyright 2018, The MathWorks, Inc.

See Also
trainingOptions | trainNetwork

More About
• “Deep Learning in MATLAB” on page 1-2

15 Audio Examples

15-228



Cocktail Party Source Separation Using Deep Learning
Networks

This example shows how to isolate a speech signal using a deep learning network.

Introduction

The cocktail party effect refers to the ability of the brain to focus on a single speaker while filtering
out other voices and background noise. Humans perform very well at the cocktail party problem. This
example shows how to use a deep learning network to separate individual speakers from a speech
mix where one male and one female are speaking simultaneously.

Download Required Files

Before going into the example in detail, you will download a pre-trained network and 4 audio files.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","CocktailPartySourceSeparation.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"CocktailPartySourceSeparation");

Problem Summary

Load audio files containing male and female speech sampled at 4 kHz. Listen to the audio files
individually for reference.

[mSpeech,Fs] = audioread(fullfile(dataset,"MaleSpeech-16-4-mono-20secs.wav"));
sound(mSpeech,Fs)

[fSpeech] = audioread(fullfile(dataset,"FemaleSpeech-16-4-mono-20secs.wav"));
sound(fSpeech,Fs)

Combine the two speech sources. Ensure the sources have equal power in the mix. Scale the mix so
that its max amplitude is one.

mSpeech = mSpeech/norm(mSpeech);
fSpeech = fSpeech/norm(fSpeech);

ampAdj = max(abs([mSpeech;fSpeech]));
mSpeech = mSpeech/ampAdj;
fSpeech = fSpeech/ampAdj;

mix = mSpeech + fSpeech;
mix = mix./max(abs(mix));

Visualize the original and mix signals. Listen to the mixed speech signal. This example shows a source
separation scheme that extracts the male and female sources from the speech mix.

t = (0:numel(mix)-1)*(1/Fs);

figure(1)
tiledlayout(3,1)

nexttile
plot(t,mSpeech)

 Cocktail Party Source Separation Using Deep Learning Networks

15-229



title("Male Speech")
grid on

nexttile
plot(t,fSpeech)
title("Female Speech")
grid on

nexttile
plot(t,mix)
title("Speech Mix")
xlabel("Time (s)")
grid on

Listen to the mix audio.

sound(mix,Fs)

Time-Frequency Representation

Use stft to visualize the time-frequency (TF) representation of the male, female, and mix speech
signals. Use a Hann window of length 128, an FFT length of 128, and an overlap length of 96.

windowLength = 128;
fftLength = 128;

15 Audio Examples

15-230



overlapLength = 96;
win = hann(windowLength,"periodic");

figure(2)
tiledlayout(3,1)

nexttile
stft(mSpeech,Fs,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
title("Male Speech")

nexttile
stft(fSpeech,Fs,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
title("Female Speech")

nexttile
stft(mix,Fs,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
title("Mix Speech")

Source Separation Using Ideal Time-Frequency Masks

The application of a TF mask has been shown to be an effective method for separating desired audio
signals from competing sounds. A TF mask is a matrix of the same size as the underlying STFT. The
mask is multiplied element-by-element with the underlying STFT to isolate the desired source. The TF
mask can be binary or soft.

 Cocktail Party Source Separation Using Deep Learning Networks

15-231



Source Separation Using Ideal Binary Masks

In an ideal binary mask, the mask cell values are either 0 or 1. If the power of the desired source is
greater than the combined power of other sources at a particular TF cell, then that cell is set to 1.
Otherwise, the cell is set to 0.

Compute the ideal binary mask for the male speaker and then visualize it.

P_M = stft(mSpeech,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
P_F = stft(fSpeech,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
[P_mix,F] = stft(mix,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");

binaryMask = abs(P_M) >= abs(P_F);

figure(3)
plotMask(binaryMask,windowLength - overlapLength,F,Fs)

Estimate the male speech STFT by multiplying the mix STFT by the male speaker's binary mask.
Estimate the female speech STFT by multiplying the mix STFT by the inverse of the male speaker's
binary mask.

P_M_Hard = P_mix.*binaryMask;
P_F_Hard = P_mix.*(1-binaryMask);

15 Audio Examples

15-232



Estimate the male and female audio signals using the inverse short-time FFT (ISTFT). Visualize the
estimated and original signals. Listen to the estimated male and female speech signals.

mSpeech_Hard = istft(P_M_Hard,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
fSpeech_Hard = istft(P_F_Hard,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");

figure(4)
tiledlayout(2,2)

nexttile
plot(t,mSpeech)
axis([t(1) t(end) -1 1])
title("Original Male Speech")
grid on

nexttile
plot(t,mSpeech_Hard)
axis([t(1) t(end) -1 1])
xlabel("Time (s)")
title("Estimated Male Speech")
grid on

nexttile
plot(t,fSpeech)
axis([t(1) t(end) -1 1])
title("Original Female Speech")
grid on

nexttile
plot(t,fSpeech_Hard)
axis([t(1) t(end) -1 1])
title("Estimated Female Speech")
xlabel("Time (s)")
grid on

 Cocktail Party Source Separation Using Deep Learning Networks

15-233



sound(mSpeech_Hard,Fs)

sound(fSpeech_Hard,Fs)

Source Separation Using Ideal Soft Masks

In a soft mask, the TF mask cell value is equal to the ratio of the desired source power to the total
mix power. TF cells have values in the range [0,1].

Compute the soft mask for the male speaker. Estimate the STFT of the male speaker by multiplying
the mix STFT by the male speaker's soft mask. Estimate the STFT of the female speaker by
multiplying the mix STFT by the female speaker's soft mask.

Estimate the male and female audio signals using the ISTFT.

softMask = abs(P_M)./(abs(P_F) + abs(P_M) + eps);

P_M_Soft = P_mix.*softMask;
P_F_Soft = P_mix.*(1-softMask);

mSpeech_Soft = istft(P_M_Soft,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
fSpeech_Soft = istft(P_F_Soft,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");

15 Audio Examples

15-234



Visualize the estimated and original signals. Listen to the estimated male and female speech signals.
Note that the results are very good because the mask is created with full knowledge of the separated
male and female signals.

figure(5)
tiledlayout(2,2)

nexttile
plot(t,mSpeech)
axis([t(1) t(end) -1 1])
title("Original Male Speech")
grid on

nexttile
plot(t,mSpeech_Soft)
axis([t(1) t(end) -1 1])
title("Estimated Male Speech")
grid on

nexttile
plot(t,fSpeech)
axis([t(1) t(end) -1 1])
xlabel("Time (s)")
title("Original Female Speech")
grid on

nexttile
plot(t,fSpeech_Soft)
axis([t(1) t(end) -1 1])
xlabel("Time (s)")
title("Estimated Female Speech")
grid on

 Cocktail Party Source Separation Using Deep Learning Networks

15-235



sound(mSpeech_Soft,Fs)

sound(fSpeech_Soft,Fs)

Mask Estimation Using Deep Learning

The goal of the deep learning network in this example is to estimate the ideal soft mask described
above. The network estimates the mask corresponding to the male speaker. The female speaker mask
is derived directly from the male mask.

The basic deep learning training scheme is shown below. The predictor is the magnitude spectra of
the mixed (male + female) audio. The target is the ideal soft masks corresponding to the male
speaker. The regression network uses the predictor input to minimize the mean square error between
its output and the input target. At the output, the audio STFT is converted back to the time domain
using the output magnitude spectrum and the phase of the mix signal.

15 Audio Examples

15-236



You transform the audio to the frequency domain using the Short-Time Fourier transform (STFT),
with a window length of 128 samples, an overlap of 127, and a Hann window. You reduce the size of
the spectral vector to 65 by dropping the frequency samples corresponding to negative frequencies
(because the time-domain speech signal is real, this does not lead to any information loss). The
predictor input consists of 20 consecutive STFT vectors. The output is a 65-by-20 soft mask.

You use the trained network to estimate the male speech. The input to the trained network is the
mixture (male + female) speech audio.

STFT Targets and Predictors

This section illustrates how to generate the target and predictor signals from the training dataset.

Read in training signals consisting of around 400 seconds of speech from male and female speakers,
respectively, sampled at 4 kHz. The low sample rate is used to speed up training. Trim the training
signals so that they are the same length.

mSpeechTrain = audioread(fullfile(dataset,"MaleSpeech-16-4-mono-405secs.wav"));
fSpeechTrain = audioread(fullfile(dataset,"FemaleSpeech-16-4-mono-405secs.wav"));

L = min(length(mSpeechTrain),length(fSpeechTrain));  
mSpeechTrain = mSpeechTrain(1:L);
fSpeechTrain = fSpeechTrain(1:L);

Read in validation signals consisting of around 20 seconds of speech from male and female speakers,
respectively, sampled at 4 kHz. Trim the validation signals so that they are the same length.

mSpeechValidate = audioread(fullfile(dataset,"MaleSpeech-16-4-mono-20secs.wav"));
fSpeechValidate = audioread(fullfile(dataset,"FemaleSpeech-16-4-mono-20secs.wav"));

 Cocktail Party Source Separation Using Deep Learning Networks

15-237



L = min(length(mSpeechValidate),length(fSpeechValidate));  
mSpeechValidate = mSpeechValidate(1:L);
fSpeechValidate = fSpeechValidate(1:L);

Scale the training signals to the same power. Scale the validation signals to the same power.

mSpeechTrain = mSpeechTrain/norm(mSpeechTrain);
fSpeechTrain = fSpeechTrain/norm(fSpeechTrain);
ampAdj = max(abs([mSpeechTrain;fSpeechTrain]));

mSpeechTrain = mSpeechTrain/ampAdj;
fSpeechTrain = fSpeechTrain/ampAdj;

mSpeechValidate = mSpeechValidate/norm(mSpeechValidate);
fSpeechValidate = fSpeechValidate/norm(fSpeechValidate);
ampAdj = max(abs([mSpeechValidate;fSpeechValidate]));

mSpeechValidate = mSpeechValidate/ampAdj;
fSpeechValidate = fSpeechValidate/ampAdj;

Create the training and validation "cocktail party" mixes.

mixTrain = mSpeechTrain + fSpeechTrain;
mixTrain = mixTrain/max(mixTrain);

mixValidate = mSpeechValidate + fSpeechValidate;
mixValidate = mixValidate/max(mixValidate);

Generate training STFTs.

windowLength = 128;
fftLength = 128;
overlapLength = 128-1;
Fs = 4000;
win = hann(windowLength,"periodic");

P_mix0 = abs(stft(mixTrain,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));
P_M = abs(stft(mSpeechTrain,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));
P_F = abs(stft(fSpeechTrain,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));

Take the log of the mix STFT. Normalize the values by their mean and standard deviation.

P_mix = log(P_mix0 + eps);
MP = mean(P_mix(:));
SP = std(P_mix(:));
P_mix = (P_mix - MP)/SP;

Generate validation STFTs. Take the log of the mix STFT. Normalize the values by their mean and
standard deviation.

P_Val_mix0 = stft(mixValidate,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
P_Val_M = abs(stft(mSpeechValidate,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));
P_Val_F = abs(stft(fSpeechValidate,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));

P_Val_mix = log(abs(P_Val_mix0) + eps);
MP = mean(P_Val_mix(:));
SP = std(P_Val_mix(:));
P_Val_mix = (P_Val_mix - MP) / SP;

15 Audio Examples

15-238



Training neural networks is easiest when the inputs to the network have a reasonably smooth
distribution and are normalized. To check that the data distribution is smooth, plot a histogram of the
STFT values of the training data.

figure(6)
histogram(P_mix,EdgeColor="none",Normalization="pdf")
xlabel("Input Value")
ylabel("Probability Density")

Compute the training soft mask. Use this mask as the target signal while training the network.

maskTrain = P_M./(P_M + P_F + eps);

Compute the validation soft mask. Use this mask to evaluate the mask emitted by the trained
network.

maskValidate = P_Val_M./(P_Val_M + P_Val_F + eps);

To check that the target data distribution is smooth, plot a histogram of the mask values of the
training data.

figure(7)

histogram(maskTrain,EdgeColor="none",Normalization="pdf")

 Cocktail Party Source Separation Using Deep Learning Networks

15-239



xlabel("Input Value")
ylabel("Probability Density")

Create chunks of size (65, 20) from the predictor and target signals. In order to get more training
samples, use an overlap of 10 segments between consecutive chunks.

seqLen = 20;
seqOverlap = 10;
mixSequences = zeros(1 + fftLength/2,seqLen,1,0);
maskSequences = zeros(1 + fftLength/2,seqLen,1,0);

loc = 1;
while loc < size(P_mix,2) - seqLen
    mixSequences(:,:,:,end+1) = P_mix(:,loc:loc+seqLen-1);
    maskSequences(:,:,:,end+1) = maskTrain(:,loc:loc+seqLen-1);
    loc = loc + seqOverlap;
end

Create chunks of size (65,20) from the validation predictor and target signals.

mixValSequences = zeros(1 + fftLength/2,seqLen,1,0);
maskValSequences = zeros(1 + fftLength/2,seqLen,1,0);
seqOverlap = seqLen;

loc = 1;

15 Audio Examples

15-240



while loc < size(P_Val_mix,2) - seqLen
    mixValSequences(:,:,:,end+1) = P_Val_mix(:,loc:loc+seqLen-1);
    maskValSequences(:,:,:,end+1) = maskValidate(:,loc:loc+seqLen-1);
    loc = loc + seqOverlap;
end

Reshape the training and validation signals.

mixSequencesT = reshape(mixSequences,[1 1 (1 + fftLength/2)*seqLen size(mixSequences,4)]);
mixSequencesV = reshape(mixValSequences,[1 1 (1 + fftLength/2)*seqLen size(mixValSequences,4)]);
maskSequencesT = reshape(maskSequences,[1 1 (1 + fftLength/2)*seqLen size(maskSequences,4)]);
maskSequencesV = reshape(maskValSequences,[1 1 (1 + fftLength/2)*seqLen size(maskValSequences,4)]);

Define Deep Learning Network

Define the layers of the network. Specify the input size to be images of size 1-by-1-by-1300. Define
two hidden fully connected layers, each with 1300 neurons. Follow each hidden fully connected layer
with a sigmoid layer. The batch normalization layers normalize the means and standard deviations of
the outputs. Add a fully connected layer with 1300 neurons, followed by a regression layer.

numNodes = (1 + fftLength/2)*seqLen;

layers = [ ...
    
    imageInputLayer([1 1 (1 + fftLength/2)*seqLen],Normalization="None")
    
    fullyConnectedLayer(numNodes)
    BiasedSigmoidLayer(6)
    batchNormalizationLayer
    dropoutLayer(0.1)

    fullyConnectedLayer(numNodes)
    BiasedSigmoidLayer(6)
    batchNormalizationLayer
    dropoutLayer(0.1)

    fullyConnectedLayer(numNodes)
    BiasedSigmoidLayer(0)

    regressionLayer
    
    ];

Specify the training options for the network. Set MaxEpochs to 3 so that the network makes three
passes through the training data. Set MiniBatchSize to 64 so that the network looks at 64 training
signals at a time. Set Plots to training-progress to generate plots that show the training
progress as the number of iterations increases. Set Verbose to false to disable printing the table
output that corresponds to the data shown in the plot into the command line window. Set Shuffle to
every-epoch to shuffle the training sequences at the beginning of each epoch. Set
LearnRateSchedule to piecewise to decrease the learning rate by a specified factor (0.1) every
time a certain number of epochs (1) has passed. Set ValidationData to the validation predictors
and targets. Set ValidationFrequency such that the validation mean square error is computed
once per epoch. This example uses the adaptive moment estimation (ADAM) solver.

maxEpochs = 3;
miniBatchSize = 64;

 Cocktail Party Source Separation Using Deep Learning Networks

15-241



options = trainingOptions("adam", ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    SequenceLength="longest", ...
    Shuffle="every-epoch", ...
    Verbose=0, ...
    Plots="training-progress", ...
    ValidationFrequency=floor(size(mixSequencesT,4)/miniBatchSize), ...
    ValidationData={mixSequencesV,maskSequencesV}, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.9, ...
    LearnRateDropPeriod=1);

Train Deep Learning Network

Train the network with the specified training options and layer architecture using trainNetwork.
Because the training set is large, the training process can take several minutes. To load a pre-trained
network, set speedupExample to true.

speedupExample = ;
if speedupExample
    CocktailPartyNet = trainNetwork(mixSequencesT,maskSequencesT,layers,options);
else
    s = load(fullfile(dataset,"CocktailPartyNet.mat"));
    CocktailPartyNet = s.CocktailPartyNet;
end

Pass the validation predictors to the network. The output is the estimated mask. Reshape the
estimated mask.

estimatedMasks0 = predict(CocktailPartyNet,mixSequencesV);

estimatedMasks0 = estimatedMasks0.';
estimatedMasks0 = reshape(estimatedMasks0,1 + fftLength/2,numel(estimatedMasks0)/(1 + fftLength/2));

Evaluate Deep Learning Network

Plot a histogram of the error between the actual and expected mask.

figure(8)
histogram(maskValSequences(:) - estimatedMasks0(:),EdgeColor="none",Normalization="pdf")
xlabel("Mask Error")
ylabel("Probability Density")

15 Audio Examples

15-242



Evaluate Soft Mask Estimation

Estimate male and female soft masks. Estimate male and female binary masks by thresholding the
soft masks.

SoftMaleMask = estimatedMasks0; 
SoftFemaleMask = 1 - SoftMaleMask;

Shorten the mix STFT to match the size of the estimated mask.

P_Val_mix0 = P_Val_mix0(:,1:size(SoftMaleMask,2));

Multiply the mix STFT by the male soft mask to get the estimated male speech STFT.

P_Male = P_Val_mix0.*SoftMaleMask;

Use the ISTFT to get the estimated male audio signal. Scale the audio.

maleSpeech_est_soft = istft(P_Male,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided",ConjugateSymmetric=true);
maleSpeech_est_soft = maleSpeech_est_soft/max(abs(maleSpeech_est_soft));

Determine a range to analyze and the associated time vector.

range = windowLength:numel(maleSpeech_est_soft)-windowLength;
t = range*(1/Fs);

 Cocktail Party Source Separation Using Deep Learning Networks

15-243



Visualize the estimated and original male speech signals. Listen to the estimated soft mask male
speech.

sound(maleSpeech_est_soft(range),Fs)

figure(9)
tiledlayout(2,1)

nexttile
plot(t,mSpeechValidate(range))
title("Original Male Speech")
xlabel("Time (s)")
grid on

nexttile
plot(t,maleSpeech_est_soft(range))
xlabel("Time (s)")
title("Estimated Male Speech (Soft Mask)")
grid on

Multiply the mix STFT by the female soft mask to get the estimated female speech STFT. Use the
ISTFT to get the estimated male audio signal. Scale the audio.

P_Female = P_Val_mix0.*SoftFemaleMask;

15 Audio Examples

15-244



femaleSpeech_est_soft = istft(P_Female,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided",ConjugateSymmetric=true);
femaleSpeech_est_soft = femaleSpeech_est_soft/max(femaleSpeech_est_soft);

Visualize the estimated and original female signals. Listen to the estimated female speech.

sound(femaleSpeech_est_soft(range),Fs)

figure(10)
tiledlayout(2,1)

nexttile
plot(t,fSpeechValidate(range))
title("Original Female Speech")
grid on

nexttile
plot(t,femaleSpeech_est_soft(range))
xlabel("Time (s)")
title("Estimated Female Speech (Soft Mask)")
grid on

Evaluate Binary Mask Estimation

Estimate male and female binary masks by thresholding the soft masks.

 Cocktail Party Source Separation Using Deep Learning Networks

15-245



HardMaleMask = SoftMaleMask >= 0.5;
HardFemaleMask = SoftMaleMask < 0.5;

Multiply the mix STFT by the male binary mask to get the estimated male speech STFT. Use the
ISTFT to get the estimated male audio signal. Scale the audio.

P_Male = P_Val_mix0.*HardMaleMask;

maleSpeech_est_hard = istft(P_Male,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided",ConjugateSymmetric=true);
maleSpeech_est_hard = maleSpeech_est_hard/max(maleSpeech_est_hard);

Visualize the estimated and original male speech signals. Listen to the estimated binary mask male
speech.

sound(maleSpeech_est_hard(range),Fs)

figure(11)
tiledlayout(2,1)

nexttile
plot(t,mSpeechValidate(range))
title("Original Male Speech")
grid on

nexttile
plot(t,maleSpeech_est_hard(range))
xlabel("Time (s)")
title("Estimated Male Speech (Binary Mask)")
grid on

15 Audio Examples

15-246



Multiply the mix STFT by the female binary mask to get the estimated male speech STFT. Use the
ISTFT to get the estimated male audio signal. Scale the audio.

P_Female = P_Val_mix0.*HardFemaleMask;

femaleSpeech_est_hard = istft(P_Female,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided",ConjugateSymmetric=true);
femaleSpeech_est_hard = femaleSpeech_est_hard/max(femaleSpeech_est_hard);

Visualize the estimated and original female speech signals. Listen to the estimated female speech.

sound(femaleSpeech_est_hard(range),Fs)

figure(12)
tiledlayout(2,1)

nexttile
plot(t,fSpeechValidate(range))
title("Original Female Speech")
grid on

nexttile
plot(t,femaleSpeech_est_hard(range))
title("Estimated Female Speech (Binary Mask)")
grid on

 Cocktail Party Source Separation Using Deep Learning Networks

15-247



Compare STFTs of a one-second segment for mix, original female and male, and estimated female and
male, respectively.

range = 7e4:7.4e4;

figure(13)
stft(mixValidate(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Mix STFT")

15 Audio Examples

15-248



figure(14)
tiledlayout(3,1)

nexttile
stft(mSpeechValidate(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Male STFT (Actual)")

nexttile
stft(maleSpeech_est_soft(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Male STFT (Estimated - Soft Mask)")

nexttile
stft(maleSpeech_est_hard(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Male STFT (Estimated - Binary Mask)");

 Cocktail Party Source Separation Using Deep Learning Networks

15-249



figure(15)
tiledlayout(3,1)

nexttile
stft(fSpeechValidate(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Female STFT (Actual)")

nexttile
stft(femaleSpeech_est_soft(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Female STFT (Estimated - Soft Mask)")

nexttile
stft(femaleSpeech_est_hard(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Female STFT (Estimated - Binary Mask)")

15 Audio Examples

15-250



References

[1] "Probabilistic Binary-Mask Cocktail-Party Source Separation in a Convolutional Deep Neural
Network", Andrew J.R. Simpson, 2015.

See Also
trainingOptions | trainNetwork

More About
• “Deep Learning in MATLAB” on page 1-2

 Cocktail Party Source Separation Using Deep Learning Networks

15-251



Voice Activity Detection in Noise Using Deep Learning

In this example, you perform batch and streaming voice activity detection (VAD) in a low SNR
environment using a pretrained deep learning model. For details about the model and how it was
trained, see “Train Voice Activity Detection in Noise Model Using Deep Learning” (Audio Toolbox).

Load and Inspect Data

Read in an audio file that consists of words spoken with pauses between and listen to it. Use
resample (Signal Processing Toolbox) to resample the signal to the sample rate to 16 kHz. Use
detectSpeech (Audio Toolbox) on the clean signal to determine the ground-truth speech regions.

fs = 16e3;
[speech,fileFs] = audioread("Counting-16-44p1-mono-15secs.wav");
speech = resample(speech,fs,fileFs);
speech = speech./max(abs(speech));

sound(speech,fs)

detectSpeech(speech,fs,Window=hamming(0.04*fs,"periodic"),MergeDistance=round(0.5*fs))

Load a noise signal and resample (Signal Processing Toolbox) to the audio sample rate.

[noise,fileFs] = audioread("WashingMachine-16-8-mono-200secs.mp3");
noise = resample(noise,fs,fileFs);

15 Audio Examples

15-252



Use the supporting function mixSNR on page 15-260 to corrupt the clean speech signal with washing
machine noise at a desired SNR level in dB. Listen to the corrupted audio. The network was trained
under -10 dB SNR conditions.

SNR = ;
noisySpeech = mixSNR(speech,noise,SNR);

sound(noisySpeech,fs)

The algorithm-based VAD, detectSpeech (Audio Toolbox), fails under these noisy conditions.

detectSpeech(noisySpeech,fs,Window=hamming(0.04*fs,"periodic"),MergeDistance=round(0.5*fs))

Download Pretrained Network

Download and load a pretrained network and a configured audioFeatureExtractor (Audio
Toolbox) object. The network was trained to detect speech in low SNR environments given features
output from the audioFeatureExtractor object.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","VoiceActivityDetection.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"VoiceActivityDetection");
pretrainedNetwork = load(fullfile(netFolder,"voiceActivityDetectionExample.mat"));

afe = pretrainedNetwork.afe;
net = pretrainedNetwork.speechDetectNet;

 Voice Activity Detection in Noise Using Deep Learning

15-253



The audioFeatureExtractor object is configured to extract features from 256-sample windows
with 128 samples overlap between windows. At a 16 kHz sample rate, features are extracted from 16
ms windows with 8 ms overlap. From each window, the audioFeatureExtractor object extracts
nine features: spectral centroid, spectral crest, spectral entropy, spectral flux, spectral kurtosis,
spectral rolloff point, spectral skewness, spectral slope, and harmonic ratio.

afe

afe = 
  audioFeatureExtractor with properties:

   Properties
                     Window: [256×1 double]
              OverlapLength: 128
                 SampleRate: 16000
                  FFTLength: []
    SpectralDescriptorInput: 'linearSpectrum'
        FeatureVectorLength: 9

   Enabled Features
     spectralCentroid, spectralCrest, spectralEntropy, spectralFlux, spectralKurtosis, spectralRolloffPoint
     spectralSkewness, spectralSlope, harmonicRatio

   Disabled Features
     linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
     mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralDecrease, spectralFlatness
     spectralSpread, pitch, zerocrossrate, shortTimeEnergy

   To extract a feature, set the corresponding property to true.
   For example, obj.mfcc = true, adds mfcc to the list of enabled features.

The network consists of two bidirectional LSTM layers, each with 200 hidden units, and a
classification output that returns either class 0 corresponding to no voice activity detected or class 1
corresponding to voice activity detected.

net.Layers

ans = 
  6×1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 9 dimensions
     2   'biLSTM_1'        BiLSTM                  BiLSTM with 200 hidden units
     3   'biLSTM_2'        BiLSTM                  BiLSTM with 200 hidden units
     4   'fc'              Fully Connected         2 fully connected layer
     5   'softmax'         Softmax                 softmax
     6   'classoutput'     Classification Output   crossentropyex with classes '0' and '1'

Perform Voice Activity Detection

Extract features from the speech data and then standardize them. Orient the features so that time is
across columns.

features = extract(afe,noisySpeech);
features = (features - mean(features,1))./std(features,[],1);
features = features';

15 Audio Examples

15-254



Pass the features through the speech detection network to classify each feature vector as belonging
to a frame of speech or not.

decisionsCategorical = classify(net,features);

Each decision corresponds to an analysis window analyzed by the audioFeatureExtractor (Audio
Toolbox). Replicate the decisions so that they are in one-to-one correspondence with the audio
samples. Use the detectSpeech (Audio Toolbox) convenience plot to plot the ground truth. Use
signalMask (Signal Processing Toolbox) and plotsigroi (Signal Processing Toolbox) to plot the
predicted VAD.

decisions = (double(decisionsCategorical) - 1)';
decisionsPerSample = [decisions(1:round(numel(afe.Window)/2));repelem(decisions,numel(afe.Window)-afe.OverlapLength,1)];

tiledlayout(2,1)

nexttile
detectSpeech(speech,fs,Window=hamming(0.04*fs,"periodic"),MergeDistance=round(0.5*fs))
title("Ground Truth VAD")
xlabel("")

nexttile
mask = signalMask(decisionsPerSample,SampleRate=fs,Categories="Activity");
plotsigroi(mask,noisySpeech,true)
title("Predicted VAD")

 Voice Activity Detection in Noise Using Deep Learning

15-255



Perform Streaming Voice Activity Detection

The audioFeatureExtractor (Audio Toolbox) object is intended for batch processing and does not
retain state between calls. Use generateMATLABFunction (Audio Toolbox) to create a streaming-
friendly feature extractor. You can use the trained VAD network in a streaming context using
classifyAndUpdateState.

generateMATLABFunction(afe,"featureExtractor",IsStreaming=true)

To simulate a streaming environment, save the speech and noise signals as WAV files. To simulate
streaming input, you will use dsp.AudioFileReader (DSP System Toolbox) to read frames from the
files and mix them at a desired SNR. You can also use audioDeviceReader (Audio Toolbox) so that
your microphone is the speech source.

audiowrite("Speech.wav",speech,fs)
audiowrite("Noise.wav",noise,fs)

Define parameters for the streaming voice activity detection in noise demonstration:

• signal - Signal source, specified as either the speech file previously recorded, or your
microphone.

• noise - Noise source, specified as a noise sound file to mix with the signal.
• SNR - Signal-to-noise ratio to mix the signal and noise, specified in dB.
• testDuration - Test duration, specified in seconds.
• playbackSource - Playback source, specified as either the original clean signal, the noisy signal,

or the detected speech. An audioDeviceWriter (Audio Toolbox) object is used to play the audio
to your speakers.

signal = ;
noise = "Noise.wav";

SNR = ; % dB

testDuration = ; % seconds

playbackSource = ;

Call the supporting function streamingDemo on page 15-257 to observe the performance of the VAD
network on streaming audio. The parameters you set using the live controls do not interrupt the
streaming example. After the streaming demo is complete, you can modify parameters of the
demonstration, then run the streaming demo again.

streamingDemo(net,afe, ...
    signal,noise,SNR, ...
    testDuration,playbackSource);

15 Audio Examples

15-256



References

[1] Warden P. "Speech Commands: A public dataset for single-word speech recognition", 2017.
Available from https://storage.googleapis.com/download.tensorflow.org/data/
speech_commands_v0.01.tar.gz. Copyright Google 2017. The Speech Commands Dataset is licensed
under the Creative Commons Attribution 4.0 license

Supporting Functions

Streaming Demo

function streamingDemo(net,afe,signal,noise,SNR,testDuration,playbackSource)
% streamingDemo(net,afe,signal,noise,SNR,testDuration,playbackSource) runs
% a real-time VAD demo.

% Create dsp.AudioFileReader objects to read speech and noise files frame
% by frame. If the speech signal is specified as Microphone, use an
% audioDeviceReader as the source.
if strcmpi(signal,"Microphone")
    speechReader = audioDeviceReader(afe.SampleRate);
else
    speechReader = dsp.AudioFileReader(signal,PlayCount=inf);
end
noiseReader = dsp.AudioFileReader(noise,PlayCount=inf,SamplesPerFrame=speechReader.SamplesPerFrame);
fs = speechReader.SampleRate;

 Voice Activity Detection in Noise Using Deep Learning

15-257

https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz


% Create a dsp.MovingStandardDeviation object and a dsp.MovingAverage
% object. You will use these to determine the standard deviation and mean
% of the audio features for standardization. The statistics should improve
% over time.
movSTD = dsp.MovingStandardDeviation(Method="Exponential weighting",ForgettingFactor=1);
movMean = dsp.MovingAverage(Method="Exponential weighting",ForgettingFactor=1);

% Create a dsp.MovingMaximum object. You will use it to standardize the
% audio.
movMax = dsp.MovingMaximum(SpecifyWindowLength=false);

% Create a dsp.MovingRMS object. You will use this to determine the signal
% and noise mix at the desired SNR. This object is only useful for example
% purposes where you are artificially adding noise.
movRMS = dsp.MovingRMS(Method="Exponential weighting",ForgettingFactor=1);

% Create three dsp.AsyncBuffer objects. One to buffer the input audio, one
% to buffer the extracted features, and one to buffer the output audio so
% that VAD decisions correspond to the audio signal. The output buffer is
% only necessary for visualizing the decisions in real time.
audioInBuffer = dsp.AsyncBuffer(2*speechReader.SamplesPerFrame);
featureBuffer = dsp.AsyncBuffer(ceil(2*speechReader.SamplesPerFrame/(numel(afe.Window)-afe.OverlapLength)));
audioOutBuffer = dsp.AsyncBuffer(2*speechReader.SamplesPerFrame);

% Create a time scope to visualize the original speech signal, the noisy
% signal that the network is applied to, and the decision output from the
% network.
scope = timescope(SampleRate=fs, ...
    TimeSpanSource="property", ...
    TimeSpan=3, ...
    BufferLength=fs*3*3, ...
    TimeSpanOverrunAction="Scroll", ...
    AxesScaling="updates", ...
    MaximizeAxes="on", ...
    AxesScalingNumUpdates=20, ...
    NumInputPorts=3, ...
    LayoutDimensions=[3,1], ...
    ChannelNames=["Noisy Speech","Clean Speech (Original)","Detected Speech"], ...
    ...
    ActiveDisplay = 1, ...
    ShowGrid=true, ...
    ...
    ActiveDisplay = 2, ...
    ShowGrid=true, ...
    ...
    ActiveDisplay=3, ...
    ShowGrid=true); %#ok<DUPNAMEARG>
setup(scope,{1,1,1})

% Create an audioDeviceWriter object to play either the original or noisy
% audio from your speakers.
deviceWriter = audioDeviceWriter(SampleRate=fs);

% Initialize variables used in the loop.
windowLength = numel(afe.Window);
hopLength = windowLength - afe.OverlapLength;

15 Audio Examples

15-258



% Run the streaming demonstration.
loopTimer = tic;
while toc(loopTimer) < testDuration

    % Read a frame of the speech signal and a frame of the noise signal
    speechIn = speechReader();
    noiseIn = noiseReader();

    % Mix the speech and noise at the specified SNR
    energy = movRMS([speechIn,noiseIn]);
    noiseGain = 10^(-SNR/20) * energy(end,1) / energy(end,2);
    noisyAudio = speechIn + noiseGain*noiseIn;

    % Update a running max to scale the audio
    myMax = movMax(abs(noisyAudio));
    noisyAudio = noisyAudio/myMax(end);

    % Write the noisy audio and speech to buffers
    write(audioInBuffer,[noisyAudio,speechIn]);

    % If enough samples are in the audio buffer to calculate a feature
    % vector, read the samples, normalize them, extract the feature
    % vectors, and write the latest feature vector to the features buffer.
    while (audioInBuffer.NumUnreadSamples >= hopLength)
        x = read(audioInBuffer,numel(afe.Window),afe.OverlapLength);
        write(audioOutBuffer,x(end-hopLength+1:end,:));
        noisyAudio = x(:,1);
        features = featureExtractor(noisyAudio);
        write(featureBuffer,features');
    end

    if featureBuffer.NumUnreadSamples >= 1
        % Read the audio data corresponding to the number of unread
        % feature vectors.
        audioHop = read(audioOutBuffer,featureBuffer.NumUnreadSamples*hopLength);

        % Read all unread feature vectors.
        features = read(featureBuffer);

        % Use only the new features to update the standard deviation and
        % mean. Normalize the features.
        rmean = movMean(features);
        rstd = movSTD(features);
        features = (features - rmean(end,:)) ./ rstd(end,:);

        % Network inference
        [net,decision] = classifyAndUpdateState(net,features');

        % Convert the decisions per feature vector to decisions per sample
        decision = repelem(decision,hopLength,1);

        % Apply a mask to the noisy speech for visualization
        vadResult = audioHop(:,1);
        vadResult(decision==categorical(0)) = 0;

        % Listen to the speech or speech+noise
        switch playbackSource
            case "clean"

 Voice Activity Detection in Noise Using Deep Learning

15-259



                deviceWriter(audioHop(:,2));
            case "noisy"
                deviceWriter(audioHop(:,1));
            case "detectedSpeech"
                deviceWriter(vadResult);
        end

        % Visualize the speech+noise, the original speech, and the voice
        % activity detection.
        scope(audioHop(:,1),audioHop(:,2),vadResult)

    end
end
end

Mix SNR

function [noisySignal,requestedNoise] = mixSNR(signal,noise,ratio)
% [noisySignal,requestedNoise] = mixSNR(signal,noise,ratio) returns a noisy
% version of the signal, noisySignal. The noisy signal has been mixed with
% noise at the specified ratio in dB.

numSamples = size(signal,1);

% Convert noise to mono
noise = mean(noise,2);

% Trim or expand noise to match signal size
if size(noise,1)>=numSamples
    % Choose a random starting index such that you still have numSamples
    % after indexing the noise.
    start = randi(size(noise,1) - numSamples + 1);
    noise = noise(start:start+numSamples-1);
else
    numReps = ceil(numSamples/size(noise,1));
    temp = repmat(noise,numReps,1);
    start = randi(size(temp,1) - numSamples - 1);
    noise = temp(start:start+numSamples-1);
end

signalNorm = norm(signal);
noiseNorm = norm(noise);

goalNoiseNorm = signalNorm/(10^(ratio/20));
factor = goalNoiseNorm/noiseNorm;

requestedNoise = noise.*factor;
noisySignal = signal + requestedNoise;

noisySignal = noisySignal./max(abs(noisySignal));
end

See Also
vadnet | detectspeechnn

15 Audio Examples

15-260



Related Examples
• “Train Voice Activity Detection in Noise Model Using Deep Learning” (Audio Toolbox)

 Voice Activity Detection in Noise Using Deep Learning

15-261



Denoise Speech Using Deep Learning Networks

This example shows how to denoise speech signals using deep learning networks. The example
compares two types of networks applied to the same task: fully connected, and convolutional.

Introduction

The aim of speech denoising is to remove noise from speech signals while enhancing the quality and
intelligibility of speech. This example showcases the removal of washing machine noise from speech
signals using deep learning networks. The example compares two types of networks applied to the
same task: fully connected, and convolutional.

Problem Summary

Consider the following speech signal sampled at 8 kHz.

[cleanAudio,fs] = audioread("SpeechDFT-16-8-mono-5secs.wav");
sound(cleanAudio,fs)

Add washing machine noise to the speech signal. Set the noise power such that the signal-to-noise
ratio (SNR) is zero dB.

noise = audioread("WashingMachine-16-8-mono-1000secs.mp3");

% Extract a noise segment from a random location in the noise file
ind = randi(numel(noise) - numel(cleanAudio) + 1,1,1);
noiseSegment = noise(ind:ind + numel(cleanAudio) - 1);

speechPower = sum(cleanAudio.^2);
noisePower = sum(noiseSegment.^2);
noisyAudio = cleanAudio + sqrt(speechPower/noisePower)*noiseSegment;

Listen to the noisy speech signal.

sound(noisyAudio,fs)

Visualize the original and noisy signals.

t = (1/fs)*(0:numel(cleanAudio) - 1);

figure(1)
tiledlayout(2,1)

nexttile
plot(t,cleanAudio)
title("Clean Audio")
grid on

nexttile
plot(t,noisyAudio)
title("Noisy Audio")
xlabel("Time (s)")
grid on

15 Audio Examples

15-262



The objective of speech denoising is to remove the washing machine noise from the speech signal
while minimizing undesired artifacts in the output speech.

Examine the Dataset

This example uses a subset of the Mozilla Common Voice dataset [1 on page 15-281] to train and test
the deep learning networks. The data set contains 48 kHz recordings of subjects speaking short
sentences. Download the data set and unzip the downloaded file.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","commonvoice.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"commonvoice");

Use audioDatastore to create a datastore for the training set. To speed up the runtime of the
example at the cost of performance, set speedupExample to true.

adsTrain = audioDatastore(fullfile(dataset,"train"),IncludeSubfolders=true);

speedupExample = ;
if speedupExample
    adsTrain = shuffle(adsTrain);
    adsTrain = subset(adsTrain,1:1000);
end

 Denoise Speech Using Deep Learning Networks

15-263



Use read to get the contents of the first file in the datastore.

[audio,adsTrainInfo] = read(adsTrain);

Listen to the speech signal.

sound(audio,adsTrainInfo.SampleRate)

Plot the speech signal.

figure(2)
t = (1/adsTrainInfo.SampleRate) * (0:numel(audio)-1);
plot(t,audio)
title("Example Speech Signal")
xlabel("Time (s)")
grid on

Deep Learning System Overview

The basic deep learning training scheme is shown below. Note that, since speech generally falls
below 4 kHz, you first downsample the clean and noisy audio signals to 8 kHz to reduce the
computational load of the network. The predictor and target network signals are the magnitude
spectra of the noisy and clean audio signals, respectively. The network's output is the magnitude
spectrum of the denoised signal. The regression network uses the predictor input to minimize the
mean square error between its output and the input target. The denoised audio is converted back to

15 Audio Examples

15-264



the time domain using the output magnitude spectrum and the phase of the noisy signal [2 on page
15-281].

You transform the audio to the frequency domain using the Short-Time Fourier transform (STFT),
with a window length of 256 samples, an overlap of 75%, and a Hamming window. You reduce the size
of the spectral vector to 129 by dropping the frequency samples corresponding to negative
frequencies (because the time-domain speech signal is real, this does not lead to any information
loss). The predictor input consists of 8 consecutive noisy STFT vectors, so that each STFT output
estimate is computed based on the current noisy STFT and the 7 previous noisy STFT vectors.

 Denoise Speech Using Deep Learning Networks

15-265



STFT Targets and Predictors

This section illustrates how to generate the target and predictor signals from one training file.

First, define system parameters:

windowLength = 256;
win = hamming(windowLength,"periodic");
overlap = round(0.75*windowLength);
fftLength = windowLength;
inputFs = 48e3;
fs = 8e3;
numFeatures = fftLength/2 + 1;
numSegments = 8;

Create a dsp.SampleRateConverter (DSP System Toolbox) object to convert the 48 kHz audio to 8
kHz.

src = dsp.SampleRateConverter(InputSampleRate=inputFs,OutputSampleRate=fs,Bandwidth=7920);

Use read to get the contents of an audio file from the datastore.

15 Audio Examples

15-266



audio = read(adsTrain);

Make sure the audio length is a multiple of the sample rate converter decimation factor.

decimationFactor = inputFs/fs;
L = floor(numel(audio)/decimationFactor);
audio = audio(1:decimationFactor*L);

Convert the audio signal to 8 kHz.

audio = src(audio);
reset(src)

Create a random noise segment from the washing machine noise vector.

randind = randi(numel(noise) - numel(audio),[1 1]);
noiseSegment = noise(randind:randind + numel(audio) - 1);

Add noise to the speech signal such that the SNR is 0 dB.

noisePower = sum(noiseSegment.^2);
cleanPower = sum(audio.^2);
noiseSegment = noiseSegment.*sqrt(cleanPower/noisePower);
noisyAudio = audio + noiseSegment;

Use stft (Signal Processing Toolbox) to generate magnitude STFT vectors from the original and
noisy audio signals.

cleanSTFT = stft(audio,Window=win,OverlapLength=overlap,fftLength=fftLength);
cleanSTFT = abs(cleanSTFT(numFeatures-1:end,:));
noisySTFT = stft(noisyAudio,Window=win,OverlapLength=overlap,fftLength=fftLength);
noisySTFT = abs(noisySTFT(numFeatures-1:end,:));

Generate the 8-segment training predictor signals from the noisy STFT. The overlap between
consecutive predictors is 7 segments.

noisySTFT = [noisySTFT(:,1:numSegments - 1),noisySTFT];
stftSegments = zeros(numFeatures,numSegments,size(noisySTFT,2) - numSegments + 1);
for index = 1:size(noisySTFT,2) - numSegments + 1
    stftSegments(:,:,index) = noisySTFT(:,index:index + numSegments - 1); 
end

Set the targets and predictors. The last dimension of both variables corresponds to the number of
distinct predictor/target pairs generated by the audio file. Each predictor is 129-by-8, and each target
is 129-by-1.

targets = cleanSTFT;
size(targets)

ans = 1×2

   129   544

predictors = stftSegments;
size(predictors)

ans = 1×3

 Denoise Speech Using Deep Learning Networks

15-267



   129     8   544

Extract Features Using Tall Arrays

To speed up processing, extract feature sequences from the speech segments of all audio files in the
datastore using tall arrays. Unlike in-memory arrays, tall arrays typically remain unevaluated until
you call the gather function. This deferred evaluation enables you to work quickly with large data
sets. When you eventually request output using gather, MATLAB combines the queued calculations
where possible and takes the minimum number of passes through the data. If you have Parallel
Computing Toolbox™, you can use tall arrays in your local MATLAB session, or on a local parallel
pool. You can also run tall array calculations on a cluster if you have MATLAB® Parallel Server™
installed.

First, convert the datastore to a tall array.

reset(adsTrain)
T = tall(adsTrain)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
T =

  M×1 tall cell array

    {234480×1 double}
    {210288×1 double}
    {282864×1 double}
    {292080×1 double}
    {410736×1 double}
    {303600×1 double}
    {326640×1 double}
    {233328×1 double}
        :        :
        :        :

The display indicates that the number of rows (corresponding to the number of files in the datastore),
M, is not yet known. M is a placeholder until the calculation completes.

Extract the target and predictor magnitude STFT from the tall table. This action creates new tall
array variables to use in subsequent calculations. The function
HelperGenerateSpeechDenoisingFeatures performs the steps already highlighted in the STFT
Targets and Predictors on page 15-266 section. The cellfun command applies
HelperGenerateSpeechDenoisingFeatures to the contents of each audio file in the datastore.

[targets,predictors] = cellfun(@(x)HelperGenerateSpeechDenoisingFeatures(x,noise,src),T,UniformOutput=false);

Use gather to evaluate the targets and predictors.

[targets,predictors] = gather(targets,predictors);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 52 sec
Evaluation completed in 1 min 53 sec

It is good practice to normalize all features to zero mean and unity standard deviation.

15 Audio Examples

15-268



Compute the mean and standard deviation of the predictors and targets, respectively, and use them to
normalize the data.

predictors = cat(3,predictors{:});
noisyMean = mean(predictors(:));
noisyStd = std(predictors(:));
predictors(:) = (predictors(:) - noisyMean)/noisyStd;

targets = cat(2,targets{:});
cleanMean = mean(targets(:));
cleanStd = std(targets(:));
targets(:) = (targets(:) - cleanMean)/cleanStd;

Reshape predictors and targets to the dimensions expected by the deep learning networks.

predictors = reshape(predictors,size(predictors,1),size(predictors,2),1,size(predictors,3));
targets = reshape(targets,1,1,size(targets,1),size(targets,2));

You will use 1% of the data for validation during training. Validation is useful to detect scenarios
where the network is overfitting the training data.

Randomly split the data into training and validation sets.

inds = randperm(size(predictors,4));
L = round(0.99*size(predictors,4));

trainPredictors = predictors(:,:,:,inds(1:L));
trainTargets = targets(:,:,:,inds(1:L));

validatePredictors = predictors(:,:,:,inds(L+1:end));
validateTargets = targets(:,:,:,inds(L+1:end));

Speech Denoising with Fully Connected Layers

You first consider a denoising network comprised of fully connected layers. Each neuron in a fully
connected layer is connected to all activations from the previous layer. A fully connected layer
multiplies the input by a weight matrix and then adds a bias vector. The dimensions of the weight
matrix and bias vector are determined by the number of neurons in the layer and the number of
activations from the previous layer.

 Denoise Speech Using Deep Learning Networks

15-269



Define the layers of the network. Specify the input size to be images of size NumFeatures-by-
NumSegments (129-by-8 in this example). Define two hidden fully connected layers, each with 1024
neurons. Since purely linear systems, follow each hidden fully connected layer with a Rectified Linear
Unit (ReLU) layer. The batch normalization layers normalize the means and standard deviations of the
outputs. Add a fully connected layer with 129 neurons, followed by a regression layer.

layers = [
    imageInputLayer([numFeatures,numSegments])
    fullyConnectedLayer(1024)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(1024)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numFeatures)
    regressionLayer
    ];

Next, specify the training options for the network. Set MaxEpochs to 3 so that the network makes 3
passes through the training data. Set MiniBatchSize of 128 so that the network looks at 128
training signals at a time. Specify Plots as "training-progress" to generate plots that show the
training progress as the number of iterations increases. Set Verbose to false to disable printing the
table output that corresponds to the data shown in the plot into the command line window. Specify
Shuffle as "every-epoch" to shuffle the training sequences at the beginning of each epoch.
Specify LearnRateSchedule to "piecewise" to decrease the learning rate by a specified factor
(0.9) every time a certain number of epochs (1) has passed. Set ValidationData to the validation
predictors and targets. Set ValidationFrequency such that the validation mean square error is
computed once per epoch. This example uses the adaptive moment estimation (Adam) solver.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    MaxEpochs=3, ...
    InitialLearnRate=1e-5,...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationFrequency=floor(size(trainPredictors,4)/miniBatchSize), ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.9, ...
    LearnRateDropPeriod=1, ...
    ValidationData={validatePredictors,validateTargets});

Train the network with the specified training options and layer architecture using trainNetwork.
Because the training set is large, the training process can take several minutes. To download and load
a pre-trained network instead of training a network from scratch, set downloadPretrainedSystem
to true.

downloadPretrainedSystem = ;
if downloadPretrainedSystem
    downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SpeechDenoising.zip");
    dataFolder = tempdir;
    unzip(downloadFolder,dataFolder)
    netFolder = fullfile(dataFolder,"SpeechDenoising");
    
    s = load(fullfile(netFolder,"denoisenet.mat"));

15 Audio Examples

15-270



    denoiseNetFullyConnected = s.denoiseNetFullyConnected;
    cleanMean = s.cleanMean;
    cleanStd = s.cleanStd;
    noisyMean = s.noisyMean;
    noisyStd = s.noisyStd;
else
    denoiseNetFullyConnected = trainNetwork(trainPredictors,trainTargets,layers,options);
end

Count the number of weights in the fully connected layers of the network.

numWeights = 0;
for index = 1:numel(denoiseNetFullyConnected.Layers)
    if isa(denoiseNetFullyConnected.Layers(index),"nnet.cnn.layer.FullyConnectedLayer")
        numWeights = numWeights + numel(denoiseNetFullyConnected.Layers(index).Weights);
    end
end
disp("Number of weights = " + numWeights);

Number of weights = 2237440

Speech Denoising with Convolutional Layers

Consider a network that uses convolutional layers instead of fully connected layers [3 on page 15-
281]. A 2-D convolutional layer applies sliding filters to the input. The layer convolves the input by
moving the filters along the input vertically and horizontally and computing the dot product of the
weights and the input, and then adding a bias term. Convolutional layers typically consist of fewer
parameters than fully connected layers.

Define the layers of the fully convolutional network described in [3 on page 15-281], comprising 16
convolutional layers. The first 15 convolutional layers are groups of 3 layers, repeated 5 times, with
filter widths of 9, 5, and 9, and number of filters of 18, 30 and 8, respectively. The last convolutional
layer has a filter width of 129 and 1 filter. In this network, convolutions are performed in only one
direction (along the frequency dimension), and the filter width along the time dimension is set to 1 for
all layers except the first one. Similar to the fully connected network, convolutional layers are
followed by ReLu and batch normalization layers.

layers = [imageInputLayer([numFeatures,numSegments])
          convolution2dLayer([9 8],18,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
          
          repmat( ...
          [convolution2dLayer([5 1],30,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
          convolution2dLayer([9 1],8,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
          convolution2dLayer([9 1],18,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer],4,1)
          
          convolution2dLayer([5 1],30,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer

 Denoise Speech Using Deep Learning Networks

15-271



          convolution2dLayer([9 1],8,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
          
          convolution2dLayer([129 1],1,Stride=[1 100],Padding="same")
          
          regressionLayer
          ];

The training options are identical to the options for the fully connected network, except that the
dimensions of the validation target signals are permuted to be consistent with the dimensions
expected by the regression layer.

options = trainingOptions("adam", ...
    MaxEpochs=3, ...
    InitialLearnRate=1e-5, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationFrequency=floor(size(trainPredictors,4)/miniBatchSize), ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.9, ...
    LearnRateDropPeriod=1, ...
    ValidationData={validatePredictors,permute(validateTargets,[3 1 2 4])});

Train the network with the specified training options and layer architecture using trainNetwork.
Because the training set is large, the training process can take several minutes. To download and load
a pre-trained network instead of training a network from scratch, set downloadPretrainedSystem
to true.

downloadPretrainedSystem = ;
if downloadPretrainedSystem
    downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SpeechDenoising.zip");
    dataFolder = tempdir;
    unzip(downloadFolder,dataFolder)
    netFolder = fullfile(dataFolder,"SpeechDenoising");

    s = load(fullfile(netFolder,"denoisenet.mat"));

    denoiseNetFullyConvolutional = s.denoiseNetFullyConvolutional;
    cleanMean = s.cleanMean;
    cleanStd = s.cleanStd;
    noisyMean = s.noisyMean;
    noisyStd = s.noisyStd;
else
    denoiseNetFullyConvolutional = trainNetwork(trainPredictors,permute(trainTargets,[3 1 2 4]),layers,options);
end

Count the number of weights in the fully connected layers of the network.

numWeights = 0;
for index = 1:numel(denoiseNetFullyConvolutional.Layers)
    if isa(denoiseNetFullyConvolutional.Layers(index),"nnet.cnn.layer.Convolution2DLayer")
        numWeights = numWeights + numel(denoiseNetFullyConvolutional.Layers(index).Weights);
    end

15 Audio Examples

15-272



end
disp("Number of weights in convolutional layers = " + numWeights);

Number of weights in convolutional layers = 31812

Test the Denoising Networks

Read in the test data set.

adsTest = audioDatastore(fullfile(dataset,"test"),IncludeSubfolders=true);

Read the contents of a file from the datastore.

[cleanAudio,adsTestInfo] = read(adsTest);

Make sure the audio length is a multiple of the sample rate converter decimation factor.

L = floor(numel(cleanAudio)/decimationFactor);
cleanAudio = cleanAudio(1:decimationFactor*L);

Convert the audio signal to 8 kHz.

cleanAudio = src(cleanAudio);
reset(src)

In this testing stage, you corrupt speech with washing machine noise not used in the training stage.

noise = audioread("WashingMachine-16-8-mono-200secs.mp3");

Create a random noise segment from the washing machine noise vector.

randind = randi(numel(noise) - numel(cleanAudio), [1 1]);
noiseSegment = noise(randind:randind + numel(cleanAudio) - 1);

Add noise to the speech signal such that the SNR is 0 dB.

noisePower = sum(noiseSegment.^2);
cleanPower = sum(cleanAudio.^2);
noiseSegment = noiseSegment.*sqrt(cleanPower/noisePower);
noisyAudio = cleanAudio + noiseSegment;

Use stft to generate magnitude STFT vectors from the noisy audio signals.

noisySTFT = stft(noisyAudio,Window=win,OverlapLength=overlap,fftLength=fftLength);
noisyPhase = angle(noisySTFT(numFeatures-1:end,:));
noisySTFT = abs(noisySTFT(numFeatures-1:end,:));

Generate the 8-segment training predictor signals from the noisy STFT. The overlap between
consecutive predictors is 7 segments.

noisySTFT = [noisySTFT(:,1:numSegments-1) noisySTFT];
predictors = zeros(numFeatures,numSegments,size(noisySTFT,2) - numSegments + 1);
for index = 1:(size(noisySTFT,2) - numSegments + 1)
    predictors(:,:,index) = noisySTFT(:,index:index + numSegments - 1); 
end

Normalize the predictors by the mean and standard deviation computed in the training stage.

predictors(:) = (predictors(:) - noisyMean)/noisyStd;

 Denoise Speech Using Deep Learning Networks

15-273



Compute the denoised magnitude STFT by using predict with the two trained networks.

predictors = reshape(predictors,[numFeatures,numSegments,1,size(predictors,3)]);
STFTFullyConnected = predict(denoiseNetFullyConnected,predictors);
STFTFullyConvolutional = predict(denoiseNetFullyConvolutional,predictors);

Scale the outputs by the mean and standard deviation used in the training stage.

STFTFullyConnected(:) = cleanStd*STFTFullyConnected(:) + cleanMean;
STFTFullyConvolutional(:) = cleanStd*STFTFullyConvolutional(:) + cleanMean;

Convert the one-sided STFT to a centered STFT.

STFTFullyConnected = (STFTFullyConnected.').*exp(1j*noisyPhase);
STFTFullyConnected = [conj(STFTFullyConnected(end-1:-1:2,:));STFTFullyConnected];
STFTFullyConvolutional = squeeze(STFTFullyConvolutional).*exp(1j*noisyPhase);
STFTFullyConvolutional = [conj(STFTFullyConvolutional(end-1:-1:2,:));STFTFullyConvolutional];

Compute the denoised speech signals. istft performs the inverse STFT. Use the phase of the noisy
STFT vectors to reconstruct the time-domain signal.

denoisedAudioFullyConnected = istft(STFTFullyConnected,Window=win,OverlapLength=overlap,fftLength=fftLength,ConjugateSymmetric=true);                       
denoisedAudioFullyConvolutional = istft(STFTFullyConvolutional,Window=win,OverlapLength=overlap,fftLength=fftLength,ConjugateSymmetric=true);

Plot the clean, noisy and denoised audio signals.

t = (1/fs)*(0:numel(denoisedAudioFullyConnected)-1);

figure(3)
tiledlayout(4,1)

nexttile
plot(t,cleanAudio(1:numel(denoisedAudioFullyConnected)))
title("Clean Speech")
grid on

nexttile
plot(t,noisyAudio(1:numel(denoisedAudioFullyConnected)))
title("Noisy Speech")
grid on

nexttile
plot(t,denoisedAudioFullyConnected)
title("Denoised Speech (Fully Connected Layers)")
grid on

nexttile
plot(t,denoisedAudioFullyConvolutional)
title("Denoised Speech (Convolutional Layers)")
grid on
xlabel("Time (s)")

15 Audio Examples

15-274



Plot the clean, noisy, and denoised spectrograms.

h = figure(4);
tiledlayout(4,1)

nexttile
spectrogram(cleanAudio,win,overlap,fftLength,fs);
title("Clean Speech")
grid on

nexttile
spectrogram(noisyAudio,win,overlap,fftLength,fs);
title("Noisy Speech")
grid on

nexttile
spectrogram(denoisedAudioFullyConnected,win,overlap,fftLength,fs);
title("Denoised Speech (Fully Connected Layers)")
grid on

nexttile
spectrogram(denoisedAudioFullyConvolutional,win,overlap,fftLength,fs);
title("Denoised Speech (Convolutional Layers)")
grid on

 Denoise Speech Using Deep Learning Networks

15-275



p = get(h,"Position");
set(h,"Position",[p(1) 65 p(3) 800]);

15 Audio Examples

15-276



 Denoise Speech Using Deep Learning Networks

15-277



Listen to the noisy speech.

sound(noisyAudio,fs)

Listen to the denoised speech from the network with fully connected layers.

sound(denoisedAudioFullyConnected,fs)

Listen to the denoised speech from the network with convolutional layers.

sound(denoisedAudioFullyConvolutional,fs)

Listen to clean speech.

sound(cleanAudio,fs)

You can test more files from the datastore by calling testDenoisingNets. The function produces
the time-domain and frequency-domain plots highlighted above, and also returns the clean, noisy, and
denoised audio signals.

[cleanAudio,noisyAudio,denoisedAudioFullyConnected,denoisedAudioFullyConvolutional] = testDenoisingNets(adsTest,denoiseNetFullyConnected,denoiseNetFullyConvolutional,noisyMean,noisyStd,cleanMean,cleanStd);

15 Audio Examples

15-278



 Denoise Speech Using Deep Learning Networks

15-279



Real-Time Application

The procedure in the previous section passes the entire spectrum of the noisy signal to predict.
This is not suitable for real-time applications where low latency is a requirement.

Run speechDenoisingRealtimeApp for an example of how to simulate a streaming, real-time
version of the denoising network. The app uses the network with fully connected layers. The audio
frame length is equal to the STFT hop size, which is 0.25 * 256 = 64 samples.

speechDenoisingRealtimeApp launches a User Interface (UI) designed to interact with the
simulation. The UI enables you to tune parameters and the results are reflected in the simulation
instantly. You can also enable/disable a noise gate that operates on the denoised output to further
reduce the noise, as well as tune the attack time, release time, and threshold of the noise gate. You
can listen to the noisy, clean or denoised audio from the UI.

The scope plots the clean, noisy and denoised signals, as well as the gain of the noise gate.

15 Audio Examples

15-280



References

[1] https://voice.mozilla.org/en

[2] "Experiments on Deep Learning for Speech Denoising", Ding Liu, Paris Smaragdis, Minje Kim,
INTERSPEECH, 2014.

[3] "A Fully Convolutional Neural Network for Speech Enhancement", Se Rim Park, Jin Won Lee,
INTERSPEECH, 2017.

See Also
Functions
trainingOptions | trainNetwork

 Denoise Speech Using Deep Learning Networks

15-281

https://voice.mozilla.org/en


More About
• “Deep Learning in MATLAB” on page 1-2

15 Audio Examples

15-282



Accelerate Audio Deep Learning Using GPU-Based Feature
Extraction

In this example, you leverage GPUs for feature extraction and augmentation to decrease the time
required to train a deep learning model. The model you train is a convolutional neural network (CNN)
for acoustic fault recognition.

Audio Toolbox™ includes gpuArray (Parallel Computing Toolbox) support for most feature
extractors, including popular ones such as melSpectrogram (Audio Toolbox) and mfcc (Audio
Toolbox). For an overview of GPU support, see “Code Generation and GPU Support” (Audio Toolbox).

Load Training Data

Download and unzip the air compressor data set [1] on page 15-293. This data set consists of
recordings from air compressors in a healthy state or one of seven faulty states.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","AirCompressorDataset/AirCompressorDataset.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"AirCompressorDataset");

Create an audioDatastore (Audio Toolbox) object to manage the data and split it into training and
validation sets.

ads = audioDatastore(dataset,IncludeSubfolders=true,LabelSource="foldernames");
rng default
[adsTrain,adsValidation] = splitEachLabel(ads,0.8);

Visualize the number of files in the training and validation sets.

uniqueLabels = unique(adsTrain.Labels);
tblTrain = countEachLabel(adsTrain);
tblValidation = countEachLabel(adsValidation);
H = bar(uniqueLabels,[tblTrain.Count, tblValidation.Count],"stacked");
legend(H,["Training Set","Validation Set"],Location="NorthEastOutside")

 Accelerate Audio Deep Learning Using GPU-Based Feature Extraction

15-283



Select random examples from the training set for plotting. Each recording has 50,000 samples
sampled at 16 kHz.

t = (0:5e4-1)/16e3;
tiledlayout(4,2,TileSpacing="compact",Padding="compact")
for n = 1:numel(uniqueLabels)
    idx = find(adsTrain.Labels==uniqueLabels(n));
    [x,fs] = audioread(adsTrain.Files{idx(randperm(numel(idx),1))});

    nexttile
    plotHandle = plot(t,x);
    if n == 7 || n == 8
        xlabel("Seconds");
    else
        set(gca,xtick=[])
    end
    title(string(uniqueLabels(n)));
end

15 Audio Examples

15-284



Preprocess Data on CPU and GPU

In this example, you perform feature extraction and data augmentation while training the network. In
this section, you define the feature extraction and augmentation pipeline and compare the speed of
the pipeline executed on a CPU against the speed of the pipeline executed on a GPU. The output of
this pipeline is the input to the CNN you train.

Create an audioFeatureExtractor (Audio Toolbox) object to extract mel spectrums using 200 ms
mel windows with a 5 ms hop. The output from extract is a numHops-by-128-by-1 array.

afe = audioFeatureExtractor(SampleRate=fs, ...
    FFTLength=4096, ...
    Window=hann(round(fs*0.2),"periodic"), ...
    OverlapLength=round(fs*0.195), ...
    melSpectrum=true);
setExtractorParameters(afe,"melSpectrum",NumBands=128);

featureVector = extract(afe,x);
[numHops,numFeatures,numChannels] = size(featureVector)

numHops = 586

numFeatures = 128

numChannels = 1

Deep learning methods are data-hungry, and the training dataset in this example is relatively small.
Use the mixup [2] on page 15-293 augmentation technique to effectively enlarge the training set. In

 Accelerate Audio Deep Learning Using GPU-Based Feature Extraction

15-285



mixup, you merge the features extracted from two audio signals as a weighted sum. The two signals
have different labels, and the label assigned to the merged feature matrix is probabilistically assigned
based on the mixing coefficient. The mixup augmentation is implemented in the supporting object,
Mixup on page 15-292.

Create the pipeline to perform the following steps:

1 Extract the log-mel spectrogram.
2 Apply mixup to the feature matrices. The Mixup supporting object outputs a cell array containing

the features and the label.

Create two versions of the pipeline for comparison: one that executes the pipeline on your CPU, and
one that converts the raw audio signal to a gpuArray so that the pipeline is executed on your GPU.

offset = eps;

adsTrainCPU = transform(adsTrain,@(x)log10(extract(afe,x)+offset));
mixerCPU = Mixup(adsTrainCPU);
adsTrainCPU = transform(adsTrainCPU,@(x,info)mix(mixerCPU,x,info),IncludeInfo=true);

adsTrainGPU = transform(adsTrain,@gpuArray);
adsTrainGPU = transform(adsTrainGPU,@(x)log10(extract(afe,x)+offset));
mixerGPU = Mixup(adsTrainGPU);
adsTrainGPU = transform(adsTrainGPU,@(x,info)mix(mixerGPU,x,info),IncludeInfo=true);

For the validation set, apply the feature extraction pipeline but not the augmentation. Because you
are not applying mixup, create a combined datastore to output a cell array containing the features
and the label. Again, create one validation pipeline that executes on your GPU and one validation
pipeline that executes on your CPU.

adsValidationGPU = transform(adsValidation,@gpuArray);
adsValidationGPU = transform(adsValidationGPU,@(x){log10(extract(afe,x)+offset)});
adsValidationGPU = combine(adsValidationGPU,arrayDatastore(adsValidation.Labels));

adsValidationCPU = transform(adsValidation,@(x){log10(extract(afe,x)+offset)});
adsValidationCPU = combine(adsValidationCPU,arrayDatastore(adsValidation.Labels));

Compare the time it takes for the CPU and a single GPU to extract features and perform data
augmentation.

tic
for ii = 1:numel(adsTrain.Files)
    x = read(adsTrainCPU);
end
cpuPipeline = toc;
reset(adsTrainCPU)

tic
for ii = 1:numel(adsTrain.Files)
    x = read(adsTrainGPU);
end
wait(gpuDevice) % Ensure all calculations are completed
gpuPipeline = toc;
reset(adsTrainGPU)

disp(["Read, extract, and augment train set (CPU): "+cpuPipeline+" seconds"; ...

15 Audio Examples

15-286



    "Read, extract, and augment train set (GPU): "+gpuPipeline+" seconds"; ...
    "Speedup (CPU time)/(GPU time): "+cpuPipeline/gpuPipeline]);

    "Read, extract, and augment train set (CPU): 117.0887 seconds"
    "Read, extract, and augment train set (GPU): 34.8972 seconds"
    "Speedup (CPU time)/(GPU time): 3.3552"

Reading from the datastore contributes a significant amount of the overall time to the pipeline. A
comparison of just extraction and augmentation shows an even greater speedup. Compare just
feature extraction on the GPU versus on the CPU.

x = read(ads);

extract(afe,x); % Incur initialization cost outside timing loop
tic
for ii = 1:numel(adsTrain.Files)
    features = log10(extract(afe,x)+offset);
end
cpuFeatureExtraction = toc;

x = gpuArray(x); % Incur initialization cost outside timing loop
extract(afe,x);
tic
for ii = 1:numel(adsTrain.Files)
    features = log10(extract(afe,x)+offset);
end
wait(gpuDevice) % Ensure all calculations are completed
gpuFeatureExtraction = toc;

disp(["Extract features from train set (CPU): "+cpuFeatureExtraction+" seconds"; ...
    "Extract features from train set (GPU): "+gpuFeatureExtraction+" seconds"; ...
    "Speedup (CPU time)/(GPU time): "+cpuFeatureExtraction/gpuFeatureExtraction]);

    "Extract features from train set (CPU): 52.7254 seconds"
    "Extract features from train set (GPU): 1.2611 seconds"
    "Speedup (CPU time)/(GPU time): 41.8096"

Define Network

Define a convolutional neural network that takes the augmented mel spectrogram as input. This
network applies a single convolutional layer consisting of 48 filters with 3-by-3 kernels, followed by a
batch normalization layer and a ReLU activation layer. The time dimension is then collapsed using a
max pooling layer. Finally, the output of the pooling layer is reduced using a fully connected layer
followed by softmax and classification layers. See “List of Deep Learning Layers” on page 1-43 for
more information.

numClasses = numel(categories(adsTrain.Labels));
imageSize = [numHops,afe.FeatureVectorLength];

layers = [
    imageInputLayer(imageSize,Normalization="none")

    convolution2dLayer(3,48,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer([numHops,1])

 Accelerate Audio Deep Learning Using GPU-Based Feature Extraction

15-287



    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer(Classes=categories(adsTrain.Labels));
    ];

To define the training options, use trainingOptions. Set the ExecutionEnvironment to multi-
gpu to leverage multiple GPUs, if available. Otherwise, you can set ExecutionEnvironment to gpu.
The computer used in this example has access to four Titan V GPU devices. In this example, the
network training always leverages GPUs.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    Shuffle="every-epoch", ...
    MaxEpochs=40, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=15, ...
    LearnRateDropFactor=0.2, ...
    MiniBatchSize=miniBatchSize, ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData=adsValidationCPU, ...
    ValidationFrequency=ceil(numel(adsTrain.Files)/miniBatchSize), ...
    ExecutionEnvironment="multi-gpu");

Train Network

Train Network Using CPU-Based Preprocessing

Call trainNetwork to train the network using your CPU for the feature extraction pipeline. The
execution environment for the network training is your GPU(s).

tic
net = trainNetwork(adsTrainCPU,layers,options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).

15 Audio Examples

15-288



cpuTrainTime = toc;

Train Network Using GPU-Based Preprocessing

Replace the validation data in the training options with the GPU-based pipeline. Train the network
using your GPU(s) for the feature extraction pipeline. The execution environment for the network
training is your GPU(s).

options.ValidationData = adsValidationGPU;
tic
net = trainNetwork(adsTrainGPU,layers,options);

 Accelerate Audio Deep Learning Using GPU-Based Feature Extraction

15-289



gpuTrainTime = toc;

Compare CPU- and GPU-based Preprocessing

Print the timing results for training using a CPU for feature extraction and augmentation, and
training using GPU(s) for feature extraction and augmentation.

15 Audio Examples

15-290



disp(["Training time (CPU): "+cpuTrainTime+" seconds";
    "Training time (GPU): "+gpuTrainTime+" seconds";
    "Speedup (CPU time)/(GPU time): "+cpuTrainTime/gpuTrainTime])

    "Training time (CPU): 4650.3639 seconds"
    "Training time (GPU): 599.1963 seconds"
    "Speedup (CPU time)/(GPU time): 7.761"

Compare CPU and GPU Inference Performance

Compare the time it takes to perform prediction on a single 3-second clip when feature extraction is
performed on the GPU versus the CPU. In both cases, the network prediction happens on your GPU.

signalToClassify = read(ads);

gpuFeatureExtraction = gputimeit(@()predict(net,log10(extract(afe,gpuArray(signalToClassify))+offset)));
cpuFeatureExtraction = gputimeit(@()predict(net,log10(extract(afe,(signalToClassify))+offset)));

disp(["Prediction time for 3 s of data (feature extraction on CPU): "+cpuFeatureExtraction*1e3+" ms"; ...
    "Prediction time for 3 s of data (feature extraction on GPU): "+gpuFeatureExtraction*1e3+" ms"; ...
    "Speedup (CPU time)/(GPU time): "+cpuFeatureExtraction/gpuFeatureExtraction])

    "Prediction time for 3 s of data (feature extraction on CPU): 42.8014 ms"
    "Prediction time for 3 s of data (feature extraction on GPU): 4.0693 ms"
    "Speedup (CPU time)/(GPU time): 10.5182"

Compare the time it takes to perform prediction on a set of 3-second clips when feature extraction is
performed on the GPU(s) versus the CPU. In both cases, the network prediction happens on your
GPU(s).

adsValidationGPU = transform(adsValidation,@(x)gpuArray(x));
adsValidationGPU = transform(adsValidationGPU,@(x){log10(extract(afe,x)+offset)});
adsValidationCPU = transform(adsValidation,@(x){log10(extract(afe,x)+offset)});

gpuFeatureExtraction = gputimeit(@()predict(net,adsValidationGPU,ExecutionEnvironment="multi-gpu"));
cpuFeatureExtraction = gputimeit(@()predict(net,adsValidationCPU,ExecutionEnvironment="multi-gpu"));

disp(["Prediction time for validation set (feature extraction on CPU): "+cpuFeatureExtraction+" seconds";
    "Prediction time for validation set (feature extraction on GPU): "+gpuFeatureExtraction+" seconds";
    "Speedup (CPU time)/(GPU time): "+cpuFeatureExtraction/gpuFeatureExtraction])

    "Prediction time for validation set (feature extraction on CPU): 36.2089 seconds"
    "Prediction time for validation set (feature extraction on GPU): 4.1345 seconds"
    "Speedup (CPU time)/(GPU time): 8.7578"

Conclusion

It is well known that you can decrease the time it takes to train a network by leveraging GPU devices.
This enables you to more quickly iterate and develop your final system. In many training setups, you
can achieve additional performance gains by leveraging GPU devices for feature extraction and data
augmentation. This example shows a significant decrease in the overall time it takes to train a CNN
when leveraging GPU devices for feature extraction and data augmentation. Additionally, leveraging
GPU devices for feature extraction at inference time, for both single-observations and data sets,
achieves significant performance gains.

 Accelerate Audio Deep Learning Using GPU-Based Feature Extraction

15-291



Supporting Functions

Mixup

The supporting object, Mixup, is placed in your current folder when you open this example.

type Mixup

classdef Mixup < handle
    %MIXUP Mixup data augmentation
    %   mixer = Mixup(augDatastore) creates an object that can mix features
    %   at a randomly set ratio and then probabilistically set the output
    %   label as one of the two original signals.
    %
    %   Mixup Properties:
    %   MixProbability - Mix probability
    %   AugDatastore   - Augmentation datastore
    %
    %   Mixup Methods:
    %   mix            - Apply mixup
    %

    % Copyright 2021 The MathWorks, Inc.

    properties (SetAccess=public,GetAccess=public)
        %MixProbability Mix probability
        % Specify the probability that mixing is applied as a scalar in the
        % range [0,1]. If unspecified, MixProbability defaults to 1/3.
        MixProbability (1,1) {mustBeNumeric} = 1/3;
    end
    properties (SetAccess=immutable,GetAccess=public)
        %AUGDATASTORE Augmentation datastore
        % Specify a datastore from which to get the mixing signals. The
        % datastore must contain a label in the info returned from reading.
        % This property is immutable, meaning it cannot be changed after
        % construction.
        AugDatastore
    end

    methods
        function obj = Mixup(augDatastore)
            obj.AugDatastore = augDatastore;
        end

        function [dataOut,infoOut] = mix(obj,x,infoIn)
            %MIX Apply mixup
            % [dataOut,infoOut] = mix(mixer,x,infoIn) probabilistically mix
            % the input, x, and its associated label contained in infoIn
            % with a signal randomly drawn from the augmentation datastore.
            % The output, dataOut, is a cell array with two columns. The
            % first column contains the features and the second column
            % contains the label.

            if rand > obj.MixProbability % Only mix ~1/3 the dataset

                % Randomly set mixing coefficient. Draw from a normal
                % distribution with mean 0.5 and contained within [0,1].
                lambda = max(min((randn./10)+0.5,1),0);

15 Audio Examples

15-292



                % Read one file from the augmentation datastore.
                subDS = subset(obj.AugDatastore,randi([1,numel(obj.AugDatastore.UnderlyingDatastores{1}.Files)]));
                [y,yInfo] = read(subDS);

                % Mix the features element-by-element according to lambda.
                dataOut = lambda*x + (1-lambda)*y;

                % Set the output label probabilistically based on the mixing coefficient.
                if lambda < rand
                    labelOut = yInfo.Label;
                    infoOut.Label = labelOut;
                else
                    labelOut = infoIn.Label;
                end
                infoOut.Label = labelOut;

                % Combine the output data and labels.
                dataOut = [{dataOut},{labelOut}];

            else % Do not apply mixing

                dataOut = [{x},{infoIn.Label}];
                infoOut = infoIn;

            end
        end

    end
end

References

[1] Verma, Nishchal K., et al. "Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors." IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

[2] Huszar, Ferenc. "Mixup: Data-Dependent Data Augmentation." InFERENCe. November 03, 2017.
Accessed January 15, 2019. https://www.inference.vc/mixup-data-dependent-data-augmentation/.

 Accelerate Audio Deep Learning Using GPU-Based Feature Extraction

15-293

https://www.inference.vc/mixup-data-dependent-data-augmentation/


Acoustics-Based Machine Fault Recognition

In this example, you develop a deep learning model to detect faults in an air compressor using
acoustic measurements. After developing the model, you package the system so that you can
recognize faults based on streaming input data.

Data Preparation

Download and unzip the air compressor data set [1] on page 15-313. This data set consists of
recordings from air compressors in a healthy state or one of seven faulty states.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","AirCompressorDataset/AirCompressorDataset.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"AirCompressorDataset");

Create an audioDatastore (Audio Toolbox) object to manage the data and split it into training and
validation sets. Call countEachLabel (Audio Toolbox) to inspect the distribution of labels in the train
and validation sets.

ads = audioDatastore(dataset,IncludeSubfolders=true,LabelSource="foldernames");

[adsTrain,adsValidation] = splitEachLabel(ads,0.9,0.1);

countEachLabel(adsTrain)

ans=8×2 table
      Label      Count
    _________    _____

    Bearing       203 
    Flywheel      203 
    Healthy       203 
    LIV           203 
    LOV           203 
    NRV           203 
    Piston        203 
    Riderbelt     203 

countEachLabel(adsValidation)

ans=8×2 table
      Label      Count
    _________    _____

    Bearing       22  
    Flywheel      22  
    Healthy       22  
    LIV           22  
    LOV           22  
    NRV           22  
    Piston        22  
    Riderbelt     22  

15 Audio Examples

15-294



adsTrain = shuffle(adsTrain);
adsValidation = shuffle(adsValidation);

You can reduce the training data set used in this example to speed up the runtime at the cost of
performance. In general, reducing the data set is a good practice for development and debugging.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,20);
end

The data consists of time-series recordings of acoustics from faulty or healthy air compressors. As
such, there are strong relationships between samples in time. Listen to a recording and plot the
waveform.

[sampleData,sampleDataInfo] = read(adsTrain);
fs = sampleDataInfo.SampleRate;

soundsc(sampleData,fs)
plot(sampleData)
xlabel("Sample")
ylabel("Amplitude")
title("State: " + string(sampleDataInfo.Label))
axis tight

 Acoustics-Based Machine Fault Recognition

15-295



Because the samples are related in time, you can use a recurrent neural network (RNN) to model the
data. A long short-term memory (LSTM) network is a popular choice of RNN because it is designed to
avoid vanishing and exploding gradients. Before you can train the network, it's important to prepare
the data adequately. Often, it is best to transform or extract features from 1-dimensional signal data
in order to provide a richer set of features for the model to learn from.

Feature Engineering

The next step is to extract a set of acoustic features used as inputs to the network. Audio Toolbox™
enables you to extract spectral descriptors that are commonly used as inputs in machine learning
tasks. You can extract the features using individual functions, or you can use
audioFeatureExtractor (Audio Toolbox) to simplify the workflow and do it all at once.

trainFeatures = cell(1,numel(adsTrain.Files));
windowLength = 512;
overlapLength = 0;

aFE = audioFeatureExtractor(SampleRate=fs, ...
    Window=hamming(windowLength,"periodic"),...
    OverlapLength=overlapLength,...
    spectralCentroid=true, ...
    spectralCrest=true, ...
    spectralDecrease=true, ...
    spectralEntropy=true, ...
    spectralFlatness=true, ...
    spectralFlux=false, ...
    spectralKurtosis=true, ...
    spectralRolloffPoint=true, ...
    spectralSkewness=true, ...
    spectralSlope=true, ...
    spectralSpread=true);

reset(adsTrain)
tic
for index = 1:numel(adsTrain.Files)
    data = read(adsTrain);
    trainFeatures{index} = (extract(aFE,data))';
end
disp("Feature extraction of train set took " + toc + " seconds.");

Feature extraction of train set took 15.7192 seconds.

Data Augmentation

The training set contains a relatively small number of acoustic recordings for training a deep learning
model. A popular method to enlarge the dataset is to use mixup. In mixup, you augment your dataset

15 Audio Examples

15-296



by mixing the features and labels from two different class instances. Mixup was reformulated by [2]
on page 15-313 as labels drawn from a probability distribution instead of mixed labels. The
supporting function, mixup on page 15-312, takes the training features, associated labels, and the
number of mixes per observation and then outputs the mixes and associated labels.

trainLabels = adsTrain.Labels;

numMixesPerInstance = ;
tic
[augData,augLabels] = mixup(trainFeatures,trainLabels,numMixesPerInstance);

trainLabels = cat(1,trainLabels,augLabels);
trainFeatures = cat(2,trainFeatures,augData);
disp("Feature augmentation of train set took " + toc + " seconds.");

Feature augmentation of train set took 0.16065 seconds.

Generate Validation Features

Repeat the feature extraction for the validation features.

validationFeatures = cell(1,numel(adsValidation.Files));

reset(adsValidation)
tic
for index = 1:numel(adsValidation.Files)
    data = read(adsValidation);
    validationFeatures{index} = (extract(aFE,data))';
end
disp("Feature extraction of validation set took " + toc + " seconds.");

Feature extraction of validation set took 1.6419 seconds.

Train Model

Next, you define and train a network. To skip training the network, set
downloadPretrainedSystem to true, then continue to the next section on page 15-299.

downloadPretrainedSystem = ;
if downloadPretrainedSystem
    downloadFolder = matlab.internal.examples.downloadSupportFile("audio","AcousticsBasedMachineFaultRecognition/AcousticsBasedMachineFaultRecognition.zip");
    dataFolder = tempdir;
    unzip(downloadFolder,dataFolder)
    netFolder = fullfile(dataFolder,"AcousticsBasedMachineFaultRecognition");

    addpath(netFolder)
end

Define Network

An LSTM layer learns long-term dependencies between time steps of time series or sequence data.
The first lstmLayer has 100 hidden units and outputs sequence data. Then a dropout layer is used
to reduce overfitting. The second lstmLayer outputs the last step of the time sequence.

numHiddenUnits = ;

dropProb = ;

 Acoustics-Based Machine Fault Recognition

15-297



layers = [ ...
    sequenceInputLayer(aFE.FeatureVectorLength,Normalization="zscore")
    lstmLayer(numHiddenUnits,OutputMode="sequence")
    dropoutLayer(dropProb)
    lstmLayer(numHiddenUnits,OutputMode="last")
    fullyConnectedLayer(numel(unique(adsTrain.Labels)))
    softmaxLayer
    classificationLayer];

Define Network Hyperparameters

To define hyperparameters for the network, use trainingOptions.

miniBatchSize = ;
validationFrequency = floor(numel(trainFeatures)/miniBatchSize);
options = trainingOptions("adam", ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=35, ...
    Plots="training-progress", ...
    Verbose=false, ...
    Shuffle="every-epoch", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=30, ...
    LearnRateDropFactor=0.1, ...
    ValidationData={validationFeatures,adsValidation.Labels}, ...
    ValidationFrequency=validationFrequency);

Train Network

To train the network, use trainNetwork.

airCompNet = trainNetwork(trainFeatures,trainLabels,layers,options);

15 Audio Examples

15-298



Evaluate Network

View the confusion chart for the validation data.

validationResults = classify(airCompNet,validationFeatures);
confusionchart(validationResults,adsValidation.Labels, ...
    Title="Accuracy: " + mean(validationResults == adsValidation.Labels)*100 + " (%)");

Model Streaming Detection

Create Functions to Process Data in a Streaming Loop

Once you have a trained network with satisfactory performance, you can apply the network to test
data in a streaming fashion.

There are many additional considerations to take into account to make the system work in a real-
world embedded system.

For example,

• The rate or interval at which classification can be performed with accurate results
• The size of the network in terms of generated code (program memory) and weights (data memory)
• The efficiency of the network in terms of computation speed

 Acoustics-Based Machine Fault Recognition

15-299



In MATLAB, you can mimic how the network is deployed and used in hardware on a real embedded
system and begin to answer these important questions.

Create MATLAB Function Compatible with C/C++ Code Generation

Once you train your deep learning model, you will deploy it to an embedded target. That means you
also need to deploy the code used to perform the feature extraction. Use the
generateMATLABFunction method of audioFeatureExtractor to generate a MATLAB function
compatible with C/C++ code generation. Specify IsStreaming as true so that the generated
function is optimized for stream processing.

filename = fullfile(pwd,"extractAudioFeatures");
generateMATLABFunction(aFE,filename,IsStreaming=true);

Combine Streaming Feature Extraction and Classification

Save the trained network as a MAT file.

save("AirCompressorFaultRecognitionModel.mat","airCompNet")

Create a function that combines the feature extraction and deep learning classification.

type recognizeAirCompressorFault.m

function scores = recognizeAirCompressorFault(audioIn,rs)
% This is a streaming classifier function 

persistent airCompNet

if isempty(airCompNet)
    airCompNet = coder.loadDeepLearningNetwork('AirCompressorFaultRecognitionModel.mat');
end
if rs
    airCompNet = resetState(airCompNet);
end

% Extract features using function
features = extractAudioFeatures(audioIn);

% Classify
[airCompNet,scores] = predictAndUpdateState(airCompNet,features);

end

Test Streaming Loop

Next, you test the streaming classifier in MATLAB. Stream audio one frame at a time to represent a
system as it would be deployed in a real-time embedded system. This enables you to measure and
visualize the timing and accuracy of the streaming implementation.

Stream in several audio files and plot the output classification results for each frame of data. At a
time interval equal to the length of each file, evaluate the output of the classifier.

reset(adsValidation)

N = 10;
labels = categories(ads.Labels);
numLabels = numel(labels);

15 Audio Examples

15-300



% Create a dsp.AsyncBuffer to read audio in a streaming fashion
audioSource = dsp.AsyncBuffer;

% Create a dsp.AsyncBuffer to accumulate scores
scoreBuffer = dsp.AsyncBuffer;

% Create a dsp.AsyncBuffer to record execution time.
timingBuffer = dsp.AsyncBuffer;

% Pre-allocate array to store results
streamingResults = categorical(zeros(N,1));

% Loop over files
for fileIdx = 1:N

    % Read one audio file and put it in the source buffer
    [data,dataInfo] = read(adsValidation);
    write(audioSource,data);

    % Inner loop over frames
    rs = true;
    while audioSource.NumUnreadSamples >= windowLength

        % Get a frame of audio data
        x = read(audioSource,windowLength);

        % Apply streaming classifier function
        tic
        score = recognizeAirCompressorFault(x,rs);
        write(timingBuffer,toc);

        % Store score for analysis
        write(scoreBuffer,score);

        rs = false;
    end
    reset(audioSource)

    % Store class result for that file
    scores = read(scoreBuffer);
    [~,result] = max(scores(end,:),[],2);
    streamingResults(fileIdx) = categorical(labels(result));

    % Plot scores to compare over time
    figure
    plot(scores) %#ok<*NASGU>
    legend(string(airCompNet.Layers(end).Classes),Location="northwest")
    xlabel("Time Step")
    ylabel("Score")
    title(["Known Label = " + string(dataInfo.Label),"Predicted Label = " + string(streamingResults(fileIdx))])
end

 Acoustics-Based Machine Fault Recognition

15-301



15 Audio Examples

15-302



 Acoustics-Based Machine Fault Recognition

15-303



15 Audio Examples

15-304



 Acoustics-Based Machine Fault Recognition

15-305



15 Audio Examples

15-306



 Acoustics-Based Machine Fault Recognition

15-307



15 Audio Examples

15-308



 Acoustics-Based Machine Fault Recognition

15-309



15 Audio Examples

15-310



Compare the test results for the streaming version of the classifier and the non-streaming.

testError = mean(validationResults(1:N) ~= streamingResults);
disp("Error between streaming classifier and non-streaming: " + testError*100 + " (%)")

Error between streaming classifier and non-streaming: 0 (%)

Analyze the execution time. The execution time when state is reset is often above the 32 ms budget.
However, in a real, deployed system, that initialization time will only be incurred once. The execution
time of the main loop is around 10 ms, which is well below the 32 ms budget for real-time
performance.

executionTime = read(timingBuffer)*1000;
budget = (windowLength/aFE.SampleRate)*1000;
plot(executionTime,"o")
title("Execution Time Per Frame")
xlabel("Frame Number")
ylabel("Time (ms)")
yline(budget,"","Budget",LineWidth=2)

 Acoustics-Based Machine Fault Recognition

15-311



Supporting Functions

function [augData,augLabels] = mixup(data,labels,numMixesPerInstance)
augData = cell(1,numel(data)*numMixesPerInstance);
augLabels = repelem(labels,numMixesPerInstance);

kk = 1;
for ii = 1:numel(data)
    for jj = 1:numMixesPerInstance
        lambda = max(min((randn./10)+0.5,1),0);
        
        % Find all available data with different labels.
        availableData = find(labels~=labels(ii));

        % Randomly choose one of the available data with a different label.
        numAvailableData = numel(availableData);
        idx = randi([1,numAvailableData]);

        % Mix.
        augData{kk} = lambda*data{ii} + (1-lambda)*data{availableData(idx)};

        % Specify the label as randomly set by lambda.
        if lambda < rand

15 Audio Examples

15-312



            augLabels(kk) = labels(availableData(idx));
        else
            augLabels(kk) = labels(ii);
        end
        kk = kk + 1;
    end
end

end

References

[1] Verma, Nishchal K., et al. "Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors." IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

[2] Huszar, Ferenc. "Mixup: Data-Dependent Data Augmentation." InFERENCe. November 03, 2017.
Accessed January 15, 2019. https://www.inference.vc/mixup-data-dependent-data-augmentation/.

 Acoustics-Based Machine Fault Recognition

15-313

https://www.inference.vc/mixup-data-dependent-data-augmentation/


Acoustics-Based Machine Fault Recognition Code Generation
with Intel MKL-DNN

This example demonstrates code generation for “Acoustics-Based Machine Fault Recognition” (Audio
Toolbox) using a long short-term memory (LSTM) network and spectral descriptors. This example
uses MATLAB® Coder™ with deep learning support to generate a MEX (MATLAB executable)
function that leverages performance of Intel® MKL-DNN library. The input data consists of acoustics
time-series recordings from faulty or healthy air compressors and the output is the state of the
mechanical machine predicted by the LSTM network. For details on audio preprocessing and network
training, see “Acoustics-Based Machine Fault Recognition” (Audio Toolbox).

Example Requirements

• The MATLAB Coder Interface for Deep Learning Support Package
• Intel processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2)
• Intel Deep Neural Networks Library (MKL-DNN)
• Environment variables for Intel MKL-DNN

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Prepare Input Dataset

Specify a sample rate fs of 16 kHz and a windowLength of 512 samples, as defined in “Acoustics-
Based Machine Fault Recognition” (Audio Toolbox). Set numFrames to 100.

fs = 16000;
windowLength = 512;
numFrames = 100;

To run the Example on a test signal, generate a pink noise signal. To test the performance of the
system on a real dataset, download the air compressor dataset [1] on page 15-320.

downloadDataset = 

if ~downloadDataset
    pinkNoiseSignal = pinknoise(windowLength*numFrames);
else
    % Download AirCompressorDataset.zip 
    component = 'audio';
    filename = 'AirCompressorDataset/AirCompressorDataset.zip';
    localfile = matlab.internal.examples.downloadSupportFile(component,filename);
    
    % Unzip the downloaded zip file to the downloadFolder
    downloadFolder = fileparts(localfile);
    if ~exist(fullfile(downloadFolder,'AirCompressorDataset'),'dir')
        unzip(localfile, downloadFolder)
    end
    
    % Create an audioDatastore object dataStore, to manage, the data.
    dataStore = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

15 Audio Examples

15-314



    % Use countEachLabel to get the number of samples of each category in the dataset.
    countEachLabel(dataStore)
end

Recognize Machine Fault in MATLAB

To run the streaming classifier in MATLAB, download and unzip the system developed in “Acoustics-
Based Machine Fault Recognition” (Audio Toolbox).

component = 'audio';
filename = 'AcousticsBasedMachineFaultRecognition/AcousticsBasedMachineFaultRecognition.zip';
localfile = matlab.internal.examples.downloadSupportFile(component,filename);

downloadFolder = fullfile(fileparts(localfile),'system');
if ~exist(downloadFolder,'dir')    
    unzip(localfile,downloadFolder)
end

To access the recognizeAirCompressorFault function of the system, add downloadFolder to
the search path.

addpath(downloadFolder)

Create a dsp.AsyncBuffer (DSP System Toolbox) object to read audio in a streaming fashion and a
dsp.AsyncBuffer (DSP System Toolbox) object to accumulate scores.

audioSource = dsp.AsyncBuffer;
scoreBuffer = dsp.AsyncBuffer;

Load the pretrained network and extract labels from the network.

airCompNet = coder.loadDeepLearningNetwork('AirCompressorFaultRecognitionModel.mat');
labels = string(airCompNet.Layers(end).Classes);

Initialize signalToBeTested to pinkNoiseSignal or select a signal from the drop-down list to test
the file of your choice from the dataset.

if ~downloadDataset
    signalToBeTested = pinkNoiseSignal;
else
    [allFiles,~] = splitEachLabel(dataStore,1);
    allData = readall(allFiles);

    signalToBeTested = ;
    signalToBeTested = cell2mat(signalToBeTested);
end

Stream one audio frame at a time to represent the system as it would be deployed in a real-time
embedded system. Use recognizeAirCompressorFault developed in “Acoustics-Based Machine
Fault Recognition” (Audio Toolbox) to compute audio features and perform deep learning
classification.

write(audioSource,signalToBeTested);
resetNetworkState = true;

while audioSource.NumUnreadSamples >= windowLength

    % Get a frame of audio data

 Acoustics-Based Machine Fault Recognition Code Generation with Intel MKL-DNN

15-315



    x = read(audioSource,windowLength);

    % Apply streaming classifier function
    score = recognizeAirCompressorFault(x,resetNetworkState);
    
    % Store score for analysis
    write(scoreBuffer,score);
    
    resetNetworkState = false;
end

Compute the recognized fault from scores and display it.

scores = read(scoreBuffer);
[~,labelIndex] = max(scores(end,:),[],2);
detectedFault = labels(labelIndex)

detectedFault = 
"Flywheel"

Plot the scores of each label for each frame.

plot(scores)
legend("" + labels,'Location','northwest') 
xlabel("Time Step")
ylabel("Score")
str = sprintf("Predicted Scores Over Time Steps.\nPredicted Class: %s",detectedFault);
title(str)

15 Audio Examples

15-316



Generate MATLAB Executable

Create a code generation configuration object to generate an executable. Specify the target language
as C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the MKL-DNN library. Attach
the deep learning configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('mkldnn');
cfg.DeepLearningConfig = dlcfg;

Create an audio data frame of length windowLength.

audioFrame = ones(windowLength,1);

Call the codegen (MATLAB Coder) function from MATLAB Coder to generate C++ code for the
recognizeAirCompressorFault function. Specify the configuration object and prototype
arguments. A MEX-file named recognizeAirCompressorFault_mex is generated to your current
folder.

codegen -config cfg recognizeAirCompressorFault -args {audioFrame,resetNetworkState} -report

Code generation successful: View report

Perform Machine Fault Recognition Using MATLAB Executable

Initialize signalToBeTested to pinkNoiseSignal or select a signal from the drop-down list to test
the file of your choice from the dataset.

if ~downloadDataset
    signalToBeTested = pinkNoiseSignal;
else
    [allFiles,~] = splitEachLabel(dataStore,1);
    allData = readall(allFiles);

    signalToBeTested = ;
    signalToBeTested = cell2mat(signalToBeTested);
end

Stream one audio frame at a time to represent the system as it would be deployed in a real-time
embedded system. Use generated recognizeAirCompressorFault_mex to compute audio features
and perform deep learning classification.

write(audioSource,signalToBeTested);
resetNetworkState = true;

while audioSource.NumUnreadSamples >= windowLength

    % Get a frame of audio data
    x = read(audioSource,windowLength);

    % Apply streaming classifier function
    score = recognizeAirCompressorFault_mex(x,resetNetworkState);
    
    % Store score for analysis

 Acoustics-Based Machine Fault Recognition Code Generation with Intel MKL-DNN

15-317



    write(scoreBuffer,score);

    resetNetworkState = false;
end

Compute the recognized fault from scores and display it.

scores = read(scoreBuffer);
[~,labelIndex] = max(scores(end,:),[],2);
detectedFault = labels(labelIndex)

detectedFault = 
"Flywheel"

Plot the scores of each label for each frame.

plot(scores)
legend("" + labels,'Location','northwest')
xlabel("Time Step")
ylabel("Score")
str = sprintf("Predicted Scores Over Time Steps.\nPredicted Class: %s",detectedFault);
title(str)

Evaluate Execution Time of Alternative MEX Function Workflow

Use tic and toc to measure the execution time of MATLAB function
recognizeAirCompressorFault and MATLAB executable (MEX)
recognizeAirCompressorFault_mex.

15 Audio Examples

15-318



Create a dsp.AsyncBuffer (DSP System Toolbox) object to record execution time.

timingBufferMATLAB = dsp.AsyncBuffer;
timingBufferMEX = dsp.AsyncBuffer;

Use same recording that you chose in previous section as input to recognizeAirCompressorFault
function and its MEX equivalent recognizeAirCompressorFault_mex.

write(audioSource,signalToBeTested);

Measure the execution time of the MATLAB code.

resetNetworkState = true;
while audioSource.NumUnreadSamples >= windowLength

    % Get a frame of audio data
    x = read(audioSource,windowLength);

    % Apply streaming classifier function
    tic
    scoreMATLAB = recognizeAirCompressorFault(x,resetNetworkState);
    write(timingBufferMATLAB,toc);

    % Apply streaming classifier MEX function
    tic
    scoreMEX = recognizeAirCompressorFault_mex(x,resetNetworkState);
    write(timingBufferMEX,toc);

    resetNetworkState = false;

end

Plot the execution time for each frame and analyze the profile. The first call of
recognizeAirCompressorFault_mex consumes around four times of the budget as it includes
loading of network and resetting of the states. However, in a real, deployed system, that initialization
time is only incurred once. The execution time of the MATLAB function is around 10 ms and that of
MEX function is ~1 ms, which is well below the 32 ms budget for real-time performance.

budget = (windowLength/fs)*1000;
timingMATLAB = read(timingBufferMATLAB)*1000;
timingMEX = read(timingBufferMEX)*1000;
frameNumber = 1:numel(timingMATLAB);
perfGain = timingMATLAB./timingMEX;
plot(frameNumber,timingMATLAB,frameNumber,timingMEX,'LineWidth',2)
grid on
yline(budget,'',{'Budget'},'LineWidth',2)
legend('MATLAB Function','MEX Function','Location','northwest')
xlabel("Time Step")
ylabel("Execution Time (in ms)")
title("Execution Time Profile of MATLAB and MEX Function")

 Acoustics-Based Machine Fault Recognition Code Generation with Intel MKL-DNN

15-319



Compute the performance gain of MEX over MATLAB function excluding the first call. This
performance test is done on a machine using an NVIDIA Quadro P620 (Version 26) GPU and an
Intel® Xeon® W-2133 CPU running at 3.60 GHz.

PerformanceGain = sum(timingMATLAB(2:end))/sum(timingMEX(2:end))

PerformanceGain = 24.0484

This example ends here. For deploying machine fault recognition on Raspberry Pi, see “Acoustics-
Based Machine Fault Recognition Code Generation on Raspberry Pi” (Audio Toolbox).

References

[1] Verma, Nishchal K., et al. "Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors." IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

15 Audio Examples

15-320



Acoustics-Based Machine Fault Recognition Code Generation
on Raspberry Pi

This example demonstrates code generation for “Acoustics-Based Machine Fault Recognition” (Audio
Toolbox) using a long short-term memory (LSTM) network and spectral descriptors. This example
uses MATLAB® Coder™, MATLAB Coder Interface for Deep Learning, MATLAB Support Package for
Raspberry Pi™ Hardware to generate a standalone executable (.elf) file on a Raspberry Pi that
leverages performance of the ARM® Compute Library. The input data consists of acoustics time-
series recordings from faulty or healthy air compressors and the output is the state of the mechanical
machine predicted by the LSTM network. This standalone executable on Raspberry Pi runs the
streaming classifier on the input data received from MATLAB and sends the computed scores for each
label to MATLAB. Interaction between MATLAB script and the executable on your Raspberry Pi is
handled using the user datagram protocol (UDP). For more details on audio preprocessing and
network training, see “Acoustics-Based Machine Fault Recognition” (Audio Toolbox).

Example Requirements

• The MATLAB Coder Interface for Deep Learning Support Package
• ARM processor that supports the NEON extension
• ARM Compute Library version 20.02.1 (on the target ARM hardware)
• Environment variables for the compilers and libraries

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder)

Prepare Input Dataset

Specify a sample rate fs of 16 kHz and a windowLength of 512 samples, as defined in “Acoustics-
Based Machine Fault Recognition” (Audio Toolbox). Set numFrames to 100.

fs = 16000;
windowLength = 512;
numFrames = 100;

To run the Example on a test signal, generate a pink noise signal. To test the performance of the
system on a real dataset, download the air compressor dataset [1] on page 15-331.

downloadDataset = 

if ~downloadDataset
    pinkNoiseSignal = pinknoise(windowLength*numFrames);
else
    % Download AirCompressorDataset.zip 
    component = 'audio';
    filename = 'AirCompressorDataset/AirCompressorDataset.zip';
    localfile = matlab.internal.examples.downloadSupportFile(component,filename);
    
    % Unzip the downloaded zip file to the downloadFolder
    downloadFolder = fileparts(localfile);
    if ~exist(fullfile(downloadFolder,'AirCompressorDataset'),'dir')
        unzip(localfile, downloadFolder)
    end

 Acoustics-Based Machine Fault Recognition Code Generation on Raspberry Pi

15-321



    
    % Create an audioDatastore object dataStore, to manage, the data.
    dataStore = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

    % Use countEachLabel to get the number of samples of each category in the dataset.
    countEachLabel(dataStore)
end

Recognize Machine Fault in MATLAB

To run the streaming classifier in MATLAB, download and unzip the system developed in “Acoustics-
Based Machine Fault Recognition” (Audio Toolbox).

component = 'audio';
filename = 'AcousticsBasedMachineFaultRecognition/AcousticsBasedMachineFaultRecognition.zip';
localfile = matlab.internal.examples.downloadSupportFile(component,filename);

downloadFolder = fullfile(fileparts(localfile),'system');
if ~exist(downloadFolder,'dir')    
    unzip(localfile,downloadFolder)
end

To access the recognizeAirCompressorFault function of the system, add downloadFolder to
the search path.

addpath(downloadFolder)

Create a dsp.AsyncBuffer (DSP System Toolbox) object to read audio in a streaming fashion and a
dsp.AsyncBuffer (DSP System Toolbox) object to accumulate scores.

audioSource = dsp.AsyncBuffer;
scoreBuffer = dsp.AsyncBuffer;

Load the pretrained network and extract labels from the network.

airCompNet = coder.loadDeepLearningNetwork('AirCompressorFaultRecognitionModel.mat');
labels = string(airCompNet.Layers(end).Classes);

Initialize signalToBeTested to pinkNoiseSignal or select a signal from the drop-down list to test
the file of your choice from the dataset.

if ~downloadDataset
    signalToBeTested = pinkNoiseSignal;
else
    [allFiles,~] = splitEachLabel(dataStore,1);
    allData = readall(allFiles);

    signalToBeTested = ;
    signalToBeTested = cell2mat(signalToBeTested);
end

Stream one audio frame at a time to represent the system as it would be deployed in a real-time
embedded system. Use recognizeAirCompressorFault developed in “Acoustics-Based Machine
Fault Recognition” (Audio Toolbox) to compute audio features and perform deep learning
classification.

15 Audio Examples

15-322



write(audioSource,signalToBeTested);
resetNetworkState = true;

while audioSource.NumUnreadSamples >= windowLength
    
    % Get a frame of audio data
    x = read(audioSource,windowLength);
    
    % Apply streaming classifier function
    score = recognizeAirCompressorFault(x,resetNetworkState);
   
    % Store score for analysis
    write(scoreBuffer,score);
    
    resetNetworkState = false;
end

Compute the recognized fault from scores and display it.

scores = read(scoreBuffer);
[~,labelIndex] = max(scores(end,:),[],2);
detectedFault = labels(labelIndex)

detectedFault = 
"Flywheel"

Plot the scores of each label for each frame.

plot(scores)
legend("" + labels,'Location','northwest') 
xlabel("Time Step")
ylabel("Score")
str = sprintf("Predicted Scores Over Time Steps.\nPredicted Class: %s",detectedFault);
title(str)

 Acoustics-Based Machine Fault Recognition Code Generation on Raspberry Pi

15-323



Reset the asynchronous buffer audioSource.

reset(audioSource)

Prepare MATLAB Code For Deployment

This example uses the dsp.UDPSender (DSP System Toolbox) System object to send the audio frame
to the executable running on Raspberry Pi and the dsp.UDPReceiver (DSP System Toolbox) System
object to receive the score vector from the Raspberry Pi. Create a dsp.UDPSender (DSP System
Toolbox) system object to send audio captured in MATLAB to your Raspberry Pi. Set the
targetIPAddress to the IP address of your Raspberry Pi. Set the RemoteIPPort to 25000.
Raspberry Pi receives the input audio frame from the same port using the dsp.UDPReceiver (DSP
System Toolbox) system object.

targetIPAddress = '172.31.164.247';
UDPSend = dsp.UDPSender('RemoteIPPort',25000,'RemoteIPAddress',targetIPAddress); 

Create a dsp.UDPReceiver (DSP System Toolbox) system object to receive predicted scores from
your Raspberry Pi. Each UDP packet received from the Raspberry Pi is a vector of scores and each
vector element is a score for a state of the air compressor. The maximum message length for the
dsp.UDPReceiver (DSP System Toolbox) object is 65507 bytes. Calculate the buffer size to
accommodate the maximum number of UDP packets.

sizeOfDoubleInBytes = 8;
numScores = 8;
maxUDPMessageLength = floor(65507/sizeOfDoubleInBytes);
numPackets = floor(maxUDPMessageLength/numScores);

15 Audio Examples

15-324



bufferSize = numPackets*numScores*sizeOfDoubleInBytes;

UDPReceive = dsp.UDPReceiver("LocalIPPort",21000, ...  
    "MessageDataType","single", ...
    "MaximumMessageLength",numScores, ...
    "ReceiveBufferSize",bufferSize);

Create a supporting function, recognizeAirCompressorFaultRaspi, that receives an audio frame
using dsp.UDPReceiver (DSP System Toolbox) and applies the streaming classifier and sends the
predicted score vector to MATLAB using dsp.UDPSender (DSP System Toolbox).

type recognizeAirCompressorFaultRaspi

function recognizeAirCompressorFaultRaspi(hostIPAddress)
% This function receives acoustic input using dsp.UDPReceiver and runs a
% streaming classifier by calling recognizeAirCompressorFault, developed in
% the Acoustics-Based Machine Fault Recognition - MATLAB Example. 
% Computed scores are sent to MATLAB using dsp.UDPSender.
%#codegen

%   Copyright 2021 The MathWorks, Inc.

frameLength = 512;

% Configure UDP Sender System Object
UDPSend = dsp.UDPSender('RemoteIPPort',21000,'RemoteIPAddress',hostIPAddress);

% Configure UDP Receiver system object
sizeOfDoubleInBytes = 8;
maxUDPMessageLength = floor(65507/sizeOfDoubleInBytes);
numPackets = floor(maxUDPMessageLength/frameLength);
bufferSize = numPackets*frameLength*sizeOfDoubleInBytes;
UDPReceiveRaspi = dsp.UDPReceiver('LocalIPPort',25000, ...
    'MaximumMessageLength',frameLength, ...
    'ReceiveBufferSize',bufferSize, ...
    'MessageDataType','double');

% Reset network state for first call
resetNetworkState = true;

while true
    % Receive audio frame of size frameLength x 1
    x = UDPReceiveRaspi();

    if(~isempty(x))

        x = x(1:frameLength,1);

        % Apply streaming classifier function
        scores = recognizeAirCompressorFault(x,resetNetworkState);

        %Send output to the host machine
        UDPSend(scores);

        resetNetworkState = false;
    end
end

 Acoustics-Based Machine Fault Recognition Code Generation on Raspberry Pi

15-325



Generate Executable on Raspberry Pi

Replace the hostIPAddress with your machine's address. Your Raspberry Pi sends the predicted
scores to the IP address you specify.

hostIPAddress = coder.Constant('172.18.230.30');

Create a code generation configuration object to generate an executable program. Specify the target
language as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the ARM compute library that is
on your Raspberry Pi. Specify the architecture of the Raspberry Pi and attach the deep learning
configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '20.02.1';
cfg.DeepLearningConfig = dlcfg;

Use the Raspberry Pi Support Package function raspi to create a connection to your Raspberry Pi.
In the next block of code, replace:

• raspiname with the name of your Raspberry Pi
• pi with your user name
• password with your password

if (~exist('r','var'))
  r = raspi('raspiname','pi','password');
end

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;

Use an autogenerated C++ main file to generate a standalone executable.

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

Call the codegen (MATLAB Coder) function from MATLAB Coder to generate C++ code and the
executable on your Raspberry Pi. By default, the Raspberry Pi executable has the same name as the
MATLAB function. You get a warning in the code generation logs that you can disregard because
recognizeAirCompressorFaultRaspi has an infinite loop that looks for an audio frame from
MATLAB.

codegen -config cfg recognizeAirCompressorFaultRaspi -args {hostIPAddress} -report

 Deploying code. This may take a few minutes. 
Warning: Function 'recognizeAirCompressorFaultRaspi' does not terminate due to an infinite loop.

15 Audio Examples

15-326



Warning in ==> recognizeAirCompressorFaultRaspi Line: 1 Column: 1
Code generation successful (with warnings): View report

Perform Machine Fault Recognition Using Deployed Code

Create a command to open the recognizeAirCompressorFaultRaspi application on a Raspberry
Pi. Use system to send the command to your Raspberry Pi.

applicationName = 'recognizeAirCompressorFaultRaspi';

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName',applicationName);
targetDirPath = applicationDirPaths{1}.directory;

exeName = strcat(applicationName,'.elf');
command = ['cd ',targetDirPath,'; ./',exeName,' &> 1 &'];

system(r,command);

Initialize signalToBeTested to pinkNoiseSignal or select a signal from the drop-down list to test
the file of your choice from the dataset.

if ~downloadDataset
    signalToBeTested = pinkNoiseSignal;
else
    [allFiles,~] = splitEachLabel(dataStore,1);
    allData = readall(allFiles);

    signalToBeTested = ;
    signalToBeTested = cell2mat(signalToBeTested);
end

Stream one audio frame at a time to represent a system as it would be deployed in a real-time
embedded system. Use the generated MEX file recognizeAirCompressorFault_mex to compute
audio features and perform deep learning classification.

write(audioSource,signalToBeTested);

while audioSource.NumUnreadSamples >= windowLength
    x = read(audioSource,windowLength);
    UDPSend(x);
    score = UDPReceive();
    if ~isempty(score)    
        write(scoreBuffer,score');
    end
end

Compute the recognized fault from scores and display it.

scores = read(scoreBuffer);
[~,labelIndex] = max(scores(end,:),[],2);
detectedFault = labels(labelIndex)

detectedFault = 
"Flywheel"

Plot the scores of each label for each frame.

plot(scores)
legend("" + labels,'Location','northwest') 

 Acoustics-Based Machine Fault Recognition Code Generation on Raspberry Pi

15-327



xlabel("Time Step")
ylabel("Score")
str = sprintf("Predicted Scores Over Time Steps.\nPredicted Class: %s",detectedFault);
title(str)

Terminate the standalone executable running on Raspberry Pi.

stopExecutable(codertarget.raspi.raspberrypi,exeName)

Evaluate Execution Time Using Alternative PIL Function Workflow

To evaluate execution time taken by standalone executable on Raspberry Pi, use a PIL (processor-in-
loop) workflow. To perform PIL profiling, generate a PIL function for the supporting function
recognizeAirCompressorFault.

Create a code generation configuration object to generate the PIL function.

cfg = coder.config('lib','ecoder',true);
cfg.VerificationMode = 'PIL';

Set the ARM compute library and architecture.

dlcfg = coder.DeepLearningConfig('arm-compute');
cfg.DeepLearningConfig = dlcfg ;
cfg.DeepLearningConfig.ArmArchitecture = 'armv7';
cfg.DeepLearningConfig.ArmComputeVersion = '20.02.1';

Set up the connection with your target hardware.

15 Audio Examples

15-328



if (~exist('r','var'))
  r = raspi('raspiname','pi','password');
end
hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Set the build directory and target language.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;
cfg.TargetLang = 'C++';

Enable profiling and generate the PIL code. A MEX file named
recognizeAirCompressorFault_pil is generated in your current folder.

cfg.CodeExecutionProfiling = true;
audioFrame = ones(windowLength,1);
resetNetworkStateFlag = true;
codegen -config cfg recognizeAirCompressorFault -args {audioFrame,resetNetworkStateFlag}

 Deploying code. This may take a few minutes. 
### Connectivity configuration for function 'recognizeAirCompressorFault': 'Raspberry Pi'
Location of the generated elf : /home/pi/remoteBuildDir/MATLAB_ws/R2021b/S/MATLAB/Examples/ExampleManager/sporwal.Bdoc21b.j1720794/deeplearning_shared-ex44063374/codegen/lib/recognizeAirCompressorFault/pil
Code generation successful.

Call the generated PIL function 50 times to get the average execution time.

totalCalls = 50;

for k = 1:totalCalls
    x = pinknoise(windowLength,1);
    score = recognizeAirCompressorFault_pil(x,resetNetworkStateFlag);
    resetNetworkStateFlag = false;
end

### Starting application: 'codegen\lib\recognizeAirCompressorFault\pil\recognizeAirCompressorFault.elf'
    To terminate execution: clear recognizeAirCompressorFault_pil
### Launching application recognizeAirCompressorFault.elf...
    Execution profiling data is available for viewing. Open Simulation Data Inspector.
    Execution profiling report available after termination.

Terminate the PIL execution.

clear recognizeAirCompressorFault_pil

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

### Connectivity configuration for function 'recognizeAirCompressorFault': 'Raspberry Pi'
    Execution profiling report: report(getCoderExecutionProfile('recognizeAirCompressorFault'))

Generate an execution profile report to evaluate execution time.

executionProfile = getCoderExecutionProfile('recognizeAirCompressorFault');
report(executionProfile, ...
       'Units','Seconds', ...
       'ScaleFactor','1e-03', ...
       'NumericFormat','%0.4f');

 Acoustics-Based Machine Fault Recognition Code Generation on Raspberry Pi

15-329



15 Audio Examples

15-330



The average execution time of recognizeAirCompressorFault_pil function is 0.423 ms, which
is well below the 32 ms budget for real-time performance. The first call of
recognizeAirCompressorFault_pil consumes around 12 times of the average execution time as
it includes loading of network and resetting of the states. However, in a real, deployed system, that
initialization time is incurred only once. This example ends here. For deploying machine fault
recognition on desktops, see “Acoustics-Based Machine Fault Recognition Code Generation with Intel
MKL-DNN” (Audio Toolbox).

References

[1] Verma, Nishchal K., et al. "Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors." IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

 Acoustics-Based Machine Fault Recognition Code Generation on Raspberry Pi

15-331



End-to-End Deep Speech Separation

This example showcases an end-to-end deep learning network for speaker-independent speech
separation.

Introduction

Speech separation is a challenging and critical speech processing task. A number of speech
separation methods based on deep learning have been proposed recently, most of which rely on time-
frequency transformations of the time-domain audio mixture (See “Cocktail Party Source Separation
Using Deep Learning Networks” (Audio Toolbox) for an implementation of such a deep learning
system).

Solutions based on time-frequency methods suffer from two main drawbacks:

• The conversion of the time-frequency representations back to the time domain requires phase
estimation, which introduces errors and leads to imperfect reconstruction.

• Relatively long windows are required to yield high resolution frequency representations, which
leads to high computational complexity and unacceptable latency for real-time scenarios.

In this example, you explore a deep learning speech separation network (based on [1]) which acts
directly on the audio signal and bypasses the issues arising from time-frequency transformations.

Separate Speech using the Pretrained Network

Download the Pretrained Network

Before training the deep learning network from scratch, you will use a pretrained version of the
network to separate two speakers from an example mixture signal.

First, download the pretrained network and example audio files.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","speechSeparation.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"speechSeparation");

Prepare Test Signal

Load two audio signals corresponding to two different speakers. Both signals are sampled at 8 kHz.

Fs = 8000;
s1 = audioread(fullfile(netFolder,"speaker1.wav"));
s2 = audioread(fullfile(netFolder,"speaker2.wav"));

Normalize the signals.

s1 = s1/max(abs(s1));
s2 = s2/max(abs(s2));

Listen to a few seconds of each signal.

T = 5;
sound(s1(1:T*Fs))
pause(T)

15 Audio Examples

15-332



sound(s2(1:T*Fs))
pause(T)

Combine the two signals into a mixture signal.

mix = s1+s2;
mix = mix/max(abs(mix));

Listen to the first few seconds of the mixture signal.

sound(mix(1:T*Fs))
pause(T)

Separate Speakers

Load the parameters of the pretrained speech separation network.

load(fullfile(netFolder,"paramsBest.mat"),"learnables","states")

Separate the two speakers in the mixture signals by calling the separateSpeakers function.

[z1,z2] = separateSpeakers(mix,learnables,states,false);

Listen to the first few seconds of the first estimated speech signal.

sound(z1(1:T*Fs))
pause(T)

Listen to the second estimated signal.

sound(z2(1:T*Fs))
pause(T)

To illustrate the effect of speech separation, plot the estimated and original separated signals along
with the mixture signal.

s1 = s1(1:length(z1));
s2 = s2(1:length(z2));
mix = mix(1:length(s1));

t  = (0:length(s1)-1)/Fs;

figure;
subplot(311)
plot(t,s1)
hold on
plot(t,z1)
grid on
legend("Speaker 1 - Actual","Speaker 1 - Estimated")
subplot(312)
plot(t,s2)
hold on
plot(t,z2)
grid on
legend("Speaker 2 - Actual","Speaker 2 - Estimated")
subplot(313)
plot(t,mix)
grid on

 End-to-End Deep Speech Separation

15-333



legend("Mixture")
xlabel("Time (s)")

Compare to a Time-Frequency Transformation Deep Learning Network

Next, you compare the performance of the network to the network developed in the “Cocktail Party
Source Separation Using Deep Learning Networks” (Audio Toolbox) example. This speech separation
network is based on traditional time-frequency representations of the audio mixture (using the short-
time Fourier transform, STFT, and the inverse short-time Fourier transform, ISTFT).

Download the pretrained network.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","CocktailPartySourceSeparation.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
cocktailNetFolder = fullfile(dataFolder,"CocktailPartySourceSeparation");

The function separateSpeakersTimeFrequency encapsulates the steps required to separate
speech using this network. The function performs the following steps:

• Compute the magnitude STFT of the input time-domain mixture.
• Compute a soft time-frequency mask by passing the STFT to the network.
• Compute the STFT of the separated signals by multiplying the mixture STFT by the mask.
• Reconstruct the time-domain separated signals using ISTFT. The phase of the mixture STFT is

used.

15 Audio Examples

15-334



Refer to the “Cocktail Party Source Separation Using Deep Learning Networks” (Audio Toolbox)
example for more details about this network.

Separate the two speakers.

[y1,y2] = separateSpeakersTimeFrequency(mix,cocktailNetFolder);

Listen to the first separated signal.

sound(y1(1:Fs*T))
pause(T)

Listen to the second separated signal.

sound(y2(1:Fs*T))
pause(T)

Evaluate Network Performance using SI-SNR

You will compare the two networks using the scale-invariant source-to-noise ratio (SI-SNR) objective
measure [1].

Compute the SISNR for the first speaker with the end-to-end network.

First, normalize the actual and estimated signals.

s10 = s1 - mean(s1);
z10 = z1 - mean(z1);

Compute the "signal" component of the SNR.

t = sum(s10.*z10) .* z10 ./ (sum(z10.^2)+eps);

Compute the "noise" component of the SNR.

n = s1 - t;

Now compute the SI-SNR (in dB).

v1 = 20*log((sqrt(sum(t.^2))+eps)./sqrt((sum(n.^2))+eps))/log(10);
fprintf("End-to-end network - Speaker 1 SISNR: %f dB\n",v1)

End-to-end network - Speaker 1 SISNR: 14.316869 dB

The SI-SNR computation steps are encapsulated in the function SISNR. Use the function to compute
the SI-SNR of the second speaker with the end-to-end network.

v2 = SISNR(z2,s2);
fprintf("End-to-end network - Speaker 2 SISNR: %f dB\n",v2)

End-to-end network - Speaker 2 SISNR: 13.706419 dB

Next, compute the SI-SNR for each speaker for the STFT-based network.

w1 = SISNR(y1,s1(1:length(y1)));
w2 = SISNR(y2,s2(1:length(y2)));
fprintf("STFT network - Speaker 1 SISNR: %f dB\n",w1)

STFT network - Speaker 1 SISNR: 7.003789 dB

 End-to-End Deep Speech Separation

15-335



fprintf("STFT network - Speaker 2 SISNR: %f dB\n",w2)

STFT network - Speaker 2 SISNR: 7.382209 dB

Training the Speech Separation Network

Examine the Network Architecture

The network is based on [1] and consists of three stages: Encoding, mask estimation or separation,
and decoding.

• The encoder transforms the time-domain input mixture signals into an intermediate
representation using convolutional layers.

• The mask estimator computes one mask per speaker. The intermediate representation of each
speaker is obtained by multiplying the encoder's output by its respective mask. The mask
estimator is comprised of 32 blocks of convolutional and normalization layers with skip
connections between blocks.

• The decoder transforms the intermediate representations to time-domain separated speech
signals using transposed convolutional layers.

The operation of the network is encapsulated in separateSpeakers.

Optionally Reduce the Dataset Size

To train the network with the entire dataset and achieve the highest possible accuracy, set
reduceDataset to false. To run this example quickly, set reduceDataset to true. This will run the
rest of the example on only a handful of files.

reduceDataset = true;

Download the Training Dataset

You use a subset of the LibriSpeech Dataset [2] to train the network. The LibriSpeech Dataset is a
large corpus of read English speech sampled at 16 kHz. The data is derived from audiobooks read
from the LibriVox project.

Download the LibriSpeech dataset. If reduceDataset is true, this step is skipped.

downloadDatasetFolder = tempdir;
datasetFolder = fullfile(downloadDatasetFolder,"LibriSpeech","train-clean-360");

15 Audio Examples

15-336



if ~reduceDataset
    filename = "train-clean-360.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    if ~datasetExists(datasetFolder)
        gunzip(url,downloadDatasetFolder);
        unzippedFile = fullfile(downloadDatasetFolder,filename);
        untar(unzippedFile{1}(1:end-3),downloadDatasetFolder);
    end
end

Preprocess the Dataset

The LibriSpeech dataset is comprised of a large number of audio files with a single speaker. It does
not contain mixture signals where 2 or more persons are speaking simultaneously.

You will process the original dataset to create a new dataset that is suitable for training the speech
separation network.

The steps for creating the training dataset are encapsulated in createTrainingDataset. The
function creates mixture signals comprised of utterances of two random speakers. The function
returns three audio datastores:

• mixDatastore points to mixture files (where two speakers are talking simultaneously).
• speaker1Datastore points to files containing the isolated speech of the first speaker in the

mixture.
• speaker2Datastore points to files containing the isolated speech of the second speaker in the

mixture.

Define the mini-batch size and the maximum training signal length (in number of samples).

miniBatchSize = 2;
duration = 2*8000;

Create the training dataset.

[mixDatastore,speaker1Datastore,speaker2Datastore] = createTrainingDataset(netFolder,datasetFolder,downloadDatasetFolder,reduceDataset,miniBatchSize,duration);

Combine the datastores. This ensures that the files stay in the correct order when you shuffle them at
the start of each new epoch in the training loop.

ds = combine(mixDatastore,speaker1Datastore,speaker2Datastore);

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™.

executionEnvironment = "auto"; % Change to "cpu" to train on a CPU.

Create a minibatch queue from the datastore.

mqueue = minibatchqueue(ds,MiniBatchSize=miniBatchSize, OutputEnvironment=executionEnvironment,OutputAsDlarray=true,MiniBatchFormat="SCB",MiniBatchFcn=@preprocessMiniBatch);

Specify Training Options

Define training parameters.

Train for 10 epochs.

 End-to-End Deep Speech Separation

15-337



if reduceDataset
    numEpochs = 1;
else
    numEpochs = 10; %#ok
end

Specify the options for Adam optimization. Set the initial learning rate to 1e-3. Use a gradient decay
factor of 0.9 and a squared gradient decay factor of 0.999.

learnRate = 1e-3;
averageGrad = [];
averageSqGrad = [];

gradDecay = 0.9;
sqGradDecay = 0.999;

Set Up Validation Data

You will use the test signal you previously employed to test the pretrained network to compute a
validation SI-SNR periodically during training.

If a GPU is available, move the validation signal to the GPU.

mix = dlarray(mix,'SCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    mix = gpuArray(mix);
end

Define the number of iterations between validation SI-SNR computations.

numIterPerValidation = 50;

Define a vector to hold the validation SI-SNR from each iteration.

valSNR = [];

Define a variable to hold the best validation SI-SNR.

bestSNR = -Inf;

Define a variable to hold the epoch in which the best validation score occurred.

bestEpoch = 1;

Initialize Network

Initialize the network parameters. learnables is a structure containing the learnable parameters
from the network layers. states is a structure containing the states from the normalization layers.

[learnables,states] = initializeNetworkParams;

Train the Network

Execute the training loop. This can take many hours to run.

Note that there is no a priori way to associate the estimated output speaker signals with the expected
speaker signals. This is resolved by using Utterance-level permutation invariant training (uPIT) [1].
The loss is based on computing the SI-SNR. uPIT minimizes the loss over all permutations between
outputs and targets. It is defined in the function uPIT.

15 Audio Examples

15-338



The validation SI-SNR is computed periodically. If the SI-SNR is the best value to-date, the network
parameters are saved to params.mat.

iteration = 0;

% Loop over epochs.
for jj =1:numEpochs

    % Shuffle the data
    shuffle(mqueue);

    while hasdata(mqueue)

        % Compute validation loss/SNR periodically
        if mod(iteration,numIterPerValidation)==0
            
            [z1,z2] = separateSpeakers(mix, learnables,states,false);
            
            l = uPIT(z1,s1,z2,s2);
            valSNR(end+1) = l; %#ok

            if l > bestSNR
                bestSNR = l;
                bestEpoch = jj;
                filename = "params.mat";
                save(filename,"learnables","states");
            end
        end

        iteration = iteration + 1;

        % Get a new batch of training data
        [mixBatch,x1Batch,x2Batch] = next(mqueue);

        % Evaluate the model gradients and states using dlfeval and the modelLoss function.
        [~,gradients,states] = dlfeval(@modelLoss,mixBatch,x1Batch,x2Batch,learnables,states,miniBatchSize);

        % Update the network parameters using the ADAM optimizer.
        [learnables,averageGrad,averageSqGrad] = adamupdate(learnables,gradients,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);
        
    end

    % Reduce the learning rate if the validation accuracy did not improve
    % during the epoch
    if bestEpoch ~= jj
        learnRate = learnRate/2;
    end
end

Plot the validation SNR values.

if ~reduceDataset
    valIterNum = 0:length(valSNR)-1;
    figure
    semilogx(numIterPerValidation*(valIterNum-1),valSNR,"b*-")
    grid on
    xlabel("Iteration #")
    ylabel("Validation SINR (dB)")

 End-to-End Deep Speech Separation

15-339



    valFig.Visible = 'on';
end

References

[1] Yi Luo, Nima Mesgarani, "Conv-tasnet: Surpassing ideal time–frequency magnitude masking for
speech separation," 2019 IEEE/ACM transactions on audio, speech, and language processing, vol. 29,
issue 8, pp. 1256-1266.

[2] V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public
domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brisbane, QLD, 2015, pp. 5206-5210, doi: 10.1109/ICASSP.2015.7178964

Supporting Functions
function [mixDatastore,speaker1Datastore,speaker2Datastore] = createTrainingDataset(netFolder,datasetFolder,downloadDatasetFolder,reduceDataset,miniBatchSize,duration)
% createTrainingDataset Create training dataset

newDatasetPath = fullfile(downloadDatasetFolder,"speech-sep-dataset");

% Create the new dataset folders.
if isfolder(newDatasetPath)
    rmdir(newDatasetPath,"s")
end
mkdir(newDatasetPath);
mkdir(fullfile(newDatasetPath, "sp1"));
mkdir(fullfile(newDatasetPath, "sp2"));
mkdir(fullfile(newDatasetPath, "mix"));

%Create an audioDatastore that points to the LibriSpeech dataset.
if reduceDataset
    netFolder = char(netFolder);
    ads = audioDatastore([repmat(fullfile(netFolder,"speaker1.wav"),1,4),...
                          repmat(fullfile(netFolder,"speaker2.wav"),1,4)]);
else
    ads = audioDatastore(datasetFolder,IncludeSubfolders=true);
end

% The LibriSpeech dataset is comprised of signals from different speakers.
% The unique speaker ID is encoded in the audio file names.

% Extract the speaker IDs from the file names.
if reduceDataset
    ads.Labels = categorical([repmat({'1'},1,4),repmat({'2'},1,4)]);
else
    ads.Labels = categorical(extractBetween(ads.Files,fullfile(datasetFolder,filesep),filesep));
end

% You will create mixture signals comprised of utterances of two random speakers.  
% Randomize the IDs of all the speakers.
names = unique(ads.Labels);
names = names(randperm(length(names)));

% In this example, you create training signals based on 400 speakers. You
% generate mixture signals based on combining utterances from 200 pairs of
% speakers. 

% Define the two groups of speakers.

15 Audio Examples

15-340



numPairs = min(200,floor(numel(names)/2)); 
n1 = names(1:numPairs);
n2 = names(numPairs+1:2*numPairs);

% Create the new dataset. For each pair of speakers: 
% * Use subset to create two audio datastores, each containing files
%   corresponding to their respective speaker.
% * Adjust the datastores so that they have the same number of files.
% * Combine the two datastores using combine. 
% * Use writeall to preprocess the files of the combined datastore and write
%   the new resulting signals to disk.

% The preprocessing steps performed to create the signals before writing
% them to disk are encapsulated in the function createTrainingFiles. For
% each pair of signals:
% * You downsample the signals from 16 kHz to 8 kHz. 
% * You randomly select 4 seconds from each downsampled signal. 
% * You create the mixture by adding the 2 signal chunks.
% * You adjust the signal power to achieve a randomly selected
%   signal-to-noise value in the range [-5,5] dB.
% * You write the 3 signals (corresponding to the first speaker, the second
%   speaker, and the mixture, respectively) to disk.
parfor index=1:length(n1)
    spkInd1 = n1(index);
    spkInd2 = n2(index);
    spk1ds = subset(ads,ads.Labels==spkInd1);
    spk2ds = subset(ads,ads.Labels==spkInd2);
    L = min(length(spk1ds.Files),length(spk2ds.Files));
    L = floor(L/miniBatchSize) * miniBatchSize;
    spk1ds = subset(spk1ds,1:L);
    spk2ds = subset(spk2ds,1:L);
    pairds = combine(spk1ds,spk2ds);
    writeall(pairds,newDatasetPath,FolderLayout="flatten",WriteFcn=@(data,writeInfo,outputFmt)createTrainingFiles(data,writeInfo,outputFmt,reduceDataset,duration));
end

% Create audio datastores pointing to the files corresponding to the individual speakers and the mixtures.
mixDatastore = audioDatastore(fullfile(newDatasetPath,"mix"));
speaker1Datastore = audioDatastore(fullfile(newDatasetPath,"sp1"));
speaker2Datastore = audioDatastore(fullfile(newDatasetPath,"sp2"));
end

function mix = createTrainingFiles(data,writeInfo,~,varargin)
% createTrainingFiles - Preprocess the training signals and write them to disk

reduceDataset = varargin{1};
duration = varargin{2};

x1 = data{1};
x2 = data{2};

% Resample from 16 kHz to 8 kHz
if ~reduceDataset
    x1 = resample(x1,1,2);
    x2 = resample(x2,1,2);
end

% Read a chunk from the first speaker signal
x1 = readSpeakerSignalChunk(duration,x1);

 End-to-End Deep Speech Separation

15-341



% Read a chunk from the second speaker signal
x2 = readSpeakerSignalChunk(duration,x2);

% SNR [-5 5] dB
s = snr(x1,x2);
targetSNR = 10 * (rand - 0.5);
x1b = 10^((targetSNR-s)/20) * x1;
mix = x1b + x2;
mix = mix./max(abs(mix));

if reduceDataset
    [~,n] = fileparts(tempname);
    name = sprintf("%s.wav",n);
else
    [~,s1] = fileparts(writeInfo.ReadInfo{1}.FileName);
    [~,s2] = fileparts(writeInfo.ReadInfo{2}.FileName);
    name = sprintf("%s-%s.wav",s1,s2);
end

audiowrite(sprintf("%s",fullfile(writeInfo.Location,"sp1",name)),x1,8000);
audiowrite(sprintf("%s",fullfile(writeInfo.Location,"sp2",name)),x2,8000);
audiowrite(sprintf("%s",fullfile(writeInfo.Location,"mix",name)),mix,8000);

end

function sequence = readSpeakerSignalChunk(duration,sequence)
% readSpeakerSignalChunk - Read a chunk from the speaker signal
if length(sequence)<=duration
    sequence = [sequence;zeros(duration-length(sequence),1)];
else
    startInd = randi([1 length(sequence)-duration],1);
    endInd = startInd + duration - 1;
    sequence = sequence(startInd:endInd);
end
sequence = sequence./max(abs(sequence));
end

function [loss,gradients,states] = modelLoss(mix,x1,x2,learnables,states,miniBatchSize)
% modelLoss Compute the model loss, gradients, and states

[y1,y2,states] = separateSpeakers(mix,learnables,states,true);

m = uPIT(x1,y1,x2,y2);
l = sum(m);
loss = -l./miniBatchSize;

gradients = dlgradient(loss,learnables);

end

function m = uPIT(x1,y1,x2,y2)
% uPIT - Compute utterance-level permutation invariant training
v1 = SISNR(y1,x1);
v2 = SISNR(y2,x2);
m1 = mean([v1;v2]);

v1 = SISNR(y2,x1);

15 Audio Examples

15-342



v2 = SISNR(y1,x2);
m2 = mean([v1;v2]);

m = max(m1,m2);
end

function z = SISNR(x,y)
% SISNR - Compute SI-SNR
x = x - mean(x);
y = y - mean(y);

t = sum(x.*y) .* y ./ (sum(y.^2)+eps);

z = 20*log((sqrt(sum(t.^2))+eps)./sqrt((sum((x-t).^2))+eps))/log(10);

end

function [learnables,states] = initializeNetworkParams
% initializeNetworkParams - Initialize the learnables and states of the
% network
learnables.Conv1W = initializeGlorot(20,1,256);
learnables.Conv1B = dlarray(zeros(256,1,"single"));

learnables.ln_weight = dlarray(ones(1,256,"single"));
learnables.ln_bias = dlarray(zeros(1,256,"single"));

learnables.Conv2W = initializeGlorot(1,256,256);
learnables.Conv2B = dlarray(zeros(256,1,"single"));

blk.Conv1B = dlarray(zeros(512,1,"single"));
blk.Prelu1 = dlarray(single(0.25));
blk.BN1Offset = dlarray(zeros(512,1,"single"));
blk.BN1Scale = dlarray(ones(512,1,"single"));
blk.Conv2B = dlarray(zeros(512,1,"single"));
blk.Prelu2 = dlarray(single(0.25));
blk.BN2Offset= dlarray(zeros(512,1,"single"));
blk.BN2Scale= dlarray(ones(512,1,"single"));
blk.Conv3B = dlarray(ones(256,1,"single"));

s.BN1Mean= dlarray(zeros(512,1,"single"));
s.BN1Var= dlarray(ones(512,1,"single"));
s.BN2Mean = dlarray(zeros(512,1,"single"));
s.BN2Var = dlarray(ones(512,1,"single"));

for index=1:32
    blk.Conv1W = initializeGlorot(1,256,512);
    blk.Conv2W = initializeGlorot(3,1,512);
    blk.Conv2W =  reshape(blk.Conv2W,[3 1 1 512]);
    blk.Conv3W = initializeGlorot(1,512,256); 
    learnables.Blocks(index) = blk;
    states(index) = s; %#ok
end

learnables.Conv3W = initializeGlorot(1,256,512);
learnables.Conv3B = dlarray(zeros(512,1,"single"));

learnables.TransConv1W = initializeGlorot(20,1,256);
learnables.TransConv1B = dlarray(zeros(1,1, "single"));

 End-to-End Deep Speech Separation

15-343



end

function weights = initializeGlorot(filterSize,numChannels,numFilters)
% initializeGlorot - Perform Glorot initialization
sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = numOut;

Z = 2*rand(sz,"single") - 1;
bound = sqrt(6 / (numIn + numOut));

weights = dlarray(bound * Z);
end

function [output1, output2, states] = separateSpeakers(input, learnables, states, training)
% separateSpeakers - Separate two speaker signals from a mixture input
if ~isdlarray(input)
    input = dlarray(input,"SCB");
end

x = dlconv(input, learnables.Conv1W,learnables.Conv1B, Stride= 10);

x = relu(x);
x0 = x;

x = x-mean(x, 2);
x = x./sqrt(mean(x.^2, 2) + 1e-5);
x = x.*learnables.ln_weight + learnables.ln_bias;

encoderOut = dlconv(x, learnables.Conv2W, learnables.Conv2B);

for index = 1:32
    [encoderOut,s] = convBlock(encoderOut, index-1,learnables.Blocks(index),states(index),training);
    states(index) = s;
end

masks = dlconv(encoderOut, learnables.Conv3W, learnables.Conv3B);
masks = relu(masks);

mask1 = masks(:,1:256,:);
mask2 = masks(:,257:512,:);

out1 = x0 .* mask1;
out2 = x0 .* mask2;

weights = learnables.TransConv1W;
bias = learnables.TransConv1B;
output2 = dltranspconv(out1, weights, bias, Stride=10);
output1 = dltranspconv(out2, weights, bias, Stride=10);

if ~training
    output1 = gather(extractdata(output1));
    output2 = gather(extractdata(output2));

    output1 = output1./max(abs(output1));
    output2 = output2./max(abs(output2));
end

15 Audio Examples

15-344



end

function [output,state] = convBlock(input, count,learnables,state,training)

% Conv:
conv1Out = dlconv(input, learnables.Conv1W, learnables.Conv1B);

% PRelu:
conv1Out = relu(conv1Out) - learnables.Prelu1.*relu(-conv1Out);

% BatchNormalization:
offset = learnables.BN1Offset;
scale = learnables.BN1Scale;
datasetMean = state.BN1Mean;
datasetVariance = state.BN1Var;
if training
    [batchOut, dsmean, dsvar] = batchnorm(conv1Out, offset, scale, datasetMean, datasetVariance);
    state.BN1Mean = dsmean;
    state.BN1Var = dsvar;
else
    batchOut = batchnorm(conv1Out, offset, scale, datasetMean, datasetVariance);
end

% Conv:
padding = [1 1] * 2^(mod(count,8));
dilationFactor = 2^(mod(count,8));
convOut = dlconv(batchOut, learnables.Conv2W, learnables.Conv2B,DilationFactor=dilationFactor, Padding=padding);

% PRelu:
convOut = relu(convOut) - learnables.Prelu2.*relu(-convOut);

% BatchNormalization:
if training
    [batchOut, dsmean, dsvar] = batchnorm(convOut, learnables.BN2Offset, learnables.BN2Scale, state.BN2Mean, state.BN2Var);
    state.BN2Mean = dsmean;
    state.BN2Var = dsvar;
else
    batchOut = batchnorm(convOut, learnables.BN2Offset, learnables.BN2Scale, state.BN2Mean, state.BN2Var);
end

% Conv:
output = dlconv(batchOut,  learnables.Conv3W, learnables.Conv3B);

% Skip connection
output = output + input;

end

function [speaker1,speaker2] = separateSpeakersTimeFrequency(mix,pathToNet)
% separateSpeakersTimeFrequency - STFT-based speaker separation function
WindowLength  = 128;
FFTLength     = 128;
OverlapLength = 128-1;
win           = hann(WindowLength,"periodic");

% Downsample to 4 kHz
mix = resample(mix,1,2);

 End-to-End Deep Speech Separation

15-345



P0 = stft(mix, Window=win, OverlapLength=OverlapLength,...
    FFTLength=FFTLength, FrequencyRange="onesided");
P = log(abs(P0) + eps);
MP = mean(P(:));
SP = std(P(:));
P = (P-MP)/SP;

seqLen = 20;
PSeq  = zeros(1 + FFTLength/2,seqLen,1,0);
seqOverlap = seqLen;

loc = 1;
while loc < size(P,2)-seqLen
    PSeq(:,:,:,end+1) = P(:,loc:loc+seqLen-1); %#ok
    loc = loc + seqOverlap;
end

PSeq  = reshape(PSeq, [1 1 (1 + FFTLength/2) * seqLen size(PSeq,4)]);

s = load(fullfile(pathToNet,"CocktailPartyNet.mat"));
CocktailPartyNet = s.CocktailPartyNet;
estimatedMasks = predict(CocktailPartyNet,PSeq);

estimatedMasks = estimatedMasks.';
estimatedMasks = reshape(estimatedMasks,1 + FFTLength/2,numel(estimatedMasks)/(1 + FFTLength/2));

mask1   = estimatedMasks; 
mask2 = 1 - mask1;

P0 = P0(:,1:size(mask1,2));

P_speaker1 = P0 .* mask1;

speaker1 = istft(P_speaker1, Window=win, OverlapLength=OverlapLength,...
    FFTLength=FFTLength, ConjugateSymmetric=true,...
    FrequencyRange="onesided");
speaker1 = speaker1 / max(abs(speaker1));

P_speaker2 = P0 .* mask2;

speaker2 = istft(P_speaker2, Window=win, OverlapLength=OverlapLength,...
    FFTLength=FFTLength, ConjugateSymmetric=true,...
    FrequencyRange="onesided");
speaker2 = speaker2 / max(speaker2);

speaker1 = resample(double(speaker1),2,1);
speaker2 = resample(double(speaker2),2,1);
end

function [x1Batch,x2Batch,mixBatch] = preprocessMiniBatch(x1Batch,x2Batch,mixBatch)
% preprocessMiniBatch - Preprocess mini-batch
x1Batch = cat(3,x1Batch{:});
x2Batch = cat(3,x2Batch{:});
mixBatch = cat(3,mixBatch{:});
end

15 Audio Examples

15-346



Train 3-D Sound Event Localization and Detection (SELD) Using
Deep Learning

In this example, you train a deep learning model to perform sound localization and event detection
from ambisonic data. The model consists of two independently trained convolutional recurrent neural
networks (CRNN) [1] on page 15-363: one for sound event detection (SED), and one for direction of
arrival (DOA) estimation. To explore the models trained in this example, see “3-D Sound Event
Localization and Detection Using Trained Recurrent Convolutional Neural Network” (Audio Toolbox).

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-347



Introduction

Ambisonics is a popular 3-D sound format that has shown promise in tasks like sound source
localization, speech enhancement, and source separation. Ambisonics is a full sphere surround sound
format that contains a speaker-independent sound field representation (B-format). First order B-
format ambisonic recordings contain components that correspond to the sound pressure captured by
an omnidirectional microphone (W) and sound pressure gradients X, Y, and Z that correspond to
front/back, left/right, and up/down captured by figure-of-eight capsules oriented along the three
spatial axes. 3-D SELD has applications in virtual reality, robotics, smart homes, and defense.

You will train two separate models for the sound event detection task and the localization task. Both
models are based on the convolutional recurrent neural network architecture described in [1] on
page 15-363. The sound event detection task is formulated as a classification task. The sound event
localization task estimates Cartesian coordinates of the sound source and is formulated as a
regression task. You use the L3DAS21 data set [2] on page 15-364 to train and validate the networks.
To explore the models trained in this example, see “3-D Sound Event Localization and Detection
Using Trained Recurrent Convolutional Neural Network” (Audio Toolbox).

Download and Prepare Data

This example uses a subset of the L3DAS21 Task 2 challenge data set [2] on page 15-364. The data
set contains multiple-source and multiple-perspective (MSMP) B-format ambisonic audio recordings
collected at a sampling rate of 32 kHz. The train and validation splits are provided with the data set.
Each recording is one minute long and contains a simulated 3-D audio environment in which up to 3
simultaneous acoustic events may be active at the same time. In this example, you only use the data
that contains non-overlapping sounds. The sound events belong to 14 sound classes. The labels are
provided as csv files that contain the sound class, the Cartesian coordinates of the sound source, and
the onset and offset time stamps.

Download the dataset.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","L3DAS21_ov1.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"L3DAS21_ov1");

Optionally Reduce Data Set

To train the networks with the entire data set and achieve a reasonable performance, set
speedupExample to false. To run this example quickly, set speedupExample to true.

speedupExample = ;

Create Datastores

Create audioDatastore (Audio Toolbox) objects to ingest the data. Each data point in the data set
consists of two B-format ambisonic recordings that correspond to the two microphones (A and B). For
each data folder (train and validation), use subset (Audio Toolbox) to create two subsets
corresponding to the two microphones.

adsTrain = audioDatastore(fullfile(dataset,"train","data"));
adsTrainA = subset(adsTrain,cellfun(@(c)endsWith(c,"A.wav"),adsTrain.Files));
adsTrainB = subset(adsTrain,cellfun(@(c)endsWith(c,"B.wav"),adsTrain.Files));

adsValidation = audioDatastore(fullfile(dataset,"validation","data"));

15 Audio Examples

15-348



adsValidationA = subset(adsValidation,cellfun(@(c)endsWith(c,"A.wav"),adsValidation.Files));
adsValidationB = subset(adsValidation,cellfun(@(c)endsWith(c,"B.wav"),adsValidation.Files));

Reduce the data set if requested.

if speedupExample
    adsTrainA = subset(adsTrainA,1:2);
    adsTrainB = subset(adsTrainB,1:2);
end

Inspect Data

Preview the ambisonic recordings and plot the data.

micA = preview(adsTrainA);
micB = preview(adsTrainB);

tiledlayout(4,2,TileSpacing="tight")

nexttile
plot(micA(:,1))
title("Microphone A")
ylabel("W")

nexttile
plot(micB(:,1))
title("Microphone B")

nexttile
plot(micA(:,2))
ylabel("X")

nexttile
plot(micB(:,2))

nexttile
plot(micA(:,3))
ylabel("Y")

nexttile
plot(micB(:,3))

nexttile
plot(micB(:,4))
ylabel("Z")

nexttile
plot(micB(:,4))

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-349



Listen to a section of the data.

microphone = ;

channel = ;

duration = ;
fs = 32e3; % Known sampling rate of data.

s = [micA,micB];
data = s(1:round(duration*fs),channel + (microphone-1)*4);
sound(data,fs)

Create Targets

Each data point in the data set has a corresponding CSV file containing the sound event class, the
start and end times of the sound, and the location of the sound. Create a container to map between
the sound classes and integers.

keySet = ["Chink_and_clink","Computer_keyboard","Cupboard_open_or_close","Drawer_open_or_close", ...
    "Female_speech_and_woman_speaking","Finger_snapping","Keys_jangling","Knock","Laughter", ...
    "Male_speech_and_man_speaking","Printer","Scissors","Telephone","Writing"];
valueSet = {1,2,3,4,5,6,7,8,9,10,11,12,13,14};
params.SoundClasses = containers.Map(keySet,valueSet);

15 Audio Examples

15-350



Create a tabularTextDatastore to ingest the train file labels. Make sure the label files are in the
same order as the data files. Preview a label file from the datastore.

[folder,fn] = fileparts(adsTrainA.Files);
targetPath = fullfile(strrep(folder,filesep+"data",filesep+"labels"),"label_" + strrep(fn,"_A","") + ".csv");
ttdsTrain = tabularTextDatastore(targetPath);

labelTable = preview(ttdsTrain)

labelTable=8×7 table
    File     Start      End                     Class                     X       Y       Z  
    ____    _______    ______    ____________________________________    ____    ____    ____

     0      0.54784    9.6651    {'Writing'                         }     0.5    -1.5     0.3
     0       11.521    12.534    {'Finger_snapping'                 }    0.75    1.25      -1
     0       14.255    16.064    {'Keys_jangling'                   }     0.5    -1.5     0.3
     0       17.728    18.878    {'Chink_and_clink'                 }     0.5       1       0
     0        19.95      20.4    {'Printer'                         }    -1.5    -1.5    -0.6
     0       20.994    23.477    {'Cupboard_open_or_close'          }    -0.5    0.75       0
     0       25.032    25.723    {'Chink_and_clink'                 }      -2    -0.5    -0.3
     0       26.547    27.491    {'Female_speech_and_woman_speaking'}       1    -1.5       0

The labels in the dataset are provided with time stamps in seconds. To create targets and train a
network, you need to map the time stamps to frames. The total duration of each file is 60 seconds.
You will divide each file into 600 frames for the target, meaning the model will make a prediction
every 0.1 seconds.

params.Targets.TotalDuration = 60;
params.Targets.NumFrames = 600;

SED Targets

The supporting function, extractSEDTargets on page 15-364, uses the label data to create an SED
target. The target is a one-hot encoded matrix of size numframes-by-numclasses. Frames with no
sounds present are encoded as all-zero vectors.

SEDTargets = extractSEDTargets(labelTable,params);

[numframes,numclasses] = size(SEDTargets{1})

numframes = 600

numclasses = 14

Extract SED targets from the train and validation sets.

dsTTrain = transform(ttdsTrain,@(x)extractSEDTargets(x,params));
sedTTrain = readall(dsTTrain);

[folder,fn] = fileparts(adsValidationA.Files);
targetPath = fullfile(strrep(folder,filesep+"data",filesep+"labels"),"label_" + strrep(fn,"_A","") + ".csv");

ttdsValidation = tabularTextDatastore(targetPath);
dsTValidation = transform(ttdsValidation,@(x)extractSEDTargets(x,params));
sedTValidation = readall(dsTValidation);

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-351



DOA Targets

The supporting function, extractDOATargets on page 15-364, uses the label data to create a DOA
target. The target is a matrix of size numframes-by-numaxis. The axis values correspond to the
sound source location in 3-D space. Frames with no sounds present are encoded as all-zero vectors.

First, define a parameter to scale the target axis values so that they are between -1 and 1. This
scaling is necessary because the DOA network you define later uses tanh activation as its final layer.

params.DOA.ScaleFactor = 2;
DOATargets = extractDOATargets(labelTable,params);

[numframes,numaxis] = size(DOATargets{1})

numframes = 600

numaxis = 3

Extract DOA targets from the train and validation sets.

dsTTrain = transform(ttdsTrain,@(x)extractDOATargets(x,params));
doaTTrain = readall(dsTTrain);

[folder,fn] = fileparts(adsValidationA.Files);
targetPath = fullfile(strrep(folder,filesep+"data",filesep+"labels"),"label_" + strrep(fn,"_A","") + ".csv");

ttdsValidation = tabularTextDatastore(targetPath);
dsTValidation = transform(ttdsValidation,@(x)extractDOATargets(x,params));
doaTValidation = readall(dsTValidation);

Sound Event Detection (SED)

Feature Extraction

The sound event detection model uses log-magnitude short-time Fourier transforms (STFT) as
predictors to the system. Specify a 512-point periodic Hamming window and a hop length of 400
samples.

params.SED.SampleRate = 32e3;
params.SED.HopLength = 400;
params.SED.Window = hamming(512,"periodic");

The supporting function, extractSTFT on page 15-365, takes a cell array of microphone readings and
extracts the half-sided centered log-magnitude STFTs. The STFT features corresponding to both
microphones are stacked along the third dimension.

stftFeats = extractSTFT({micA,micB},params);
[numfeaturesSED,numframesSED,numchannelsSED] = size(stftFeats)

numfeaturesSED = 256

numframesSED = 4800

numchannelsSED = 8

Plot the STFT features of one channel.

channel = ;

15 Audio Examples

15-352



figure
imagesc(stftFeats(:,:,channel))
colorbar
xlabel("Frame")
ylabel("Frequency (bin)")
set(gca,YDir="normal")

Extract features from the entire train and validation sets. First, combine the datastores
corresponding to microphones A and B. Then, define a transform (Audio Toolbox) on the datastore
so that reading from it returns the STFT. If you have Parallel Computing Toolbox™, you can speed up
processing using the UseParallel flag of readall (Audio Toolbox).

pFlag = ~isempty(ver("parallel")) && ~speedupExample;

trainDS = combine(adsTrainA,adsTrainB);
trainDS_T = transform(trainDS,@(x){extractSTFT(x,params)},IncludeInfo=false);
XTrain = readall(trainDS_T,UseParallel=pFlag);
valDS = combine(adsValidationA,adsValidationB);
valDS_T = transform(valDS,@(x){extractSTFT(x,params)},IncludeInfo=false);
XValidation = readall(valDS_T,UseParallel=pFlag);

Combine the predictor arrays with the previously computed SED target arrays.

trainSedDS = combine(arrayDatastore(XTrain,OutputType="same"),arrayDatastore(sedTTrain,OutputType="same"));
valSedDS = combine(arrayDatastore(XValidation,OutputType="same"),arrayDatastore(sedTValidation,OutputType="same"));

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-353



Training Options

Define training parameters for Adam optimization.

trainOptionsSED = struct( ...
    MaxEpochs=300, ...
    MiniBatchSize=4, ...
    InitialLearnRate=1e-5, ...
    GradientDecayFactor=0.01, ...
    SquaredGradientDecayFactor=0.0, ...
    ValidationPatience=25, ...
    LearnRateDropPeriod=100, ...
    LearnRateDropFactor=1);

if speedupExample
    trainOptionsSED.MaxEpochs = 1;
end

Create minibatchqueue objects to read mini-batches from the train and validation datastores.

trainSEDmbq = minibatchqueue(trainSedDS, ...
    MiniBatchSize=trainOptionsSED.MiniBatchSize, ...
    OutputAsDlarray=[1,1], ...
    MiniBatchFormat=["SSCB","TCB"], ...
    OutputEnvironment=["auto","auto"]);

validationSEDmbq = minibatchqueue(valSedDS, ...
    MiniBatchSize=trainOptionsSED.MiniBatchSize, ...
    OutputAsDlarray=[1,1], ...
    MiniBatchFormat=["SSCB","TCB"], ...
    OutputEnvironment=["auto","auto"]);

Define Sound Event Detection (SED) Network

The network is implemented in two stages - Convolutional Neural Network (CNN) and Gated
Recurrent Network (GRU). You will use a custom reshaping layer to recast the output of the CNN
model into a sequence and pass that as the input to the RNN model. The custom reshaping layer is
placed in your current folder when you open this example. The final output layer uses sigmoid
activation.

Define the CNN layers for the SED model.

seldnetCNNLayers = [
    imageInputLayer([numfeaturesSED,numframesSED,numchannelsSED],Normalization="none",Name="input")

    convolution2dLayer([3,3],64,Padding="same",Name="conv1")

15 Audio Examples

15-354



    batchNormalizationLayer(Name="batchnorm1")
    reluLayer(Name="relu1")
    maxPooling2dLayer([8,2],Stride=[8,2],Padding="same",Name="maxpool1")

    convolution2dLayer([3,3],128,Padding="same",Name="conv2")
    batchNormalizationLayer(Name="batchnorm2")
    reluLayer(Name="relu2")
    maxPooling2dLayer([8,2],Stride=[8,2],Padding="same",Name="maxpool2")

    convolution2dLayer([3,3],256,Padding="same",Name="conv3")
    batchNormalizationLayer(Name="batchnorm3")
    reluLayer(Name="relu3")
    maxPooling2dLayer([2,2],Stride=[2,2],Padding="same",Name="maxpool3")

    convolution2dLayer([3,3],512,Padding="same",Name="conv4")
    batchNormalizationLayer(Name="batchnorm4")
    reluLayer(Name="relu4")
    maxPooling2dLayer([1,1],Stride=[1,1],Padding="same",Name="maxpool4")

    reshapeLayer("reshape")
    ];
netCNN = dlnetwork(layerGraph(seldnetCNNLayers));

Define the RNN layers for the SED model.

seldnetGRULayers = [
    sequenceInputLayer(1024,Name="sequenceInputLayer")

    bigruLayer(1024,256,Name="gru1")
    bigruLayer(512,256,Name="gru2")
    bigruLayer(512,256,Name="gru3")

    fullyConnectedLayer(1024,Name="fc1")
    reluLayer(Name="relu1")
    fullyConnectedLayer(1024,Name="fc2")
    reluLayer(Name="relu2")
    fullyConnectedLayer(1024,Name="fc3")
    reluLayer(Name="relu3")

    fullyConnectedLayer(params.SoundClasses.Count,Name="fc4")
    sigmoidLayer(Name="output")
    ];

netRNN = dlnetwork(layerGraph(seldnetGRULayers));

Create a struct to contain both the CNN and RNN sections of the full model.

sedModel.CNN = netCNN;
sedModel.RNN = netRNN;

Train SED Network

Initialize variables to track the progress of the training.

iteration = 0;
averageGrad = [];
averageSqGrad = [];
epoch = 0;

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-355



bestLoss = Inf;
badEpochs = 0;
learnRate = trainOptionsSED.InitialLearnRate;

To display training progress, initialize the supporting object progresPlotterSELD. The supporting
object, progressPlotterSELD, is placed in your current folder when you open this example.

pp = progressPlotterSELD();

Run the training loop.

rng(0)
while epoch < trainOptionsSED.MaxEpochs && badEpochs < trainOptionsSED.ValidationPatience
    
    epoch = epoch + 1;

    % Shuffle mini-batch queue.
    shuffle(trainSEDmbq)

    while hasdata(trainSEDmbq)

        % Update iteration counter.
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(trainSEDmbq);

        % Evaluate the model gradients and loss using dlfeval and the modelLoss function.
        [loss,grad,state] = dlfeval(@modelLoss,sedModel,X,T);
        loss = loss/size(T,2);

        % Update state.
        sedModel.CNN.State = state.CNN;
        sedModel.RNN.State = state.RNN;

        % Update the network parameters using the Adam optimizer.
        [sedModel,averageGrad,averageSqGrad] = adamupdate(sedModel,grad,averageGrad, ...
            averageSqGrad,iteration,learnRate,trainOptionsSED.GradientDecayFactor,trainOptionsSED.SquaredGradientDecayFactor);

        % Update the training progress plot.
        updateTrainingProgress(pp,Epoch=epoch,LearnRate=learnRate,Iteration=iteration,Loss=loss);
    end

    % Perform validation after each epoch.
    loss = predictBatch(sedModel,validationSEDmbq);

    % Update the training progress plot with validation results.
    updateValidation(pp,Loss=loss,Iteration=iteration)

    % Create a checkpoint if the validation loss improved. If validation
    % loss did not improve, add to the number of bad epochs.
    if loss < bestLoss
        bestLoss = loss;
        badEpochs = 0;
        fileName = "SED-BestModel";
        save(fileName,"sedModel");
    else
        badEpochs = badEpochs + 1;

15 Audio Examples

15-356



    end

    % Update learn rate
    if rem(epoch,trainOptionsSED.LearnRateDropPeriod)==0
        learnRate = learnRate*trainOptionsSED.LearnRateDropFactor;
    end

end

Direction of Arrival (DOA)

Feature Extraction

The direction of arrival estimation model uses generalized cross correlation phase transform (GCC-
PHAT) as predictors to the system. Specify a 1024-point Hann window, a hop length of 400 samples,
and the number of bands as 96.

params.DOA.SampleRate = 32e3;
params.DOA.Window = hann(1024);
params.DOA.NumBands = 96;
params.DOA.HopLength = 400;

Extract the GCC-PHAT features used as input predictors to the sound localization network. The GCC-
PHAT algorithm measures the cross correlation between each pair of channels. The input signals
have a total of 8 channels, so the output has a total of 28 measurements.

gccPhatFeats = extractGCCPHAT({micA,micB},params);
[numfeaturesDOA,timestepsDOA,numchannelsDOA] = size(gccPhatFeats)

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-357



numfeaturesDOA = 96

timestepsDOA = 4800

numchannelsDOA = 28

Plot the GCC-PHAT features of a channel pair.

channelpair = ;

figure
imagesc(gccPhatFeats(:,:,channelpair))
colorbar
xlabel("Frame")
ylabel("Band")
set(gca,YDir="normal")

Extract features from the entire train and validation sets. If you have Parallel Computing Toolbox™,
you can speed up processing using the UseParallel flag of readall.

pFlag = ~isempty(ver("parallel")) && ~speedupExample;

trainDS = combine(adsTrainA,adsTrainB);
trainDS_T = transform(trainDS,@(x){extractGCCPHAT(x,params)},IncludeInfo=false);
XTrain = readall(trainDS_T,UseParallel=pFlag);

15 Audio Examples

15-358



Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

valDS = combine(adsValidationA,adsValidationB);
valDS_T = transform(valDS,@(x){extractGCCPHAT(x,params)},IncludeInfo=false);
XValidation = readall(valDS_T,UseParallel=pFlag);

Combine the predictor arrays with the previously compute DOA target arrays.

trainDOA = combine(arrayDatastore(XTrain,OutputType="same"),arrayDatastore(doaTTrain,OutputType="same"));
validationDOA = combine(arrayDatastore(XValidation,OutputType="same"),arrayDatastore(doaTValidation,OutputType="same"));

Training Options

Use the same train options you defined when training the SED network.

trainOptionsDOA = trainOptionsSED;

Create mini-batch queues for the train and validation sets.

trainDOAmbq = minibatchqueue(trainDOA, ...
    MiniBatchSize=trainOptionsDOA.MiniBatchSize, ...
    OutputAsDlarray=[1,1], ...
    MiniBatchFormat=["SSCB","TCB"], ...
    OutputEnvironment=["auto","auto"]);
validationDOAmbq = minibatchqueue(validationDOA, ...
    MiniBatchSize=trainOptionsDOA.MiniBatchSize, ...
    OutputAsDlarray=[1,1], ...
    MiniBatchFormat=["SSCB","TCB"], ...
    OutputEnvironment=["auto","auto"]);

Define Direction of Arrival (DOA) Network

The DOA network is very similar to the SED network defined earlier. The key differences are the size
of the input layer and the final activation layer.

Update the SELDnet architecture used for the SED network for use with DOA estimation.

seldnetCNNLayers(1) = imageInputLayer([numfeaturesDOA,timestepsDOA,numchannelsDOA],Normalization="none",Name="input");
seldnetCNNLayers(5) = maxPooling2dLayer([3,2],Stride=[3,2],Padding="same",Name="maxpool1");
netCNN = dlnetwork(layerGraph(seldnetCNNLayers));

seldnetGRULayers(11) = fullyConnectedLayer(3,Name="fc4");
seldnetGRULayers(12) = tanhLayer(Name="output");
netRNN = dlnetwork(layerGraph(seldnetGRULayers));

Create a struct to contain both the CNN and RNN sections of the full model.

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-359



doaModel.CNN = netCNN;
doaModel.RNN = netRNN;

Train DOA Network

Initialize variables used in the training loop.

iteration = 0;
averageGrad = [];
averageSqGrad = [];
epoch = 0;
bestLoss = Inf;
badEpochs = 0;
learnRate = trainOptionsDOA.InitialLearnRate;

To display training progress, initialize the supporting object progressPlotterSELD. The supporting
object, progressPlotterSELD, is placed in your current folder when you open this example.

pp = progressPlotterSELD();

Run the training loop.

rng(0)
while epoch < trainOptionsDOA.MaxEpochs && badEpochs < trainOptionsDOA.ValidationPatience
    
    epoch = epoch + 1;

    % Shuffle mini-batch queue.
    shuffle(trainDOAmbq)

    while hasdata(trainDOAmbq)

        % Update iteration counter.
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(trainDOAmbq);

        % Evaluate the model gradients and loss using dlfeval and the modelLoss function.
        [loss,grad,state] = dlfeval(@modelLoss,doaModel,X,T);
        loss = loss/size(T,2);

        % Update state.
        doaModel.CNN.State = state.CNN;
        doModel.RNN.State = state.RNN;

        % Update the network parameters using the Adam optimizer.
        [doaModel,averageGrad,averageSqGrad] = adamupdate(doaModel,grad,averageGrad, ...
            averageSqGrad,iteration,learnRate,trainOptionsDOA.GradientDecayFactor,trainOptionsDOA.SquaredGradientDecayFactor);

        % Update the training progress plot
        updateTrainingProgress(pp,Epoch=epoch,LearnRate=learnRate,Iteration=iteration,Loss=loss);
    end

    % Perform validation after each epoch
    loss = predictBatch(doaModel,validationDOAmbq);

    % Update the training progress plot with validation results.

15 Audio Examples

15-360



    updateValidation(pp,Loss=loss,Iteration=iteration)

    % Create a checkpoint if the validation loss improved. If validation
    % loss did not improve, add to the number of bad epochs.
    if loss < bestLoss
        bestLoss = loss;
        badEpochs = 0;
        fileName = "DOA-BestModel";
        save(fileName,"doaModel");
    else
        badEpochs = badEpochs + 1;
    end

    % Update learn rate
    if rem(epoch,trainOptionsDOA.LearnRateDropPeriod)==0
        learnRate = learnRate*trainOptionsDOA.LearnRateDropFactor;
    end
end

Evaluate System Performance

To evaluate your system's performance, use the location-sensitive detection error defined in [4] on
page 15-364. Load the best-performing models.

sedModel = importdata("SED-BestModel.mat");
doaModel = importdata("DOA-BestModel.mat");

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-361



Location-sensitive detection is a joint metric that evaluates the results of both sound event detection
and sound event localization tasks. In this type of evaluation, a true positive only occurs when the
predicted label is correct, and the predicted location is within a predefined threshold of the true
location. A threshold of 0.2 is used in this example which is about ~3% of the maximum possible
error. To determine regions of silence in the prediction, set a confidence threshold on SED decisions.
If the SED predictions are below that threshold, the frame is considered silence.

params.SpatialThreshold = 0.2;
params.SilenceThreshold = 0.1;

Compute the metrics for the validation data set using the computeMetrics on page 15-369
supporting function.

results = computeMetrics(sedModel,doaModel,validationSEDmbq,validationDOAmbq,params);
results

results = struct with fields:
    precision: 0.4246
       recall: 0.4275
      f1Score: 0.4261
       avgErr: 0.1861

The computeMetrics supporting function can optionally smooth the decisions over time before
evaluating the system. This option requires the Statistics and Machine Learning Toolbox™. Evaluate
the system again, this time including the smoothing.

[results,cm] = computeMetrics(sedModel,doaModel,validationSEDmbq,validationDOAmbq,params,ApplySmoothing=true);
results

results = struct with fields:
    precision: 0.5077
       recall: 0.5084
      f1Score: 0.5080
       avgErr: 0.1659

You can inspect the confusion matrix for SED predictions to get more insights on the prediction
errors. The confusion matrix is only calculated over regions where there is an active sound source.

figure(Position=[100 100 800 800]);
confusionchart(cm,keys(params.SoundClasses))

15 Audio Examples

15-362



Conclusion

For next steps, you can download and try out the pretrained models from this example in this second
example showing inference: “3-D Sound Event Localization and Detection Using Trained Recurrent
Convolutional Neural Network” (Audio Toolbox).

References

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-363



[1] Sharath Adavanne, Archontis Politis, Joonas Nikunen, and Tuomas Virtanen, “Sound event
localization and detection of overlapping sources using convolutional recurrent neural networks,”
IEEE J. Sel. Top. Signal Process., vol. 13, no. 1, pp. 34–48, 2019.

[2] Eric Guizzo, Riccardo F. Gramaccioni, Saeid Jamili, Christian Marinoni, Edoardo Massaro, Claudia
Medaglia, Giuseppe Nachira, Leonardo Nucciarelli, Ludovica Paglialunga, Marco Pennese, Sveva
Pepe, Enrico Rocchi, Aurelio Uncini, and Danilo Comminiello "L3DAS21 Challenge: Machine Learning
for 3D Audio Signal Processing," 2021.

[3] Yin Cao, Qiuqiang Kong, Turab Iqbal, Fengyan An, Wenwu Wang, and Mark D. Plumbley,
“Polyphonic sound event detection and localization using a two-stage strategy,” arXiv preprint:
arXiv:1905.00268v4, 2019.

[4] Mesaros, Annamaria, Sharath Adavanne, Archontis Politis, Toni Heittola, and Tuomas Virtanen.
“Joint Measurement of Localization and Detection of Sound Events.” 2019 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), 2019. https://doi.org/10.1109/
waspaa.2019.8937220.

Supporting Functions

Extract Direction of Arrival (DOA) Targets

function T = extractDOATargets(csvFile,params)
%EXTRACTDOATARGETS Extract direction of arrival (DOA) targets
% T = extractDOATargets(fileName,params) parses the CSV file
% fileName and returns a matrix, T. The target matrix is an N-by-3
% matrix, where N corresponds to the number of frames and 3 corresponds to
% the 3 axes describing location in 3-D space.

% Preallocate target matrix. A frame of all zeros corresponds to no sound
% source.
T = zeros(params.Targets.NumFrames,3);

% Quantize the time stamps for sound sources into frames.
startendTime = [csvFile.Start,csvFile.End];
startendFrame = time2frame(startendTime,params.Targets.TotalDuration,params.Targets.NumFrames);

% For each sound source, fill the target matrix sound source location for
% the appropriate number of frames.
for ii = 1:size(startendFrame,1)
    idx = startendFrame(ii,1):startendFrame(ii,2)-1;
    T(idx,:) = repmat([csvFile.X(ii),csvFile.Y(ii),csvFile.Z(ii)],numel(idx),1);
end

% Scale the target so that it is between -1 and 1 (the bounds of the tanh
% activation layer). Wrap the target in a cell array for convenient batch
% processing.
T = {T/params.DOA.ScaleFactor};
end

Extract Sound Event Detection (SED) Targets

15 Audio Examples

15-364



function T = extractSEDTargets(csvFile,params)
%EXTRACTSEDTARGETS Extract sound event detection (SED) targets
% T = extractSEDTargets(fileName,params) parses the CSV file
% fileName and returns a matrix of SED targets, T. The target matrix is an N-by-K
% matrix, where N corresponds to the number of frames and K corresponds to
% the number of sound classes.

% Preallocate target matrix. A frame of all zeros corresponds to no sound
% source.
T = zeros(params.Targets.NumFrames,params.SoundClasses.Count);

% Quantize the time stamps for sound sources into frames.
startendTime = [csvFile.Start,csvFile.End];
startendFrame = time2frame(startendTime,params.Targets.TotalDuration,params.Targets.NumFrames);

% For each sound source, fill the appropriate column of the target matrix
% with a 1, indicating that the sound class is present in that frame.
for ii = 1:size(startendFrame,1)
    classID = params.SoundClasses(csvFile.Class{ii});
    T(startendFrame(ii,1):startendFrame(ii,2)-1,classID) = 1;
end

% Wrap the target in a cell array for convenient batch processing.
T = {T};
end

Short-Time Fourier Transform (STFT)

function X = extractSTFT(s,params)
%EXTRACTSTFT Extract log-magnitude of centered STFT
% X = extractSTFT({s1,s2},params) concatenates s1 and s2 and then
% extracts the one-sided log-magnitude STFT. The signals are padded before
% the STFT so that the first window is centered on the first sample. The
% output is trimmed to remove the 1st (DC) coefficient and the last
% spectrum. The input params defines the STFT.

% Concatenate the signals along the second (channel) dimension.
audio = cat(2,s{:});

% Extract the centered STFT.
N = numel(params.SED.Window);
overlapLength = N - params.SED.HopLength;
S = centeredSTFT(audio,params.SED.Window,overlapLength,N);

% Trim the 1st coefficient from all spectrums and trim the last spectrum.
S = S(2:end,1:end-1,:);

% Convert to log-magnitude. Use an offset to protect against log of zero.
mag = log(abs(S) + eps);

% Cast output to single precision.
X = single(mag);
end

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-365



Generalized Cross Correlation with Phase Transform (GCC-PHAT)

function X = extractGCCPHAT(s,params)
%EXTRACTGCCPHAT Extract generalized cross correlation phase transform (GCC-PHAT) features
% X = extractGCCPHAT({s1,s2},params) concatenates s1 and s2 and then
% extracts the GCC-PHAT for all pairs of channels.

% Concatenate the signals corresponding to the two microphones.
audio = cat(2,s{:});

% Count the total number of input channels.
nChan = size(audio,2);

% Calculate the total number of output channels.
numOutputChannels = nchoosek(nChan,2);

% Preallocate a NumFeatures-by-NumFrames-by-NumChannels feature (predictor)
% matrix.
numFrames = size(audio,1)/params.DOA.HopLength;
X = zeros(params.DOA.NumBands,numFrames,numOutputChannels);

% -----------------------------------
% Calculate GCC-PHAT for each pair of channels.
% Precompute STFT for each channel.
N = numel(params.DOA.Window);
overlapLength = N - params.DOA.HopLength;
micAB_stft = centeredSTFT(audio,params.DOA.Window,overlapLength,N);
conjmicAB_stft = conj(micAB_stft(:,:,2:end));
idx = 1;
for ii = 1:nChan - 1
    R = micAB_stft(:,:,ii).*conjmicAB_stft(:,:,ii:end);
    R = exp(1i .* angle(R));
    R = padarray(R, N/2 - 1,"post");
    gcc = fftshift(ifft(R,[],1,"symmetric"),1);
    X(:,:,idx:idx+size(R,3)-1) = gcc(floor(N/2+1 - (params.DOA.NumBands-1)/2):floor(N/2+1 + (params.DOA.NumBands-1)/2),1:end-1,:);

    idx = idx + size(R,3);
end
% -----------------------------------

% Cast output to single precision.
X = single(X);

end

Centered Short-Time Fourier Transform (STFT)

function s = centeredSTFT(audio,win,overlapLength,fftLength)
%CENTEREDSTFT Centered STFT
% s = centeredSTFT(audioIn,win,overlapLength,fftLength) computes an STFT
% with the first window centered around the first sample. The two ends are
% padded with the reflected audio signal.

% Pad front and back of input signal.
firstR = flip(audio(1:fftLength/2,:),1);
lastR = flip(audio(end - fftLength/2 + 1:end,:),1);
sig = cat(1,firstR,audio,lastR);

15 Audio Examples

15-366



% Perform STFT.
s = stft(sig,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");

end

Convert Time Stamp to Frame Number
function fnum = time2frame(t,dur,numFrames)
%TIME2FRAME Convert time stamp to frame number
% fnum = time2frame(t,dur,numFrames) maps the times t, which exist in dur,
% to a frame number if dur is divided into numFrames.

stp = dur/numFrames;

qt = round(t./stp).*stp;

fnum = floor(qt*(numFrames - 1)/dur) + 1;

end

Forward Pass Through CNN and RNN Networks
function [loss,cnnState,rnnState,Y3]  = forwardAll(model,X,T)
%FORWARDALL Forward pass of model through CNN and RNN networks
% [loss,cnnState,rnnState] = forwardAll(model,X,T) passes the predictors X
% through the model and returns the loss and the states of the networks in
% the model. The model is a struct containing a CNN network and an RNN
% network.
%
% [loss,cnnState,rnnState,Y] = forwardAll(model,X,T) also returns the final
% prediction of the model Y.

% Pass predictors through CNN.
[Y1,cnnState] = forward(model.CNN,X);

% Label the dimensions output from the CNN for consumption by the RNN.
Y2 = dlarray(Y1,"TCUB");

% Pass the predictors through the RNN.
[Y3,rnnState] = forward(model.RNN,Y2);

% Calculate the loss.
loss = seldNetLoss(Y3,T);

end

Full Model Prediction
function [loss,Y3]  = predictAll(model,X,T)
%PREDICTALL Model prediction through CNN and RNN networks
% [loss,prediction] = predictAll(model,X,T) passes the predictors X through
% the model and returns the loss and the model prediction. The model is a
% struct containing a CNN network and an RNN network.

% Pass predictors through CNN.
Y1 = predict(model.CNN,X);

% Label the dimensions output from the CNN for consumption by the RNN.
Y2 = dlarray(Y1,"TCUB");

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-367



% Pass the predictors through the RNN.
Y3 = predict(model.RNN,Y2);

% Calculate the loss.
loss = seldNetLoss(Y3,T);

end

Predict Batch

function loss = predictBatch(model,mbq)
%PREDICTBATCH Calculate the loss of mini-batch queue
% loss = predictBatch(model,mbq) returns the total loss calculated by
% passing the entire contents of the mini-batch queue through the model.

% Reset mini-batch queue and initialize counters.
reset(mbq)
loss = 0;
n = 0;

while hasdata(mbq)

    % Read the predictors and targets from mini-batch queue.
    [X,T] = next(mbq);

    % Pass the mini-batch through the model and calculate the loss.
    lss = predictAll(model,X,T);
    lss = lss/size(T,2);

    % Update the total loss.
    loss = loss + lss;

    % Sum number of datapoints.
    n = n + 1;

end

% Divide the total loss accumulated by the number of mini-batches.
loss = loss/n;

end

Compute Model Loss, Gradients, and Network States

function [loss,gradients,state] = modelLoss(model,X,T)
%MODELLOSS Compute model loss, gradients, and network states
% [loss,gradients,state] = modelLoss(model,X,T) passes the
% predictors X through the model and returns the loss, the gradients, and
% the states of the networks in the model. The model is a struct containing
% a CNN network and an RNN network.

% Pass the predictors through the model.
[loss,cnnState,rnnState] = forwardAll(model,X,T);

% Isolate the learnables.
allGrad.CNN = model.CNN.Learnables;
allGrad.RNN = model.RNN.Learnables;

15 Audio Examples

15-368



state.CNN = cnnState;
state.RNN = rnnState;

% Calculate the gradients.
gradients = dlgradient(loss,allGrad);

end

Loss Function of SELDnet
function loss = seldNetLoss(Y,T)
%SELDNETLOSS Compute the SELDnet loss function for DOA or SED models
% loss = seldNetLoss(Y,T) returns the SELDnet loss given predictions Y and
% targets T. The loss function depends on the network (DOA or SED). The
% network is inferred by the dimensions of the target. For the DOA network,
% the loss function is mean-squared error. For the SED network, the loss
% function is crossentropy.

% Determine whether the targets correspond to the DOA network or SED
% network.
isDOAModel = size(T,find(dims(T)=='C'))==3;

if isDOAModel
    % Calculate MSE loss.
    doaLoss = mse(Y,T);
    doaLossFactor = 2 / (size(Y,1) * size(Y,3));
    loss = doaLoss * doaLossFactor; % To align with the original implementation
else
    % Calculate cross-entropy loss.
    loss = crossentropy(Y,T,TargetCategories="independent",NormalizationFactor="all-elements");
end

loss = loss * size(T,2);

end

Compute Performance Metrics

function [r,cm] = computeMetrics(sedModel,doaModel,sedMBQ,doaMBQ,params,nvargs)
%COMPUTEMETRICS Compute performance metrics
% [r,cm] = computeMetrics(sedModel,doaModel,sedMBQ,doaMBW,params) returns
% a struct of performance metrics calculated over the SED and DOA
% validation mini-batch queues, and a confusion matrix cm valid SED
% regions.
arguments
    sedModel
    doaModel
    sedMBQ
    doaMBQ
    params
    nvargs.ApplySmoothing = false;
end

% Initialize counters.
TP = 0;
FP = 0;

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-369



FN = 0;
it = 0;
ct = 0;
err = 0;

sedYAll = [];
sedTAll = [];

% Loop over all the data.
reset(sedMBQ)
reset(doaMBQ)
while hasdata(sedMBQ)

    % Get the predictors, targets, and predictions for the SED model.
    [sedXb,sedTb] = next(sedMBQ);
    [~,sedYb]  = predictAll(sedModel,sedXb,sedTb);
    sedTb = extractdata(gather(sedTb));
    sedYb = extractdata(gather(sedYb));

    % Get the predictors, targets, and predictions for the DOA model.
    [doaXb,doaTb] = next(doaMBQ);
    [~,doaYb]  = predictAll(doaModel,doaXb,doaTb);
    doaTb = extractdata(gather(doaTb));
    doaYb = extractdata(gather(doaYb));
    doaYb = doaYb*params.DOA.ScaleFactor;
    doaTb = doaTb*params.DOA.ScaleFactor;

    % Loop over the mini-batches.
    for batch = 1:size(sedYb,2)

        % Isolate the predictors and targets for current data point.
        sedY = squeeze(sedYb(:,batch,:));
        sedT = squeeze(sedTb(:,batch,:));
        doaY = squeeze(doaYb(:,batch,:));
        doaT = squeeze(doaTb(:,batch,:));

        % If the SED predictions of a frame are all made with low
        % confidence (beneath a threshold), assume that there is no sound
        % source present.
        isActive = ~(sum(double(sedY<params.SilenceThreshold),1)==size(sedY,1));

        % Convert the SED predictors and targets from one-hot vectors to
        % scalars.
        [~,sedY] = max(sedY,[],1);
        sedY = sedY.*isActive;

        [isActive,sedT] = max(sedT,[],1);
        sedT = sedT.*isActive;

        % Smooth outputs.
        if nvargs.ApplySmoothing
            [doaY,sedY] = smoothOutputs(doaY,sedY,params);
        end

        % Perform location-sensitive detection.
        [tp,fp,fn,e,c] = locationSensitiveDetection(sedY,sedT,doaY,doaT,params);
        
        % Accumulate performance metrics.

15 Audio Examples

15-370



        TP = TP + tp;
        FP = FP + fp;
        FN = FN + fn;
        err = err + e;
        ct = ct + c;

        sedYAll = [sedYAll sedY.*isActive]; %#ok<AGROW> 
        sedTAll = [sedTAll sedT.*isActive]; %#ok<AGROW> 
    end
    it = it + 1;
end

% Calculate performance metrics.
r.precision =  TP/(TP + FP + eps);
r.recall = TP / (TP + FN + eps);
r.f1Score = 2*(r.precision*r.recall)/(r.precision + r.recall + eps);
r.avgErr = err/ct;

% Calculate confusion matrix.
confmat = confusionmat(sedTAll,single(sedYAll),Order=0:14);
cm = confmat(2:end,2:end); % Remove the silence from the confusion matrix.
end

Location Sensitive Detection

function [TP,FP,FN,totErr,ct] = locationSensitiveDetection(sedY,sedT,doaY,doaT,params)
%LOCATIONSENSITIVEDETECTION Location sensitive detection
% [TP,FP,FN,totErr,ct] =
% locationSensitiveDetection(sedY,sedT,doaY,doaT,params) calculates the
% true positive, false positive, false negative, DOA total error, and
% number of active targets. The definitions of each metric are provided in
% [4].

% Calculate distance.
dist = vecnorm(doaY-doaT);

% Determine if sounds active for reference and predictions.
isReferenceActive = sedT~=0;
isPredictedActive = sedY~=0;

% Calculate the total DOA error for reference-active sections.
totErr = sum(dist.*isReferenceActive);

% Count total number of active targets.
ct = sum(isReferenceActive);

% Determine if the DOA is within threshold per frame.
isDOAnear = dist < params.SpatialThreshold;

% True positive: 
TP = sum(isDOAnear & isReferenceActive & isPredictedActive & (sedT==sedY));

% False positive: 
FP1 = sum(~isReferenceActive & isPredictedActive);
FP2 = sum(isReferenceActive & isPredictedActive & (sedT~=sedY | ~isDOAnear));
FP = FP1 + FP2;

% False negative:

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-371



FN1 = sum(isReferenceActive & ~isPredictedActive);
FN2 = sum(isReferenceActive & (sedT~=sedY | ~isDOAnear));
FN = FN1 + FN2;

end

Smooth Outputs

function [doaYSmooth,sedYSmooth] = smoothOutputs(doaY,sedY,params)
%SMOOTHOUTPUTS Smooth DOA and SED predictions over time
% [doaYSmooth,sedYSmooth] = smoothOutputs(doaY,sedY,params) smooths the DOA
% and SED predictions over time.

% Preallocate smoothed outputs.
doaYSmooth = doaY;
sedYSmooth = sedY;

% Cluster the DOA predictions.
clusters = clusterdata(doaY',Criterion="distance",Cutoff=params.SpatialThreshold);
stt = 1;
enn = 1;

while enn <= params.Targets.NumFrames

    if clusters(stt) == clusters(enn)
        enn = enn + 1;
    else
        doaYSmooth(:,stt:enn-1) = smoothDOA(doaY(:,stt:enn-1));
        sedYSmooth(:,stt:enn-1) = smoothSED(sedY(:,stt:enn-1));
        stt = enn;
    end

end

doaYSmooth(:,stt:enn-1) = smoothDOA(doaY(:,stt:enn-1));
sedYSmooth(:,stt:enn-1) = smoothSED(sedY(:,stt:enn-1));

sedYSmooth = round(movmedian(sedYSmooth,5));

end

Smooth DOA Prediction

function smoothed = smoothDOA(chunk)
%SMOOTHDOA Smooth DOA prediction
% smoothed = smoothDOA(chunk) smooths DOA predictions by replacing the
% values of each axis with the mean of that axis in the chunk. The mean is
% calculated after discarding the lower and upper quarters of data.

% Determine the length of the chunk, and then indices to cut out the middle
% half of the data.
chlen = size(chunk,2);
st = max(round(chlen*1/4),1);
en = max(round(chlen*3/4),1);

% Sort the spatial axes (columns).
dim = sort(chunk,2);

15 Audio Examples

15-372



% Take the mean of the inner half.
smoothed = repmat(mean(dim(:,st:en),2),1,chlen);

end

Smooth SED Prediction

function smoothed = smoothSED(chunk)
%SMOOTHSED Smooth SED prediction
% smoothed = smoothSED(chunk) smooths SED predictions using the mode.

smoothed = repmat(mode(chunk),1,size(chunk,2));

end

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

15-373



3-D Sound Event Localization and Detection Using Trained
Recurrent Convolutional Neural Network

In this example, you perform 3-D sound event localization and detection (SELD) using a pretrained
deep learning model. For details about the model and how it was trained, see “Train 3-D Sound Event
Localization and Detection (SELD) Using Deep Learning” (Audio Toolbox). The SELD model uses two
B-format ambisonic audio recordings to detect the presence and location of one of 14 sound classes
commonly found in an office environment.

Download Pretrained Network

Download the pretrained SELD network, ambisonic test files, and labels. The model architecture is
based on [1] on page 15-387 and [3] on page 15-387. The data the model was trained on, the labels,
and the ambisonic test files, are provided as part of the L3DAS21 challenge [2] on page 15-387.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SELDmodel.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"SELDmodel");
addpath(netFolder)

Load and Inspect Data

Load the ambisonic data. First order B-format ambisonic recordings contain components that
correspond to the sound pressure captured by an omnidirectional microphone (W) and sound
pressure gradients X, Y, and Z that correspond to front/back, left/right, and up/down captured by
figure-of-eight capsules oriented along the three spatial axes.

[micA,fs] = audioread("micA.wav");
micB = audioread("micB.wav");

Listen to a section of the data.

microphone = ;

channel = ;

start = ;

stop = ;
s = [micA,micB];
data = s(round(start*fs):round(stop*fs),channel+(microphone-1)*4);
sound(data,fs)

Plot the waveforms.

plotAmbisonics(micA,micB)

15 Audio Examples

15-374



Use the supporting function, getLabels, to load the ground truth labels associated with the sound
event detection (SED) and direction of arrival (DOA).

[sedLabels,doaLabels] = getLabels();

sedLabels is a T-by-1 vector of keys over time, where the values map to one of 14 possible sound
classes. A key of zero indicates a region of silence. The 14 possible sound classes are chink/clink,
keyboard, cupboard, drawer, female speech, finger snapping, keys jangling, knock, laughter, male
speech, printer, scissors, telephone, and writing.

sedLabels

sedLabels = 600×1 single column vector

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0

 3-D Sound Event Localization and Detection Using Trained Recurrent Convolutional Neural Network

15-375



      ⋮

soundClasses = getSoundClasses();
soundClasses(sedLabels+1)

ans = 1×600 categorical
     Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Silence      Silence      Silence      Silence      Silence      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Female      Female      Female      Female      Female      Female      Female      Female      Female      Female      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Silence      Silence      Silence      Silence      Silence      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Silence      Silence      Silence      Silence      Silence      Silence 

doaLabels is a T-by-3 matrix where T is the number of time steps and 3 corresponds to the X, Y, and
Z axes in 3-D space.

doaLabels

doaLabels = 600×3

     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
      ⋮

In both cases, the 60-second ground truth has been discretized into 600 time steps.

Perform 3-D Sound Event Localization and Detection (SELD)

Use the supporting object, seldModel, to perform SELD. The object encapsulates the SELD model
developed in “Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning” (Audio
Toolbox). Create the model, then call seld on the ambisonic data to detect and localize sound in time
and space.

If you have Statistics and Machine Learning Toolbox™, the model applies smoothing to the decisions
using moving averages and clustering.

model = seldModel();
[sed,doa] = seld(model,micA,micB);

To visualize the system's performance over time, call the supporting function plot2d on page 15-381.

plot2d(sedLabels,doaLabels,sed,doa)

15 Audio Examples

15-376



To visualize the system's performance in three spatial dimensions, call the supporting function plot3d
on page 15-382. You can move the slider to visualize sound event locations detected at different
times. The ground truth source location is identified by a semi-transparent sphere. The predicted
source location is identified by a circle connected to the original by a dotted line.

plot3d(sedLabels,doaLabels,sed,doa);

 3-D Sound Event Localization and Detection Using Trained Recurrent Convolutional Neural Network

15-377



SELD is a 4D problem, in that you are localizing the sound source in 3-D space and 1D time. To
examine the system's performance in 4D, call the supporting function plot4d on page 15-386. The
plot4d function plays the 3-D plot and corresponding ambisonic recording over time.

plot4d(micA(:,1),sedLabels,doaLabels,sed,doa)

15 Audio Examples

15-378



Supporting Functions

Plot Ambisonics

function plotAmbisonics(micA,micB)
%PLOTAMBISONICS Plot B-format ambisonics over time
% plotAmbisonics(micA,micB) plots the ambisonic recordings collected from
% micA and micB. The channels are plotted along the rows of a 4-by-2 tiled
% layout (W,X,Y,Z). The first column of the plot corresponds to data from
% microphone A and the second column corresponds to data from microphone B.

figure(1)
tiledlayout(4,2,TileSpacing="tight")

t = linspace(0,60,size(micA,1));

 3-D Sound Event Localization and Detection Using Trained Recurrent Convolutional Neural Network

15-379



nexttile
plot(t,micA(:,1))
title("Microphone A")
yL = ylabel("W",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
axis([t(1),t(end),-0.2,0.2])
set(gca,Xticklabel=[])

nexttile
plot(t,micB(:,1))
title("Microphone B")
axis([t(1),t(end),-0.2,0.2])
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plot(t,micA(:,2))
yL = ylabel("X",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
axis([t(1),t(end),-0.2,0.2])
set(gca,Xticklabel=[])

nexttile
plot(t,micB(:,2))
axis([t(1),t(end),-0.2,0.2])
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plot(t,micA(:,3))
yL = ylabel("Y",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
axis([t(1),t(end),-0.2,0.2])
set(gca,Xticklabel=[])

nexttile
plot(t,micB(:,3))
axis([t(1),t(end),-0.2,0.2])
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plot(t,micB(:,4))
yL = ylabel("Z",FontWeight="bold");
set(yL,Rotation=0)
axis([t(1),t(end),-0.2,0.2])
xlabel("Time (s)")

nexttile
plot(t,micB(:,4))
axis([t(1),t(end),-0.2,0.2])
set(gca,Yticklabel=[])
xlabel("Time (s)")
end

Plot Time Series

function plotTimeSeries(sed,values)
%PLOTTIMESERIES Plot time series
% plotTimeSeries(sed,values) is leveraged by plot2d to plot the color-coded
% SED or DOA estimation.

15 Audio Examples

15-380



colors = getColors();
hold on
for ii = 1:numel(sed)
    cls = sed(ii);
    if cls > 0
        x = [ii-1,ii];
        y = repelem(values(ii),2);
        plot(x,y,Color=colors{cls},LineWidth=8)
    end
end
hold off
grid on
end

Plot 2D

function plot2d(sedLabels,doaLabels,sed,doa)
%PLOT2D Plot 2D
% plot2d(sedLabels,doaLabels,sed,doa) creates plots for SED, SED ground
% truth, DOA estimation, and DOA ground truth.

fh = figure(2);
set(fh,Position=[100 100 800 800])

SoundClasses = ["Clink","Keyboard","Cupboard","Drawer","Female","Fingers Snap", ...
    "Keys","Knock","Laughter","Male","Printer","Scissors","Telephone","Writing"];

tiledlayout(5,2,TileSpacing="tight")

nexttile([2,1])
plotTimeSeries(sedLabels,sedLabels);
yticks(1:14)
yticklabels(SoundClasses)
ylim([0.5,14.5])
ylabel("Class")
title("Ground Truth")
set(gca,Xticklabel=[])

nexttile([2,1])
plotTimeSeries(sed,sed);
yticks(1:14)
ylim([0.5,14.5])
title("Prediction")
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plotTimeSeries(sedLabels,doaLabels(:,1));
yL = ylabel("X",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
set(gca,Xticklabel=[])

nexttile
plotTimeSeries(sed,doa(:,1));
set(gca,Yticklabel=[],XtickLabel=[])

 3-D Sound Event Localization and Detection Using Trained Recurrent Convolutional Neural Network

15-381



nexttile
plotTimeSeries(sedLabels,doaLabels(:,2));
yL = ylabel("Y",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
set(gca,Xticklabel=[])

nexttile
plotTimeSeries(sed,doa(:,2));
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plotTimeSeries(sedLabels,doaLabels(:,3));
xlabel("Frame")
yL = ylabel("Z",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile
plotTimeSeries(sed,doa(:,3));
xlabel("Frame")
set(gca,YtickLabel=[])

end

Plot 3-D

function data = plot3d(sedLabels,doaLabels,sed,doa,nvargs)
%PLOT3D Plot 3-D
% plot3d(sedLabels,doaLabels,sed,doa) creates a 3-dimensional plot with a
% slider. Moving the slider moves the frame in the plot. The location of
% the recording is located at the origin. The location of a sound event is
% noted by a semi-transparent orb. The location of the estimated sound
% event is noted by a filled circle connected to the origin by a line. The
% estimated sound event class and the true sound event class for the
% current frame are displayed on the plot.
%
% plot3d(sedLabels,doaLabels,sed,doa,IncludeSlider=false) creates a 3-D plot
% but does not add the slider and associated callback. This format of the
% plot is leveraged by plot4d.

arguments
    sedLabels
    doaLabels
    sed
    doa
    nvargs.IncludeSlider = true;
end

% Create data struct to contain plot information.
data.sedLabels = sedLabels;
data.doaLabels = doaLabels;
data.sed = sed;
data.doa = doa;
data.Colors = getColors();
data.SoundClasses = ["Clink","Keyboard","Cupboard","Drawer","Female","Fingers Snap", ...
    "Keys","Knock","Laughter","Male","Printer","Scissors","Telephone","Writing"];

15 Audio Examples

15-382



% Create figure.
if nvargs.IncludeSlider
    data.FigureHandle = figure(3);
else
    data.FigureHandle = figure(4);
end
set(data.FigureHandle,Position=[680,400,640,580],Color="k",MenuBar="none",Toolbar="none")

% Initialize plot.
data = initialize3DPlot(data);

% Add slider for 3-D plot.
if nvargs.IncludeSlider
    N = numel(data.sedLabels);
    frame = 1/N;
    b = uicontrol(Parent=data.FigureHandle,Style="slider",Position=[40,20,570,20], ...
        value=frame*80,min=1/N,max=1,units="pixel", ...
        SliderStep=[1/N,20/N]);
    cbk = @(es,ed)update3DPlot(es.Value,data);
    addlistener(b,ContinuousValueChange=cbk);
end

end

Initialize 3-D Plot

function data = initialize3DPlot(data)
%INITIALIZE3DPLOT Initialize 3-D plot
% data = initialize3DPlot(data) creates the 3-D plot and initializes lines,
% dots, and surfaces that are included in the plot. data is appended to
% include handles for figure properties.

% Make sure the figure is visible.
data.FigureHandle.Visible = "on";

% Initialize the line plot that connects origin to predicted location.
data.YPlot = plot3([0,1],[0,1],[0,1],":",Color="k",LineWidth=1.5);
hold on
data.YPlot.Visible = "off";

% Initialize the dot plot that marks the predicted location.
data.YPlotDot = plot3(0,0,0,"o",MarkerSize=8,MarkerEdgeColor="k",LineWidth=2,MarkerFaceColor="k");
data.YPlotDot.Visible = "off";

% Initialize the sphere that marks the target location.
[x,y,z] = sphere;
data.TPlotDot = surf(x,y,z,FaceAlpha=0.2,EdgeColor="none",FaceColor="b");
data.TPlotDot.Visible = "off";

% Create a sphere to mark the origin. This is where the ambisonic
% microphones are located.
light
[X,Y,Z] = sphere(8);
surf(X*0.15,Y*0.15,Z*0.15,FaceColor=[0.3010 0.7450 0.9330],LineWidth=0.25);

% Create 'walls' on the 3-D plot to aid 3-D visualization.
patch([2.2,2.2,2.2,2.2],[2.2,2.2,-2.2,-2.2],[-2.2,2.2,2.2,-2.2],[3,2,1,2],FaceAlpha=0.5,FaceColor="interp");

 3-D Sound Event Localization and Detection Using Trained Recurrent Convolutional Neural Network

15-383



patch([2.2,2.2,-2.2,-2.2],[2.2,2.2,2.2,2.2],[-2.2,2.2,2.2,-2.2],[3,2,1,2],FaceAlpha=0.5,FaceColor="interp")
patch([2.2,2.2,-2.2,-2.2],[2.2,-2.2,-2.2,2.2],[-2.2,-2.2,-2.2,-2.2],[3,2,1,2],FaceAlpha=0.5,FaceColor="interp")

% Create guidelines on the 3-D plot to aid 3-D visualization.
plot3([0,0],[0,0],[-2.2,0])
plot3([0,0],[2.2,0],[0,0])
plot3([2.2,0],[0,0],[0,0])

% Set axes limits.
xlim([-2,2])
ylim([-2,2])
zlim([-2,2])

% Add axis labels.
xlabel("X",Color=[0,0.4470,0.7410]);
ylabel("Y",Color=[0,0.4470,0.7410]);
zlabel("Z",Color=[0,0.4470,0.7410],Rotation=0);
set(gca,XColor=[0,0.4470,0.7410],YColor=[0,0.4470,0.7410],ZColor=[0,0.4470,0.7410])

% Initialize annotations for the ground truth and predicted labels.
annotation("textbox",[0.4,0.2,0.6,0.1],String="Ground Truth: ",FitBoxToText="on",Color="k",EdgeColor="none",FontWeight="bold");
annotation("textbox",[0.4,0.17,0.4,0.1],String="Prediction: ",FitBoxToText="on",Color="k",EdgeColor="none",FontWeight="bold");
data.GTAnnotation = annotation("textbox",[0.55,0.2,0.6,0.1],String=" ",FitBoxToText="on",Color="k",EdgeColor="none",FontWeight="bold");
data.PredictedAnnotation = annotation("textbox",[0.55,0.17,0.4,0.1],String=" ",FitBoxToText="on",Color="k",EdgeColor="none",FontWeight="bold");

grid on
grid minor
axis equal
hold off
end

Update 3-D Plot

function update3DPlot(timeFrame,data)
%UPDATE3DPLOT Update 3-D Plot
% update3DPlot(timeFrame,data) updates the 3-D plot to display data
% corresponding to the specified time frame.

timeFrame = round(timeFrame*numel(data.sedLabels));

if data.sedLabels(timeFrame) > 0
    % Turn plot visibility on.
    data.TPlotDot.Visible = "on";
    data.GTAnnotation.Visible = "on";

    % Get the current target sound class.
    gtClass = data.SoundClasses{data.sedLabels(timeFrame)};

    % Get current location coordinates and SED color code.
    doa = data.doaLabels(timeFrame,:);
    tcol = data.Colors{data.sedLabels(timeFrame)};

    % Update target sphere.
    [x,y,z] = sphere;
    r = 0.2;
    data.TPlotDot.XData = x*r + doa(1);
    data.TPlotDot.YData = y*r + doa(2);
    data.TPlotDot.ZData = z*r + doa(3);

15 Audio Examples

15-384



    data.TPlotDot.FaceColor = tcol;
    data.TPlotDot.MarkerEdgeColor = tcol;
else
     % Turn plot visibility off.
    data.TPlotDot.Visible = "off";
    data.GTAnnotation.Visible = "off";

    % Set the current target sound class to silence and color-code as
    % black.
    gtClass = "Silence";
    tcol = "k";
end

if data.sed(timeFrame) > 0
    % Turn plot visibility on.
    data.PredictedAnnotation.Visible = "on";
    data.YPlot.Visible = "on";
    data.YPlotDot.Visible = "on";

    % Get the current predicted sound class.
    pClass = data.SoundClasses{data.sed(timeFrame)};
    
    % Get current location coordinates and SED color code.
    doa = data.doa(timeFrame,:);
    pcol = data.Colors{data.sed(timeFrame)};

    % Update prediction line.
    data.YPlot.XData = [0,doa(1)];
    data.YPlot.YData = [0,doa(2)];
    data.YPlot.ZData = [0,doa(3)];
    data.YPlot.Color = pcol;

    % Update the prediction dot.
    data.YPlotDot.XData = doa(1);
    data.YPlotDot.YData = doa(2);
    data.YPlotDot.ZData = doa(3);
    data.YPlotDot.Color = pcol;
    data.YPlotDot.MarkerEdgeColor = pcol;
    data.YPlotDot.MarkerFaceColor = pcol;
else
    % Turn plot visibility off.
    data.YPlot.Visible = "off";
    data.YPlotDot.Visible = "off";
    data.PredictedAnnotation.Visible = "off";

    % Set the current predicted sound class to silence and color-code as
    % black.
    pClass = "Silence";
    pcol = "k";
end

% Update the annotation strings and color code them.
if isequal(tcol,pcol)
    col = 'b';
else
    col = 'r';
end
data.GTAnnotation.String = gtClass;

 3-D Sound Event Localization and Detection Using Trained Recurrent Convolutional Neural Network

15-385



data.GTAnnotation.Color = col;
data.PredictedAnnotation.String = pClass;
data.PredictedAnnotation.Color = col;

drawnow
end

Plot 4D

function plot4d(audioToPlay,sedLabels,doaLabels,sed,doa)
%PLOT4D Plot 4D
% plot4d(audioToPlay,sedLabels,doaLabels,sed,doa) creates a "movie" of
% ground truth and estimated sound events in a 3-D environment over time.
% The movie runs in real time and plays the audioToPlay to your default
% sound device.

% Create an audioDeviceWriter object to play streaming audio.
adw = audioDeviceWriter(SampleRate=32e3);

% Create and fill a dsp.AsyncBuffer to read chunks of audio data.
buff = dsp.AsyncBuffer(size(audioToPlay,1));
write(buff,audioToPlay);

% Create a 3-D plot without a slider.
data = plot3d(sedLabels,doaLabels,sed,doa,IncludeSlider=false);

drawnow

% The true and predicted label definitions have resolutions of 0.1 seconds. Create a
% labels vector to only update the 3-D plot when necessary.
changepoints = 0.1:0.1:60;

% Initialize counters.
idx = 1;
elapsedTime = 0;

% Loop while audio data is unread.
while buff.NumUnreadSamples~=0

    % Update a plot if a changepoint is reached.
    if elapsedTime>changepoints(idx)
        update3DPlot(idx/600,data)
        idx = idx+1;
    end
    
    % Write a chunk of data to your sound card.
    adw(read(buff,400));

    % Push the elapsed time forward.
    elapsedTime = elapsedTime + 400/32e3;
end

end

15 Audio Examples

15-386



Get Colors

function colors = getColors()
%GETCOLORS Get colors
% colors = getColors() returns a cell array of 14 unique colors.

% Define 14 colors to color-code the sound classes.
colors = {[0,0.4470,0.7410],[0.8500,0.3250,0.0980],[0.9290,0.6940,0.1250],[0.4940,0.1840,0.5560], ...
    [0.4660 0.6740 0.1880],[0.3010 0.7450 0.9330],[0.6350 0.0780 0.1840],[0.2,1,1],[0.6,0,0.6], ...
    [0.6,0.6,0],[0.6,0.3,0],[0,0.4,0.2],[0.2,0,0.4],[1,0.6,0.6]};
end

Get Sound Classes

function soundClasses = getSoundClasses()
%GETSOUNDCLASSES Get map between sound classes (keys) and values.

soundClasses = categorical(["Silence","Clink","Keyboard","Cupboard","Drawer","Female","Fingers Snap", ...
    "Keys","Knock","Laughter","Male","Printer","Scissors","Telephone","Writing"]);
end

References

[1] Sharath Adavanne, Archontis Politis, Joonas Nikunen, and Tuomas Virtanen, "Sound event
localization and detection of overlapping sources using convolutional recurrent neural networks,"
IEEE J. Sel. Top. Signal Process., vol. 13, no. 1, pp. 34-48, 2019.

[2] Eric Guizzo, Riccardo F. Gramaccioni, Saeid Jamili, Christian Marinoni, Edoardo Massaro, Claudia
Medaglia, Giuseppe Nachira, Leonardo Nucciarelli, Ludovica Paglialunga, Marco Pennese, Sveva
Pepe, Enrico Rocchi, Aurelio Uncini, and Danilo Comminiello "L3DAS21 Challenge: Machine Learning
for 3D Audio Signal Processing," 2021.

[3] Yin Cao, Qiuqiang Kong, Turab Iqbal, Fengyan An, Wenwu Wang, and Mark D. Plumbley,
"Polyphonic sound event detection and localization using a two-stage strategy," arXiv preprint:
arXiv:1905.00268v4, 2019.

 3-D Sound Event Localization and Detection Using Trained Recurrent Convolutional Neural Network

15-387



Speech Command Recognition Code Generation with Intel MKL-
DNN Using Simulink

This example demonstrates how to deploy feature extraction and a convolutional neural network
(CNN) for speech command recognition on Intel® processors. To generate the feature extraction and
network code, you use Embedded Coder in Simulink® and the Intel® Math Kernel Library for Deep
Neural Networks (MKL-DNN). In this example you generate Software-in-the-loop (SIL) code
for a reference model which performs feature extraction and predicts the speech command. The
generated SIL code is called in a Simulink model which displays the predicted speech command and
predicted scores for the given inputs. For details about audio preprocessing and network training, see
“Train Speech Command Recognition Model Using Deep Learning” (Audio Toolbox).

Prerequisites

• The MATLAB® Coder Interface for Deep Learning Libraries
• Intel Processor with support for Advanced Vector Extension 2 (AVX2)
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Environment Variables for Intel MKL-DNN

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Prepare Simulink Model to Deploy

Create a Simulink model and capture the feature extraction, convolutional neural network and
postprocessing as developed in “Speech Command Recognition in Simulink” (Audio Toolbox). This
model is shipped with this example. Open the shipped model to understand its configurations.

modelToDeploy = "recognizeSpeechCommand";
open_system(modelToDeploy)

Set the Data type, Port dimensions, Sample time, and Signal type of the input port block as
shown.

15 Audio Examples

15-388



Configure Code Generation Settings

Open the recognizeSpeechCommand model. Go to the MODELING Tab and click on Model Settings
or press Ctrl+E. Select Code Generation and set the System Target File to ert.tlc whose
Description is Embedded Coder. Set the Language to C++, which will automatically set the
Language Standard to C++11 (ISO).

 Speech Command Recognition Code Generation with Intel MKL-DNN Using Simulink

15-389



Alternatively, use set_param to configure the settings programmatically,

set_param(modelToDeploy,SystemTargetFile="ert.tlc")
set_param(modelToDeploy,TargetLang="C++")
set_param(modelToDeploy,TargetLangStandard="C++11 (ISO)")

To set Intel MKL-DNN Deep Learning Config, expand Code Generation and select Interface. Now
set the Deep Learning Target Library to MKL-DNN as shown.

15 Audio Examples

15-390



Alternatively, use set_param to configure the Deep learning target library programmatically.

set_param(modelToDeploy,DLTargetLibrary="mkl-dnn")

Select a solver that supports code generation. Set Solver to auto (Automatic solver
selection) and Solver type to Fixed-step.

set_param(modelToDeploy,SolverName="FixedStepAuto")
set_param(modelToDeploy,SolverType="Fixed-step")

In Configuration > Hardware Implementation, set Device vendor to Intel and Device type to
x86-64 (Windows64) or x86-64 (Linux 64) or x86-64 (Mac OS X) depending on your target
system. Alternatively, use set_param to configure the settings programmatically.

switch(computer("arch"))
    case "win64"
        ProdHWDeviceType = "Intel->x86-64 (Windows64)";
    case "glnxa64"
        ProdHWDeviceType = "Intel->x86-64 (Linux 64)";
    case "maci64"
        ProdHWDeviceType = "Intel->x86-64 (Mac OS X)";
end
set_param(modelToDeploy, "ProdHWDeviceType", ProdHWDeviceType)

 Speech Command Recognition Code Generation with Intel MKL-DNN Using Simulink

15-391



To automate setting the Device type, add the above code in Property Inspector > Properties >
Callbacks > PreLoadFcn of the recognizeSpeechCommand model.

Use Embedded Coder app to generate and build the code. Click on APPS tab and then click on
Embedded coder as shown.

It will open a new C++ CODE tab, then click on Build to generate and build the code. It will
generate the code in a folder named recognizeSpeechCommand_ert_rtw. After generating the
code, you view the report by clicking on Open Report.

Alternatively, you can use slbuild to generate the code programatically.

slbuild(modelToDeploy);

### Starting build procedure for: recognizeSpeechCommand
### Generating code and artifacts to 'Model specific' folder structure
### Generating code into build folder: W:\ExampleManager\sporwal.Bdoc23a.j2106495\deeplearning_shared-ex14618832\recognizeSpeechCommand_ert_rtw
### Generated code for 'recognizeSpeechCommand' is up to date because no structural, parameter or code replacement library changes were found.
### Saving binary information cache.
### Skipping makefile generation and compilation because W:\ExampleManager\sporwal.Bdoc23a.j2106495\deeplearning_shared-ex14618832\recognizeSpeechCommand.exe is up to date
### Successful completion of build procedure for: recognizeSpeechCommand

Build Summary

15 Audio Examples

15-392



0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 36.32s

Now close the recognizeSpeechCommand model.

save_system(modelToDeploy)
close_system(modelToDeploy)

Create a Simulink Model that Calls recognizeSpeechCommand and Displays its Output

Create a new simulink model and add recognizeSpeechCommand as a model reference block to it.
Add the same base workspace variables, source blocks, and sink blocks as developed in “Speech
Command Recognition in Simulink” (Audio Toolbox). Use a radio button group for selecting
speech command files. For your reference, this model is shipped with this example. Open the same
simulink model.

mainModel = "slexSpeechCommRecognitionCodegenWithMklDnnExample";
open_system(mainModel)

 Speech Command Recognition Code Generation with Intel MKL-DNN Using Simulink

15-393



To set the Software-in-the-loop (SIL) simulation mode for the model reference block, click on
MODELING tab.

Now click on the drop-down button as shown above, and it will open a window. Select Property
Inspector as shown below.

15 Audio Examples

15-394



You will get a Property Inspector window at the right of your model. Click on the Model block to get
its Property Inspector. If the * Model name* is not set, browse for the
recognizeSpeechCommand.slx and set the Model name. Now set Simulation mode to
Software-in-the-loop (SIL) as shown.

 Speech Command Recognition Code Generation with Intel MKL-DNN Using Simulink

15-395



Run the model to deploy the recognizeSpeechCommand.slx on your computer and perform speech
command recognition.

set_param(mainModel,StopTime="20")
sim(mainModel)

### Starting serial model reference code generation build.
### Starting build procedure for: recognizeSpeechCommand
### Generating code and artifacts to 'Model specific' folder structure
### Code for the model reference code generation target for model recognizeSpeechCommand is up to date because no functional changes were found in referenced model.
### Saving binary information cache.
### Model reference code generation target for recognizeSpeechCommand is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 14.832s
### Preparing to start SIL simulation ...
### Skipping makefile generation and compilation because W:\ExampleManager\sporwal.Bdoc23a.j2106495\deeplearning_shared-ex14618832\slprj\ert\recognizeSpeechCommand\sil\recognizeSpeechCommand.exe is up to date
### Starting SIL simulation for component: recognizeSpeechCommand
### Application stopped
### Stopping SIL simulation for component: recognizeSpeechCommand

ans = 

  Simulink.SimulationOutput:

15 Audio Examples

15-396



     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 

Now close the mainModel.

save_system(mainModel)
close_system(mainModel)

Other Things to Try

• Simulate “Speech Command Recognition in Simulink” (Audio Toolbox) model using Intel® MKL-
DNN library by setting the Configuration > Simulation Target > Language to C++.

• Compare the simulation speed of the “Speech Command Recognition in Simulink” (Audio Toolbox)
model with and without Intel® MKL-DNN library. Use Simulink Profiler (Simulink) to profile the
model by setting the Configuration > Simulation Target > Language to C and C++.

Copyright 2021-2022 The MathWorks, Inc.

 Speech Command Recognition Code Generation with Intel MKL-DNN Using Simulink

15-397



Speech Command Recognition on Raspberry Pi Using Simulink

This example shows how to deploy feature extraction and a convolutional neural network (CNN) for
speech command recognition on Raspberry Pi™. In this example you develop a simulink® model that
captures audio from the microphone connected to the Raspberry Pi board and performs speech
command recognition. You run the Simulink model on Raspberry Pi in External Mode and display
the recognized speech command. For details about audio preprocessing and network training, see
“Train Speech Command Recognition Model Using Deep Learning” (Audio Toolbox).

Prepare Simulink Model

Create a Simulink model and capture the feature extraction, convolutional neural network and
postprocessing as developed in “Speech Command Recognition in Simulink” (Audio Toolbox). Add the
ALSA Audio Capture (Simulink Support Package for Raspberry Pi Hardware) block from the
Simulink Support Package for Raspberry Pi Hardware library as shown.

Connect a microphone to your Raspberry Pi board and use listAudioDevices (Simulink
Support Package for Raspberry Pi Hardware) to list all the audio capture devices connected
to your board.

r = raspi("raspiname","pi","password");
a = listAudioDevices(r,"capture");
a(1)
a(2)

ans =

struct with fields:

15 Audio Examples

15-398



           Name: 'USB-Audio-LogitechUSBHeadsetH340-LogitechInc.LogitechUSBHeadsetH340atusb-0000:01:00.0-1.3,fullspeed'
         Device: '2,0'
       Channels: {}
       BitDepth: {}
   SamplingRate: {}

ans =

struct with fields:

           Name: 'USB-Audio-PlantronicsBT600-PlantronicsPlantronicsBT600atusb-0000:01:00.0-1.1,fullspeed'
         Device: '3,0'
       Channels: {'1'}
       BitDepth: {'16-bit integer'}
   SamplingRate: {'16000'}

ALSA Audio Capture (Simulink Support Package for Raspberry Pi Hardware) block captures the audio
signal from the default audio device on the Raspberry Pi hardware. You can also enter the name of an
audio device such as plughw:2,0 to capture audio from a device other than the default audio device.
Double click on the ALSA Audio Capture (Simulink Support Package for Raspberry Pi Hardware)
block and set Device name to plughw:2,0. Set the other parameters as shown.

ALSA Audio Capture (Simulink Support Package for Raspberry Pi Hardware) outputs 16-bit fixed-
point audio samples with values in the interval of . You cast the ALSA Audio Capture
(Simulink Support Package for Raspberry Pi Hardware) ouput to single-precision data and multiply it
by  to change the numerical range to . Note that you are changing the numerical range
because the subsequent blocks expect the audio in the range . Use Audio File Read (Simulink
Support Package for Raspberry Pi Hardware) block and a Manual Switch to switch the audio from the
microphone to the audio file and back.

model = "slexSpeechCommandRecognitionRaspiExample";
open_system(model)

 Speech Command Recognition on Raspberry Pi Using Simulink

15-399



Configure Code Generation Settings

Open the SpeechCommRecognitionRaspi model, go to MODELING Tab and Click on Model
Settings or press Ctrl+E. Select Code Generation and set the System Target File to ert.tlc
whose Description is Embedded Coder. Set the Language to C++, which will automatically set the
Language Standard to C++11 (ISO).

Alternatively, use set_param to configure the settings programmatically,

set_param(model,SystemTargetFile="ert.tlc")
set_param(model,TargetLang="C++")
set_param(model,TargetLangStandard="C++11 (ISO)")

15 Audio Examples

15-400



To run your model in External Mode, set Code Interface packaging to Nonreusable function
and check variable-size signals in Code Generation > Interface > Support as shown.

Select a solver that supports code generation. Set Solver to auto (Automatic solver
selection) and Solver type to Fixed-step.

set_param(model,SolverName="FixedStepAuto")
set_param(model,SolverType="Fixed-step")

In Configuration > Hardware Implementation, set Hardware board to Raspberry Pi and enter
your Raspberry Pi credentials in the Board Parameters as shown.

 Speech Command Recognition on Raspberry Pi Using Simulink

15-401



In the same window, set External mode > Communication interface to XCP on TCP/IP as
shown.

Check Signal logging in Data Import/Export to enable signal monitoring in External Mode.

15 Audio Examples

15-402



Deploy the Model on Raspberry Pi and Perform Speech Command Recognition

Go to Hardware tab and click on Monitor & Tune as shown.

Now close the model.

save_system(model);
close_system(model);

Warning: Unable to resolve the name
'CloneDetector.ExclusionEditorUIService.getInstance'. 

Other Things To Try

• Simulate “Speech Command Recognition Code Generation with Intel MKL-DNN Using Simulink”
(Audio Toolbox) Example in Processor-in-the-loop (PIL) mode on Raspberry Pi.

 Speech Command Recognition on Raspberry Pi Using Simulink

15-403



• Use LED (Simulink Support Package for Raspberry Pi Hardware) block of Simulink Support
Package for Raspberry Pi Hardware and light it up for the Go speech command. Use Deploy pane
in Hardware tab to deploy the standalone application on Raspberry Pi.

15 Audio Examples

15-404



Audio-Based Anomaly Detection for Machine Health Monitoring

This example shows how to design an autoencoder neural network to perform anomaly detection for
machine sounds using unsupervised learning. In this example you will download and process the data
using a log-mel spectrogram, design and train an autoencoder network, and make out-of-sample
predictions by applying a statistical model to the trained network output.

Audio-based anomaly detection is the process of identifying whether the sound generated by an
object is abnormal. This is applicable to the automatic detection of industrial component failures, as a
machine that emits an abnormal sound is likely malfunctioning.

The problem of classifying sounds as either normal or abnormal can be viewed as a standard
supervised learning task, where a model is trained on samples of both sound types and learns to
discriminate between them. However, in practice, a data set of abnormal sounds is generally not
available because machine malfunctions do not occur frequently enough or for long enough duration

 Audio-Based Anomaly Detection for Machine Health Monitoring

15-405



to be properly recorded. Also, it would be impossible to create a data set representative of every type
of anomaly, as a machine could malfunction for a diverse set of reasons.

Autoencoders are useful for anomaly detection tasks because they train solely on the normal samples.
Autoencoder networks perform the unsupervised learning task of finding both a low-dimensional
encoding of the input as well as a rule to accurately reconstruct the input from its low-dimensional
representation. This forces the autoencoder to learn a process specifically for compressing and
decompressing normal samples. The motivating principle is that when an abnormal sample is fed into
the autoencoder, the reconstruction error will be much larger than expected from the training set
because the signal compression and decompression scheme learned by the network is only expected
to work well for normal samples. To make predictions on unseen samples, an error threshold is
picked based off the expected distribution of reconstruction errors for normal samples, and any input
with an error larger than the threshold is classified as an anomaly.

In this example, the autoencoder first passes the input through an encoding section of fully-connected
layers using a number of nodes on the same order of magnitude as the input dimension. The data
then feeds into a bottleneck layer with a number of nodes much smaller than the input size which
forces the network to compress the input signal into the lower-dimensional representation. This
compressed representation feeds into a decoding section that generally mirrors the same
architecture as the encoder section in order to recreate the input signal. Lastly, the decoder output is
passed into a final output layer with the same number of dimensions as the input. The network loss is
taken as the regression error between the original input and the reconstructed signal.

Download Data

This example applies to the second task of the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2022 challenge [1] on page 15-417. The example uses a subset of the public data set
from Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection [2] on page
15-417 to train and evaluate the autoencoder. It implements ideas from the preprocessing steps and
network designs of both the autoencoder baseline system in [1] on page 15-417 and the proposed
network in [2] on page 15-417 and uses the performance metrics devised in [1] on page 15-417 to
analyze the testing results.

Download a subset of the data set in [2] on page 15-417 that contains recorded audio files of 4
different fan types, labelled by ID number. There are both normal and abnormal recordings for each
fan type. These files contain 1 channel sampled at 16 kHz and are 10 seconds long. The samples are
recordings of operating fans with background noise with a signal to noise ratio of 6 dB. A full
explanation of the data collection process is available in [2] on page 15-417.

dataFolder = tempdir;
dataset = fullfile(dataFolder,"fan6db");
supportFileLoc = "mimii/mono/fan6db.zip";
downloadFolder = matlab.internal.examples.downloadSupportFile("audio",supportFileLoc);
unzip(downloadFolder,dataFolder)

Investigate Data

To briefly examine the data set and the differences between the normal and abnormal recordings,
select one recording of each type from the ID 00 fan data set and play the first two seconds over your
speaker.

[normalSample,fs] = audioread(fullfile(dataset,"id_00","normal_00","00000000.wav"));
abnormalSample = audioread(fullfile(dataset,"id_00","abnormal_00","00000000.wav"));

numSamples = 10*fs;

15 Audio Examples

15-406



sound(normalSample(1:numSamples/5),fs)
pause(3)
sound(abnormalSample(1:numSamples/5),fs)

Both recordings are dominated by a single tone, and this tone is clearly higher pitched in the
abnormal sample.

Preprocess Data

You can optionally set the speedUp flag to true to reduce the size of the data set used in the
example. If you set this to true you can quickly verify that the script runs as expected, but the
results will be skewed.

speedUp = ;

Seperate the data set into two audioDatastore (Audio Toolbox) objects, one with the normal
samples and one with the abnormal samples. Since the autoencoder only trains on the normal
samples, hold out the abnormal samples to be included in the test set.

ads = audioDatastore(dataset, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames", ...
    FileExtensions=".wav");

normalLabels = categorical(["normal_00","normal_02","normal_04","normal_06"]);
abnormalLabels = categorical(["abnormal_00","abnormal_02","abnormal_04","abnormal_06"]);

isNormal = ismember(ads.Labels,normalLabels);
isAbnormal = ~isNormal;
adsNormal = subset(ads,isNormal);
adsTestAbnormal = subset(ads,isAbnormal);
rng(3);
if speedUp
    c = cvpartition(adsTestAbnormal.Labels,kFold=8,Stratify=true);
    adsTestAbnormal = subset(adsTestAbnormal,c.test(1));
end

Divide the normal samples into training, validation, and test sets, stratified by ID number. Then
concatenate the normal test set with the abnormal samples to form the full test set.

c = cvpartition(adsNormal.Labels,kFold=8,Stratify=true);
if speedUp
    trainInd = c.test(3);
else
    trainInd = ~boolean(c.test(1)+c.test(2));
end
valInd = c.test(1);
testInd = c.test(2);

adsTrain = subset(adsNormal,trainInd);
adsVal = subset(adsNormal,valInd);
adsTestNormal = subset(adsNormal,testInd);

Transform each of the datastores by applying an STFT with frame length of 64 ms and hop length of
32 ms, find the log-mel energies for 128 frequency bands, and then concatenate these frames into
overlapping, consecutive groups of 5 to form a context window. It is common to use log-mel energies

 Audio-Based Anomaly Detection for Machine Health Monitoring

15-407



as inputs to audio deep learning tasks as they represent the spectrum of tones on a scale similar to
how humans perceive sound. Visualize the log-mel spectrograms of the two clips played previously
using the plotLogMelSpect supporting function.

plotLogMelSpect(normalSample,abnormalSample);

Use the processData supporting function to perform the data transformation.

tdsTrain = transform(adsTrain,@processData);
tdsVal = transform(adsVal,@processData);
tdsTestNormal = transform(adsTestNormal,@processData);
tdsTestAbnormal = transform(adsTestAbnormal,@processData);

Read the data into arrays where each column represents an input sample. Do this in parallel if you
have enabled Parallel Computing Toolbox™. Then combine the normal test set and abnormal data set
into the full test set, and label the samples accordingly.

trainingData = readall(tdsTrain,UseParallel=canUseParallelPool);
valData = readall(tdsVal,UseParallel=canUseParallelPool);

normalTestData = readall(tdsTestNormal,UseParallel=canUseParallelPool);
abnormalTestData = readall(tdsTestAbnormal,UseParallel=canUseParallelPool);
testLabels = categorical([zeros(length(adsTestNormal.Labels),1);ones(length(adsTestAbnormal.Labels),1)],[0,1],["normal","abnormal"]);
testData = [normalTestData;abnormalTestData];

Network Architecture

The encoder section consists of 2 fully connected layers with output sizes of 128. The bottleneck layer
constrains the network to an 8-dimensional representation of the original 640-dimensional input. The
decoder section mirrors the encoder architecture as the input is reconstructed and fed into the
output layer. Use half-mean-squared-error as the loss function to train the network and quantify the
reconstruction error.

layers = [

15 Audio Examples

15-408



featureInputLayer(640)

fullyConnectedLayer(128,Name="Encoder1")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(128,Name="Encoder2")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(8,Name="Bottleneck")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(128,Name="Decoder1")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(128,Name="Decoder2")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(640,Name="Output")
regressionLayer];

Train Network

Train the network using an ADAM optimizer for 40 epochs. Shuffle the mini-batches each epoch, and
set the ExecutionEnvironment field to "auto" so that a GPU is used instead of the CPU if
available. If using a GPU with limited memory, you may need to decrease the value of the
miniBatchSize field. The training parameter settings were found empirically to optimize
convergence speed. This may take 10-15 minutes depending on your hardware.

batchSize = length(trainingData)/2;
if speedUp
    batchSize = 2*batchSize;
end

options = trainingOptions("adam", ...
    MaxEpochs=30, ...
    InitialLearnRate=1e-2, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=5, ...
    LearnRateDropFactor=.7, ...
    GradientDecayFactor=.8, ...
    miniBatchSize=batchSize, ...
    Shuffle="every-epoch", ...
    ExecutionEnvironment="auto", ...
    ValidationData={valData,valData}, ...
    ValidationFrequency=2, ...
    Verbose=0, ...
    Plots="training-progress");

trainingData is both the input and the target output as the network attempts to regress the
training data on itself with the low-dimensional encoding constraint. Your results should look similar
to the training plots below.

[net,info] = trainNetwork(trainingData,trainingData,layers,options);

 Audio-Based Anomaly Detection for Machine Health Monitoring

15-409



Evaluate Performance

For each input to the network, the autoencoder outputs an attempted reconstruction. However, each
network input is only one context window from a larger audio sample. For each of these network
inputs, the error is defined as the squared L-2 norm of the difference between the original input and
the network output. To calculate a decision metric for each entire audio sample, the errors for each
context window associated with that audio sample are added together, and this sum is divided by the
product of the network input dimension and the number of context groups per audio sample. For an

audio sample X, the decision function metric is denoted A X  and definedA X = ∑i = 1
n f xi − xi

2

n * dim xi

where n is the number of context groups per sample, xi  is the ith context group constructed from X,
and f xi  is the network output for xi. A X  represents the mean squared reconstruction error across
each vector component of all context windows associated with an audio sample X.

For each input X, A X  can also be interpreted as a relative measure of the network's confidence that
X is abnormal, with higher values indicating larger confidence. To deploy this model and make
predictions on new data, you must select a decision boundary on the values of A to separate positive
and negative predictions. Model A X  for normal samples as a gamma distribution. Gamma
distributions are commonly used to model autoencoder reconstruction errors since the errors are
usually skewed right with a heavy tail, which is the natural shape of a gamma distribution. In this
example, the decision boundary is selected as the point that corresponds to an expected false positive
rate (FPR) p = 0.1. This decision boundary attempts to capture all truly abnormal samples while
tolerating the expectation that 10% of normal samples will be falsely predicted as abnormal. You can
choose a specific value of p to fit your individual system constraints.

p = .1;

15 Audio Examples

15-410



Compute the values of A over the training set and store them in the variable A_train using the
helper function getScore. Then solve for the maximum likelihood estimate for the gamma
distribution parameters, select the cutoff point from the inverse gamma cumulative distribution
function, and plot the fitted distribution with the histogram of A using the getCutoff helper
function.

trainRecons = predict(net,trainingData,MiniBatchSize=length(trainingData));
A_train = getScore(trainingData,trainRecons);
cutoff = getCutoff(A_train,p);

Verify that this cutoff point roughly corresponds to an FPR of 0.1 on the training set:

sum(A_train > cutoff) / length(A_train)

ans = 0.1086

Test the classification accuracy of this system with the chosen cutoff point on the holdout test set.

testRecons = predict(net,testData,MiniBatchSize=length(testData));
A_test = getScore(testData,testRecons);
testPreds = categorical(A_test > cutoff,[false,true],["normal","abnormal"]).';
figure
cm = confusionchart(testLabels,testPreds);
cm.RowSummary="row-normalized";

 Audio-Based Anomaly Detection for Machine Health Monitoring

15-411



Using this cutoff point, the model achieves a true positive rate (TPR) of 0.647 at the cost of an FPR of
0.125.

To evaluate the accuracy of the network over a range of decision boundaries, measure the overall
performance on the test set by the area under the receiver operating characteristic curve (AUC). Use
both the full AUC and the partial AUC (pAUC) to analyze the network performance. pAUC is the AUC
on the subdomain where the FPR is on the interval 0, p  divided by the maximum possible area in the
interval, which is p. It is important to consider pAUC since anomaly detection systems need to be able
to achieve high TPR while keeping the FPR to a minimum, as a system with frequent false alarms is
untrustworthy and unusable. Compute the AUC using the perfcurve function from Statistics and
Machine Learning Toolbox™.

[X,Y,T,AUC] = perfcurve(testLabels,A_test,categorical("abnormal"));
[~,cutoffIdx] = min(abs(T-cutoff));
figure
plot(X,Y);
xlabel("FPR");
ylabel("TPR");
title("Test Set ROC Curve");
hold on
plot(X(cutoffIdx),Y(cutoffIdx),'r*');
hold off
legend("ROC Curve","Cutoff Decision Point");
grid on

15 Audio Examples

15-412



AUC

AUC = single
    0.8957

To calculate the pAUC, approximate the area under the curve in the first tenth of the FPR domain
using trapz. For reference, the expected value of the pAUC of a random classifier is 0.05.

pX = X(X <= p);
pY = Y(X <= p);
pAUC = trapz(pX,pY)/p

pAUC = single
    0.5161

The network separates the normal and abnormal test samples fairly well and is able to learn a single
encoding across multiple fan IDs. Visualize the difference in reconstruction errors between the
normal and abnormal groups by their histograms.

figure
hold on
edges = linspace(min(A_test),1,100);
histogram(A_test(testLabels == categorical("normal")),edges,Normalization="probability");
histogram(A_test(testLabels == categorical("abnormal")),edges,Normalization="probability");
ylabel("Sample Probability");
xlabel("Reconstruction Error (A)");
legend("Normal","Abnormal");

 Audio-Based Anomaly Detection for Machine Health Monitoring

15-413



Although there is some overlap, the distribution of reconstruction errors for the abnormal samples is
offset further to the right and contains a much heavier tail than the distribution of reconstruction
errors over the normal samples.

Lastly, evaluate the model's performance on each fan ID individually to reveal any imbalance between
the fan types and check if the model is able to predict universally well over all IDs.

IDs = [0;2;4;6];
AUCs = zeros(4,1);
pAUCs = AUCs;
A_testNormal = A_test(1:sum(testInd));
A_testAbnormal = A_test(sum(testInd)+1:end);
for i = 1:4
    normalMask = adsTestNormal.Labels == normalLabels(i);
    abnormalMask = adsTestAbnormal.Labels == abnormalLabels(i);
    A_testByID = [A_testNormal(normalMask) A_testAbnormal(abnormalMask)];
    testLabelsByID = [adsTestNormal.Labels(normalMask);adsTestAbnormal.Labels(abnormalMask)];
    [X_ID,Y_ID,T_ID,AUC_ID] = perfcurve(testLabelsByID,A_testByID,abnormalLabels(i));
    AUCs(i) = AUC_ID;
    pX_ID = X_ID(X_ID <= p);
    pY_ID = Y_ID(X_ID <= p);
    pAUCs(i) = trapz(pX_ID,pY_ID)/p;
end
disp(table(IDs,AUCs,pAUCs));

    IDs     AUCs       pAUCs 
    ___    _______    _______

15 Audio Examples

15-414



     0     0.72147    0.19134
     2     0.97739    0.73454
     4      0.8761    0.42547
     6     0.96017     0.6742

The results show the model performance significantly varies by fan type. This result is important to
note as this network is relatively small and simple compared to the top performing DCASE challenge
submissions in [3] on page 15-417. To generalize better across fan types and to different domains, a
more complex model is needed. However, if you know the exact fan type that you are deploying an
anomaly detector for, a very light-weight model like the one in this example may suffice.

Supporting Functions
function plotLogMelSpect(normalSample,abnormalSample)
%PLOTLOGMELSPECT plots the log-mel spectrogram of the normal and abornomal
%   plotLogMelSpect(normalSample,abnormalSample) plots the log-mel
%   spectrogram of the two inputs side by side, with parameters consistent
%   with the data preprocessing transformation used to prepare the signals
%   to be fed into the autoencoder.
f = figure;
f.Position(3) = 900;
samples = {normalSample,abnormalSample};
fs = 16e3;
winDur = 64e-3;
winLen = winDur * fs;
numMelBands = 128;
tiledlayout(1,2)
for i = 1:2
    nexttile
    x = samples{i};
    melSpectrogram(x,fs,Window=hamming(winLen,"periodic"),FFTLength=winLen,OverlapLength=winLen/2,NumBands=numMelBands);
    xticks(1:10);
    xticklabels(string(1:10));
    colormap("jet");
    if i == 2
        cbar = colorbar;
        cbar.Label.String = "Power (dB)";
        title("Abnormal Log-Mel Spectrogram");
        ylabel([]);
    else
        colorbar off
        title("Normal Log-Mel Spectrogram");
    end
end
end
function features = processData(x)
%PROCESSDATA transforms an audio file input x into the autoencoder network
%input format
%   features = processData(x) takes the STFT of audio data x, transforms
%   the STFT into the log-mel spectrogram, and then constructs context
%   groups of consecutive mel-spectrogram frames. The function returns the
%   features as a numContextGroupsPerSample-by-contextGroupSize matrix. For
%   this data set, numContextGroupsPerSample = 309 and contextGroupSize =
%   640 = 128*5 (since there are 128 mel bands per frame and 5 frames are
%   concatenated for each context group)

fs = 16e3;

 Audio-Based Anomaly Detection for Machine Health Monitoring

15-415



winDur = 64e-3;
winLen = winDur*fs;
numMelBands = 128;
afe = audioFeatureExtractor(...
    Window=hamming(winLen,"periodic"), ...
    FFTLength=winLen, ...
    OverlapLength=winLen/2, ...
    SampleRate=fs, ...
    melSpectrum=true);

setExtractorParameters(afe,"melSpectrum",numBands=numMelBands);

% Zero pad
numSamples = length(x);
numPad = winLen - mod(numSamples,winLen);
numToPadFront = floor(numPad/2);
numToPadBack = ceil(numPad/2);

xPadded = [zeros(numToPadFront,1,like=x);x;zeros(numToPadBack,1,like=x)];
% Extract
features = extract(afe,xPadded);
features = {log10(features)};
features = cellfun(@groupSTFT,features,UniformOutput=false);
features = vertcat(features{:});
end

function groups = groupSTFT(x)
%GROUPSTFT transforms an STFT x into context groups of size 5
%   groups = groupSTFT(x) transforms the STFT x by grouping each STFT frame
%   with the following 4 frames to form context groups of size 5. This
%   creates multiple network inputs out of each audio sample, each of size
%   contextLen*numMelBands = 5*128 = 640. Each of these context groups are
%   treated as individual 640-dimensional vectors for the purpose of the
%   autoencoder.
contextLen = 5;
numMelBands = 128;
x_flat = reshape(x',1,[]);
groups = buffer(x_flat,contextLen*numMelBands,numMelBands*(contextLen-1),"nodelay")';
end

function A = getScore(data,preds)
%GETSCORE returns the reconstruction error for each sample in data
%   A = getScore(data,preds) returns A(X) for each X in the set of samples
%   transformed into network input data.
err = sum((preds-data).^2,2);
numSTFTFrames = 313;
contextWin = 5;
numMelFilters = 128;
numContextGroupsPerSample = numSTFTFrames-contextWin+1;
numSamples = length(err)/numContextGroupsPerSample;
A_total = reshape(err,[numContextGroupsPerSample,numSamples]); %Each column contains reconstruction errors of all context groups for one sample
A = sum(A_total)/(numMelFilters*contextWin*numSTFTFrames); %Each entry is a reconstruction error for each sample
end

function cutoff = getCutoff(A,p)
%GETCUTOFF fits a gamma distribution to A and returns the cutoff as the inverse cdf of 1-p
%   cutoff = getCutoff(A,p) fits a gamma distribution to the reconstruction
%   error array A, solves for the cutoff point as the inverse gamma cdf

15 Audio Examples

15-416



%   evaluated at 1-p, and plots the fitted distribution along with the
%   histogram of A and the calculated cutoff point. A is expected as
%   one-by-numSamples array where numSamples is the number of audio samples
%   used to compute the reconstruction error values of A.
gammaParams = gamfit(A);
a = gammaParams(1);
b = gammaParams(2);
cutoff = gaminv(1-p,a,b);
figure
ax1 = subplot(4,1,1:3);
histogram(A);
xticks([]);
title("Histogram of A with Fitted Gamma Dist. PDF");
ylTop = ylabel("Count");
xline(cutoff,"--",LineWidth=2,Label="cutoff",LabelOrientation="horizontal",LabelVerticalAlignment="middle");
ax2 = subplot(4,1,4);
t = linspace(0, max(A), 1000);
y = gampdf(t,a,b);
plot(t,y);
xline(cutoff,"--",LineWidth=2);
ylBottom = ylabel("\Gamma Density");
yticks([]);
linkaxes([ax1 ax2],"x");
ylBottom.Position(1) = ylTop.Position(1);
xlabel("Reconstruction Error (A)");
xlim([0 .4]);
ylBottom.Position(1) = ylTop.Position(1);
end

References

[1] “Unsupervised anomalous sound detection for machine condition monitoring applying domain
generalization techniques,” DCASE 2022. [Online]. Available: https://dcase.community/
challenge2022/task-unsupervised-anomalous-sound-detection-for-machine-condition-monitoring.
[Accessed: 08-Jun-2022].

[2] "Purohit, Harsh, Tanabe, Ryo, Ichige, Kenji, Endo, Takashi, Nikaido, Yuki, Suefusa, Kaori, &
Kawaguchi, Yohei. (2019). MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine
Investigation and Inspection (public 1.0) [Data set]. 4th Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE 2019 Workshop), New York, USA. Zenodo. https://doi.org/
10.5281/zenodo.3384388. Dataset is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License available at https://creativecommons.org/licenses/by-sa/4.0/

[3] “Unsupervised detection of anomalous sounds for Machine Condition Monitoring,” DCASE 2020.
[Online]. Available: https://dcase.community/challenge2020/task-unsupervised-detection-of-
anomalous-sounds-results#Giri2020. [Accessed: 08-Jun-2022].

 Audio-Based Anomaly Detection for Machine Health Monitoring

15-417

https://doi.org/10.5281/zenodo.3384388
https://doi.org/10.5281/zenodo.3384388
https://creativecommons.org/licenses/by-sa/4.0/


3-D Speech Enhancement Using Trained Filter and Sum
Network

In this example, you perform speech enhancement using a pretrained deep learning model. For
details about the model and how it was trained, see “Train 3-D Speech Enhancement Network Using
Deep Learning” (Audio Toolbox). The speech enhancement model is an end-to-end deep beamformer
that takes B-format ambisonic audio recordings and outputs enhanced mono speech signals.

Download Pretrained Network

Download the pretrained speech enhancement (SE) network, ambisonic test files, and labels. The
model architecture is based on [1] on page 15-422 and [4] on page 15-422, as implemented in the
baseline system for the L3DAS21 challenge task 1 [2] on page 15-422. The data the model was
trained on and the ambisonic test files are provided as part of [2] on page 15-422.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","speechEnhancement/FaSNet.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"speechEnhancement");
addpath(netFolder)

Load and Inspect Data

Load the clean speech and listen to it.

[cleanSpeech,fs] = audioread("cleanSpeech.wav");

soundsc(cleanSpeech,fs)

In the L3DAS21 challenge, "clean" speech files were taken from the LibriSpeech dataset and
augmented to obtain synthetic tridimensional acoustic scenes containing a randomly placed speaker
and other sound sources typical of background noise in an office environment. The data is encoded as
B-format ambisonics. Load the ambisonic data. First order B-format ambisonic channels correspond
to the sound pressure captured by an omnidirectional microphone (W) and sound pressure gradients
X, Y, and Z that correspond to front/back, left/right, and up/down captured by figure-of-eight capsules
oriented along the three spatial axes.

[ambisonicData,fs] = audioread("ambisonicRecording.wav");

Listen to a channel of the ambisonic data.

channel = ;
soundsc(ambisonicData(:,channel),fs)

To plot the clean speech and the noisy ambisonic data, use the supporting function compareAudio
on page 15-422.

compareAudio(cleanSpeech,ambisonicData,SampleRate=fs)

15 Audio Examples

15-418



To visualize the spectrograms of the clean speech and the noisy ambisonic data, use the supporting
function compareSpectrograms on page 15-424.

compareSpectrograms(cleanSpeech,ambisonicData)

Mel spectrograms are auditory-inspired transformations of spectrograms that emphasize, de-
emphasize, and blur frequencies similar to how the auditory system does. To visualize the mel
spectrograms of the clean speech and the noisy ambisonic data, use the supporting function
compareSpectrograms on page 15-424 and set Warp to mel.

compareSpectrograms(cleanSpeech,ambisonicData,Warp="mel")

 3-D Speech Enhancement Using Trained Filter and Sum Network

15-419



Perform 3-D Speech Enhancement

Use the supporting object, seModel, to perform speech enhancement. The seModel class definition
is in the current folder when you open this example. The object encapsulates the SE model developed
in “Train 3-D Speech Enhancement Network Using Deep Learning” (Audio Toolbox). Create the
model, then call enhanceSpeech on the ambisonic data to perform speech enhancement.

model = seModel(netFolder);
enhancedSpeech = enhanceSpeech(model,ambisonicData);

Listen to the enhanced speech. You can compare the enhanced speech listening experience with the
clean speech or noisy ambisonic data by selecting the desired sound source from the dropdown.

soundSource = ;
soundsc(soundSource,fs)

Compare the clean speech, noisy speech, and enhanced speech in the time domain, as spectrograms,
and as mel spectrograms.

compareAudio(cleanSpeech,ambisonicData,enhancedSpeech)

compareSpectrograms(cleanSpeech,ambisonicData,enhancedSpeech)

15 Audio Examples

15-420



compareSpectrograms(cleanSpeech,ambisonicData,enhancedSpeech,Warp="mel")

Speech Enhancement for Speech-to-Text Applications

Compare the performance of the speech enhancement system on a downstream speech-to-text
system. Use the wav2vec 2.0 speech-to-text model. This model requires a one-time download of
pretrained weights to run. If you have not downloaded the wav2vec weights, the first call to
speechClient will provide a download link.

Create the wav2vec 2.0 speech client to perform transcription.

transcriber = speechClient("wav2vec2.0",segmentation="none");

Perform speech-to-text transcription using the clean speech, the ambisonic data, and the enhanced
speech.

cleanSpeechResults = speech2text(transcriber,cleanSpeech,fs)

cleanSpeechResults = 
"i tell you it is not poison she cried"

noisySpeechResults = speech2text(transcriber,ambisonicData(:,channel),fs)

noisySpeechResults = 
"i tell you it is not parzona she cried"

enhancedSpeechResults = speech2text(transcriber,enhancedSpeech,fs)

enhancedSpeechResults = 
"i tell you it is not poison she cried"

 3-D Speech Enhancement Using Trained Filter and Sum Network

15-421



Speech Enhancement for Telecommunications Applications

Compare the performance of the speech enhancement system using the short-time objective
intelligibility (STOI) measurement [5]. STOI has been shown to have a high corelation with the
intelligibility of noisy speech and is commonly used to evaluate speech enhancement systems.

Calculate STOI for the omnidirectional channel of the ambisonics, and for the enhanced speech.
Perfect intelligibility has a score of 1.

stoi(cleanSpeech,ambisonicData(:,channel),fs)

ans = 0.6950

stoi(cleanSpeech,enhancedSpeech,fs)

ans = 0.8393

References

[1] Luo, Yi, Cong Han, Nima Mesgarani, Enea Ceolini, and Shih-Chii Liu. "FaSNet: Low-Latency
Adaptive Beamforming for Multi-Microphone Audio Processing." In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), 260–67. SG, Singapore: IEEE, 2019. https://
doi.org/10.1109/ASRU46091.2019.9003849.

[2] Guizzo, Eric, Riccardo F. Gramaccioni, Saeid Jamili, Christian Marinoni, Edoardo Massaro, Claudia
Medaglia, Giuseppe Nachira, et al. "L3DAS21 Challenge: Machine Learning for 3D Audio Signal
Processing." In 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing
(MLSP), 1–6. Gold Coast, Australia: IEEE, 2021. https://doi.org/10.1109/MLSP52302.2021.9596248.

[3] Roux, Jonathan Le, et al. "SDR – Half-Baked or Well Done?" ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, pp. 626–
30. DOI.org (Crossref), https://doi.org/10.1109/ICASSP.2019.8683855.

[4] Luo, Yi, et al. "Dual-Path RNN: Efficient Long Sequence Modeling for Time-Domain Single-
Channel Speech Separation." ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 46–50. DOI.org (Crossref), https://doi.org/
10.1109/ICASSP40776.2020.9054266.

[5] Taal, Cees H., Richard C. Hendriks, Richard Heusdens, and Jesper Jensen. "An Algorithm for
Intelligibility Prediction of Time–Frequency Weighted Noisy Speech." IEEE Transactions on Audio,
Speech, and Language Processing 19, no. 7 (September 2011): 2125–36. https://doi.org/10.1109/
TASL.2011.2114881.

Supporting Functions

Compare Audio

function compareAudio(target,x,y,parameters)
%compareAudio Plot clean speech, B-format ambisonics, and predicted speech

15 Audio Examples

15-422

https://doi.org/10.1109/ASRU46091.2019.9003849
https://doi.org/10.1109/ASRU46091.2019.9003849
https://doi.org/10.1109/MLSP52302.2021.9596248
https://doi.org/10.1109/ICASSP.2019.8683855
https://doi.org/10.1109/ICASSP40776.2020.9054266
https://doi.org/10.1109/ICASSP40776.2020.9054266
https://doi.org/10.1109/TASL.2011.2114881
https://doi.org/10.1109/TASL.2011.2114881


% over time

arguments
    target
    x
    y = []
    parameters.SampleRate = 16e3
end

numToPlot = 2 + ~isempty(y);

f = figure;
tiledlayout(4,numToPlot,TileSpacing="compact",TileIndexing="columnmajor")
f.Position = [f.Position(1),f.Position(2),f.Position(3)*numToPlot,f.Position(4)];

t = (0:(size(x,1)-1))/parameters.SampleRate;

xmax = max(x(:));
xmin = min(x(:));

nexttile(1,[4,1])
plot(t,target,Color=[0 0.4470 0.7410])
axis tight
ylabel("Amplitude")
xlabel("Time (s)")
title("Clean Speech (Target Data)")
grid on

nexttile(5)
plot(t,x(:,1),Color=[0.8500 0.3250 0.0980])
title("Noisy Speech (B-Format Ambisonic Data)")
axis([t(1),t(end),xmin,xmax])
set(gca,Xticklabel=[],YtickLabel=[])
grid on
yL = ylabel("W",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(6)
plot(t,x(:,2),Color=[0.8600 0.3150 0.0990])
axis([t(1),t(end),xmin,xmax])
set(gca,Xticklabel=[],YtickLabel=[])
grid on
yL = ylabel("X",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(7)
plot(t,x(:,3),Color=[0.8700 0.3050 0.1000])
axis([t(1),t(end),xmin,xmax])
set(gca,Xticklabel=[],YtickLabel=[])
grid on
yL = ylabel("Y",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(8)
plot(t,x(:,4),Color=[0.8800 0.2950 0.1100])
axis([t(1),t(end),xmin,xmax])
xlabel("Time (s)")
set(gca,YtickLabel=[])

 3-D Speech Enhancement Using Trained Filter and Sum Network

15-423



grid on
yL = ylabel("Z",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

if numToPlot==3
    nexttile(9,[4,1])
    plot(t,y,Color=[0 0.4470 0.7410])
    axis tight
    xlabel("Time (s)")
    title("Enhanced Speech")
    grid on
    set(gca,YtickLabel=[])
end

end

Compare Spectrograms

function compareSpectrograms(target,x,y,parameters)
%compareSpectrograms Plot spectrograms of clean speech, B-format
% ambisonics, and predicted speech over time

arguments
    target
    x
    y = []
    parameters.SampleRate = 16e3
    parameters.Warp = "linear"
end
fs = parameters.SampleRate;

switch parameters.Warp
    case "linear"
        fn = @(x)spectrogram(x,hann(round(0.03*fs),"periodic"),round(0.02*fs),round(0.03*fs),fs,"onesided","power","yaxis");
    case "mel"
        fn = @(x)melSpectrogram(x,fs);
end

numToPlot = 2 + ~isempty(y);

f = figure;
tiledlayout(4,numToPlot,TileSpacing="tight",TileIndexing="columnmajor")
f.Position = [f.Position(1),f.Position(2),f.Position(3)*numToPlot,f.Position(4)];

nexttile(1,[4,1])
fn(target)
fh = gcf;
fh.Children(1).Children(1).Visible="off";
title("Clean Speech")

nexttile(5)
fn(x(:,1))
fh = gcf;
fh.Children(1).Children(1).Visible="off";
set(gca,Yticklabel=[],XtickLabel=[],Xlabel=[])
yL = ylabel("W",FontWeight="bold");

15 Audio Examples

15-424



set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
title("Noisy Speech (B-Format Ambisonic Data)")

nexttile(6)
fn(x(:,2))
fh = gcf;
fh.Children(1).Children(1).Visible="off";
set(gca,Yticklabel=[],XtickLabel=[],Xlabel=[])
yL = ylabel("X",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(7)
fn(x(:,3))
fh = gcf;
fh.Children(1).Children(1).Visible="off";
set(gca,Yticklabel=[],XtickLabel=[],Xlabel=[])
yL = ylabel("Y",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(8)
fn(x(:,4))
fh = gcf;
fh.Children(1).Children(1).Visible="off";
set(gca,Yticklabel=[])
yL = ylabel("Z",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

if numToPlot==3
    nexttile(9,[4,1])
    fn(y)
    fh = gcf;
    fh.Children(1).Children(1).Visible="off";
    set(gca,Yticklabel=[],Ylabel=[])
    title("Enhanced Speech")
end
end

Short-Time Objective Intelligibility (STOI) Measure

function metric = stoi(t,y,fs)
%STOI Short-time objective intelligibility measure (STOI)
% metric = stoid(t,y,fs) returns the short-time objective intelligibility
% measurement (STOI) defined in [1] and [2]. t is the clean speech signal,
% y is the predicted speech signal, and fs is the sample rate.
%
% References
%   [1] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen. A Short-Time
%   Objective Intelligibility Measure for Time-Frequency Weighted Noisy
%   Speech. In Acoustics Speech and Signal Processing (ICASSP), pages
%   4214-4217. IEEE, 2010.
%
%   [2] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen. An Algorithm
%   for Intelligibility Prediction of Time-Frequency Weighted Noisy Speech.
%   IEEE Transactions on Audio, Speech and Language Processing,
%   19(7):2125-2136, 2011.

% Define parameters
designFs = 10e3;

 3-D Speech Enhancement Using Trained Filter and Sum Network

15-425



windowLength = 256;
fttLength = 512;
numBands = 15;
cf1 = 150; % Center frequency of first 1/3 octave band in Hz.
N = 30; % Number of frames for intermediate intelligibility
Beta = -15; % Lower bound of signal to distortion ratio (SDR)
clipConstant = 10^(-Beta/20);
energyThreshold = 40; % Speech dynamic range

if fs ~= designFs
    t = cast(resample(double(t),designFs,fs),like=t);
    y = cast(resample(double(y),designFs,fs),like=y);
end

% Remove silent frames
[t,y] = removeSilentFrames(t,y,energyThreshold,windowLength);

% Compute magnitude short-time Fourier transform
T = stft(t,FFTLength=fttLength,Window=hann(windowLength), ...
    OverlapLength=windowLength/2,FrequencyRange="onesided");
Y = stft(y,FFTLength=fttLength,Window=hann(windowLength), ...
    OverlapLength=windowLength/2,FrequencyRange="onesided");
T = abs(T);
Y = abs(Y);

% Design frequency-domain octave filter bank
fb = designOctaveFilterBank(designFs,fttLength,numBands,cf1);

% Apply octave filter bank
T = fb*T;
Y = fb*Y;

% Compute intelligibility measurement
djm = zeros(numBands,length(N:size(T,2)));
for m = N:size(T,2)
    % Isolate region of N consecutive TF-units
    Tj = T(:,(m-N+1):m);
    Yj = Y(:,(m-N+1):m);

    % Calculate alpha
    alpha = sqrt(sum(Tj.^2,2)./sum(Yj.^2,2));

    alphaYj = Yj.*alpha;
    Ypj = min(alphaYj,Tj+Tj*clipConstant); % Eq 3 from [1]

    % Eq 4 from [1]
    yn = Ypj - mean(Ypj,2);
    xn = Tj - mean(Tj,2);
    djm(:,m-N+1) = dot(xn./vecnorm(xn,2,2),yn./vecnorm(yn,2,2),2);
end

% Average intermediate intelligibility over all bands and frames (eq 5 in
% [1])
metric = mean(djm(:));

    % Remove Silent Frames
    function [tS,yS] = removeSilentFrames(t,y,eThreshold,N)

15 Audio Examples

15-426



        win = hanning(N);

        tb = buffer(t,N,N/2,"nodelay");
        tbwin = tb.*win;

        frameEnergy = 20*log10(vecnorm(tbwin)./sqrt(N));

        mask = (frameEnergy-max(frameEnergy)+eThreshold)>0;

        tS = tbwin;
        tS(:,~mask) = [];
        tS = tS(1:N/2,2:end) + tS(N/2+1:end,1:end-1);
        tS = [tb(1:N/2,1);tS(:);tb(N/2+1:end,end)];

        yb = buffer(y,N,N/2,"nodelay");
        ybwin = yb.*win;
        yS = ybwin;
        yS(:,~mask) = [];
        yS = yS(1:N/2,2:end) + yS(N/2+1:end,1:end-1);
        yS = [yb(1:N/2,1);yS(:);yb(N/2+1:end,end)];

    end

    % Design Octave Filter Bank
    function  fb = designOctaveFilterBank(fs,fftLength,numBands,cf1)
        f = linspace(0,fs,fftLength+1);
        f = f(1:(fftLength/2+1));
        k = 0:(numBands-1);

        cf = 2.^(k/3)*cf1;
        fl = sqrt((2.^(k/3)*cf1).*2.^((k-1)/3)*cf1);
        fr = sqrt((2.^(k/3)*cf1).*2.^((k+1)/3)*cf1);

        fb  = zeros(numBands,numel(f));

        fp = f';
        [~,bandLow] = min((fp-fl).^2);
        [~,bandHigh] = min((fp-fr).^2);

        for ii = 1:numel(cf)
            fb(ii,bandLow(ii):(bandHigh(ii)-1)) = 1;
        end
    end
end

 3-D Speech Enhancement Using Trained Filter and Sum Network

15-427



Train 3-D Speech Enhancement Network Using Deep Learning

In this example, you train a filter and sum network (FaSNet) [1] on page 15-442 to perform speech
enhancement (SE) using ambisonic data. The model has been updated to use stacked dual-path
recurrent neural networks (DPRNNs) which enable memory-efficient joint modeling of short- and
long-term sequences [4] on page 15-443. To explore the model trained in this example, see “3-D
Speech Enhancement Using Trained Filter and Sum Network” (Audio Toolbox).

15 Audio Examples

15-428



Introduction

The aim of speech enhancement (SE) is to suppress the noise in a noisy speech signal. The SE system
may be used as a front end in teleconferencing systems, where intelligibility and listening experience
are important metrics, or a speech-to-text system, where the word error rate of the downstream
speech-to-text system is the important metric.

In this example, you use the L3DAS 2021 Task 1 dataset [2] on page 15-443 to train and evaluate a
model that uses B-format ambisonic data to perform speech enhancement. The enhanced speech is
output as a mono audio signal. To explore the model trained in this example, see “3-D Speech
Enhancement Using Trained Filter and Sum Network” (Audio Toolbox).

Optionally Reduce Data Set

To train the network with the entire data set, set speedupExample to false. To run this example
quickly, set speedupExample to true. This network requires a large amount of data to achieve
reasonable results.

speedupExample = ;

Download and Prepare Data

This example uses the L3DAS21 task 1 challenge data set [2] on page 15-443. The train data sets
contains 2 multiple-source and multiple-perspective (MSMP) B-format ambisonic recordings collected
at a sampling rate of 16 kHz. The two microphones are labeled as "A" and "B". In this example, you
discard recordings from microphone B. Including microphone B data in the training should improve
the final performance. The train and validation splits are provided with the data set. The 3-D speech
enhancement data set contains more than 30,000 virtual 3-D audio environments with a duration up
to 10 seconds. Each sample contains a spoken voice and other office-like background noises. The
target data is the clean monophonic voice signal. The dev dataset is 2.6 GB, the train100 dataset is
7.6 GB, and the train360 dataset is 28.6 GB.

Download the data set and point to it using audioDatastore (Audio Toolbox).

downloadLocation = tempdir;

datasetLocationDev = fullfile(downloadLocation,"L3DAS_Task1_dev");
datasetLocationTrain100 = fullfile(downloadLocation,"L3DAS_Task1_train100");
datasetLocationTrain360 = fullfile(downloadLocation,"L3DAS_Task1_train360");
if speedupExample
    if ~datasetExists(datasetLocationDev)
        urlDev = "https://zenodo.org/record/4642005/files/L3DAS_Task1_dev.zip";
        unzip(urlDev,downloadLocation)
    end

    ads = audioDatastore(fullfile(downloadLocation,"L3DAS_Task1_dev"),IncludeSubfolders=true);
else
    if ~datasetExists(datasetLocationDev)
        urlDev = "https://zenodo.org/record/4642005/files/L3DAS_Task1_dev.zip";
        unzip(urlDev,downloadLocation)
    end
    if ~datasetExists(datasetLocationTrain100)
        urlTrain100 = "https://zenodo.org/record/4642005/files/L3DAS_Task1_train100.zip";
        unzip(urlTrain100,downloadLocation)
    end

 Train 3-D Speech Enhancement Network Using Deep Learning

15-429



    if ~datasetExists(datasetLocationTrain360)
        urlTrain360 = "https://zenodo.org/record/4642005/files/L3DAS_Task1_train360.zip";
        unzip(urlTrain360,downloadLocation)
    end
    adsValidation = audioDatastore(fullfile(downloadLocation,"L3DAS_Task1_dev"),IncludeSubfolders=true);
    adsTrain = audioDatastore([fullfile(downloadLocation,"L3DAS_Task1_train100"), ...
        fullfile(downloadLocation,"L3DAS_Task1_train360")],IncludeSubfolders=true);
end

To subset the datastores into targets and predictors, use subset (Audio Toolbox). Only use
microphone A predictors. Using both microphones should increase model performance at the cost of
more training time.

if speedupExample
    [~,fileNames] = fileparts(ads.Files);
    targetFiles = ~endsWith(fileNames,["A","B"]);
    micAFiles = endsWith(fileNames,"A");
    T = subset(ads,targetFiles);
    X = subset(ads,micAFiles);
    XTrain = subset(X,1:40);
    TTrain = subset(T,1:40);
    XValidation = subset(X,41:50);
    TValidation = subset(T,41:50);
else
    [~,fileNames] = fileparts(adsTrain.Files);
    targetFiles = ~endsWith(fileNames,["A","B"]);
    micAFiles = endsWith(fileNames,"A");
    TTrain = subset(adsTrain,targetFiles);
    XTrain = subset(adsTrain,micAFiles);

    [~,fileNames] = fileparts(adsValidation.Files);
    targetFiles = ~endsWith(fileNames,["A","B"]);
    micAFiles = endsWith(fileNames,"A");
    TValidation = subset(adsValidation,targetFiles);
    XValidation = subset(adsValidation,micAFiles);
end

Remove any files that do not overlap between targets and predictors.

[~,hFiles] = fileparts(TTrain.Files);
[~,kFiles] = fileparts(XTrain.Files);
kFiles = erase(kFiles,"_A");
validFiles = intersect(kFiles,hFiles);
targetValidFiles = ismember(validFiles,kFiles);
predictorsValidFiles = ismember(kFiles,validFiles);
TTrain = subset(TTrain,targetValidFiles);
XTrain = subset(XTrain,predictorsValidFiles);

[~,hFiles] = fileparts(TValidation.Files);
[~,kFiles] = fileparts(XValidation.Files);
kFiles = erase(kFiles,"_A");
validFiles = intersect(kFiles,hFiles);
targetValidFiles = ismember(validFiles,kFiles);
predictorsValidFiles = ismember(kFiles,validFiles);
TValidation = subset(TValidation,targetValidFiles);
XValidation = subset(XValidation,predictorsValidFiles);

15 Audio Examples

15-430



To combine the predictor and target datastores so that reading from the combined datastore returns
the predictors and associated target, use combine (Audio Toolbox).

dsTrain = combine(XTrain,TTrain);
dsValidation = combine(XValidation,TValidation);

Inspect Data

Preview the ambisonic recordings and plot the data.

predictor = preview(XTrain);
target = preview(TTrain);

fs = 16e3; % Known sampling rate of data.
t = (0:size(target,1)-1)/fs;

tiledlayout(2,1,TileSpacing="tight")

nexttile
plot(t,target)
title("Target")
xlabel("Time (s)")
axis tight

nexttile
plot(t,predictor)
title("Predictor")
xlabel("Time (s)")
legend(["W","X","Y","Z"])
axis tight

 Train 3-D Speech Enhancement Network Using Deep Learning

15-431



Listen to the target data, the mean of the ambisonic channels, or one of the ambisonic channels
individually.

soundSource = ;
soundsc(soundSource,fs)

Word Error Rate (WER)

Choosing an appropriate metric to evaluate a SE system performance depends on the final task of the
system. For speech-to-text applications, evaluating the word error rate (WER) using the target
speech-to-text system is a common approach. For teleconferencing applications, the short-time
objective intelligibility measure (STOI) is a common approach. Similarly, the choice of loss function
should depend on the final application of the speech enhancement system. In this example, you
attempt to optimize the system to reduce WER for a downstream speech-to-text system. One option
for the loss function is to use the WER directly, however this can be prohibitively time-consuming for
training, and couples the speech enhancement module tightly with the speech-to-text module.
Another approach is to use an auditory-based representation of the targets and predictors and
calculate the mean square error between them. This example takes the second approach. To get a
baseline for performance analysis, calculate the WER of the target (clean) signal, and the noisy signal
using a naive approach to SE (mean over channels). The supporting function, wordErrorRate on
page 15-443, uses the wav2vec2.0 option of the speech2text functionality. If you have not
downloaded the pretrained wav2vec 2.0 model, the function throws an error with a link to the
download. The WER is calculated using Text Analytics Toolbox™.

15 Audio Examples

15-432



tds = fileDatastore(datasetLocationDev, ...
    ReadFcn=@(x)string(fileread(x)), ...
    IncludeSubfolders=true,FileExtensions=".txt");
[~,tdsFiles] = fileparts(tds.Files);
[~,TValidationFiles] = fileparts(TValidation.Files);
validFiles = ismember(tdsFiles,TValidationFiles);
tds = subset(tds,validFiles);
dsWER = combine(XValidation,TValidation,tds);

WERa = wordErrorRate(dsWER,TargetWER=true,BaselineWER=true);

progress = 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99....complete.

WERa.Target

ans = 0.0296

WERa.Baseline

ans = 0.4001

Filter and Sum Network (FaSNet)

This example uses the filter and sum network (FaSNet) architecture with dual-path recurrent neural
networks (DPRNN). FaSNet is a time-domain adaptive beamforming framework consisting of two
stages:

1 Estimate the beamforming filter for selected reference channel, and then denoise the reference
signal.

2 Beamform remaining channels using the denoised reference channel.

The FaSNet using DPRNN architecture is implemented in the supporting function FaSNet, which is
in the current folder when you open this example.

Stage 1: Denoise Reference Mic

In stage one, a normalized cross correlation (NCC) metric is computed between the windows of the
reference channel with context and windows of the remaining channels. This example uses cosine
similarity as the correlation metric. The metric is pooled across the channels, passed through a
temporal convolutional network (TCN), and then through the beamforming filter learner. The output
from the beamformer module blocks is then used to filter the reference channel.

Stage 2: Create Beamformed Signal

In stage two, a NCC metric is computed between the denoised windows of the reference channel and
windows of the remaining channels with context. A beamforming filter is learned for each of the

 Train 3-D Speech Enhancement Network Using Deep Learning

15-433



remaining channels. Each channel is separately denoised, and then the channels are summed to
create the beamformed final signal.

Beamformer

The beamformer module follows the design of [1] on page 15-442 except replaces the stacked TCN
blocks with stacked DPRNN blocks.

Dual-Path Recurrent Neural Network

Dual-path recurrent neural networks (DPRNN) were introduced in [4] on page 15-443 as a method of
organizing RNN layers in a deep structure to model extremely long sequences. DPRNN splits
sequential input into chunks and then applies intra- and inter-chunk operations iteratively. The
approach has been shown to perform as well or better than 1-D CNN architectures with a
significantly smaller model size. The DPRNN model consists of three stages: segmentation, DPRNN
blocks (which may be stacked), and then overlap-add reconstruction.

Segmentation

The sequence is split into S segments of length K with overlap P. In this example, K = 2P.

15 Audio Examples

15-434



DPRNN Block

The segmented signal passes through B DPRNN blocks. In this example, B is set to 6. Each block
contains two sub-modules corresponding to intra- and inter-chunk processing. The intra-chunk RNN
is always bi-directional. The intra-chunk RNN processes each segment individually. The inter-chunk
RNN may be uni- or bi-directional, depending on latency requirements of your system. In this
example, the inter-chunk RNN is bi-directional. The inter-chunk RNN processes along the stacked
dimension of length S. The output of each DPRNN block is the same size as the input.

 Train 3-D Speech Enhancement Network Using Deep Learning

15-435



Overlap-Add

The output from the stacked DPRNN blocks is overlapped and added to reconstruct the sequence
data.

15 Audio Examples

15-436



Define Parameters

Define system-level, FaSNet-level, and DPRNN-level parameters.

% System-level parameters
parameters.SampleRate = fs;
parameters.AnalysisLength = 2*parameters.SampleRate;

% FaSNet-level parameters
parameters.WindowLength = 256;    % L in FaSNet
parameters.EncoderDimension = 64; % Number filters in TCN
parameters.NumDPRNNBlocks = 6;    % Number of stacked DPRNN blocks

% DPRNN-level parameters
parameters.FeatureDimension = 64; % Number of filters in convolutional blocks
parameters.SegmentSize = 24;      % 2P
parameters.HiddenDimension = 128; % RNN size

Initialize Network Learnables

Use the supporting function, intitializeLearnables on page 15-449, to initialize the FaSNet
architecture for the specified parameters.

learnables = initializeLearnables(parameters);

Input Pipeline

Define the mini-batch size. Create minibatchqueue objects to read mini-batches from the training
data set. The supporting function preprocessMiniBatch on page 15-446 randomly selects a single
clip of the specified parameters.AnalysisLength on page 15-437 from each audio file in the mini-
batch. This approach avoids the need to buffer and save individual audio files, which reduces disk
space requirements. The approach has the added benefit of changing the exact sequences seen
between epochs. However, this approach puts more emphasis on shorter files in the training data.

miniBatchSize = ;

mbqTrain = minibatchqueue(dsTrain, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@(x,t)preprocessMiniBatch(x,t,parameters.AnalysisLength), ...
    DispatchInBackground=canUseParallelPool);

mbqValidation = minibatchqueue(dsValidation, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@(x,t)preprocessMiniBatch(x,t,parameters.AnalysisLength), ...
    DispatchInBackground=canUseParallelPool);

Training Options

Choose a loss metric as auditory-mse, sample-mse, or sample-sisdr.

 Train 3-D Speech Enhancement Network Using Deep Learning

15-437



• auditory-mse: Use the mean-square-error (MSE) between a mel spectrogram computed from
the target and a mel spectrogram computed from the prediction.

• sample-mse: Use the sample-level MSE between the target and predictor.
• sample-sisdr: Use the sample-level scale-invariant signal-to-distortion ratio defined in [3] on

page 15-443.

lossType = ;

Define the maximum number of epochs, the initial learn rate, and piece-wise learning parameters
such as validation patience, learn rate drop factor, and minimum learn rate. The default settings
correspond to those reported in [4] on page 15-443 for the task of speaker separation.

maxEpochs = ;

initialLearnRate = ;

validationPatience = ;

learnRateDropFactor = ;

learnRateDropPeriod = ;

if speedupExample
    maxEpochs = 1;
end

Initialize parameters required for the training loop.

iteration = 0;
bestLoss = inf;
averageGrad = [];
averageSqGrad = [];
learnRate = initialLearnRate;

Train Network

Create a trainingProgressMonitor to monitor the training loss and validation loss while training.

monitor = trainingProgressMonitor( ...
    Metrics=["TrainingLoss","ValidationLoss"], ...
    Info=["Epoch","LearnRate"]);
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"])

Record the loss for the untrained network.

validationLoss = mbqLoss(mbqValidation,learnables,parameters,lossType);
recordMetrics(monitor,0,ValidationLoss=validationLoss)

Run the training loop.

for epoch = 1:maxEpochs

    % Update plot info
    updateInfo(monitor,Epoch=epoch,LearnRate=learnRate)

    % Shuffle dataset each epoch

15 Audio Examples

15-438



    shuffle(mbqTrain)

    while hasdata(mbqTrain)
        iteration = iteration + 1;

        % Get next mini batch
        [X,T] = next(mbqTrain);

        % Pass the predictors through the network and return the loss and
        % gradients.
        [loss,gradients] = dlfeval(@modelLoss,learnables,parameters,X,T,lossType);

        % Update the network parameters using the ADAM optimizer.
        [learnables,averageGrad,averageSqGrad] = adamupdate(learnables,gradients, ...
            averageGrad,averageSqGrad,iteration,learnRate);

        % Update training progress visualization
        loss = gather(extractdata(loss));
        recordMetrics(monitor,iteration,TrainingLoss=loss)

        if monitor.Stop
            break
        end
    end
    if monitor.Stop
        break
    end

    % Compute validation loss
    validationLoss = mbqLoss(mbqValidation,learnables,parameters,lossType);

    % Update validation progress visualization
    recordMetrics(monitor,iteration,ValidationLoss=validationLoss)

    % Checkpoint
    if validationLoss < bestLoss
        bestLoss = validationLoss;
        bestLossEpoch = epoch;
        save("CheckPoint.mat","bestLoss","learnables","epoch", ...
            "averageGrad","averageSqGrad","iteration","learnRate")
    end

    if (epoch - bestLossEpoch) > validationPatience
        display("Validation loss did not improve for "+validationPatience+" epochs.")
        break
    end

    % Reduce the learning rate according to schedule
    if rem(epoch,learnRateDropPeriod)==0
        learnRate = learnRate*learnRateDropFactor;
    end
end

 Train 3-D Speech Enhancement Network Using Deep Learning

15-439



    "Validation loss did not improve for 10 epochs."

Evaluate System

Load the best performing model.

load("CheckPoint.mat")

Spot Check Performance

Compare the results of the baseline speech enhancement approach against the FaSNet approach
using listening tests and common metrics.

dsValidation = shuffle(dsValidation);
[x,t] = read(dsValidation);
predictor = x{1};
target = x{2};

As a baseline speech enhancement system, simply take the mean of the predictors across the
channels.

yBaseline = mean(predictor,2);

Pass the noisy speech through the network. The network was trained to process data in 2-second
segments. The architecture does accept longer and shorter segments, but performs best on inputs of
the same size as it was trained on. Use the preprocessSignal on page 15-446 supporting function
to split the audio input into the same segment length as your model was trained on. Pass the
segments through the FaSNet model. Treat each segment individually by placing the segment
dimension along the third dimension, which the FaSNet model recognizes as the batch dimension.

y = preprocessSignal(predictor,parameters.AnalysisLength);

15 Audio Examples

15-440



y = FaSNet(dlarray(y),parameters,learnables);

y = gather(extractdata(y)); % Convert to regular array
y = y(:); % Concatenate the segments
y = y(1:size(predictor,1)); % Trim off any zero-padding used to make complete segments

Listen to the clean, baseline speech enhanced, and FaSNet speech enhanced signals.

dur = size(target,1)/fs;
soundsc(target,fs),pause(dur+1)
soundsc(yBaseline,fs),pause(dur+1)
soundsc(y,fs),pause(dur+1)

Compute the baseline and FaSNet sample MSE, auditory-based MSE, and SISDR. Another common
metric not implemented in this example is short-time objective intelligibility (STOI) [5] on page 15-
443, which is often used both as a training loss function and for system evaluation.

yBaselineMSE = 2*mse(yBaseline,target,DataFormat="TB")/size(target,1);
yMSE = 2*mse(y,target,DataFormat="TB")/size(target,1);

yABaseline = extractdata(dlmelspectrogram(yBaseline,parameters.SampleRate));
yA = extractdata(dlmelspectrogram(y,parameters.SampleRate));
targetA = extractdata(dlmelspectrogram(target,parameters.SampleRate));
yBaselineAMSE = mse(yABaseline,targetA,DataFormat="CTB")/(size(targetA,1)*size(targetA,2));
yAMSE = mse(yA,targetA,DataFormat="CTB")/(size(targetA,1)*size(targetA,2));

yBaselineSISDR = sisdr(yBaseline,target);
ySISDR = sisdr(y,target);

Plot the target signal, the baseline SE result, and the FaSNet SE result. Display performance metrics
in the plot titles.

tiledlayout(3,1)

nexttile
plot(yBaseline)
title("Baseline:"+" MSE="+yBaselineMSE+" Auditory MSE="+yBaselineAMSE+" SISDR="+yBaselineSISDR)
grid on
axis tight

nexttile
plot(y)
title("FaSNet: "+" MSE="+yMSE+" Auditory MSE="+yAMSE+" SISDR="+ySISDR)
grid on
axis tight

nexttile
plot(target)
grid on
title("Target")
axis tight

 Train 3-D Speech Enhancement Network Using Deep Learning

15-441



Word Error Rate

Evaluate the word error rate after FaSNet processing and compare to the target (clean) signal and
the baseline approach.

WER = wordErrorRate(dsWER,parameters,learnables,FaSNetWER=true);

progress = 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99....complete.

WERa.Baseline

ans = 0.4001

WER.FaSNet

ans = 0.2760

WERa.Target

ans = 0.0296

References

[1] Luo, Yi, Cong Han, Nima Mesgarani, Enea Ceolini, and Shih-Chii Liu. "FaSNet: Low-Latency
Adaptive Beamforming for Multi-Microphone Audio Processing." In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), 260–67. SG, Singapore: IEEE, 2019. https://
doi.org/10.1109/ASRU46091.2019.9003849.

15 Audio Examples

15-442

https://doi.org/10.1109/ASRU46091.2019.9003849
https://doi.org/10.1109/ASRU46091.2019.9003849


[2] Guizzo, Eric, Riccardo F. Gramaccioni, Saeid Jamili, Christian Marinoni, Edoardo Massaro, Claudia
Medaglia, Giuseppe Nachira, et al. "L3DAS21 Challenge: Machine Learning for 3D Audio Signal
Processing." In 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing
(MLSP), 1–6. Gold Coast, Australia: IEEE, 2021. https://doi.org/10.1109/MLSP52302.2021.9596248.

[3] Roux, Jonathan Le, et al. "SDR – Half-Baked or Well Done?" ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, pp. 626–
30. DOI.org (Crossref), https://doi.org/10.1109/ICASSP.2019.8683855.

[4] Luo, Yi, et al. "Dual-Path RNN: Efficient Long Sequence Modeling for Time-Domain Single-
Channel Speech Separation." ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 46–50. DOI.org (Crossref), https://doi.org/
10.1109/ICASSP40776.2020.9054266.

[5] Taal, Cees H., Richard C. Hendriks, Richard Heusdens, and Jesper Jensen. "An Algorithm for
Intelligibility Prediction of Time–Frequency Weighted Noisy Speech." IEEE Transactions on Audio,
Speech, and Language Processing 19, no. 7 (September 2011): 2125–36. https://doi.org/10.1109/
TASL.2011.2114881.

Supporting Functions

Word Error Rate (WER)

function out = wordErrorRate(ds,parameters,learnables,nvargs)
%wordErrorRate Word error rate (WER)
% wordErrorRate(ds,parameters,learnables) calculates the word error rate
% over all files in the datastore. Specify ds as a combined datastore that
% outputs the predictors and targets and also the text labels.
%
% wordErrorRate(ds,net,TargetWER=TF1,BaselineWER=TF2,FaSNetWER=TF2)
% specifies which signals to calculate the word error rate for. Choose any
% combination of target (the clean monoaural signal), baseline (the noisy
% ambisonic signal converted to monoaural through channel mean) and FaSNet
% (the beamform output from the FaSNet model). By default, WER is computed
% for all options.
%
% This function requires Text Analytics Toolbox(TM).

arguments
    ds
    parameters = [];
    learnables = [];
    nvargs.TargetWER = false;
    nvargs.BaselineWER = false;
    nvargs.FaSNetWER = false;
    nvargs.Verbose = true;
end

% Create a speech client object to perform transcription.
transcriber = speechClient("wav2vec2.0",Segmentation="none");

 Train 3-D Speech Enhancement Network Using Deep Learning

15-443

https://doi.org/10.1109/MLSP52302.2021.9596248
https://doi.org/10.1109/ICASSP.2019.8683855
https://doi.org/10.1109/ICASSP40776.2020.9054266
https://doi.org/10.1109/ICASSP40776.2020.9054266
https://doi.org/10.1109/TASL.2011.2114881
https://doi.org/10.1109/TASL.2011.2114881


% Initialize counters
editDistanceTotal_t = 0;
editDistanceTotal_b = 0;
editDistanceTotal_y = 0;
numWordsTotal = 0;
p = 0;

% Reset the datastore
reset(ds)
fprintf("progress = ")
while hasdata(ds)

    % Read from datastore and unpack.
    [data,audioInfo] = read(ds);
    predictors = data{1};
    targets = data{2};
    txt = lower(data{3});
    fs = audioInfo{1}.SampleRate;

    % Put data on GPU if available
    if canUseGPU && nvargs.TargetWER
        targets = gpuArray(targets);
    end
    if canUseGPU && (nvargs.BaselineWER || nvargs.FaSNetWER)
        predictors = gpuArray(predictors);
    end

    % Update the total number of words.
    numWordsTotal = numWordsTotal + numel(split(txt));

    % Tokenize the text.
    tokenizedGroundTruth = tokenizedDocument(txt);
    tokenizedGroundTruth = correctSpelling(tokenizedGroundTruth);

    % Update the total edit distance by passing the signal through
    % speech-to-text, tokenizing the document, and then computing the edit
    % distance against the ground truth text.
    if nvargs.TargetWER
        targetsText = speech2text(transcriber,targets,fs);
        T = tokenizedDocument(targetsText);
        T = correctSpelling(T);
        editDistanceTotal_t = editDistanceTotal_t + editDistance(T,tokenizedGroundTruth);
    end
    if nvargs.BaselineWER
        predictorsTextBaseline = speech2text(transcriber,mean(predictors,2),fs);
        B = tokenizedDocument(predictorsTextBaseline);
        B = correctSpelling(B);
        editDistanceTotal_b = editDistanceTotal_b + editDistance(B,tokenizedGroundTruth);
    end
    if nvargs.FaSNetWER
        x = preprocessSignal(predictors,parameters.AnalysisLength);
        y = FaSNet(dlarray(x),parameters,learnables);
        y = y.extractdata();
        y = y(:);
        predictorsText = speech2text(transcriber,y,fs);
        Y = tokenizedDocument(predictorsText);
        Y = correctSpelling(Y);

15 Audio Examples

15-444



        editDistanceTotal_y = editDistanceTotal_y + editDistance(Y,tokenizedGroundTruth);
    end

    % Print status
    if nvargs.Verbose && (100*progress(ds))>p+1
        p = round(100*progress(ds));
        fprintf(string(p)+".")
    end

end
fprintf("...complete.\n")

% Output the results as a struct.
out = struct();
if nvargs.FaSNetWER
    out.FaSNet = editDistanceTotal_y/numWordsTotal;
end
if nvargs.BaselineWER
    out.Baseline = editDistanceTotal_b/numWordsTotal;
end
if nvargs.TargetWER
    out.Target = editDistanceTotal_t/numWordsTotal;
end

end

Model Loss

function [loss,gradients] = modelLoss(learnables,parameters,X,T,lossType)
%modelLoss Model loss for FaSNet
% loss = modelLoss(learnables,parameters,X,T,lossType) calculates the
% FaSNet model loss using the specified loss type. Specify learnables and
% parameters as the learnables and parameters of the FaSNet model. X and T
% are the predictors and targets, respectively. lossType is "sample-mse",
% "sample-sisdr", or "auditory-mse".
%
% [loss,gradients] = modelLoss(...) also calculates the gradients when
% training a model.

% Beamform ambisonic data using FaSNet
Y = FaSNet(X,parameters,learnables);

% Compute specified loss type
switch lossType
    case "sample-sisdr"
        loss = -sisdr(Y,T);
        loss = sum(loss)/size(T,2);
    case "sample-mse"
        loss = 2*mse(Y,T,DataFormat="TB")/size(T,1);
    case "auditory-mse"
        Ym = dlmelspectrogram(Y,parameters.SampleRate);
        Tm = dlmelspectrogram(T,parameters.SampleRate);
        loss = mse(Ym,Tm,DataFormat="CTB")./(size(Tm,1)*size(Tm,2));
end

% If gradients requested, compute them
if nargout==2

 Train 3-D Speech Enhancement Network Using Deep Learning

15-445



    gradients = dlgradient(loss,learnables);
end

end

Preprocess Mini Batch

function [X,T] = preprocessMiniBatch(Xcell,Tcell,N)
%preprocessMiniBatch Preprocess mini batch
% [X,T] = preprocessMiniBatch(Xcell,Tcell,N) takes the mini-batch of data
% read from the combined datastore and preprocesses the data using the
% preprocessSignalTrain supporting function.

for ii = 1:numel(Xcell)
    [Xcell{ii},idx] = preprocessSignalTrain(Xcell{ii},Samples=N);
    Tcell{ii} = preprocessSignalTrain(Tcell{ii},Samples=N,Index=idx);
end

X = cat(3,Xcell{:});
T = cat(2,Tcell{:});

end

Preprocess Signal for FaSNet

function y = preprocessSignal(x,L)
%preprocessSignal Preprocess signal for FaSNet
% y = preprocessSignal(x,L) splits the multi-channel
% signal x into analysis frames of length L and hop L. The output is a
% L-by-size(x,2)-by-numHop array, where the number of hops depends on the
% input signal length and L.

% Cast the input to single precision
x = single(x);

% Get the input dimensions
N = size(x,1);
nchan = size(x,2);

% Pad as necessary.
if N<L
    numToPad = L-N;
    x = cat(1,x,zeros(numToPad,size(x,2),like=x));
else
    numHops = floor((N-L)/L) + 1;
    numSamplesUsed = L+(L*(numHops-1));
    if numSamplesUsed < N
        numSamplesUnused = N-numSamplesUsed;
        numToPad = L - numSamplesUnused;
        x = cat(1,x,zeros(numToPad,nchan,like=x));
    end
end

% Buffer the input signal
x = audio.internal.buffer(x,L,L);

15 Audio Examples

15-446



% Reshape the signal to Time-Channel-Hop.
numHops = size(x,2)/nchan;
x = reshape(x,L,numHops,nchan);
y = permute(x,[1,3,2]);
end

Mel Spectrogram Compatible with dlarray

function y = dlmelspectrogram(x,fs)
%dlmelspectrogram Mel spectrogram compatible with dlarray
% y = dlmelspectrogram(x,fs) computes a mel spectrogram from the audio
% input.

persistent win overlap fftLength filterBank
if isempty(filterBank)
    win = hann(round(0.03*fs),"periodic");
    overlap = round(0.02*fs);
    fftLength = numel(win);
    filterBank = designAuditoryFilterBank(fs,FFTLength=fftLength);
end

% Short-time Fourier transform
[yr,yi] = dlstft(x,DataFormat="TBC", ...
    Window=win,OverlapLength=overlap,FFTLength=fftLength);

% Power spectrum
y = abs(yr).^2 + abs(yi).^2;

% Apply filter bank
y = permute(y,[1,4,3,2]); % FFTLength-by-NumHops-by-BatchSize
y = pagemtimes(filterBank,y); % NumBins-by-NumHops-by-BatchSize

% Apply log10.
y = log(y+eps)/log(10);
end

Scale-Invariant Signal-to-Distortion Ratio (SDR)

function metric = sisdr(y,t)
%sisdr Scale-Invariant Signal-to-Distortion Ratio (SDR)
% metric = sisdr(estimate,target) calculates the scale-invariant SDR
% described in [1].
%
% [1] Roux, Jonathan Le, et al. "SDR – Half-Baked or Well Done?" ICASSP 2019 -
% 2019 IEEE International Conference on Acoustics, Speech and Signal
% Processing (ICASSP), IEEE, 2019, pp. 626–30. DOI.org (Crossref),
% https://doi.org/10.1109/ICASSP.2019.8683855.

y = y - mean(y,1);
t = t - mean(t,1);

alpha = sum(y.*t,1)./(sum(t.^2,1) + eps);

etarget = alpha.*t;
eres = y - etarget;

top = sum(etarget.^2);

 Train 3-D Speech Enhancement Network Using Deep Learning

15-447



bottom = sum(eres.^2);
metric = 10*log(top./(bottom+eps))/log(10);

end

Preprocess Signal for Training

function [y,idx] = preprocessSignalTrain(x,options)
%preprocessSignalTrain Preprocess signal for training
% y = preprocessSignalTrain(x) clips out 32000 contiguous samples from x
% and returns as y. The clip starting point is determined randomly. If x is
% less than 32000, the signal is padded to 32000.
%
% y = preprocessSignalTrain(x,Samples=N) specifies the number of samples to
% clip as N. If unspecified, Samples defaults to 32000.
%
% y = preprocessSignalTrain(...,Index=K) specifies the starting index for
% clipping. If unspecified, Index is selected randomly with the condition
% that there are N samples in the clip.

arguments
    x
    options.Samples = 32000
    options.Index = []
end

numSamples = size(x,1);
numChannels = size(x,2);

% If signal shorter than requested number of samples, pad it.
if numSamples < options.Samples
    x = cat(1,x,zeros(options.Samples - numSamples,numChannels,like=x));
    numSamples = options.Samples;
end

% Choose a random starting index in the signal, then clip a segment out of
% the signal.
if isempty(options.Index)
    idx = randi(numSamples-options.Samples+1);
else
    idx = options.Index;
end
y = x(idx:idx+options.Samples-1,:);

end

Calculate Loss Over Mini-Batch Queue

function loss = mbqLoss(mbq,learnables,parameters,lossType)
%mbqLoss Mini-batch queue loss
% loss = mbqLoss(mbq,learnables,parameters) calculates the total loss over
% the mini-batch queue.

numMiniBatch = 0;
validationLoss = 0;

reset(mbq)
while hasdata(mbq)

15 Audio Examples

15-448



    [X,T] = next(mbq);
    numMiniBatch = numMiniBatch + 1;
    validationLoss = validationLoss + modelLoss(learnables,parameters,X,T,lossType);
end

loss = validationLoss/numMiniBatch;

end

Initialize FaSNet Learnables

function learnables = initializeLearnables(parameters)
%initializeLearnables Initialize FaSNet learnables
% learnables = initializeLearnables(parameters) creates a structure
% containing the randomly initialized learnable weights of FaSNet.

validateattributes(parameters.SegmentSize,["single","double"],["even","positive"],"intializeLearnables","SegmentSize")
validateattributes(parameters.WindowLength,["single","double"],["even","positive"],"initialzieLearnables","WindowLenth")

filterDimension = 2*parameters.WindowLength+1;
learnables.TCN.conv.weight = dlarray(permute(initializeGlorot(1,parameters.EncoderDimension,3*parameters.WindowLength),[2,1,3]));
learnables.TCN.norm.offset = dlarray(zeros(parameters.EncoderDimension,1,"single"));
learnables.TCN.norm.scaleFactor = dlarray(ones(parameters.EncoderDimension,1,"single"));

for jj = 1:2 % Loop over reference mic and other mics

    learnables.("Beamformer"+jj).BN.conv.weight = dlarray(squeeze(initializeGlorot(1,parameters.FeatureDimension,filterDimension + parameters.EncoderDimension)));

    for ii = 1:parameters.NumDPRNNBlocks % Loop over DPRNN blocks

        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.forward.weights = dlarray(initializeGlorot(parameters.HiddenDimension*4,parameters.FeatureDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.forward.recurrentWeights = dlarray(initializeOrthogonal(parameters.HiddenDimension));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.forward.bias = dlarray(permute(initializeUnitForgetGate(parameters.HiddenDimension),[2,1]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.reverse.weights = dlarray(initializeGlorot(parameters.HiddenDimension*4,parameters.FeatureDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.reverse.recurrentWeights = dlarray(initializeOrthogonal(parameters.HiddenDimension));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.reverse.bias = dlarray(permute(initializeUnitForgetGate(parameters.HiddenDimension),[2,1]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).projection.weights = dlarray(initializeGlorot(parameters.FeatureDimension,2*parameters.HiddenDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).projection.bias = dlarray(initializeZeros([1,parameters.FeatureDimension]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).norm.offset = dlarray(initializeZeros([1,parameters.FeatureDimension]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).norm.scaleFactor = dlarray(initializeOnes([1,parameters.FeatureDimension]));

        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.weights = dlarray(initializeGlorot(parameters.HiddenDimension*4,parameters.FeatureDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.recurrentWeights = dlarray(initializeOrthogonal(parameters.HiddenDimension));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.bias = dlarray(permute(initializeUnitForgetGate(parameters.HiddenDimension),[2,1]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.reverse.weights = dlarray(initializeGlorot(parameters.HiddenDimension*4,parameters.FeatureDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.reverse.recurrentWeights = dlarray(initializeOrthogonal(parameters.HiddenDimension));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.reverse.bias = dlarray(permute(initializeUnitForgetGate(parameters.HiddenDimension),[2,1]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).projection.weights = dlarray(initializeGlorot(parameters.FeatureDimension,2*parameters.HiddenDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).projection.bias = dlarray(initializeZeros([1,parameters.FeatureDimension]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).norm.offset = dlarray(initializeZeros([1,parameters.FeatureDimension]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).norm.scaleFactor = dlarray(initializeOnes([1,parameters.FeatureDimension]));
    end

    learnables.("Beamformer"+jj).Output.prelu.alpha = dlarray(0.25);

    learnables.("Beamformer"+jj).Output.conv.weight = dlarray(initializeGlorot(parameters.FeatureDimension,parameters.FeatureDimension,1));

 Train 3-D Speech Enhancement Network Using Deep Learning

15-449



    learnables.("Beamformer"+jj).Output.conv.bias = dlarray(initializeZeros([1,parameters.FeatureDimension]));

    learnables.("Beamformer"+jj).GenerateFilter.X1.weight = dlarray(permute(initializeGlorot(parameters.FeatureDimension,filterDimension,1),[2,1]));
    learnables.("Beamformer"+jj).GenerateFilter.X1.bias = dlarray(initializeZeros([1,filterDimension]));

    learnables.("Beamformer"+jj).GenerateFilter.X2.weight = dlarray(permute(initializeGlorot(parameters.FeatureDimension,filterDimension,1),[2,1]));
    learnables.("Beamformer"+jj).GenerateFilter.X2.bias = dlarray(initializeZeros([1,filterDimension]));

end
    function weights = initializeGlorot(filterSize,numChannels,numFilters)
        sz = [filterSize,numChannels,numFilters];
        numOut = prod(filterSize)*numFilters;
        numIn = prod(filterSize)*numFilters;

        Z = 2*rand(sz,"single") - 1;
        bound = sqrt(6/(numIn + numOut));

        weights = bound*Z;
        weights = dlarray(weights);

    end
    function parameter = initializeOrthogonal(numHiddenUnits)
        sz = [4*numHiddenUnits,numHiddenUnits];
        Z = randn(sz,"single");
        [Q,R] = qr(Z,0);
        D = diag(R);
        Q = Q * diag(D./abs(D));
        parameter = dlarray(Q);
    end
    function bias = initializeUnitForgetGate(numHiddenUnits)
        bias = zeros(4*numHiddenUnits,1,"single");
        idx = numHiddenUnits+1:2*numHiddenUnits;
        bias(idx) = 1;
        bias = dlarray(bias);
    end
    function parameter = initializeZeros(sz)
        parameter = zeros(sz,"single");
        parameter = dlarray(parameter);
    end
    function parameter = initializeOnes(sz)
        parameter = ones(sz,"single");
        parameter = dlarray(parameter);
    end
end

15 Audio Examples

15-450



Audio Transfer Learning Using Experiment Manager

This example shows how to configure an experiment that compares the performance of multiple
pretrained networks when applied to a speech command recognition task using transfer learning. It
highlights Experiment Manager's capability to tune hyperparameters and easily compare results
between the different pretrained networks using both built-in and user-defined metrics.

Audio Toolbox™ provides a variety of pretrained networks for audio processing, and each consists of
a different architecture that requires different data pre-processing. These differences result in
tradeoffs between the accuracy, speed, and size of the various networks. Experiment Manager
organizes the results of training experiments to highlight the strengths and weaknesses of each
individual network so you can select the network that best fits your constraints.

The example compares the performance of the YAMNet (Audio Toolbox) and VGGish (Audio Toolbox)
pretrained networks, as well as a custom-designed network that is trained from scratch. See Deep
Network Designer to explore other pretrained network options supported by Audio Toolbox™.

In this example you will download the Google Speech Commands Dataset [1] and the pretrained
networks and store them in your temp directory if they are not already present. The dataset takes up
1.96 GB of disk space and the networks in total take up 470 MB.

Open Experiment Manager

Load the example by clicking the Open Example button. This opens the project in Experiment
Manager in your MATLAB editor.

 Audio Transfer Learning Using Experiment Manager

15-451



Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. For more information,
see “Configure Built-In Training Experiment”.

The Description field contains a textual description of the experiment.

The Hyperparameters section specifies the strategy (Exhaustive Sweep) and hyperparameter values
to use for the experiment. When you run the experiment, Experiment Manager trains the network
using every combination of hyperparameter values specified in the hyperparameter table. This
example demonstrates how to test the different network types. Define one hyperparameter, Network,
to represent the network names stored as strings.

The Setup Function field contains the name of the main function that configures the training data,
network architecture, and training options for the experiment. The input to the setup function is a
structure with fields from the hyperparameter table. The setup function returns the training data,
network architecture, and training parameters as outputs. This has already been implemented for
you.

15 Audio Examples

15-452



The Metrics list enables you to define your own custom metrics to compare across different trials of
the training experiment. A couple of example custom metric functions are defined for you later in this
example. Experiment Manager runs each of the listed metrics against the networks trained in each
trial. The metrics defined for you in this example are listed here. Any additional custom metric you
intend to use must be listed in this section.

Define Setup Function

In this example, the Setup Function downloads the dataset, selects the desired network, performs
the requisite data pre-processing, and sets the network training options. The input to this function is
a structure with fields for each of the hyperparameters defined in the Experiment Manager interface.
In the Setup Function for this example the input variable is named params and the output variables
are named trainingData, layers, and options representing the training data, network structure,
and training parameters, respectively. The key steps of the Setup Function for this example are
explained below. Open the example in MATLAB to see the full definition of compareNetSetup, the
name of the Setup Function used in this example.

Download and Extract Data

To speed up the example, open compareNetSetup and toggle the speedUp flag to true. This
reduces the size of the dataset to quickly test the basic functionality of the experiment.

speedUp = false;

The helper function setupDatastores downloads the Google Speech Commands Dataset [1], selects
the commands for networks to recognize, and randomly partitions the data into training and
validation datastores.

[adsTrain,adsValidation] = setupDatastores(speedUp);

Select the Desired Network and Preprocess Data

Initially transform the datastores based on the preprocessing required by the network type defined in
the hyperparameter table, which is accessed as params.Network. The helper function
extractSpectrogram processes the input data to the format expected by each respective network
type. The helper function getLayers returns a layerGraph object that represents the architecture
of the desired network.

tdsTrain = transform(adsTrain,@(x)extractSpectrogram(x,params.Network));
tdsValidation = transform(adsValidation,@(x)extractSpectrogram(x,params.Network));

layers = getLayers(classes,classWeights,numClasses,netName);

Now that the datastores are properly set up, read the data into the trainingData and
validationData variables.

trainingData = readall(tdsTrain,UseParallel=canUseParallelPool);
validationData = readall(tdsValidation,UseParallel=canUseParallelPool);

validationData = table(validationData(:,1),adsValidation.Labels);
trainingData = table(trainingData(:,1),adsTrain.Labels);

Set the Training Options

Set the training parameters by assigning a trainingOptions object into the options output
variable. Train the networks for a maximum of 30 epochs with a patience of 8 epochs using the Adam

 Audio Transfer Learning Using Experiment Manager

15-453



optimizer. Set the ExecutionEnvironment field to "auto" to use a GPU if available. Without using a
GPU, training may be very time consuming.

maxEpochs = 30;
miniBatchSize = 256;
validationFrequency = floor(numel(TTrain)/miniBatchSize);
options = trainingOptions("adam", ...
    GradientDecayFactor=0.7, ...
    InitialLearnRate=params.LearnRate, ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData=validationData, ...
    ValidationFrequency=validationFrequency, ...
    ValidationPatience=10, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.2, ...
    LearnRateDropPeriod=round(maxEpochs/3), ...
    ExecutionEnvironment="auto");

Define Custom Metrics

Experiment Manager enables you to define custom metric functions to evaluate the performance of
the networks trained in each trial. Basic metrics like accuracy and loss are computed by default. In
this example you compare the size of each of the models as memory usage is an important metric
when deploying deep neural networks to real-world applications.

Custom metric functions must take one input argument trialInfo which is a structure containing
the fields trainedNetwork, trainingInfo, and parameters.

• trainedNetwork is the SeriesNetwork object or DAGNetwork object returned by the
trainNetwork function.

• trainingInfo is a struct containing the training information returned by the trainNetwork
function.

• parameters is a struct with fields from the hyperparameter table

The metric functions must return a scalar number, logical output, or string which gets displayed in
the results table. The custom metrics defined for you in this experiment are listed below:

• sizeMB computes the memory allocated to store the networks in megabytes
• numLearnableParams counts the number of learnable parameters within each model
• numIters computes the number of mini-batches each network trained on before hitting either

MaxEpochs or violating the ValidationPatience parameter in the trainingOptions object.

Run Experiment

Press 'Run' in the top pane of the Experiment Manager app to run the experiment. You can select to
either run each trial sequentially, simultaneously, or in batches by toggling the mode option. For this
experiment, the trials were run sequentially.

15 Audio Examples

15-454



Evaluate Results

When the experiment finishes, the results for each trial appear and the metrics are displayed in
tabular format. The progress bar shows how many epochs each network trained for before violating
the patience parameter in terms of the percentage of MaxEpochs.

The table can be sorted by entries in each column by hovering over the right side of the column name
cell and clicking the arrow that appears. Click the table icon on the top right to select which columns
to show or hide. To first compare the networks by accuracy, sort the table over the Validation
Accuracy in descending order.

In terms of accuracy, the Yamnet network performs the best followed by VGGish, and lastly the
custom network. However, the Elapsed Time column shows that Yamnet takes the longest to train. To
compare the size of these networks, sort the table by the sizeMB column.

The custom network is the smallest, Yamnet is a few orders of magnitude larger, and VGGish is the
largest.

These results highlight the tradeoffs between the different network designs. The Yamnet network
performs the best at the classification task at the cost of more training time and a moderately large
memory consumption. The VGGish network performs slightly worse in terms of accuracy but requires
over 20 times more memory than YAMNet. Lastly, the custom network has the worst accuracy by a
small margin but also uses the least memory.

Notice that even though Yamnet and VGGish are pretrained networks, the custom network
converges the fastest. Looking at the NumIters column, the custom network takes the most batch
iterations to converge because it is learning from scratch. But, since the custom network is much
smaller and shallower than the deep pretrained models, each of these batch updates are processed
much faster so the overall training time is reduced.

To save one of the trained networks from any of the trials, right click on the corresponding row in the
results table and select Export Trained Network.

To further analyze any of the individual trials, single click on the corresponding row, and under the
Review Results tab in the top pane, you can choose to bring up a plot of the training progress or a
confusion matrix of the resulting trained model. Below shows the confusion matrix for the Yamnet
model from trial 2 of the experiment.

 Audio Transfer Learning Using Experiment Manager

15-455



The model struggles most at differentiating between the pair of commands "off" and "up" as well as
the pair "no" and "go", although the accuracy is generally uniform across all classes. Further, the
model is very confident in predicting the "yes" command as the false positive rate for that class is
only .4%.

References

[1] Warden P. "Speech Commands: A public dataset for single-word speech recognition", 2017.
Available from https://storage.googleapis.com/download.tensorflow.org/data/
speech_commands_v0.01.tar.gz. Copyright Google 2017. The Speech Commands Dataset is licensed
under the Creative Commons Attribution 4.0 license, available here: https://creativecommons.org/
licenses/by/4.0/legalcode.

15 Audio Examples

15-456

https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


Audio Event Classification Using TensorFlow Lite on Raspberry
Pi

This example demonstrates audio event classification using a pretrained deep neural network,
YAMNet, from TensorFlow™ Lite library on Raspberry Pi™. You load the TensorFlow Lite model and
predict the class for the given audio frame on Raspberry Pi using a processor-in-the-loop (PIL)
workflow. To generate code on Raspberry Pi, you use Embedded Coder®, MATLAB® Support
Package for Raspberry Pi Hardware and Deep Learning Toolbox Interface for TensorFlow Lite. Refer
to Audio Classification and yamnet classification for more details on the YAMNet model description.

Third-Party Prerequisites

• Raspberry Pi hardware
• TensorFlow Lite library (on the target ARM® hardware)
• Pretrained TensorFlow Lite Model

Download YAMNet

Download and unzip the yamnet (Audio Toolbox).

component = "audio";
filename = "yamnet.zip";
localfile = matlab.internal.examples.downloadSupportFile(component,filename);
downloadFolder = fileparts(localfile);
if exist(fullfile(downloadFolder,"yamnet"),"dir") ~= 7
    unzip(localfile,downloadFolder)
end
addpath(fullfile(downloadFolder,"yamnet"))

Read Audio Data and Classify the Sounds

Use audioread to read the audio file data and listen to it using sound function.

[audioIn, fs] = audioread("multipleSounds-16-16-mono-18secs.wav");
sound(audioIn,fs)

Call classifySound (Audio Toolbox) to detect the different sounds present in the given audio.

detectedSounds = classifySound(audioIn,fs)

detectedSounds = 1×5 string
    "Stream"    "Machine gun"    "Snoring"    "Bark"    "Meow"

You detected the different sounds in the pre-recorded audio in offline mode. The later sections of this
example demonstrates the audio event classification in the real-time scenario where you process one
audio frame at a time.

Load TensorFlow Lite Model and Audio Event Classes

You load the TFLite YAMNet using loadTFLiteModel. As mentioned in TFLiteModel page, you set
the Mean and Variance parameter of the TFLite model to 0 and 1, respectively, because the input to
YAMNet is not already normalized.

 Audio Event Classification Using TensorFlow Lite on Raspberry Pi

15-457

https://www.tensorflow.org/lite/examples/audio_classification/overview
https://tfhub.dev/google/lite-model/yamnet/classification/tflite/1


modelFileName = "lite-model_yamnet_classification_tflite_1.tflite";
modelFullPath = fullfile(downloadFolder,"yamnet",modelFileName);
TFLiteYAMNet = loadTFLiteModel(modelFullPath);
TFLiteYAMNet.Mean = 0;
TFLiteYAMNet.StandardDeviation = 1;

Use yamnetGraph (Audio Toolbox) to load all the audio event classes supported by YAMNet, as an
array of strings.

[~, audioEventClasses] = yamnetGraph;

Set the sample rate (in Hertz), the length of input audio frame and the frame duration in seconds,
supported by YAMNet.

modelSamplingRate = 16000;
frameDimension = TFLiteYAMNet.InputSize{1};
frameLength = frameDimension(2);
frameDuration = frameLength/modelSamplingRate;

Set the classificationRate i.e. the number of classifications per second. As the number of hops
per second must be equal to the classification rate, set the hopDuration to the reciprocal of
classificationRate.

classificationRate = 10;
hopDuration = 1/classificationRate;
hopLength = floor(modelSamplingRate*hopDuration);
overlapLength = frameLength - hopLength;

Read Input Audio

You use dropdown control to list the different input audio files. Use dsp.AudioFileReader (DSP
System Toolbox) to read the audio file data.

afr = dsp.AudioFileReader( );
audioInSamplingRate = afr.SampleRate;
audioFileInfo = audioinfo(afr.Filename);

Set the SamplesPerFrame corresponding to one hop.

audioInFrameLength = floor(audioInSamplingRate*hopDuration);
afr.SamplesPerFrame = audioInFrameLength;

Setup the FIFO Buffers

Create two dsp.AsyncBuffer (DSP System Toolbox) objects audioBufferYamnet and
audioClassBuffer to buffer the resampled audio samples and the indices of predicted audio
classes. You set the length of the audioClassBuffer corresponding to
predictedAudiolassesDuration seconds. You initialize the audioClassBuffer with the index
corresponding to the Silence audio class.

predictedAudiolassesDuration = 1;
audioClassBufferLength = floor(predictedAudiolassesDuration*classificationRate);
audioClassBuffer = dsp.AsyncBuffer(audioClassBufferLength);
audioBufferYamnet = dsp.AsyncBuffer(2*frameLength);
indexOfSilenceAudioClass = find(audioEventClasses == "Silence");
write(audioClassBuffer,ones(audioClassBufferLength,1)*indexOfSilenceAudioClass);

Create a timescope (DSP System Toolbox) object to visualize the audio.

15 Audio Examples

15-458



timeScope = timescope("SampleRate", modelSamplingRate, ...
    "YLimits",[-1 1], ...
    "Name","Audio Event Classification Using TensorFlow Lite YAMNet", ...
    "TimeSpanSource","Property", ...
    "TimeSpan",audioFileInfo.Duration);

Run TFLite YAMNet in MATLAB to Perform Audio Event Classification

Setup a dsp.SampleRateConverter (DSP System Toolbox) system object to convert the sampling
rate of the input audio to 16000 Hz, as YAMNet is trained using audio signals sampled at 16000 Hz
sampling rate.

src = dsp.SampleRateConverter('InputSampleRate',audioInSamplingRate,...
                              'OutputSampleRate',modelSamplingRate,...
                              'Bandwidth',10000);

You feed one audio frame at a time to represent the system as it would be deployed in a real-time
embedded system. In the streaming loop, you first load one hop of audio samples and fed them to the
dsp.SampleRateConverter (DSP System Toolbox) to convert the sampling rate to 16000 Hz. The
resampled frame is written in a FIFO buffer, audioBufferYamnet, you load the overlapping frames
of length frameLength from this buffer and fed it to the YAMNet. The TensorFlow Lite YAMNet
model outputs the predicted score vector that contains a score for each audio event class. You
calculate the index of the maximum score in the score vector and write it in the FIFO buffer,
audioClassBuffer. The predicted index is the statistical mode of the contents of the
audioClassBuffer. The predicted audio event class is the value of audioEventClasses array at
the predicted index. You visualize the resampled audio frame in the time scope and print the
predicted audio event class as the title of the time scope.

while ~isDone(afr)
    audioInFrame = afr();
    resampledAudioInFrame = src(audioInFrame);
    write(audioBufferYamnet,resampledAudioInFrame);
    audioInYamnetFrame = read(audioBufferYamnet,frameLength,overlapLength);
    scoresTFLite = TFLiteYAMNet.predict(audioInYamnetFrame');
    [~, audioClassIndex] = max(scoresTFLite);
    write(audioClassBuffer,audioClassIndex);
    preditedSoundClass = audioEventClasses(mode(audioClassBuffer.peek(audioClassBufferLength)));
    timeScope(resampledAudioInFrame);
    timeScope.Title = char(preditedSoundClass);
    drawnow
end
hide(timeScope)
reset(timeScope)
reset(afr)

Prepare MATLAB Code for Deployment

You prepare a MATLAB function predictAudioClassUsingYAMNET that performs audio class
prediction for the input audio frames. It buffers the indices of the predicted audio class in a FIFO
buffer. The predicted audio class index is the statistical mode of the contents of this FIFO buffer.

type predictAudioClassUsingYAMNET.m

function preditedAudioClassIndex = predictAudioClassUsingYAMNET(audioIn, audioClassHistoryBufferLength,indexSilenceAudioClass)
% predictAudioClassUsingYAMNET Predicts the audio class of input audio by
% using a pre-trained TensorFlow Lite YAMNET model.
%

 Audio Event Classification Using TensorFlow Lite on Raspberry Pi

15-459



% Input Arguments:
% audioIn                           - Audio frame of length 1x15600 with
%                                     sampling rate of 16000 samples per
%                                     second
% audioClassHistoryBufferLength     - Length of the audio class FIFO buffer
%                                     to contain predicted audio class
%                                     indices. The index of the predicted
%                                     audio class is the statistical mode
%                                     of the contents of this buffer.
%
% Output Arguments:
% preditedAudioClassIndex           - Index of the predicted audio class.
%
%
% Copyright 2022 The MathWorks, Inc.

%#codegen

persistent TFLiteYAMNETModel AudioClassBuffer

if isempty(TFLiteYAMNETModel)
    TFLiteYAMNETModel = loadTFLiteModel("lite-model_yamnet_classification_tflite_1.tflite");
    TFLiteYAMNETModel.NumThreads = 4;
    TFLiteYAMNETModel.Mean = 0;
    TFLiteYAMNETModel.StandardDeviation = 1;

    % Create and initialize a FIFO buffer with index of the 'Silence'
    AudioClassBuffer = dsp.AsyncBuffer(audioClassHistoryBufferLength);
    write(AudioClassBuffer,ones(audioClassHistoryBufferLength,1)*indexSilenceAudioClass);
end

scores = predict(TFLiteYAMNETModel,audioIn);
[~, audioClassIndex] = max(scores);
write(AudioClassBuffer,audioClassIndex);
predictedAudioClassHistory = peek(AudioClassBuffer,audioClassHistoryBufferLength);
preditedAudioClassIndex = mode(predictedAudioClassHistory);
end

Generate Code for Audio Event Classifier on Raspberry Pi

Create Code Generation Configuration
cfg = coder.config("lib", "ecoder", true);
cfg.TargetLang = 'C++';
cfg.VerificationMode = "PIL";

Set Up Connection with Raspberry Pi

Use the Raspberry Pi Support Package function, raspi, to create a connection to your Raspberry Pi.
In the following code, replace:

• raspiname with the name of your Raspberry Pi
• pi with your user name
• password with your password

if ~(exist("r","var"))
  r = raspi("raspiname","pi","password");
end

15 Audio Examples

15-460



Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware("Raspberry Pi");
cfg.Hardware = hw;

Specify the build folder on Raspberry Pi.

buildDir = "~/remoteBuildDir";
cfg.Hardware.BuildDir = buildDir;

Copy TensorFlow Lite Model to the Target Hardware and the Current Directory

Copy the TensorFlow Lite model to the Raspberry Pi board. On the hardware board, set the
environment variable TFLITE_MODEL_PATH to the the location of the TensorFlow Lite model. For
more information on setting environment variables, see “Prerequisites for Deep Learning with
TensorFlow Lite Models” on page 21-295.

Use putFile method of the raspi object to copy the TFLite model to Raspberry Pi.

putFile(r,char(modelFullPath),'/home/pi')

Copy the model to the current directory as it is required by codegen (MATLAB Coder) during code
generation.

copyfile(modelFullPath)

Generate PIL MEX

You use coder.Constant (MATLAB Coder) to make the constant input arguments, compile time
constants in the generated code. Run the codegen (MATLAB Coder) command to generate a PIL
MEX function predictAudioClassUsingYAMNET_pil.

codegen -config cfg predictAudioClassUsingYAMNET -args {ones(1,15600,"single"), coder.Constant(audioClassBufferLength), coder.Constant(indexOfSilenceAudioClass)} -silent

### Connectivity configuration for function 'predictAudioClassUsingYAMNET': 'Raspberry Pi'

Predict Audio Class on Raspberry Pi Using PIL Workflow

You call the generated PIL function predictAudioClassUsingYAMNET_pil to stream one audio
frame at a time to represent the system as it would be deployed in a real-time embedded system.

show(timeScope)
while ~isDone(afr)
    audioInFrame = afr();
    resampledAudioInFrame = src(audioInFrame);
    write(audioBufferYamnet,resampledAudioInFrame);
    audioInYamnetFrame = read(audioBufferYamnet,frameLength,overlapLength);
    predictedSoundClassIndex = predictAudioClassUsingYAMNET_pil(single(audioInYamnetFrame'),audioClassBufferLength, indexOfSilenceAudioClass);
    preditedSoundClass = audioEventClasses(predictedSoundClassIndex);
    timeScope(resampledAudioInFrame)
    timeScope.Title = char(preditedSoundClass);
    drawnow
end

 Audio Event Classification Using TensorFlow Lite on Raspberry Pi

15-461



### Starting application: 'codegen\lib\predictAudioClassUsingYAMNET\pil\predictAudioClassUsingYAMNET.elf'
    To terminate execution: clear predictAudioClassUsingYAMNET_pil
### Launching application predictAudioClassUsingYAMNET.elf...

hide(timeScope)

Terminate the PIL execution

clear predictAudioClassUsingYAMNET_pil

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

Evaluate Raspberry Pi Execution Time

You use PIL workflow to profile the predictAudioClassUsingYAMNET function. You enable
profiling in the code generation configuration and generate the PIL function that keeps a log of
execution profile.

cfg.CodeExecutionProfiling = true;
codegen -config cfg predictAudioClassUsingYAMNET -args {ones(1,15600,"single"), coder.Constant(audioClassBufferLength), coder.Constant(indexOfSilenceAudioClass)} -silent

### Connectivity configuration for function 'predictAudioClassUsingYAMNET': 'Raspberry Pi'

You call the generated PIL function multiple times to get the average execution time.

numCalls = 100;
for k = 1:numCalls

15 Audio Examples

15-462



    x = pinknoise(1,15600,"single");
    scores = predictAudioClassUsingYAMNET_pil(x,audioClassBufferLength,indexOfSilenceAudioClass);
end

### Starting application: 'codegen\lib\predictAudioClassUsingYAMNET\pil\predictAudioClassUsingYAMNET.elf'
    To terminate execution: clear predictAudioClassUsingYAMNET_pil
### Launching application predictAudioClassUsingYAMNET.elf...
    Execution profiling data is available for viewing. Open Simulation Data Inspector.
    Execution profiling report available after termination.

Terminate the PIL execution.

clear predictAudioClassUsingYAMNET_pil 

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

    Execution profiling report: coder.profile.show(getCoderExecutionProfile('predictAudioClassUsingYAMNET'))

Generate an execution profile report to evaluate execution time.

executionProfile = getCoderExecutionProfile('predictAudioClassUsingYAMNET');
report(executionProfile, ...
       'Units','Seconds', ...
       'ScaleFactor','1e-03', ...
       'NumericFormat','%0.4f');

In the code execution profiling report, you find that the average execution time taken by
predictAudioClassUsingYAMNET is 24.29 ms which is within the budget of 100 ms. You
calculate the budget as the reciprocal of the classification rate. The performance is measured on
Raspberry Pi 3 Model B Plus Rev 1.2.

 Audio Event Classification Using TensorFlow Lite on Raspberry Pi

15-463



Release buffers, timescope and other system objects used in the example.

release(audioBufferYamnet)
release(audioClassBuffer)
release(timeScope)
release(src)
release(afr)

See Also
yamnet | classifySound

15 Audio Examples

15-464



Reinforcement Learning Examples

16



Reinforcement Learning Using Deep Neural Networks
Reinforcement learning is a goal-directed computational approach where a computer learns to
perform a task by interacting with an unknown dynamic environment. This learning approach enables
the computer to make a series of decisions to maximize the cumulative reward for the task without
human intervention and without being explicitly programmed to achieve the task. The following
diagram shows a general representation of a reinforcement learning scenario.

The goal of reinforcement learning is to train the policy of an agent to complete a task within an
unknown environment. The agent receives observations and a reward from the environment and
sends actions to the environment. The reward is a measure of how successful an action is with
respect to completing the task goal.

To create and train reinforcement learning agents, you can use Reinforcement Learning Toolbox™
software. Typically, agent policies are implemented using deep neural networks, which you can create
using Deep Learning Toolbox software.

Reinforcement learning is useful for many control and planning applications. The following examples
show how to train reinforcement learning agents for robotics and automated driving tasks.

• “Train DDPG Agent to Control Flying Robot” on page 16-49
• “Train Biped Robot to Walk Using Reinforcement Learning Agents” on page 16-56
• “Train DDPG Agent for Adaptive Cruise Control” on page 16-75
• “Train DDPG Agent for Path-Following Control” on page 16-94
• “Train PPO Agent for Automatic Parking Valet” on page 16-104

16 Reinforcement Learning Examples

16-2



Reinforcement Learning Workflow
The general workflow for training an agent using reinforcement learning includes the following steps.

1 Formulate problem — Define the task for the agent to learn, including how the agent interacts
with the environment and any primary and secondary goals the agent must achieve.

2 Create environment — Define the environment within which the agent operates, including the
interface between agent and environment and the environment dynamic model.

3 Define reward — Specify the reward signal that the agent uses to measure its performance
against the task goals and how to calculate this signal from the environment.

4 Create agent — Create the agent, which includes defining a policy representation and
configuring the agent learning algorithm.

5 Train agent — Train the agent policy representation using the defined environment, reward, and
agent learning algorithm.

6 Validate agent — Evaluate the performance of the trained agent by simulating the agent and
environment together.

7 Deploy policy — Deploy the trained policy representation using, for example, generated GPU
code.

Training an agent using reinforcement learning is an iterative process. Decisions and results in later
stages can require you to return to an earlier stage in the learning workflow. For example, if the
training process does not converge to an optimal policy within a reasonable amount of time, you
might have to update any of the following before retraining the agent:

• Training settings
• Learning algorithm configuration
• Policy representation
• Reward signal definition
• Action and observation signals
• Environment dynamics

Reinforcement Learning Environments
In a reinforcement learning scenario, where you train an agent to complete a task, the environment
models the dynamics with which the agent interacts. The environment:

1 Receives actions from the agent.

 Reinforcement Learning Using Deep Neural Networks

16-3



2 Outputs observations in response to the actions.
3 Generates a reward measuring how well the action contributes to achieving the task.

Creating an environment model includes defining the following:

• Action and observation signals that the agent uses to interact with the environment.
• Reward signal that the agent uses to measure its success. For more information, see “Define

Reward Signals” (Reinforcement Learning Toolbox).
• Environment dynamic behavior.

You can create an environment in either MATLAB or Simulink. For more information, see “Create
MATLAB Reinforcement Learning Environments” (Reinforcement Learning Toolbox) and “Create
Simulink Reinforcement Learning Environments” (Reinforcement Learning Toolbox).

Reinforcement Learning Agents
A reinforcement learning agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on observations from the environment.
Typically, the policy is a function approximator with tunable parameters, such as a deep neural
network.

• The learning algorithm continuously updates the policy parameters based on the actions,
observations, and reward. The goal of the learning algorithm is to find an optimal policy that
maximizes the cumulative reward received during the task.

Agents are distinguished by their learning algorithms and policy representations. Agents can operate
in discrete action spaces, continuous action spaces, or both. In a discrete action space, the agent
selects actions from a finite set of possible actions. In a continuous action space, the agent selects an
action from a continuous range of possible action values. Reinforcement Learning Toolbox software
supports the following types of agents.

Agent Action Space
“Q-Learning Agents” (Reinforcement Learning
Toolbox)

Discrete

“Deep Q-Network (DQN) Agents” (Reinforcement
Learning Toolbox)

Discrete

“SARSA Agents” (Reinforcement Learning Toolbox) Discrete
“Policy Gradient (PG) Agents” (Reinforcement
Learning Toolbox)

Discrete or continuous

“Actor-Critic (AC) Agents” (Reinforcement Learning
Toolbox)

Discrete or continuous

“Proximal Policy Optimization (PPO) Agents”
(Reinforcement Learning Toolbox)

Discrete or continuous

“Deep Deterministic Policy Gradient (DDPG) Agents”
(Reinforcement Learning Toolbox)

Continuous

“Twin-Delayed Deep Deterministic (TD3) Policy
Gradient Agents” (Reinforcement Learning Toolbox)

Continuous

16 Reinforcement Learning Examples

16-4



Agent Action Space
“Soft Actor-Critic (SAC) Agents” (Reinforcement
Learning Toolbox)

Continuous

For more information, see “Reinforcement Learning Agents” (Reinforcement Learning Toolbox).

Create Deep Neural Network Policies and Value Functions
Depending on the type of agent you use, its policy and learning algorithm require one or more policy
and value function representations, which you can implement using deep neural networks.

Reinforcement Learning Toolbox supports the following types of value function and policy
representations.

• V(S|θV) — Critics that estimate the expected cumulative long-term reward (value function) based
on a given observation S.

• Q(S,A|θQ) — Critics that estimate the value function for a given discrete action A and a given
observation S.

• Qi(S,Ai|θQ) — Multi-output critics that estimate the value function for all possible discrete actions
Ai and a given observation S.

• μ(S|θμ) — Actors that select an action based on a given observation S. Actors can select actions
using either deterministic or stochastic methods.

During training, the agent updates the parameters of these representations (θV, θQ, and θμ).

You can create most Reinforcement Learning Toolbox agents with default policy and value function
representations. The agents define the input and output layers of these deep neural networks based
on the action and observation specifications from the environment.

Alternatively, you can create actor and critic representations for your agent using Deep Learning
Toolbox functionality, such as the Deep Network Designer app. In this case, ensure that the input
and output dimensions of the actor and critic representations match the corresponding action and
observation specifications of the environment. For an example that creates a critic representation

 Reinforcement Learning Using Deep Neural Networks

16-5



using Deep Network Designer, see “Create DQN Agent Using Deep Network Designer and Train
Using Image Observations” on page 16-28.

Deep neural networks consist of a series of interconnected layers. For a full list of available layers,
see “List of Deep Learning Layers” on page 1-43.

All agents, except Q-learning and SARSA agents, support recurrent neural networks (RNNs). These
networks have an input sequenceInputLayer and at least one layer that has hidden state
information, such as an lstmLayer. These networks can be especially useful when the environment
has states that are not in the observation vector.

For more information on creating agents and their associated value function and policy
representations, see the corresponding agent pages in the previous table.

Reinforcement Learning Toolbox software provides additional layers that you can use when creating
deep neural network representations.

Layer Description
scalingLayer Applies a linear scale and bias to an input array. This layer

is useful for scaling and shifting the outputs of nonlinear
layers, such as tanhLayer and sigmoidLayer.

quadraticLayer Creates a vector of quadratic monomials constructed from
the elements of the input array. This layer is useful when
you need an output that is some quadratic function of its
inputs, such as for an LQR controller.

softplusLayer Implements the softplus activation Y = log(1 + eX), which
ensures that the output is always positive. This is a
smoothed version of the rectified linear unit (ReLU).

For more information on creating policy and value function representations, see “Create Policies and
Value Functions” (Reinforcement Learning Toolbox).

You can also import pretrained deep neural networks or deep neural network layer architectures
using the Deep Learning Toolbox network import functionality. For more information, see “Import
Neural Network Models” (Reinforcement Learning Toolbox).

Train Reinforcement Learning Agents
Once you create an environment and reinforcement learning agent, you can train the agent in the
environment using the train function. To configure your training, use an rlTrainingOptions
object. For more information, see “Train Reinforcement Learning Agents” (Reinforcement Learning
Toolbox)

If you have Parallel Computing Toolbox software, you can accelerate training and simulation by using
multicore processors or GPUs. For more information, see “Train Agents Using Parallel Computing and
GPUs” (Reinforcement Learning Toolbox).

Deploy Trained Policies
Once you train a reinforcement learning agent, you can generate code to deploy the optimal policy.
You can generate:

16 Reinforcement Learning Examples

16-6



• CUDA code using GPU Coder™
• C/C++ code using MATLAB Coder™

To create a policy evaluation function that selects an action based on a given observation, use the
generatePolicyFunction command. This command generates a MATLAB script, which contains
the policy evaluation function, and a MAT-file, which contains the optimal policy data.

You can generate code to deploy this policy function using GPU Coder or MATLAB Coder.

For more information, see “Deploy Trained Reinforcement Learning Policies” (Reinforcement
Learning Toolbox).

See Also

Related Examples
• “What Is Reinforcement Learning?” (Reinforcement Learning Toolbox)
• “Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Create Policies and Value Functions” (Reinforcement Learning Toolbox)
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)

 Reinforcement Learning Using Deep Neural Networks

16-7



Create Simulink Environment and Train Agent

This example shows how to convert the PI controller in the watertank Simulink® model to a
reinforcement learning deep deterministic policy gradient (DDPG) agent. For an example that trains a
DDPG agent in MATLAB®, see “Train DDPG Agent to Control Double Integrator System”
(Reinforcement Learning Toolbox).

Water Tank Model

The original model for this example is the water tank model. The goal is to control the level of the
water in the tank. For more information about the water tank model, see “watertank Simulink Model”
(Simulink Control Design).

Modify the original model by making the following changes:

1 Delete the PID Controller.
2 Insert the RL Agent block.
3 Connect the observation vector ∫e dt e h T , where h is the height of the tank, e = r − h, and r is

the reference height.
4 Set up the reward reward = 10 e < 0 . 1 − 1 e ≥ 0 . 1 − 100 h ≤ 0 h ≥ 20 .
5 Configure the termination signal such that the simulation stops if h ≤ 0 or h ≥ 20.

The resulting model is rlwatertank.slx. For more information on this model and the changes, see
“Create Simulink Reinforcement Learning Environments” (Reinforcement Learning Toolbox).

open_system("rlwatertank")

16 Reinforcement Learning Examples

16-8



Create the Environment Interface

Creating an environment model includes defining the following:

• Action and observation signals that the agent uses to interact with the environment. For more
information, see rlNumericSpec (Reinforcement Learning Toolbox) and rlFiniteSetSpec
(Reinforcement Learning Toolbox).

• Reward signal that the agent uses to measure its success. For more information, see “Define
Reward Signals” (Reinforcement Learning Toolbox).

Define the observation specification obsInfo and action specification actInfo.

obsInfo = rlNumericSpec([3 1],...
    LowerLimit=[-inf -inf 0  ]',...
    UpperLimit=[ inf  inf inf]');
obsInfo.Name = "observations";
obsInfo.Description = "integrated error, error, and measured height";

actInfo = rlNumericSpec([1 1]);
actInfo.Name = "flow";

Build the environment interface object.

env = rlSimulinkEnv("rlwatertank","rlwatertank/RL Agent",...
    obsInfo,actInfo);

Set a custom reset function that randomizes the reference values for the model.

env.ResetFcn = @(in)localResetFcn(in);

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 1.0;
Tf = 200;

Fix the random generator seed for reproducibility.

 Create Simulink Environment and Train Agent

16-9



rng(0)

Create the Critic

DDPG agents use a parametrized Q-value function approximator to estimate the value of the policy. A
Q-value function critic takes the current observation and an action as inputs and returns a single
scalar as output (the estimated discounted cumulative long-term reward for which receives the action
from the state corresponding to the current observation, and following the policy thereafter).

To model the parametrized Q-value function within the critic, use a neural network with two input
layers (one for the observation channel, as specified by obsInfo, and the other for the action
channel, as specified by actInfo) and one output layer (which returns the scalar value).

Define each network path as an array of layer objects. Assign names to the input and output layers of
each path. These names allow you to connect the paths and then later explicitly associate the network
input and output layers with the appropriate environment channel. Obtain the dimension of the
observation and action spaces from the obsInfo and actInfo specifications.

% Observation path
obsPath = [
    featureInputLayer(obsInfo.Dimension(1),Name="obsInputLayer")
    fullyConnectedLayer(50)
    reluLayer
    fullyConnectedLayer(25,Name="obsPathOutLayer")];

% Action path
actPath = [
    featureInputLayer(actInfo.Dimension(1),Name="actInputLayer")
    fullyConnectedLayer(25,Name="actPathOutLayer")];

% Common path
commonPath = [
    additionLayer(2,Name="add")
    reluLayer
    fullyConnectedLayer(1,Name="CriticOutput")];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,obsPath);
criticNetwork = addLayers(criticNetwork,actPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork, ...
    "obsPathOutLayer","add/in1");
criticNetwork = connectLayers(criticNetwork, ...
    "actPathOutLayer","add/in2");

View the critic network configuration.

figure
plot(criticNetwork)

16 Reinforcement Learning Examples

16-10



Convert the network to a dlnetwork object and summarize its properties.

criticNetwork = dlnetwork(criticNetwork);
summary(criticNetwork)

   Initialized: true

   Number of learnables: 1.5k

   Inputs:
      1   'obsInputLayer'   3 features
      2   'actInputLayer'   1 features

Create the critic approximator object using the specified deep neural network, the environment
specification objects, and the names if the network inputs to be associated with the observation and
action channels.

critic = rlQValueFunction(criticNetwork, ...
    obsInfo,actInfo, ...
    ObservationInputNames="obsInputLayer", ...
    ActionInputNames="actInputLayer");

For more information on Q-value function objects, see rlQValueFunction (Reinforcement Learning
Toolbox).

Check the critic with a random input observation and action.

 Create Simulink Environment and Train Agent

16-11



getValue(critic, ...
    {rand(obsInfo.Dimension)}, ...
    {rand(actInfo.Dimension)})

ans = single
    -0.1631

For more information on creating critics, see “Create Policies and Value Functions” (Reinforcement
Learning Toolbox).

Create the Actor

DDPG agents use a parametrized deterministic policy over continuous action spaces, which is learned
by a continuous deterministic actor.

A continuous deterministic actor implements a parametrized deterministic policy for a continuous
action space. This actor takes the current observation as input and returns as output an action that is
a deterministic function of the observation.

To model the parametrized policy within the actor, use a neural network with one input layer (which
receives the content of the environment observation channel, as specified by obsInfo) and one
output layer (which returns the action to the environment action channel, as specified by actInfo).

Define the network as an array of layer objects.

actorNetwork = [
    featureInputLayer(obsInfo.Dimension(1))
    fullyConnectedLayer(3)
    tanhLayer
    fullyConnectedLayer(actInfo.Dimension(1))
    ];

Convert the network to a dlnetwork object and summarize its properties.

actorNetwork = dlnetwork(actorNetwork);
summary(actorNetwork)

   Initialized: true

   Number of learnables: 16

   Inputs:
      1   'input'   3 features

Create the actor approximator object using the specified deep neural network, the environment
specification objects, and the name if the network input to be associated with the observation
channel.

actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

For more information, see rlContinuousDeterministicActor (Reinforcement Learning Toolbox).

Check the actor with a random input observation.

getAction(actor,{rand(obsInfo.Dimension)})

ans = 1x1 cell array
    {[-0.3408]}

16 Reinforcement Learning Examples

16-12



For more information on creating critics, see “Create Policies and Value Functions” (Reinforcement
Learning Toolbox).

Create the DDPG Agent

Create the DDPG agent using the specified actor and critic approximator objects.

agent = rlDDPGAgent(actor,critic);

For more information, see rlDDPGAgent (Reinforcement Learning Toolbox).

Specify options for the agent, the actor, and the critic using dot notation.

agent.SampleTime = Ts;

agent.AgentOptions.TargetSmoothFactor = 1e-3;
agent.AgentOptions.DiscountFactor = 1.0;
agent.AgentOptions.MiniBatchSize = 64;
agent.AgentOptions.ExperienceBufferLength = 1e6; 

agent.AgentOptions.NoiseOptions.Variance = 0.3;
agent.AgentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-03;
agent.AgentOptions.CriticOptimizerOptions.GradientThreshold = 1;
agent.AgentOptions.ActorOptimizerOptions.LearnRate = 1e-04;
agent.AgentOptions.ActorOptimizerOptions.GradientThreshold = 1;

Alternatively, you can specify the agent options using an rlDDPGAgentOptions (Reinforcement
Learning Toolbox) object.

Check the agent with a random input observation.

getAction(agent,{rand(obsInfo.Dimension)})

ans = 1x1 cell array
    {[-0.7926]}

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training for at most 5000 episodes. Specify that each episode lasts for at most
ceil(Tf/Ts) (that is 200) time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 800 over 20
consecutive episodes. At this point, the agent can control the level of water in the tank.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

trainOpts = rlTrainingOptions(...
    MaxEpisodes=5000, ...
    MaxStepsPerEpisode=ceil(Tf/Ts), ...
    ScoreAveragingWindowLength=20, ...
    Verbose=false, ...

 Create Simulink Environment and Train Agent

16-13



    Plots="training-progress",...
    StopTrainingCriteria="AverageReward",...
    StopTrainingValue=800);

Train the agent using the train (Reinforcement Learning Toolbox) function. Training is a
computationally intensive process that takes several minutes to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load("WaterTankDDPG.mat","agent")
end

Validate Trained Agent

Validate the learned agent against the model by simulation. Since the reset function randomizes the
reference values, fix the random generator seed to ensure simulation reproducibility.

rng(1)

Simulate the agent within the environment, and return the experiences as output.

16 Reinforcement Learning Examples

16-14



simOpts = rlSimulationOptions(MaxSteps=ceil(Tf/Ts),StopOnError="on");
experiences = sim(env,agent,simOpts);

 Create Simulink Environment and Train Agent

16-15



16 Reinforcement Learning Examples

16-16



Local Function

function in = localResetFcn(in)

% randomize reference signal
blk = sprintf('rlwatertank/Desired \nWater Level');
h = 3*randn + 10;
while h <= 0 || h >= 20
    h = 3*randn + 10;
end
in = setBlockParameter(in,blk,'Value',num2str(h));

% randomize initial height
h = 3*randn + 10;
while h <= 0 || h >= 20
    h = 3*randn + 10;
end
blk = 'rlwatertank/Water-Tank System/H';
in = setBlockParameter(in,blk,'InitialCondition',num2str(h));

end

See Also
train

More About
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Create Simulink Reinforcement Learning Environments” (Reinforcement Learning Toolbox)

 Create Simulink Environment and Train Agent

16-17



Train DDPG Agent to Swing Up and Balance Pendulum with
Image Observation

This example shows how to train a deep deterministic policy gradient (DDPG) agent to swing up and
balance a pendulum with an image observation modeled in MATLAB®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient (DDPG) Agents”
(Reinforcement Learning Toolbox).

Simple Pendulum with Image MATLAB Environment

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.
• The observations from the environment are an image indicating the location of the pendulum mass

and the pendulum angular velocity.
• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Control System Environments”
(Reinforcement Learning Toolbox).

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("SimplePendulumWithImage-Continuous")

env = 
  SimplePendlumWithImageContinuousAction with properties:

             Mass: 1
        RodLength: 1
       RodInertia: 0
          Gravity: 9.8100
     DampingRatio: 0
    MaximumTorque: 2
               Ts: 0.0500

16 Reinforcement Learning Examples

16-18



            State: [2x1 double]
                Q: [2x2 double]
                R: 1.0000e-03

The interface has a continuous action space where the agent can apply a torque between –2 to 2 N·m.

Obtain the observation and action specification from the environment interface.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

DDPG agents use a parametrized Q-value function approximator to estimate the value of the policy. A
Q-value function critic takes the current observation and an action as inputs and returns a single
scalar as output (the estimated discounted cumulative long-term reward for which receives the action
from the state corresponding to the current observation, and following the policy thereafter).

To model the parametrized Q-value function within the critic, use a convolutional neural network
(CNN) with three input layers (one for each observation channel, as specified by obsInfo, and the
other for the action channel, as specified by actInfo) and one output layer (which returns the scalar
value).

Define each network path as an array of layer objects, and assign names to the input and output
layers of each path, as well as to the addition and concatenation layers. These names allow you to
connect the paths and then later explicitly associate the network input and output layers with the
appropriate environment channel. For more information on creating representations, see “Create
Policies and Value Functions” (Reinforcement Learning Toolbox).

hiddenLayerSize1 = 400;
hiddenLayerSize2 = 300;

% Image input path
imgPath = [
    imageInputLayer(obsInfo(1).Dimension, ...
        Normalization="none", ...
        Name=obsInfo(1).Name)
    convolution2dLayer(10,2,Stride=5,Padding=0)
    reluLayer
    fullyConnectedLayer(2)
    concatenationLayer(3,2,Name="cat1")
    fullyConnectedLayer(hiddenLayerSize1)
    reluLayer
    fullyConnectedLayer(hiddenLayerSize2)
    additionLayer(2,Name="add")
    reluLayer
    fullyConnectedLayer(1,Name="fc4")
    ];

% d(theta)/dt input path
dthPath = [
    imageInputLayer(obsInfo(2).Dimension, ...

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

16-19



        Normalization="none", ...
        Name=obsInfo(2).Name)
    fullyConnectedLayer(1,Name="fc5", ...
        BiasLearnRateFactor=0, ...
        Bias=0)
    ];

% Action path
actPath =[
    imageInputLayer(actInfo(1).Dimension, ...
        Normalization="none", ...
        Name="action")
    fullyConnectedLayer(hiddenLayerSize2, ...
        Name="fc6", ...
        BiasLearnRateFactor=0, ...
        Bias=zeros(hiddenLayerSize2,1))
    ];

% Assemble paths
criticNetwork = layerGraph(imgPath);
criticNetwork = addLayers(criticNetwork,dthPath);
criticNetwork = addLayers(criticNetwork,actPath);
criticNetwork = connectLayers(criticNetwork,"fc5","cat1/in2");
criticNetwork = connectLayers(criticNetwork,"fc6","add/in2");

View the critic network configuration and display the number of parameters.

figure
plot(criticNetwork)

16 Reinforcement Learning Examples

16-20



%summary(criticNetwork)

Create the critic representation using the specified neural network and the environment action and
observation specifications. Pass as additional arguments also the names of the network layers to be
connected with the observation and action channels. For more information, see rlQValueFunction
(Reinforcement Learning Toolbox).

critic = rlQValueFunction(criticNetwork, ...
    obsInfo,actInfo,...
    ObservationInputNames={"pendImage","angularRate"}, ...
    ActionInputNames={"action"});

DDPG agents use a parametrized deterministic policy over continuous action spaces, which is
implemented by a continuous deterministic actor. A continuous deterministic actor implements a
parametrized deterministic policy for a continuous action space. This actor takes the current
observation as input and returns as output an action that is a deterministic function of the
observation.

To model the parametrized policy within the actor, use a neural network with two input layers
(receiving the content of the two environment observation channels, as specified by obsInfo) and
one output layer (which returns the action to the environment action channel, as specified by
actInfo).

Define the network as an array of layer objects.

% Image input path
imgPath = [

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

16-21



    imageInputLayer(obsInfo(1).Dimension, ...
        Normalization="none", ...
        Name=obsInfo(1).Name)
    convolution2dLayer(10,2,Stride=5,Padding=0)
    reluLayer
    fullyConnectedLayer(2,Name="fc1")
    concatenationLayer(3,2,Name="cat1")
    fullyConnectedLayer(hiddenLayerSize1,Name="fc2")
    reluLayer
    fullyConnectedLayer(hiddenLayerSize2,Name="fc3")
    reluLayer
    fullyConnectedLayer(1,Name="fc4")
    tanhLayer
    scalingLayer(Name="scale1", ...
        Scale=max(actInfo.UpperLimit))
    ];

% d(theta)/dt input layer
dthPath = [
    imageInputLayer(obsInfo(2).Dimension, ...
        Normalization="none", ...
        Name=obsInfo(2).Name)
    fullyConnectedLayer(1, ...
        Name="fc5", ...
        BiasLearnRateFactor=0, ...
        Bias=0)
    ];

% Assemble actor network
actorNetwork = layerGraph(imgPath);
actorNetwork = addLayers(actorNetwork,dthPath);
actorNetwork = connectLayers(actorNetwork,"fc5","cat1/in2");

Create the actor using the specified neural network. For more information, see
rlContinuousDeterministicActor (Reinforcement Learning Toolbox).

actor = rlContinuousDeterministicActor(actorNetwork, ...
    obsInfo,actInfo, ...
    ObservationInputNames={"pendImage","angularRate"});

View the actor network configuration and display the number of weights.

figure
plot(actorNetwork)

16 Reinforcement Learning Examples

16-22



%summary(actorNetwork)

Specify options for the actor and critic using rlOptimizerOptions (Reinforcement Learning
Toolbox).

criticOptions = rlOptimizerOptions(LearnRate=1e-03,GradientThreshold=1);
actorOptions = rlOptimizerOptions(LearnRate=1e-04,GradientThreshold=1);

Training performance using the GPU is impacted by the batch size, network structure, and the
hardware itself. Therefore, using a GPU does not always guarantee a better training performance. For
more information on supported GPUs, see “GPU Computing Requirements” (Parallel Computing
Toolbox).

Uncomment the following line to train the critic using a GPU.

% criticOptions.UseDevice = "gpu";

Uncomment the following line to train the actor using a GPU.

% actorOptions.UseDevice = "gpu";

Specify the DDPG agent options using rlDDPGAgentOptions (Reinforcement Learning Toolbox).

agentOptions = rlDDPGAgentOptions(...
    SampleTime=env.Ts,...
    TargetSmoothFactor=1e-3,...
    ExperienceBufferLength=1e6,...

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

16-23



    DiscountFactor=0.99,...
    MiniBatchSize=128);

You can also specify options using dot notation.

agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;

Specify the training options for the function approximator objects.

agentOptions.CriticOptimizerOptions = criticOptions;
agentOptions.ActorOptimizerOptions = actorOptions;

Then create the agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent (Reinforcement Learning Toolbox).

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 5000 episodes, with each episode lasting at most 400 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option).
• Stop training when the agent receives a moving average cumulative reward greater than -740

over ten consecutive episodes. At this point, the agent can quickly balance the pendulum in the
upright position using minimal control effort.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

maxepisodes = 5000;
maxsteps = 400;
trainingOptions = rlTrainingOptions(...
    MaxEpisodes=maxepisodes,...
    MaxStepsPerEpisode=maxsteps,...
    Plots="training-progress",...
    StopTrainingCriteria="AverageReward",...
    StopTrainingValue=-740);

You can visualize the pendulum by using the plot function during training or simulation.

plot(env)

16 Reinforcement Learning Examples

16-24



Train the agent using the train (Reinforcement Learning Toolbox) function. Training this agent is a
computationally intensive process that takes several hours to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false;
if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOptions);
else
    % Load pretrained agent for the example.
    load("SimplePendulumWithImageDDPG.mat","agent")       
end

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

16-25



Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions (Reinforcement Learning
Toolbox) and sim (Reinforcement Learning Toolbox).

simOptions = rlSimulationOptions(MaxSteps=500);
experience = sim(env,agent,simOptions);

16 Reinforcement Learning Examples

16-26



See Also
train

More About
• “Deep Deterministic Policy Gradient (DDPG) Agents” (Reinforcement Learning Toolbox)
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Create Policies and Value Functions” (Reinforcement Learning Toolbox)

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

16-27



Create DQN Agent Using Deep Network Designer and Train
Using Image Observations

This example shows how to create a deep Q-learning network (DQN) agent that can swing up and
balance a pendulum modeled in MATLAB®. In this example, you create the DQN agent using Deep
Network Designer. For more information on DQN agents, see “Deep Q-Network (DQN) Agents”
(Reinforcement Learning Toolbox).

Pendulum Swing-Up with Image MATLAB Environment

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment can take any of the five possible
integer values from –2 to 2 N·m.

16 Reinforcement Learning Examples

16-28



• The observations from the environment are the simplified grayscale image of the pendulum and
the pendulum angle derivative.

• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

For more information on the continuous action space version of this model, see “Train DDPG Agent to
Swing Up and Balance Pendulum with Image Observation” (Reinforcement Learning Toolbox).

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("SimplePendulumWithImage-Discrete");

The interface has two observations. The first observation, named "pendImage", is a 50-by-50
grayscale image.

obsInfo = getObservationInfo(env);
obsInfo(1)

ans = 
  rlNumericSpec with properties:

     LowerLimit: 0
     UpperLimit: 1
           Name: "pendImage"
    Description: [0x0 string]
      Dimension: [50 50]
       DataType: "double"

The second observation, named "angularRate", is the angular velocity of the pendulum.

obsInfo(2)

ans = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "angularRate"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

The interface has a discrete action space where the agent can apply one of five possible torque values
to the pendulum: –2, –1, 0, 1, or 2 N·m.

 Create DQN Agent Using Deep Network Designer and Train Using Image Observations

16-29



actInfo = getActionInfo(env)

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [-2 -1 0 1 2]
           Name: "torque"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

Fix the random generator seed for reproducibility.

rng(0)

Construct Critic Network Using Deep Network Designer

DQN agents use a parametrized Q-value function approximator to estimate the value of the policy.
Since a DQN agents has a discrete action space, you can use a vector (that is multi-output) Q-value
function critic, which is generally more efficient than a comparable single-output critic. However, for
this example, use a standard single-output Q-value function critic.

To model the parametrized Q-value function within the critic, use a neural network with three input
layers (two for the observation channels, as specified by obsInfo, and the other for the action
channel, as specified by actInfo) and one output layer (which returns the scalar value). For more
information on creating Q-value function representations based on a deep neural network, see
“Create Policies and Value Functions” (Reinforcement Learning Toolbox).

Construct the critic network interactively by using the Deep Network Designer app. To do so, you
first create separate input paths for each observation and action. These paths learn lower-level
features from their respective inputs. You then create a common output path that combines the
outputs from the input paths.

Create Image Observation Path

To create the image observation path, first drag an imageInputLayer from the Layer Library pane
to the canvas. Set the layer InputSize to 50,50,1 for the image observation, and set Normalization
to none.

16 Reinforcement Learning Examples

16-30



Second, drag a convolution2DLayer to the canvas and connect the input of this layer to the output
of the imageInputLayer. Create a convolution layer with 2 filters (NumFilters property) that have a
height and width of 10 (FilterSize property), and use a stride of 5 in the horizontal and vertical
directions (Stride property).

 Create DQN Agent Using Deep Network Designer and Train Using Image Observations

16-31



Finally, complete the image path network with two sets of reLULayer and fullyConnectedLayer
layers. The output sizes of the first and second fullyConnectedLayer layers are 400 and 300,
respectively.

16 Reinforcement Learning Examples

16-32



Create All Input Paths and Output Path

Construct the other input paths and the output path in a similar manner. For this example, use the
following options.

Angular velocity path (scalar input):

• imageInputLayer — Set InputSize to 1,1 and Normalization to none.
• fullyConnectedLayer — Set OutputSize to 400.
• reLULayer
• fullyConnectedLayer — Set OutputSize to 300.

Action path (scalar input):

• imageInputLayer — Set InputSize to 1,1 and Normalization to none.
• fullyConnectedLayer — Set OutputSize to 300.

Output path:

• additionLayer — Connect the output of all input paths to the input of this layer.
• reLULayer
• fullyConnectedLayer — Set OutputSize to 1 for the scalar value function.

 Create DQN Agent Using Deep Network Designer and Train Using Image Observations

16-33



16 Reinforcement Learning Examples

16-34



Export Network from Deep Network Designer

To export the network to the MATLAB workspace, in Deep Network Designer, click Export. Deep
Network Designer exports the network as a new variable containing the network layers. You can
create the critic representation using this layer network variable.

Alternatively, to generate equivalent MATLAB code for the network, click Export > Generate Code.

The generated code is as follows.

lgraph = layerGraph();

tempLayers = [
    imageInputLayer([1 1 1],"Name","angularRate","Normalization","none")
    fullyConnectedLayer(400,"Name","dtheta_fc1")
    reluLayer("Name","dtheta_relu1")
    fullyConnectedLayer(300,"Name","dtheta_fc2")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    imageInputLayer([1 1 1],"Name","torque","Normalization","none")
    fullyConnectedLayer(300,"Name","torque_fc1")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    imageInputLayer([50 50 1],"Name","pendImage","Normalization","none")
    convolution2dLayer([10 10],2,"Name","img_conv1","Padding","same","Stride",[5 5])
    reluLayer("Name","relu_1")
    fullyConnectedLayer(400,"Name","critic_theta_fc1")
    reluLayer("Name","theta_relu1")
    fullyConnectedLayer(300,"Name","critic_theta_fc2")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    additionLayer(3,"Name","addition")
    reluLayer("Name","relu_2")

 Create DQN Agent Using Deep Network Designer and Train Using Image Observations

16-35



    fullyConnectedLayer(1,"Name","stateValue")];
lgraph = addLayers(lgraph,tempLayers);

lgraph = connectLayers(lgraph,"torque_fc1","addition/in3");
lgraph = connectLayers(lgraph,"critic_theta_fc2","addition/in1");
lgraph = connectLayers(lgraph,"dtheta_fc2","addition/in2");

View the critic network configuration.

figure
plot(lgraph)

Convert to a dlnetwork object and display the number of parameters.

net = dlnetwork(lgraph);
summary(net)

   Initialized: true

   Number of learnables: 322.9k

   Inputs:
      1   'angularRate'   1x1x1 images
      2   'torque'        1x1x1 images
      3   'pendImage'     50x50x1 images

Create the critic using the neural network, the action and observation specifications, and the names
of the input layers to be connected to the observations and action channels. For more information,
see rlQValueFunction (Reinforcement Learning Toolbox).

critic = rlQValueFunction(net,obsInfo,actInfo,...
    "ObservationInputNames",["pendImage","angularRate"], ...
    "ActionInputNames","torque");

Specify options for the critic using rlOptimizerOptions.

16 Reinforcement Learning Examples

16-36



criticOpts = rlOptimizerOptions(LearnRate=1e-03,GradientThreshold=1);

Specify the DQN agent options using rlDQNAgentOptions (Reinforcement Learning Toolbox).
Include the training options for the actor and critic.

agentOpts = rlDQNAgentOptions(...
    UseDoubleDQN=false,...    
    CriticOptimizerOptions=criticOpts,...
    ExperienceBufferLength=1e6,... 
    SampleTime=env.Ts);

You can also set or modify agent options using dot notation.

agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-5;

Alternatively, you can create the agent first, and then modify its options using dot notation.

Create the DQN agent using the critic and the agent options object. For more information, see
rlDQNAgent (Reinforcement Learning Toolbox).

agent = rlDQNAgent(critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 5000 episodes, with each episode lasting at most 500 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option to false).
• Stop training when the agent receives an average cumulative reward greater than –1000 over the

default window length of five consecutive episodes. At this point, the agent can quickly balance
the pendulum in the upright position using minimal control effort.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

trainOpts = rlTrainingOptions(...
    MaxEpisodes=5000,...
    MaxStepsPerEpisode=500,...
    Verbose=false,...
    Plots="training-progress",...
    StopTrainingCriteria="AverageReward",...
    StopTrainingValue=-1000);

Visualize the pendulum system during training or simulation using the plot function.

plot(env)

 Create DQN Agent Using Deep Network Designer and Train Using Image Observations

16-37



Train the agent using the train (Reinforcement Learning Toolbox) function. This is a
computationally intensive process that takes several hours to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load pretrained agent for the example.
    load("MATLABPendImageDQN.mat","agent");
end

16 Reinforcement Learning Examples

16-38



Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions (Reinforcement Learning
Toolbox) and sim (Reinforcement Learning Toolbox).

simOptions = rlSimulationOptions(MaxSteps=500);
experience = sim(env,agent,simOptions);

 Create DQN Agent Using Deep Network Designer and Train Using Image Observations

16-39



totalReward = sum(experience.Reward)

totalReward = -713.0336

See Also
Deep Network Designer | rlDQNAgent

More About
• “Train DQN Agent to Swing Up and Balance Pendulum” (Reinforcement Learning Toolbox)

16 Reinforcement Learning Examples

16-40



Imitate MPC Controller for Lane Keeping Assist

This example shows how to train, validate, and test a deep neural network that imitates the behavior
of a model predictive controller for an automotive lane keeping assist system. In the example, you
also compare the behavior of the deep neural network with that of the original controller.

Model predictive control (MPC) solves a constrained quadratic-programming (QP) optimization
problem in real time based on the current state of the plant (for more information, see “What is
Model Predictive Control?” (Model Predictive Control Toolbox)). Because MPC solves its optimization
problem in an open-loop fashion, you can potentially replace the controller with a deep neural
network. Evaluating a deep neural network can be more computationally efficient than solving a QP
problem in real time.

If the training of the network sufficiently traverses the state-space for the application, you can create
a reasonable approximation of the controller behavior. You can then deploy the network for your
control application. You can also use the network as a warm starting point for training the actor
network of a reinforcement learning agent. For an example, see “Train DDPG Agent with Pretrained
Actor Network” (Reinforcement Learning Toolbox).

Design MPC Controller

Design an MPC controller for lane keeping assist. To do so, first create a dynamic model for the
vehicle.

[sys,Vx] = createModelForMPCImLKA;

Create and design the MPC controller object mpcobj. Also, create an mpcstate object for setting the
initial controller state. For details on the controller design, type edit createMPCobjImLKA.

[mpcobj,initialState] = createMPCobjImLKA(sys);

For more information on designing model predictive controllers for lane keeping assist applications,
see “Lane Keeping Assist System Using Model Predictive Control” (Model Predictive Control Toolbox)
and “Lane Keeping Assist with Lane Detection” (Model Predictive Control Toolbox).

Prepare Input Data

The data in InputDataFileImLKA.mat was created by computing the MPC control actions for
randomly generated states, previous control actions, and measured disturbances. To generate your
own training data, use the collectDataImLKA function.

For this example, load the input data from InputDataFileImLKA.mat.

dataStruct = load("InputDataFileImLKA.mat");
data = dataStruct.Data;

The columns of the data set are ordered as follows:

1 Lateral velocity Vy

2 Yaw angle rate r
3 Lateral deviation e1

4 Relative yaw angle e2

 Imitate MPC Controller for Lane Keeping Assist

16-41



5 Previous steering angle (control variable) u
6 Measured disturbance (road yaw rate: longitudinal velocity * curvature (ρ))
7 Cost function value
8 MPC iterations
9 Steering angle computed by MPC controller: u*

Divide the input data into training, validation, and testing data. First, determine the number of
validation data rows based on a given percentage.

totalRows = size(data,1);
validationSplitPercent = 0.1;
numValidationDataRows = floor(validationSplitPercent*totalRows);

Determine the number of test data rows based on a given percentage.

testSplitPercent = 0.05;
numTestDataRows = floor(testSplitPercent*totalRows);

Randomly extract validation and testing data from the input data set. To do so, first randomly extract
enough rows for both data sets.

randomIdx = randperm(totalRows,numValidationDataRows + numTestDataRows);
randomData = data(randomIdx,:);

Divide the random data into validation and testing data.

validationData = randomData(1:numValidationDataRows,:);
testData = randomData(numValidationDataRows + 1:end,:);

Extract the remaining rows as training data.

trainDataIdx = setdiff(1:totalRows,randomIdx);
trainData = data(trainDataIdx,:);

Randomize the training data.

numTrainDataRows = size(trainData,1);
shuffleIdx = randperm(numTrainDataRows);
shuffledTrainData = trainData(shuffleIdx,:);

Reshape the training and validation data into 4-D matrices for use with trainNetwork.

numObs = 6; 
numActions = 1;

trainInput = shuffledTrainData(:,1:6);
trainOutput = shuffledTrainData(:,9);

validationInput = validationData(:,1:6);
validationOutput = validationData(:,9);
validationCellArray = {validationInput,validationOutput};

Reshape the testing data for use with predict.

testDataInput = testData(:,1:6);
testDataOutput = testData(:,9);

16 Reinforcement Learning Examples

16-42



Create Deep Neural Network

The deep neural network architecture uses the following layers.

• imageInputLayer is the input layer of the neural network.
• fullyConnectedLayer multiplies the input by a weight matrix and then adds a bias vector.
• reluLayer is the activation function of the neural network.
• tanhLayer constrains the value to the range to [-1,1].
• scalingLayer scales the value to the range to [-1.04,1.04], this constrains the steering angle to

the range [-60,60].
• regressionLayer defines the loss function of the neural network.

Create the deep neural network that will imitate the MPC controller after training.

imitateMPCLayers = [
    featureInputLayer(numObs)    
    fullyConnectedLayer(45)
    reluLayer
    fullyConnectedLayer(45)
    reluLayer
    fullyConnectedLayer(45)
    reluLayer
    fullyConnectedLayer(numActions)
    tanhLayer
    scalingLayer(Scale=1.04)    
    regressionLayer
];

Plot the network.

plot(layerGraph(imitateMPCLayers))

 Imitate MPC Controller for Lane Keeping Assist

16-43



Train Deep Neural Network

Specify training options.

options = trainingOptions("adam", ...
    Verbose=false, ...
    Plots="training-progress", ...
    Shuffle="every-epoch", ...
    MaxEpochs=30, ...
    MiniBatchSize=512, ...
    ValidationData=validationCellArray, ...
    InitialLearnRate=1e-3, ...
    GradientThresholdMethod="absolute-value", ...
    ExecutionEnvironment="cpu", ...
    GradientThreshold=10, ...
    Epsilon=1e-8);

Train the deep neural network. To view detailed training information in the Command Window, set
the Verbose training option to true.

imitateMPCNetwork = trainNetwork( ...
    trainInput, ...
    trainOutput, ...
    imitateMPCLayers, ...
    options);

16 Reinforcement Learning Examples

16-44



Training of the deep neural network stops after the final iteration.

The training and validation loss are nearly the same for each mini-batch, which indicates that the
trained network does not overfit.

Test Trained Network

Check that the trained deep neural network returns steering angles similar to the MPC controller
control actions given the test input data. Compute the network output using the predict function.

predictedTestDataOutput = predict(imitateMPCNetwork,testDataInput);

Calculate the root mean squared error (RMSE) between the network output and the testing data.

testRMSE = sqrt(mean((testDataOutput - predictedTestDataOutput).^2));
fprintf("Test Data RMSE = %d\n", testRMSE);

Test Data RMSE = 3.251544e-02

The small RMSE value indicates that the network outputs closely reproduce the MPC controller
outputs.

Compare Trained Network with MPC Controller

To compare the performance of the MPC controller and the trained deep neural network, run closed-
loop simulations using the vehicle plant model.

Generate random initial conditions for the vehicle that are not part of the original input data set, with
values selected from the following ranges:

1 Lateral velocity Vy — Range (-2,2) m/s

 Imitate MPC Controller for Lane Keeping Assist

16-45



2 Yaw angle rate r — Range (-1.04,1.04) rad/s
3 Lateral deviation e1 — Range (-1,1) m
4 Relative yaw angle e2 — Range (-0.8,0.8) rad
5 Last steering angle (control variable) u — Range (-1.04,1.04) rad
6 Measured disturbance (road yaw rate, defined as longitudinal velocity * curvature (ρ)) — Range

(-0.01,0.01) with a minimum road radius of 100 m

rng(5e7)
[x0,u0,rho] = generateRandomDataImLKA(data);

Set the initial plant state and control action in the mpcstate object.

initialState.Plant = x0;
initialState.LastMove = u0;

Extract the sample time from the MPC controller. Also, set the number of simulation steps.

Ts = mpcobj.Ts;
Tsteps = 30;     

Obtain the A and B state-space matrices for the vehicle model.

A = sys.A;
B = sys.B;

Initialize the state and input trajectories for the MPC controller simulation.

xHistoryMPC = repmat(x0',Tsteps+1,1);
uHistoryMPC = repmat(u0',Tsteps,1);

Run a closed-loop simulation of the MPC controller and the plant using the mpcmove function.

for k = 1:Tsteps

    % Obtain plant outputs
    xk = xHistoryMPC(k,:)';

    % Compute control action using the MPC controller
    uk = mpcmove(mpcobj,initialState,xk,zeros(1,4),Vx*rho);

    % Store the control action
    uHistoryMPC(k,:) = uk;

    % Update plant state using the control action
    xHistoryMPC(k+1,:) = (A*xk + B*[uk;Vx*rho])';
end

Initialize the state and input trajectories for the deep neural network simulation.

xHistoryDNN = repmat(x0',Tsteps+1,1);
uHistoryDNN = repmat(u0',Tsteps,1);
lastMV = u0;

Run a closed-loop simulation of the trained network and the plant. The neuralnetLKAmove function
computes the deep neural network output using the predict function.

16 Reinforcement Learning Examples

16-46



for k = 1:Tsteps

    % Obtain plant outputs
    xk = xHistoryDNN(k,:)';

    % Predict the next move using trained network
    uk = neuralnetLKAmove(imitateMPCNetwork,xk,lastMV,rho);

    % Store control action
    uHistoryDNN(k,:) = uk;

    % Update the last MV for the next step
    lastMV = uk;

    % Update plant state using the control action
    xHistoryDNN(k+1,:) = (A*xk + B*[uk;Vx*rho])';
end

Plot the results to compare the MPC controller and trained deep neural network (DNN) trajectories.

plotValidationResultsImLKA(Ts, ...
    xHistoryDNN,uHistoryDNN, ...
    xHistoryMPC,uHistoryMPC);

 Imitate MPC Controller for Lane Keeping Assist

16-47



The deep neural network successfully imitates the behavior of the MPC controller. The vehicle state
and control action trajectories for the controller and the deep neural network closely align.

See Also
trainNetwork | predict | mpcmove

More About
• “Lane Keeping Assist System Using Model Predictive Control” (Model Predictive Control

Toolbox)
• “Lane Keeping Assist with Lane Detection” (Model Predictive Control Toolbox)

16 Reinforcement Learning Examples

16-48



Train DDPG Agent to Control Flying Robot

This example shows how to train a deep deterministic policy gradient (DDPG) agent to generate
trajectories for a flying robot modeled in Simulink®. For more information on DDPG agents, see
“Deep Deterministic Policy Gradient (DDPG) Agents” (Reinforcement Learning Toolbox).

Flying Robot Model

The reinforcement learning environment for this example is a flying robot with its initial condition
randomized around a ring having a radius of 15 m. The orientation of the robot is also randomized.
The robot has two thrusters mounted on the side of the body that are used to propel and steer the
robot. The training goal is to drive the robot from its initial condition to the origin facing east.

Open the model.

mdl = "rlFlyingRobotEnv";
open_system(mdl)

Set the initial model state variables.

theta0 = 0;
x0 = -15;
y0 = 0;

Define the sample time Ts and the simulation duration Tf.

Ts = 0.4;
Tf = 30;

For this model:

• The goal orientation is 0 rad (robot facing east).
• The thrust from each actuator is bounded from -1 to 1 N
• The observations from the environment are the position, orientation (sine and cosine of

orientation), velocity, and angular velocity of the robot.
• The reward rt provided at every time step is

r1 = 10 xt
2 + yt

2 + θt 2 < 0 . 5

r2 = − 100 xt ≥ 20 yt ≥ 20

r3 = − 0 . 2 Rt − 1 + Lt − 1
2 + 0 . 3 Rt − 1− Lt − 1

2 + 0 . 03xt
2 + 0 . 03yt

2 + 0 . 02θt 2

rt = r1 + r2 + r3

where:

• xt is the position of the robot along the x-axis.
• yt is the position of the robot along the y-axis.
• θ t is the orientation of the robot.

 Train DDPG Agent to Control Flying Robot

16-49



• Lt − 1 is the control effort from the left thruster.
• Rt − 1 is the control effort from the right thruster.
• r1 is the reward when the robot is close to the goal.
• r2 is the penalty when the robot drives beyond 20 m in either the x or y direction. The simulation

is terminated when r2 < 0.
• r3 is a QR penalty that penalizes distance from the goal and control effort.

Create Integrated Model

To train an agent for the FlyingRobotEnv model, use the createIntegratedEnv function to
automatically generate a Simulink model containing an RL Agent block that is ready for training.

integratedMdl = "IntegratedFlyingRobot";
[~,agentBlk,obsInfo,actInfo] = ...
    createIntegratedEnv(mdl,integratedMdl);

Actions and Observations

Before creating the environment object, specify names for the observation and action specifications,
and bound the thrust actions between -1 and 1.

The observation vector for this environment is x y ẋ ẏ sin θ cos θ θ̇ T. Assign a name to the
environment observation channel.

obsInfo.Name = "observations";

The action vector for this environment is TR TL
T. Assign a name, as well as upper and lower limits,

to the environment action channel.

actInfo.Name = "thrusts";
actInfo.LowerLimit = -ones(prod(actInfo.Dimension),1);
actInfo.UpperLimit =  ones(prod(actInfo.Dimension),1);

Note that prod(obsInfo.Dimension) and prod(actInfo.Dimension) return the number of
dimensions of the observation and action spaces, respectively, regardless of whether they are
arranged as row vectors, column vectors, or matrices.

Create Environment Object

Create an environment object using the integrated Simulink model.

env = rlSimulinkEnv( ...
    integratedMdl, ...
    agentBlk, ...
    obsInfo, ...
    actInfo);

Reset Function

Create a custom reset function that randomizes the initial position of the robot along a ring of radius
15 m and the initial orientation. For details on the reset function, see flyingRobotResetFcn.

env.ResetFcn = @(in) flyingRobotResetFcn(in);

16 Reinforcement Learning Examples

16-50



Fix the random generator seed for reproducibility.

rng(0)

Create DDPG agent

DDPG agents use a parametrized Q-value function approximator to estimate the value of the policy. A
Q-value function critic takes the current observation and an action as inputs and returns a single
scalar as output (the estimated discounted cumulative long-term reward given the action from the
state corresponding to the current observation, and following the policy thereafter).

To model the parametrized Q-value function within the critic, use a neural network with two input
layers (one for the observation channel, as specified by obsInfo, and the other for the action
channel, as specified by actInfo) and one output layer (which returns the scalar value).

Define each network path as an array of layer objects. Assign names to the input and output layers of
each path. These names allow you to connect the paths and then later explicitly associate the network
input and output layers with the appropriate environment channel.

% Specify the number of outputs for the hidden layers.
hiddenLayerSize = 100; 

% Define observation path layers
observationPath = [
    featureInputLayer( ...
        prod(obsInfo.Dimension),Name="obsInLyr")
    fullyConnectedLayer(hiddenLayerSize)
    reluLayer
    fullyConnectedLayer(hiddenLayerSize)
    additionLayer(2,Name="add")
    reluLayer
    fullyConnectedLayer(hiddenLayerSize)
    reluLayer
    fullyConnectedLayer(1,Name="fc4")
    ];

% Define action path layers
actionPath = [
    featureInputLayer( ...
        prod(actInfo.Dimension), ...
        Name="actInLyr")
    fullyConnectedLayer(hiddenLayerSize,Name="fc5")
    ];

% Create the layer graph.
criticNetwork = layerGraph(observationPath);
criticNetwork = addLayers(criticNetwork,actionPath);

% Connect actionPath to observationPath.
criticNetwork = connectLayers(criticNetwork,"fc5","add/in2");

% Create dlnetwork from layer graph
criticNetwork = dlnetwork(criticNetwork);

% Display the number of parameters
summary(criticNetwork)

 Train DDPG Agent to Control Flying Robot

16-51



   Initialized: true

   Number of learnables: 21.4k

   Inputs:
      1   'obsInLyr'   7 features
      2   'actInLyr'   2 features

Create the critic using criticNetwork, the environment specifications, and the names of the
network input layers to be connected to the observation and action channels. For more information
see rlQValueFunction (Reinforcement Learning Toolbox).

critic = rlQValueFunction(criticNetwork,obsInfo,actInfo,...
    ObservationInputNames="obsInLyr",ActionInputNames="actInLyr");

DDPG agents use a parametrized deterministic policy over continuous action spaces, which is learned
by a continuous deterministic actor. This actor takes the current observation as input and returns as
output an action that is a deterministic function of the observation.

To model the parametrized policy within the actor, use a neural network with one input layer (which
receives the content of the environment observation channel, as specified by obsInfo) and one
output layer (which returns the action to the environment action channel, as specified by actInfo).

Define the network as an array of layer objects.

actorNetwork = [
    featureInputLayer(prod(obsInfo.Dimension))
    fullyConnectedLayer(hiddenLayerSize)
    reluLayer
    fullyConnectedLayer(hiddenLayerSize)
    reluLayer
    fullyConnectedLayer(hiddenLayerSize)
    reluLayer
    fullyConnectedLayer(prod(actInfo.Dimension))
    tanhLayer
    ];

Convert the array of layer object to a dlnetwork object and display the number of parameters.

actorNetwork = dlnetwork(actorNetwork);
summary(actorNetwork)

   Initialized: true

   Number of learnables: 21.2k

   Inputs:
      1   'input'   7 features

Define the actor using actorNetwork, and the specifications for the action and observation
channels. For more information, see rlContinuousDeterministicActor (Reinforcement Learning
Toolbox).

actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

Specify options for the critic and the actor using rlOptimizerOptions (Reinforcement Learning
Toolbox).

16 Reinforcement Learning Examples

16-52



criticOptions = rlOptimizerOptions(LearnRate=1e-03,GradientThreshold=1);
actorOptions = rlOptimizerOptions(LearnRate=1e-04,GradientThreshold=1);

Specify the DDPG agent options using rlDDPGAgentOptions (Reinforcement Learning Toolbox),
include the training options for the actor and critic.

agentOptions = rlDDPGAgentOptions(...
    SampleTime=Ts,...
    ActorOptimizerOptions=actorOptions,...
    CriticOptimizerOptions=criticOptions,...
    ExperienceBufferLength=1e6 ,...
    MiniBatchSize=256);
agentOptions.NoiseOptions.Variance = 1e-1;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;

Then, create the agent using the actor, the critic and the agent options. For more information, see
rlDDPGAgent (Reinforcement Learning Toolbox).

agent = rlDDPGAgent(actor,critic,agentOptions);

Alternatively, you can create the agent first, and then access its option object and modify the options
using dot notation.

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training for at most 20000 episodes, with each episode lasting at most ceil(Tf/Ts)
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 415 over 10
consecutive episodes. At this point, the agent can drive the flying robot to the goal position.

• Save a copy of the agent for each episode where the cumulative reward is greater than 415.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

maxepisodes = 20000;
maxsteps = ceil(Tf/Ts);
trainingOptions = rlTrainingOptions(...
    MaxEpisodes=maxepisodes,...
    MaxStepsPerEpisode=maxsteps,...
    StopOnError="on",...
    Verbose=false,...
    Plots="training-progress",...
    StopTrainingCriteria="AverageReward",...
    StopTrainingValue=415,...
    ScoreAveragingWindowLength=10,...
    SaveAgentCriteria="EpisodeReward",...
    SaveAgentValue=415); 

Train the agent using the train (Reinforcement Learning Toolbox) function. Training is a
computationally intensive process that takes several hours to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

 Train DDPG Agent to Control Flying Robot

16-53



doTraining = false;
if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOptions);
else
    % Load the pretrained agent for the example.
    load("FlyingRobotDDPG.mat","agent")
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate the agent within the environment. For
more information on agent simulation, see rlSimulationOptions (Reinforcement Learning
Toolbox) and sim (Reinforcement Learning Toolbox).

simOptions = rlSimulationOptions(MaxSteps=maxsteps);
experience = sim(env,agent,simOptions);

16 Reinforcement Learning Examples

16-54



See Also
train | rlDDPGAgent

More About
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)

 Train DDPG Agent to Control Flying Robot

16-55



Train Biped Robot to Walk Using Reinforcement Learning
Agents

This example shows how to train a biped robot to walk using either a deep deterministic policy
gradient (DDPG) agent or a twin-delayed deep deterministic policy gradient (TD3) agent. In the
example, you also compare the performance of these trained agents. The robot in this example is
modeled in Simscape™ Multibody™.

For more information on these agents, see “Deep Deterministic Policy Gradient (DDPG) Agents”
(Reinforcement Learning Toolbox) and “Twin-Delayed Deep Deterministic (TD3) Policy Gradient
Agents” (Reinforcement Learning Toolbox).

For the purpose of comparison in this example, this example trains both agents on the biped robot
environment with the same model parameters. The example also configures the agents to have the
following settings in common.

• Initial condition strategy of the biped robot
• Network structure of actor and critic, inspired by [1]
• Options for actor and critic representations
• Training options (sample time, discount factor, mini-batch size, experience buffer length,

exploration noise)

Biped Robot Model

The reinforcement learning environment for this example is a biped robot. The training goal is to
make the robot walk in a straight line using minimal control effort.

16 Reinforcement Learning Examples

16-56



Load the parameters of the model into the MATLAB® workspace.

robotParametersRL

Open the Simulink model.

mdl = "rlWalkingBipedRobot";
open_system(mdl)

The robot is modeled using Simscape Multibody.

 Train Biped Robot to Walk Using Reinforcement Learning Agents

16-57



For this model:

• In the neutral 0 rad position, both of the legs are straight and the ankles are flat.
• The foot contact is modeled using the Spatial Contact Force (Simscape Multibody) block.
• The agent can control 3 individual joints (ankle, knee, and hip) on both legs of the robot by

applying torque signals from -3 to 3 N·m. The actual computed action signals are normalized
between -1 and 1.

The environment provides the following 29 observations to the agent.

• Y (lateral) and Z (vertical) translations of the torso center of mass. The translation in the Z
direction is normalized to a similar range as the other observations.

• X (forward), Y (lateral), and Z (vertical) translation velocities.
• Yaw, pitch, and roll angles of the torso.
• Yaw, pitch, and roll angular velocities of the torso.
• Angular positions and velocities of the three joints (ankle, knee, hip) on both legs.
• Action values from the previous time step.

The episode terminates if either of the following conditions occur.

• The robot torso center of mass is less than 0.1 m in the Z direction (the robot falls) or more than 1
m in the either Y direction (the robot moves too far to the side).

• The absolute value of either the roll, pitch, or yaw is greater than 0.7854 rad.

The following reward function rt, which is provided at every time step is inspired by [2].

rt = vx− 3y2− 50z2 + 25Ts
Tf − 0 . 02∑

i
ut − 1

i 2

Here:

• vx is the translation velocity in the X direction (forward toward goal) of the robot.
• y is the lateral translation displacement of the robot from the target straight line trajectory.
• z is the normalized vertical translation displacement of the robot center of mass.
• ut − 1

i  is the torque from joint i from the previous time step.
• Ts is the sample time of the environment.
• Tf is the final simulation time of the environment.

This reward function encourages the agent to move forward by providing a positive reward for
positive forward velocity. It also encourages the agent to avoid episode termination by providing a
constant reward (25Ts

Tf ) at every time step. The other terms in the reward function are penalties for
substantial changes in lateral and vertical translations, and for the use of excess control effort.

Create Environment Interface

Create the observation specification.

numObs = 29;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = "observations";

16 Reinforcement Learning Examples

16-58



Create the action specification.

numAct = 6;
actInfo = rlNumericSpec([numAct 1],LowerLimit=-1,UpperLimit=1);
actInfo.Name = "foot_torque";

Create the environment interface for the walking robot model.

blk = mdl + "/RL Agent";
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);
env.ResetFcn = @(in) walkerResetFcn(in, ...
    upper_leg_length/100, ...
    lower_leg_length/100, ...
    h/100);

Select and Create Agent for Training

This example provides the option to train the robot either using either a DDPG or TD3 agent. To
simulate the robot with the agent of your choice, set the AgentSelection flag accordingly.

AgentSelection = "DDPG";
switch AgentSelection
    case "DDPG"
        agent = createDDPGAgent(numObs,obsInfo,numAct,actInfo,Ts);
    case "TD3"
        agent = createTD3Agent(numObs,obsInfo,numAct,actInfo,Ts);
    otherwise
        disp("Assign AgentSelection to DDPG or TD3")
end

The createDDPGAgent and createTD3Agent helper functions perform the following actions.

• Create actor and critic networks.
• Specify options for actor and critic representations.
• Create actor and critic representations using created networks and specified options.
• Configure agent specific options.
• Create agent.

DDPG Agent

DDPG agents use a parametrized deterministic policy over continuous action spaces, which is learned
by a continuous deterministic actor, and a parametrized Q-value function approximator to estimate
the value of the policy. Use neural networks to model both the policy and the Q-value function. The
actor and critic networks for this example are inspired by [1].

For details on how the DDPG agent is created, see the createDDPGAgent helper function. For
information on configuring DDPG agent options, see rlDDPGAgentOptions (Reinforcement
Learning Toolbox).

For more information on creating a deep neural network value function representation, see “Create
Policies and Value Functions” (Reinforcement Learning Toolbox). For an example that creates neural
networks for DDPG agents, see “Train DDPG Agent to Control Double Integrator System”
(Reinforcement Learning Toolbox).

 Train Biped Robot to Walk Using Reinforcement Learning Agents

16-59



TD3 Agent

The critic of a DDPG agent can overestimate the Q value. Since the agent uses the Q value to update
its policy (actor), the resultant policy can be suboptimal and can accumulate training errors that can
lead to divergent behavior. The TD3 algorithm is an extension of DDPG with improvements that make
it more robust by preventing overestimation of Q values [3].

• Two critic networks — TD3 agents learn two critic networks independently and use the minimum
value function estimate to update the actor (policy). Doing so prevents accumulation of error in
subsequent steps and overestimation of Q values.

• Addition of target policy noise — Adding clipped noise to value functions smooths out Q function
values over similar actions. Doing so prevents learning an incorrect sharp peak of noisy value
estimate.

• Delayed policy and target updates — For a TD3 agent, delaying the actor network update allows
more time for the Q function to reduce error (get closer to the required target) before updating
the policy. Doing so prevents variance in value estimates and results in a higher quality policy
update.

The structure of the actor and critic networks used for this agent are the same as the ones used for
DDPG agent. For details on the creating the TD3 agent, see the createTD3Agent helper function.
For information on configuring TD3 agent options, see rlTD3AgentOptions (Reinforcement
Learning Toolbox).

Specify Training Options and Train Agent

For this example, the training options for the DDPG and TD3 agents are the same.

• Run each training session for 2000 episodes with each episode lasting at most maxSteps time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option).

• Terminate the training only when it reaches the maximum number of episodes (maxEpisodes).
Doing so allows the comparison of the learning curves for multiple agents over the entire training
session.

For more information and additional options, see rlTrainingOptions (Reinforcement Learning
Toolbox).

maxEpisodes = 2000;
maxSteps = floor(Tf/Ts);
trainOpts = rlTrainingOptions(...
    MaxEpisodes=maxEpisodes,...
    MaxStepsPerEpisode=maxSteps,...
    ScoreAveragingWindowLength=250,...
    Verbose=false,...
    Plots="training-progress",...
    StopTrainingCriteria="EpisodeCount",...
    StopTrainingValue=maxEpisodes,...
    SaveAgentCriteria="EpisodeCount",...
    SaveAgentValue=maxEpisodes);

To train the agent in parallel, specify the following training options. Training in parallel requires
Parallel Computing Toolbox™. If you do not have Parallel Computing Toolbox software installed, set
UseParallel to false.

16 Reinforcement Learning Examples

16-60



• Set the UseParallel option to true.
• Train the agent in parallel asynchronously.
• After every 32 steps, have each worker send experiences to the parallel pool client (the MATLAB®

process which starts the training). DDPG and TD3 agents require workers to send experiences to
the client.

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = "async";
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = "Experiences";

Train the agent using the train (Reinforcement Learning Toolbox) function. This process is
computationally intensive and takes several hours to complete for each agent. To save time while
running this example, load a pretrained agent by setting doTraining to false. To train the agent
yourself, set doTraining to true. Due to randomness in the parallel training, you can expect
different training results from the plots that follow. The pretrained agents were trained in parallel
using four workers.

doTraining = false;
if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load a pretrained agent for the selected agent type.
    if strcmp(AgentSelection,"DDPG")
       load("rlWalkingBipedRobotDDPG.mat","agent")
    else
       load("rlWalkingBipedRobotTD3.mat","agent")
    end  
end

 Train Biped Robot to Walk Using Reinforcement Learning Agents

16-61



16 Reinforcement Learning Examples

16-62



For the preceding example training curves, the average time per training step for the DDPG and TD3
agents are 0.11 and 0.12 seconds, respectively. The TD3 agent takes more training time per step
because it updates two critic networks compared to the single critic used for DDPG.

Simulate Trained Agents

Fix the random generator seed for reproducibility.

rng(0)

To validate the performance of the trained agent, simulate it within the biped robot environment. For
more information on agent simulation, see rlSimulationOptions (Reinforcement Learning
Toolbox) and sim (Reinforcement Learning Toolbox).

simOptions = rlSimulationOptions(MaxSteps=maxSteps);
experience = sim(env,agent,simOptions);

 Train Biped Robot to Walk Using Reinforcement Learning Agents

16-63



Compare Agent Performance

For the following agent comparison, each agent was trained five times using a different random seed
each time. Due to the random exploration noise and the randomness in the parallel training, the
learning curve for each run is different. Since the training of agents for multiple runs takes several
days to complete, this comparison uses pretrained agents.

For the DDPG and TD3 agents, plot the average and standard deviation of the episode reward (top
plot) and the episode Q0 value (bottom plot). The episode Q0 value is the critic estimate of the
discounted long-term reward at the start of each episode given the initial observation of the
environment. For a well-designed critic, the episode Q0 value approaches the true discounted long-
term reward.

comparePerformance("DDPGAgent","TD3Agent")

16 Reinforcement Learning Examples

16-64



 Train Biped Robot to Walk Using Reinforcement Learning Agents

16-65



Based on the Learning curve comparison plot:

• The DDPG agent appears to pick up learning faster (around episode number 600 on average) but
hits a local minimum. TD3 starts slower but eventually achieves higher rewards than DDPG as it
avoids overestimation of Q values.

• The TD3 agent shows a steady improvement in its learning curve, which suggests improved
stability when compared to the DDPG agent.

Based on the Episode Q0 comparison plot:

• For the TD3 agent, the critic estimate of the discounted long-term reward (for 2000 episodes) is
lower compared to the DDPG agent. This difference is because the TD3 algorithm takes a
conservative approach in updating its targets by using a minimum of two Q functions. This
behavior is further enhanced because of delayed updates to the targets.

• Although the TD3 estimate for these 2000 episodes is low, the TD3 agent shows a steady increase
in the episode Q0 values, unlike the DDPG agent.

In this example, the training was stopped at 2000 episodes. For a larger training period, the TD3
agent with its steady increase in estimates shows the potential to converge to the true discounted
long-term reward.

For another example on how to train a humanoid robot to walk using a DDPG agent, see “Train
Humanoid Walker” (Simscape Multibody). For an example on how to train a quadruped robot to walk
using a DDPG agent, see “Quadruped Robot Locomotion Using DDPG Agent” (Reinforcement
Learning Toolbox).

16 Reinforcement Learning Examples

16-66



References

[1] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. "Continuous Control with Deep Reinforcement Learning." Preprint,
submitted July 5, 2019. https://arxiv.org/abs/1509.02971.

[2] Heess, Nicolas, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
et al. "Emergence of Locomotion Behaviours in Rich Environments." Preprint, submitted July 10,
2017. https://arxiv.org/abs/1707.02286.

[3] Fujimoto, Scott, Herke van Hoof, and David Meger. "Addressing Function Approximation Error in
Actor-Critic Methods." Preprint, submitted October 22, 2018. https://arxiv.org/abs/1802.09477.

See Also
train

More About
• “Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Define Reward Signals” (Reinforcement Learning Toolbox)

 Train Biped Robot to Walk Using Reinforcement Learning Agents

16-67

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1802.09477


Train Humanoid Walker

This example shows how to model a humanoid robot using “Simscape Multibody”™ and train it using
either a genetic algorithm (which requires a “Global Optimization Toolbox” license) or reinforcement
learning (which requires “Deep Learning Toolbox”™ and “Reinforcement Learning Toolbox”™
licenses).

Humanoid Walker Model

This example is based on a humanoid robot model. You can open the model by entering
sm_import_humanoid_urdf in the MATLAB® command prompt. Each leg of the robot has torque-
actuated revolute joints in the frontal hip, knee, and ankle. Each arm has two passive revolute joints
in the frontal and sagittal shoulder. During the simulation, the model senses the contact forces,
position and orientation of the torso, joint states, and forward position. The figure shows the
Simscape Multibody model on different levels.

16 Reinforcement Learning Examples

16-68



Contact Modeling

The model uses Spatial Contact Force (Simscape Multibody) blocks to simulate the contact between
the feet and ground. To simplify the contact and speed up the simulation, red spheres are used to
represent the bottoms of the robotic feet. For more details, see “Use Contact Proxies to Simulate
Contact” (Simscape Multibody).

 Train Humanoid Walker

16-69



16 Reinforcement Learning Examples

16-70



Joint Controller

The model uses a stiffness-based feedback controller to control each joint [1]. Model the joints as
first-order systems with an associated stiffness (K) and damping (B), which you can set to make the
joint behavior critically damped. The torque is applied when the setpoint θ0 differs from the current
joint position θ:

T = Bθ
•

+ K θ0− θ .

You can vary the spring set-point θ0 to elicit a feedback response to move the joint. The figure shows
the Simulink model of the controller.

Humanoid Walker Training

The goal of this example is to train a humanoid robot to walk, and you can use various methods to
train the robot. The example shows the genetic algorithm and reinforcement learning methods.

The Walking Objective Function

This example uses an objective function to evaluate different walking styles. The model gives a
reward (rt) at each timestep:

rt = w1 vy + w2ts−w3 p−w4 Δz −w5 Δx

Here:

• vy — Forward velocity (rewarded)
• p — Power consumption (penalized)
• Δz — Vertical displacement (penalized)
• Δx — Lateral displacement (penalized)
• w1, . . . , 5: Weights, which represent the relative importance of each term in the reward function

Additionally, not falling over is rewarded.

Consequently, the total reward (R) for a walking trial is:

 Train Humanoid Walker

16-71



R = ∑
t = 0

T
rt

Here T is the time at which the simulation terminates. You can change the reward weights in the
sm_humanoid_walker_rl_parameters script. The simulation terminates when the simulation time
is reached or the robot falls. Falling is defined as:

• The robot drops below 0.5 m.
• The robot moves laterally by more than 1 m.
• The robot torso rotates by more than 30 degrees.

Train with Genetic Algorithm

To optimize the walking of the robot, you can use a genetic algorithm. A genetic algorithm solves
optimization problems based on a natural selection process that mimics biological evolution. Genetic
algorithms are especially suited to problems when the objective function is discontinuous,
nondifferentiable, stochastic, or highly nonlinear. For more information, see ga (Global Optimization
Toolbox).

The model sets the angular demand for each joint to a repeating pattern that is analogous to the
central pattern generators seen in nature [2]. The repeating pattern yields an open-loop controller.
The periodicity of the signals is the gait period, which is the time taken to complete one full step.
During each gait period, the signal switches between different angular demand values. Ideally, the
humanoid robot walks symmetrically, and the control pattern for each joint in the right leg is
transmitted to the corresponding joint in the left leg, with a delay of half a gait period. The pattern
generator aims to determine the optimal control pattern for each joint and to maximize the walking
objective function.

16 Reinforcement Learning Examples

16-72



To train the robot with a genetic algorithm, open the sm_humanoid_walker_ga_train script. By
default, this example uses a pretrained humanoid walker. To train the humanoid walker, set
trainWalker to true.

Train with Reinforcement Learning

Alternatively, you can also train the robot using a deep deterministic policy gradient (DDPG)
reinforcement learning agent. A DDPG agent is an actor-critic reinforcement learning agent that
computes an optimal policy that maximizes the long-term reward. DDPG agents can be used in
systems with continuous actions and states. For details about DDPG agents, see rlDDPGAgent
(Reinforcement Learning Toolbox).

 Train Humanoid Walker

16-73



To train the robot with reinforcement learning, open the sm_humanoid_walker_rl_train script.
By default, this example uses a pretrained humanoid walker. To train the humanoid walker, set
trainWalker to true.

References

[1] Kalveram, Karl T., Thomas Schinauer, Steffen Beirle, Stefanie Richter, and Petra Jansen-Osmann.
“Threading Neural Feedforward into a Mechanical Spring: How Biology Exploits Physics in Limb
Control.” Biological Cybernetics 92, no. 4 (April 2005): 229–40. https://doi.org/10.1007/
s00422-005-0542-6.

[2] Jiang Shan, Cheng Junshi, and Chen Jiapin. “Design of Central Pattern Generator for Humanoid
Robot Walking Based on Multi-Objective GA.” In Proceedings. 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), 3: 1930–35.
Takamatsu, Japan: IEEE, 2000. https://doi.org/10.1109/IROS.2000.895253.

See Also
Point | Point Cloud | Spatial Contact Force

More About
• “Deep Learning Toolbox”
• “Global Optimization Toolbox”
• “Import a URDF Humanoid Model” (Simscape Multibody)
• “Modeling Contact Force Between Two Solids” (Simscape Multibody)
• “Reinforcement Learning Toolbox”
• “Use Contact Proxies to Simulate Contact” (Simscape Multibody)

16 Reinforcement Learning Examples

16-74



Train DDPG Agent for Adaptive Cruise Control

This example shows how to train a deep deterministic policy gradient (DDPG) agent for adaptive
cruise control (ACC) in Simulink®. For more information on DDPG agents, see “Deep Deterministic
Policy Gradient (DDPG) Agents” (Reinforcement Learning Toolbox).

Simulink Model

The reinforcement learning environment for this example is the simple longitudinal dynamics for an
ego car and lead car. The training goal is to make the ego car travel at a set velocity while
maintaining a safe distance from lead car by controlling longitudinal acceleration and braking. This
example uses the same vehicle model as the “Adaptive Cruise Control System Using Model Predictive
Control” (Model Predictive Control Toolbox) example.

Specify the initial position and velocity for the two vehicles.

x0_lead = 50;   % initial position for lead car (m)
v0_lead = 25;   % initial velocity for lead car (m/s)
x0_ego = 10;    % initial position for ego car (m)
v0_ego = 20;    % initial velocity for ego car (m/s)

Specify standstill default spacing (m), time gap (s) and driver-set velocity (m/s).

D_default = 10;
t_gap = 1.4;
v_set = 30;

To simulate the physical limitations of the vehicle dynamics, constraint the acceleration to the range
[–3,2] m/s^2.

amin_ego = -3;
amax_ego = 2;

Define the sample time Ts and simulation duration Tf in seconds.

Ts = 0.1;
Tf = 60;

Open the model.

mdl = "rlACCMdl";
open_system(mdl)
agentblk = mdl + "/RL Agent";

 Train DDPG Agent for Adaptive Cruise Control

16-75



For this model:

• The acceleration action signal from the agent to the environment is from –3 to 2 m/s^2.
• The reference velocity for the ego car Vref  is defined as follows. If the relative distance is less than

the safe distance, the ego car tracks the minimum of the lead car velocity and driver-set velocity.
In this manner, the ego car maintains some distance from the lead car. If the relative distance is
greater than the safe distance, the ego car tracks the driver-set velocity. In this example, the safe
distance is defined as a linear function of the ego car longitudinal velocity V; that is,
tgap * V + Ddefault. The safe distance determines the reference tracking velocity for the ego car.

• The observations from the environment are the velocity error e = Vref − Vego, its integral ∫e, and
the ego car longitudinal velocity V.

• The simulation is terminated when longitudinal velocity of the ego car is less than 0, or the
relative distance between the lead car and ego car becomes less than 0.

• The reward rt, provided at every time step t, is

rt = − (0 . 1et
2 + ut − 1

2 ) + Mt

where ut − 1 is the control input from the previous time step. The logical value Mt = 1 if velocity error
et

2 < = 0 . 25; otherwise, Mt = 0.

Create Environment Interface

Create a reinforcement learning environment interface for the model.

Create the observation specification.

obsInfo = rlNumericSpec([3 1], ...
    LowerLimit=-inf*ones(3,1), ...
    UpperLimit=inf*ones(3,1));
obsInfo.Name = "observations";
obsInfo.Description = ...
    "velocity error and ego velocity";

16 Reinforcement Learning Examples

16-76



Create the action specification.

actInfo = rlNumericSpec([1 1], ...
    LowerLimit=-3,UpperLimit=2);
actInfo.Name = "acceleration";

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);

To define the initial condition for the position of the lead car, specify an environment reset function
using an anonymous function handle. The reset function localResetFcn, which is defined at the end
of the example, randomizes the initial position of the lead car.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng("default")

Create DDPG agent

DDPG agents use a parametrized Q-value function critic to estimate the value of the policy. A Q-value
function takes the current observation and an action as inputs and returns a single scalar as output
(the estimated discounted cumulative long-term reward given the action from the state corresponding
to the current observation, and following the policy thereafter).

To model the parametrized Q-value function within the critic, use a neural network with two input
layers (one for the observation channel, as specified by obsInfo, and the other for the action
channel, as specified by actInfo) and one output layer (which returns the scalar value).

Define each network path as an array of layer objects. Use prod(obsInfo.Dimension) and
prod(actInfo.Dimension) to return the number of dimensions of the observation and action
spaces.

Assign names to the input and output layers of each path. These names allow you to connect the
paths and then later explicitly associate the network input and output layers with the appropriate
environment channel.

L = 48; % number of neurons

% Main path
mainPath = [
    featureInputLayer( ...
        prod(obsInfo.Dimension), ...
        Name="obsInLyr")
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(L)
    additionLayer(2,Name="add")
    reluLayer
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(1,Name="QValLyr")
    ];

% Action path

 Train DDPG Agent for Adaptive Cruise Control

16-77



actionPath = [
    featureInputLayer( ...
        prod(actInfo.Dimension), ...
        Name="actInLyr")
    fullyConnectedLayer(L,Name="actOutLyr")
    ];

% Assemble layers into a layergraph object
criticNet = layerGraph(mainPath);
criticNet = addLayers(criticNet, actionPath);
    
% Connect layers
criticNet = connectLayers(criticNet,"actOutLyr","add/in2");

% Convert to dlnetwork and display number of weights
criticNet = dlnetwork(criticNet);
summary(criticNet)

   Initialized: true

   Number of learnables: 5k

   Inputs:
      1   'obsInLyr'   3 features
      2   'actInLyr'   1 features

View the critic network configuration.

plot(criticNet)

16 Reinforcement Learning Examples

16-78



Create the critic approximator object using criticNet, the environment observation and action
specifications, and the names of the network input layers to be connected with the environment
observation and action channels. For more information, see rlQValueFunction (Reinforcement
Learning Toolbox).

critic = rlQValueFunction(criticNet,obsInfo,actInfo,...
    ObservationInputNames="obsInLyr",ActionInputNames="actInLyr");

DDPG agents use a parametrized deterministic policy over continuous action spaces, which is learned
by a continuous deterministic actor. This actor takes the current observation as input and returns as
output an action that is a deterministic function of the observation.

To model the parametrized policy within the actor, use a neural network with one input layer (which
receives the content of the environment observation channel, as specified by obsInfo) and one
output layer (which returns the action to the environment action channel, as specified by actInfo).

Define the network as an array of layer objects. Use a tanhLayer followed by a scalingLayer to
scale the network output to the action range.

actorNet = [
    featureInputLayer(prod(obsInfo.Dimension))
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(L)
    reluLayer

 Train DDPG Agent for Adaptive Cruise Control

16-79



    fullyConnectedLayer(prod(actInfo.Dimension))
    tanhLayer
    scalingLayer(Scale=2.5,Bias=-0.5)
    ];

Convert to dlnetwork and display the number of weights.

actorNet = dlnetwork(actorNet);
summary(actorNet)

   Initialized: true

   Number of learnables: 4.9k

   Inputs:
      1   'input'   3 features

Create the actor using actorNet and the observation and action specifications. For more information
on continuous deterministic actors, see rlContinuousDeterministicActor (Reinforcement
Learning Toolbox).

actor = rlContinuousDeterministicActor(actorNet, ...
    obsInfo,actInfo);

Specify training options for the critic and the actor using rlOptimizerOptions (Reinforcement
Learning Toolbox).

criticOptions = rlOptimizerOptions( ...
    LearnRate=1e-3, ...
    GradientThreshold=1, ...
    L2RegularizationFactor=1e-4);
actorOptions = rlOptimizerOptions( ...
    LearnRate=1e-4, ...
    GradientThreshold=1, ...
    L2RegularizationFactor=1e-4);

Specify the DDPG agent options using rlDDPGAgentOptions (Reinforcement Learning Toolbox),
include the training options for the actor and critic.

agentOptions = rlDDPGAgentOptions(...
    SampleTime=Ts,...
    ActorOptimizerOptions=actorOptions,...
    CriticOptimizerOptions=criticOptions,...
    ExperienceBufferLength=1e6);

You can also set or modify the agent options using dot notation.

agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Alternatively, you can create the agent first, and then access its option object and modify the options
using dot notation.

Create the DDPG agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent (Reinforcement Learning Toolbox).

agent = rlDDPGAgent(actor,critic,agentOptions);

16 Reinforcement Learning Examples

16-80



Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training episode for at most 5000 episodes, with each episode lasting at most 600 time
steps.

• Display the training progress in the Episode Manager dialog box.
• Stop training when the agent receives an episode reward greater than 260.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
    MaxEpisodes=maxepisodes,...
    MaxStepsPerEpisode=maxsteps,...
    Verbose=false,...
    Plots="training-progress",...
    StopTrainingCriteria="EpisodeReward",...
    StopTrainingValue=260);

Train the agent using the train (Reinforcement Learning Toolbox) function. Training is a
computationally intensive process that takes several minutes to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOpts);
else
    % Load a pretrained agent for the example.
    load("SimulinkACCDDPG.mat","agent")
end

 Train DDPG Agent for Adaptive Cruise Control

16-81



Simulate DDPG Agent

To validate the performance of the trained agent, you can simulate the agent within the Simulink
environment using the following commands. For more information on agent simulation, see
rlSimulationOptions (Reinforcement Learning Toolbox) and sim (Reinforcement Learning
Toolbox).

simOptions = rlSimulationOptions(MaxSteps=maxsteps);
experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

x0_lead = 80;
sim(mdl)

The following plots show the simulation results when lead car is 70 (m) ahead of the ego car.

• In the first 35 seconds, the relative distance is greater than the safe distance (bottom plot), so the
ego car tracks set velocity (middle plot). To speed up and reach the set velocity, acceleration is
initially positive (top plot).

• From 35 to 48 seconds, the relative distance is less than the safe distance (bottom plot), so the
ego car tracks the minimum of the lead velocity and set velocity. To slow down and track the lead
car velocity, the acceleration turns negative from 35 to approximately 37 seconds (top plot).
Afterwards, the ego car adjusts its acceleration to keep on tracking either the minimum between

16 Reinforcement Learning Examples

16-82



the lead velocity and the set velocity, or the set velocity, depending on whether the relative
distance is deemed to be safe or not.

 Train DDPG Agent for Adaptive Cruise Control

16-83



Close the Simulink model.

bdclose(mdl)

Reset Function

function in = localResetFcn(in)
% Reset the initial position of the lead car.
in = setVariable(in,"x0_lead",40+randi(60,1,1));
end

See Also
train

More About
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Create Policies and Value Functions” (Reinforcement Learning Toolbox)

16 Reinforcement Learning Examples

16-84



Train DQN Agent for Lane Keeping Assist Using Parallel
Computing

This example shows how to train a deep Q-learning network (DQN) agent for lane keeping assist
(LKA) in Simulink® using parallel training. For an example that shows how to train the agent without
using parallel training, see “Train DQN Agent for Lane Keeping Assist” (Reinforcement Learning
Toolbox).

For more information on DQN agents, see “Deep Q-Network (DQN) Agents” (Reinforcement Learning
Toolbox). For an example that trains a DQN agent in MATLAB®, see “Train DQN Agent to Balance
Cart-Pole System” (Reinforcement Learning Toolbox).

DQN Parallel Training Overview

In a DQN agent, each worker generates new experiences from its copy of the agent and the
environment. After every N steps, the worker sends experiences to the client agent (the agent
associated with the MATLAB® process which starts the training). The client agent updates its
parameters as follows.

• For asynchronous training, the client agent calculates gradients and updates agent parameters
from the received experiences, without waiting to receive experiences from all the workers. The
client then sends the updated parameters back to the worker that provided the experiences. Then,
the worker updates its copy of the agent and continues to generate experiences using its copy of
the environment.

• For synchronous training, the client agent waits to receive experiences from all of the workers and
then calculates the gradients from all these experiences. The client updated the agent parameters,
and sends the updated parameters to all the workers at the same time. Then, all workers use a
single updated agent copy, together with their copy of the environment, to generate experiences.

Simulink Model for Ego Car

The reinforcement learning environment for this example is a simple bicycle model for the ego
vehicle dynamics. The training goal is to keep the ego vehicle traveling along the centerline of the
lanes by adjusting the front steering angle. This example uses the same vehicle model as “Train DQN
Agent for Lane Keeping Assist” (Reinforcement Learning Toolbox).

m = 1575;   % total vehicle mass (kg)
Iz = 2875;  % yaw moment of inertia (mNs^2)
lf = 1.2;   % longitudinal distance from center of gravity to front tires (m)
lr = 1.6;   % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15;    % longitudinal velocity (m/s)

Define the sample time Ts and simulation duration T in seconds.

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego car. To simulate the physical
steering limits of the ego car, constrain the steering angle to the range [–0.5,0.5] rad.

u_min = -0.5;
u_max = 0.5;

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

16-85



The curvature of the road is defined by a constant 0.001 (m−1). The initial value for the lateral
deviation is 0.2 m and the initial value for the relative yaw angle is –0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

mdl = "rlLKAMdl";
open_system(mdl)
agentblk = mdl + "/RL Agent";

For this model:

• The steering-angle action signal from the agent to the environment is from –15 degrees to 15
degrees.

• The observations from the environment are the lateral deviation e1, relative yaw angle e2, their
derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation is terminated when the lateral deviation |e1 | > 1 .
• The reward rt, provided at every time step t, is

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

where u is the control input from the previous time step t − 1.

Create Environment Interface

Create a reinforcement learning environment interface for the ego vehicle.

16 Reinforcement Learning Examples

16-86



Define the observation information.

obsInfo = rlNumericSpec([6 1], ...
    LowerLimit=-inf*ones(6,1), ...
    UpperLimit=inf*ones(6,1));

obsInfo.Name = "observations";
obsInfo.Description = "lateral deviation and relative yaw angle";

Define the action information.

actInfo = rlFiniteSetSpec((-15:15)*pi/180);
actInfo.Name = "steering";

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);

The interface has a discrete action space where the agent can apply one of 31 possible steering
angles from –15 degrees to 15 degrees. The observation is the six-dimensional vector containing
lateral deviation, relative yaw angle, as well as their derivatives and integrals with respect to time.

To define the initial condition for the lateral deviation and relative yaw angle, specify an environment
reset function using an anonymous function handle. localResetFcn, which is defined at the end of
this example, randomizes the initial lateral deviation and relative yaw angle.

env.ResetFcn = @(in)localResetFcn(in);

Create DQN Agent

DQN agents use a parametrized Q-value function approximator to estimate the value of the policy.
Since DQN agents have a discrete action space, you have the option to create a vector (that is multi-
output) Q-value function critic, which is generally more efficient than a comparable single-output
critic.

A vector Q-value function takes only the observation as input and returns as output a single vector
with as many elements as the number of possible actions. The value of each output element
represents the expected discounted cumulative long-term reward when an agent starts from the state
corresponding to the given observation and executes the action corresponding to the element number
(and follows a given policy afterwards).

To model the parametrized Q-value function within the critic, use a neural network with one input
(the six-dimensional observed state) and one output vector with 31 elements (evenly spaced steering
angles from -15 to 15 degrees). Get the number of dimensions of the observation space and the
number of elements of the discrete action space from the environment specifications.

nI = obsInfo.Dimension(1);      % number of inputs (6)
nL = 120;                       % number of neurons
nO = numel(actInfo.Elements);   % number of outputs (31)

Define the network as an array of layer objects.

dnn = [
    featureInputLayer(nI)
    fullyConnectedLayer(nL)
    reluLayer
    fullyConnectedLayer(nL)

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

16-87



    reluLayer
    fullyConnectedLayer(nO)
    ];

The critic network is initialized randomly. Ensure reproducibility by fixing the seed of the random
generator.

rng(0)

Convert to a dlnetwork object and display the number of parameters.

dnn = dlnetwork(dnn);
summary(dnn)

   Initialized: true

   Number of learnables: 19.1k

   Inputs:
      1   'input'   6 features

View the network configuration.

plot(dnn)

Create the critic using dnn and the environment specifications. For more information on vector Q-
value function approximators, see rlVectorQValueFunction (Reinforcement Learning Toolbox).

critic = rlVectorQValueFunction(dnn,obsInfo,actInfo);

16 Reinforcement Learning Examples

16-88



Specify training options for the critic using rlOptimizerOptions (Reinforcement Learning
Toolbox).

criticOptions = rlOptimizerOptions( ...
    LearnRate=1e-4, ...
    GradientThreshold=1, ...
    L2RegularizationFactor=1e-4);

Specify the DQN agent options using rlDQNAgentOptions (Reinforcement Learning Toolbox),
include the critic options object.

agentOpts = rlDQNAgentOptions(...
    SampleTime=Ts,...
    UseDoubleDQN=true,...
    CriticOptimizerOptions=criticOptions,...
    ExperienceBufferLength=1e6,...
    MiniBatchSize=256);

You can also set or modify the agent options using dot notation.

agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-4;

Alternatively, you can create the agent first, and then access its option object and modify the options
using dot notation.

Create the DQN agent using the specified critic and the agent options. For more information, see
rlDQNAgent (Reinforcement Learning Toolbox).

agent = rlDQNAgent(critic,agentOpts);

Training Options

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 10000 episodes, with each episode lasting at most ceil(T/Ts)
time steps.

• Display the training progress in the Episode Manager dialog box only (set the Plots and
Verbose options accordingly).

• Stop training when the episode reward reaches -1.
• Save a copy of the agent for each episode where the cumulative reward is greater than 100.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

maxepisodes = 10000;
maxsteps = ceil(T/Ts);
trainOpts = rlTrainingOptions(...
    MaxEpisodes=maxepisodes, ...
    MaxStepsPerEpisode=maxsteps, ...
    Verbose=false,...
    Plots="training-progress",...
    StopTrainingCriteria="EpisodeReward",...
    StopTrainingValue= -1,...
    SaveAgentCriteria="EpisodeReward",...
    SaveAgentValue=100);

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

16-89



Parallel Training Options

To train the agent in parallel, specify the following training options.

• Set the UseParallel option to true.
• Train agent in parallel asynchronously by setting the ParallelizationOptions.Mode option to

"async".

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = "async";

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

Train Agent

Train the agent using the train (Reinforcement Learning Toolbox) function. Training the agent is a
computationally intensive process that takes several minutes to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true. Due to randomness of the parallel training, you can expect different
training results from the plot below. The plot shows the result of training with four workers.

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load pretrained agent for the example.
    load("SimulinkLKADQNParallel.mat","agent")
end

16 Reinforcement Learning Examples

16-90



Simulate the Agent

To validate the performance of the trained agent, uncomment the following two lines and simulate the
agent within the environment. For more information on agent simulation, see
rlSimulationOptions (Reinforcement Learning Toolbox) and sim (Reinforcement Learning
Toolbox).

% simOptions = rlSimulationOptions(MaxSteps=maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

e1_initial = -0.4;
e2_initial = 0.2;
sim(mdl)

As shown below, the lateral error (middle plot) and relative yaw angle (bottom plot) are both driven to
zero. The vehicle starts from off centerline (–0.4 m) and nonzero yaw angle error (0.2 rad). The LKA
enables the ego car to travel along the centerline after 2.5 seconds. The steering angle (top plot)
shows that the controller reaches steady state after 2 seconds.

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

16-91



16 Reinforcement Learning Examples

16-92



Local Function

function in = localResetFcn(in)
% set initial lateral deviation and relative yaw angle to random values
in = setVariable(in,"e1_initial", 0.5*(-1+2*rand));
in = setVariable(in,"e2_initial", 0.1*(-1+2*rand));
end

See Also
train

More About
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Create Policies and Value Functions” (Reinforcement Learning Toolbox)

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

16-93



Train DDPG Agent for Path-Following Control

This example shows how to train a deep deterministic policy gradient (DDPG) agent for path-
following control (PFC) in Simulink®. For more information on DDPG agents, see “Deep
Deterministic Policy Gradient (DDPG) Agents” (Reinforcement Learning Toolbox).

Simulink Model

The reinforcement learning environment for this example consists in a simple bicycle model for the
ego car together with a simple longitudinal model for the lead car. The training goal is to make the
ego car travel at a set velocity while maintaining a safe distance from lead car by controlling
longitudinal acceleration and braking, and also while keeping the ego car travelling along the
centerline of its lane by controlling the front steering angle. For more information on PFC, see Path
Following Control System (Model Predictive Control Toolbox). The ego car dynamics are specified by
the following parameters.

m = 1600;   % total vehicle mass (kg)
Iz = 2875;  % yaw moment of inertia (mNs^2)
lf = 1.4;   % long. distance from center of gravity to front tires (m)
lr = 1.6;   % long. distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
tau = 0.5;  % longitudinal time constant

Specify the initial position and velocity for the two vehicles.

x0_lead = 50;   % initial position for lead car (m)
v0_lead = 24;   % initial velocity for lead car (m/s)
x0_ego = 10;    % initial position for ego car (m)
v0_ego = 18;    % initial velocity for ego car (m/s)

Specify the standstill default spacing (m), time gap (s), and driver-set velocity (m/s).

D_default = 10;
t_gap = 1.4;
v_set = 28;

To simulate the physical limitations of the vehicle dynamics, constrain the acceleration to the range
[–3,2] (m/s^2), and the steering angle to the range [–0.2618,0.2618] (rad), that is -15 and 15
degrees.

amin_ego = -3;
amax_ego = 2;
umin_ego = -0.2618; % +15 deg
umax_ego = 0.2618; % -15 deg

The curvature of the road is defined by a constant 0.001 (m−1). The initial value for lateral deviation
is 0.2 m and the initial value for the relative yaw angle is –0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Define the sample time Ts and simulation duration Tf in seconds.

16 Reinforcement Learning Examples

16-94



Ts = 0.1;
Tf = 60;

Open the model.

mdl = "rlPFCMdl";
open_system(mdl)
agentblk = mdl + "/RL Agent";

For this model:

• The action signal consists of acceleration and steering angle actions. The acceleration action
signal takes value between –3 and 2 (m/s^2). The steering action signal takes a value between –15
degrees (–0.2618 rad) and 15 degrees (0.2618 rad).

• The reference velocity for the ego car Vref  is defined as follows. If the relative distance is less than
the safe distance, the ego car tracks the minimum of the lead car velocity and driver-set velocity.
In this manner, the ego car maintains some distance from the lead car. If the relative distance is
greater than the safe distance, the ego car tracks the driver-set velocity. In this example, the safe
distance is defined as a linear function of the ego car longitudinal velocity V, that is,
tgap * V + Ddefault. The safe distance determines the tracking velocity for the ego car.

• The observations from the environment contain the longitudinal measurements: the velocity error
eV = Vref − Vego, its integral ∫e, and the ego car longitudinal velocity V. In addition, the
observations contain the lateral measurements: the lateral deviation e1, relative yaw angle e2,
their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation terminates when the lateral deviation |e1 | > 1, when the longitudinal velocity
Vego < 0 . 5, or when the relative distance between the lead car and ego car Drel < 0.

• The reward rt, provided at every time step t, is

 Train DDPG Agent for Path-Following Control

16-95



rt = − (100e1
2 + 500ut − 1

2 + 10eV
2 + 100at − 1

2 ) × 1e−3− 10Ft + 2Ht + Mt

where ut − 1 is the steering input from the previous time step t − 1, at − 1 is the acceleration input
from the previous time step. The three logical values are as follows.

• Ft = 1if simulation is terminated, otherwise Ft = 0
• Ht = 1 if lateral error e1

2 < 0 . 01, otherwise Ht = 0
• Mt = 1 if velocity error eV

2 < 1, otherwise Mt = 0

The three logical terms in the reward encourage the agent to make both lateral error and velocity
error small, and in the meantime, penalize the agent if the simulation is terminated early.

Create Environment Interface

Create an environment interface for the Simulink model.

Create the observation specification.

obsInfo = rlNumericSpec([9 1], ...
    LowerLimit=-inf*ones(9,1), ...
    UpperLimit=inf*ones(9,1));
obsInfo.Name = "observations";

Create the action specification.

actInfo = rlNumericSpec([2 1], ...
    LowerLimit=[-3;-0.2618], ...
    UpperLimit=[2;0.2618]);
actInfo.Name = "accel;steer";

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);

To define the initial conditions, specify an environment reset function using an anonymous function
handle. The reset function localResetFcn, which is defined at the end of the example, randomizes
the initial position of the lead car, the lateral deviation, and the relative yaw angle.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

DDPG agents use a parametrized Q-value function approximator to estimate the value of the policy. A
Q-value function critic takes the current observation and an action as inputs and returns a single
scalar as output (the estimated discounted cumulative long-term reward given the action from the
state corresponding to the current observation, and following the policy thereafter).

To model the parametrized Q-value function within the critic, use a neural network with two input
layers (one for the observation channel, as specified by obsInfo, and the other for the action
channel, as specified by actInfo) and one output layer (which returns the scalar value). Note that
prod(obsInfo.Dimension) and prod(actInfo.Dimension) return the number of dimensions of

16 Reinforcement Learning Examples

16-96



the observation and action spaces, respectively, regardless of whether they are arranged as row
vectors, column vectors, or matrices.

Define each network path as an array of layer objects, and assign names to the input and output
layers of each path. These names allow you to connect the paths and then later explicitly associate
the network input and output layers with the appropriate environment channel.

% Number of neurons
L = 100;

% Main path
mainPath = [
    featureInputLayer(prod(obsInfo.Dimension),Name="obsInLyr")
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(L)
    additionLayer(2,Name="add")
    reluLayer
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(1,Name="QValLyr")
    ];

% Action path
actionPath = [
    featureInputLayer(prod(actInfo.Dimension),Name="actInLyr")
    fullyConnectedLayer(L,Name="actOutLyr")
    ];

% Assemble layergraph object
criticNet = layerGraph(mainPath);
criticNet = addLayers(criticNet,actionPath);    
criticNet = connectLayers(criticNet,"actOutLyr","add/in2");

Convert to dlnetwork object and display the number of weights.

criticNet = dlnetwork(criticNet);
summary(criticNet)

   Initialized: true

   Number of learnables: 21.6k

   Inputs:
      1   'obsInLyr'   9 features
      2   'actInLyr'   2 features

View the critic network configuration.

figure
plot(criticNet)

 Train DDPG Agent for Path-Following Control

16-97



Create the critic using the specified neural network and the environment action and observation
specifications. Pass as additional arguments also the names of the network layers to be connected
with the observation and action channels. For more information, see rlQValueFunction
(Reinforcement Learning Toolbox).

critic = rlQValueFunction(criticNet,obsInfo,actInfo,...
    ObservationInputNames="obsInLyr",ActionInputNames="actInLyr");

DDPG agents use a parametrized deterministic policy over continuous action spaces, which is learned
by a continuous deterministic actor. This actor takes the current observation as input and returns as
output an action that is a deterministic function of the observation.

To model the parametrized policy within the actor, use a neural network with one input layer (which
receives the content of the environment observation channel, as specified by obsInfo) and one
output layer (which returns the action to the environment action channel, as specified by actInfo).

Define the network as an array of layer objects.

actorNet = [
    featureInputLayer(prod(obsInfo.Dimension))
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(L)
    reluLayer
    fullyConnectedLayer(2)

16 Reinforcement Learning Examples

16-98



    tanhLayer
    scalingLayer(Scale=[2.5;0.2618],Bias=[-0.5;0])
    ];

Convert to dlnetwork object and display the number of weights.

actorNet = dlnetwork(actorNet);
summary(actorNet)

   Initialized: true

   Number of learnables: 21.4k

   Inputs:
      1   'input'   9 features

Construct the actor similarly to the critic. For more information, see
rlContinuousDeterministicActor (Reinforcement Learning Toolbox).

actor = rlContinuousDeterministicActor(actorNet,obsInfo,actInfo);

Specify training options for the critic and the actor using rlOptimizerOptions (Reinforcement
Learning Toolbox).

criticOptions = rlOptimizerOptions( ...
    LearnRate=1e-3, ...
    GradientThreshold=1, ...
    L2RegularizationFactor=1e-4);
actorOptions = rlOptimizerOptions( ...
    LearnRate=1e-4, ...
    GradientThreshold=1, ...
    L2RegularizationFactor=1e-4);

Specify the DDPG agent options using rlDDPGAgentOptions (Reinforcement Learning Toolbox),
include the options for the actor and the critic.

agentOptions = rlDDPGAgentOptions(...
    SampleTime=Ts,...
    ActorOptimizerOptions=actorOptions,...
    CriticOptimizerOptions=criticOptions,...
    ExperienceBufferLength=1e6);
agentOptions.NoiseOptions.Variance = [0.6;0.1];
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Create the DDPG agent using the actor, the critic, and the agent options. For more information, see
rlDDPGAgent (Reinforcement Learning Toolbox).

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training episode for at most 10000 episodes, with each episode lasting at most
maxsteps time steps.

• Display the training progress in the Episode Manager dialog box (set the Verbose and Plots
options).

 Train DDPG Agent for Path-Following Control

16-99



• Stop training when the agent receives an cumulative episode reward greater than 1700.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

maxepisodes = 1e4;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
    MaxEpisodes=maxepisodes,...
    MaxStepsPerEpisode=maxsteps,...
    Verbose=false,...
    Plots="training-progress",...
    StopTrainingCriteria="EpisodeCount",...
    StopTrainingValue=1450);

Train the agent using the train (Reinforcement Learning Toolbox) function. Training is a
computationally intensive process that takes several minutes to complete. To save time while running
this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false;

if doTraining    
    % Train the agent.
    trainingStats = train(agent,env,trainingOpts);
else
    % Load a pretrained agent for the example.
    load("SimulinkPFCDDPG.mat","agent")       
end

16 Reinforcement Learning Examples

16-100



Simulate DDPG Agent

To validate the performance of the trained agent, simulate the agent within the Simulink environment
by uncommenting the following commands. For more information on agent simulation, see
rlSimulationOptions (Reinforcement Learning Toolbox) and sim (Reinforcement Learning
Toolbox).

% simOptions = rlSimulationOptions(MaxSteps=maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

e1_initial = -0.4;
e2_initial = 0.1;
x0_lead = 80;
sim(mdl)

The following plots show the simulation results when the lead car is 70 (m) ahead of the ego car.

• In the first 35 seconds, the relative distance is greater than the safe distance (bottom-right plot),
so the ego car tracks the set velocity (top-right plot). To speed up and reach the set velocity, the
acceleration is mostly nonnegative (top-left plot).

 Train DDPG Agent for Path-Following Control

16-101



• From 35 to 42 seconds, the relative distance is mostly less than the safe distance (bottom-right
plot), so the ego car tracks the minimum of the lead velocity and set velocity. Because the lead
velocity is less than the set velocity (top-right plot), to track the lead velocity, the acceleration
becomes nonzero (top-left plot).

• From 42 to 58 seconds, the ego car tracks the set velocity (top-right plot) and the acceleration
remains zero (top-left plot).

• From 58 to 60 seconds, the relative distance becomes less than the safe distance (bottom-right
plot), so the ego car slows down and tracks the lead velocity.

• The bottom-left plot shows the lateral deviation. As shown in the plot, the lateral deviation is
greatly decreased within 1 second. The lateral deviation remains less than 0.05 m.

Close the Simulink model.

bdclose(mdl)

Reset Function

function in = localResetFcn(in)
    
    % random value for initial position of lead car
    in = setVariable(in,"x0_lead",40+randi(60,1,1));
    

16 Reinforcement Learning Examples

16-102



    % random value for lateral deviation
    in = setVariable(in,"e1_initial", 0.5*(-1+2*rand));
    
    % random value for relative yaw angle
    in = setVariable(in,"e2_initial", 0.1*(-1+2*rand));

end

See Also
train

More About
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Create Policies and Value Functions” (Reinforcement Learning Toolbox)

 Train DDPG Agent for Path-Following Control

16-103



Train PPO Agent for Automatic Parking Valet

This example demonstrates the design of a hybrid controller for an automatic search and parking
task. The hybrid controller uses model predictive control (MPC) to follow a reference path in a
parking lot and a trained reinforcement learning (RL) agent to perform the parking maneuver.

The automatic parking algorithm in this example executes a series of maneuvers while
simultaneously sensing and avoiding obstacles in tight spaces. It switches between an adaptive MPC
controller and an RL agent to complete the parking maneuver. The MPC controller moves the vehicle
at a constant speed along a reference path while an algorithm searches for an empty parking spot.
When a spot is found, the RL Agent takes over and executes a pretrained parking maneuver. Prior
knowledge of the environment (the parking lot) including the locations of the empty spots and parked
vehicles is available to the controllers.

Parking Lot

The parking lot is represented by the ParkingLot class, which stores information about the ego
vehicle, empty parking spots, and static obstacles (parked cars). Each parking spot has a unique
index number and an indicator light that is either green (free) or red (occupied). Parked vehicles are
represented in black.

Create a ParkingLot object with a free spot at location 7.

freeSpotIdx = 7;
map = ParkingLot(freeSpotIdx);

16 Reinforcement Learning Examples

16-104



Specify an initial pose X0, Y0, θ0  for the ego vehicle. The target pose is determined based on the first
available free spot as the vehicle navigates the parking lot.

egoInitialPose = [20, 15, 0];

Compute the target pose for the vehicle using the createTargetPose function. The target pose
corresponds to the location in freeSpotIdx.

egoTargetPose = createTargetPose(map,freeSpotIdx)

egoTargetPose = 1×3

   47.7500    4.9000   -1.5708

Sensor Modules

The parking algorithm uses camera and lidar sensors to gather information from the environment.

Camera

The field of view of a camera mounted on the ego vehicle is represented by the area shaded in green
in the following figure. The camera has a field of view φ bounded by ±60 degrees and a maximum
measurement depth dmax of 10 m.

As the ego vehicle moves forward, the camera module senses the parking spots that fall within the
field of view and determines whether a spot is free or occupied. For simplicity, this action is
implemented using geometrical relationships between the spot locations and the current vehicle
pose. A parking spot is within the camera range if di ≤ dmax and φmin ≤ φi ≤ φmax, where di is the
distance to the parking spot and φi is the angle to the parking spot.

 Train PPO Agent for Automatic Parking Valet

16-105



Lidar

The reinforcement learning agent uses lidar sensor readings to determine the proximity of the ego
vehicle to other vehicles in the environment. The lidar sensor in this example is also modeled using
geometrical relationships. Lidar distances are measured along 12 line segments that radially emerge
from the center of the ego vehicle. When a lidar line intersects an obstacle, it returns the distance of
the obstacle from the vehicle. The maximum measurable lidar distance along any line segment is 6 m.

Auto Parking Valet Model

The parking valet model, including the controllers, ego vehicle, sensors, and parking lot, is
implemented in Simulink®.

Load the auto parking valet parameters.

autoParkingValetParams

Open the Simulink model.

mdl = "rlAutoParkingValet";
open_system(mdl)

16 Reinforcement Learning Examples

16-106



The ego vehicle dynamics in this model are represented by a single-track bicycle model with two
inputs: vehicle speed v (m/s) and steering angle δ (radians). The MPC and RL controllers are placed
within Enabled Subsystem blocks that are activated by signals representing whether the vehicle has
to search for an empty spot or execute a parking maneuver. The enable signals are determined by the
Camera algorithm within the Vehicle Mode subsystem. Initially, the vehicle is in search mode and the
MPC controller tracks the reference path. When a free spot is found, park mode is activated and the
RL agent executes the parking maneuver.

Adaptive Model Predictive Controller

Create the adaptive MPC controller object for reference trajectory tracking using the
createMPCForParking script. For more information on adaptive MPC, see “Adaptive MPC” (Model
Predictive Control Toolbox).

createMPCForParking

Reinforcement Learning Environment

The environment for training the RL agent is the region shaded in red in the following figure. Due to
symmetry in the parking lot, training within this region is sufficient for the policy to adjust to other
regions after applying appropriate coordinate transformations to the observations. Using this smaller
training region significantly reduces training time compared to training over the entire parking lot.

 Train PPO Agent for Automatic Parking Valet

16-107



For this environment:

• The training region is a 22.5 m x 20 m space with the target spot at its horizontal center.
• The observations are the position errors Xe and Ye of the ego vehicle with respect to the target

pose, the sine and cosine of the true heading angle θ, and the lidar sensor readings.
• The vehicle speed during parking is a constant 2 m/s.
• The action signals are discrete steering angles that range between +/- 45 degrees in steps of 15

degrees.
• The vehicle is considered parked if the errors with respect to target pose are within specified

tolerances of +/- 0.75 m (position) and +/-10 degrees (orientation).
• The episode terminates if the ego vehicle goes out of the bounds of the training region, collides

with an obstacle, or parks successfully.
• The reward rt provided at time t, is:

rt = 2e− 0 . 05Xe
2 + 0 . 04Ye

2
+ 0 . 5e−40θe

2
− 0 . 05δ2 + 100f t − 50gt

Here, Xe, Ye, and θe are the position and heading angle errors of the ego vehicle from the target pose,
and δ is the steering angle. f t (0 or 1) indicates whether the vehicle has parked and gt (0 or 1)
indicates if the vehicle has collided with an obstacle at time t.

The coordinate transformations on vehicle pose X, Y, θ  observations for different parking spot
locations are as follows:

16 Reinforcement Learning Examples

16-108



• 1-14: no transformation
• 15-22: X‾ = Y, Y‾ = − X, θ‾ = θ− π/2
• 23-36: X‾ = 100− X, Y‾ = 60− Y, θ‾ = θ− π
• 37-40: X‾ = 60− Y, Y‾ = X, θ‾ = θ− 3π/2
• 41-52: X‾ = 100− X, Y‾ = 30− Y, θ‾ = θ + π
• 53-64: X‾ = X, Y‾ = Y − 28, θ‾ = θ

Create the observation and action specifications for the environment.

numObservations = 16;
obsInfo = rlNumericSpec([numObservations 1]);
obsInfo.Name = "observations";

steerMax = pi/4;
discreteSteerAngles = -steerMax : deg2rad(15) : steerMax;
actInfo = rlFiniteSetSpec(num2cell(discreteSteerAngles));
actInfo.Name = "actions";
numActions = numel(actInfo.Elements);

Create the Simulink environment interface, specifying the path to the RL Agent block.

blk = mdl + "/RL Controller/RL Agent";
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);

Specify a reset function for training. The autoParkingValetResetFcn function resets the initial
pose of the ego vehicle to random values at the start of each episode.

env.ResetFcn = @autoParkingValetResetFcn;

For more information on creating Simulink environments, see rlSimulinkEnv (Reinforcement
Learning Toolbox).

Create Agent

The RL agent in this example is a proximal policy optimization (PPO) agent with a discrete action
space. To learn more about PPO agents, see “Proximal Policy Optimization (PPO) Agents”
(Reinforcement Learning Toolbox).

Set the random seed generator for reproducibility.

rng(0)

PPO agents use a parametrized value function approximator to estimate the value of the policy. A
value-function critic takes the current observation as input and returns a single scalar as output (the
estimated discounted cumulative long-term reward for following the policy from the state
corresponding to the current observation).

To model the parametrized value function within the critic, use a neural network with one input layer
(which receives the content of the observation channel, as specified by obsInfo) and one output
layer (which returns the scalar value).

Define the network as an array of layer objects.

criticNet = [
    featureInputLayer(numObservations)

 Train PPO Agent for Automatic Parking Valet

16-109



    fullyConnectedLayer(128)
    reluLayer
    fullyConnectedLayer(128)
    reluLayer
    fullyConnectedLayer(128)
    reluLayer
    fullyConnectedLayer(1)
    ];

Convert the network to a dlnetwork object, and display the number of parameters.

criticNet = dlnetwork(criticNet);
summary(criticNet)

   Initialized: true

   Number of learnables: 35.3k

   Inputs:
      1   'input'   16 features

Create the critic for the PPO agent. For more information, see rlValueFunction (Reinforcement
Learning Toolbox) and rlOptimizerOptions.

critic = rlValueFunction(criticNet,obsInfo);

Policy gradient agents use a parametrized stochastic policy, which for discrete action spaces is
implemented by a discrete categorical actor. This actor takes an observation as input and returns as
output a random action sampled (among the finite number of possible actions) from a categorical
probability distribution.

To model the parametrized policy within the actor, use a neural network with one input layer (which
receives the content of the environment observation channel, as specified by obsInfo) and one
output layer. The output layer must return a vector of probabilities for each possible action, as
specified by actInfo.

Define the network as an array of layer objects

actorNet = [
    featureInputLayer(numObservations)
    fullyConnectedLayer(128)
    reluLayer
    fullyConnectedLayer(128)
    reluLayer
    fullyConnectedLayer(numActions)
    softmaxLayer
    ];

Convert the network to a dlnetwork object, and display the number of parameters.

actorNet = dlnetwork(actorNet);
summary(actorNet)

   Initialized: true

   Number of learnables: 19.5k

   Inputs:
      1   'input'   16 features

16 Reinforcement Learning Examples

16-110



Create a discrete categorical actor for the PPO agent. For more information, see
rlDiscreteCategoricalActor (Reinforcement Learning Toolbox).

actor = rlDiscreteCategoricalActor(actorNet,obsInfo,actInfo);

Specify training options for the critic and the actor using rlOptimizerOptions (Reinforcement
Learning Toolbox).

criticOptions = rlOptimizerOptions( ...
    LearnRate=1e-3, ...
    GradientThreshold=1);
actorOptions = rlOptimizerOptions( ...
    LearnRate=2e-4, ...
    GradientThreshold=1);

Specify the agent options using rlPPOAgentOptions (Reinforcement Learning Toolbox), include the
options for the actor and the critic.

agentOpts = rlPPOAgentOptions(...
    SampleTime=Ts,...
    ActorOptimizerOptions=actorOptions,...
    CriticOptimizerOptions=criticOptions,...
    ExperienceHorizon=200,...
    ClipFactor=0.2,... 
    EntropyLossWeight=0.01,...
    MiniBatchSize=64,...
    NumEpoch=3,...
    AdvantageEstimateMethod="gae",...
    GAEFactor=0.95,...
    DiscountFactor=0.998);

According to these training options, the agent collects experiences until it reaches experience horizon
of 200 steps or the episode terminates and then trains from mini-batches of 64 experiences for three
epochs. An objective function clip factor of 0.2 improves training stability and a discount factor value
of 0.998 encourages long term rewards. Variance in critic the output is reduced by the generalized
advantage estimate method with a GAE factor of 0.95.

Create the agent using the actor, the critic, and the agent options object.

agent = rlPPOAgent(actor,critic,agentOpts);

Train Agent

For this example, you train the agent for a maximum of 10000 episodes, with each episode lasting a
maximum of 200 time steps. The training terminates when the maximum number of episodes is
reached or the average reward over 100 episodes exceeds 100.

Specify the options for training using an rlTrainingOptions object.

trainOpts = rlTrainingOptions(...
    MaxEpisodes=10000,...
    MaxStepsPerEpisode=200,...
    ScoreAveragingWindowLength=200,...
    Plots="training-progress",...
    StopTrainingCriteria="AverageReward",...
    StopTrainingValue=80);

Train the agent using the train (Reinforcement Learning Toolbox) function. Training this agent is a
computationally intensive process that takes several minutes to complete. To save time while running

 Train PPO Agent for Automatic Parking Valet

16-111



this example, load a pretrained agent by setting doTraining to false. To train the agent yourself,
set doTraining to true.

doTraining = false;
if doTraining
    trainingStats = train(agent,env,trainOpts);
else
    load('rlAutoParkingValetAgent.mat','agent');
end

Simulate Agent

Simulate the model to park the vehicle in the free parking spot. To simulate the vehicle parking in
different locations, change the free spot location in the following code.

freeSpotIdx = 7;  % free spot location
sim(mdl);

16 Reinforcement Learning Examples

16-112



The vehicle reaches the target pose within the specified error tolerances of +/- 0.75 m (position) and
+/-10 degrees (orientation).

To view the ego vehicle position and orientation, open the Ego Vehicle Pose scope.

 Train PPO Agent for Automatic Parking Valet

16-113



See Also
train

More About
• “Train Reinforcement Learning Agents” (Reinforcement Learning Toolbox)
• “Create Policies and Value Functions” (Reinforcement Learning Toolbox)

16 Reinforcement Learning Examples

16-114



Predictive Maintenance Examples

17



Chemical Process Fault Detection Using Deep Learning

This example shows how to use simulation data to train a neural network that can detect faults in a
chemical process. The network detects the faults in the simulated process with high accuracy. The
typical workflow is as follows:

1 Preprocess the data
2 Design the layer architecture
3 Train the network
4 Perform validation
5 Test the network

Download Data Set

This example uses MATLAB-formatted files converted by MathWorks® from the Tennessee Eastman
Process (TEP) simulation data [1] on page 17-10. These files are available at the MathWorks support
files site. See the disclaimer.

The data set consists of four components — fault-free training, fault-free testing, faulty training, and
faulty testing. Download each file separately.

url = 'https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/faultytesting.mat';
websave('faultytesting.mat',url);
url = 'https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/faultytraining.mat';
websave('faultytraining.mat',url);
url = 'https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/faultfreetesting.mat';
websave('faultfreetesting.mat',url);
url = 'https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/faultfreetraining.mat';
websave('faultfreetraining.mat',url);

Load the downloaded files into the MATLAB® workspace.

load('faultfreetesting.mat');
load('faultfreetraining.mat');
load('faultytesting.mat');
load('faultytraining.mat');

Each component contains data from simulations that were run for every permutation of two
parameters:

• Fault Number — For faulty data sets, an integer value from 1 to 20 that represents a different
simulated fault. For fault-free data sets, a value of 0.

• Simulation run — For all data sets, integer values from 1 to 500, where each value represents a
unique random generator state for the simulation.

The length of each simulation was dependent on the data set. All simulations were sampled every
three minutes.

• Training data sets contain 500 time samples from 25 hours of simulation.
• Testing data sets contain 960 time samples from 48 hours of simulation.

Each data frame has the following variables in its columns:

17 Predictive Maintenance Examples

17-2

https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/Disclaimer.txt


• Column 1 (faultNumber) indicates the fault type, which varies from 0 through 20. A fault number
0 means fault-free while fault numbers 1 to 20 represent different fault types in the TEP.

• Column 2 (simulationRun) indicates the number of times the TEP simulation ran to obtain
complete data. In the training and test data sets, the number of runs varies from 1 to 500 for all
fault numbers. Every simulationRun value represents a different random generator state for the
simulation.

• Column 3 (sample) indicates the number of times TEP variables were recorded per simulation.
The number varies from 1 to 500 for the training data sets and from 1 to 960 for the testing data
sets. The TEP variables (columns 4 to 55) were sampled every 3 minutes for a duration of 25 hours
and 48 hours for the training and testing data sets respectively.

• Columns 4–44 (xmeas_1 through xmeas_41) contain the measured variables of the TEP.
• Columns 45–55 (xmv_1 through xmv_11) contain the manipulated variables of the TEP.

Examine subsections of two of the files.

head(faultfreetraining,4)    

ans=4×55 table
    faultNumber    simulationRun    sample    xmeas_1    xmeas_2    xmeas_3    xmeas_4    xmeas_5    xmeas_6    xmeas_7    xmeas_8    xmeas_9    xmeas_10    xmeas_11    xmeas_12    xmeas_13    xmeas_14    xmeas_15    xmeas_16    xmeas_17    xmeas_18    xmeas_19    xmeas_20    xmeas_21    xmeas_22    xmeas_23    xmeas_24    xmeas_25    xmeas_26    xmeas_27    xmeas_28    xmeas_29    xmeas_30    xmeas_31    xmeas_32    xmeas_33    xmeas_34    xmeas_35    xmeas_36    xmeas_37    xmeas_38    xmeas_39    xmeas_40    xmeas_41    xmv_1     xmv_2     xmv_3     xmv_4     xmv_5     xmv_6     xmv_7     xmv_8     xmv_9     xmv_10    xmv_11
    ___________    _____________    ______    _______    _______    _______    _______    _______    _______    _______    _______    _______    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______

         0               1            1       0.25038      3674       4529      9.232     26.889     42.402     2704.3     74.863     120.41     0.33818      80.044      51.435      2632.9      25.029      50.528      3101.1      22.819      65.732      229.61      341.22       94.64      77.047      32.188      8.8933      26.383       6.882      18.776      1.6567      32.958      13.823      23.978      1.2565      18.579      2.2633      4.8436      2.2986     0.017866     0.8357     0.098577     53.724      43.828     62.881    53.744    24.657    62.544    22.137    39.935    42.323    47.757     47.51    41.258    18.447
         0               1            2       0.25109    3659.4     4556.6     9.4264     26.721     42.576       2705         75     120.41      0.3362      80.078      50.154      2633.8      24.419      48.772        3102      23.333      65.716      230.54       341.3      94.595      77.434      32.188      8.8933      26.383       6.882      18.776      1.6567      32.958      13.823      23.978      1.2565      18.579      2.2633      4.8436      2.2986     0.017866     0.8357     0.098577     53.724      43.828     63.132    53.414    24.588    59.259    22.084    40.176    38.554    43.692    47.427    41.359    17.194
         0               1            3       0.25038    3660.3     4477.8     9.4426     26.875      42.07     2706.2     74.771     120.42     0.33563       80.22      50.302      2635.5      25.244      50.071      3103.5      21.924      65.732      230.08      341.38      94.605      77.466      31.767      8.7694      26.095      6.8259      18.961      1.6292      32.985      13.742      23.897      1.3001      18.765      2.2602      4.8543        2.39     0.017866     0.8357     0.098577     53.724      43.828     63.117    54.357    24.666    61.275     22.38    40.244     38.99    46.699    47.468    41.199     20.53
         0               1            4       0.24977    3661.3     4512.1     9.4776     26.758     42.063     2707.2     75.224     120.39     0.33553      80.305       49.99      2635.6      23.268      50.435      3102.8      22.948      65.781      227.91      341.71      94.473      77.443      31.767      8.7694      26.095      6.8259      18.961      1.6292      32.985      13.742      23.897      1.3001      18.765      2.2602      4.8543        2.39     0.017866     0.8357     0.098577     53.724      43.828       63.1    53.946    24.725    59.856    22.277    40.257    38.072    47.541    47.658    41.643    18.089

head(faultytraining,4)       

ans=4×55 table
    faultNumber    simulationRun    sample    xmeas_1    xmeas_2    xmeas_3    xmeas_4    xmeas_5    xmeas_6    xmeas_7    xmeas_8    xmeas_9    xmeas_10    xmeas_11    xmeas_12    xmeas_13    xmeas_14    xmeas_15    xmeas_16    xmeas_17    xmeas_18    xmeas_19    xmeas_20    xmeas_21    xmeas_22    xmeas_23    xmeas_24    xmeas_25    xmeas_26    xmeas_27    xmeas_28    xmeas_29    xmeas_30    xmeas_31    xmeas_32    xmeas_33    xmeas_34    xmeas_35    xmeas_36    xmeas_37    xmeas_38    xmeas_39    xmeas_40    xmeas_41    xmv_1     xmv_2     xmv_3     xmv_4     xmv_5     xmv_6     xmv_7     xmv_8     xmv_9     xmv_10    xmv_11
    ___________    _____________    ______    _______    _______    _______    _______    _______    _______    _______    _______    _______    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______

         1               1            1       0.25038      3674       4529      9.232     26.889     42.402     2704.3     74.863     120.41     0.33818      80.044      51.435      2632.9      25.029      50.528      3101.1      22.819      65.732      229.61      341.22       94.64      77.047      32.188      8.8933      26.383       6.882      18.776      1.6567      32.958      13.823      23.978      1.2565      18.579      2.2633      4.8436      2.2986     0.017866     0.8357     0.098577     53.724      43.828     62.881    53.744    24.657    62.544    22.137    39.935    42.323    47.757     47.51    41.258    18.447
         1               1            2       0.25109    3659.4     4556.6     9.4264     26.721     42.576       2705         75     120.41      0.3362      80.078      50.154      2633.8      24.419      48.772        3102      23.333      65.716      230.54       341.3      94.595      77.434      32.188      8.8933      26.383       6.882      18.776      1.6567      32.958      13.823      23.978      1.2565      18.579      2.2633      4.8436      2.2986     0.017866     0.8357     0.098577     53.724      43.828     63.132    53.414    24.588    59.259    22.084    40.176    38.554    43.692    47.427    41.359    17.194
         1               1            3       0.25038    3660.3     4477.8     9.4426     26.875      42.07     2706.2     74.771     120.42     0.33563       80.22      50.302      2635.5      25.244      50.071      3103.5      21.924      65.732      230.08      341.38      94.605      77.466      31.767      8.7694      26.095      6.8259      18.961      1.6292      32.985      13.742      23.897      1.3001      18.765      2.2602      4.8543        2.39     0.017866     0.8357     0.098577     53.724      43.828     63.117    54.357    24.666    61.275     22.38    40.244     38.99    46.699    47.468    41.199     20.53
         1               1            4       0.24977    3661.3     4512.1     9.4776     26.758     42.063     2707.2     75.224     120.39     0.33553      80.305       49.99      2635.6      23.268      50.435      3102.8      22.948      65.781      227.91      341.71      94.473      77.443      31.767      8.7694      26.095      6.8259      18.961      1.6292      32.985      13.742      23.897      1.3001      18.765      2.2602      4.8543        2.39     0.017866     0.8357     0.098577     53.724      43.828       63.1    53.946    24.725    59.856    22.277    40.257    38.072    47.541    47.658    41.643    18.089

Clean Data

Remove data entries with the fault numbers 3, 9, and 15 in both the training and testing data sets.
These fault numbers are not recognizable, and the associated simulation results are erroneous.

faultytesting(faultytesting.faultNumber == 3,:) = [];
faultytesting(faultytesting.faultNumber == 9,:) = [];
faultytesting(faultytesting.faultNumber == 15,:) = [];

faultytraining(faultytraining.faultNumber == 3,:) = [];
faultytraining(faultytraining.faultNumber == 9,:) = [];
faultytraining(faultytraining.faultNumber == 15,:) = [];

Divide Data

Divide the training data into training and validation data by reserving 20 percent of the training data
for validation. Using a validation data set enables you to evaluate the model fit on the training data

 Chemical Process Fault Detection Using Deep Learning

17-3



set while you tune the model hyperparameters. Data splitting is commonly used to prevent the
network from overfitting and underfitting.

Get the total number of rows in both faulty and fault-free training data sets.

H1 = height(faultfreetraining); 
H2 = height(faultytraining);    

The simulation run is the number of times the TEP process was repeated with a particular fault type.
Get the maximum simulation run from the training data set as well as from the testing data set.

msTrain = max(faultfreetraining.simulationRun); 
msTest = max(faultytesting.simulationRun);      

Calculate the maximum simulation run for the validation data.

rTrain = 0.80; 
msVal = ceil(msTrain*(1 - rTrain));    
msTrain = msTrain*rTrain;   

Get the maximum number of samples or time steps (that is, the maximum number of times that data
was recorded during a TEP simulation).

sampleTrain = max(faultfreetraining.sample);
sampleTest = max(faultfreetesting.sample);

Get the division point (row number) in the fault-free and faulty training data sets to create validation
data sets from the training data sets.

rowLim1 = ceil(rTrain*H1);
rowLim2 = ceil(rTrain*H2);

trainingData = [faultfreetraining{1:rowLim1,:}; faultytraining{1:rowLim2,:}];
validationData = [faultfreetraining{rowLim1 + 1:end,:}; faultytraining{rowLim2 + 1:end,:}];
testingData = [faultfreetesting{:,:}; faultytesting{:,:}];

Network Design and Preprocessing

The final data set (consisting of training, validation, and testing data) contains 52 signals with 500
uniform time steps. Hence, the signal, or sequence, needs to be classified to its correct fault number
which makes it a problem of sequence classification.

• Long short-term memory (LSTM) networks are suited to the classification of sequence data.
• LSTM networks are good for time-series data as they tend to remember the uniqueness of past

signals in order to classify new signals
• An LSTM network enables you to input sequence data into a network and make predictions based

on the individual time steps of the sequence data. For more information on LSTM networks, see
“Long Short-Term Memory Neural Networks” on page 1-97.

• To train the network to classify sequences using the trainNetwork function, you must first
preprocess the data. The data must be in cell arrays, where each element of the cell array is a
matrix representing a set of 52 signals in a single simulation. Each matrix in the cell array is the
set of signals for a particular simulation of TEP and can either be faulty or fault-free. Each set of
signals points to a specific fault class ranging from 0 through 20.

As was described previously in the Data Set section, the data contains 52 variables whose values are
recorded over a certain amount of time in a simulation. The sample variable represents the number

17 Predictive Maintenance Examples

17-4



of times these 52 variables are recorded in one simulation run. The maximum value of the sample
variable is 500 in the training data set and 960 in the testing data set. Thus, for each simulation,
there is a set of 52 signals of length 500 or 960. Each set of signals belongs to a particular simulation
run of the TEP and points to a particular fault type in the range 0 – 20.

The training and test datasets both contain 500 simulations for each fault type. Twenty percent (from
training) is kept for validation which leaves the training data set with 400 simulations per fault type
and validation data with 100 simulations per fault type. Use the helper function helperPreprocess
to create sets of signals, where each set is a double matrix in a single element of the cell array that
represents a single TEP simulation. Hence, the sizes of the final training, validation, and testing data
sets are as follows:

• Size of Xtrain: (Total number of simulations) X (Total number of fault types) = 400 X 18 = 7200
• Size of XVal: (Total number of simulations) X (Total number of fault types) = 100 X 18 = 1800
• Size of Xtest: (Total number of simulations) X (Total number of fault types) = 500 X 18 = 9000

In the data set, the first 500 simulations are of 0 fault type (fault-free) and the order of the
subsequent faulty simulations is known. This knowledge enables the creation of true responses for
the training, validation, and testing data sets.

Xtrain = helperPreprocess(trainingData,sampleTrain);
Ytrain = categorical([zeros(msTrain,1);repmat([1,2,4:8,10:14,16:20],1,msTrain)']);
 
XVal = helperPreprocess(validationData,sampleTrain);
YVal = categorical([zeros(msVal,1);repmat([1,2,4:8,10:14,16:20],1,msVal)']);
 
Xtest = helperPreprocess(testingData,sampleTest);
Ytest = categorical([zeros(msTest,1);repmat([1,2,4:8,10:14,16:20],1,msTest)']);

Normalize Data Sets

Normalization is a technique that scales the numeric values in a data set to a common scale without
distorting differences in the range of values. This technique ensures that a variable with a larger
value does not dominate other variables in the training. It also converts the numeric values in a
higher range to a smaller range (usually –1 to 1) without losing any important information required
for training.

Compute the mean and the standard deviation for 52 signals using data from all simulations in the
training data set.

tMean = mean(trainingData(:,4:end))';
tSigma = std(trainingData(:,4:end))';

Use the helper function helperNormalize to apply normalization to each cell in the three data sets
based on the mean and standard deviation of the training data.

Xtrain = helperNormalize(Xtrain, tMean, tSigma);
XVal = helperNormalize(XVal, tMean, tSigma);
Xtest = helperNormalize(Xtest, tMean, tSigma);

Visualize Data

The Xtrain data set contains 400 fault-free simulations followed by 6800 faulty simulations.Visualize
the fault-free and faulty data. First, create a plot of the fault-free data. For the purposes of this
example, plot and label only 10 signals in the Xtrain data set to create an easy-to-read figure.

 Chemical Process Fault Detection Using Deep Learning

17-5



figure;
splot = 10;    
plot(Xtrain{1}(1:10,:)');   
xlabel("Time Step");
title("Training Observation for Non-Faulty Data");
legend("Signal " + string(1:splot),'Location','northeastoutside');

Now, compare the fault-free plot to a faulty plot by plotting any of the cell array elements after 400.

figure;
plot(Xtrain{1000}(1:10,:)');   
xlabel("Time Step");
title("Training Observation for Faulty Data");
legend("Signal " + string(1:splot),'Location','northeastoutside');

17 Predictive Maintenance Examples

17-6



Layer Architecture and Training Options

LSTM layers are a good choice for sequence classification as LSTM layers tend to remember only the
important aspects of the input sequence.

• Specify the input layer sequenceInputLayer to be of the same size as the number of input
signals (52).

• Specify 3 LSTM hidden layers with 52, 40, and 25 units. This specification is inspired by the
experiment performed in [2] on page 17-10. For more information on using LSTM networks for
sequence classification, see “Sequence Classification Using Deep Learning” on page 4-3.

• Add 3 dropout layers in between the LSTM layers to prevent over-fitting. A dropout layer
randomly sets input elements of the next layer to zero with a given probability so that the network
does not become sensitive to a small set of neurons in the layer

• Finally, for classification, include a fully connected layer of the same size as the number of output
classes (18). After the fully connected layer, include a softmax layer that assigns decimal
probabilities (prediction possibility) to each class in a multi-class problem and a classification
layer to output the final fault type based on output from the softmax layer.

numSignals = 52;
numHiddenUnits2 = 52;
numHiddenUnits3 = 40;
numHiddenUnits4 = 25;
numClasses = 18;
     
layers = [ ...

 Chemical Process Fault Detection Using Deep Learning

17-7



    sequenceInputLayer(numSignals)
    lstmLayer(numHiddenUnits2,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits3,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits4,'OutputMode','last')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Set the training options that trainNetwork uses.

Maintain the default value of name-value pair 'ExecutionEnvironment' as 'auto'. With this
setting, the software chooses the execution environment automatically. By default, trainNetwork
uses a GPU if one is available, otherwise, it uses a CPU. Training on a GPU requires Parallel
Computing Toolbox™ and a supported GPU device. For information on supported devices, see “GPU
Computing Requirements” (Parallel Computing Toolbox). Because this example uses a large amount
of data, using GPU speeds up training time considerably.

Setting the name-value argument pair 'Shuffle' to 'every-epoch' avoids discarding the same
data every epoch.

For more information on training options for deep learning, see trainingOptions.

maxEpochs = 30;
miniBatchSize = 50;  
 
options = trainingOptions('adam', ...
    'ExecutionEnvironment','auto', ...
    'GradientThreshold',1, ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize', miniBatchSize,...
    'Shuffle','every-epoch', ...
    'Verbose',0, ...
    'Plots','training-progress',...
    'ValidationData',{XVal,YVal});

Train Network

Train the LSTM network using trainNetwork.

net = trainNetwork(Xtrain,Ytrain,layers,options);

17 Predictive Maintenance Examples

17-8



The training progress figure displays a plot of the network accuracy. To the right of the figure, view
information on the training time and settings.

Testing Network

Run the trained network on the test set and predict the fault type in the signals.

Ypred = classify(net,Xtest,...
    'MiniBatchSize', miniBatchSize,...
    'ExecutionEnvironment','auto');

Calculate the accuracy. The accuracy is the number of true labels in the test data that match the
classifications from classify divided by the number of images in the test data.

acc = sum(Ypred == Ytest)./numel(Ypred)

acc = 0.9992

High accuracy indicates that the neural network is successfully able to identify the fault type of
unseen signals with minimal errors. Hence, the higher the accuracy, the better the network.

Plot a confusion matrix using true class labels of the test signals to determine how well the network
identifies each fault.

confusionchart(Ytest,Ypred);

 Chemical Process Fault Detection Using Deep Learning

17-9



Using a confusion matrix, you can assess the effectiveness of a classification network. the confusion
matrix has numerical values in the main diagonal and zeros elsewhere. The trained network in this
example is effective and classifies more than 99% of signals correctly.

References

[1] Rieth, C. A., B. D. Amsel, R. Tran., and B. Maia. "Additional Tennessee Eastman Process
Simulation Data for Anomaly Detection Evaluation." Harvard Dataverse, Version 1, 2017. https://
doi.org/10.7910/DVN/6C3JR1.

[2] Heo, S., and J. H. Lee. "Fault Detection and Classification Using Artificial Neural Networks."
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and
Technology.

Helper Functions

helperPreprocess

The helper function helperPreprocess uses the maximum sample number to preprocess the data.
The sample number indicates the signal length, which is consistent across the data set. A for-loop
goes over the data set with a signal length filter to form sets of 52 signals. Each set is an element of a
cell array. Each cell array represents a single simulation.

17 Predictive Maintenance Examples

17-10

https://doi.org/10.7910/DVN/6C3JR1
https://doi.org/10.7910/DVN/6C3JR1


function processed = helperPreprocess(mydata,limit)
    H = size(mydata);
    processed = {};
    for ind = 1:limit:H
        x = mydata(ind:(ind+(limit-1)),4:end);
        processed = [processed; x'];
    end
end

helperNormalize

The helper function helperNormalize uses the data, mean, and standard deviation to normalize the
data.

function data = helperNormalize(data,m,s)
    for ind = 1:size(data)
        data{ind} = (data{ind} - m)./s;
    end
end

See Also
lstmLayer | trainNetwork | trainingOptions | sequenceInputLayer

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Chemical Process Fault Detection Using Deep Learning

17-11



Rolling Element Bearing Fault Diagnosis Using Deep Learning

This example shows how to perform fault diagnosis of a rolling element bearing using a deep learning
approach. The example demonstrates how to classify bearing faults by converting 1-D bearing
vibration signals to 2-D images of scalograms and applying transfer learning using a pretrained
network. Transfer learning significantly reduces the time spent on feature extraction and feature
selection in conventional bearing diagnostic approaches, and provides good accuracy for the small
MFPT data set used in this example.

To run this example, go to https://github.com/mathworks/RollingElementBearingFaultDiagnosis-Data,
download the entire repository as a ZIP file, and save it in the same directory as the live script.

Rolling Element Bearing Faults

Localized faults in a rolling element bearing can occur in the outer race, the inner race, the cage, or a
rolling element. High frequency resonances between the bearing and the response transducer are
excited when the rolling elements strike a local fault on the outer or inner race, or a fault on a rolling
element strikes the outer or inner race [1] on page 17-20. The following figure shows a rolling
element striking a local fault at the inner race. A common problem is detecting and identifying these
faults.

Machinery Failure Prevention Technology (MFPT) Challenge Data

MFPT Challenge data [2] on page 17-20 contains 23 data sets collected from machines under
various fault conditions. The first 20 data sets are collected from a bearing test rig, with three under
good conditions, three with outer race faults under constant load, seven with outer race faults under
various loads, and seven with inner race faults under various loads. The remaining three data sets are

17 Predictive Maintenance Examples

17-12

https://github.com/mathworks/RollingElementBearingFaultDiagnosis-Data


from real-world machines: an oil pump bearing, an intermediate speed bearing, and a planet bearing.
The fault locations are unknown. In this example, you use only the data collected from the test rig
with known conditions.

Each data set contains an acceleration signal gs, sampling rate sr, shaft speed rate, load weight
load, and four critical frequencies representing different fault locations: ball pass frequency outer
race (BPFO), ball pass frequency inner race (BPFI), fundamental train frequency (FTF), and ball spin
frequency (BSF). The formulas for BPFO and BPFI are as follows [1] on page 17-20.

• BPFO:

BPFO =
nfr
2 1− d

Dcosϕ

• BPFI:

BPFI =
nfr
2 1 + d

Dcosϕ

As shown in the figure, d is the ball diameter and D is the pitch diameter. The variable fr is the shaft
speed, n is the number of rolling elements, and ϕ is the bearing contact angle [1] on page 17-20.

Scalogram of Bearing Data

To benefit from pretrained CNN deep networks, use the plotBearingSignalAndScalogram helper
function to convert 1-D vibration signals in the MFPT dataset to 2-D scalograms. A scalogram is a
time-frequency domain representation of the original time-domain signal [3] on page 17-20. The two
dimensions in a scalogram image represent time and frequency. To visualize the relationship between
a scalogram and its original vibration signal, plot the vibration signal with an inner race fault against
its scalogram.

% Import data with inner race fault
data_inner = load(fullfile(matlabroot, 'toolbox', 'predmaint', ...
    'predmaintdemos', 'bearingFaultDiagnosis', ...
    'train_data', 'InnerRaceFault_vload_1.mat'));
% Plot bearing signal and scalogram
plotBearingSignalAndScalogram(data_inner)

 Rolling Element Bearing Fault Diagnosis Using Deep Learning

17-13



During the 0.1 seconds shown in the plot, the vibration signal contains 12 impulses because the
tested bearing's BPFI is 118.875 Hz. Accordingly, the scalogram shows 12 distinct peaks that align
with the impulses in the vibration signal. Next, visualize scalograms for the outer race fault.

% Import data with outer race fault
data_outer = load(fullfile(matlabroot, 'toolbox', 'predmaint', ...
    'predmaintdemos', 'bearingFaultDiagnosis', ...
    'test_data', 'OuterRaceFault_3.mat'));
% Plot original signal and its scalogram
plotBearingSignalAndScalogram(data_outer)

17 Predictive Maintenance Examples

17-14



The scalogram of the outer race fault shows 8 distinct peaks during the first 0.1 seconds, which is
consistent with the ballpass frequencies. Because the impulses in the time-domain signal is not as
dominant as in the inner race fault case, the distinct peaks in the scalogram show less contrast with
the background. The scalogram of the normal condition does not show dominant distinct peaks.

% Import normal bearing data
data_normal = load(fullfile(matlabroot, 'toolbox', 'predmaint', ...
    'predmaintdemos', 'bearingFaultDiagnosis', ...
    'train_data', 'baseline_1.mat'));
% Plot original signal and its scalogram
plotBearingSignalAndScalogram(data_normal)

 Rolling Element Bearing Fault Diagnosis Using Deep Learning

17-15



The number of distinct peaks is a good feature to differentiate between inner race faults, outer race
faults, and normal conditions. Therefore, a scalogram can be a good candidate for classifying bearing
faults. In this example, all bearing signal measurements come from tests using the same shaft speed.
To apply this example to bearing signals under different shaft speeds, the data needs to be
normalized by shaft speed. Otherwise, the number of "pillars" in the scalogram will be wrong.

Prepare Training Data

Unzip the downloaded file.

if exist('RollingElementBearingFaultDiagnosis-Data-master.zip', 'file')
    unzip('RollingElementBearingFaultDiagnosis-Data-master.zip')
end

The downloaded dataset contains a training dataset with 14 MAT-files (2 normal, 5 inner race fault, 7
outer race fault) and a testing dataset with 6 MAT-files (1 normal, 2 inner race fault, 3 outer race
fault).

By assigning function handles to ReadFcn, the file ensemble datastore can navigate into the files to
retrieve data in the desired format. For example, the MFPT data has a structure bearing that stores
the vibration signal gs, sampling rate sr, and so on. Instead of returning the bearing structure itself,
the readMFPTBearing function is written so that the file ensemble datastore returns the vibration
signal gs inside of the bearing data structure.

fileLocation = fullfile('.', 'RollingElementBearingFaultDiagnosis-Data-master', 'train_data');
fileExtension = '.mat';
ensembleTrain = fileEnsembleDatastore(fileLocation, fileExtension);

17 Predictive Maintenance Examples

17-16



ensembleTrain.ReadFcn = @readMFPTBearing;
ensembleTrain.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF"];
ensembleTrain.ConditionVariables = ["Label", "FileName"];
ensembleTrain.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF", "Label", "FileName"]

ensembleTrain = 
  fileEnsembleDatastore with properties:

                 ReadFcn: @readMFPTBearing
        WriteToMemberFcn: []
           DataVariables: [8×1 string]
    IndependentVariables: [0×0 string]
      ConditionVariables: [2×1 string]
       SelectedVariables: [10×1 string]
                ReadSize: 1
              NumMembers: 14
          LastMemberRead: [0×0 string]
                   Files: [14×1 string]

Now, convert the 1-D vibration signals to scalograms and save the images for training. The size of
each scalogram is 227-by-227-by-3, which is the same input size required by SqueezeNet. To improve
accuracy, the helper function convertSignalToScalogram envelops the raw signal and divides it
into multiple segments. After running the following commands, a folder named "train_image" appears
in the current folder. All scalogram images of the bearing signals in the
"RollingElementBearingFaultDiagnosis-Data-master/train_data" folder are saved in the "train_image"
folder.

reset(ensembleTrain)
while hasdata(ensembleTrain)
  folderName = 'train_image';
  convertSignalToScalogram(ensembleTrain,folderName);
end

Create an image datastore and split the training data into training and validation data sets, using
80% of the images from the "train_image" folder for training and 20% for validation.

% Create image datastore to store all training images
path = fullfile('.', folderName);
imds = imageDatastore(path, ...
  'IncludeSubfolders',true,'LabelSource','foldernames');
% Use 20% training data as validation set
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.8,'randomize');

Train Network with Transfer Learning

Next, fine-tune the pretrained SqueezeNet convolutional neural network to perform classification on
the scalograms. SqueezeNet has been trained on over a million images and has learned rich feature
representations. Transfer learning is commonly used in deep learning applications. You can take a
pretrained network and use it as a starting point for a new task. Fine-tuning a network with transfer
learning is usually much faster and easier than training a network with randomly initialized weights
from scratch. You can quickly transfer learned features using a smaller number of training images.
Load and view the SqueezeNet network:

net = squeezenet

net = 
  DAGNetwork with properties:

 Rolling Element Bearing Fault Diagnosis Using Deep Learning

17-17



         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

analyzeNetwork(net)

SqueezeNet uses the convolutional layer 'conv10' to extract image features and the classification
layer 'ClassificationLayer_predictions' to classify the input image. These two layers contain
information to combine the features that the network extracts into class probabilities, a loss value,
and predicted labels. To retrain SqueezeNet for classifying new images, the convolutional layers
'conv10' and the classification layer 'ClassificationLayer_predictions' need to be replaced
with new layers adapted to the bearing images.

Extract the layer graph from the trained network.

lgraph = layerGraph(net);

In most networks, the last layer with learnable weights is a fully connected layer. In some networks,
such as SqueezeNet, the last learnable layer is a 1-by-1 convolutional layer instead. In this case,
replace the convolutional layer with a new convolutional layer with a number of filters equal to the
number of classes.

numClasses = numel(categories(imdsTrain.Labels));

newConvLayer = convolution2dLayer([1, 1],numClasses,'WeightLearnRateFactor',10,'BiasLearnRateFactor',10,"Name",'new_conv');
lgraph = replaceLayer(lgraph,'conv10',newConvLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClassificationLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassificationLayer);

Specify the training options. To slow down learning in the transferred layers, set the initial learning
rate to a small value. When you create the convolutional layer, you include larger learning rate
factors to speed up learning in the new final layers. This combination of learning rate settings results
in fast learning only in the new layers and slower learning in the other layers. When performing
transfer learning, you do not need to train for as many epochs. An epoch is a full training cycle on the
entire training data set. The software validates the network every ValidationFrequency iterations
during training.

options = trainingOptions('sgdm', ...
  'InitialLearnRate',0.0001, ...
  'MaxEpochs',4, ...
  'Shuffle','every-epoch', ...
  'ValidationData',imdsValidation, ...
  'ValidationFrequency',30, ...
  'Verbose',false, ...
  'MiniBatchSize',20, ...
  'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if you have Parallel Computing Toolbox™ and a supported GPU device. For information on

17 Predictive Maintenance Examples

17-18



supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Otherwise,
trainNetwork uses a CPU. You can also specify the execution environment by using the
'ExecutionEnvironment' name-value argument of trainingOptions.

net = trainNetwork(imdsTrain,lgraph,options);

Validate Using Test Data Sets

Use bearing signals in the "RollingElementBearingFaultDiagnosis-Data-master/test_data" folder to
validate the accuracy of the trained network. The test data needs to be processed in the same way as
the training data.

Create a file ensemble datastore to store the bearing vibration signals in the test folder.

fileLocation = fullfile('.', 'RollingElementBearingFaultDiagnosis-Data-master', 'test_data');
fileExtension = '.mat';
ensembleTest = fileEnsembleDatastore(fileLocation, fileExtension);
ensembleTest.ReadFcn = @readMFPTBearing;
ensembleTest.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF"];
ensembleTest.ConditionVariables = ["Label", "FileName"];
ensembleTest.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF", "Label", "FileName"];

Convert 1-D signals to 2-D scalograms.

reset(ensembleTest)
while hasdata(ensembleTest)
  folderName = 'test_image';
  convertSignalToScalogram(ensembleTest,folderName);
end

Create an image datastore to store the test images.

path = fullfile('.','test_image');
imdsTest = imageDatastore(path, ...
  'IncludeSubfolders',true,'LabelSource','foldernames');

Classify the test image datastore with the trained network.

YPred = classify(net,imdsTest,'MiniBatchSize',20);

Compute the accuracy of the prediction.

YTest = imdsTest.Labels;
accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9957

Plot a confusion matrix.

figure
confusionchart(YTest,YPred)

 Rolling Element Bearing Fault Diagnosis Using Deep Learning

17-19



When you train the network multiple times, you might see some variation in accuracy between
trainings, but the average accuracy should be around 98%. Even though the training set is quite
small, this example benefits from transfer learning and achieves good accuracy.

Conclusion

This example demonstrates that deep learning can be an effective tool to identify different types of
faults in rolling element bearing, even when the data size is relatively small. A deep learning
approach reduces the time that conventional approach requires for feature engineering. For
comparison, see the example “Rolling Element Bearing Fault Diagnosis” (Predictive Maintenance
Toolbox).

References

[1] Randall, Robert B., and Jérôme Antoni. “Rolling Element Bearing Diagnostics—A Tutorial.”
Mechanical Systems and Signal Processing 25, no. 2 (February 2011): 485–520. https://doi.org/
10.1016/j.ymssp.2010.07.017.

[2] Bechhoefer, Eric. "Condition Based Maintenance Fault Database for Testing Diagnostics and
Prognostic Algorithms." 2013. https://www.mfpt.org/fault-data-sets/.

17 Predictive Maintenance Examples

17-20

https://www.mfpt.org/fault-data-sets/


[3] Verstraete, David, Andrés Ferrada, Enrique López Droguett, Viviana Meruane, and Mohammad
Modarres. “Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling
Element Bearings.” Shock and Vibration 2017 (2017): 1–17. https://doi.org/10.1155/2017/5067651.

Helper Functions

function plotBearingSignalAndScalogram(data)
% Convert 1-D bearing signals to scalograms through wavelet transform
fs = data.bearing.sr;
t_total = 0.1; % seconds
n = round(t_total*fs);
bearing = data.bearing.gs(1:n);
[cfs,frq] = cwt(bearing,'amor', fs);

% Plot the original signal and its scalogram
figure
subplot(2,1,1)
plot(0:1/fs:(n-1)/fs,bearing)
xlim([0,0.1])
title('Vibration Signal')
xlabel('Time (s)')
ylabel('Amplitude')
subplot(2,1,2)
surface(0:1/fs:(n-1)/fs,frq,abs(cfs))
shading flat
xlim([0,0.1])
ylim([0,max(frq)])
title('Scalogram')
xlabel('Time (s)')
ylabel('Frequency (Hz)')
end

function convertSignalToScalogram(ensemble,folderName)
% Convert 1-D signals to scalograms and save scalograms as images
data = read(ensemble);
fs = data.sr;
x = data.gs{:};
label = char(data.Label);
fname = char(data.FileName);
ratio = 5000/97656;
interval = ratio*fs;
N = floor(numel(x)/interval);

% Create folder to save images
path = fullfile('.',folderName,label);
if ~exist(path,'dir')
  mkdir(path);
end

for idx = 1:N
  sig = envelope(x(interval*(idx-1)+1:interval*idx));
  cfs = cwt(sig,'amor', seconds(1/fs));
  cfs = abs(cfs);
  img = ind2rgb(round(rescale(flip(cfs),0,255)),jet(320));
  outfname = fullfile('.',path,[fname '-' num2str(idx) '.jpg']);
  imwrite(imresize(img,[227,227]),outfname);

 Rolling Element Bearing Fault Diagnosis Using Deep Learning

17-21



end
end

See Also
trainingOptions | trainNetwork | squeezenet | analyzeNetwork | layerGraph |
convolution2dLayer | classificationLayer | replaceLayer | classify | confusionchart

Related Examples
• “Rolling Element Bearing Fault Diagnosis” (Predictive Maintenance Toolbox)

External Websites
• Convolutional Neural Network - 3 things you need to know

17 Predictive Maintenance Examples

17-22

https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html


Remaining Useful Life Estimation Using Convolutional Neural
Network

This example shows how to predict the remaining useful life (RUL) of engines by using deep
convolutional neural networks (CNNs) [1] on page 17-33. The advantage of a deep learning
approach is that you do not need manual feature extraction or feature selection for your model to
predict RUL. Furthermore,you do not need prior knowledge of machine health prognostics or signal
processing to develop a deep learning based RUL prediction model.

Download Data set

This example uses the Turbofan Engine Degradation Simulation data set [1] on page 17-33. The data
set is in ZIP file format, and contains run-to-failure time-series data for four different sets (namely
FD001, FD002, FD003, and FD004) simulated under different combinations of operational conditions
and fault modes.

This example uses only the FD001 data set, which is further divided into training and test subsets.
The training subset contains simulated time series data for 100 engines. Each engine has several
sensors whose values are recorded at a given instance in a continuous process. Hence, the sequence
of recorded data varies in length and corresponds to a full run-to-failure (RTF) instance. The test
subset contains 100 partial sequences and corresponding values of the remaining useful life at the
end of each sequence.

Create a directory to store the Turbofan Engine Degradation Simulation data set.

dataFolder = "data";
if ~exist(dataFolder,'dir')
    mkdir(dataFolder);
end

Download and extract the Turbofan Engine Degradation Simulation data set.

filename = matlab.internal.examples.downloadSupportFile("nnet","data/TurbofanEngineDegradationSimulationData.zip");
unzip(filename,dataFolder)

The data folder now contains text files with 26 columns of numbers, separated by spaces. Each row is
a snapshot of data taken during a single operational cycle, and each column represents a different
variable:

• Column 1 — Unit number
• Column 2 — Timestamp
• Columns 3–5 — Operational settings
• Columns 6–26 — Sensor measurements 1–21

Preprocess Training Data

Load the data using the function localLoadData. The function extracts the data from a data file and
returns a table which contains the training predictors and corresponding response (i.e., RUL)
sequences. Each row represents a different engine.

 Remaining Useful Life Estimation Using Convolutional Neural Network

17-23



filenameTrainPredictors = fullfile(dataFolder,"train_FD001.txt");
rawTrain = localLoadData(filenameTrainPredictors);

Examine the run-to-failure data for one of the engines.

head(rawTrain.X{1},8)

ans=8×26 table
    id    timeStamp    op_setting_1    op_setting_2    op_setting_3    sensor_1    sensor_2    sensor_3    sensor_4    sensor_5    sensor_6    sensor_7    sensor_8    sensor_9    sensor_10    sensor_11    sensor_12    sensor_13    sensor_14    sensor_15    sensor_16    sensor_17    sensor_18    sensor_19    sensor_20    sensor_21
    __    _________    ____________    ____________    ____________    ________    ________    ________    ________    ________    ________    ________    ________    ________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________    _________

    1         1          -0.0007         -0.0004           100          518.67      641.82      1589.7      1400.6      14.62       21.61       554.36      2388.1      9046.2        1.3         47.47       521.66         2388       8138.6       8.4195        0.03          392         2388          100         39.06       23.419  
    1         2           0.0019         -0.0003           100          518.67      642.15      1591.8      1403.1      14.62       21.61       553.75        2388      9044.1        1.3         47.49       522.28       2388.1       8131.5       8.4318        0.03          392         2388          100            39       23.424  
    1         3          -0.0043          0.0003           100          518.67      642.35        1588      1404.2      14.62       21.61       554.26      2388.1      9052.9        1.3         47.27       522.42         2388       8133.2       8.4178        0.03          390         2388          100         38.95       23.344  
    1         4           0.0007               0           100          518.67      642.35      1582.8      1401.9      14.62       21.61       554.45      2388.1      9049.5        1.3         47.13       522.86       2388.1       8133.8       8.3682        0.03          392         2388          100         38.88       23.374  
    1         5          -0.0019         -0.0002           100          518.67      642.37      1582.8      1406.2      14.62       21.61          554      2388.1      9055.1        1.3         47.28       522.19         2388       8133.8       8.4294        0.03          393         2388          100          38.9       23.404  
    1         6          -0.0043         -0.0001           100          518.67       642.1      1584.5      1398.4      14.62       21.61       554.67        2388      9049.7        1.3         47.16       521.68         2388       8132.9       8.4108        0.03          391         2388          100         38.98       23.367  
    1         7            0.001          0.0001           100          518.67      642.48      1592.3      1397.8      14.62       21.61       554.34        2388      9059.1        1.3         47.36       522.32         2388       8132.3       8.3974        0.03          392         2388          100          39.1       23.377  
    1         8          -0.0034          0.0003           100          518.67      642.56        1583        1401      14.62       21.61       553.85        2388      9040.8        1.3         47.24       522.47         2388       8131.1       8.4076        0.03          391         2388          100         38.97       23.311  

Examine the response data for one of the engines.

rawTrain.Y{1}(1:8)

ans = 8×1

   191
   190
   189
   188
   187
   186
   185
   184

Visualize the time-series data for some of the predictors.

stackedplot(rawTrain.X{1},[3,5,6,7,8,15,16,24],XVariable='timeStamp')

17 Predictive Maintenance Examples

17-24



Remove Features with Less Variability

Features that remain constant for all time steps can negatively impact the training. Use the
prognosability (Predictive Maintenance Toolbox) function to measure the variability of features at
failure.

prog = prognosability(rawTrain.X,"timeStamp");

For some features, prognosability is equal to zero or NaN. Discard these features.

idxToRemove = prog.Variables==0 | isnan(prog.Variables);
featToRetain = prog.Properties.VariableNames(~idxToRemove);
for i = 1:height(rawTrain)
    rawTrain.X{i} = rawTrain.X{i}{:,featToRetain};
end

Normalize Training Predictors

Normalize the training predictors to have zero mean and unit variance.

[~,Xmu,Xsigma] = zscore(vertcat(rawTrain.X{:}));
preTrain = table();
for i = 1:numel(rawTrain.X)
    preTrain.X{i} = (rawTrain.X{i} - Xmu) ./ Xsigma;
end

 Remaining Useful Life Estimation Using Convolutional Neural Network

17-25



Clip Responses

The response data represents the RUL value over life for each engine and is based individual engine
lifetime. The sequence assumes a linear degradation from the time of the initial measurement to the
time of engine failure.

In order for network to focus on the part of the data where engines are more likely to fail (end of the
engine's life), clip the responses at the threshold of 150. Clipping the responses causes the network
to treat instances with higher RUL values as equal.

rulThreshold = 150;
for i = 1:numel(rawTrain.Y)
    preTrain.Y{i} = min(rawTrain.Y{i},rulThreshold);
end

This figure shows the first observation and the corresponding response (RUL), which is clipped at the
threshold. The green overlay defines the clipping region on both sensor amd RUL plots.

Prepare Data for Padding

This network supports input data with varying sequence lengths. When passing data through the
network, the software pads, truncates, or splits sequences so that all the sequences in each mini-
batch have the specified length.

To minimize the amount of padding added to the mini-batches, sort the training data by sequence
length. Then, choose a mini-batch size which divides the training data evenly and reduces the amount
of padding in the mini-batches.

17 Predictive Maintenance Examples

17-26



Sort the training data by sequence length.

for i = 1:size(preTrain,1)
    preTrain.X{i} = preTrain.X{i}';    %Transpose training data to have features in the first dimension
    preTrain.Y{i} = preTrain.Y{i}';    %Transpose responses corresponding to the training data
    sequence = preTrain.X{i};
    sequenceLengths(i) = size(sequence,2); 
end

[sequenceLengths,idx] = sort(sequenceLengths,'descend');
XTrain = preTrain.X(idx);
YTrain = preTrain.Y(idx);

Network Architecture

The deep convolutional neural network architecture used for RUL estimation is described in [1] on
page 17-33.

Here, you process and sort the data in a sequence format, with the first dimension representing the
number of selected features and the second dimension representing the length of the time sequence.
You bundle convolutional layers with batch normalization layer followed by an activation layer (relu in
this case) and then stack the layers together for feature extraction. The fully connected layers and
regression layer are used at the end to get the final RUL value as output .

The selected network architecture applies a 1-D convolution along the time sequence direction only.
Therefore, the order of features do not impact the training and only trends in one feature at a time
are considered.

Define the network architecture. Create a CNN that consists of five consecutive sets of a convolution
1-d, batch normalization and, a relu layer, with increasing filterSize and numFilters as the first
two input arguments to convolution1dLayer, followed by a fully connected layer of size
numHiddenUnits and a dropout layer with a dropout probability of 0.5. Since the network predicts
the remaining useful life (RUL) of the turbofan engine, set numResponses to 1 in the second fully
connected layer and a regression layer as the last layer of the network.

To compensate for the varying time-sequences in the training data, use Padding="causal" as the
Name-value pair input argument in convolution1dLayer.

numFeatures = size(XTrain{1},1);
numHiddenUnits = 100;
numResponses = 1;

layers = [
    sequenceInputLayer(numFeatures)
    convolution1dLayer(5,32,Padding="causal")
    batchNormalizationLayer()
    reluLayer()
    convolution1dLayer(7,64,Padding="causal")
    batchNormalizationLayer
    reluLayer()
    convolution1dLayer(11,128,Padding="causal")
    batchNormalizationLayer
    reluLayer()
    convolution1dLayer(13,256,Padding="causal")
    batchNormalizationLayer
    reluLayer()
    convolution1dLayer(15,512,Padding="causal")

 Remaining Useful Life Estimation Using Convolutional Neural Network

17-27



    batchNormalizationLayer
    reluLayer()
    fullyConnectedLayer(numHiddenUnits)
    reluLayer()
    dropoutLayer(0.5)
    fullyConnectedLayer(numResponses)
    regressionLayer()];

Train Network

Specify trainingOptions. Train for 40 epochs with minibatches of size 16 using the Adam
optimizer. Set LearnRateSchedule to piecewise. Specify the learning rate as 0.01. To prevent
the gradients from exploding, set the gradient threshold to 1. To keep the sequences sorted by length,
set 'Shuffle' to 'never'. Turn on the training progress plot, and turn off the command window
output (Verbose).

maxEpochs = 40;
miniBatchSize = 16;

options = trainingOptions('adam',...
    LearnRateSchedule='piecewise',...
    MaxEpochs=maxEpochs,...
    MiniBatchSize=miniBatchSize,...
    InitialLearnRate=0.01,...
    GradientThreshold=1,...
    Shuffle='never',...
    Plots='training-progress',...
    Verbose=0);

Train the network using trainNetwork. It should take about 1-2 minutes.

net = trainNetwork(XTrain,YTrain,layers,options);

17 Predictive Maintenance Examples

17-28



Plot the layer graph of the network to visualize the underlying network architecture.

figure;
lgraph = layerGraph(net.Layers);
plot(lgraph)

Test Network

The test data contains 100 partial sequences and corresponding values of the remaining useful life at
the end of each sequence.

filenameTestPredictors = fullfile(dataFolder,'test_FD001.txt');
filenameTestResponses = fullfile(dataFolder,'RUL_FD001.txt');
dataTest = localLoadData(filenameTestPredictors,filenameTestResponses);

Prepare the test data set for predictions by performing the same preprocessing steps you use to
prepare the training data set.

for i = 1:numel(dataTest.X)
    dataTest.X{i} = dataTest.X{i}{:,featToRetain};
    dataTest.X{i} = (dataTest.X{i} - Xmu) ./ Xsigma;
    dataTest.Y{i} = min(dataTest.Y{i},rulThreshold);
end

Create a table for storing the predicted response (YPred) along with the true response (Y). Make
predictions on the test data using predict. To prevent the function from adding padding to the test
data, specify the mini-batch size 1.

 Remaining Useful Life Estimation Using Convolutional Neural Network

17-29



predictions = table(Size=[height(dataTest) 2],VariableTypes=["cell","cell"],VariableNames=["Y","YPred"]);

for i=1:height(dataTest)
    unit = dataTest.X{i}';   
    predictions.Y{i} = dataTest.Y{i}';
    predictions.YPred{i} = predict(net,unit,MiniBatchSize=1);
end

Performance Metrics

Compute the root mean squared error (RMSE) across all time cycles of the test sequences to analyze
how well the network performs on the test data.

for i = 1:size(predictions,1)
    predictions.RMSE(i) = sqrt(mean((predictions.Y{i} - predictions.YPred{i}).^2));
end

Create a histogram to visualize the distribution of RMSE values across all test engines.

figure;
histogram(predictions.RMSE,NumBins=10);
title("RMSE ( Mean: " + round(mean(predictions.RMSE),2) + " , StDev: " + round(std(predictions.RMSE),2) + " )");
ylabel('Frequency');
xlabel('RMSE');

Additionally, to see how the network predictor performs throughout the given sequence of data in the
test engines, use the localLambdaPlot function to plot the predicted RUL against the true RUL of a
random test engine.

17 Predictive Maintenance Examples

17-30



figure;
localLambdaPlot(predictions,"random");

The result shows that the CNN deep learning architecture for estimating RUL of the turbo engine
data is a viable approach to predict RUL. The RMSE values at all timestamps indicates that the
network can perform well towards the end of the given test sequence data. Therefore, having a brief
history of the sensor data is important when trying to predict RUL.

Helper Functions

Load Data Function

This function loads run-to-failure data from the provided text file and groups time-series data and its
corresponding RUL values in a table as predictors and responses.

function data = localLoadData(filenamePredictors,varargin)

if isempty(varargin)
    filenameResponses = []; 
else
    filenameResponses = varargin{:};
end

%% Load the text file as a table
rawData = readtable(filenamePredictors);

% Add variable names to the table

 Remaining Useful Life Estimation Using Convolutional Neural Network

17-31



VarNames = {...
    'id', 'timeStamp', 'op_setting_1', 'op_setting_2', 'op_setting_3', ...
    'sensor_1', 'sensor_2', 'sensor_3', 'sensor_4', 'sensor_5', ...
    'sensor_6', 'sensor_7', 'sensor_8', 'sensor_9', 'sensor_10', ...
    'sensor_11', 'sensor_12', 'sensor_13', 'sensor_14', 'sensor_15', ...
    'sensor_16', 'sensor_17', 'sensor_18', 'sensor_19', 'sensor_20', ...
    'sensor_21'};
rawData.Properties.VariableNames = VarNames;

if ~isempty(filenameResponses)
    RULTest = readmatrix(filenameResponses);
end

% Split the signals for each unit ID
IDs = rawData{:,1};
nID = unique(IDs);
numObservations = numel(nID);

% Initialize a table for storing data
data = table(Size=[numObservations 2],...
    VariableTypes={'cell','cell'},...
    VariableNames={'X','Y'});

for i=1:numObservations
    idx = IDs == nID(i);
    data.X{i} = rawData(idx,:);
    if isempty(filenameResponses)
        % Calculate RUL from time column for train data
        data.Y{i} = flipud(rawData.timeStamp(idx))-1;
    else
        % Use RUL values from filenameResponses for test data
        sequenceLength = sum(idx);
        endRUL = RULTest(i);
        data.Y{i} = [endRUL+sequenceLength-1:-1:endRUL]'; %#ok<NBRAK> 
    end
end
end

Lambda Plot function

This helper function accepts the predictions table and a lambdaCase argument, and plots the
predicted RUL against the true RUL throughout its sequence (at every timestamp) for a visualization
of how the prediction changes with every timestamp. The second argument, lambdaCase, can be the
test engine number or one of a set of valid strings to find an engine number : "random", "best",
"worst", or "average".

function localLambdaPlot(predictions,lambdaCase)

if isnumeric(lambdaCase)
    idx = lambdaCase;
else
    switch lambdaCase
        case {"Random","random","r"}
            idx = randperm(height(predictions),1); % Randomly choose a test case to plot
        case {"Best","best","b"}
            idx = find(predictions.RMSE == min(predictions.RMSE)); % Best case
        case {"Worst","worst","w"}
            idx = find(predictions.RMSE == max(predictions.RMSE)); % Worst case

17 Predictive Maintenance Examples

17-32



        case {"Average","average","a"}
            err = abs(predictions.RMSE-mean(predictions.RMSE));
            idx = find(err==min(err),1);
    end
end
y = predictions.Y{idx};
yPred = predictions.YPred{idx};
x = 0:numel(y)-1;
plot(x,y,x,yPred)
legend("True RUL","Predicted RUL")
xlabel("Time stamp (Test data sequence)")
ylabel("RUL (Cycles)")

title("RUL for Test engine #"+idx+ " ("+lambdaCase+" case)")
end

References

1 Li, Xiang, Qian Ding, and Jian-Qiao Sun. “Remaining Useful Life Estimation in Prognostics Using
Deep Convolution Neural Networks.” Reliability Engineering & System Safety 172 (April 2018):
1–11. https://doi.org/10.1016/j.ress.2017.11.021.

See Also
imageInputLayer | prognosability | trainingOptions

Related Examples
• “Learn About Convolutional Neural Networks” on page 1-21
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Similarity-Based Remaining Useful Life Estimation” (Predictive Maintenance Toolbox)

External Websites
• Predictive Maintenance, Part 3: Remaining Useful Life Estimation
• Convolutional Neural Network - 3 things you need to know

 Remaining Useful Life Estimation Using Convolutional Neural Network

17-33

https://doi.org/10.1016/j.ress.2017.11.021
https://www.mathworks.com/videos/predictive-maintenance-part-3-remaining-useful-life-estimation-1549881037621.html
https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html


Anomaly Detection in Industrial Machinery Using Three-Axis
Vibration Data

This example shows how to detect anomalies in vibration data using machine learning and deep
learning. The example uses vibration data from an industrial machine. First, you extract features
from the raw measurements corresponding to normal operation using the Diagnostic Feature
Designer App. You use the selected features to train three different models (one-class SVM, isolation
forest, and LSTM autoencoder) for anomaly detection. Then, you use each trained model to identify
whether the machine is operating normally.

Data Set

The data set contains three-axis vibration measurements from an industrial machine. The data is
collected both immediately before and after a scheduled maintenance. The data collected after
scheduled maintenance is assumed to represent normal operating conditions of the machine. The
data from before maintenance can represent either normal or anomalous conditions. Data for each
axis is stored in a separate column. Save and unzip the data set and then, load the training data.

url = 'https://ssd.mathworks.com/supportfiles/predmaint/anomalyDetection3axisVibration/v1/vibrationData.zip';
websave('vibrationData.zip',url);
unzip('vibrationData.zip');
load("MachineData.mat")
trainData

trainData=40×4 table
          ch1                 ch2                 ch3           label 
    ________________    ________________    ________________    ______

    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
    {70000×1 double}    {70000×1 double}    {70000×1 double}    Before
      ⋮

To better understand the data, visualize it before and after maintenance. Plot vibration data for the
fourth member of the ensemble and note that the data for the two conditions looks different.

ensMember = 4;
helperPlotVibrationData(trainData, ensMember)

17 Predictive Maintenance Examples

17-34



Extract Features with Diagnostic Feature Designer App

Because raw data can be correlated and noisy, using raw data for training machine learning models is
not very efficient. The Diagnostic Feature Designer (Predictive Maintenance Toolbox) app lets you
interactively explore and preprocess your data, extract time and frequency domain features, and then
rank the features to determine which are most effective for diagnosing faulty or otherwise anomalous
systems. You can then export a function to extract the selected features from your data set
programmatically. Open Diagnostic Feature Designer by typing diagnosticFeatureDesigner at
the command prompt. For a tutorial on using Diagnostic Feature Designer, see “Identify Condition
Indicators for Predictive Maintenance Algorithm Design” (Predictive Maintenance Toolbox).

Click the New Session button, select trainData as the source, and then set label as Condition
Variable. The label variable identifies the condition of the machine for the corresponding data.

 Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data

17-35



You can use Diagnostic Feature Designer to iterate on the features and rank them. The app creates
a histogram view for all generated features to visualize the distribution for each label. For example,
the following histograms show distributions of various features extracted from ch1. These histograms
are derived from a much larger data set than the data set that you use in this example, in order to
better illustrate the label-group separation. Because you are using a smaller data set, your results
will look different.

17 Predictive Maintenance Examples

17-36



Use the top four ranked features for each channel.

• ch1 : Crest Factor, Kurtosis, RMS, Std
• ch2 : Mean, RMS, Skewness, Std
• ch3 : Crest Factor, SINAD, SNR, THD

Export a function to generate the features from the Diagnostic Feature designer app and save it with
the name generateFeatures. This function extracts the top 4 relevant features from each channel
in the entire data set from the command line.

trainFeatures = generateFeatures(trainData);
head(trainFeatures)

    label     ch1_stats/Col1_CrestFactor    ch1_stats/Col1_Kurtosis    ch1_stats/Col1_RMS    ch1_stats/Col1_Std    ch2_stats/Col1_Mean    ch2_stats/Col1_RMS    ch2_stats/Col1_Skewness    ch2_stats/Col1_Std    ch3_stats/Col1_CrestFactor    ch3_stats/Col1_SINAD    ch3_stats/Col1_SNR    ch3_stats/Col1_THD
    ______    __________________________    _______________________    __________________    __________________    ___________________    __________________    _______________________    __________________    __________________________    ____________________    __________________    __________________

    Before              2.2811                      1.8087                   2.3074                2.3071               -0.032332              0.64962                   4.523                  0.64882                    11.973                    -15.945                -15.886                -2.732      
    Before              2.3276                      1.8379                   2.2613                 2.261                -0.03331              0.59458                   5.548                  0.59365                    10.284                    -15.984                -15.927               -2.7507      
    Before              2.3276                      1.8626                   2.2613                2.2612               -0.012052              0.48248                  4.3638                  0.48233                    8.9125                    -15.858                -15.798               -2.7104      

 Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data

17-37



    Before              2.8781                      2.1986                   1.8288                1.8285               -0.005049              0.34984                  2.3324                  0.34981                    11.795                    -16.191                 -16.14               -3.0683      
    Before              2.8911                        2.06                   1.8205                1.8203              -0.0018988              0.27366                  1.7661                  0.27365                    11.395                    -15.947                -15.893               -3.1126      
    Before              2.8979                      2.1204                   1.8163                1.8162              -0.0044174               0.3674                  2.8969                  0.36737                    11.685                    -15.963                -15.908               -2.9761      
    Before              2.9494                        1.92                   1.7846                1.7844              -0.0067284              0.36262                  4.1308                  0.36256                    12.396                    -15.999                -15.942               -2.8281      
    Before              2.5106                      1.6774                   1.7513                1.7511              -0.0089548              0.32348                  3.7691                  0.32335                    8.8808                     -15.79                -15.732               -2.9532      

Prepare Full Data Sets for Training

The data set you use to this point is only a small subset of a much larger data set to illustrate the
process of feature extraction and selection. Training your algorithm on all available data yields the
best performance. To this end, load the same 12 features as previously extracted from the larger data
set of 17,642 signals.

load("FeatureEntire.mat")
head(featureAll)

    label     ch1_stats/Col1_CrestFactor    ch1_stats/Col1_Kurtosis    ch1_stats/Col1_RMS    ch1_stats/Col1_Std    ch2_stats/Col1_Mean    ch2_stats/Col1_RMS    ch2_stats/Col1_Skewness    ch2_stats/Col1_Std    ch3_stats/Col1_CrestFactor    ch3_stats/Col1_SINAD    ch3_stats/Col1_SNR    ch3_stats/Col1_THD
    ______    __________________________    _______________________    __________________    __________________    ___________________    __________________    _______________________    __________________    __________________________    ____________________    __________________    __________________

    Before              2.3683                       1.927                   2.2225                2.2225               -0.015149              0.62512                  4.2931                  0.62495                    5.6569                    -5.4476                -4.9977               -4.4608      
    Before               2.402                      1.9206                   2.1807                2.1803               -0.018269              0.56773                  3.9985                  0.56744                    8.7481                    -12.532                -12.419               -3.2353      
    Before              2.4157                      1.9523                   2.1789                2.1788              -0.0063652              0.45646                  2.8886                  0.45642                    8.3111                    -12.977                -12.869               -2.9591      
    Before              2.4595                      1.8205                     2.14                2.1401               0.0017307              0.41418                  2.0635                  0.41418                    7.2318                    -13.566                -13.468               -2.7944      
    Before              2.2502                      1.8609                   2.3391                 2.339              -0.0081829               0.3694                  3.3498                  0.36931                    6.8134                     -13.33                -13.225               -2.7182      
    Before              2.4211                      2.2479                   2.1286                2.1285                0.011139              0.36638                  1.8602                  0.36621                    7.4712                    -13.324                -13.226               -3.0313      
    Before              3.3111                      4.0304                   1.5896                1.5896              -0.0080759              0.47218                  2.1132                  0.47211                    8.2412                     -13.85                -13.758               -2.7822      
    Before              2.2655                      2.0656                   2.3233                2.3233              -0.0049447              0.37829                  2.4936                  0.37827                    7.6947                    -13.781                -13.683               -2.5601      

Use cvpartition to partition data into a training set and an independent test set. Use the
helperExtractLabeledData helper function to find all features corresponding to the label 'After'
in the featureTrain variable.

rng(0) % set for reproducibility
idx = cvpartition(featureAll.label, 'holdout', 0.1);
featureTrain = featureAll(idx.training, :);
featureTest = featureAll(idx.test, :);

For each model, train on only the after maintenance data, which is assumed to be normal. Extract
only this data from featureTrain.

trueAnomaliesTest = featureTest.label;
featureNormal = featureTrain(featureTrain.label=='After', :);

Detect Anomalies with One-Class SVM

Support Vector Machines are powerful classifiers, and the variant that trains on only the normal data
is used here.. This model works well for identifying abnormalities that are "far" from the normal data.
Train a one-class SVM model using the fitcsvm function and the data for normal conditions.

mdlSVM = fitcsvm(featureNormal, 'label', 'Standardize', true, 'OutlierFraction', 0);

Validate the trained SVM model by using test data, which contains both normal and anomalous data.

featureTestNoLabels = featureTest(:, 2:end);
[~,scoreSVM] = predict(mdlSVM,featureTestNoLabels);
isanomalySVM = scoreSVM<0;
predSVM = categorical(isanomalySVM, [1, 0], ["Anomaly", "Normal"]);
trueAnomaliesTest = renamecats(trueAnomaliesTest,["After","Before"], ["Normal","Anomaly"]);

17 Predictive Maintenance Examples

17-38



figure;
confusionchart(trueAnomaliesTest, predSVM, Title="Anomaly Detection with One-class SVM", Normalization="row-normalized");

From the confusion matrix, you can see that the one-class SVM performs well. Only 0.3% of
anomalous samples are misclassified as normal and about 0.9% of normal data is misclassified as
anomalous.

Detect Anomalies with Isolation Forest

The decision trees of an isolation forest isolate each observation in a leaf. How many decisions a
sample passes through to get to its leaf is a measure of how difficult isolating it from the others is.
The average depth of trees for a specific sample is used as their anomaly score and returned by
iforest.

Train the isolation forest model on normal data only.

[mdlIF,~,scoreTrainIF] = iforest(featureNormal{:,2:13},'ContaminationFraction',0.09);

Validate the trained isolation forest model by using the test data. Visualize the performance of this
model by using a confusion chart.

[isanomalyIF,scoreTestIF] = isanomaly(mdlIF,featureTestNoLabels.Variables);
predIF = categorical(isanomalyIF, [1, 0], ["Anomaly", "Normal"]);
figure;
confusionchart(trueAnomaliesTest,predIF,Title="Anomaly Detection with Isolation Forest",Normalization="row-normalized");

 Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data

17-39



On this data, the isolation forest doesn't do as well as the one-class SVM. The reason for this poorer
performance is that the training data contains only normal data while the test data contains about
30% anomalous data. Therefore, the isolation forest model is a better choice when the proportion of
anomalous data to normal data is similar for both training and test data.

Detect Anomalies with LSTM Autoencoder Network

Autoencoders are a type of neural network that learn a compressed representation of unlabeled data.
LSTM autoencoders are a variant of this network that can learn a compressed representation of
sequence data. Here, you train an LSTM autoencoder with only normal data and use this trained
network to identify when a signal does not look normal.

Start by extracting features from the after maintenance data.

featuresAfter = helperExtractLabeledData(featureTrain, ...
   "After");

Construct the LSTM autoencoder network and set the training options.

featureDimension = 1;

% Define biLSTM network layers
layers = [ sequenceInputLayer(featureDimension, 'Name', 'in')
   bilstmLayer(16, 'Name', 'bilstm1')
   reluLayer('Name', 'relu1')
   bilstmLayer(32, 'Name', 'bilstm2')
   reluLayer('Name', 'relu2')

17 Predictive Maintenance Examples

17-40



   bilstmLayer(16, 'Name', 'bilstm3')
   reluLayer('Name', 'relu3')
   fullyConnectedLayer(featureDimension, 'Name', 'fc')
   regressionLayer('Name', 'out') ];

% Set Training Options
options = trainingOptions('adam', ...
   'Plots', 'training-progress', ...
   'MiniBatchSize', 500,...
   'MaxEpochs',200);

The MaxEpochs training options parameter is set to 200. For higher validation accuracy, you can set
this parameter to a larger number; However, the network might overfit.

Train the model.

net = trainNetwork(featuresAfter, featuresAfter, layers, options);

Training on single GPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:14 |         5.81 |         16.9 |          0.0010 |
|       3 |          50 |       00:00:18 |         5.43 |         14.8 |          0.0010 |
|       5 |         100 |       00:00:20 |         3.99 |          7.9 |          0.0010 |
|       8 |         150 |       00:00:23 |         4.27 |          9.1 |          0.0010 |
|      10 |         200 |       00:00:25 |         3.47 |          6.0 |          0.0010 |
|      13 |         250 |       00:00:28 |         3.97 |          7.9 |          0.0010 |
|      15 |         300 |       00:00:30 |         3.17 |          5.0 |          0.0010 |
|      18 |         350 |       00:00:33 |         3.72 |          6.9 |          0.0010 |
|      20 |         400 |       00:00:35 |         2.89 |          4.2 |          0.0010 |
|      23 |         450 |       00:00:37 |         3.49 |          6.1 |          0.0010 |
|      25 |         500 |       00:00:40 |         2.67 |          3.6 |          0.0010 |
|      28 |         550 |       00:00:42 |         3.31 |          5.5 |          0.0010 |
|      30 |         600 |       00:00:45 |         2.49 |          3.1 |          0.0010 |
|      33 |         650 |       00:00:47 |         3.14 |          4.9 |          0.0010 |
|      35 |         700 |       00:00:50 |         2.29 |          2.6 |          0.0010 |
|      38 |         750 |       00:00:52 |         2.96 |          4.4 |          0.0010 |
|      40 |         800 |       00:00:55 |         2.11 |          2.2 |          0.0010 |
|      43 |         850 |       00:00:57 |         2.82 |          4.0 |          0.0010 |
|      45 |         900 |       00:01:00 |         1.98 |          2.0 |          0.0010 |
|      48 |         950 |       00:01:02 |         2.71 |          3.7 |          0.0010 |
|      50 |        1000 |       00:01:05 |         1.89 |          1.8 |          0.0010 |
|      53 |        1050 |       00:01:07 |         2.63 |          3.5 |          0.0010 |
|      55 |        1100 |       00:01:10 |         1.81 |          1.6 |          0.0010 |
|      58 |        1150 |       00:01:12 |         2.55 |          3.3 |          0.0010 |
|      60 |        1200 |       00:01:15 |         1.74 |          1.5 |          0.0010 |
|      63 |        1250 |       00:01:17 |         2.48 |          3.1 |          0.0010 |
|      65 |        1300 |       00:01:20 |         1.67 |          1.4 |          0.0010 |
|      68 |        1350 |       00:01:22 |         2.40 |          2.9 |          0.0010 |
|      70 |        1400 |       00:01:25 |         1.54 |          1.2 |          0.0010 |
|      73 |        1450 |       00:01:27 |         2.30 |          2.6 |          0.0010 |
|      75 |        1500 |       00:01:29 |         1.45 |          1.1 |          0.0010 |
|      78 |        1550 |       00:01:32 |         2.23 |          2.5 |          0.0010 |
|      80 |        1600 |       00:01:34 |         1.37 |          0.9 |          0.0010 |
|      83 |        1650 |       00:01:37 |         2.16 |          2.3 |          0.0010 |
|      85 |        1700 |       00:01:39 |         1.30 |          0.8 |          0.0010 |

 Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data

17-41



|      88 |        1750 |       00:01:42 |         2.10 |          2.2 |          0.0010 |
|      90 |        1800 |       00:01:44 |         1.23 |          0.8 |          0.0010 |
|      93 |        1850 |       00:01:47 |         2.04 |          2.1 |          0.0010 |
|      95 |        1900 |       00:01:49 |         1.17 |          0.7 |          0.0010 |
|      98 |        1950 |       00:01:52 |         1.99 |          2.0 |          0.0010 |
|     100 |        2000 |       00:01:54 |         1.11 |          0.6 |          0.0010 |
|     103 |        2050 |       00:01:57 |         1.94 |          1.9 |          0.0010 |
|     105 |        2100 |       00:01:59 |         1.06 |          0.6 |          0.0010 |
|     108 |        2150 |       00:02:02 |         1.90 |          1.8 |          0.0010 |
|     110 |        2200 |       00:02:04 |         1.01 |          0.5 |          0.0010 |
|     113 |        2250 |       00:02:06 |         1.86 |          1.7 |          0.0010 |
|     115 |        2300 |       00:02:09 |         0.97 |          0.5 |          0.0010 |
|     118 |        2350 |       00:02:11 |         1.82 |          1.7 |          0.0010 |
|     120 |        2400 |       00:02:14 |         0.93 |          0.4 |          0.0010 |
|     123 |        2450 |       00:02:16 |         1.79 |          1.6 |          0.0010 |
|     125 |        2500 |       00:02:18 |         0.90 |          0.4 |          0.0010 |
|     128 |        2550 |       00:02:21 |         1.76 |          1.6 |          0.0010 |
|     130 |        2600 |       00:02:23 |         0.87 |          0.4 |          0.0010 |
|     133 |        2650 |       00:02:25 |         1.73 |          1.5 |          0.0010 |
|     135 |        2700 |       00:02:28 |         0.84 |          0.4 |          0.0010 |
|     138 |        2750 |       00:02:30 |         1.71 |          1.5 |          0.0010 |
|     140 |        2800 |       00:02:32 |         0.81 |          0.3 |          0.0010 |
|     143 |        2850 |       00:02:35 |         1.68 |          1.4 |          0.0010 |
|     145 |        2900 |       00:02:37 |         0.78 |          0.3 |          0.0010 |
|     148 |        2950 |       00:02:40 |         1.66 |          1.4 |          0.0010 |
|     150 |        3000 |       00:02:42 |         0.76 |          0.3 |          0.0010 |
|     153 |        3050 |       00:02:44 |         1.63 |          1.3 |          0.0010 |
|     155 |        3100 |       00:02:47 |         0.74 |          0.3 |          0.0010 |
|     158 |        3150 |       00:02:49 |         1.61 |          1.3 |          0.0010 |
|     160 |        3200 |       00:02:52 |         0.72 |          0.3 |          0.0010 |
|     163 |        3250 |       00:02:54 |         1.59 |          1.3 |          0.0010 |
|     165 |        3300 |       00:02:56 |         0.69 |          0.2 |          0.0010 |
|     168 |        3350 |       00:02:59 |         1.57 |          1.2 |          0.0010 |
|     170 |        3400 |       00:03:01 |         0.68 |          0.2 |          0.0010 |
|     173 |        3450 |       00:03:03 |         1.55 |          1.2 |          0.0010 |
|     175 |        3500 |       00:03:06 |         0.66 |          0.2 |          0.0010 |
|     178 |        3550 |       00:03:08 |         1.53 |          1.2 |          0.0010 |
|     180 |        3600 |       00:03:10 |         0.64 |          0.2 |          0.0010 |
|     183 |        3650 |       00:03:13 |         1.51 |          1.1 |          0.0010 |
|     185 |        3700 |       00:03:15 |         0.62 |          0.2 |          0.0010 |
|     188 |        3750 |       00:03:18 |         1.49 |          1.1 |          0.0010 |
|     190 |        3800 |       00:03:20 |         0.61 |          0.2 |          0.0010 |
|     193 |        3850 |       00:03:22 |         1.48 |          1.1 |          0.0010 |
|     195 |        3900 |       00:03:25 |         0.59 |          0.2 |          0.0010 |
|     198 |        3950 |       00:03:27 |         1.46 |          1.1 |          0.0010 |
|     200 |        4000 |       00:03:29 |         0.58 |          0.2 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.

17 Predictive Maintenance Examples

17-42



Visualize Model Behavior and Error on Validation Data

Extract and visualize a sample each from Anomalous and Normal condition. The following plots show
the reconstruction errors of the autoencoder model for each of the 12 features (indicated on the X-
axis). The reconstructed feature value is referred to as "Decoded" signal in the plot. In this sample,
features 10, 11, and 12 do not reconstruct well for the anomalous input and thus have high errors. We
can use reconstructon errors to identify an anomaly.

testNormal = {featureTest(1200, 2:end).Variables};
testAnomaly = {featureTest(200, 2:end).Variables};

% Predict decoded signal for both
decodedNormal = predict(net,testNormal);
decodedAnomaly = predict(net,testAnomaly);

% Visualize
helperVisualizeModelBehavior(testNormal, testAnomaly, decodedNormal, decodedAnomaly)

 Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data

17-43



Extract features for all the normal and anomalous data. Use the trained autoencoder model to predict
the selected 12 features for both before and after maintenance data. The following plots show the
root mean square reconstruction error across the twelve features. The figure shows that the
reconstruction error for the anomalous data is much higher than the normal data. This result is
expected, since the autoencoder is trained on the normal data, so it better reconstructs similar
signals.

% Extract data Before maintenance
XTestBefore = helperExtractLabeledData(featureTest, "Before");

% Predict output before maintenance and calculate error
yHatBefore = predict(net, XTestBefore);
errorBefore = helperCalculateError(XTestBefore, yHatBefore);

% Extract data after maintenance
XTestAfter = helperExtractLabeledData(featureTest, "After");

% Predict output after maintenance and calculate error
yHatAfter = predict(net, XTestAfter);
errorAfter = helperCalculateError(XTestAfter, yHatAfter);

helperVisualizeError(errorBefore, errorAfter);

17 Predictive Maintenance Examples

17-44



Identify Anomalies

Calculate the reconstruction error on the full validation data.

XTestAll = helperExtractLabeledData(featureTest, "All");

yHatAll = predict(net, XTestAll);
errorAll = helperCalculateError(XTestAll, yHatAll);

Define an anomaly as a point that has reconstruction error 0.5 times the mean across all
observations. This threshold was determined through previous experimentation and can be changed
as required.

thresh = 0.5;
anomalies = errorAll > thresh*mean(errorAll);

helperVisualizeAnomalies(anomalies, errorAll, featureTest);

 Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data

17-45



In this example, three different models are used to detect anomalies. The one-class SVM had the best
performance at 99.7% for detecting anomalies in the test data, while the other two models are around
93% accurate. The relative performance of the models can change if a different set of features are
selected or if different hyper-parameters are used for each model. Use the Diagnostic Feature
Designer MATLAB App to further experiment with feature selection.

Supporting Functions

function E = helperCalculateError(X, Y)
% HELPERCALCULATEERROR calculates the rms error value between the
% inputs X, Y
E = zeros(length(X),1);
for i = 1:length(X)
   E(i,:) = sqrt(sum((Y{i} - X{i}).^2));
end

end

function helperVisualizeError(errorBefore, errorAfter)
% HELPERVISUALIZEERROR creates a plot to visualize the errors on detecting
% before and after conditions
figure("Color", "W")
tiledlayout("flow")

nexttile
plot(1:length(errorBefore), errorBefore, 'LineWidth',1.5), grid on
title(["Before Maintenance", ...

17 Predictive Maintenance Examples

17-46



   sprintf("Mean Error: %.2f\n", mean(errorBefore))])
xlabel("Observations")
ylabel("Reconstruction Error")
ylim([0 15])

nexttile
plot(1:length(errorAfter), errorAfter, 'LineWidth',1.5), grid on,
title(["After Maintenance", ...
   sprintf("Mean Error: %.2f\n", mean(errorAfter))])
xlabel("Observations")
ylabel("Reconstruction Error")
ylim([0 15])

end

function helperVisualizeAnomalies(anomalies, errorAll, featureTest)
% HELPERVISUALIZEANOMALIES creates a plot of the detected anomalies
anomalyIdx = find(anomalies);
anomalyErr = errorAll(anomalies);

predAE = categorical(anomalies, [1, 0], ["Anomaly", "Normal"]);
trueAE = renamecats(featureTest.label,["Before","After"],["Anomaly","Normal"]);

acc = numel(find(trueAE == predAE))/numel(predAE)*100;
figure;
t = tiledlayout("flow");
title(t, "Test Accuracy: " + round(mean(acc),2) + "%");
nexttile
hold on
plot(errorAll)
plot(anomalyIdx, anomalyErr, 'x')
hold off
ylabel("Reconstruction Error")
xlabel("Observation")
legend("Error", "Candidate Anomaly")

nexttile
confusionchart(trueAE,predAE)

end

function helperVisualizeModelBehavior(normalData, abnormalData, decodedNorm, decodedAbNorm)
%HELPERVISUALIZEMODELBEHAVIOR Visualize model behavior on sample validation data

figure("Color", "W")
tiledlayout("flow")

nexttile()
hold on
colororder('default')
yyaxis left
plot(normalData{:})
plot(decodedNorm{:},":","LineWidth",1.5)
hold off
title("Normal Input")
grid on
ylabel("Feature Value")
yyaxis right

 Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data

17-47



stem(abs(normalData{:} - decodedNorm{:}))
ylim([0 2])
ylabel("Error")
legend(["Input", "Decoded","Error"],"Location","southwest")

nexttile()
hold on
yyaxis left
plot(abnormalData{:})
plot(decodedAbNorm{:},":","LineWidth",1.5)
hold off
title("Abnormal Input")
grid on
ylabel("Feature Value")
yyaxis right
stem(abs(abnormalData{:} - decodedAbNorm{:}))
ylim([0 2])
ylabel("Error")
legend(["Input", "Decoded","Error"],"Location","southwest")

end

function X = helperExtractLabeledData(featureTable, label)
%HELPEREXTRACTLABELEDDATA Extract data from before or after operating
%conditions and re-format to support input to autoencoder network

% Select data with label After
if label == "All"
   Xtemp = featureTable(:, 2:end).Variables;
else
   tF = featureTable.label == label;
   Xtemp = featureTable(tF, 2:end).Variables;
end

% Arrange data into cells
X = cell(length(Xtemp),1);
for i = 1:length(Xtemp)
   X{i,:} = Xtemp(i,:);
end

end

17 Predictive Maintenance Examples

17-48



Battery Cycle Life Prediction Using Deep Learning

Lithium-ion battery cycle life prediction using a physics-based modelling approach is very complex
due to varying operating conditions and significant device variability even with batteries from the
same manufacturer. Further, every battery ages differently depending on usage and conditions during
manufacturing. In this example, we illustrate the use of deep learning technique for estimating the
remaining cycles of a fast charging lithium-ion battery. Data representing the full lifecycle of the
batteries is used to train a 2D Convolution Neural Network based architecture and this trained
network is used to estimate the remaining cycle life of new batteries.

Dataset

The dataset contains measurements from 40 lithium-ion cells with nominal capacity of 1.1 Ah and a
nominal voltage of 3.3 V under various charge and discharge profiles. Each battery is charged and
discharged, according to one of many predetermined policies, until the battery reaches 80% of its
original capacity. The number of cycles until this state is reached is called the battery cycle life. This
number varies broadly between 150 and 2300 cycles as seen in the histogram of the data used for
this example.

The full dataset containing measurements from 124 cells can be accessed here [2] with detailed
description here [1]. This example uses a reduced dataset containing measurements from 40 cells
only to make it easier to download and to run this example. Data for each battery is stored in a
structure, which includes the following information:

 Battery Cycle Life Prediction Using Deep Learning 

17-49



• Data collected within a cycle: Current, voltage, temperature, capacity, differential discharge
capacity

Load the data from the MathWorks supportfiles site (this is a large dataset, ~1.2GB).

url = 'https://ssd.mathworks.com/supportfiles/predmaint/batterycyclelifeprediction/v2/batteryDischargeData.zip';
websave('batteryDischargeData.zip',url);
unzip('batteryDischargeData.zip')
load('batteryDischargeData');

Visualize the data characteristics by creating a plot of current, voltage, and temperature
measurements for one full cycle of the first battery in the data.

battIndx = 1; cycleIndx = 1;
batteryMeasurements = table(batteryDischargeData(battIndx).cycles(cycleIndx).I,batteryDischargeData(battIndx).cycles(cycleIndx).V,...
   batteryDischargeData(battIndx).cycles(cycleIndx).T, batteryDischargeData(battIndx).cycles(cycleIndx).Qd);
stackedplot(batteryMeasurements, "Title","Measurements over one cycle",...
   "DisplayLabels", ["Current (A)","Voltage(V)","Temperature(C)","DischargeCapacity(Ah)"], ...
   "Xlabel", "Sample Index");

In the preceding plot, positive current indicates a charging process while negative current indicates a
discharge operation. The battery is fully charged when it reaches 3.6V and fully discharged when it
reaches 2V. Further, the batteries are subjected to different fast charging policies in this dataset to
understand their degradation profile across time and load.

17 Predictive Maintenance Examples

17-50



Extract Battery Discharge Measurements 

Since all batteries have different charging policies but identical discharge voltage range, you use only
the discharge portions of the signals in this example. Extract the measurements corresponding to the
discharge portion of the cycle using the hExtractDischargeData helper function. Plot the
discharge data for the first cycle of the first battery.

dischargeData = hExtractDischargeData(batteryDischargeData);

batteryMeasurements = table(dischargeData{battIndx}.Vd{cycleIndx},dischargeData{battIndx}.Td{cycleIndx},...
   dischargeData{battIndx}.QdClipped{cycleIndx});
stackedplot(batteryMeasurements, "Title","Measurements over one cycle",...
   "DisplayLabels", ["Voltage(V)","Temperature(C)","DischargeCapacity(Ah)"],...
   "Xlabel", "Sample Index");

Since the batteries in this data set are tested with different charging policies, some cycles are
completed sooner than others. Therefore, cycle time cannot be used to compare charge and
temperature across batteries. The voltage range is used as the reference instead of time because the
discharge time varies based on the connected load and the health of the batteries. The charge and
temperature measurements are then interpolated over this voltage range. Use
hLinearInterpolation function to interpolate voltage, temperature and discharge capacity
measurements onto a uniformly sampled 900 point voltage range between 3.6V and 2V. The
interpolated data is returned as a 30x30 array for each measurement to form a 2D representation for
each battery discharge cycle. Note that reshaping the 900x1 vector to a 30x30 matrix leads to the
convolutional network searching for spatial relation between each column of the matrix. This example
assumes that such a relationship might exist across the various cycles and attempts to leverage it if

 Battery Cycle Life Prediction Using Deep Learning 

17-51



present. The image below shows the temperature and voltage data for a single cycle of a cell being
interpolated to 900 points and then being reshaped to a 30x30. The 2D representation the
measurement of each cycle converts the sensor measurements into an image format for the CNN
layers.

[VInterpol,TInterpol,QdInterpol] = hLinearInterpolation(dischargeData);

Plot the interpolated temperature and discharge capacity as a function of voltage.

figure
yyaxis left
plot(reshape(VInterpol{1}{1}, 900, 1),reshape(TInterpol{1}{1},900,1))
title('Measurements as a function of Voltage')
ylabel('Temperature') 
xlabel('Voltage')
yyaxis right
plot(reshape(VInterpol{1}{1},900,1),reshape(QdInterpol{1}{1},900,1))
ylabel('Discharge Capacity')

17 Predictive Maintenance Examples

17-52



For the 2D Convolution Neural Network layers in the deep network, the 30x30 matrix of interpolated
voltage, discharge capacity and temperature are reshaped to a form a 30x30x3 matrix for each cycle.
This is like the RGB channels of an image. To minimize the range of the estimated remaining cycles,
the expected output signal is normalized by dividing by 2000 (the maximum life of the battery in the
data). The data from 30 batteries is used for training, 5 batteries for validation and 5 batteries for
testing of the deep neural network. Use the hreshapeData helper function to create the 30x30x3
dataset for each cycle. This function outputs the measurement data (trainData) and the RUL data
(trainRulData) to use as labels for each case.

testBatteryIndex = 2:8:40;
valBatteryIndex = 1:8:40;
trainBatteryIndex = setdiff(1:40,[2:8:40 1:8:40]);

[trainData,trainRulData] = hreshapeData(VInterpol(trainBatteryIndex), ...
   TInterpol(trainBatteryIndex),QdInterpol(trainBatteryIndex));
[valData,ValRulData] = hreshapeData(VInterpol(valBatteryIndex), ...
   TInterpol(valBatteryIndex),QdInterpol(valBatteryIndex));
[testData,testRulData] = hreshapeData(VInterpol(testBatteryIndex), ...
   TInterpol(testBatteryIndex),QdInterpol(testBatteryIndex));

fprintf('Size of reshaped matrix of interpolated measurement data:%dx%dx%dx%d\n', ...
   size(trainData))

Size of reshaped matrix of interpolated measurement data:30x30x3x30706

 Battery Cycle Life Prediction Using Deep Learning 

17-53



Define Network Architecture

Defining the architecture of convolutional neural network includes selecting the types of layers,
selecting the number of layers, and tuning the hyperparameters until satisfactory performance is
achieved against test data. In this section, the types of layers and number of layers are specified. To
create your deep neural network structure, define a set of successive network layers. Use a network
structure with the following layers:

• Image input layer — Treat the voltage, discharge capacity, temperature data as the three color
channels of an input image and normalize the measurements to the range [0,1].

• 2D convolutional layers — Each of these layers applies sliding convolutional filters to the image
input. This example uses four hidden convolutional layers. This number of layers, which was
selected through trial and error, gives the best result while keeping a reasonable training time.

• Batch normalization layers — Each convolutional layer is followed by a batch normalization layer,
which speeds up the training of the network and reduces the sensitivity to network initialization.

• ReLU layers — Each batch normalization layer is followed by a nonlinear activation function,
which performs a threshold operation to each element of the input.

• Pooling layers — The first two batch ReLU layers are followed by pooling layers, which reduce the
size of the feature map and remove redundant information, which reduces the number of
parameters to be learned in subsequent layers.

• Drop-out layer — The final ReLU layer is followed by a dropout layer, which helps reduce
overfitting in the network.

• Fully connected layer — The dropout layer is followed by a fully connected layer, which combines
all of the learned features into a single input to the regression layer.

• Regression layer — Since the estimation of remaining useful life is a regression problem, the final
output layer of the network is a regression layer.

layers = [
   imageInputLayer([30 30 3],"Normalization","rescale-zero-one")
   convolution2dLayer(3,8,"Padding","same")
   batchNormalizationLayer
   reluLayer
   maxPooling2dLayer(2,"Stride",2)
   convolution2dLayer(3,16,"Padding","same")
   batchNormalizationLayer
   reluLayer
   averagePooling2dLayer(2,'Stride',2)
   convolution2dLayer(3,32,'Padding','same')
   batchNormalizationLayer
   reluLayer
   convolution2dLayer(3,32,'Padding','same')
   batchNormalizationLayer
   reluLayer
   convolution2dLayer(3,32,'Padding','same')
   batchNormalizationLayer
   reluLayer
   dropoutLayer(0.5)
   fullyConnectedLayer(1)
   regressionLayer];
figure
plot(layerGraph(layers))

17 Predictive Maintenance Examples

17-54



Define Network Hyperparameters and Train Network

In this section, define the hyperparameters for the network specified in the previous section.
Selecting hyperparameters, such as the learning rate or batch size, is generally through trial and
error with the goal of finding the best set for the selected network and the data set to achieve
satisfactory performance from the network.

For this example, use the Adam (adaptive moment estimation) optimizer, which has a fast
computation time and few parameters to tune. Configure the solver to:

• Use a mini-batch size of 256 observations.
• Train on the entire data set 50 times, which the number of training epochs.
• Shuffle the dataset before each epoch to improve convergence.
• Use a learning rate of 0.001, which achieves a good balance between convergence and

overshooting.
• Validate the network periodically to identify when the network is overfitting the training data.

For more information on training options for the Adam solver, see TrainingOptionsADAM. The
training hyperparameters used in this example were selected based using trial-and-error
experimentation. You can adjust the parameters to further improve the training.

miniBatchSize = 256;
validationFrequency = 10*floor(numel(trainRulData)/miniBatchSize);
options = trainingOptions("adam", ...
   "MaxEpochs",100, ...

 Battery Cycle Life Prediction Using Deep Learning 

17-55



   "MiniBatchSize",miniBatchSize, ...
   "Plots","training-progress", ...
   "Verbose",false, ...
   "Shuffle","every-epoch", ...
   "InitialLearnRate",0.001, ...
   "OutputNetwork","best-validation-loss", ...
   "ValidationData",{valData, ValRulData}, ...
   "ValidationFrequency",validationFrequency, ...
   "ValidationPatience",10, ...
   "ResetInputNormalization",false);

rng("default")

batteryNet = trainNetwork(trainData, trainRulData,layers,options);

Evaluate Performance of Trained Model

Use the trained model to predict the remaining cycle life for testData. The values must be rescaled
back to the original RUL range to make it easier to visualize the performance.

yPredTest = predict(batteryNet,testData)*2000; 
testRulScaled = testRulData*2000;

Compare the actual cycle life with the predicted cycle life using a scatter plot.

figure;
scatter(testRulScaled,yPredTest)
hold on;
refline(1,0);

17 Predictive Maintenance Examples

17-56



title("Predicted vs Actual Cycle Life")
ylabel("Predicted cycle life");
xlabel("Actual cycle life");

Ideally, the scatter plot should have all data points along the diagonal with a narrow confidence band.
However, in this example, there is a broader spread and different behaviors for different range of
values in the scatter plot. In the scatter plot, there five distinct trends, one for each battery in the test
data.

Across the five batteries, when the actual cycle life is small, the model is good at predicting the
remaining useful life. This result implies that, as a battery gets closer to the end of its life, the model
is good at predicting the remaining cycle life.

However, during the early part of a battery's life when the actual cycle life is larger, the model has
greater uncertainty. The model also seems to generally overestimate the remaining cycle life during
the initial period of a battery's life. To address these model characteristics, you can train the network
using richer and larger data sets and experiment with the deep neural network architecture and its
hyperparameters.

Compute the root mean squared error (RMSE) and the average percentage error of the predicted
remaining cycle life.

errTest = (yPredTest-testRulScaled);
rmseTestModel = sqrt(mean(errTest.^2))

rmseTestModel = single
    65.2403

 Battery Cycle Life Prediction Using Deep Learning 

17-57



n = numel(testRulScaled);
nr = abs(testRulScaled - yPredTest);
errVal = (1/n)*sum(nr./testRulScaled)*100

errVal = single
    15.4083

These performance metrics are relatively close to their equivalent values for when a linear regression
model with regularization is used with custom features for estimating remaining cycle life, as shown
in “Battery Cycle Life Prediction From Initial Operation Data” (Predictive Maintenance Toolbox). Note
that in the machine learning based example only the first 100 cycles of data is used for estimating the
remaining cycle life while in this example data from any cycle can be used. This result indicates that
depending on the application and system requirements, either a machine learning or a deep learning
approach can be used to estimate the remaining cycle life of batteries.

After tuning the model to a desired performance level, you can operationalize it to estimate
remaining cycle life of batteries in use. To deploy a trained network to embedded hardware, generate
C/C++, GPU, or HDL code. For more information, see “Code Generation”. To deploy the trained
network to the cloud, choose the appropriate packaging option.

Conclusion

This example shows how to use deep learning techniques for battery cycle life prediction based on
measurements from 40 batteries. Raw sensor signals are directly used as inputs to train a deep
neural network without any manual extraction of features. This model is used on test data for
performance evaluation. Using measurements for the test data, the average percentage error is
~15%.

Helper Functions

function [dischargeData] = hExtractDischargeData(data)
% HEXTRACTDISCHARGEDATA Extract measurements corresponding to discharge
% portion of cycle
dischargeData = cell(1, size(data, 2));
% For each battery in the data (which has many charge discharge cycles)
for iBattery = 1:size(data,2)
   timeSeriesTable = struct2table(data(iBattery).cycles);
   % Keep only the data related to discharge [ between 3.6V and 2 V)
   clipIdxFun1 = @(x) {find(x{1,1}>=3.6,1,"last")};
   clipIdxFun2 = @(x) {find(x{1,1}<=2.00,1,"first")};

   clipIdx1 = rowfun(clipIdxFun1,timeSeriesTable,"InputVariables","V",...
      "OutputVariableNames","clipIdx1");
   clipIdx2 = rowfun(clipIdxFun2,timeSeriesTable,"InputVariables","V",...
      "OutputVariableNames","clipIdx2");
   timeSeriesTable = [timeSeriesTable clipIdx1 clipIdx2];

   clipSignals = @(x,y,z) {smoothdata(x(y:z),"movmean",3)};
   % Extract Voltage
   Vd = rowfun(clipSignals,timeSeriesTable,"InputVariables",...
      ["V","clipIdx1","clipIdx2"],"OutputVariableNames","Vd",...
      "ExtractCellContents",true);
   % Extract Temperature
   Td = rowfun(clipSignals,timeSeriesTable,"InputVariables",...
      ["T","clipIdx1","clipIdx2"],"OutputVariableNames","Td",...
      "ExtractCellContents",true);
   % Extract Discharge Capacity

17 Predictive Maintenance Examples

17-58

https://www.mathworks.com/solutions/model-deployment.html


   QdClipped = rowfun(clipSignals,timeSeriesTable,"InputVariables",...
      ["Qd","clipIdx1","clipIdx2"],"OutputVariableNames","QdClipped",...
      "ExtractCellContents",true);

   dischargeData{iBattery} = [Vd Td QdClipped];
end
end

function [Vdlin, Tdlin, Qdlin] = hLinearInterpolation(dischargeData)
% HLINEARINTERPOLATION Interpolate on the voltage range of 2V to 3.6V
% linear interpolation onto 900 points between the two voltages and the
% data is then reshaped into a 30x30 matrix
Vdlin = cellfun(@(x)rowfun(@hLinInterp,x,"InputVariables",["Vd","Vd"],...
   "OutputVariableNames","Vdlin","OutputFormat","cell"), dischargeData, ...
   'UniformOutput', false);

Tdlin = cellfun(@(x)rowfun(@hLinInterp,x,"InputVariables",["Vd","Td"],...
   "OutputVariableNames","Tdlin","OutputFormat","cell"), dischargeData, ...
   'UniformOutput', false);

Qdlin = cellfun(@(x)rowfun(@hLinInterp,x,"InputVariables",["Vd","QdClipped"],...
   "OutputVariableNames","Qdlin","OutputFormat","cell"), dischargeData, ...
   'UniformOutput', false);
end

function xInterpolated = hLinInterp(volt,x)
% HLININTERP Function to linearly interpolate data for battery voltage discharge range

volt = volt{1,1};
x = x{1,1};

% Set seed for consistent results
rng("default");

% Linearly interpolate voltage range 3.6 to 2.
voltRange = linspace(3.6,2,900);
[~, ia, ~] = unique(volt,'sorted');
f = griddedInterpolant(volt(ia),x(ia));

xInterpolated= reshape(f(voltRange)',[30,30]);
end

function [signalData, rul] = hreshapeData(VInterpol, TInterpol, QdInterpol)
%    HRESHAPEDATA Arrange the data as 30x30x3 - where each 30x30 is the 900 point
%    interpolated version for a single discharge and 3 is for V, Q, T
for i =1:numel(VInterpol)
   VData = VInterpol{i};
   TData = TInterpol{i};
   QdData = QdInterpol{i};
   predictor = zeros(30,30,3,size(VData,1));
   for j = 1: size(VData,1)
      temp(:,:,1) = VData{j,1};
      temp(:,:,2) = QdData{j,1};
      temp(:,:,3) = TData{j,1};
      predictor(:,:,:,j) = temp;
   end

 Battery Cycle Life Prediction Using Deep Learning 

17-59



   maxBatteryLife = 2000; % Used for scaling output
   numCycles = size(VData,1);
   cycle = (1:numCycles)';
   rulBattery = (numCycles+1 - cycle)/maxBatteryLife;

   if i == 1
      signalData = predictor;
      rul = rulBattery;
   else
      signalData = cat(4,signalData,predictor);
      rul = [rul; rulBattery];
   end
end
end

References

[1] Severson, K.A., Attia, P.M., Jin, N. et al. "Data-driven prediction of battery cycle life before
capacity degradation." Nat Energy 4, 383–391 (2019). https://doi.org/10.1038/s41560-019-0356-8

[2] https://data.matr.io/1/

See Also

Related Examples
• “Battery Cycle Life Prediction From Initial Operation Data” (Predictive Maintenance Toolbox)
• “Remaining Useful Life Estimation Using Convolutional Neural Network” on page 17-23
• “Nonlinear State Estimation of a Degrading Battery System” (Predictive Maintenance Toolbox)

17 Predictive Maintenance Examples

17-60

https://doi.org/10.1038/s41560-019-0356-8
https://data.matr.io/1/


Computational Finance Examples

18



Compare Deep Learning Networks for Credit Default Prediction

Get an overview of the workflow for statistical arbitrage and then follow a series of examples to see
how MATLAB® capabilities apply.

The panel data set of consumer loans enables you to identify and predict default rate patterns. You
can train a neural network using the panel data to predict the default rate from year on books and
risk level.

This example requires Deep Learning Toolbox™ and Risk Management Toolbox™.

In this example, you create and train three models for credit default prediction:

• Logistic regression network (also known as a single-layer perceptron)
• Multilayer perceptron (MLP)
• Residual network (ResNet)

You can express each of these models as a neural network of varying complexity and depth.

Load Credit Default Data

Load the retail credit panel data set. This data includes the following variables:

• ID — Loan identifier.
• ScoreGroup — Credit score at the beginning of the loan, discretized into three groups: High

Risk, Medium Risk, and Low Risk.
• YOB — Years on books.
• Default — Default indicator. A value of 1 for Default means that the loan defaulted in the

corresponding calendar year.
• Year — Calendar year.

filename = fullfile(toolboxdir('risk'),'riskdata','RetailCreditPanelData.mat');
tbl = load(filename).data;

Encode Categorical Variables

To train a deep learning network, you must first encode the categorical ScoreGroup variable to one-
hot encoded vectors.

View the order of the ScoreGroup categories.

categories(tbl.ScoreGroup)'

18 Computational Finance Examples

18-2



ans = 1×3 cell
    {'High Risk'}    {'Medium Risk'}    {'Low Risk'}

Convert the categorical ScoreGroup variable to one-hot encoded vectors using the onehotencode
function.

riskGroup = onehotencode(tbl.ScoreGroup,2);

Add the one-hot vectors to the table.

tbl.HighRisk = riskGroup(:,1);
tbl.MediumRisk = riskGroup(:,2);
tbl.LowRisk = riskGroup(:,3);

Remove the original ScoreGroup variable from the table using removevars.

tbl = removevars(tbl,{'ScoreGroup'});

Because you want to predict the Default variable response, move the Default variable to the end
of the table.

tbl = movevars(tbl,'Default','After','LowRisk');

View the first few rows of the table. Notice that the ScoreGroup variable has been split into multiple
columns, with the categorical values as the variable names.

head(tbl)

    ID    YOB    Year    HighRisk    MediumRisk    LowRisk    Default
    __    ___    ____    ________    __________    _______    _______

    1      1     1997       0            0            1          0   
    1      2     1998       0            0            1          0   
    1      3     1999       0            0            1          0   
    1      4     2000       0            0            1          0   
    1      5     2001       0            0            1          0   
    1      6     2002       0            0            1          0   
    1      7     2003       0            0            1          0   
    1      8     2004       0            0            1          0   

Split Data

Partition the data set into training, validation, and test partitions using the unique loan ID numbers.
Set aside 60% of the data for training, 20% for validation, and 20% for testing.

Find the unique loan IDs.

idx = unique(tbl.ID);
numObservations = length(idx);

Determine the number of observations for each partition.

numObservationsTrain = floor(0.6*numObservations);
numObservationsValidation = floor(0.2*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation;

Create an array of random indices corresponding to the observations and partition it using the
partition sizes.

 Compare Deep Learning Networks for Credit Default Prediction

18-3



rng('default')
idxShuffle = idx(randperm(numObservations));

idxTrain = idxShuffle(1:numObservationsTrain);
idxValidation = idxShuffle(numObservationsTrain+1:numObservationsTrain+numObservationsValidation);
idxTest = idxShuffle(numObservationsTrain+numObservationsValidation+1:end);

Find the table entries corresponding to the data set partitions.

idxTrainTbl = ismember(tbl.ID,idxTrain);
idxValidationTbl = ismember(tbl.ID,idxValidation);
idxTestTbl = ismember(tbl.ID,idxTest);

Keep the variables of interest for the task (YOB, HighRisk, MediumRisk, LowRisk, and Default)
and remove all other variables from the table.

tbl = removevars(tbl,{'ID','Year'});
head(tbl)

    YOB    HighRisk    MediumRisk    LowRisk    Default
    ___    ________    __________    _______    _______

     1        0            0            1          0   
     2        0            0            1          0   
     3        0            0            1          0   
     4        0            0            1          0   
     5        0            0            1          0   
     6        0            0            1          0   
     7        0            0            1          0   
     8        0            0            1          0   

Partition the table of data into training, validation, and testing partitions using the indices.

tblTrain = tbl(idxTrainTbl,:);
tblValidation = tbl(idxValidationTbl,:);
tblTest = tbl(idxTestTbl,:);

Define Network Architectures

You can use different deep learning architectures for the task of predicting credit default
probabilities. Smaller networks are quick to train, but deeper networks can learn more abstract
features. Choosing a neural network architecture requires balancing computation time against
accuracy. In this example, you define three network architectures, with varying levels of complexity.

Logistic Regression Network

The first network is a simple neural network containing four layers.

Start with a feature input layer, which passes tabular data (credit panel data) to the network. In this
example, there are four input features: YOB, HighRisk, MediumRisk, and LowRisk. Configure the
input layer to normalize the data using z-score normalization. Normalizing the data is important for
tasks where the scale and range of the input variables is very different.

Next, use a fully connected layer with a single output followed by a sigmoid layer. For the final layer,
use a custom binary cross-entropy loss layer. This layer is attached to this example as a supporting
file.

logisticLayers = [
    featureInputLayer(4,'Normalization','zscore')

18 Computational Finance Examples

18-4



    fullyConnectedLayer(1)
    sigmoidLayer
    BinaryCrossEntropyLossLayer('output')];

This network is called a single-layer perceptron. You can visualize the network using Deep Network
Designer or the analyzeNetwork function.

deepNetworkDesigner(logisticLayers)

You can easily show that the single-layer perceptron neural network is equivalent to logistic
regression. Let xi be a 1-by-4 vector containing the features for observation i. With input xi, the
output of the fully connected layer is

Wxi + b = W1xi, 1 + W2xi, 2 + W3xi, 3 + W4xi, 4 + b.

The output of the fully connected layer provides the input for the sigmoid layer. The sigmoid layer
then outputs

S(Wxi + b) = 1
1 + exp − W1xi, 1 + W2xi, 2 + W3xi, 3 + W4xi, 4 + b .

The output of the sigmoid layer is equivalent to the logistic regression model. The final layer of the
neural network is a binary cross-entropy loss layer. Minimizing the binary cross-entropy loss is
equivalent to maximizing the likelihood in a logistic regression model.

Multilayer Perceptron

The next network has a similar architecture to the logistic regression model, but has an additional
fully connected layer with an output size of 100, followed by a ReLU nonlinear activation function.
This type of network is called a multilayer perceptron due to the addition of another hidden layer and
a nonlinear activation function. Whereas the single-layer perceptron can learn only linear functions,

 Compare Deep Learning Networks for Credit Default Prediction

18-5



the multilayer perceptron can learn complex, nonlinear relationships between the input and output
data.

mlpLayers = [
    featureInputLayer(4,'Normalization','zscore')
    fullyConnectedLayer(100)
    reluLayer
    fullyConnectedLayer(1)
    sigmoidLayer
    BinaryCrossEntropyLossLayer('output')];

deepNetworkDesigner(mlpLayers)

Residual Network

For the final network, create a residual network (ResNet) [1] on page 18-13 from multiple stacks of
fully connected layers and ReLU activations. Originally developed for image classification, ResNets

18 Computational Finance Examples

18-6



have proven successful across many domains. Because a ResNet has many more parameters than
multilayer perceptrons or logistic networks, they take longer to train.

residualLayers = [
    featureInputLayer(4,'Normalization','zscore','Name','input')

    fullyConnectedLayer(16,'Name','fc1')
    batchNormalizationLayer('Name','bn1')
    reluLayer('Name','relu1')

    fullyConnectedLayer(32,'Name','resblock1-fc1')
    batchNormalizationLayer('Name','resblock1-bn1')
    reluLayer('Name','resblock1-relu1')

    fullyConnectedLayer(32,'Name','resblock1-fc2')
    additionLayer(2,'Name','resblock1-add')
    batchNormalizationLayer('Name','resblock1-bn2')
    reluLayer('Name','resblock1-relu2')

    fullyConnectedLayer(64,'Name','resblock2-fc1')
    batchNormalizationLayer('Name','resblock2-bn1')
    reluLayer('Name','resblock2-relu1')

    fullyConnectedLayer(64,'Name','resblock2-fc2')
    additionLayer(2,'Name','resblock2-add')
    batchNormalizationLayer('Name','resblock2-bn2')
    reluLayer('Name','resblock2-relu2')

    fullyConnectedLayer(1,'Name','fc2')
    sigmoidLayer('Name','sigmoid')
    BinaryCrossEntropyLossLayer('output')];

residualLayers = layerGraph(residualLayers);
residualLayers = addLayers(residualLayers,fullyConnectedLayer(32,'Name','resblock1-fc-shortcut'));
residualLayers = addLayers(residualLayers,fullyConnectedLayer(64,'Name','resblock2-fc-shortcut'));

residualLayers = connectLayers(residualLayers,'relu1','resblock1-fc-shortcut');
residualLayers = connectLayers(residualLayers,'resblock1-fc-shortcut','resblock1-add/in2');
residualLayers = connectLayers(residualLayers,'resblock1-relu2','resblock2-fc-shortcut');
residualLayers = connectLayers(residualLayers,'resblock2-fc-shortcut','resblock2-add/in2');

deepNetworkDesigner(residualLayers)

Network Depth

The depth of a network is an important concept in deep learning and is defined as the largest number
of sequential convolutional or fully connected layers (represented by yellow blocks in the following
diagram) on a path from the input layer to the output layer. The deeper a network is, the more
complex features it can learn. In this example, the logistic network has a depth of 1, the multilayer
perceptron has a depth of 2, and the residual network has a depth of 6.

 Compare Deep Learning Networks for Credit Default Prediction

18-7



Specify Training Options

Specify the training options.

• Train using the Adam optimizer.
• Set the initial learning rate to 0.001.
• Set the mini-batch size to 512.
• Turn on the training progress plot and turn off the command window output.
• Shuffle the data at the beginning of each epoch.
• Monitor the network accuracy during training by specifying validation data and using it to validate

the network every 1000 iterations.

options = trainingOptions('adam', ...
    'InitialLearnRate',0.001, ...
    'MiniBatchSize',512, ...

18 Computational Finance Examples

18-8



    'Plots','training-progress', ...
    'Verbose',false, ...
    'Shuffle','every-epoch', ...
    'ValidationData',tblValidation, ...
    'ValidationFrequency',1000);

The loss landscape of the logistic regression network is convex, therefore, it does not need to train for
as many epochs. For the logistic regression and multilayer perceptron models, train for 15 epochs.
For the more complex residual network, train for 50 epochs.

logisticOptions = options;
logisticOptions.MaxEpochs = 15;

mlpOptions = options;
mlpOptions.MaxEpochs = 15;

residualOptions = options;
residualOptions.MaxEpochs = 50;

The three networks have different architectures, so they require different sets of training options to
achieve optimal performance. You can perform optimization programmatically or interactively using
Experiment Manager. For an example showing how to perform a hyperparameter sweep of the
training options, see “Create a Deep Learning Experiment for Classification” on page 6-2.

Train Network

Train the networks using the architectures defined, the training data, and the training options. By
default, trainNetwork uses a GPU if one is available; otherwise, it uses a CPU. Training on a GPU
requires Parallel Computing Toolbox™ and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). You can also specify the
execution environment by using the ExecutionEnvironment name-value argument of
trainingOptions.

To avoid waiting for training, load pretrained networks by setting the doTrain flag to false. To
train the networks using trainNetwork, set the doTrain flag to true.

Training times using a NVIDIA® GeForce® RTX 2080 Ti are:

• Logistic network — Approximately 4 minutes
• Multilayer perceptron — Approximately 5 minutes
• Residual network — Approximately 35 minutes

doTrain = false;

if doTrain
    logisticNet = trainNetwork(tblTrain,'Default',logisticLayers,logisticOptions);
    mlpNet = trainNetwork(tblTrain,'Default',mlpLayers,mlpOptions);
    residualNet = trainNetwork(tblTrain,'Default',residualLayers,residualOptions);
else
    load logisticTrainedNetwork
    load mlpTrainedNetwork
    load residualTrainedNetwork
end

Test Network

Predict the default probability of the test data using the trained networks.

 Compare Deep Learning Networks for Credit Default Prediction

18-9



tblTest.logisticPred = predict(logisticNet,tblTest(:,1:end-1));
tblTest.mlpPred = predict(mlpNet,tblTest(:,1:end-1));
tblTest.residualPred = predict(residualNet,tblTest(:,1:end-1));

Default Rates by Year on Books

To assess the performance of the network, use the groupsummary function to group the true default
rates and corresponding predictions by years on books (represented by the YOB variable) and
calculate the mean value.

summaryYOB = groupsummary(tblTest,'YOB','mean',{'Default','logisticPred','mlpPred','residualPred'});
head(summaryYOB)

    YOB    GroupCount    mean_Default    mean_logisticPred    mean_mlpPred    mean_residualPred
    ___    __________    ____________    _________________    ____________    _________________

     1       19364         0.017352           0.017471          0.018056           0.017663    
     2       18917         0.012158           0.014209          0.015486           0.014192    
     3       18526         0.011875           0.011538          0.013154           0.011409    
     4       18232         0.011683          0.0093902          0.011151           0.010311    
     5       17925        0.0082008           0.007626         0.0089826          0.0093438    
     6       17727        0.0066565          0.0062047         0.0062967          0.0073401    
     7       12294        0.0030909          0.0050643         0.0042998          0.0047071    
     8        6361        0.0017293          0.0041463         0.0029052          0.0025272    

Plot the true average default rate against the average predictions by years on books.

networks = ["Logistic Regression Network","Multilayer Percerptron Network","Residual Network"];

figure
tiledlayout('flow','TileSpacing','compact')

for i = 1:3
    nexttile
    scatter(summaryYOB.YOB,summaryYOB.mean_Default*100,'*');
    hold on
    plot(summaryYOB.YOB,summaryYOB{:,i+3}*100);
    hold off
    title(networks(i))
    xlabel('Years on Books')
    ylabel('Default Rate (%)')
    legend('Observed','Predicted')
end

18 Computational Finance Examples

18-10



All three networks show a clear downward trend, with default rates going down as the number of
years on books increases. Years three and four are an exception to the downward trend. Overall, the
three models predict the default rates well, and even the simpler logistic regression model predicts
the general trend. The residual network captures a more complex, nonlinear relationship compared
to the logistic model, which can fit only a linear relationship.

Default Rates by Score Groups

Use the credit score group as a grouping variable to compute the observed and predicted default rate
for each score group.

Decode ScoreGroup back into the categorical score groups.

ScoreGroup = onehotdecode(tblTest{:,2:4},{'HighRisk','MediumRisk','LowRisk'},2);
tblTest.ScoreGroup = ScoreGroup;
tblTest = removevars(tblTest,{'HighRisk','MediumRisk','LowRisk'});

riskGroups = categories(tblTest.ScoreGroup);

Use the groupsummary function to group the true default rate and the predictions by YOB and
ScoreGroup, and return the mean for each group.

numYOB = height(summaryYOB);
numRiskGroups = height(riskGroups);

summaryYOBScore = groupsummary(tblTest,{'ScoreGroup','YOB'},'mean',{'Default','logisticPred','mlpPred','residualPred'});
head(summaryYOBScore)

 Compare Deep Learning Networks for Credit Default Prediction

18-11



    ScoreGroup    YOB    GroupCount    mean_Default    mean_logisticPred    mean_mlpPred    mean_residualPred
    __________    ___    __________    ____________    _________________    ____________    _________________

     HighRisk      1        6424         0.029577           0.028404          0.031563            0.02973    
     HighRisk      2        6180         0.020065            0.02325          0.026649           0.023655    
     HighRisk      3        5949         0.019163           0.019013          0.022484           0.018724    
     HighRisk      4        5806         0.020668           0.015535          0.018957           0.017207    
     HighRisk      5        5634          0.01349           0.012686           0.01577           0.015374    
     HighRisk      6        5531         0.013379           0.010354          0.010799            0.01215    
     HighRisk      7        3862        0.0051787          0.0084466         0.0071398          0.0083738    
     HighRisk      8        2027        0.0034534          0.0068881         0.0047145          0.0040559    

Plot the true average default rate against the predicted rate by years on books and risk group.

figure
t = tiledlayout('flow','TileSpacing','compact');
color = lines(3);

YOB = summaryYOBScore.YOB;
default = summaryYOBScore.mean_Default*100;
group = summaryYOBScore.ScoreGroup;

for i = 1:3
    pred = summaryYOBScore{:,i+4}*100;
    meanScore = reshape(pred,numYOB,numRiskGroups);

    nexttile
    hs = gscatter(YOB,default,group,color,'*',6,false);
    hold on
    colororder(color)
    plot(meanScore)
    hold off
    title(networks(i))
    xlabel('Years on Books')
    ylabel('Default Rate (%)')
    grid on
end

labels = ["True: " + riskGroups; "Pred: " + riskGroups];
lgd = legend(labels);
lgd.Layout.Tile = 4;

18 Computational Finance Examples

18-12



The plot shows that all score groups behave similarly as time progresses, with a general downward
trend. Across the high risk group, year four does not follow the downward trend. In the medium risk
group, years three and four appear flat. Finally, in the low risk group, year three shows an increase.
These irregular trends are difficult to discern with the simpler logistic regression model.

For an example showing how to use the locally-interpretable model-agnostic explanations (LIME) and
Shapley values interpretability techniques to understand the predictions of a residual network for
credit default prediction, see “Interpret and Stress-Test Deep Learning Networks for Probability of
Default” (Risk Management Toolbox).

References

[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778. 2016.

See Also
trainNetwork | trainingOptions | fullyConnectedLayer | Deep Network Designer |
featureInputLayer

Related Examples
• “Interpret and Stress-Test Deep Learning Networks for Probability of Default” (Risk

Management Toolbox)

 Compare Deep Learning Networks for Credit Default Prediction

18-13



• “Hedge Options Using Reinforcement Learning Toolbox™” (Financial Toolbox)
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Train Convolutional Neural Network for Regression” on page 3-49

More About
• “Deep Learning in MATLAB” on page 1-2
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “List of Deep Learning Layers” on page 1-43

18 Computational Finance Examples

18-14



Interpret and Stress-Test Deep Learning Networks for
Probability of Default

Train a credit risk for probability of default (PD) prediction using a deep neural network. The example
also shows how to use the locally interpretable model-agnostic explanations (LIME) and Shapley
values interpretability techniques to understand the predictions of the model. In addition, the
example analyzes model predictions for out-of-sample values and performs a stress-testing analysis.

The “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” (Risk Management
Toolbox) example presents a similar workflow but uses a logistic model. The “Modeling Probabilities
of Default with Cox Proportional Hazards” (Risk Management Toolbox) example uses a Cox
regression, or Cox proportional hazards model. However, interpretability techniques are not
discussed in either of these examples because the models are simpler and interpretable. The
“Compare Deep Learning Networks for Credit Default Prediction” on page 18-2 example focuses on
alternative network designs and fits simpler models without the macroeconomic variables.

While you can use these alternative, simpler models successfully to model credit risk, this example
introduces explainability tools for exploring complex-modeling techniques in credit applications. To
visualize and interpret the model predictions, you use Deep Learning Toolbox™ and the lime
(Statistics and Machine Learning Toolbox) and shapley (Statistics and Machine Learning Toolbox)
functions. To run this example, you:

1 Load and prepare credit data, reformat predictors, and split the data into training, validation,
and testing sets.

2 Define a network architecture, select training options, and train the network. (A saved version of
the trained network residualTrainedNetworkMacro is available for convenience.)

3 Apply the LIME and Shapley interpretability techniques on observations of interest (or "query
points") to determine if the importance of predictors in the model is as expected.

4 Explore extreme predictor out-of-sample values to investigate the behavior of the model for new,
extreme data.

5 Use the model to perform a stress-testing analysis of the predicted PD values.

Load Credit Default Data

Load the retail credit panel data set including its macroeconomic variables. The main data set (data)
contains the following variables:

• ID: Loan identifier
• ScoreGroup: Credit score at the beginning of the loan, discretized into three groups, High Risk,

Medium Risk, and Low Risk
• YOB: Years on books
• Default: Default indicator; the response variable
• Year: Calendar year

The small data set (dataMacro) contains macroeconomic data for the corresponding calendar years:

• Year: Calendar year
• GDP: Gross domestic product growth (year over year)

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-15



• Market: Market return (year over year)

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar
year. The score group is a discretization of the original credit score when the loan started. A value of
1 for Default means that the loan defaulted in the corresponding calendar year.

The third data set (dataMacroStress) contains baseline, adverse, and severely adverse scenarios
for the macroeconomic variables. This table is for the stress-testing analysis.

This example uses simulated data, but the same approach has been successfully applied to real data
sets.

load RetailCreditPanelData.mat
data = join(data,dataMacro);
head(data)

    ID    ScoreGroup    YOB    Default    Year     GDP     Market
    __    __________    ___    _______    ____    _____    ______

    1      Low Risk      1        0       1997     2.72      7.61
    1      Low Risk      2        0       1998     3.57     26.24
    1      Low Risk      3        0       1999     2.86      18.1
    1      Low Risk      4        0       2000     2.43      3.19
    1      Low Risk      5        0       2001     1.26    -10.51
    1      Low Risk      6        0       2002    -0.59    -22.95
    1      Low Risk      7        0       2003     0.63      2.78
    1      Low Risk      8        0       2004     1.85      9.48

Encode Categorical Variables

To train a deep learning network, you must first encode the categorical ScoreGroup variable to one-
hot encoded vectors.

View the order of the ScoreGroup categories.

categories(data.ScoreGroup)'

ans = 1×3 cell
    {'High Risk'}    {'Medium Risk'}    {'Low Risk'}

ans = 1×3 cell

{'High Risk'} {'Medium Risk'} {'Low Risk'}

One-hot encode the ScoreGroup variable.

riskGroup = onehotencode(data.ScoreGroup,2);

Add the one-hot vectors to the table.

data.HighRisk = riskGroup(:,1);
data.MediumRisk = riskGroup(:,2);
data.LowRisk = riskGroup(:,3);

Remove the original ScoreGroup variable from the table using removevars.

data = removevars(data,{'ScoreGroup'});

18 Computational Finance Examples

18-16



Move the Default variable to the end of the table, as this variable is the response you want to
predict.

data = movevars(data,'Default','After','LowRisk');

View the first few rows of the table. The ScoreGroup variable is split into multiple columns with the
categorical values as the variable names.

head(data)

    ID    YOB    Year     GDP     Market    HighRisk    MediumRisk    LowRisk    Default
    __    ___    ____    _____    ______    ________    __________    _______    _______

    1      1     1997     2.72      7.61       0            0            1          0   
    1      2     1998     3.57     26.24       0            0            1          0   
    1      3     1999     2.86      18.1       0            0            1          0   
    1      4     2000     2.43      3.19       0            0            1          0   
    1      5     2001     1.26    -10.51       0            0            1          0   
    1      6     2002    -0.59    -22.95       0            0            1          0   
    1      7     2003     0.63      2.78       0            0            1          0   
    1      8     2004     1.85      9.48       0            0            1          0   

Split Data

Partition the data set into training, validation, and test partitions using the unique loan ID numbers.
Set aside 60% of the data for training, 20% for validation, and 20% for testing.

Find the unique loan IDs.

idx = unique(data.ID);
numObservations = length(idx);

Determine the number of observations for each partition.

numObservationsTrain = floor(0.6*numObservations);
numObservationsValidation = floor(0.2*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation;

Create an array of random indices corresponding to the observations and partition it using the
partition sizes.

rng('default'); % for reproducibility
idxShuffle = idx(randperm(numObservations));

idxTrain = idxShuffle(1:numObservationsTrain);
idxValidation = idxShuffle(numObservationsTrain+1:numObservationsTrain+numObservationsValidation);
idxTest = idxShuffle(numObservationsTrain+numObservationsValidation+1:end);

Find the table entries corresponding to the data set partitions.

idxTrainTbl = ismember(data.ID,idxTrain);
idxValidationTbl = ismember(data.ID,idxValidation);
idxTestTbl = ismember(data.ID,idxTest);

Keep the variables of interest for the task (YOB, Default, and ScoreGroup) and remove all other
variables from the table.

data = removevars(data,{'ID','Year'});
head(data)

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-17



    YOB     GDP     Market    HighRisk    MediumRisk    LowRisk    Default
    ___    _____    ______    ________    __________    _______    _______

     1      2.72      7.61       0            0            1          0   
     2      3.57     26.24       0            0            1          0   
     3      2.86      18.1       0            0            1          0   
     4      2.43      3.19       0            0            1          0   
     5      1.26    -10.51       0            0            1          0   
     6     -0.59    -22.95       0            0            1          0   
     7      0.63      2.78       0            0            1          0   
     8      1.85      9.48       0            0            1          0   

Partition the table of data into training, validation, and testing partitions using the indices.

tblTrain = data(idxTrainTbl,:);
tblValidation = data(idxValidationTbl,:);
tblTest = data(idxTestTbl,:);

Define Network Architecture

You can use different deep learning architectures for the task of predicting credit default
probabilities. Smaller networks are quick to train, but deeper networks can learn more abstract
features. Choosing a neural network architecture requires balancing computation time against
accuracy. This example uses a residual architecture. For an example of other networks, see the
“Compare Deep Learning Networks for Credit Default Prediction” on page 18-2 example.

Create a residual architecture (ResNet) from multiple stacks of fully connected layers and ReLU
activations. ResNet architectures are state of the art in deep learning applications and popular in
deep learning literature. Originally developed for image classification, ResNets have proven
successful across many domains [1 on page 18-31].

residualLayers = [
    featureInputLayer(6, 'Normalization', 'zscore', 'Name', 'input')
    fullyConnectedLayer(16, 'Name', 'fc1','WeightsInitializer','he')
    batchNormalizationLayer('Name', 'bn1')
    reluLayer('Name','relu1')
    fullyConnectedLayer(32, 'Name', 'resblock1-fc1','WeightsInitializer','he')
    batchNormalizationLayer('Name', 'resblock1-bn1')
    reluLayer('Name', 'resblock1-relu1')
    fullyConnectedLayer(32, 'Name', 'resblock1-fc2','WeightsInitializer','he')
    additionLayer(2, 'Name', 'resblock1-add')
    batchNormalizationLayer('Name', 'resblock1-bn2')
    reluLayer('Name', 'resblock1-relu2')
    fullyConnectedLayer(64, 'Name', 'resblock2-fc1','WeightsInitializer','he')
    batchNormalizationLayer('Name', 'resblock2-bn1')
    reluLayer('Name', 'resblock2-relu1')
    fullyConnectedLayer(64, 'Name', 'resblock2-fc2','WeightsInitializer','he')
    additionLayer(2, 'Name', 'resblock2-add')
    batchNormalizationLayer('Name', 'resblock2-bn2')
    reluLayer('Name', 'resblock2-relu2')
    fullyConnectedLayer(1, 'Name', 'fc2','WeightsInitializer','he')
    sigmoidLayer('Name', 'sigmoid')
    BinaryCrossEntropyLossLayer('output')];

residualLayers = layerGraph(residualLayers);
residualLayers = addLayers(residualLayers,fullyConnectedLayer(32, 'Name', 'resblock1-fc-shortcut'));
residualLayers = addLayers(residualLayers,fullyConnectedLayer(64, 'Name', 'resblock2-fc-shortcut'));

18 Computational Finance Examples

18-18



residualLayers = connectLayers(residualLayers, 'relu1', 'resblock1-fc-shortcut');
residualLayers = connectLayers(residualLayers, 'resblock1-fc-shortcut', 'resblock1-add/in2');
residualLayers = connectLayers(residualLayers, 'resblock1-relu2', 'resblock2-fc-shortcut');
residualLayers = connectLayers(residualLayers, 'resblock2-fc-shortcut', 'resblock2-add/in2');

You can visualize the network using Deep Network Designer or the analyzeNetwork function.

deepNetworkDesigner(residualLayers)

Specify Training Options

In this example, train each network with these training options:

• Train using the Adam optimizer.
• Set the initial learning rate to 0.001.

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-19



• Set the mini-batch size to 512.
• Train for 75 epochs.
• Turn on the training progress plot and turn off the command window output.
• Shuffle the data at the beginning of each epoch.
• Monitor the network accuracy during training by specifying validation data and using it to validate

the network every 1000 iterations.

options = trainingOptions('adam', ...
   'InitialLearnRate',0.001, ...
   'MiniBatchSize',512, ...
   'MaxEpochs',75, ...
   'Plots','training-progress', ...
   'Verbose',false, ...
   'Shuffle','every-epoch', ...
   'ValidationData',tblValidation, ...
   'ValidationFrequency',1000);

The “Compare Deep Learning Networks for Credit Default Prediction” on page 18-2 example fits the
same type of network, but it excludes the macroeconomic predictors. In that example, if you increase
the number of epochs from 50 to 75, you can improve accuracy without overfitting concerns.

You can perform optimization programmatically or interactively using Experiment Manager. For an
example showing how to perform a hyperparameter sweep of the training options, see “Create a Deep
Learning Experiment for Classification” on page 6-2.

Train Network

Train the network using the architecture that you defined, the training data, and the training options.
By default, trainNetwork uses a GPU if one is available; otherwise, it uses a CPU. Training on a
GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information, see “Deep
Learning with MATLAB on Multiple GPUs” on page 7-14. You can also specify the execution
environment by using the 'ExecutionEnvironment' name-value argument of trainingOptions.

To avoid waiting for the training, load pretrained networks by setting the doTrain flag to false. To
train the networks using analyzeNetwork, set the doTrain flag to true. The Training Progress
window displays progress. The training time using an NVIDIA® GeForce® RTX 2080 is about 35
minutes for 75 epochs.

doTrain = false;

if doTrain
   residualNetMacro = trainNetwork(tblTrain,'Default',residualLayers,options);
else
   load residualTrainedNetworkMacro.mat
end

18 Computational Finance Examples

18-20



Test Network

Use the predict function to predict the default probability of the test data using the trained
networks.

tblTest.residualPred = predict(residualNetMacro,tblTest(:,1:end-1));

Plot Default Rates by Year on Books

To assess the performance of the network, use the groupsummary function to group the true default
rates and corresponding predictions by years on the books (represented by the YOB variable) and
calculate the mean value.

summaryYOB = groupsummary(tblTest,'YOB','mean',{'Default','residualPred'});
head(summaryYOB)

    YOB    GroupCount    mean_Default    mean_residualPred
    ___    __________    ____________    _________________

     1       19364         0.017352           0.017688    
     2       18917         0.012158           0.013354    
     3       18526         0.011875           0.011522    
     4       18232         0.011683           0.010485    
     5       17925        0.0082008          0.0090247    
     6       17727        0.0066565          0.0066525    

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-21



     7       12294        0.0030909          0.0034051    
     8        6361        0.0017293          0.0018151    

Plot the true average default rate against the average predictions by YOB.

figure
scatter(summaryYOB.YOB,summaryYOB.mean_Default*100,'*');
hold on
plot(summaryYOB.YOB,summaryYOB.mean_residualPred*100);
hold off
title('Residual Network')
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Observed','Predicted')

The plot shows a good fit on the test data. The model seems to capture the overall trend as the age of
the loan (YOB value) increases, as well as changes in the steepness of the trend.

The rest of this example shows some ways to better understand the model. First, it reviews standard
explainability techniques that you can apply to this model, specifically, the lime (Statistics and
Machine Learning Toolbox) and shapley (Statistics and Machine Learning Toolbox) functions. Then,
it explores the behavior of the model in new (out-of-sample) data values. Finally, the example uses the
model to predict PD values under stressed macroeconomic conditions, also known as stress testing.

Explain Model with LIME and Shapley

The local interpretable model-agnostic explanations (LIME) method and the Shapley method both aim
to explain the behavior of the model at a particular observation of interest or "query point." More

18 Computational Finance Examples

18-22



specifically, these techniques help you to understand the importance of each variable in the
prediction made for a particular observation. For more information, see lime (Statistics and Machine
Learning Toolbox) and shapley (Statistics and Machine Learning Toolbox).

For illustration purposes, choose two observations from the data to better interpret the model
predictions. The response values (last column) are not needed.

The first observation is a seasoned, low-risk loan. In other words, it has an initial score of LowRisk
and eight years on the books.

obs1 = data(8,1:end-1);
disp(obs1)

    YOB    GDP     Market    HighRisk    MediumRisk    LowRisk
    ___    ____    ______    ________    __________    _______

     8     1.85     9.48        0            0            1   

The second observation is a new, high-risk loan. That is, the score is HighRisk and it is in its first
year on the books.

obs2 = data(88,1:end-1);
disp(obs2)

    YOB    GDP     Market    HighRisk    MediumRisk    LowRisk
    ___    ____    ______    ________    __________    _______

     1     2.72     7.61        1            0            0   

Both lime (Statistics and Machine Learning Toolbox) and shapley (Statistics and Machine Learning
Toolbox) require a reference data set with predictor values. This reference data can be the training
data itself, or any other reference data where the model can be evaluated to explore the behavior of
the model. More data points allow the explainability methods to understand the behavior of the model
in more regions. However, a large data set can also slow down the computations, especially for
shapley (Statistics and Machine Learning Toolbox). For illustration purposes, use the first 1000 rows
from the training data set. The response values (last column) are not needed.

predictorData = data(1:1000,1:end-1);

lime (Statistics and Machine Learning Toolbox) and shapley (Statistics and Machine Learning
Toolbox) also require a function handle to the predict function. Treat predict like a black-box
model and call it multiple times to make predictions on data and gather information on the behavior
of the model.

blackboxFcn = @(x)predict(residualNetMacro,x);

Create lime Object

Create a lime (Statistics and Machine Learning Toolbox) object by passing the black-box function
handle and the selected predictor data.

Randomly generated synthetic data underlying lime (Statistics and Machine Learning Toolbox) can
affect the importance. The report may change depending on the synthetic data generated. It can also
change due to optional arguments, such as the 'KernelWidth' parameter that controls the area
around the observation of interest ("query point") while you fit the local model.

explainerLIME = lime(blackboxFcn,predictorData,'Type','regression');

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-23



Choose a number of important predictors of interest and fit a local model around the selected
observations. For illustration purposes, the model contains all of the predictors.

numImportantPredictors = 6;
explainerObs1 = fit(explainerLIME,obs1,numImportantPredictors);
explainerObs2 = fit(explainerLIME,obs2,numImportantPredictors);

Plot the importance for each predictor.

figure
subplot(2,1,1)
plot(explainerObs1);
subplot(2,1,2)
plot(explainerObs2);

The lime (Statistics and Machine Learning Toolbox) results are quite similar for both observations.
The information in the plots show that the most important variables are the High Risk and Medium
Risk variables. High Risk and Medium Risk contribute positively to higher probabilities of default.
On the other hand, YOB, LowRisk, GDP, and Market have a negative contribution to the default
probability. The Market variable does not seem to contribute as much as the other variables. The
values in the plots are coefficients of a simple model fitted around the point of interest, so the values
can be interpreted as sensitivities of the PD to the different predictors, and these results seem to
align with expectations. For example, PD predictions decrease as the YOB value (age of the loan)
increases, consistent with the downward trend observed in the model fit plot in the Test Network on
page 18-21 section.

18 Computational Finance Examples

18-24



Create shapley Object

The steps for creating a shapley (Statistics and Machine Learning Toolbox) object are the same as
for lime (Statistics and Machine Learning Toolbox). Create a shapley (Statistics and Machine
Learning Toolbox) object by passing the black-box function handle and the predictor data selected
previously.

The shapley (Statistics and Machine Learning Toolbox) analysis can also be affected by randomly
generated data, and it requires different methods to control the simulations required for the analysis.
For illustration purposes, create the shapley (Statistics and Machine Learning Toolbox) object with
default settings.

explainerShapley = shapley(blackboxFcn,predictorData);

Find and plot the importance of predictors for each query point. shapley (Statistics and Machine
Learning Toolbox) is more computationally intensive than lime (Statistics and Machine Learning
Toolbox). As the number of rows in the predictor data increases, the computational time for the
shapley (Statistics and Machine Learning Toolbox) results increases. For large data sets, using
parallel computing is recommended (see the 'UseParallel' option in shapley (Statistics and
Machine Learning Toolbox)).

explainerShapleyObs1 = fit(explainerShapley, obs1);
explainerShapleyObs2 = fit(explainerShapley, obs2);
figure;
subplot(2,1,1)
plot(explainerShapleyObs1)
subplot(2,1,2)
plot(explainerShapleyObs2)

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-25



In this case, the results look different for the two observations. The shapley (Statistics and Machine
Learning Toolbox) results explain the deviations from the average PD prediction. For the first
observation, which is a very low risk observation, the predicted value is well below the average PD
Therefore, all shapley (Statistics and Machine Learning Toolbox) values are negative, with YOB
being the most important variable in this case, followed by LowRisk. For the second observation,
which is a very high risk observation, most shapley (Statistics and Machine Learning Toolbox)
values are positive, with YOB and HighRisk as the main contributors to a predicted PD well above
average.

Explore Out-of-Sample Model Predictions 

Splitting the original data set into training, validation, and testing helps prevent overfitting. However,
the validation and test data sets share similar characteristics with the training data, for example, the
range of values for YOB, or the observed values for the macroeconomic variables.

rangeYOB = [min(data.YOB) max(data.YOB)]

rangeYOB = 1×2

     1     8

rangeGDP = [min(data.GDP) max(data.GDP)]

rangeGDP = 1×2

   -0.5900    3.5700

18 Computational Finance Examples

18-26



rangeMarket = [min(data.Market) max(data.Market)]

rangeMarket = 1×2

  -22.9500   26.2400

You can explore the behavior of the out-of-sample (OOS) model in two different ways. First, you can
predict for age values (YOB variable) larger than the maximum age value observed in the data. You
can predict YOB values up to 15. Second, you can predict for economic conditions not observed in the
data either. This example uses two extremely severe macroeconomic situations, where both the GDP
and Market values are very negative and outside the range of values in the data.

Start by setting up a baseline scenario where the last macroeconomic data in the sample is used as
reference. The YOB values go out of sample for all scenarios.

dataBaseline = table;
dataBaseline.YOB = repmat((1:15)',3,1);
dataBaseline.GDP = zeros(size(dataBaseline.YOB));
dataBaseline.Market = zeros(size(dataBaseline.YOB));
dataBaseline.HighRisk = zeros(size(dataBaseline.YOB));
dataBaseline.MediumRisk = zeros(size(dataBaseline.YOB));
dataBaseline.LowRisk = zeros(size(dataBaseline.YOB));

dataBaseline.GDP(:) = data.GDP(8);
dataBaseline.Market(:) = data.Market(8);
dataBaseline.HighRisk(1:15) = 1;
dataBaseline.MediumRisk(16:30) = 1;
dataBaseline.LowRisk(31:45) = 1;

disp(head(dataBaseline))

    YOB    GDP     Market    HighRisk    MediumRisk    LowRisk
    ___    ____    ______    ________    __________    _______

     1     1.85     9.48        1            0            0   
     2     1.85     9.48        1            0            0   
     3     1.85     9.48        1            0            0   
     4     1.85     9.48        1            0            0   
     5     1.85     9.48        1            0            0   
     6     1.85     9.48        1            0            0   
     7     1.85     9.48        1            0            0   
     8     1.85     9.48        1            0            0   

Create two new extreme scenarios that include out-of-sample values not only for YOB, but also for the
macroeconomic variables. This example uses pessimistic scenarios, but you could repeat the analysis
for optimistic situations to explore the behavior of the model in either kind of extreme situation.

dataExtremeS1 = dataBaseline;
dataExtremeS1.GDP(:) = -1;
dataExtremeS1.Market(:) = -25;
dataExtremeS2 = dataBaseline;
dataExtremeS2.GDP(:) = -2;
dataExtremeS2.Market(:) = -40;

Predict PD values for all scenarios using predict.

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-27



dataBaseline.PD = predict(residualNetMacro,dataBaseline);
dataExtremeS1.PD = predict(residualNetMacro,dataExtremeS1);
dataExtremeS2.PD = predict(residualNetMacro,dataExtremeS2);

Visualize the results for a selected score. For convenience, the average of the PD values over the
three scores is visualized as a summary.

ScoreSelected = ;
switch ScoreSelected
   case 'High'
      ScoreInd = dataBaseline.HighRisk==1;
      PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreInd)];
   case 'Medium'
      ScoreInd = dataBaseline.MediumRisk==1;
      PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreInd)];
   case 'Low'
      ScoreInd = dataBaseline.LowRisk==1;
      PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreInd)];
   case 'Average'
      PredPDYOBBase = groupsummary(dataBaseline,'YOB','mean','PD');
      PredPDYOBS1 = groupsummary(dataExtremeS1,'YOB','mean','PD');
      PredPDYOBS2 = groupsummary(dataExtremeS2,'YOB','mean','PD');
      PredPDYOB = [PredPDYOBBase.mean_PD PredPDYOBS1.mean_PD PredPDYOBS2.mean_PD];
end

figure;
bar(PredPDYOB*100);
xlabel('Years on Books')
ylabel('Probability of Default (%)')
legend('Baseline','Scenario 1','Scenario 2')
title(strcat("Out-of-Sample Scenarios, ",ScoreSelected," Score"))
grid on

18 Computational Finance Examples

18-28



The overall results are in line with expectations, since the PD values decrease as the YOB value
increases, and worse economic conditions result in higher PD values. However, the relative increase
of the predicted PD values shows an interesting result. For Low and Medium scores, there is a
significant increase for the first year on books (YOB = 1). In contrast, for High scores, the relative
increase from baseline, to the first extreme scenario, then to the second extreme case, is small. This
result suggests an implicit upper limit in the predicted values in the structure of the model. The
extreme scenarios in this exercise seem unlikely to occur, however, for extreme but plausible
scenarios, this behavior would require investigation with stress testing.

Stress-Test Predicted Probabilities of Default (PD)

Because the model includes macroeconomic variables, it can be used to perform a stress-testing
analysis (see for example [2 on page 18-31], [3 on page 18-31] on page 18-31, [4 on page 18-
31]). The steps are similar to the previous section except that the scenarios are plausible scenarios
set periodically at an institution level, or set by regulators to be used by all institutions.

The dataMacroStress data set contains three scenarios for the stress testing of the model, namely,
baseline, adverse, and severely adverse scenarios. The adverse and severe scenarios are relative to
the baseline scenario, and the macroeconomic conditions are plausible given the baseline. These
scenarios fall within the range of values observed in the data used for training and validation. The
stress testing of the PD values for given macroeconomic scenarios is conceptually different from the
exercise in the previous section, where the focus is on exploring the behavior of the model on out-of-
sample data, regardless of how plausible those extreme scenarios are from an economic point of view.

Following the prior steps, you generate PD predictions for each score level and each scenario.

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-29



dataBaselineStress = dataBaseline(:,1:end-1);
dataAdverse = dataBaselineStress;
dataSevere = dataBaselineStress;

dataBaselineStress.GDP(:) = dataMacroStress{'Baseline','GDP'};
dataBaselineStress.Market(:) = dataMacroStress{'Baseline','Market'};

dataAdverse.GDP(:) = dataMacroStress{'Adverse','GDP'};
dataAdverse.Market(:) = dataMacroStress{'Adverse','Market'};

dataSevere.GDP(:) = dataMacroStress{'Severe','GDP'};
dataSevere.Market(:) = dataMacroStress{'Severe','Market'};

Use the predict function to predict PD values for all scenarios. Visualize the results for a selected
score.

dataBaselineStress.PD = predict(residualNetMacro,dataBaselineStress);
dataAdverse.PD = predict(residualNetMacro,dataAdverse);
dataSevere.PD = predict(residualNetMacro,dataSevere);

ScoreSelected = ;
switch ScoreSelected
   case 'High'
      ScoreInd = dataBaselineStress.HighRisk==1;
      PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(ScoreInd)];
   case 'Medium'
      ScoreInd = dataBaselineStress.MediumRisk==1;
      PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(ScoreInd)];
   case 'Low'
      ScoreInd = dataBaselineStress.LowRisk==1;
      PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(ScoreInd)];
   case 'Average'
      PredPDYOBBaseStress = groupsummary(dataBaselineStress,'YOB','mean','PD');
      PredPDYOBAdverse = groupsummary(dataAdverse,'YOB','mean','PD');
      PredPDYOBSevere = groupsummary(dataSevere,'YOB','mean','PD');
      PredPDYOBStress = [PredPDYOBBaseStress.mean_PD PredPDYOBAdverse.mean_PD PredPDYOBSevere.mean_PD];
end

figure;
bar(PredPDYOBStress*100);
xlabel('Years on Books')
ylabel('Probability of Default (%)')
legend('Baseline','Adverse','Severe')
title(strcat("PD Stress Testing, ",ScoreSelected," Score"))
grid on

18 Computational Finance Examples

18-30



The overall results are in line with expectations. As in the Explore Out-of-Sample Model Predictions
on page 18-26section, the predictions for the High score in the first year on books (YOB = 1) needs to
be reviewed, since the relative increase in the predicted PD from one scenario to the next seems
smaller than for other scores and loan ages. All other predictions show a reasonable pattern that are
consistent with expectations.

References

[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778, 2016.

[2] Federal Reserve, Comprehensive Capital Analysis and Review (CCAR): https://
www.federalreserve.gov/bankinforeg/ccar.htm

[3] Bank of England, Stress Testing: https://www.bankofengland.co.uk/financial-stability

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

18-31

https://www.federalreserve.gov/bankinforeg/ccar.htm
https://www.federalreserve.gov/bankinforeg/ccar.htm
https://www.bankofengland.co.uk/financial-stability


[4] European Banking Authority, EU-Wide Stress Testing: https://www.eba.europa.eu/risk-analysis-
and-data/eu-wide-stress-testing

See Also
trainNetwork | trainingOptions | fullyConnectedLayer | Deep Network Designer |
featureInputLayer

Related Examples
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Train Convolutional Neural Network for Regression” on page 3-49

More About
• “Deep Learning in MATLAB” on page 1-2
• “Specify Layers of Convolutional Neural Network” on page 1-53
• “List of Deep Learning Layers” on page 1-43

18 Computational Finance Examples

18-32

https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing
https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing


Hedge Options Using Reinforcement Learning Toolbox™

Outperform the traditional BSM approach using an optimal option hedging policy.

Option Modeling Using Black-Scholes-Merton Model

The Black-Scholes-Merton (BSM) model, which earned its creators a Nobel Prize in Economics in
1997, provides a modeling framework for pricing and analyzing financial derivatives or options.
Options are financial instruments that derive their value from a particular underlying asset. The
concept of dynamic hedging is fundamental to the BSM model. Dynamic hedging is the idea that, by
continuously buying and selling shares in the relevant underlying asset, you can hedge the risk of the
derivative instrument such that the risk is zero. This "risk-neutral" pricing framework is used to
derive pricing formulae for many different financial instruments.

The simplest financial derivative is a European call option, which provides the buyer with the right,
but not the obligation, to buy the underlying asset at a previously specified value (strike price) at a
previously specified time (maturity).

You can use a BSM model to price a European call option. The BSM model makes the following
simplifying assumptions:

• The behavior of the underlying asset is defined by geometric Brownian motion (GBM).
• There are no transaction costs.
• Volatility is constant.

The BSM dynamic hedging strategy is also called "delta-hedging," after the quantity Delta, which is
the sensitivity of the option with respect to the underlying asset. In an environment that meets the
previously stated BSM assumptions, using a delta-hedging strategy is an optimal approach to hedging
an option. However, it is well-known that in an environment with transaction costs, the use of the
BSM model leads to an inefficient hedging strategy. The goal of this example is to use Reinforcement
Learning Toolbox™ to learn a strategy that outperforms the BSM hedging strategy, in the presence of
transaction costs.

The goal of reinforcement learning (RL) is to train an agent to complete a task within an unknown
environment. The agent receives observations and a reward from the environment and sends actions
to the environment. The reward is a measure of how successful an action is with respect to
completing the task goal.

The agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on the observations from the environment.
Typically, the policy is a function approximator with tunable parameters, such as a deep neural
network.

• The learning algorithm continuously updates the policy parameters based on the actions,
observations, and reward. The goal of the learning algorithm is to find an optimal policy that
maximizes the cumulative reward received during the task.

In other words, reinforcement learning involves an agent learning the optimal behavior through
repeated trial-and-error interactions with the environment without human involvement. For more
information on reinforcement learning, see “What Is Reinforcement Learning?” (Reinforcement
Learning Toolbox).

 Hedge Options Using Reinforcement Learning Toolbox™

18-33



Cao [2 on page 18-40] describes the setup for reinforcement learning as:

• Si is the state at time i.
• Ai is the action taken at i.
• Ri + 1 is the resulting reward at time i + 1.

The aim of reinforcement learning is to maximize expected future rewards. In this financial
application of reinforcement learning, maximizing expected rewards is learning a delta-hedging
strategy as an optimal approach to hedging a European call option.

This example follows the framework outlined in Cao [2 on page 18-40]. Specifically, an accounting
profit and loss (P&L) formulation from that paper is used to set up the reinforcement learning
problem and a deep deterministic policy gradient (DDPG) agent is used. This example does not
exactly reproduce the approach from [2 on page 18-40] because Cao et. al. recommend a Q-learning
approach with two separate Q-functions (one for the hedging cost and one for the expected square of
the hedging cost), but this example uses instead a simplified reward function.

Define Training Parameters

Next, specify an at-the-money option with three months to maturity is hedged. For simplicity, both the
interest rate and dividend yield are set to 0.

% Option parameters
Strike = 100;
Maturity = 21*3/250;

% Asset parameters
SpotPrice = 100;
ExpVol = .2;
ExpReturn = .05;

% Simulation parameters
rfRate = 0;
dT = 1/250;
nSteps = Maturity/dT;
nTrials = 5000;

% Transacation cost and cost function parameters
c = 1.5;
kappa = .01;
InitPosition = 0;

% Set the random generator seed for reproducibility.
rng(3)

Define Environment

In this section, the action and observation parameters, actInfo and obsInfo. The agent action is
the current hedge value which can range between 0 and 1. There are three variables in the agent
observation:

• Moneyness (ratio of the spot price to the strike price)
• Time to maturity
• Position or amount of the underlying asset that is held

18 Computational Finance Examples

18-34



ObservationInfo             = rlNumericSpec([3 1],'LowerLimit',0,'UpperLimit',[10 Maturity 1]');
ObservationInfo.Name        = 'Hedging State';
ObservationInfo.Description = ['Moneyness', 'TimeToMaturity','Position'];

ActionInfo = rlNumericSpec([1 1],'LowerLimit',0,'UpperLimit',1);
ActionInfo.Name = 'Hedge';

Define Reward

From Cao [2 on page 18-40], the accounting P&L formulation and rewards (negative costs) are

Ri + 1 = Vi + 1− Vi + Hi + 1(Si + 1 - Si) - κ Si + 1 Hi + 1− Hi

where

Ri:Reward

Vi:Value of option

Si:Spot price of underlying asset

Hi:Holding

κ:Transaction costs

A final reward at the last time step liquidates the hedge that is κ Sn Hn .

In this implementation, the reward (Ri) is penalized by the square of the reward multiplied by a
constant to punish large swings in the value of the hedged position:

Ri + 1 = Ri + 1− c Ri + 1
2

The reward is defined in stepFcn which is called at each step of the simulation.

env = rlFunctionEnv(ObservationInfo,ActionInfo, ...
    @(Hedge, LoggedSignals) stepFcn(Hedge,LoggedSignals,rfRate,ExpVol,dT,Strike,ExpReturn,c,kappa), ...
    @() resetFcn(SpotPrice/Strike,Maturity,InitPosition));

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create Environment Interface for RL Agent

Create the DDPG agent using rlDDPGAgent (Reinforcement Learning Toolbox). While it is possible to
create custom actor and critic networks, this example uses the default networks.

initOpts = rlAgentInitializationOptions('NumHiddenUnit',64);
criticOpts = rlOptimizerOptions("LearnRate",1e-4);
actorOpts = rlOptimizerOptions("LearnRate",1e-4);

agentOptions = rlDDPGAgentOptions(...
    "ActorOptimizerOptions",actorOpts,...
    "CriticOptimizerOptions",criticOpts,...
    "DiscountFactor",.9995,...
    "TargetSmoothFactor",5e-4);
agent = rlDDPGAgent(obsInfo,actInfo,initOpts,agentOptions);

 Hedge Options Using Reinforcement Learning Toolbox™

18-35



Visualize Actor and Critic Networks

Visualize the actor and critic networks using the Deep Network Designer.

deepNetworkDesigner(layerGraph(getModel(getActor(agent))))

Train Agent

Train the agent using the train (Reinforcement Learning Toolbox) function.

trainOpts = rlTrainingOptions( ...
    'MaxEpisodes', nTrials, ...
    'MaxStepsPerEpisode',nSteps, ...
    'Verbose', false, ...
    'ScoreAveragingWindowLength',200,...
    'StopTrainingCriteria',"AverageReward", ...
    'StopTrainingValue',-40, ...
    'StopOnError',"on", ...
    "UseParallel",false);

doTraining = false;
if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else

18 Computational Finance Examples

18-36



    % Load the pretrained agent for the example.
    load('DeepHedgingDDPG.mat','agent')
end

To avoid waiting for the training, load pretrained networks by setting the doTraining flag to false.
If you set doTraining to true, the Reinforcement Learning Episode Manager displays the training
progress.

Validate Agent

Use the Financial Toolbox™ functions blsdelta (Financial Toolbox) and blsprice (Financial
Toolbox) for a conventional approach to calculate the price as a European call option. When
comparing the conventional approach to the RL approach, the results are similar to the findings of
Cao [2 on page 18-40] in Exhibit 4. This example demonstrates that the RL approach significantly
reduces hedging costs.

% Simulation parameters
nTrials = 1000;

policy_BSM = @(mR,TTM,Pos) blsdelta(mR,1,rfRate,max(TTM,eps),ExpVol);

policy_RL = @(mR,TTM,Pos) arrayfun(@(mR,TTM,Pos) cell2mat(getAction(agent,[mR TTM Pos]')),mR,TTM,Pos);

OptionPrice = blsprice(SpotPrice,Strike,rfRate,Maturity,ExpVol);

 Hedge Options Using Reinforcement Learning Toolbox™

18-37



Costs_BSM = computeCosts(policy_BSM,nTrials,nSteps,SpotPrice,Strike,Maturity,rfRate,ExpVol,InitPosition,dT,ExpReturn,kappa);
Costs_RL = computeCosts(policy_RL,nTrials,nSteps,SpotPrice,Strike,Maturity,rfRate,ExpVol,InitPosition,dT,ExpReturn,kappa);
HedgeComp = table(100*[-mean(Costs_BSM) std(Costs_BSM)]'/OptionPrice, ...
    100*[-mean(Costs_RL) std(Costs_RL)]'/OptionPrice, ...
    'RowNames',["Average Hedge Cost (% of Option Price)","STD Hedge Cost (% of Option Price)"], ...
    'VariableNames',["BSM","RL"]);
disp(HedgeComp)

                                               BSM        RL  
                                              ______    ______

    Average Hedge Cost (% of Option Price)    91.259    47.022
    STD Hedge Cost (% of Option Price)        35.712    68.119

The following histogram shows the range of different hedging costs for both approaches. The RL
approach performs better, but with a larger variance than the BSM approach. The RL appraoch in
this example would likely benefit from the two Q-function approach that Cao [2 on page 18-40]
discusses and implements.

figure
numBins = 10;
histogram(-Costs_RL,numBins,'FaceColor','r','FaceAlpha',.5)
hold on
histogram(-Costs_BSM,numBins,'FaceColor','b','FaceAlpha',.5)
xlabel('Hedging Costs')
ylabel('Number of Trials')
title('RL Hedge Costs vs. BLS Hedge Costs')
legend('RL Hedge','Theoretical BLS Delta','location','best')

18 Computational Finance Examples

18-38



A plot of the hedge Ratio with respect to moneyness shows the differences between the BSM and RL
approaches. As discussed in Cao [2 on page 18-40], in the presence of transaction costs, the agent
learns that "when delta hedging would require shares to be purchased, it tends to be optimal for a
trader to be underhedged relative to delta. Similarly, when delta hedging would require shares to be
sold, it tends to be optimal for a trader to be over-hedged relative to delta."

policy_RL_mR = @(mR,TTM,Pos) cell2mat(getAction(agent,[mR TTM Pos]'));

mRange = (.8:.01:1.2)';

figure
t_plot = 2/12;
plot(mRange,blsdelta(mRange,1,rfRate,t_plot,ExpVol),'b')
hold on
plot(mRange,arrayfun(@(mR) policy_RL_mR(mR,t_plot,blsdelta(mR,1,rfRate,t_plot,ExpVol)),mRange),'r')
plot(mRange,arrayfun(@(mR) policy_RL_mR(mR,t_plot,blsdelta(mR+.1,1,rfRate,t_plot,ExpVol)),mRange),'g')
plot(mRange,arrayfun(@(mR) policy_RL_mR(mR,t_plot,blsdelta(mR-.1,1,rfRate,t_plot,ExpVol)),mRange),'m')
legend('Theoretical BLS Delta','RL Hedge -- ATM','RL Hedge -- Selling','RL Hedge -- Buying', ...
    'location','best')
xlabel('Moneyness')
ylabel('Hedge Ratio')
title('RL Hedge vs. BLS Delta for TTM of 2/12')

References

[1] Buehler H., L. Gonon, J. Teichmann, and B. Wood. "Deep hedging." Quantitative Finance. Vol. 19,
No. 8, 2019, pp. 1271–91.

 Hedge Options Using Reinforcement Learning Toolbox™

18-39



[2] Cao J., J. Chen, J. Hull, and Z. Poulos. "Deep Hedging of Derivatives Using Reinforcement
Learning." The Journal of Financial Data Science. Vol. 3, No. 1, 2021, pp. 10–27.

[3] Halperin I. "QLBS: Q-learner in the Black-Scholes (-Merton) Worlds." The Journal of Derivatives.
Vol. 28, No. 1, 2020, pp. 99–122.

[4] Kolm P.N. and G. Ritter. "Dynamic Replication and Hedging: A Reinforcement Learning Approach."
The Journal of Financial Data Science. Vol. 1, No. 1, 2019, pp. 159–71.

Local Functions
function [InitialObservation,LoggedSignals] = resetFcn(Moneyness,TimeToMaturity,InitPosition)
% Reset function to reset at the beginning of each episode.

LoggedSignals.State = [Moneyness TimeToMaturity InitPosition]';
InitialObservation  = LoggedSignals.State;

end

function [NextObs,Reward,IsDone,LoggedSignals] = stepFcn(Position_next,LoggedSignals,r,vol,dT,X,mu,c,kappa)
% Step function to evaluate at each step of the episode.

Moneyness_prev = LoggedSignals.State(1);
TTM_prev = LoggedSignals.State(2);
Position_prev = LoggedSignals.State(3);

S_prev = Moneyness_prev*X;

% GBM Motion
S_next = S_prev*((1 + mu*dT) + (randn* vol).*sqrt(dT));
TTM_next = max(0,TTM_prev - dT);

IsDone = TTM_next < eps;

stepReward = (S_next - S_prev)*Position_prev - abs(Position_next - Position_prev)*S_next*kappa - ...
    blsprice(S_next,X,r,TTM_next,vol) + blsprice(S_prev,X,r,TTM_prev,vol);

if IsDone
    stepReward = stepReward - Position_next*S_next*kappa;
end

Reward = stepReward - c*stepReward.^2;

LoggedSignals.State = [S_next/X;TTM_next;Position_next];
NextObs = LoggedSignals.State;

end

function perCosts = computeCosts(policy,nTrials,nSteps,SpotPrice,Strike,T,r,ExpVol,InitPos,dT,mu,kappa)
% Helper function to compute costs for any hedging approach.

rng(0)

simOBJ = gbm(mu,ExpVol,'StartState',SpotPrice);
[simPaths,simTimes] = simulate(simOBJ,nSteps,'nTrials',nTrials,'deltaTime',dT);
simPaths = squeeze(simPaths);

18 Computational Finance Examples

18-40



rew = zeros(nSteps,nTrials);

Position_prev = InitPos;
Position_next = policy(simPaths(1,:)/Strike,T*ones(1,nTrials),InitPos*ones(1,nTrials));
for timeidx=2:nSteps+1
    rew(timeidx-1,:) = (simPaths(timeidx,:) - simPaths(timeidx-1,:)).*Position_prev - ...
        abs(Position_next - Position_prev).*simPaths(timeidx,:)*kappa - ...
        blsprice(simPaths(timeidx,:),Strike,r,max(0,T - simTimes(timeidx)),ExpVol) + ...
        blsprice(simPaths(timeidx-1,:),Strike,r,T - simTimes(timeidx-1),ExpVol);

    if timeidx == nSteps+1
         rew(timeidx-1,:) =  rew(timeidx-1,:) - Position_next.*simPaths(timeidx,:,:)*kappa;
    else
        Position_prev = Position_next;
        Position_next = policy(simPaths(timeidx,:,:)/Strike,(T - simTimes(timeidx)).*ones(1,nTrials),Position_prev);
    end
end

perCosts = sum(rew);

end

See Also
blsprice | blsdelta | rlDDPGAgent | Deep Network Designer

Related Examples
• “Use Deep Learning to Approximate Barrier Option Prices with Heston Model” on page 18-42

 Hedge Options Using Reinforcement Learning Toolbox™

18-41



Use Deep Learning to Approximate Barrier Option Prices with
Heston Model

This example shows how to use Deep Learning Toolbox™ to train a network and obtain predictions on
barrier option prices with a Heston model.

Barrier Option

The barrier option is an option where the payoff depends on whether the underlying asset crosses the
predetermined trigger value (barrier level) during the life of the option. Barrier options are attractive
because they are less expensive than the corresponding vanilla options.

Heston Model

The Heston model is an extension of the Black-Scholes model, where the volatility (square root of
variance) is no longer assumed to be constant, and the variance follows a stochastic (CIR) process.
The Heston model allows modeling the implied volatility smiles observed in the market where options
with identical expiration dates show increasing volatility as the options become more in-the-money
(ITM) or out-of-the-money (OTM).

The stochastic differential equation is:

dSt = rStdt + vtStdWt

dvt = κ θ− vt dt + σv vtdWt
v

where

r — Continuous risk-free rate

St — Asset price at time t

vt — Asset price variance at time t

v0 — Initial variance of the asset price at t = 0

θ — Long-term variance level

κ — Mean reversion speed for the variance

σv — Volatility of the variance

ρ — Correlation between the Wiener processes Wt and Wt
v

Barrier option prices are usually computed using Monte Carlo simulation in the Heston setting since
there is no closed-form solution available. However, a Monte Carlo simulation is computationally
expensive, and when pricing instruments for financial markets, pricing speed is crucial. This example
demonstrates using a vanilla neural network to speed up the barrier option pricing by learning the
results from a Monte Carlo simulation. The neural network provides a highly efficient approximation
technique. Although the off-line training is time consuming, the on-line pricing is fast.

18 Computational Finance Examples

18-42



Define Parameters

Focusing on a barrier-up, knock-out call option, start by deciding on the ranges for the pricing
parameters. Consider a scaled spot price (moneyness) instead of two separate parameters S0 (asset
spot price) and K(strike). The barrier level is also scaled by strike value.

% Option parameter ranges.
% The first value defines the lower bound 
% and the second value is the upper bound.
moneyness = [0.6 1.2]; % S0/K
maturity = [0.05 2];
upBarrier = [0.6 1.3]; % Up barrier/K

% Model parameter ranges
rate = [0 0.05];
kappa = [0.3 2];
theta = [0.05 0.2];
sigma = [0.05 0.5];
v0 = [0.05 0.2];
rho = [-0.9 -0.1];

% Call option parameters
optSpec = "call";
exerciseStyle = "european";
barriertype = "uo";

% Simulation parameter
nTrials = 1000;

% Set the random generator seed for reproducibility.
%rng('default')

Gather Data

Sample the parameter combinations by using a quasi-Monte Carlo sampling method (sobolset
(Statistics and Machine Learning Toolbox)) that is based on Sobol sequences which possess good
uniformity properties. A Sobol sequence uses a base of 2 to form successively finer uniform partitions
of the unit interval, and then reorders the coordinates in each dimension.

Quasi = sobolset(9,'Skip',1024);
Quasi = scramble(Quasi,'MatousekAffineOwen');
inputs = Quasi(1:24e4, :); % Initial 240000 samples

% Column number for each parameter in the inputs array.
iMoneyness = 1;iTime = 2;iRate = 3;iCorr = 4;iKappa = 5;iTheta = 6;iSigma = 7;iV0 = 8;iBarrier = 9;

inputs(:,iMoneyness) = inputs(:,iMoneyness)*(moneyness(2)-moneyness(1))+moneyness(1);   % Moneyness S0/K
inputs(:,iTime)      = inputs(:,iTime)*(maturity(2)-maturity(1))+maturity(1);           % Maturity time
inputs(:,iRate)      = inputs(:,iRate)*(rate(2)-rate(1))+rate(1);                       % rate
inputs(:,iCorr)      = inputs(:,iCorr)*(rho(2)-rho(1))+rho(1);                          % Correlation
inputs(:,iKappa)     = inputs(:,iKappa)*(kappa(2)-kappa(1))+kappa(1);                   % Mean reversion speed
inputs(:,iTheta)     = inputs(:,iTheta)*(theta(2)-theta(1))+theta(1);                   % Long-term variance
inputs(:,iSigma)     = inputs(:,iSigma)*(sigma(2)-sigma(1))+sigma(1);                   % Volatility of variance
inputs(:,iV0)        = inputs(:,iV0)*(v0(2)-v0(1))+v0(1);                               % Initial variance V0
inputs(:,iBarrier)   = inputs(:,iBarrier)*(upBarrier(2)-upBarrier(1))+upBarrier(1);     % UPbarrier/K

Remove the parameter combinations where the barrier levels are not greater than the initial spot
prices.

 Use Deep Learning to Approximate Barrier Option Prices with Heston Model

18-43



% Barrier level should be higher than the initial spot price.
invalid = inputs(:,iBarrier)<=inputs(:,iMoneyness);
inputs(invalid,:) = [];

Calculate Barrier Option Prices Using Monte Carlo Simulation

After you create the parameter space, calculate the prices of the Barrier (Financial Instruments
Toolbox) option by Monte Carlo simulation using the object-based pricing framework in Financial
Instrument Toolbox™. Specifically, use ratecurve (Financial Instruments Toolbox), Heston
(Financial Instruments Toolbox), Barrier (Financial Instruments Toolbox), and AssetMonteCarlo
(Financial Instruments Toolbox) to create the objects required to price the Barrier (Financial
Instruments Toolbox) option. To avoid waiting for the Monte Carlo simulation, load the calculated
prices for the example by setting the doMCPricing flag to false.

doMCPricing = false;

if doMCPricing
    % Calculate the prices using the AssetMonteCarlo pricer.
    Settle = datetime(2021,2,1);
    Price = nan(size(inputs,1),1);

    for i = 1:size(inputs,1)
        AssetPrice = inputs(i,iMoneyness);
        Strike = 1;
        Barrier = inputs(i,iBarrier);

        V0 = inputs(i,iV0);
        ThetaV = inputs(i,iTheta);
        Kappa = inputs(i,iKappa);
        SigmaV = inputs(i,iSigma);
        RhoSV = inputs(i,iCorr);

        Rates = inputs(i,iRate);
        ExerciseDate = daysadd(Settle,round(inputs(i,iTime)*365),0);
        ZeroCurve = ratecurve('zero',Settle,ExerciseDate,Rates);

        hestonModel = finmodel("Heston",V0=V0,ThetaV=ThetaV,Kappa=Kappa,SigmaV=SigmaV,RhoSV=RhoSV);

        MCPricer = finpricer("AssetMonteCarlo",DiscountCurve=ZeroCurve,Model=hestonModel,SpotPrice=AssetPrice,...
            SimulationDates=[Settle:days(2):ExerciseDate, ExerciseDate],numTrials=nTrials);

        CallBarrier = fininstrument("Barrier",ExerciseDate=ExerciseDate,Strike=Strike,OptionType=optSpec,...
            Barriertype=barriertype,Barriervalue=Barrier,ExerciseStyle=exerciseStyle);

        Price(i) = price(MCPricer,CallBarrier);

    end

else
    % Load the calculated prices for the example.
    load('DeepLearningBarrierHeston.mat','inputs','Price')
end

If you do not use the calculated prices for the example by setting the doMCPricing flag to false,
the following histogram shows the distribution of valuation times for each individual barrier option
using a Monte Carlo method. This histogram demonstrates that it takes approximately 0.46 seconds
to compute a single barrier option price. In this example, nTrials is set to 1e3 which is the number

18 Computational Finance Examples

18-44



of trials in the Monte Carlo simulation to compute a single option price. The total time to compute
prices for the sample size of 30,000 barrier options is approximately 3.9 hours, depending on the
processor speed.

Define Neural Network

Different network architectures can help with the task of pricing barrier options using a Heston
model. Choosing a neural network architecture requires balancing computation time against
accuracy. This example uses multiple, fully-connected layers and Leaky ReLU activations.

numFeatures = size(inputs,2);
layers = [
    featureInputLayer(numFeatures,Normalization='zscore')    
    fullyConnectedLayer(32,WeightsInitializer='he')
    leakyReluLayer
    fullyConnectedLayer(32,WeightsInitializer='he')
    leakyReluLayer
    fullyConnectedLayer(32,WeightsInitializer='he')

 Use Deep Learning to Approximate Barrier Option Prices with Heston Model

18-45



    leakyReluLayer
    fullyConnectedLayer(1,WeightsInitializer='he')
    leakyReluLayer
    regressionLayer];

Visualize Network

You can visualize the network using the Deep Network Designer app or the analyzeNetwork
function.

deepNetworkDesigner(layerGraph(layers))

Train Network

Train the neural network by using the trainNetwork function. The function creates a hold-out set to
test the trained network and allocates a validation set to monitor the overfitting during the training.
By default, trainNetwork uses a GPU if one is available; otherwise, it uses a CPU. Training on a

18 Computational Finance Examples

18-46



GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information, see “Deep
Learning with MATLAB on Multiple GPUs” on page 7-14.

n = size(Price,1);
c = cvpartition(n,Holdout=1/5);     % Hold out 1/5 of the data set for testing
XTrain = inputs(training(c),:);     % 4/5 of the input for training
YTrain = Price(training(c),:);      % 4/5 of the target for training
XTest = inputs(test(c),:);          % 1/5 of the input for testing
YTest = Price(test(c),:);           % 1/5 of the target for testing

nTrain = size(XTrain,1);
idx = randperm(nTrain,floor(nTrain*0.1)); % 10% validation data
XValidation = XTrain(idx,:);
XTrain(idx,:) = [];
YValidation = YTrain(idx,:);
YTrain(idx,:) = [];

opts = trainingOptions('adam', ...
    MaxEpochs=30, ...
    Shuffle='every-epoch', ...
    Plots='none', ...
    Verbose=false, ...
    VerboseFrequency=50, ...
    MiniBatchSize=265, ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=50, ...
    ValidationPatience=Inf, ...
    L2Regularization=1.9e-7, ...
    InitialLearnRate=8.8e-3, ...
    LearnRateSchedule='piecewise', ...
    LearnRateDropPeriod=4, ...
    LearnRateDropFactor=0.128, ...
    SquaredGradientDecayFactor=0.55, ...
    GradientDecayFactor=0.62);
%opts.ExecutionEnvironment = "gpu";  % When using GPU

doTraining = false;
if doTraining
    % Train the network.
    net = trainNetwork(XTrain,YTrain,layers,opts);
else
    % Load the pretrained network for the example.
    load('DeepLearningBarrierHeston.mat','net')
end

To avoid waiting for the training, load the pretrained network by setting the doTraining flag to
false. To train the networks using analyzeNetwork, set the doTraining flag to true. The
Training Progress window displays progress when Plots in trainingOptions is set as
training-progress.

 Use Deep Learning to Approximate Barrier Option Prices with Heston Model

18-47



Test Network

After training the network model, you can use the predict function to evaluate the test data set
containing 30,000 barrier options on this trained network. Compared to the histogram in Calculate
Barrier Option Prices Using MonteCarlo Simulation on page 18-44 where Monte Carlo simulation
takes 0.46 seconds to price each barrier option (3.9 hours to price 30,000 barrier options), after the
network model is trained, a data set containing 30,000 barrier option is evaluated in seconds.

% If testing on a GPU, then convert data to a gpuArray.
if opts.ExecutionEnvironment == "gpu" && canUseGPU
    XTest = gpuArray(XTest);
end

YPred = predict(net,XTest);

To assess the performance of the network, calculate the mean-squared error (MSE) value.

mseTest = mean((YTest - YPred).^2)

mseTest = single
    2.9402e-06

18 Computational Finance Examples

18-48



The following histogram shows the error distribution for the predicted barrier option price using
Deep Learning Toolbox™ with respect to the calculated barrier option price using Financial
Instrument Toolbox™.

figure
histogram(YTest - YPred, Binwidth=1e-4)
xlabel('Error Distribution')
ylabel('Counts')

A plot of the calculated prices and predicted prices shows the performance of the network for the
Heston model using the test data.

figure
plot(YTest,YPred,'.',[min(YTest),max(YTest)],[min(YTest),max(YTest)],'r')
xlabel('Scaled Actual Price')
ylabel('Scaled Predicted Price')
title('Predictions on Test Data')

 Use Deep Learning to Approximate Barrier Option Prices with Heston Model

18-49



References

[1] Goodfellow, I., Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[2] Niederreiter, H. "Random Number Generation and Quasi-Monte Carlo Methods." Society for
Industrial and Applied Mathematics, 1992.

See Also
Barrier | Heston | AssetMonteCarlo | Deep Network Designer | trainNetwork |
trainingOptions

Related Examples
• “Hedge Options Using Reinforcement Learning Toolbox™” on page 18-33

18 Computational Finance Examples

18-50



Backtest Strategies Using Deep Learning

Construct trading strategies using a deep learning model and then backtest the strategies using the
Financial Toolbox™ backtesting framework. The example uses Deep Learning Toolbox™ to train a
predictive model from a set of time series and demonstrates the steps necessary to convert the model
output into trading signals. It builds a variety of trading strategies that backtest the signal data over
a 5-year period.

This example illustrates the following workflow:

1 Load price data for a set of energy commodities on page 18-51.
2 Clean and trim data on page 18-52.
3 Use the historical data to train a long short-term memory (LSTM) network to predict the change

in energy prices over the next trading day on page 18-53.
4 Use the LSTM network to build a timetable of trading signal data for the backtest engine on page

18-58.
5 Construct trading strategies that allocate capital based on the trading signals on page 18-59.
6 Backtest the strategies using the backtesting framework on page 18-59.
7 Examine the backtest results on page 18-60.

The focus of this example is on the workflow from data, to a trained model, to trading strategies, and
finally to a backtest of the strategies. The deep learning model, its output, the subsequent trading
signals, and the strategies are fictional. The intent is only to show the steps for developing and
deploying this type of model.

Load Data

Load the historical price data. This data set contains daily spot prices for 12 different energy
products ranging from 1986 to 2021 and consists of the following time series:

• WTI — West Texas Intermediate light crude oil
• Brent — Brent light crude oil
• NaturalGas — Henry Hub natural gas
• Propane — Mon Belvieu propane
• Kerosene — US Gulf Coast kerosene-type jet fuel
• HeatingOil — New York Harbor no. 2 heating oil
• GulfRegular — US Gulf Coast conventional gasoline
• LARegular — Los Angeles reformulated RBOB regular gasoline
• NYRegular — New York Harbor conventional gasoline
• GulfDiesel — US Gulf Coast ultra-low sulfur no. 2 diesel
• LADiesel — Los Angeles ultra-low sulfur CARB diesel
• NYDiesel — New York Harbor ultra-low sulfur no. 2 diesel

The source of this data is the US Energy Information Administration (Nov 2021).

 Backtest Strategies Using Deep Learning

18-51



priceData = load('energyPrices.mat','energyPrices');
priceData = priceData.energyPrices;
tail(priceData)

       Time         WTI     Brent    NaturalGas    Propane    Kerosene    HeatingOil    GulfRegular    LARegular    NYRegular    GulfDiesel    LADiesel    NYDiesel
    ___________    _____    _____    __________    _______    ________    __________    ___________    _________    _________    __________    ________    ________

    22-Oct-2021    84.53    85.43        5.1        1.485      2.312        2.414          2.481         2.671        2.571         2.49        2.559       2.558  
    25-Oct-2021    84.64    84.85       5.72        1.378      2.326        2.429          2.506         2.691        2.591        2.501        2.573       2.572  
    26-Oct-2021    85.64    85.11       5.59        1.398      2.339        2.436          2.552         2.636        2.591        2.511        2.598       2.573  
    27-Oct-2021    82.66    84.12       5.91        1.365      2.271        2.368          2.469         2.566        2.508        2.443        2.535       2.505  
    28-Oct-2021    82.78     83.4       5.68         1.36      2.278        2.363          2.471         2.583        2.518        2.448         2.57        2.51  
    29-Oct-2021     83.5     83.1       5.49        1.383      2.285        2.342          2.485         2.662        2.537        2.429        2.573       2.487  
    01-Nov-2021    84.08    84.51       5.22        1.385      2.301        2.364          2.457         2.597        2.494        2.445        2.599       2.511  
    02-Nov-2021    83.91    84.42       5.33        1.388        2.3        2.405          2.466         2.601        2.596        2.441        2.595        2.51  

Clean and Trim Data

The price datasets do not all start at the same time. Some datasets start later than others and have
fewer data points. The following plot shows the time span for each price series.

seriesLifespanPlot(priceData)

To avoid large spans of missing data, remove the series with shorter histories.

priceData = removevars(priceData,["NYDiesel","GulfDiesel","LARegular"]);

18 Computational Finance Examples

18-52



The remaining table variables contain sporadic missing elements (NaNs) due to holidays or other
reasons. Missing data is handled in a variety of ways depending on the dataset. In some cases, it may
be appropriate to interpolate or use the fillmissing function. In this example, you can remove the
remaining NaN prices.

priceData = rmmissing(priceData);

Then, convert the price data to a return series using the tick2ret (Financial Toolbox) function. The
final dataset consists of nine price series with daily data from 1997 through 2021.

returnData = tick2ret(priceData)

returnData=6167×9 timetable
       Time           WTI           Brent       NaturalGas     Propane       Kerosene     HeatingOil    GulfRegular    NYRegular      LADiesel 
    ___________    __________    ___________    __________    __________    __________    __________    ___________    __________    __________

    08-Jan-1997      0.011429     0.00080775    -0.0052356             0      0.012931      0.010974     0.0014347     -0.0028369    -0.0065789
    09-Jan-1997    -0.0094162      0.0020178         -0.05     -0.036969    -0.0085106    -0.0013569     -0.024355      -0.024182             0
    10-Jan-1997    -0.0057034      -0.024567      0.085873     0.0095969     -0.010014     -0.012228    -0.0088106     -0.0058309    -0.0092715
    13-Jan-1997     -0.036329      -0.033443      0.020408     -0.024715     -0.034682     -0.037139      -0.02963      -0.036657    -0.0066845
    15-Jan-1997      0.029762     -0.0042717         0.085     -0.048733      0.023952      0.021429     0.0030534      0.0060883     -0.013459
    16-Jan-1997     -0.019268              0      0.085253     -0.028689     -0.019006     -0.020979     0.0060883      0.0030257      0.020464
    17-Jan-1997    -0.0019646      -0.018876      -0.16985     -0.016878     -0.020864         -0.02    -0.0060514     -0.0075415             0
    20-Jan-1997     -0.011811    -0.00043725      -0.16624     -0.027897     -0.022831     -0.021866     0.0015221      -0.013678    -0.0040107
    21-Jan-1997     -0.011952      0.0052493     -0.082822     -0.004415     -0.014019     -0.020864      0.021277       0.012327    -0.0067114
    22-Jan-1997     -0.016129     -0.0021758      0.020067    -0.0044346      0.031596      0.019787      0.013393       0.016743             0
    23-Jan-1997     -0.022541              0     -0.029508    -0.0022272    -0.0061256      -0.01194     -0.035242       0.010479      0.040541
    24-Jan-1997             0     -0.0056694      -0.11486     -0.075893      0.010786     0.0060423     0.0060883     -0.0088889     0.0064935
    27-Jan-1997             0      -0.010526        0.1374      0.016908      0.012195      0.009009     0.0030257     -0.0029895      0.029677
    28-Jan-1997     0.0020964      0.0026596       0.02349    -0.0047506     0.0090361    -0.0089286     -0.010558      -0.011994       0.04386
    29-Jan-1997      0.025105       0.017241     -0.045902     -0.042959      0.059701      0.033033      0.042683       0.018209      0.014406
    30-Jan-1997      0.012245       0.018253     -0.017182             0      0.016901      0.023256    -0.0087719       0.026826      0.047337
      ⋮

Prepare Data for Training LSTM Model

Prepare and partition the dataset in order to train the LSTM model. The model uses a 30-day rolling
window of trailing feature data and predicts the next day price changes for four of the assets: Brent
crude oil, natural gas, propane, and kerosene.

% Model is trained using a 30-day rolling window to predict 1 day in the
% future.
historySize = 30;
futureSize = 1;

% Model predicts returns for oil, natural gas, propane, and kerosene.
outputVarName = ["Brent" "NaturalGas", "Propane" "Kerosene"];
numOutputs = numel(outputVarName);

% start_idx and end_idx are the index positions in the returnData
% timetable corresponding to the first and last date for making a prediction.
start_idx = historySize + 1;
end_idx   = height(returnData) - futureSize + 1;
numSamples = end_idx - start_idx + 1;

% The date_vector variable stores the dates for making predictions.
date_vector = returnData.Time(start_idx-1:end_idx-1);

 Backtest Strategies Using Deep Learning

18-53



Convert the returnData timetable to a numSamples-by-1 cell array. Each cell contains a
numFeatures-by-seqLength matrix. The response variable is a numSamples-by-numResponses
matrix.

network_features  = cell(numSamples,1);
network_responses = zeros(numSamples,numOutputs);

for j = 1:numSamples
    network_features{j} = (returnData(j:j+historySize-1,:).Variables)';
    network_responses(j,:) = ...
        (returnData(j+historySize:j+historySize+futureSize-1,outputVarName).Variables)';
end

Split the network_features and the network_responses into three parts: training, validation,
and backtesting. Select the backtesting set as a set of sequential data points. The remainder of the
data is randomly split into a training and a validation set. Use the validation set to prevent overfitting
while training the model. The backtesting set is not used in the training process, but it is reserved for
the final strategy backtest.

% Specify rows to use in the backtest (31-Dec-2015 to 2-Nov-2021).
backtest_start_idx = find(date_vector < datetime(2016,1,1),1,'last');
backtest_indices = backtest_start_idx:size(network_responses,1);

% Specify data reserved for the backtest.
Xbacktest = network_features(backtest_indices);
Tbacktest = network_responses(backtest_indices,:);

% Remove the backtest data.
network_features = network_features(1:backtest_indices(1)-1);
network_responses = network_responses(1:backtest_indices(1)-1,:);

% Partition the remaining data into training and validation sets.
rng('default');
cv_partition = cvpartition(size(network_features,1),'HoldOut',0.2);

% Training set
Xtraining = network_features(~cv_partition.test,:);
Ttraining = network_responses(~cv_partition.test,:);

% Validation set
Xvalidation = network_features(cv_partition.test,:);
Tvalidation = network_responses(cv_partition.test,:);

Define LSTM Network Architecture

Specify the network architecture as a series of layers. For more information on LSTM networks, see
“Long Short-Term Memory Neural Networks” on page 1-97. The Deep Network Designer is a
powerful tool for designing deep learning models.

numFeatures = width(returnData);
numHiddenUnits_LSTM = 10;

layers_LSTM = [ ...
    sequenceInputLayer(numFeatures) 
    lstmLayer(numHiddenUnits_LSTM)
    layerNormalizationLayer
    lstmLayer(numHiddenUnits_LSTM)

18 Computational Finance Examples

18-54



    layerNormalizationLayer
    lstmLayer(numHiddenUnits_LSTM,'OutputMode','last')
    layerNormalizationLayer
    fullyConnectedLayer(numOutputs)
    regressionLayer];

Specify Training Options for LSTM Model

Next, you specify training options using the trainingOptions function. Many training options are
available and their use varies depending on your use case. Use the Experiment Manager to explore
different network architectures and sets of network hyperparamters.

max_epochs = 500;
mini_batch_size = 128;
learning_rate = 1e-4;

options_LSTM = trainingOptions('adam', ...
    'Plots','training-progress', ...
    'Verbose',0, ...
    'MaxEpochs',max_epochs, ...
    'MiniBatchSize',mini_batch_size, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{Xvalidation,Tvalidation}, ...
    'ValidationFrequency',50, ...
    'ValidationPatience',10, ...
    'InitialLearnRate',learning_rate, ...
    'GradientThreshold',1);

Train LSTM Model

Train the LSTM network. Use the trainNetwork function to train the network until the network
meets a stopping criteria. This process can take several minutes depending on the computer running
the example. For more information on increasing the network training performance, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud” on page 7-2.

To avoid waiting for the network training, load the pretrained network by setting the doTrain flag to
false. To train the network using trainNetwork, set the doTrain flag to true.

doTrain = false;

if doTrain
    % Train the LSTM network.
    net_LSTM = trainNetwork(Xtraining,Ttraining,layers_LSTM,options_LSTM);
else
    % Load the pretrained network.
    load lstmBacktestNetwork
end

Visualize Training Results

Visualize the results of the trained model by comparing the predicted values against the actual values
from the validation set.

% Compare the actual returns to model predicted returns.
actual    = Tvalidation;
predicted = predict(net_LSTM,Xvalidation,'MiniBatchSize',mini_batch_size);

 Backtest Strategies Using Deep Learning

18-55



% Overlay histogram of actual vs. predicted returns for the validation set.

output_idx = ;
figure;

[~,edges] = histcounts(actual(:,output_idx),100);
histogram(actual(:,output_idx),edges);
hold on
histogram(predicted(:,output_idx),edges)
hold off
xlabel('Percentage Change in Closing Price')
legend('Actual','Predicted')
title(sprintf('%s: Distribution of Returns, Actual vs. Predicted', outputVarName(output_idx)))

% Display the predicted vs. actual daily returns for the validation set.
figure
plot(actual(:,output_idx))
hold on
plot(predicted(:,output_idx))
yline(0)
legend({'Actual','Predicted'})
title(sprintf('%s: Daily Returns, Actual vs. Predicted', outputVarName(output_idx)))

18 Computational Finance Examples

18-56



% Examine the residuals.
residuals = actual(:,output_idx) - predicted(:,output_idx);
figure;
normplot(residuals);

 Backtest Strategies Using Deep Learning

18-57



The actual data has fatter tails than the trained model predictions. The model predictions are not
accurate, but the goal of this example is to show the workflow from loading data, to model
development, to backtesting. A more sophisticated model with a larger and more varied set of
training data is likely to have more predictive power.

Prepare Backtest Data

Use the predictions from the LSTM model to build the backtest strategies. You can post-process the
model output in a number of ways to create trading signals. However, for this example, take the
model regression output and convert it to a timetable.

Use predict with the trained network to generate model predictions over the backtest period.

backtestPred_LSTM = predict(net_LSTM,Xbacktest,'MiniBatchSize',mini_batch_size);

Convert the predictions to a trading signal timetable.

backtestSignalTT = timetable(date_vector(backtest_indices),backtestPred_LSTM);

Construct the prices timetable corresponding to the backtest time span. The backtest trades in and
out of the four energy commodities. The prices timetable has the closing price for the day on which
the prediction is made.

backtestPriceTT = priceData(date_vector(backtest_indices),outputVarName);

Set the risk-free rate to be 1% annualized. The backtest engine also supports setting the risk-free rate
to a timetable containing the historical daily rates.

18 Computational Finance Examples

18-58



risk_free_rate = 0.01;

Create Backtest Strategies

Use backtestStrategy (Financial Toolbox) to create four trading strategies based on the signal
indicators. The following trading strategies are intended as examples to show how to convert the
trading signals into actionable asset allocation strategies that you can then backtest:

• Long Only — Invest all capital across the assets with positive predicted return, proportional to
their signal strength (predicted return).

• Long Short — Invest capital across the assets, both long and short positions, proportional to their
signal strength.

• Best Bet — Invest all capital into the single asset with the highest predicted return.
• Equal Weight — Rebalance each day to equal-weighted allocation.

% Specify 10 basis points as the trading cost.
tradingCosts = 0.001;

% Invest in long positions proportionally to their predicted return.
LongStrategy = backtestStrategy('LongOnly',@LongOnlyRebalanceFcn, ...
    'TransactionCosts',tradingCosts, ...
    'LookbackWindow',1);

% Invest in both long and short positions proportionally to their predicted returns.
LongShortStrategy = backtestStrategy('LongShort',@LongShortRebalanceFcn, ...
    'TransactionCosts',tradingCosts, ...
    'LookbackWindow',1);

% Invest 100% of capital into single asset with highest predicted returns.
BestBetStrategy = backtestStrategy('BestBet',@BestBetRebalanceFcn, ...
    'TransactionCosts',tradingCosts, ...
    'LookbackWindow',1);

% For comparison, invest in an equal-weighted (buy low and sell high) strategy.
equalWeightFcn = @(current_weights,prices,signal) ones(size(current_weights)) / numel(current_weights);
EqualWeightStrategy = backtestStrategy('EqualWeight',equalWeightFcn, ...
    'TransactionCosts',tradingCosts, ...
    'LookbackWindow',0);

Put the strategies into an array and then use backtestEngine (Financial Toolbox) to create the
backtesting engine.

strategies = [LongStrategy LongShortStrategy BestBetStrategy EqualWeightStrategy];

bt = backtestEngine(strategies,'RiskFreeRate',risk_free_rate);

Run Backtest

Use runBacktest (Financial Toolbox) to backtest the strategies over the backtest range.

bt = runBacktest(bt,backtestPriceTT,backtestSignalTT)

bt = 
  backtestEngine with properties:

               Strategies: [1×4 backtestStrategy]
             RiskFreeRate: 0.0100

 Backtest Strategies Using Deep Learning

18-59



           CashBorrowRate: 0
          RatesConvention: "Annualized"
                    Basis: 0
    InitialPortfolioValue: 10000
           DateAdjustment: "Previous"
                NumAssets: 4
                  Returns: [1462×4 timetable]
                Positions: [1×1 struct]
                 Turnover: [1462×4 timetable]
                  BuyCost: [1462×4 timetable]
                 SellCost: [1462×4 timetable]

Examine Backtest Results

Use the summary (Financial Toolbox) and equityCurve (Financial Toolbox) functions to summarize
and plot the backtest results. This model and its derivative trading strategies are not expected to be
profitable in a realistic trading scenario. However, this example illustrates a workflow that should be
useful for practitioners with more comprehensive data sets and more sophisticated models and
strategies.

summary(bt)

ans=9×4 table
                       LongOnly     LongShort    BestBet     EqualWeight
                       _________    _________    ________    ___________

    TotalReturn           5.6962      8.3314       3.0248        4.8347 
    SharpeRatio         0.062549    0.071321     0.044571      0.056775 
    Volatility          0.025296    0.025795     0.031625      0.026712 
    AverageTurnover       0.1828     0.22754       0.2459     0.0095931 
    MaxTurnover          0.96059     0.97368            1           0.5 
    AverageReturn      0.0016216    0.001879     0.001449      0.001556 
    MaxDrawdown          0.73831     0.62935      0.81738       0.70509 
    AverageBuyCost        3.6293      7.1838       3.8139       0.20262 
    AverageSellCost       3.6225      7.2171       3.8071       0.19578 

figure;
equityCurve(bt)

18 Computational Finance Examples

18-60



Local Functions

function new_weights = LongOnlyRebalanceFcn(current_weights,pricesTT,signalTT) %#ok<INUSD> 
% Long only strategy, in proportion to the signal.

signal = signalTT.backtestPred_LSTM(end,:);

if any(0 < signal)
    signal(signal < 0) = 0;
    new_weights = signal / sum(signal);
else
    new_weights = zeros(size(current_weights));
end

end

function new_weights = LongShortRebalanceFcn(current_weights,pricesTT,signalTT) %#ok<INUSD> 
% Long/Short strategy, in proportion to the signal

signal = signalTT.backtestPred_LSTM(end,:);
abssum = sum(abs(signal));

if 0 < abssum
    new_weights = signal / abssum;
else
    new_weights = zeros(size(current_weights));

 Backtest Strategies Using Deep Learning

18-61



end

end

function new_weights = BestBetRebalanceFcn(current_weights,pricesTT,signalTT) %#ok<INUSD> 
% Best bet strategy, invest in the asset with the most upside.

signal = signalTT.backtestPred_LSTM(end,:);
new_weights = zeros(size(current_weights));
new_weights(signal == max(signal)) = 1;

end

function seriesLifespanPlot(priceData)
% Plot the lifespan of each time series.

% Specify all time series end on same day.
d2 = numel(priceData.Time);

% Plot the lifespan patch for each series.
numSeries = size(priceData,2);
for i = 1:numSeries
    % Find start date index.
    d1 = find(~isnan(priceData{:,i}),1,'first');
    % Plot patch.
    x = [d1 d1 d2 d2];
    y = i + [-0.4 0.4 0.4 -0.4];
    patch(x,y,[0 0.4470 0.7410])

    hold on
end
hold off

% Set the plot properties.
xlim([-100 d2]);
ylim([0.2 numSeries + 0.8]);

yticks(1:numSeries);
yticklabels(priceData.Properties.VariableNames');
flipud(gca);

years = 1990:5:2021;
xtick_idx = zeros(size(years));
for yidx = 1:numel(years)
    xtick_idx(yidx) = find(years(yidx) == year(priceData.Time),1,'first');
end
xticks(xtick_idx);
xticklabels(string(years));

title('Time Series Life Span');

18 Computational Finance Examples

18-62



end

See Also
Deep Network Designer | trainNetwork | trainingOptions | backtestStrategy |
backtestEngine | runBacktest | equityCurve | summary

Related Examples
• “Backtest Investment Strategies Using Financial Toolbox™” (Financial Toolbox)
• “Backtest Investment Strategies with Trading Signals” (Financial Toolbox)
• “Backtest Using Risk-Based Equity Indexation” (Financial Toolbox)
• “Backtest Strategies Using Deep Learning” (Financial Toolbox)

 Backtest Strategies Using Deep Learning

18-63



Deep Reinforcement Learning for Optimal Trade Execution

This example shows how to use the Reinforcement Learning Toolbox™ and Deep Learning Toolbox™
to design agents for optimal trade execution.

Introduction

Optimal trade execution seeks to minimize trading costs when selling or buying a set number of stock
shares over a certain time horizon within the trading day. Optimization is necessary because
executing trades too quickly results in suboptimal prices due to market impact, while executing
trades too slowly results in exposure to the risk of adverse price changes or the inability to execute
all trades within the time horizon. This optimization affects nearly all trading strategies and portfolio
management practices, since minimizing trading costs is directly linked to profitability that is related
to buying or selling decisions. Also, brokers compete to provide better trade order execution, and
many jurisdictions legally require brokers to provide the best execution for their clients. Early studies
by Bertsimas and Lo [1 on page 18-97] and Almgren and Chriss [2 on page 18-97] derived
analytical solutions for the optimal trade execution problem by assuming a model for the underlying
prices. Later, Nevmyvaka et al. [3 on page 18-97] demonstrated that the use of reinforcement
learning (RL) for optimal execution did not require making assumptions about the market micro-
structure. More recent studies use deep reinforcement learning,which combines reinforcement
learning (RL) with deep learning, for optimal trade execution (Ning et al. [4 on page 18-97], Lin and
Beling [5 on page 18-97,6 on page 18-97]). This approach overcomes the limitations of Q-learning
as noted by Nevmyvaka et al. [3 on page 18-97].

This example uses deep reinforcement learning to design and train two deep Q-network (DQN)
agents for optimal trade execution. One DQN agent is for sell trades and the other agent is for buy
trades.

Data

This example uses the intraday trading data on Intel Corporation stock (INTC) provided by LOBSTER
[7 on page 18-98] and included with Financial Toolbox™. While the reinforcement learning for
optimal execution literature typically uses trading data over one year or more to train and test RL
agents [3 on page 18-97,4 on page 18-97,5 on page 18-97,6 on page 18-97], in this proof-of-
concept example you use a shorter data set, which you can expand for further study. The intraday
trading data on the Intel stock (INTC_2012-06-21_34200000_57600000_orderbook_5.csv)
contains limit order book data over 6.5 hours, including bid and ask prices as well as corresponding
shares for 5 levels. This data is sampled at 5 second intervals to create 390 one minute trading
horizons, such that each trading horizon contains 12 steps at five second intervals. Out of these 390
horizons, you use 293 horizons (about 75 percent) to train the agents and the remaining 97 horizons
(about 25 percent) to test the agents.

Baseline Trade Execution Algorithm

An agent's performance must be compared with a baseline trade execution algorithm. For this
example, the baseline trade execution algorithm is the time-weighted average price (TWAP) policy.
Under this policy, the total trading shares are divided equally over the trading horizon, so that the
same number of shares are traded at each time step. In contrast, the original paper by Nevmyvaka et
al. [3 on page 18-97] used a "submit and leave" policy as the baseline, where a limit order is placed
at a fixed price for the entire trading shares for the entire horizon, and any remaining unfilled shares
are traded with a market order at the last step. However, the TWAP baseline was adopted in later
studies [4 on page 18-97,5 on page 18-97,6 on page 18-97], since it has become more popular in

18 Computational Finance Examples

18-64



recent years with increasing use of algorithmic trading, and it is also a highly effective strategy that
is thought to be optimal when the price movement follows a Brownian motion [4 on page 18-97,5 on
page 18-97,6 on page 18-97].

Agents

Different types of agents are used in the reinforcement learning for optimal execution studies,
including Q-learning [3 on page 18-97], DQN [4 on page 18-97,5 on page 18-97], and PPO [6 on
page 18-97] agents. In this example, you design and train DQN agents using the Reinforcement
Learning Designer (Reinforcement Learning Toolbox) after creating separate training environments
for sell trades and buy trades. These DQN agents only have a critic without an actor, and they use the
default setting of UseDoubleDQN set to true, while the DiscountFactor is set to 1 due to the short
trading horizon [4 on page 18-97,5 on page 18-97,6 on page 18-97]. In addition, the critic network
of these agents include a long short-term memory (LSTM) network because the trading data is
sequential in time, and LSTM networks are effective in designing agents for optimal execution [6 on
page 18-97]. For more information on setting options for DQN agents, see rlDQNAgentOptions
(Reinforcement Learning Toolbox).

Observation Space

The observation space defines which information (or feature) to provide to the agents at each step.
The agents use this observation to decide the next action, based on the policy learned and reinforced
by the rewards received after taking the previous actions. Designing a good observation space for the
agents is an area of active research in optimal execution studies. You can experiment with different
observation spaces, using variables such as the bid-ask spread, the bid or ask volume, price trends, or
even the entire limit order book prices and shares [6 on page 18-97]. This example uses the
following observation variables:

• Remaining shares to be traded by the agent in the current trading horizon
• Remaining time intervals (steps) left in the current trading horizon
• Cumulative implementation shortfall (IS) of agent until the previous step
• Current limit order book price divergence from arrival price

The first two observation variables (remaining shares to be traded and remaining time in horizon) are
called "private" variables by Nevmyvaka et al. [3 on page 18-97], as they only apply to the specific
situation of the trading agents, and they do not apply to other market participants. As the agent
trained by Nevmyvaka et al. [3 on page 18-97] using only "private" variables was able to outperform
the "submit and leave" baseline policy, the "private" variables are also used in the subsequent studies
[4 on page 18-97,5 on page 18-97,6 on page 18-97].

The third variable, cumulative IS, is a measure of trading cost that the agents seek to minimize. As
the name "shortfall" indicates, a lower implementation shortfall implies better trade execution.
Technically, Implementation Shortfall should include the opportunity cost of failing to execute all
shares within the trading horizon. In this example, as with many of the previously mentioned studies,
the Implementation Shortfall is computed under the ending inventory constraint:

• For a sell trade, the constraint is to have zero ending inventory, assuming successful liquidation of
all shares.

• For a buy trade, the constraint is to have full ending inventory, assuming successful purchase of all
shares.

Under this ending inventory constraint, Implementation Shortfall is computed as follows:

 Deep Reinforcement Learning for Optimal Trade Execution

18-65



• For a sell trade:
Implementation Shortfall = Arrival Price × Traded Volume− Executed Price × Traded Volume

• For a buy trade:
Implementation Shortfall = Executed Price × Traded Volume− Arrival Price × Traded Volume

The arrival price is the first bid or ask price observed at the beginning of the trade horizon. If
Implementation Shortfall is positive, it implies that the average executed price was worse than the
arrival price, while a negative Implementation Shortfall implies that the average executed price was
better than the arrival price. The cumulative Implementation Shortfall from the beginning of the
trade horizon until the previous step reflects the trading cost incurred by the agent in the past, and it
serves as the third observation variable.

The last observation variable is the current price divergence from arrival price. This variable reflects
the current market condition and it is measured as the difference between the arrival price and the
average price of the first two levels of the current limit order book (LOB).

• For a sell trade:
Price Divergence = Average Bid Prices of First 2 Levels of Current LOB− Arrival Price

• For a buy trade:
Price Divergence = Arrival Price− Average Ask Prices of First 2 Levels of Current LOB

A positive price divergence implies more favorable current trading conditions than the arrival price,
and a negative divergence less favorable conditions.

Action Space

The action space is defined as the possible number of shares traded at each step. For a TWAP policy,
the only possible action at each step is to trade a constant number of shares computed as the total
trading shares divided by the number of steps in the horizon. Meanwhile, the agents in this example
choose from 39 possible actions that are mostly evenly spaced, ranging from trading 0 shares to
trading twice the number of shares as the corresponding TWAP trade.

For both TWAP trades and agent trades, you enforce ending inventory constraints so that if the target
ending inventory is not met by the last step of the horizon, the action for the last step is to:

• Sell any remaining shares in the inventory for a Sell trade.
• Buy any missing shares in the inventory for a Buy trade.

Also, you place limits on the agent actions to take advantage of price divergence and to prevent
selling more than the available shares in the inventory or buying more than the target number of
shares.

Reward

The reward is another important aspect of agent design, as agents learn their policies at each step
using the rewards received after taking the previous actions. Research on reward design shows wide
variations in optimal execution, and you can experiment with different rewards. Since the agent
performance is measured against the baseline using Implementation Shortfall, many studies use
Implementation Shortfalls directly in the rewards, while others use related quantities. Some studies
use the proceeds from the trade as the reward [3 on page 18-97], while others also impose a penalty
for trading many shares too quickly [4 on page 18-97]. Another study uses an elaborately shaped
reward algorithm that is designed to use the TWAP policy most of the time, while encouraging the
agent to deviate from the TWAP policy only when it is advantageous to do so [5 on page 18-97]. If

18 Computational Finance Examples

18-66



there is enough data, the reward may be given sparsely, only at the end of each horizon rather than at
each step [6 on page 18-97]. In this example, the data size is small, so you give the reward at each
step and design it so that the reward at each step approximates the expected reward at the end of the
horizon.

Specifically, you use a reward that compares the Implementation Shortfall of the TWAP baseline
against that of the agent at each step, while also taking into account the penalty for the approximate
Implementation Shortfall of the remaining unexecuted shares based on the current limit order book.
The reward is also scaled based on the current time relative to the end of the horizon.

Reward t = ISTWAP 0, t + ISTWAP, Penalty t, T − ISAgent 0, t + ISAgent, Penalty t, T × t
T

Reward t  is the reward at time step t

ISTWAP 0, t  is the Implementation Shortfall of TWAP from the beginning of the horizon until time step
t

ISTWAP, Penalty t, T  is the approximate Implementation Shortfall of TWAP from time step t to the end
of the horizon at time step T

ISAgent 0, t  is the Implementation Shortfall of the agent from the beginning of horizon until time step
t

ISAgent, Penalty t, T  is the approximate Implementation Shortfall of the agent from time step t to the
end of the horizon at time step T

Since the agent performance is ultimately measured against the baseline using Implementation
Shortfall at the end of the horizon at time step T, and the approximate reward becomes more
accurate as t approaches T, Reward t  has a scaling factor t

T  so that its magnitude increases as t
approaches T. At time step T, the reward becomes Reward T .

Reward T = ISTWAP 0, T − ISAgent 0, T

Performance Analysis

You measure agent performance against the TWAP baseline using Implementation Shortfall (IS), by
computing the following for all horizons:

• IS total outperformance of agent over TWAP — Sum of ISTWAP 0, T − ISAgent 0, T
• IS total-gain-to-loss ratio (TGLR) — Ratio of total positive over total negative

ISTWAP 0, T − ISAgent 0, T  magnitudes
• IS gain-to-loss ratio (GLR) — Ratio of mean positive over mean negative

ISTWAP 0, T − ISAgent 0, T  magnitudes

Workflow Organization

The workflow in this example is:

• Load and Prepare Data on page 18-68
• - LOBSTER Message Data — Contains time stamps

 Deep Reinforcement Learning for Optimal Trade Execution

18-67



• - LOBSTER Limit Order Book Data — Contains bid and ask prices and corresponding shares
• Optimal Execution for Sell Trades on page 18-69
• - TWAP Baseline
• - Train the DQN Agent
• - Test the DQN Agent
• - Summary of Selling Results
• Optimal Execution for Buy Trades on page 18-93
• Local Functions on page 18-98
• - executeTWAPTrades — Executes TWAP Baseline trades and computes IS
• - RL_OptimalExecution_LOB_ResetFcn — Reset function for training and testing

environments
• - RL_OptimalExecution_LOB_StepFcn — Step function for training and testing environments
• - tradeLOB — Executes trades on current limit order book
• - endingInventoryIS — Computes IS with ending inventory constraints
• - ISTGLR — Computes total-gain-to-loss ratio and gain-to-loss ratio for IS

Load and Prepare Message Data

Extract the LOBSTER data files from the ZIP file included with Financial Toolbox™. The expanded
files include two CSV files of data and the text file LOBSTER_SampleFiles_ReadMe.txt.

unzip("LOBSTER_SampleFile_INTC_2012-06-21_5.zip");

The limit order book file contains the bid and ask prices and corresponding shares for five levels,
while the message file contains the description of the limit order book data including time stamps.

LOBFileName = 'INTC_2012-06-21_34200000_57600000_orderbook_5.csv'; % Limit Order Book Data file
MSGFileName = 'INTC_2012-06-21_34200000_57600000_message_5.csv'; % Message file (description of data)

Load the message file and define the time at the start and end of trading hours as seconds after
midnight.

TradeMessage = readmatrix(MSGFileName);
StartTradingSec   = 9.5*60*60;  % Starting time 9:30 in seconds after midnight
EndTradingSec     = 16*60*60;   % Ending time 16:00 in seconds after midnight

Define the trading interval as five seconds and pick message index values corresponding to the five-
second intervals.

TradingIntervalSec = 5; % Trading interval length in seconds
IntervalBoundSec = (StartTradingSec:TradingIntervalSec:EndTradingSec)';
MessageSampleIdx = zeros(size(IntervalBoundSec));
k1 = 1;
for k2 = 1:size(TradeMessage,1)
    if TradeMessage(k2,1) >= IntervalBoundSec(k1)
        MessageSampleIdx(k1) = k2;
        k1 = k1+1;
    end
end
MessageSampleIdx(end) = length(TradeMessage);

18 Computational Finance Examples

18-68



Load and Prepare Limit Order Book Data

Load the limit order book data and define the number of levels in the limit order book.

LOB = readmatrix(LOBFileName);
NumLevels = 5;

Since LOBSTER stores prices in units of 10,000 dollars, convert the prices in the limit order book
data into dollars by dividing by 10000.

LOB(:,1:2:(4*NumLevels)) = LOB(:,1:2:(4*NumLevels))./10000;

Using the message index values obtained previously, sample the limit order book at 5 second
intervals.

SampledBook = LOB(MessageSampleIdx(2:end),1:NumLevels*4);

Define a one minute (60 seconds) trading horizon and compute the total number of intervals over 6.5
hours of trading data.

TradingHorizon = 1*60;
TotalNumIntervals = length(MessageSampleIdx(2:end));
TotalNumHorizons = 6.5*60*60/TradingHorizon;

The number of intervals per horizon is computed by dividing the total number of intervals by the total
number of horizons.

NumIntervalsPerHorizon = round(TotalNumIntervals/TotalNumHorizons);

Allocate 75 percent of data for training and 25 percent for testing.

NumTrainingHorizons = round(TotalNumHorizons*0.75);
NumTestingHorizons = TotalNumHorizons - NumTrainingHorizons;
NumTrainingSteps = NumTrainingHorizons*NumIntervalsPerHorizon;
NumTestingSteps = NumTestingHorizons*NumIntervalsPerHorizon;
TrainingLOB = SampledBook(1:NumTrainingSteps,:);
TestingLOB = SampledBook(NumTrainingSteps+1:end,:);

Optimal Execution for Sell Trades

These sections compose the workflow for designing a DQN agent for the optimal execution of sell
trades:

1 Define Settings for Sell Trades on page 18-70
2 TWAP Baseline Analysis on Training Data on page 18-70
3 Set Up RL Training Environment for Sell Trades on page 18-71
4 Validate Training Environment Reset and Step Functions for Sell Trades on page 18-72
5 Create and Train Agent for Sell Trades on page 18-74
6 Compute IS Using Trained Agent and Training Data for Sell Trades on page 18-79
7 Plot Training Results for Sell Trades on page 18-80
8 Display Summary of Training Results for Sell Trades on page 18-84
9 TWAP Baseline Analysis on Testing Data on page 18-85
10 Set Up RL Testing Environment for Sell Trades on page 18-86

 Deep Reinforcement Learning for Optimal Trade Execution

18-69



11 Validate Testing Environment Reset and Step Functions for Sell Trades on page 18-87
12 Compute IS Using Trained Agent and Testing Data for Sell Trades on page 18-88
13 Plot Testing Results for Sell Trades on page 18-89
14 Display Summary of Training and Testing Results for Sell Trades on page 18-92

Define Settings for Sell Trades

To indicate sell trades, set the BuyTrade logical flag to false.

BuyTrade = false;

Define the total number of shares to sell over the horizon.

TotalTradingShares_Sell = 2738;

TWAP Baseline Analysis on Training Data

Execute TWAP trades and compute Implementation Shortfall (IS) using the executeTWAPTrades
function, which uses the tradeLOB function to execute the trades and the endingInventoryIS
function to compute IS. These functions are in the Local Functions on page 18-98 section.

[IS_TWAP_Horizon_Train_Sell,IS_TWAP_Step_Train_Sell, ...
    InventoryShares_Step_TWAP_Train_Sell,TradingShares_Step_TWAP_Train_Sell] = ...
    executeTWAPTrades(TrainingLOB,NumLevels,TotalTradingShares_Sell, ...
    NumIntervalsPerHorizon,NumTrainingHorizons,BuyTrade);

Plot the implementation shortfall, executed shares, and inventory shares for the TWAP baseline for
each step using the training data.

figure
subplot(3,1,1)
bar(1:NumTrainingSteps, IS_TWAP_Step_Train_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
ylabel("Implementation Shortfall")
title("Implementation Shortfall (TWAP, Training, Sell)")
xlim([0 300])

subplot(3,1,2)
bar(1:NumTrainingSteps, TradingShares_Step_TWAP_Train_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
ylabel("Executed Shares")
title("Shares Traded at Each Step (TWAP, Training, Sell)")
xlim([0 300])
ylim([0 2000])

subplot(3,1,3)
bar(1:NumTrainingSteps, InventoryShares_Step_TWAP_Train_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
ylabel("Inventory Shares")
title("Inventory Shares (TWAP, Training, Sell)")
xlim([0 300])

18 Computational Finance Examples

18-70



The TWAP executed shares in the middle panel have a flat profile, since the same number of shares
are traded at each step. Also, the inventory shares in the bottom panel have a nearly perfect
triangular sawtooth pattern, with the number of inventory shares declining linearly at each horizon as
the shares are sold. The IS in the top panel sometimes declines to negative values (implying better
executions than arrival price) for some horizons, while it increases to positive values (implying worse
executions than arrival price) for other horizons.

Set Up RL Training Environment for Sell Trades

The RL environment requires observation and action information, reset function, and a step function.

Define the observation information for the four observation variables.

ObservationDimension = [1 4];
ObservationInfo_Train_Sell = rlNumericSpec(ObservationDimension);
ObservationInfo_Train_Sell.Name = 'Observation Data';
ObservationInfo_Train_Sell.Description = 'RemainingSharesToTrade, RemainingIntervals, IS_Agent, PriceDivergence';
ObservationInfo_Train_Sell.LowerLimit = -inf;
ObservationInfo_Train_Sell.UpperLimit = inf;

Define the environment constants for the training data and the reset function. The function definition
for RL_OptimalExecution_LOB_ResetFcn is in the Local Functions on page 18-98 section.

EnvConstants_Train_Sell.SampledBook = TrainingLOB;
EnvConstants_Train_Sell.BuyTrade = BuyTrade;
EnvConstants_Train_Sell.TotalTradingShares = TotalTradingShares_Sell;
EnvConstants_Train_Sell.NumIntervalsPerHorizon = NumIntervalsPerHorizon;

 Deep Reinforcement Learning for Optimal Trade Execution

18-71



EnvConstants_Train_Sell.NumHorizons = NumTrainingHorizons;
EnvConstants_Train_Sell.NumSteps = NumTrainingSteps;
EnvConstants_Train_Sell.NumLevels = NumLevels;
EnvConstants_Train_Sell.IS_TWAP = IS_TWAP_Step_Train_Sell;

ResetFunction_Sell = @() RL_OptimalExecution_LOB_ResetFcn(EnvConstants_Train_Sell);

Define the action information as the number of shares to be traded at each step, ranging from zero
shares to twice the number of shares as in TWAP.

NumActions = 39;
LowerActionRange = linspace(0,TradingShares_Step_TWAP_Train_Sell(1), round(NumActions/2));
ActionRange = round([LowerActionRange(1:end-1) ...
    linspace(TradingShares_Step_TWAP_Train_Sell(1), ...
    TradingShares_Step_TWAP_Train_Sell(1)*2,round(NumActions/2))]);

ActionInfo_Sell = rlFiniteSetSpec(ActionRange);
ActionInfo_Sell.Name = 'Trading Action (Number of Shares)';
ActionInfo_Sell.Description = 'Number of Shares to be Traded at Each Time Step';

Define the step function, which computes the rewards and updates the observations at each step. The
function definition for RL_OptimalExecution_LOB_StepFcn is in the Local Functions on page 18-
98 section.

StepFunction_Train_Sell = @(Action,LoggedSignals) ...
    RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants_Train_Sell);

Create the environment using the custom function handles defined in this section.

RL_OptimalExecution_Training_Environment_Sell = rlFunctionEnv(ObservationInfo_Train_Sell,ActionInfo_Sell,StepFunction_Train_Sell,ResetFunction_Sell)

Reset!
Reset!

RL_OptimalExecution_Training_Environment_Sell = 
  rlFunctionEnv with properties:

          StepFcn: @(Action,LoggedSignals)RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants_Train_Sell)
         ResetFcn: @()RL_OptimalExecution_LOB_ResetFcn(EnvConstants_Train_Sell)
    LoggedSignals: [1×1 struct]

Validate Training Environment Reset and Step Functions for Sell Trades

Before using the created environment, the best practice is to validate the reset and step functions for
the environment. Call the reset and step functions to see if they produce reasonable results without
errors.

Validate the reset function and the initial observation.

InitialObservation = reset(RL_OptimalExecution_Training_Environment_Sell);

Reset!

InitialObservation

InitialObservation = 1×4

18 Computational Finance Examples

18-72



        2738          12           0           0

Validate the step function by monitoring the logged signals and rewards while calling the step
functions multiple times. Here, you can see the time interval index increasing at each step and the
current inventory shares changing as the trades are executed at each step.

[~,Reward1,~,LoggedSignals1] = step(RL_OptimalExecution_Training_Environment_Sell,TradingShares_Step_TWAP_Train_Sell(1));
LoggedSignals1

LoggedSignals1 = struct with fields:
               IntervalIdx: 1
                HorizonIdx: 1
    CurrentInventoryShares: 2624
              ArrivalPrice: 27.4600
            ExecutedShares: 114
            ExecutedPrices: 27.4600
     HorizonExecutedShares: [60×1 double]
     HorizonExecutedPrices: [60×1 double]
                  IS_Agent: [3516×1 double]
                    Reward: [3516×1 double]
    NumIntervalsPerHorizon: 12
               NumHorizons: 293
                 NumLevels: 5

Reward1

Reward1 = 0

[~,Reward2,~,LoggedSignals2] = step(RL_OptimalExecution_Training_Environment_Sell,10);
LoggedSignals2

LoggedSignals2 = struct with fields:
               IntervalIdx: 2
                HorizonIdx: 1
    CurrentInventoryShares: 2614
              ArrivalPrice: 27.4600
            ExecutedShares: 10
            ExecutedPrices: 27.4900
     HorizonExecutedShares: [60×1 double]
     HorizonExecutedPrices: [60×1 double]
                  IS_Agent: [3516×1 double]
                    Reward: [3516×1 double]
    NumIntervalsPerHorizon: 12
               NumHorizons: 293
                 NumLevels: 5

Reward2

Reward2 = 0.6150

[~,Reward3,~,LoggedSignals3] = step(RL_OptimalExecution_Training_Environment_Sell,35);
LoggedSignals3

LoggedSignals3 = struct with fields:
               IntervalIdx: 3
                HorizonIdx: 1

 Deep Reinforcement Learning for Optimal Trade Execution

18-73



    CurrentInventoryShares: 2579
              ArrivalPrice: 27.4600
            ExecutedShares: 35
            ExecutedPrices: 27.4900
     HorizonExecutedShares: [60×1 double]
     HorizonExecutedPrices: [60×1 double]
                  IS_Agent: [3516×1 double]
                    Reward: [3516×1 double]
    NumIntervalsPerHorizon: 12
               NumHorizons: 293
                 NumLevels: 5

Reward3

Reward3 = 0.8925

Call the reset function again to restore the environment back to the initial state.

reset(RL_OptimalExecution_Training_Environment_Sell);

Reset!

Create and Train Agent for Sell Trades

Open Reinforcement Learning Designer (Reinforcement Learning Toolbox).

reinforcementLearningDesigner

Import the training environment by clicking the Import button and selecting the created training
environment.

18 Computational Finance Examples

18-74



Create a new DQN agent by selecting New > Agent, then selecting DQN from the Compatible
algorithm menu. Enable LSTM by selecting Use recurrent neural network.

 Deep Reinforcement Learning for Optimal Trade Execution

18-75



Set the agent hyperparameters and exploration parameters in the DQN Agent tab. Use the default
options, except for the following:

• Discount factor — 1
• Learn rate — 0.0001
• Batch size — 128
• Sequence length — 4
• Initial epsilon — 1
• Epsilon decay — 0.001

18 Computational Finance Examples

18-76



Go to the Train tab, and set the Max Episode Length to 3516 (NumTrainingSteps). You can
experiment with different Stopping Criteria, or you can manually stop the training by clicking on
the Stop button. In this example, you set the Stopping Criteria to EpisodeCount and the Max
Episodes to a value greater than or equal to EpisodeCount. Click Train to start the training.

 Deep Reinforcement Learning for Optimal Trade Execution

18-77



Once the training is complete, export the trained agent to the workspace. Since training can take a
long time, you can load a pretrained agent (DQN_agent_Sell_Trained.mat) for sell trades.

load DQN_agent_Sell_Trained.mat

You can view the DQN agent options by examining the AgentOptions property.

DQN_agent_Sell_Trained.AgentOptions

ans = 
  rlDQNAgentOptions with properties:

                           UseDoubleDQN: 1
               EpsilonGreedyExploration: [1×1 rl.option.EpsilonGreedyExploration]
                 CriticOptimizerOptions: [1×1 rl.option.rlOptimizerOptions]
            BatchDataRegularizerOptions: []
                     TargetSmoothFactor: 1.0000e-03
                  TargetUpdateFrequency: 1
    ResetExperienceBufferBeforeTraining: 0
                         SequenceLength: 4
                          MiniBatchSize: 128
                    NumStepsToLookAhead: 1
                 ExperienceBufferLength: 10000
                             SampleTime: 1
                         DiscountFactor: 1

18 Computational Finance Examples

18-78



                             InfoToSave: [1×1 struct]

Also, you can visualize the DQN agent's critic network by using Deep Network Designer.

deepNetworkDesigner(layerGraph(getModel(getCritic(DQN_agent_Sell_Trained))))

Compute IS Using Trained Agent and Training Data for Sell Trades

Simulate selling actions using the trained agent and training environment.

rng('default');
reset(RL_OptimalExecution_Training_Environment_Sell);

Reset!

simOptions = rlSimulationOptions(MaxSteps=NumTrainingSteps)

simOptions = 
  rlSimulationOptions with properties:

                  MaxSteps: 3516
            NumSimulations: 1
               StopOnError: "on"
               UseParallel: 0

 Deep Reinforcement Learning for Optimal Trade Execution

18-79



    ParallelizationOptions: [1×1 rl.option.ParallelSimulation]

Trained_Agent_Sell = DQN_agent_Sell_Trained;
experience_Sell = sim(RL_OptimalExecution_Training_Environment_Sell,Trained_Agent_Sell,simOptions);

Reset!
Last Horizon. Episode is Done!
HorizonIdx:

ans = 293

SimAction_Train_Sell = squeeze(experience_Sell.Action.TradingAction_NumberOfShares_.Data);

Compute the IS using simulated actions on the training data.

NumSimSteps = length(SimAction_Train_Sell);
SimInventory_Train_Sell = nan(NumSimSteps,1);
SimExecutedShares_Train_Sell = SimInventory_Train_Sell;
SimReward_Train_Sell = nan(NumSimSteps,1);

reset(RL_OptimalExecution_Training_Environment_Sell);

Reset!

for k=1:NumSimSteps
    [~,SimReward_Train_Sell(k),~,LoggedSignals] = ...
        step(RL_OptimalExecution_Training_Environment_Sell,SimAction_Train_Sell(k));
    SimInventory_Train_Sell(k) = LoggedSignals.CurrentInventoryShares;
    SimExecutedShares_Train_Sell(k) = sum(LoggedSignals.ExecutedShares);
end

Last Horizon. Episode is Done!
HorizonIdx:

ans = 293

IS_Agent_Step_Train_Sell = LoggedSignals.IS_Agent;
IS_Agent_Horizon_Train_Sell = IS_Agent_Step_Train_Sell( ....
    NumIntervalsPerHorizon:NumIntervalsPerHorizon:NumTrainingSteps);

Plot Training Results for Sell Trades

Plot Implementation Shortfall (IS), executed shares, and inventory shares for the agent for each step
using training data.

figure
subplot(3,1,1)
bar(1:NumTrainingSteps, IS_Agent_Step_Train_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
ylabel("Implementation Shortfall")
title("Implementation Shortfall  (Agent, Training, Sell)")
xlim([0 300])
ylim([-200 200])

subplot(3,1,2)
bar(1:NumTrainingSteps, SimExecutedShares_Train_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))

18 Computational Finance Examples

18-80



ylabel("Executed Shares")
title("Shares Traded at Each Step (Agent, Training, Sell)")
xlim([0 300])

subplot(3,1,3)
bar(1:NumTrainingSteps, SimInventory_Train_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
ylabel("Inventory Shares")
title("Inventory Shares (Agent, Training, Sell)")
xlim([0 300])

Unlike the previous TWAP baseline plot, where the executed shares in the middle panel have a flat
profile, here you can see that the agent actively changes the number of executed shares at each step.
Also, the inventory shares in the bottom panel decline in a non-linear manner.

To directly compare the results from the agent with the TWAP baseline, you can plot both results on
the same chart. Generate plots to compare implementation shortfall, executed shares, and inventory
shares between the TWAP baseline and the agent for each step using the training data.

figure
subplot(3,1,1)
plot(1:NumTrainingSteps, [IS_TWAP_Step_Train_Sell IS_Agent_Step_Train_Sell], linewidth=1.5)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
ylabel("Implementation Shortfall")
title("Implementation Shortfall (Training, Sell)")

 Deep Reinforcement Learning for Optimal Trade Execution

18-81



legend(["TWAP" "Agent"], location="east")
xlim([0 300])

subplot(3,1,2)
plot(1:NumTrainingSteps, [TradingShares_Step_TWAP_Train_Sell ...
    SimExecutedShares_Train_Sell], linewidth=1.5)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
ylabel("Executed Shares")
title("Shares Traded at Each Step (Training, Sell)")
legend(["TWAP" "Agent"], location="east")
xlim([0 300])

subplot(3,1,3)
plot(1:NumTrainingSteps, [InventoryShares_Step_TWAP_Train_Sell ...
    SimInventory_Train_Sell], linewidth=1.5)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
ylabel("Inventory Shares")
title("Inventory Shares (Training, Sell)")
legend(["TWAP" "Agent"], location="east")
xlim([0 300])

You can see the differences between the TWAP baseline (blue) and the agent (red) in their IS,
executed shares, and inventory shares. Also, the agent tends to behave differently when the IS trends
negative as compared to positive.

18 Computational Finance Examples

18-82



• For example, in the first horizon (step numbers 1 to 12) and the third horizon (step numbers 25 to
36), the IS trends negative (more favorable prices than the arrival price) and the agent initially
trades fewer shares than TWAP, until there are large spikes in the executed shares at the ends of
the horizons to meet the ending inventory constraint. Also, the inventories initially declines more
slowly than TWAP, until the abrupt declines to zero at the end of the horizon. This coincided with
negative pulls in the agent's IS at the end of the first and the third horizons that go even lower
than the IS of TWAP.

• On the other hand, in the second horizon (step numbers 13 to 24), the IS trends positive (less
favorable prices than the arrival price), and the agent initially trades more shares than TWAP to
liquidate the inventory faster than TWAP. This has a limiting effect on the agent's IS at the end of
the horizon, which is also lower than the IS of TWAP.

You can see similar behaviors in other horizons, although they do not always lead to an
outperformance of the agent over TWAP.

Also, you can plot the differences in IS between TWAP and the agent, and then compare them with
the rewards.

figure
subplot(3,1,1)
bar(1:NumTrainingHorizons, IS_TWAP_Horizon_Train_Sell - IS_Agent_Horizon_Train_Sell)
xlabel(strcat("Horizon number (", num2str(NumTrainingHorizons), " horizons total.)"))
title("IS TWAP - IS Agent Over Horizon (Training, Sell)")
xlim([0 43])
subplot(3,1,2)
bar(1:NumTrainingSteps, IS_TWAP_Step_Train_Sell - IS_Agent_Step_Train_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
title("IS TWAP - IS Agent Each Step (Training, Sell)")
xlim([0 510])
subplot(3,1,3)
bar(1:NumTrainingSteps, SimReward_Train_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTrainingSteps), " steps total.)"))
title("Reward (Training, Sell)")
xlim([0 510])

 Deep Reinforcement Learning for Optimal Trade Execution

18-83



The top panel (ISTWAP 0, T − ISAgent 0, T ) shows the final performance of the agent for the training
data as the differences in IS between TWAP and the agent at the ends of the horizons at times T. For
example, in the top panel, you can see the outperformance of the agent (positive IS difference) in the
first three horizons, while the agent underperforms in some of the other horizons. The middle panel
(ISTWAP 0, t − ISAgent 0, t ) shows the differences in IS for all time steps t, including the ones before
the ends of the horizons. The middle panel does not appear to track the top panel values very well in
some steps (except for the very last steps in the horizons, which are the top panel values when t = T),
as there are frequent trend reversals between negative and positive values at the last steps of the
horizons. Therefore, the simple difference in IS between TWAP and the agent at each step
(ISTWAP 0, t − ISAgent 0, t ) shown in the middle panel may not be a good reward function. On the
other hand, the bottom panel, which plots the rewards used by the agent in this example at each step,
appears to track the top panel values more closely than the middle panel at most steps.

Display Summary of Training Results for Sell Trades

Display the total Implementation Shortfall outperformance of the agent over TWAP for the training
data.

sum(IS_TWAP_Horizon_Train_Sell - IS_Agent_Horizon_Train_Sell)

ans = 164.4700

Display total-gain-to-loss ratio (TGLR) for the training data.

ISTGLR(IS_TWAP_Horizon_Train_Sell - IS_Agent_Horizon_Train_Sell)

ans = 1.2327

18 Computational Finance Examples

18-84



TWAP Baseline Analysis on Testing Data 

Using the same trained agent as the Compute IS Using Trained Agent and Training Data for Sell
Trades on page 18-79 section, you can perform the same analysis on the testing data that you kept
separate from the training data.

First, execute the TWAP trades and compute IS for the testing data.

[IS_TWAP_Horizon_Test_Sell,IS_TWAP_Step_Test_Sell, ...
    InventoryShares_Step_TWAP_Test_Sell,TradingShares_Step_TWAP_Test_Sell] = ...
    executeTWAPTrades(TestingLOB,NumLevels,TotalTradingShares_Sell,...
    NumIntervalsPerHorizon,NumTestingHorizons,BuyTrade);

Plot the implementation shortfall, executed shares, and inventory shares for the TWAP baseline for
each step using testing data.

figure
subplot(3,1,1)
bar(1:NumTestingSteps, IS_TWAP_Step_Test_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Implementation Shortfall")
title("Implementation Shortfall (TWAP, Testing, Sell)")
xlim([0 300])
ylim([-65 75])

subplot(3,1,2)
bar(1:NumTestingSteps, TradingShares_Step_TWAP_Test_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Executed Shares")
title("Shares Traded at Each Step (TWAP, Testing, Sell)")
xlim([0 300])
ylim([0 2000])

subplot(3,1,3)
bar(1:NumTestingSteps, InventoryShares_Step_TWAP_Test_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Inventory Shares")
title("Inventory Shares (TWAP, Testing, Sell)")
xlim([0 300])

 Deep Reinforcement Learning for Optimal Trade Execution

18-85



Set Up RL Testing Environment for Sell Trades

Next, define the reset function for the testing environment.

EnvConstants_Test_Sell.SampledBook = TestingLOB;
EnvConstants_Test_Sell.BuyTrade = BuyTrade;
EnvConstants_Test_Sell.TotalTradingShares = TotalTradingShares_Sell;
EnvConstants_Test_Sell.NumIntervalsPerHorizon = NumIntervalsPerHorizon;
EnvConstants_Test_Sell.NumHorizons = NumTestingHorizons;
EnvConstants_Test_Sell.NumSteps = NumTestingSteps;
EnvConstants_Test_Sell.NumLevels = NumLevels;
EnvConstants_Test_Sell.IS_TWAP = IS_TWAP_Step_Test_Sell;

ResetFunction_Test_Sell = @() RL_OptimalExecution_LOB_ResetFcn(EnvConstants_Test_Sell);

Define the step function for the testing environment.

StepFunction_Test_Sell = @(Action,LoggedSignals) ...
    RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants_Test_Sell);

Create the testing environment using the reset and step function handles.

RL_OptimalExecution_Testing_Environment_Sell = ...
    rlFunctionEnv(ObservationInfo_Train_Sell,ActionInfo_Sell, ...
    StepFunction_Test_Sell,ResetFunction_Test_Sell)

Reset!
Reset!

18 Computational Finance Examples

18-86



RL_OptimalExecution_Testing_Environment_Sell = 
  rlFunctionEnv with properties:

          StepFcn: @(Action,LoggedSignals)RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants_Test_Sell)
         ResetFcn: @()RL_OptimalExecution_LOB_ResetFcn(EnvConstants_Test_Sell)
    LoggedSignals: [1×1 struct]

Validate Testing Environment Reset and Step Functions for Sell Trades

Now, validate the testing environment using reset and step function handles.

InitialObservation = reset(RL_OptimalExecution_Testing_Environment_Sell);

Reset!

InitialObservation

InitialObservation = 1×4

        2738          12           0           0

[~,Reward1,~,LoggedSignals1] = step( ...
    RL_OptimalExecution_Testing_Environment_Sell,TradingShares_Step_TWAP_Train_Sell(1));
LoggedSignals1

LoggedSignals1 = struct with fields:
               IntervalIdx: 1
                HorizonIdx: 1
    CurrentInventoryShares: 2624
              ArrivalPrice: 26.8000
            ExecutedShares: 114
            ExecutedPrices: 26.8000
     HorizonExecutedShares: [60×1 double]
     HorizonExecutedPrices: [60×1 double]
                  IS_Agent: [1164×1 double]
                    Reward: [1164×1 double]
    NumIntervalsPerHorizon: 12
               NumHorizons: 97
                 NumLevels: 5

Reward1

Reward1 = 0

[~,Reward2,~,LoggedSignals2] = step( ...
    RL_OptimalExecution_Testing_Environment_Sell,10);
LoggedSignals2

LoggedSignals2 = struct with fields:
               IntervalIdx: 2
                HorizonIdx: 1
    CurrentInventoryShares: 2614
              ArrivalPrice: 26.8000
            ExecutedShares: 10
            ExecutedPrices: 26.7900
     HorizonExecutedShares: [60×1 double]
     HorizonExecutedPrices: [60×1 double]

 Deep Reinforcement Learning for Optimal Trade Execution

18-87



                  IS_Agent: [1164×1 double]
                    Reward: [1164×1 double]
    NumIntervalsPerHorizon: 12
               NumHorizons: 97
                 NumLevels: 5

Reward2

Reward2 = -0.2050

[~,Reward3,~,LoggedSignals3] = step( ...
    RL_OptimalExecution_Testing_Environment_Sell,35);
LoggedSignals3

LoggedSignals3 = struct with fields:
               IntervalIdx: 3
                HorizonIdx: 1
    CurrentInventoryShares: 2579
              ArrivalPrice: 26.8000
            ExecutedShares: 35
            ExecutedPrices: 26.7900
     HorizonExecutedShares: [60×1 double]
     HorizonExecutedPrices: [60×1 double]
                  IS_Agent: [1164×1 double]
                    Reward: [1164×1 double]
    NumIntervalsPerHorizon: 12
               NumHorizons: 97
                 NumLevels: 5

Reward3

Reward3 = -0.2975

Call the reset function again to restore the environment back to the initial state.

reset(RL_OptimalExecution_Testing_Environment_Sell);

Reset!

Compute IS Using Trained Agent and Testing Data for Sell Trades

Simulate actions using the trained agent and testing data for sell trades.

simOptions = rlSimulationOptions(MaxSteps=NumTestingSteps);
experience_Sell = sim(RL_OptimalExecution_Testing_Environment_Sell,Trained_Agent_Sell,simOptions);

Reset!
Last Horizon. Episode is Done!
HorizonIdx:

ans = 97

SimAction_Test_Sell = squeeze(experience_Sell.Action.TradingAction_NumberOfShares_.Data);

Compute Implementation Shortfall (IS) using simulated actions on testing data.

NumSimSteps = length(SimAction_Test_Sell);
SimInventory_Test_Sell = nan(NumSimSteps,1);

18 Computational Finance Examples

18-88



SimExecutedShares_Test_Sell = SimInventory_Test_Sell;
SimReward_Test_Sell = nan(NumSimSteps,1);

reset(RL_OptimalExecution_Testing_Environment_Sell);

Reset!

for k=1:NumSimSteps
    [~,SimReward_Test_Sell(k),~,LoggedSignals] = step( ...
        RL_OptimalExecution_Testing_Environment_Sell,SimAction_Test_Sell(k));
    SimInventory_Test_Sell(k) = LoggedSignals.CurrentInventoryShares;
    SimExecutedShares_Test_Sell(k) = sum(LoggedSignals.ExecutedShares);
end

Last Horizon. Episode is Done!
HorizonIdx:

ans = 97

IS_Agent_Step_Test_Sell = LoggedSignals.IS_Agent;
IS_Agent_Horizon_Test_Sell = IS_Agent_Step_Test_Sell( ...
    NumIntervalsPerHorizon:NumIntervalsPerHorizon:NumTestingSteps);

Plot Testing Results for Sell Trades

Plot Implementation Shortfall (IS), executed shares, and inventory shares of the agent for each step
using testing data.

figure
subplot(3,1,1)
bar(1:NumTestingSteps, IS_Agent_Step_Test_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Implementation Shortfall")
title("Implementation Shortfall (Agent, Testing, Sell)")
xlim([650 950])
ylim([-200 150])

subplot(3,1,2)
bar(1:NumTestingSteps, SimExecutedShares_Test_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Executed Shares")
title("Shares Traded at Each Step (Agent, Testing, Sell)")
xlim([650 950])
ylim([0 2900])

subplot(3,1,3)
bar(1:NumTestingSteps, SimInventory_Test_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Inventory Shares")
title("Inventory Shares (Agent, Testing, Sell)")
xlim([650 950])

 Deep Reinforcement Learning for Optimal Trade Execution

18-89



Compare implementation shortfall, executed shares, and inventory shares between the TWAP
baseline and the agent for each step using testing data.

figure
subplot(3,1,1)
plot(1:NumTestingSteps, [IS_TWAP_Step_Test_Sell IS_Agent_Step_Test_Sell], linewidth=1.5)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Implementation Shortfall")
title("Implementation Shortfall (Testing, Sell)")
legend(["TWAP" "Agent"],location='best')
xlim([650 950])
ylim([-200 150])

subplot(3,1,2)
plot(1:NumTestingSteps, [TradingShares_Step_TWAP_Test_Sell ...
    SimExecutedShares_Test_Sell], linewidth=1.5)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Executed Shares")
title("Shares Traded at Each Step (Testing, Sell)")
legend(["TWAP" "Agent"])
xlim([650 950])
ylim([0 2900])

subplot(3,1,3)
plot(1:NumTestingSteps, [InventoryShares_Step_TWAP_Test_Sell ...

18 Computational Finance Examples

18-90



    SimInventory_Test_Sell], linewidth=1.5)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
ylabel("Inventory Shares")
title("Inventory Shares (Testing, Sell)")
legend(["TWAP" "Agent"])
xlim([650 950])

Just as in the training data, the agent (red) actively changes the number of executed shares for each
step in the testing data, while the TWAP policy (blue) executes the same number of shares at each
step.

Plot the differences in IS between TWAP and the agent and then compare them with the rewards.

figure
subplot(3,1,1)
bar(1:NumTestingHorizons, IS_TWAP_Horizon_Test_Sell - IS_Agent_Horizon_Test_Sell)
xlabel(strcat("Horizon number (", num2str(NumTestingHorizons), " horizons total.)"))
title("IS TWAP - IS Agent Over Horizon (Testing, Sell)")

subplot(3,1,2)
bar(1:NumTestingSteps, IS_TWAP_Step_Test_Sell - IS_Agent_Step_Test_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
title("IS TWAP - IS Agent Each Step (Testing, Sell)")
xlim([0 NumTestingSteps+9])

 Deep Reinforcement Learning for Optimal Trade Execution

18-91



subplot(3,1,3)
bar(1:NumTestingSteps, SimReward_Test_Sell)
xlabel(strcat("Step number (", num2str(TradingIntervalSec), ...
    " sec intervals, ", num2str(NumTestingSteps), " steps total.)"))
title("Reward (Testing, Sell)")
xlim([0 NumTestingSteps+9])

Display Summary of Training and Testing Results for Sell Trades

You can summarize the results of the sell trade agent's training and testing.

Display total Implementation Shortfall (IS) outperformance of the agent over TWAP for training data.

Total_Outperformance_Train_Sell = sum(IS_TWAP_Horizon_Train_Sell - IS_Agent_Horizon_Train_Sell);
table(Total_Outperformance_Train_Sell)

ans=table
    Total_Outperformance_Train_Sell
    _______________________________

                164.47             

Display total-gain-to-loss ratio (TGLR) and gain-to-loss ratio (GLR) for the training data.

[TGLR_Train_Sell, GLR_Train_Sell] = ...
    ISTGLR(IS_TWAP_Horizon_Train_Sell - IS_Agent_Horizon_Train_Sell);

table(TGLR_Train_Sell, GLR_Train_Sell)

18 Computational Finance Examples

18-92



ans=1×2 table
    TGLR_Train_Sell    GLR_Train_Sell
    _______________    ______________

        1.2327             1.2532    

Display the total IS outperformance of the agent over TWAP for the testing data.

Total_Outperformance_Test_Sell = sum(IS_TWAP_Horizon_Test_Sell - IS_Agent_Horizon_Test_Sell);
table(Total_Outperformance_Test_Sell)

ans=table
    Total_Outperformance_Test_Sell
    ______________________________

                104.12            

Display TGLR and GLR for the testing data.

[TGLR_Test_Sell, GLR_Test_Sell] = ...
    ISTGLR(IS_TWAP_Horizon_Test_Sell - IS_Agent_Horizon_Test_Sell);
table(TGLR_Test_Sell, GLR_Test_Sell)

ans=1×2 table
    TGLR_Test_Sell    GLR_Test_Sell
    ______________    _____________

        1.389            1.1906    

Optimal Execution for Buy Trades

You can use a shortened version of the previous procedure (Optimal Execution for Sell Trades on
page 18-69) to support the workflow for designing a DQN agent for optimal execution of buy trades.
To repeat the same workflow for buy trades, first set the BuyTrade logical flag to true and define
the total number of shares to buy over the horizon.

BuyTrade = true;
TotalTradingShares_Buy = 2551;

Execute TWAP trades and compute the Implementation Shortfall (IS).

[IS_TWAP_Horizon_Train_Buy,IS_TWAP_Step_Train_Buy, ...
    InventoryShares_Step_TWAP_Train_Buy,TradingShares_Step_TWAP_Train_Buy] = ...
    executeTWAPTrades(TrainingLOB,NumLevels,TotalTradingShares_Buy, ...
    NumIntervalsPerHorizon,NumTrainingHorizons,BuyTrade);

Set up the RL training environment for buy trades.

ObservationDimension = [1 4];
ObservationInfo_Train_Buy = rlNumericSpec(ObservationDimension);
ObservationInfo_Train_Buy.Name = 'Observation Data';
ObservationInfo_Train_Buy.Description = ['RemainingSharesToTrade, ...' ...
    'RemainingIntervals, IS_Agent, PriceDivergence'];
ObservationInfo_Train_Buy.LowerLimit = -inf;
ObservationInfo_Train_Buy.UpperLimit = inf;

 Deep Reinforcement Learning for Optimal Trade Execution

18-93



EnvConstants_Train_Buy.SampledBook = TrainingLOB;
EnvConstants_Train_Buy.BuyTrade = BuyTrade;
EnvConstants_Train_Buy.TotalTradingShares = TotalTradingShares_Buy;
EnvConstants_Train_Buy.NumIntervalsPerHorizon = NumIntervalsPerHorizon;
EnvConstants_Train_Buy.NumHorizons = NumTrainingHorizons;
EnvConstants_Train_Buy.NumSteps = NumTrainingSteps;
EnvConstants_Train_Buy.NumLevels = NumLevels;
EnvConstants_Train_Buy.IS_TWAP = IS_TWAP_Step_Train_Buy;
ResetFunction_Buy = @() RL_OptimalExecution_LOB_ResetFcn(EnvConstants_Train_Buy);

NumActions = 39;
LowerActionRange = linspace(0,TradingShares_Step_TWAP_Train_Buy(1), round(NumActions/2));
ActionRange = round([LowerActionRange(1:end-1) ...
    linspace(TradingShares_Step_TWAP_Train_Buy(1), ...
    TradingShares_Step_TWAP_Train_Buy(1)*2,round(NumActions/2))]);
NumActions = length(ActionRange);

ActionInfo_Buy = rlFiniteSetSpec(ActionRange);
ActionInfo_Buy.Name = 'Trading Action (Number of Shares)';
ActionInfo_Buy.Description = 'Number of Shares to be Traded at Each Time Step';

StepFunction_Train_Buy = @(Action,LoggedSignals) ...
    RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants_Train_Buy);

RL_OptimalExecution_Training_Environment_Buy = rlFunctionEnv( ...
    ObservationInfo_Train_Buy,ActionInfo_Buy,StepFunction_Train_Buy,ResetFunction_Buy)

Reset!
Reset!

RL_OptimalExecution_Training_Environment_Buy = 
  rlFunctionEnv with properties:

          StepFcn: @(Action,LoggedSignals)RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants_Train_Buy)
         ResetFcn: @()RL_OptimalExecution_LOB_ResetFcn(EnvConstants_Train_Buy)
    LoggedSignals: [1×1 struct]

Use Reinforcement Learning Designer (Reinforcement Learning Toolbox) to create and train the
agent for the buy trades. You use the same procedure (Optimal Execution for Sell Trades on page 18-
69) as with the sell trades, except that the imported training environment is for buy trades
(RL_OptimalExecution_Training_Environment_Buy). Once the training is complete, export the
trained agent to the workspace. Since training can take a long time, this example uses a pretrained
agent (DQN_agent_Buy_Trained.mat).

load DQN_agent_Buy_Trained.mat

Compute IS using the trained agent and training data for buy trades.

rng('default');
reset(RL_OptimalExecution_Training_Environment_Buy);

Reset!

simOptions = rlSimulationOptions(MaxSteps=NumTrainingSteps);
Trained_Agent_Buy = DQN_agent_Buy_Trained;
experience_Buy = sim(RL_OptimalExecution_Training_Environment_Buy,Trained_Agent_Buy,simOptions);

18 Computational Finance Examples

18-94



Reset!
Last Horizon. Episode is Done!
HorizonIdx:

ans = 293

SimAction_Train_Buy = squeeze(experience_Buy.Action.TradingAction_NumberOfShares_.Data);
NumSimSteps = length(SimAction_Train_Buy);
SimInventory_Train_Buy = nan(NumSimSteps,1);
SimExecutedShares_Train_Buy = SimInventory_Train_Buy;
SimReward_Train_Buy = nan(NumSimSteps,1);
reset(RL_OptimalExecution_Training_Environment_Buy);

Reset!

for k=1:NumSimSteps
    [~,SimReward_Train_Buy(k),~,LoggedSignals] = ...
        step(RL_OptimalExecution_Training_Environment_Buy,SimAction_Train_Buy(k));
    SimInventory_Train_Buy(k) = LoggedSignals.CurrentInventoryShares;
    SimExecutedShares_Train_Buy(k) = sum(LoggedSignals.ExecutedShares);
end

Last Horizon. Episode is Done!
HorizonIdx:

ans = 293

IS_Agent_Step_Train_Buy = LoggedSignals.IS_Agent;
IS_Agent_Horizon_Train_Buy = IS_Agent_Step_Train_Buy( ....
    NumIntervalsPerHorizon:NumIntervalsPerHorizon:NumTrainingSteps);

Execute the TWAP trades and compute the IS for the testing data.

[IS_TWAP_Horizon_Test_Buy,IS_TWAP_Step_Test_Buy, ...
    InventoryShares_Step_TWAP_Test_Buy,TradingShares_Step_TWAP_Test_Buy] = ...
    executeTWAPTrades(TestingLOB,NumLevels,TotalTradingShares_Buy,...
    NumIntervalsPerHorizon,NumTestingHorizons,BuyTrade);

Set up the RL testing environment for buy trades.

EnvConstants_Test_Buy.SampledBook = TestingLOB;
EnvConstants_Test_Buy.BuyTrade = BuyTrade;
EnvConstants_Test_Buy.TotalTradingShares = TotalTradingShares_Buy;
EnvConstants_Test_Buy.NumIntervalsPerHorizon = NumIntervalsPerHorizon;
EnvConstants_Test_Buy.NumHorizons = NumTestingHorizons;
EnvConstants_Test_Buy.NumSteps = NumTestingSteps;
EnvConstants_Test_Buy.NumLevels = NumLevels;
EnvConstants_Test_Buy.IS_TWAP = IS_TWAP_Step_Test_Buy;
ResetFunction_Test_Buy = @() RL_OptimalExecution_LOB_ResetFcn(EnvConstants_Test_Buy);
StepFunction_Test_Buy = @(Action,LoggedSignals) ...
    RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants_Test_Buy);
RL_OptimalExecution_Testing_Environment_Buy = ...
    rlFunctionEnv(ObservationInfo_Train_Buy,ActionInfo_Buy, ...
    StepFunction_Test_Buy,ResetFunction_Test_Buy)

Reset!
Reset!

RL_OptimalExecution_Testing_Environment_Buy = 
  rlFunctionEnv with properties:

 Deep Reinforcement Learning for Optimal Trade Execution

18-95



          StepFcn: @(Action,LoggedSignals)RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants_Test_Buy)
         ResetFcn: @()RL_OptimalExecution_LOB_ResetFcn(EnvConstants_Test_Buy)
    LoggedSignals: [1×1 struct]

Compute IS using the trained agent and testing data for buy trades.

simOptions = rlSimulationOptions(MaxSteps=NumTestingSteps);
experience_Buy = sim(RL_OptimalExecution_Testing_Environment_Buy,Trained_Agent_Buy,simOptions);

Reset!
Last Horizon. Episode is Done!
HorizonIdx:

ans = 97

SimAction_Test_Buy = squeeze(experience_Buy.Action.TradingAction_NumberOfShares_.Data);
NumSimSteps = length(SimAction_Test_Buy);
SimInventory_Test_Buy = nan(NumSimSteps,1);
SimExecutedShares_Test_Buy = SimInventory_Test_Buy;
SimReward_Test_Buy = nan(NumSimSteps,1);
reset(RL_OptimalExecution_Testing_Environment_Buy);

Reset!

for k=1:NumSimSteps
    [NextObs1,SimReward_Test_Buy(k),IsDone1,LoggedSignals] = step( ...
        RL_OptimalExecution_Testing_Environment_Buy,SimAction_Test_Buy(k));
    SimInventory_Test_Buy(k) = LoggedSignals.CurrentInventoryShares;
    SimExecutedShares_Test_Buy(k) = sum(LoggedSignals.ExecutedShares);
end

Last Horizon. Episode is Done!
HorizonIdx:

ans = 97

IS_Agent_Step_Test_Buy = LoggedSignals.IS_Agent;
IS_Agent_Horizon_Test_Buy = IS_Agent_Step_Test_Buy( ...
    NumIntervalsPerHorizon:NumIntervalsPerHorizon:NumTestingSteps);

Display the total Implementation Shortfall (IS) outperformance of the agent over TWAP for training
data.

Total_Outperformance_Train_Buy = sum(IS_TWAP_Horizon_Train_Buy - IS_Agent_Horizon_Train_Buy);
table(Total_Outperformance_Train_Buy)

ans=table
    Total_Outperformance_Train_Buy
    ______________________________

                326.25            

Display total-gain-to-loss ratio (TGLR) and gain-to-loss ratio (GLR) for the training data.

[TGLR_Train_Buy, GLR_Train_Buy] = ...
    ISTGLR(IS_TWAP_Horizon_Train_Buy - IS_Agent_Horizon_Train_Buy);
table(TGLR_Train_Buy, GLR_Train_Buy)

18 Computational Finance Examples

18-96



ans=1×2 table
    TGLR_Train_Buy    GLR_Train_Buy
    ______________    _____________

        1.4146           1.2587    

Display total IS outperformance of the agent over TWAP for the testing data.

Total_Outperformance_Test_Buy = sum(IS_TWAP_Horizon_Test_Buy - IS_Agent_Horizon_Test_Buy);
table(Total_Outperformance_Test_Buy)

ans=table
    Total_Outperformance_Test_Buy
    _____________________________

               196.57            

Display TGLR and GLR for the testing data.

[TGLR_Test_Buy, GLR_Test_Buy] = ...
    ISTGLR(IS_TWAP_Horizon_Test_Buy - IS_Agent_Horizon_Test_Buy);
table(TGLR_Test_Buy, GLR_Test_Buy)

ans=1×2 table
    TGLR_Test_Buy    GLR_Test_Buy
    _____________    ____________

        2.018           1.4641   

References

[1] Bertsimas, Dimitris, and Andrew W. Lo. "Optimal Control of Execution Costs." Journal of Financial
Markets 1, no. 1 (1998): 1-50.

[2] Almgren, Robert, and Neil Chriss. "Optimal Execution of Portfolio Transactions." Journal of Risk 3,
no. 2 (2000): 5-40.

[3] Nevmyvaka, Yuriy, Yi Feng, and Michael Kearns. "Reinforcement Learning for Optimized Trade
Execution." In Proceedings of the 23rd International Conference on Machine Learning, pp. 673-680.
2006.

[4] Ning B., F. Lin, and S. Jaimungal. "Double Deep Q-Learning for Optimal Execution." Preprint,
submitted June 8, 2020. Available at https://arxiv.org/abs/1812.06600.

[5] Lin S. and P. A. Beling. "Optimal Liquidation with Deep Reinforcement Learning." 33rd Conference
on Neural Information Processing Systems (NeurIPS 2019) Deep Reinforcement Learning Workshop.
Vancouver, Canada, 2019.

 Deep Reinforcement Learning for Optimal Trade Execution

18-97

https://arxiv.org/abs/1812.06600


[6] Lin S. and P. A. Beling. "An End-to-End Optimal Trade Execution Framework Based on Proximal
Policy Optimization." Proceedings of the 29th International Joint Conference on Artificial Intelligence
(IJCAI 2020) Special Track on AI in FinTech. 4548-4554. 2020.

[7] LOBSTER Limit Order Book Data. Berlin: frischedaten UG (haftungsbeschränkt). Available at
https://lobsterdata.com/.

Local Functions
function [IS_TWAP_Horizon,IS_TWAP_Step,InventorySharesStepTWAP,TradingSharesStepTWAP] = ...
    executeTWAPTrades(InputLOB,NumLevels,TotalTradingShares,NumIntervalsPerHorizon,NumHorizons,BuyTrade)
% executeTWAPTrades Function for Executing Trades for TWAP Baseline
% This function executes buy or sell trades for the TWAP baseline and
% computes the corresponding implementation shortfalls, inventory shares
% and trading shares at each step.

NumSteps = NumHorizons*NumIntervalsPerHorizon;
IS_TWAP_Horizon = nan(NumHorizons,1);
IS_TWAP_Step = nan(NumSteps,1);
TradingSharesStepTWAP = round(TotalTradingShares./NumIntervalsPerHorizon).*ones(NumSteps,1);

if BuyTrade
    InventorySharesStepTWAP = zeros(NumSteps,1);
else
    InventorySharesStepTWAP = zeros(NumSteps,1) + TotalTradingShares;
end

for HorizonIdx = 1:NumHorizons
    HorizonExecutedPrices = zeros(NumLevels*NumIntervalsPerHorizon,1);
    HorizonExecutedShares = HorizonExecutedPrices;
    for IntervalIdx = 1:NumIntervalsPerHorizon
        CurrentBook =  InputLOB(IntervalIdx + NumIntervalsPerHorizon*(HorizonIdx-1),:);

        % Execute trade
        if IntervalIdx==NumIntervalsPerHorizon
            if BuyTrade
                % Enforce target ending inventory constraint for buy trade (buy missing shares)
                CurrentTradingShares = max(TotalTradingShares - ...
                    InventorySharesStepTWAP(IntervalIdx + NumIntervalsPerHorizon.*(HorizonIdx-1)), 0);
            else
                % Enforce zero ending inventory constraint for sell trade (sell remaining shares)
                CurrentTradingShares = max(InventorySharesStepTWAP(IntervalIdx + ...
                    NumIntervalsPerHorizon.*(HorizonIdx-1)), 0);
            end
        else
            CurrentTradingShares = TradingSharesStepTWAP(IntervalIdx + ...
                NumIntervalsPerHorizon.*(HorizonIdx-1));
        end

        [ExecutedShares,ExecutedPrices,InitialPrice,TradedLevels] = ...
            tradeLOB(CurrentBook,CurrentTradingShares,BuyTrade);
        if IntervalIdx==1
            ArrivalPrice = InitialPrice;
        end
        HorizonExecutedShares((1:TradedLevels) + (IntervalIdx-1)*NumLevels) = ExecutedShares;
        HorizonExecutedPrices((1:TradedLevels) + (IntervalIdx-1)*NumLevels) = ExecutedPrices;

18 Computational Finance Examples

18-98

https://lobsterdata.com/
https://lobsterdata.com/


        if BuyTrade
            InventorySharesStepTWAP((IntervalIdx:NumIntervalsPerHorizon) + ...
                NumIntervalsPerHorizon.*(HorizonIdx-1)) = ...
                InventorySharesStepTWAP(IntervalIdx + ...
                NumIntervalsPerHorizon.*(HorizonIdx-1)) + sum(ExecutedShares);
        else
            InventorySharesStepTWAP((IntervalIdx:NumIntervalsPerHorizon) + ...
                NumIntervalsPerHorizon.*(HorizonIdx-1)) = ...
                InventorySharesStepTWAP(IntervalIdx + ...
                NumIntervalsPerHorizon.*(HorizonIdx-1)) - sum(ExecutedShares);
        end

        % Compute Implementation Shortfall for each Step
        IS_TWAP_Step(IntervalIdx + NumIntervalsPerHorizon.*(HorizonIdx-1)) = ...
            endingInventoryIS(ArrivalPrice,HorizonExecutedPrices,HorizonExecutedShares,BuyTrade);
    end

    % Compute Implementation Shortfall for each Horizon
    IS_TWAP_Horizon(HorizonIdx) = endingInventoryIS(ArrivalPrice, ...
        HorizonExecutedPrices,HorizonExecutedShares,BuyTrade);
end

end

function [InitialObservation,LoggedSignals] = RL_OptimalExecution_LOB_ResetFcn(EnvConstants)
% RL_OptimalExecution_LOB_ResetFcn is Reset Function for RL Agent
% Define Reset Function
%
% Inputs:
%
% EnvConstants: Structure with the following fields:
% - SampledBook: Limit order book sampled at time intervals
% - BuyTrade: Scalar logical indicating the trading direction
%               true: Buy
%               false: Sell
% - TotalTradingShares: Number of shares to trade over the horizon (scalar)
% - NumIntervalsPerHorizon: Number of intervals per horizon (scalar)
% - NumHorizons: Number of horizons in the data (scalar)
% - NumSteps: Number of steps in the data (scalar)
% - NumLevels: Number of levels in the limit order book (scalar)
% - IS_TWAP: Implementation shortfall for TWAP baseline (NumSteps-by-1 vector)
%
% Outputs:
%
% InitialObservation:
% - Remaining shares to be traded by agent
% - Remaining intervals (steps) in the current trading horizon
% - Implementation shortfall of agent
% - Price divergence times 100
%
% LoggedSignals: Structure with following fields:
% - IntervalIdx: Current time interval index (initial value: 0)
% - HorizonIdx: Current time horizon index (initial value: 0)
% - CurrentInventoryShares: Current number of shares in inventory
%    (Initial value: 0 for Buy trade)
%    (Initial value: TotalTradingShares for Sell trade)
% - ArrivalPrice: Arrival price at the beginning of horizon (initial value: 0)

 Deep Reinforcement Learning for Optimal Trade Execution

18-99



% - ExecutedShares: Number of executed shares at each traded level (initial value: 0)
% - ExecutedPrices: Prices of executed shares at each traded level (initial value: 0)
% - HorizonExecutedShares: Executed shares at each level over the horizon
%     (Initial value: (NumLevels * NumIntervalsPerHorizon)-by-1 vector of zeros)
% - HorizonExecutedPrices: Prices of Executed shares at each level over the horizon
%     (Initial value: (NumLevels * NumIntervalsPerHorizon)-by-1 vector of zeros)
% - IS_Agent: Implementation shortfall history of agent
%     (Initial value: NumIntervals-by-1 vector of zeros)
% - Reward: Reward history of agent
%     (Initial value: NumIntervals-by-1 vector of zeros)
% - NumIntervalsPerHorizon: Number of intervals per horizon (fixed value: NumIntervalsPerHorizon)
% - NumHorizons: Number of horizons (fixed value: NumHorizon)
% - NumLevels: Number of levels in the limit order book (fixed value: NumLevels)

IntervalIdx = 0;
HorizonIdx = 0;

LoggedSignals.IntervalIdx = IntervalIdx;
LoggedSignals.HorizonIdx = HorizonIdx;

InitialObservation = ...
    [EnvConstants.TotalTradingShares EnvConstants.NumIntervalsPerHorizon 0 0];

if EnvConstants.BuyTrade
    LoggedSignals.CurrentInventoryShares = 0;
else
    LoggedSignals.CurrentInventoryShares = EnvConstants.TotalTradingShares;
end

LoggedSignals.ArrivalPrice = 0;
LoggedSignals.ExecutedShares = 0;
LoggedSignals.ExecutedPrices = 0;
LoggedSignals.HorizonExecutedShares = ...
    zeros(EnvConstants.NumLevels*EnvConstants.NumIntervalsPerHorizon,1);
LoggedSignals.HorizonExecutedPrices = LoggedSignals.HorizonExecutedShares;
LoggedSignals.IS_Agent = zeros(EnvConstants.NumSteps,1);
LoggedSignals.Reward = LoggedSignals.IS_Agent;
LoggedSignals.NumIntervalsPerHorizon = EnvConstants.NumIntervalsPerHorizon;
LoggedSignals.NumHorizons = EnvConstants.NumHorizons;
LoggedSignals.NumLevels = EnvConstants.NumLevels;

disp("Reset!")
end

function [Observation,Reward,IsDone,LoggedSignals] = ...
    RL_OptimalExecution_LOB_StepFcn(Action,LoggedSignals,EnvConstants)
% RL_OptimalExecution_LOB_StepFcn function is Step Function for RL Environment
%   Given current Action and LoggedSignals, update Observation, Reward, and
%   LoggedSignals, and indicate whether the episode is complete.
%
% Inputs:
%
% Action: Number of shares to be traded at the current step (scalar)
%
% LoggedSignals: Structure with following fields
% - IntervalIdx: Current time interval index
% - HorizonIdx: Current time horizon index
% - CurrentInventoryShares: Current number of shares in inventory

18 Computational Finance Examples

18-100



% - ArrivalPrice: Arrival price at the beginning of horizon
% - ExecutedShares: Number of executed shares at each traded level
% - ExecutedPrices: Prices of executed shares at each traded level
% - HorizonExecutedShares: Executed shares at each level over the horizon
%     ((NumLevels * NumIntervalsPerHorizon)-by-1 vector)
% - HorizonExecutedPrices: Prices of Executed shares at each level over the horizon
%     ((NumLevels * NumIntervalsPerHorizon)-by-1 vector)
% - IS_Agent: Implementation shortfall history of agent
%     (NumIntervals-by-1 vector)
% - Reward: Reward history of agent
%     (NumIntervals-by-1 vector)
% - NumIntervalsPerHorizon: Number of intervals per horizon (fixed value: NumIntervalsPerHorizon)
% - NumHorizons: Number of horizons (fixed value: NumHorizon)
% - NumLevels: Number of levels in the limit order book (fixed value: NumLevels)
%
% EnvConstants: Structure with the following fields
% - SampledBook: Limit order book sampled at time intervals
% - BuyTrade: Scalar logical indicating the trading direction
%               true: Buy
%               false: Sell
% - TotalTradingShares: Number of shares to trade over the horizon (scalar)
% - NumIntervalsPerHorizon: Number of intervals per horizon (scalar)
% - NumHorizons: Number of horizons in the data (scalar)
% - NumSteps: Number of steps in the data (scalar)
% - NumLevels: Number of levels in the limit order book (scalar)
% - IS_TWAP: Implementation shortfall for TWAP baseline (NumSteps-by-1 vector)
%
% Outputs:
%
% Observation:
% - Remaining shares to be traded by agent
% - Remaining intervals (steps) in the current trading horizon
% - Implementation shortfall of agent
% - Price divergence times 100
%
% Reward: Reward for current step
% 
% IsDone: Logical indicating whether the current episode is complete
%
% LoggedSignals: Updated LoggedSignals

% Update LoggedSignals indices
if (LoggedSignals.IntervalIdx == 0) && (LoggedSignals.HorizonIdx == 0)
    LoggedSignals.IntervalIdx = 1;
    LoggedSignals.HorizonIdx = 1;
elseif (LoggedSignals.IntervalIdx >= LoggedSignals.NumIntervalsPerHorizon)
    LoggedSignals.IntervalIdx = 1;
    LoggedSignals.HorizonIdx = LoggedSignals.HorizonIdx + 1;
    LoggedSignals.HorizonExecutedShares = ...
        zeros(EnvConstants.NumLevels*EnvConstants.NumIntervalsPerHorizon,1);
    LoggedSignals.HorizonExecutedPrices = LoggedSignals.HorizonExecutedShares;
    if EnvConstants.BuyTrade
        LoggedSignals.CurrentInventoryShares = 0;
    else
        LoggedSignals.CurrentInventoryShares = EnvConstants.TotalTradingShares;
    end
else
    LoggedSignals.IntervalIdx = LoggedSignals.IntervalIdx + 1;

 Deep Reinforcement Learning for Optimal Trade Execution

18-101



end

StepIdx = LoggedSignals.IntervalIdx + ...
    LoggedSignals.NumIntervalsPerHorizon.*(LoggedSignals.HorizonIdx-1);
RemainingIntervals = LoggedSignals.NumIntervalsPerHorizon - LoggedSignals.IntervalIdx + 1;
IS_TWAP = EnvConstants.IS_TWAP(StepIdx);

if EnvConstants.BuyTrade
    AvgPrice = mean(EnvConstants.SampledBook(StepIdx,[1 5]),2);
    PriceDivergence = LoggedSignals.ArrivalPrice - AvgPrice;
else
    AvgPrice = mean(EnvConstants.SampledBook(StepIdx,[3 7]),2);
    PriceDivergence = AvgPrice - LoggedSignals.ArrivalPrice;
end

% Enforce ending inventory constraint
if LoggedSignals.IntervalIdx >= LoggedSignals.NumIntervalsPerHorizon
    if EnvConstants.BuyTrade
        TradingShares = max(EnvConstants.TotalTradingShares - ...
            LoggedSignals.CurrentInventoryShares, 0);
    else
        TradingShares = LoggedSignals.CurrentInventoryShares;
    end
else
    if EnvConstants.BuyTrade
        if PriceDivergence > 0
            AgentRemainingSharestoTrade = max(EnvConstants.TotalTradingShares - ...
                LoggedSignals.CurrentInventoryShares,0);
            TradingShares = round(AgentRemainingSharestoTrade./RemainingIntervals./2);
            TradingShares = min(TradingShares,Action);
        else
            TradingShares = min(EnvConstants.TotalTradingShares - ...
                LoggedSignals.CurrentInventoryShares, Action);
        end
    else
        if PriceDivergence > 0
            AgentRemainingSharestoTrade = max(LoggedSignals.CurrentInventoryShares, 0);
            TradingShares = round(AgentRemainingSharestoTrade./RemainingIntervals./2);
            TradingShares = min(TradingShares,Action);
        else
            TradingShares = min(LoggedSignals.CurrentInventoryShares, Action);
        end
    end
end

% Update IsDone:
% Episode is complete (IsDone is true) when time step reaches the end of
% the trading data.
if (LoggedSignals.HorizonIdx >= LoggedSignals.NumHorizons) && ...
        (LoggedSignals.IntervalIdx >= LoggedSignals.NumIntervalsPerHorizon)
    IsDone = true;
    disp("Last Horizon. Episode is Done!");
    disp("HorizonIdx:");
    LoggedSignals.HorizonIdx    
elseif (LoggedSignals.IntervalIdx >= LoggedSignals.NumIntervalsPerHorizon)
    IsDone = false;    
    % disp("HorizonIdx:");

18 Computational Finance Examples

18-102



    % LoggedSignals.HorizonIdx
else
    IsDone = false;
end

% Execute trade
CurrentLOB = EnvConstants.SampledBook(LoggedSignals.IntervalIdx + ...
    LoggedSignals.NumIntervalsPerHorizon*(LoggedSignals.HorizonIdx-1),:);

[ExecutedShares,ExecutedPrices,InitialPrice,TradedLevels] = ...
    tradeLOB(CurrentLOB,TradingShares,EnvConstants.BuyTrade);

% Update Reward
if LoggedSignals.IntervalIdx==1
    LoggedSignals.ArrivalPrice = InitialPrice;
end

LoggedSignals.HorizonExecutedShares((1:TradedLevels) + ...
    (LoggedSignals.IntervalIdx-1)*LoggedSignals.NumLevels) = ExecutedShares;
LoggedSignals.HorizonExecutedPrices((1:TradedLevels) + ...
    (LoggedSignals.IntervalIdx-1)*LoggedSignals.NumLevels) = ExecutedPrices;

IS_Agent = endingInventoryIS(LoggedSignals.ArrivalPrice,LoggedSignals.HorizonExecutedPrices, ...
    LoggedSignals.HorizonExecutedShares,EnvConstants.BuyTrade);

if EnvConstants.BuyTrade
    AgentRemainingSharestoTrade = max(EnvConstants.TotalTradingShares - ...
        LoggedSignals.CurrentInventoryShares - sum(ExecutedShares),0);
else
    AgentRemainingSharestoTrade = max(LoggedSignals.CurrentInventoryShares - ...
        sum(ExecutedShares), 0);
end

[PenaltyAgentExecutedShares,PenaltyAgentExecutedPrices] = tradeLOB(CurrentLOB, ...
    round(AgentRemainingSharestoTrade./RemainingIntervals),EnvConstants.BuyTrade);

IS_Agent_Penalty = RemainingIntervals.*endingInventoryIS(LoggedSignals.ArrivalPrice, ...
    PenaltyAgentExecutedPrices,PenaltyAgentExecutedShares,EnvConstants.BuyTrade);

TWAPRemainingSharestoTrade = (EnvConstants.NumIntervalsPerHorizon - LoggedSignals.IntervalIdx)* ...
    EnvConstants.TotalTradingShares/EnvConstants.NumIntervalsPerHorizon;

[PenaltyTWAPExecutedShares,PenaltyTWAPExecutedPrices] = tradeLOB(CurrentLOB, ...
    round(TWAPRemainingSharestoTrade./RemainingIntervals),EnvConstants.BuyTrade);

IS_TWAP_Penalty = RemainingIntervals.*endingInventoryIS(LoggedSignals.ArrivalPrice, ...
    PenaltyTWAPExecutedPrices,PenaltyTWAPExecutedShares,EnvConstants.BuyTrade);

Reward = ((IS_TWAP + IS_TWAP_Penalty) - (IS_Agent + IS_Agent_Penalty)) .* ...
    LoggedSignals.IntervalIdx./ LoggedSignals.NumIntervalsPerHorizon;

% No reward if trading target already met
if EnvConstants.BuyTrade
    if LoggedSignals.CurrentInventoryShares >= EnvConstants.TotalTradingShares
        Reward = 0;
    end
else

 Deep Reinforcement Learning for Optimal Trade Execution

18-103



    if LoggedSignals.CurrentInventoryShares <= 0
        Reward = 0;
    end
end

% Update LoggedSignals
LoggedSignals.ExecutedPrices = ExecutedPrices;
LoggedSignals.ExecutedShares = ExecutedShares;

if EnvConstants.BuyTrade
    LoggedSignals.CurrentInventoryShares = ...
        LoggedSignals.CurrentInventoryShares + sum(ExecutedShares);
else
    LoggedSignals.CurrentInventoryShares = ...
        max(LoggedSignals.CurrentInventoryShares - sum(ExecutedShares), 0);
end

% Update LoggedSignals.IS_Agent
LoggedSignals.IS_Agent(StepIdx) = IS_Agent;

% Update LoggedSignals.Reward
LoggedSignals.Reward(StepIdx) = Reward;

% Update Observation
if LoggedSignals.IntervalIdx == LoggedSignals.NumIntervalsPerHorizon
    Observation = ...
        [EnvConstants.TotalTradingShares RemainingIntervals-1 IS_Agent PriceDivergence*100];
else
    Observation = ...
        [AgentRemainingSharestoTrade RemainingIntervals-1 IS_Agent PriceDivergence*100];
end

end

function [ExecutedShares,ExecutedPrices,InitialPrice,TradedLevels] = ...
    tradeLOB(CurrentLOB,TradingShares,BuyTrade)
% tradeLOB function executes market order trade based on current limit order book.
%   This function computes the results of executing a market order trade
%   for a specified number of shares and trade direction (buy/sell) based on
%   the information available in the current snapshot of the limit order book.
%
%   Inputs:
%
%      CurrentLOB - 1-by-(NumLevels*4) vector of current limit order book information
%
%         e.g. For NumLevels==5, 1-by-20 vector with the following values:
%    [AskPrice1 AskSize1 BidPrice1 BidSize1 ... AskPrice5 AskSize5 BidPrice5 BidSize5]
%
%         e.g. For NumLevels==10, 1-by-40 vector with the following values:
%    [AskPrice1 AskSize1 BidPrice1 BidSize1 ... AskPrice10 AskSize10 BidPrice10 BidSize10]
%
%      TradingShares - Scalar number of shares to be traded
%
%      BuyTrade - Scalar logical indicating trading direction:
%                    true: Buy
%                    false: Sell
%

18 Computational Finance Examples

18-104



%    Outputs:
%      ExecutedShares - Vector of number of executed shares at each traded level
%      ExecutedPrices - Vector of number of executed prices at each traded level
%      InitialPrice - Scalar numeric initial price
%      TradedLevels - Scalar numeric traded levels

LOBLength = length(CurrentLOB);

% Separate Bid and Ask data
AskPriceIdx = (1:4:LOBLength);
AskSizeIdx = AskPriceIdx + 1;
BidPriceIdx = AskSizeIdx + 1;
BidSizeIdx = BidPriceIdx + 1;

AskPrices = CurrentLOB(AskPriceIdx)';
AskSizes = CurrentLOB(AskSizeIdx)';
BidPrices = CurrentLOB(BidPriceIdx)';
BidSizes = CurrentLOB(BidSizeIdx)';

if BuyTrade
    LOBPrices = AskPrices;
    LOBSizes = AskSizes;
else
    LOBPrices = BidPrices;
    LOBSizes = BidSizes;
end

InitialPrice = LOBPrices(1);

% Execute trade
CumulativeLOBSizes = cumsum(LOBSizes);
TradedLevels = sum(CumulativeLOBSizes <= TradingShares);
if TradedLevels < 1
    TradedLevels = 1;
elseif CumulativeLOBSizes(TradedLevels) < TradingShares
    TradedLevels = TradedLevels + 1;
end

ExecutedPrices = LOBPrices(1:TradedLevels);
ExecutedShares = LOBSizes(1:TradedLevels);
ExecutedShares(end) = ExecutedShares(end) - (sum(ExecutedShares) - TradingShares);
end

function outIS = endingInventoryIS(ArrivalPrice,ExecutedPrices,TradedVolumes,BuyTrade)
% EndingInventoryIS function for Implementation Shortfall given ending inventory constraints
%   This function computes the Implementation Shortfall (IS) under the
%   assumption of ending inventory constraints (i.e. no opportunity cost).
%
%   For a Sell trade, the constraint is to have zero ending inventory
%   assuming successful liquidation of all shares.
%
%   For a Buy trade, the constraint is to have full ending inventory
%   assuming successful purchase of all shares.
%
%   Inputs:
%
%      ArrivalPrice - Scalar price immediately before trade execution

 Deep Reinforcement Learning for Optimal Trade Execution

18-105



%
%      ExecutedPrices - Vector of executed prices
%
%      TradedVolumes - Vector of executed trade volumes
%
%      BuyTrade - Scalar logical indicating trading direction:
%                    true: Buy
%                    false: Sell
%
%    Outputs:
%      outIS - Implementation shortfall

outIS = ArrivalPrice.*sum(TradedVolumes) - sum(ExecutedPrices.*TradedVolumes);

if BuyTrade
    outIS = -outIS;
end

end

function [TGLR, GLR] = ISTGLR(ISDiffValues)
% ISTGLR function for Total-Gain-to-Loss Ratio for Implementation Shortfalls (IS)
%   This function computes the Total-Gain-to-Loss Ratio (TGLR) and the
%   Gain-to-Loss Ratio (GLR) for a vector of values (IS_Baseline - IS_Agent)
%   where:  
%     - IS_Baseline: Implementation shortfalls for baseline (e.g. TWAP)
%     - IS_Agent: Implementation shortfalls for agent
%
%   Input:
%     - ISDiffValues: Vector of IS difference values (IS_Baseline - IS_Agent)
%
%   Outputs:
%     - TGLR: Total-Gain-to-Loss Ratio computed as the ratio of 
%             Total Positive over Total Negative magnitudes of IS difference
%     - GLR:  Gain-to-Loss Ratio computed as the ratio of 
%             Mean Positive over Mean Negative magnitudes of IS difference

ISDiffValues = ISDiffValues(:);

ISGains = ISDiffValues(ISDiffValues>0);
ISLosses = ISDiffValues(ISDiffValues<0);

MeanGains = abs(mean(ISGains));
MeanLosses = abs(mean(ISLosses));

TGLR = sum(ISGains)./abs(sum(ISLosses));
GLR = MeanGains./MeanLosses;

end

See Also
Deep Network Designer | trainNetwork | trainingOptions

18 Computational Finance Examples

18-106



Import, Export, and Customization

• “Train Deep Learning Model in MATLAB” on page 19-3
• “Define Custom Deep Learning Layers” on page 19-9
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Define Custom Classification Output Layer” on page 19-101
• “Define Custom Regression Output Layer” on page 19-109
• “Specify Custom Layer Backward Function” on page 19-117
• “Specify Custom Output Layer Backward Loss Function” on page 19-124
• “Custom Layer Function Acceleration” on page 19-128
• “Deep Learning Network Composition” on page 19-131
• “Define Nested Deep Learning Layer” on page 19-134
• “Train Deep Learning Network with Nested Layers” on page 19-149
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Check Custom Layer Validity” on page 19-168
• “Specify Custom Weight Initialization Function” on page 19-189
• “Compare Layer Weight Initializers” on page 19-195
• “Assemble Network from Pretrained Keras Layers” on page 19-201
• “Replace Unsupported Keras Layer with Function Layer” on page 19-206
• “Assemble Multiple-Output Network for Prediction” on page 19-210
• “Automatic Differentiation Background” on page 19-214
• “Use Automatic Differentiation In Deep Learning Toolbox” on page 19-219
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239
• “Train Sequence Classification Network Using Custom Training Loop” on page 19-247
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Update Batch Normalization Statistics in Custom Training Loop” on page 19-261
• “Train Robust Deep Learning Network with Jacobian Regularization” on page 19-267
• “Make Predictions Using dlnetwork Object” on page 19-280
• “Train Network Using Model Function” on page 19-284
• “Update Batch Normalization Statistics Using Model Function” on page 19-298

19



• “Make Predictions Using Model Function” on page 19-312
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “Deep Learning Function Acceleration for Custom Training Loops” on page 19-330
• “Accelerate Custom Training Loop Functions” on page 19-338
• “Evaluate Performance of Accelerated Deep Learning Function” on page 19-350
• “Check Accelerated Deep Learning Function Outputs” on page 19-365
• “Solve Partial Differential Equations Using Deep Learning” on page 19-368
• “Solve Partial Differential Equation with L-BFGS Method and Deep Learning” on page 19-378
• “Solve Ordinary Differential Equation Using Neural Network” on page 19-386
• “Dynamical System Modeling Using Neural ODE” on page 19-394
• “Reduced Order Modeling Using Continuous-Time Echo State Network” on page 19-403
• “Node Classification Using Graph Convolutional Network” on page 19-413
• “Multilabel Graph Classification Using Graph Attention Networks” on page 19-428
• “Train Network Using Cyclical Learning Rate for Snapshot Ensembling” on page 19-453
• “Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”

on page 19-464
• “Tips on Importing Models from TensorFlow, PyTorch, and ONNX” on page 19-474
• “Deploy Imported TensorFlow Model with MATLAB Compiler” on page 19-480
• “Select Function to Import ONNX Pretrained Network” on page 19-485
• “Classify Images in Simulink with Imported TensorFlow Network” on page 19-489
• “Inference Comparison Between TensorFlow and Imported Networks for Image Classification”

on page 19-496
• “Inference Comparison Between ONNX and Imported Networks for Image Classification”

on page 19-500
• “List of Functions with dlarray Support” on page 19-504
• “Monitor Custom Training Loop Progress” on page 19-521
• “Train Bayesian Neural Network” on page 19-531

19 Import, Export, and Customization

19-2



Train Deep Learning Model in MATLAB
You can train and customize a deep learning model in various ways—for example, you can retrain a
pretrained model with new data (transfer learning), train a network from scratch, or define a deep
learning model as a function and use a custom training loop. Use this flow chart to choose the
training method that is best suited for your task.

Tip For information on computer vision workflows, including for object detection, see “Computer
Vision”. For information on importing networks and network architectures from TensorFlow-Keras,
Caffe, and the ONNX (Open Neural Network Exchange) model format, see “Pretrained Networks
from External Platforms”.

Training Methods
This table provides information about the different training methods.

 Train Deep Learning Model in MATLAB

19-3



Method More Information
Use network directly If a pretrained network already performs the task

you require, then you do not need to retrain the
network. Instead, you can make predictions with
the network directly by using the classify and
predict functions.

For an example, see “Classify Image Using
GoogLeNet” on page 3-19.

Train network using trainingOptions and
trainNetwork

If you have a network specified as a layer array or
layer graph, and the trainingOptions function
provides all the options you need, then you can
train the network using the trainNetwork
function.

For an example showing how to retrain a network
(transfer learning), see “Train Deep Learning
Network to Classify New Images” on page 3-6.
For an example showing how to train a network
from scratch, see “Create Simple Deep Learning
Neural Network for Classification” on page 3-43.

Train network using dlnetwork object and
custom training loop

For most tasks, you can control the training
algorithm details using the trainingOptions
and trainNetwork functions. If the
trainingOptions function does not provide the
options you need for your task (for example, a
custom learning rate schedule), then you can
define your own custom training loop using a
dlnetwork object. A dlnetwork object allows
you to train a network specified as a layer graph
using automatic differentiation.

For loss functions that cannot be specified using
an output layer, you can specify the loss in a
custom training loop.

For an example showing how to train a network
with a custom learning rate schedule, see “Train
Network Using Custom Training Loop” on page
19-239.

To learn, more see “Define Custom Training
Loops, Loss Functions, and Networks” on page
19-223.

19 Import, Export, and Customization

19-4



Method More Information
Train network using model function and custom
training loop

For networks that cannot be created using layer
graphs, you can define a custom network as a
function. For an example showing how to train a
deep learning model defined as a function, see
“Train Network Using Model Function” on page
19-284.

If you can create parts of the network using a
layer graph, then you can define those parts as
layer graphs and the unsupported parts using
model functions.

Decisions
This table provides more information on each decision in the flow chart.

Decision More Information
Does Deep Learning Toolbox provide a suitable
pretrained network?

For most tasks, you can use or retrain a
pretrained network such as googlenet.

For a list of pretrained deep learning networks in
MATLAB, see “Pretrained Deep Neural
Networks” on page 1-11. You can use pretrained
networks directly with new data, or you can
retrain them with new data for different tasks
using transfer learning.

Can you use the network without retraining? If a pretrained network already performs the task
you need, then you can use the network directly
without retraining. For example, you can use the
googlenet network to classify images in 1000
classes. To make predictions with the network
directly, use the classify and predict
functions. For an example, see “Classify Image
Using GoogLeNet” on page 3-19.

If you need to retrain the network—for example,
to classify a different set of classes—then you can
retrain the network using transfer learning.

 Train Deep Learning Model in MATLAB

19-5



Decision More Information
Can you define the model as a layer array or
graph?

You can specify most deep learning models as a
layer array or layer graph. In other words, you
can define the model as a collection of layers with
layer outputs connected to other layer inputs.

Some network architectures cannot be defined as
a layer graph. For example, Siamese networks
require weight sharing and cannot be defined as
a layer graph. For these networks, you must
define the model as a function. For an example,
see “Train Network Using Model Function” on
page 19-284.

Does the network have a single output only? For networks with multiple outputs, you must
train the network using a custom training loop.
For an example, see “Train Network with
Multiple Outputs” on page 3-57.

Does Deep Learning Toolbox provide the
intermediate layers you need?

Deep Learning Toolbox provides many different
layers for deep learning tasks. For a list of layers,
see “List of Deep Learning Layers” on page 1-43.

If Deep Learning Toolbox provides the
intermediate layers (layers in the middle of the
network) that you need, then you can define the
network as a layer array or layer graph using
these layers. Otherwise, try defining any
unsupported layers as custom layers. For more
information, see “Define Custom Deep Learning
Layers” on page 19-9.

Can you define the unsupported intermediate
layers as custom layers?

If Deep Learning Toolbox does not provide the
layer you need, then you can try defining a
custom deep learning layer. For more
information, see “Define Custom Deep Learning
Layers” on page 19-9.

If you can define custom layers for any
unsupported layers, then you can include these
custom layers in a layer array or layer graph.
Otherwise, specify the deep learning model using
a function and train the model using a custom
training loop. For an example, see “Train
Network Using Model Function” on page 19-284.

19 Import, Export, and Customization

19-6



Decision More Information
Does Deep Learning Toolbox provide the output
layers you need?

Output layers specify the loss function used for
training. Deep Learning Toolbox provides
different output layers for deep learning tasks.
For example, classificationLayer and
regressionLayer. For a list of output layers,
see the “Output Layers” on page 1-51 section in
the page “List of Deep Learning Layers” on page
1-43.

If Deep Learning Toolbox provides the output
layers that you need, then you can define a layer
graph using these layers. Otherwise, try defining
any unsupported output layers as a custom layer.
For more information, see “Define Custom Deep
Learning Layers” on page 19-9.

Can you define the unsupported output layers as
custom layers?

If Deep Learning Toolbox does not provide the
output layer you need, then you can try defining a
custom output layer. For more information, see
“Define Custom Deep Learning Layers” on page
19-9.

If you can define a custom output layer for any
unsupported output layers, then you can include
these custom layers in a layer array or layer
graph. Otherwise, train the model using a
dlnetwork object and a custom training loop,
and specify a custom loss function. For an
example, see “Train Network Using Custom
Training Loop” on page 19-239.

Does the trainingOptions function provide the
options you need?

The trainingOptions function provides many
options for customizing the training process. If
the trainingOptions function provides all the
options you need for training, then you can train
the deep learning network using the
trainNetwork function. For an example, see
“Create Simple Deep Learning Neural Network
for Classification” on page 3-43.

If the trainingOptions function does not
provide the training option you need, for
example, a custom learning rate schedule, then
you can define a custom training loop using a
dlnetwork object. For an example, see “Train
Network Using Custom Training Loop” on page
19-239.

See Also
trainingOptions | trainNetwork

 Train Deep Learning Model in MATLAB

19-7



More About
• “Pretrained Deep Neural Networks” on page 1-11
• “Classify Image Using GoogLeNet” on page 3-19
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “List of Deep Learning Layers” on page 1-43
• “Define Custom Deep Learning Layers” on page 19-9
• “Train Network Using Custom Training Loop” on page 19-239
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Model Function” on page 19-284

19 Import, Export, and Customization

19-8



Define Custom Deep Learning Layers

Tip This topic explains how to define custom deep learning layers for your problems. For a list of
built-in layers in Deep Learning Toolbox, see “List of Deep Learning Layers” on page 1-43.

You can define your own custom deep learning layers for your task. You can specify a custom loss
function using a custom output layer and define custom layers with or without learnable and state
parameters. After defining a custom layer, you can check that the layer is valid and GPU compatible,
and outputs correctly defined gradients.

This topic explains the architecture of deep learning layers and how to define custom layers to use for
your tasks.

Type Description
Intermediate layer Define a custom deep learning layer and specify

optional learnable parameters and state
parameters.

For more information, see “Define Custom Deep
Learning Intermediate Layers” on page 19-16.

For an example showing how to define a custom
layer with learnable parameters, see “Define
Custom Deep Learning Layer with Learnable
Parameters” on page 19-38. For an example
showing how to define a custom layer with
multiple inputs, see “Define Custom Deep
Learning Layer with Multiple Inputs” on page 19-
53.

Classification output layer Define a custom classification output layer and
specify a loss function.

For more information, see “Define Custom Deep
Learning Output Layers” on page 19-31.

For an example showing how to define a custom
classification output layer and specify a loss
function, see “Define Custom Classification
Output Layer” on page 19-101.

Regression output layer Define a custom regression output layer and
specify a loss function.

For more information, see “Define Custom Deep
Learning Output Layers” on page 19-31.

For an example showing how to define a custom
regression output layer and specify a loss
function, see “Define Custom Regression Output
Layer” on page 19-109.

 Define Custom Deep Learning Layers

19-9



Layer Templates
You can use the following templates to define new layers.

Intermediate Layer Template

This template outlines the structure of an intermediate layer. For more information, see “Define
Custom Deep Learning Intermediate Layers” on page 19-16.

For an example showing how to define a layer with learnable parameters, see “Define Custom Deep
Learning Layer with Learnable Parameters” on page 19-38.
classdef myLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)

    properties
        % (Optional) Layer properties.

        % Declare layer properties here.
    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Declare learnable parameters here.
    end

    properties (State)
        % (Optional) Layer state parameters.

        % Declare state parameters here.
    end

    properties (Learnable, State)
        % (Optional) Nested dlnetwork objects with both learnable
        % parameters and state parameters.

        % Declare nested networks with learnable and state parameters here.
    end

    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Define layer constructor function here.
        end

        function layer = initialize(layer,layout)
            % (Optional) Initialize layer learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize
            %         layout - Data layout, specified as a networkDataLayout
            %                  object
            %
            % Outputs:
            %         layer - Initialized layer
            %
            %  - For layers with multiple inputs, replace layout with 
            %    layout1,...,layoutN, where N is the number of inputs.
            
            % Define layer initialization function here.
        end
        

        function [Z,state] = predict(layer,X)
            % Forward input data through the layer at prediction time and

19 Import, Export, and Customization

19-10



            % output the result and updated state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - (Optional) Updated layer state
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer predict function here.
        end

        function [Z,state,memory] = forward(layer,X)
            % (Optional) Forward input data through the layer at training
            % time and output the result, the updated state, and a memory
            % value.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Layer input data
            % Outputs:
            %         Z      - Output of layer forward function 
            %         state  - (Optional) Updated layer state 
            %         memory - (Optional) Memory value for custom backward
            %                  function
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer forward function here.
        end

        function layer = resetState(layer)
            % (Optional) Reset layer state.

            % Define reset state function here.
        end

        function [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory)
            % (Optional) Backward propagate the derivative of the loss
            % function through the layer.
            %
            % Inputs:
            %         layer   - Layer to backward propagate through 
            %         X       - Layer input data 
            %         Z       - Layer output data 
            %         dLdZ    - Derivative of loss with respect to layer 
            %                   output
            %         dLdSout - (Optional) Derivative of loss with respect 
            %                   to state output
            %         memory  - Memory value from forward function
            % Outputs:
            %         dLdX   - Derivative of loss with respect to layer input
            %         dLdW   - (Optional) Derivative of loss with respect to
            %                  learnable parameter 
            %         dLdSin - (Optional) Derivative of loss with respect to 
            %                  state input
            %
            %  - For layers with state parameters, the backward syntax must

 Define Custom Deep Learning Layers

19-11



            %    include both dLdSout and dLdSin, or neither.
            %  - For layers with multiple inputs, replace X and dLdX with
            %    X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
            %    the number of inputs.
            %  - For layers with multiple outputs, replace Z and dlZ with
            %    Z1,...,ZM and dLdZ,...,dLdZM, respectively, where M is the
            %    number of outputs.
            %  - For layers with multiple learnable parameters, replace 
            %    dLdW with dLdW1,...,dLdWP, where P is the number of 
            %    learnable parameters.
            %  - For layers with multiple state parameters, replace dLdSin
            %    and dLdSout with dLdSin1,...,dLdSinK and 
            %    dLdSout1,...,dldSoutK, respectively, where K is the number
            %    of state parameters.

            % Define layer backward function here.
        end
    end
end

Classification Output Layer Template

This template outlines the structure of a classification output layer with a loss function. For more
information, see “Define Custom Deep Learning Output Layers” on page 19-31.

For an example showing how to define a classification output layer and specify a loss function, see
“Define Custom Classification Output Layer” on page 19-101.
classdef myClassificationLayer < nnet.layer.ClassificationLayer % ...
        % & nnet.layer.Acceleratable % (Optional)
        
    properties
        % (Optional) Layer properties.

        % Layer properties go here.
    end
 
    methods
        function layer = myClassificationLayer()           
            % (Optional) Create a myClassificationLayer.

            % Layer constructor function goes here.
        end

        function loss = forwardLoss(layer,Y,T)
            % Return the loss between the predictions Y and the training 
            % targets T.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         loss  - Loss between Y and T

            % Layer forward loss function goes here.
        end
        
        function dLdY = backwardLoss(layer,Y,T)
            % (Optional) Backward propagate the derivative of the loss 
            % function.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         dLdY  - Derivative of the loss with respect to the 

19 Import, Export, and Customization

19-12



            %                 predictions Y

            % Layer backward loss function goes here.
        end
    end
end

Regression Output Layer Template

This template outlines the structure of a regression output layer with a loss function. For an example
showing how to define a regression output layer and specify a loss function, see “Define Custom
Regression Output Layer” on page 19-109.
classdef myRegressionLayer < nnet.layer.RegressionLayer % ...
        % & nnet.layer.Acceleratable % (Optional)
        
    properties
        % (Optional) Layer properties.

        % Layer properties go here.
    end
 
    methods
        function layer = myRegressionLayer()           
            % (Optional) Create a myRegressionLayer.

            % Layer constructor function goes here.
        end

        function loss = forwardLoss(layer,Y,T)
            % Return the loss between the predictions Y and the training
            % targets T.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         loss  - Loss between Y and T

            % Layer forward loss function goes here.
        end
        
        function dLdY = backwardLoss(layer,Y,T)
            % (Optional) Backward propagate the derivative of the loss 
            % function.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         dLdY  - Derivative of the loss with respect to the 
            %                 predictions Y        

            % Layer backward loss function goes here.
        end
    end
end

Intermediate Layer Architecture
During training, the software iteratively performs forward and backward passes through the network.

During a forward pass through the network, each layer takes the outputs of the previous layers,
applies a function, and then outputs (forward propagates) the results to the next layers. Stateful
layers, such as LSTM layers, also update the layer state.

Layers can have multiple inputs or outputs. For example, a layer can take X1, …, XN from multiple
previous layers and forward propagate the outputs Z1, …, ZM to subsequent layers.

 Define Custom Deep Learning Layers

19-13



At the end of a forward pass of the network, the output layer calculates the loss L between the
predictions Y and the targets T.

During the backward pass through the network, each layer takes the derivatives of the loss with
respect to the outputs of the layer, computes the derivatives of the loss L with respect to the inputs,
and then backward propagates the results. If the layer has learnable parameters, then the layer also
computes the derivatives of the layer weights (learnable parameters). The layer uses the derivatives
of the weights to update the learnable parameters.

The following figure describes the flow of data through a deep neural network and highlights the data
flow through a layer with a single input X, a single output Z, and a learnable parameter W.

For more information about custom intermediate layers, see “Define Custom Deep Learning
Intermediate Layers” on page 19-16.

Output Layer Architecture
At the end of a forward pass at training time, an output layer takes the outputs Y of the previous layer
(the network predictions) and calculates the loss L between these predictions and the training
targets. The output layer computes the derivatives of the loss L with respect to the predictions Y and
outputs (backward propagates) results to the previous layer.

The following figure describes the flow of data through a neural network and an output layer.

For more information, see “Define Custom Deep Learning Output Layers” on page 19-31.

19 Import, Export, and Customization

19-14



Check Validity of Custom Layer
If you create a custom deep learning layer, then you can use the checkLayer function to check that
the layer is valid. The function checks layers for validity, GPU compatibility, correctly defined
gradients, and code generation compatibility. To check that a layer is valid, run the following
command:

checkLayer(layer,validInputSize)

layer is an instance of the layer and validInputSize is a vector or cell array specifying the valid
input sizes to the layer. To check with multiple observations, use the ObservationDimension
option. To run the check for code generation compatibility, set the CheckCodegenCompatibility
option to 1 (true). For large input sizes, the gradient checks take longer to run. To speed up the
check, specify a smaller valid input size.

For more information, see “Check Custom Layer Validity” on page 19-168.

See Also
functionLayer | checkLayer | setLearnRateFactor | setL2Factor | getLearnRateFactor |
getL2Factor | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer | networkDataLayout

More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Custom Classification Output Layer” on page 19-101
• “Define Custom Regression Output Layer” on page 19-109
• “Custom Layer Function Acceleration” on page 19-128
• “Deep Learning Network Composition” on page 19-131
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168
• “List of Deep Learning Layers” on page 1-43

 Define Custom Deep Learning Layers

19-15



Define Custom Deep Learning Intermediate Layers

Tip This topic explains how to define custom deep learning layers for your problems. For a list of
built-in layers in Deep Learning Toolbox, see “List of Deep Learning Layers” on page 1-43.

To learn how to define custom output layers, see “Define Custom Deep Learning Output Layers” on
page 19-31.

If Deep Learning Toolbox does not provide the layer that you require for your task, then you can
define your own custom layer using this topic as a guide. After defining the custom layer, you can
automatically check that the layer is valid and GPU compatible, and outputs correctly defined
gradients.

Intermediate Layer Architecture
When you train a network, the software iteratively performs forward and backward passes through
the network.

During a forward pass through the network, each layer takes the outputs of the previous layers,
applies a function, and then outputs (forward propagates) the results to the next layers. Stateful
layers, such as LSTM layers, also update the layer state.

Layers can have multiple inputs or outputs. For example, a layer can take X1, …, XN from multiple
previous layers and forward propagate the outputs Z1, …, ZM to subsequent layers.

At the end of a forward pass of the network, the output layer calculates the loss L between the
predictions Y and the targets T.

During the backward pass through the network, each layer takes the derivatives of the loss with
respect to the outputs of the layer, computes the derivatives of the loss L with respect to the inputs,
and then backward propagates the results. If the layer has learnable parameters, then the layer also
computes the derivatives of the layer weights (learnable parameters). The layer uses the derivatives
of the weights to update the learnable parameters.

The following figure describes the flow of data through a deep neural network and highlights the data
flow through a layer with a single input X, a single output Z, and a learnable parameter W.

19 Import, Export, and Customization

19-16



Intermediate Layer Template
To define a custom intermediate layer, use this class definition template. This template gives the
structure of an intermediate layer class definition. It outlines:

• The optional properties blocks for the layer properties, learnable parameters, and state
parameters. For more information, see “Intermediate Layer Properties” on page 19-20.

• The layer constructor function.
• The predict function and the optional forward function. For more information, see “Forward

Functions” on page 19-23.
• The optional resetState function for layers with state properties. For more information, see

“Reset State Function” on page 19-26.
• The optional backward function. For more information, see “Backward Function” on page 19-26.

classdef myLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)

    properties
        % (Optional) Layer properties.

        % Declare layer properties here.
    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Declare learnable parameters here.
    end

    properties (State)
        % (Optional) Layer state parameters.

        % Declare state parameters here.
    end

    properties (Learnable, State)
        % (Optional) Nested dlnetwork objects with both learnable
        % parameters and state parameters.

        % Declare nested networks with learnable and state parameters here.
    end

    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Define layer constructor function here.
        end

        function layer = initialize(layer,layout)
            % (Optional) Initialize layer learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize
            %         layout - Data layout, specified as a networkDataLayout
            %                  object
            %
            % Outputs:
            %         layer - Initialized layer
            %
            %  - For layers with multiple inputs, replace layout with 
            %    layout1,...,layoutN, where N is the number of inputs.
            
            % Define layer initialization function here.

 Define Custom Deep Learning Intermediate Layers

19-17



        end
        

        function [Z,state] = predict(layer,X)
            % Forward input data through the layer at prediction time and
            % output the result and updated state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - (Optional) Updated layer state
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer predict function here.
        end

        function [Z,state,memory] = forward(layer,X)
            % (Optional) Forward input data through the layer at training
            % time and output the result, the updated state, and a memory
            % value.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Layer input data
            % Outputs:
            %         Z      - Output of layer forward function 
            %         state  - (Optional) Updated layer state 
            %         memory - (Optional) Memory value for custom backward
            %                  function
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer forward function here.
        end

        function layer = resetState(layer)
            % (Optional) Reset layer state.

            % Define reset state function here.
        end

        function [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory)
            % (Optional) Backward propagate the derivative of the loss
            % function through the layer.
            %
            % Inputs:
            %         layer   - Layer to backward propagate through 
            %         X       - Layer input data 
            %         Z       - Layer output data 
            %         dLdZ    - Derivative of loss with respect to layer 
            %                   output
            %         dLdSout - (Optional) Derivative of loss with respect 
            %                   to state output
            %         memory  - Memory value from forward function
            % Outputs:
            %         dLdX   - Derivative of loss with respect to layer input
            %         dLdW   - (Optional) Derivative of loss with respect to

19 Import, Export, and Customization

19-18



            %                  learnable parameter 
            %         dLdSin - (Optional) Derivative of loss with respect to 
            %                  state input
            %
            %  - For layers with state parameters, the backward syntax must
            %    include both dLdSout and dLdSin, or neither.
            %  - For layers with multiple inputs, replace X and dLdX with
            %    X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
            %    the number of inputs.
            %  - For layers with multiple outputs, replace Z and dlZ with
            %    Z1,...,ZM and dLdZ,...,dLdZM, respectively, where M is the
            %    number of outputs.
            %  - For layers with multiple learnable parameters, replace 
            %    dLdW with dLdW1,...,dLdWP, where P is the number of 
            %    learnable parameters.
            %  - For layers with multiple state parameters, replace dLdSin
            %    and dLdSout with dLdSin1,...,dLdSinK and 
            %    dLdSout1,...,dldSoutK, respectively, where K is the number
            %    of state parameters.

            % Define layer backward function here.
        end
    end
end

Formatted Inputs and Outputs
Using dlarray objects makes working with high dimensional data easier by allowing you to label the
dimensions. For example, you can label which dimensions correspond to spatial, time, channel, and
batch dimensions using the "S", "T", "C", and "B" labels, respectively. For unspecified and other
dimensions, use the "U" label. For dlarray object functions that operate over particular dimensions,
you can specify the dimension labels by formatting the dlarray object directly, or by using the
DataFormat option.

Using formatted dlarray objects in custom layers also allows you to define layers where the inputs
and outputs have different formats, such as layers that permute, add, or remove dimensions. For
example, you can define a layer that takes as input a mini-batch of images with the format "SSCB"
(spatial, spatial, channel, batch) and output a mini-batch of sequences with the format "CBT"
(channel, batch, time). Using formatted dlarray objects also allows you to define layers that can
operate on data with different input formats, for example, layers that support inputs with the formats
"SSCB" (spatial, spatial, channel, batch) and "CBT" (channel, batch, time).

If you do not specify a backward function, then the layer functions, by default, receive unformatted
dlarray objects as input. To specify that the layer receives formatted dlarray objects as input and
also outputs formatted dlarray objects, also inherit from the nnet.layer.Formattable class
when defining the custom layer.

For an example showing how to define a custom layer with formatted inputs, see “Define Custom
Deep Learning Layer with Formatted Inputs” on page 19-67.

Custom Layer Acceleration
If you do not specify a backward function when you define a custom layer, then the software
automatically determines the gradients using automatic differentiation.

When you train a network with a custom layer without a backward function, the software traces each
input dlarray object of the custom layer forward function to determine the computation graph used
for automatic differentiation. This tracing process can take some time and can end up recomputing
the same trace. By optimizing, caching, and reusing the traces, you can speed up gradient

 Define Custom Deep Learning Intermediate Layers

19-19



computation when training a network. The software can also reuse these traces to speed up network
predictions after training.

The trace depends on the size, format, and underlying data type of the layer inputs. That is, the layer
triggers a new trace for inputs with a size, format, or underlying data type not contained in the
cache. Any inputs differing only by value to a previously cached trace do not trigger a new trace.

To indicate that the custom layer supports acceleration, also inherit from the
nnet.layer.Acceleratable class when defining the custom layer. When a custom layer inherits
from nnet.layer.Acceleratable, the software automatically caches traces when passing data
through a dlnetwork object.

For example, to indicate that the custom layer myLayer supports acceleration, use this syntax

classdef myLayer < nnet.layer.Layer & nnet.layer.Acceleratable
    ...
end

Acceleration Considerations

Because of the nature of caching traces, not all functions support acceleration.

The caching process can cache values or code structures that you might expect to change or that
depend on external factors. You must take care when accelerating custom layers that:

• Generate random numbers.
• Use if statements and while loops with conditions that depend on the values of dlarray

objects.

Because the caching process requires extra computation, acceleration can lead to longer running
code in some cases. This scenario can happen when the software spends time creating new caches
that do not get reused often. For example, when you pass multiple mini-batches of different sequence
lengths to the function, the software triggers a new trace for each unique sequence length.

When custom layer acceleration causes slowdown, you can disable acceleration by removing the
Acceleratable mixin or by disabling acceleration of the dlnetwork object functions predict and
forward by setting the Acceleration option to "none".

For more information about enabling acceleration support for custom layers, see “Custom Layer
Function Acceleration” on page 19-128.

Intermediate Layer Properties
Declare the layer properties in the properties section of the class definition.

By default, custom intermediate layers have these properties. Do not declare these properties in the
properties section.

19 Import, Export, and Customization

19-20



Property Description
Name Layer name, specified as a character vector or a

string scalar. For Layer array input, the
trainNetwork, assembleNetwork,
layerGraph, and dlnetwork functions
automatically assign names to layers with the
name ''.

Description One-line description of the layer, specified as a
string scalar or a character vector. This
description appears when the layer is displayed
in a Layer array.

If you do not specify a layer description, then the
software displays the layer class name.

Type Type of the layer, specified as a character vector
or a string scalar. The value of Type appears
when the layer is displayed in a Layer array.

If you do not specify a layer type, then the
software displays the layer class name.

NumInputs Number of inputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumInputs
to the number of names in InputNames. The
default value is 1.

InputNames Input names of the layer, specified as a cell array
of character vectors. If you do not specify this
value and NumInputs is greater than 1, then the
software automatically sets InputNames to
{'in1',...,'inN'}, where N is equal to
NumInputs. The default value is {'in'}.

NumOutputs Number of outputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumOutputs
to the number of names in OutputNames. The
default value is 1.

OutputNames Output names of the layer, specified as a cell
array of character vectors. If you do not specify
this value and NumOutputs is greater than 1,
then the software automatically sets
OutputNames to {'out1',...,'outM'},
where M is equal to NumOutputs. The default
value is {'out'}.

If the layer has no other properties, then you can omit the properties section.

Tip If you are creating a layer with multiple inputs, then you must set either the NumInputs or
InputNames properties in the layer constructor. If you are creating a layer with multiple outputs,

 Define Custom Deep Learning Intermediate Layers

19-21



then you must set either the NumOutputs or OutputNames properties in the layer constructor. For
an example, see “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53.

Learnable Parameters

Declare the layer learnable parameters in the properties (Learnable) section of the class
definition.

You can specify numeric arrays or dlnetwork objects as learnable parameters. If the dlnetwork
object has both learnable and state parameters (for example, a dlnetwork object that contains an
LSTM layer), then you must specify it in the properties (Learnable, State) section. If the
layer has no learnable parameters, then you can omit the properties sections with the Learnable
attribute.

Optionally, you can specify the learning rate factor and the L2 factor of the learnable parameters. By
default, each learnable parameter has its learning rate factor and L2 factor set to 1. For both built-in
and custom layers, you can set and get the learning rate factors and L2 regularization factors using
the following functions.

Function Description
setLearnRateFactor Set the learning rate factor of a learnable

parameter.
setL2Factor Set the L2 regularization factor of a learnable

parameter.
getLearnRateFactor Get the learning rate factor of a learnable

parameter.
getL2Factor Get the L2 regularization factor of a learnable

parameter.

To specify the learning rate factor and the L2 factor of a learnable parameter, use the syntaxes layer
= setLearnRateFactor(layer,parameterName,value) and layer =
setL2Factor(layer,parameterName,value), respectively.

To get the value of the learning rate factor and the L2 factor of a learnable parameter, use the
syntaxes getLearnRateFactor(layer,parameterName) and
getL2Factor(layer,parameterName), respectively.

For example, this syntax sets the learning rate factor of the learnable parameter "Alpha" to 0.1.

layer = setLearnRateFactor(layer,"Alpha",0.1);

State Parameters

For stateful layers, such as recurrent layers, declare the layer state parameters in the properties
(State) section of the class definition. If the learnable parameter is a dlnetwork object that has
both learnable and state parameters (for example, a dlnetwork object that contains an LSTM layer),
then you must specify the corresponding property in the properties (Learnable, State)
section. If the layer has no state parameters, then you can omit the properties sections with the
State attribute.

If the layer has state parameters, then the forward functions must also return the updated layer state.
For more information, see “Forward Functions” on page 19-23.

19 Import, Export, and Customization

19-22



To specify a custom reset state function, include a function with syntax layer =
resetState(layer) in the class definition. For more information, see “Reset State Function” on
page 19-26.

Parallel training of networks containing custom layers with state parameters using the
trainNetwork function is not supported. When you train a network with custom layers with state
parameters, the ExecutionEnvironment training option must be "auto", "gpu", or "cpu".

Learnable and State Parameter Initialization

You can specify to initialize the layer learnable parameters and states in the layer constructor
function or in a custom initialize function:

• If the learnable or state parameter initialization does not require size information from the layer
input, for example, the learnable weights of a weighted addition layer is a vector with size
matching the number of layer inputs, then you can initialize the weights in the layer constructor
function. For an example, see “Define Custom Deep Learning Layer with Multiple Inputs” on page
19-53.

• If the learnable or state parameter initialization requires size information from the layer input, for
example, the learnable weights of a PReLU layer is a vector with size matching the number of
channels of the input data, then you can initialize the weights in a custom initialize function that
utilizes the information about the input data layout. For an example, see “Define Custom Deep
Learning Layer with Learnable Parameters” on page 19-38.

Forward Functions
Some layers behave differently during training and during prediction. For example, a dropout layer
performs dropout only during training and has no effect during prediction. A layer uses one of two
functions to perform a forward pass: predict or forward. If the forward pass is at prediction time,
then the layer uses the predict function. If the forward pass is at training time, then the layer uses
the forward function. If you do not require two different functions for prediction time and training
time, then you can omit the forward function. When you do so, the layer uses predict at training
time.

If the layer has state parameters, then the forward functions must also return the updated layer state
parameters as numeric arrays.

If you define both a custom forward function and a custom backward function, then the forward
function must return a memory output.

The predict function syntax depends on the type of layer.

• Z = predict(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = predict(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

 Define Custom Deep Learning Intermediate Layers

19-23



• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the predict
function of the custom layer, use the predict function for the dlnetwork. When you do so, the
dlnetwork object predict function uses the appropriate layer operations for prediction. If the
dlnetwork has state parameters, then also return the network state.

The forward function syntax depends on the type of layer:

• Z = forward(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = forward(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

• [__,memory] = forward(layer,X) also returns a memory value for a custom backward
function using any of the previous syntaxes. If the layer has both a custom forward function and
a custom backward function, then the forward function must return a memory value.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the forward
function of the custom layer, use the forward function of the dlnetwork object. When you do so, the
dlnetwork object forward function uses the appropriate layer operations for training.

The dimensions of the inputs depend on the type of data and the output of the connected layers.

19 Import, Export, and Customization

19-24



Layer Input Input Size Observation Dimension
Feature vectors c-by-N, where c corresponds to

the number of channels and N is
the number of observations

2

2-D images h-by-w-by-c-by-N, where h, w,
and c correspond to the height,
width, and number of channels
of the images, respectively, and
N is the number of observations

4

3-D images h-by-w-by-d-by-c-by-N, where h,
w, d, and c correspond to the
height, width, depth, and
number of channels of the 3-D
images, respectively, and N is
the number of observations

5

Vector sequences c-by-N-by-S, where c is the
number of features of the
sequences, N is the number of
observations, and S is the
sequence length

2

2-D image sequences h-by-w-by-c-by-N-by-S, where h,
w, and c correspond to the
height, width, and number of
channels of the images,
respectively, N is the number of
observations, and S is the
sequence length

4

3-D image sequences h-by-w-by-d-by-c-by-N-by-S,
where h, w, d, and c correspond
to the height, width, depth, and
number of channels of the 3-D
images, respectively, N is the
number of observations, and S
is the sequence length

5

For layers that output sequences, the layers can output sequences of any length or output data with
no time dimension. Note that when you train a network that outputs sequences using the
trainNetwork function, the lengths of the input and output sequences must match.

The outputs of the custom layer forward functions must not be complex. If the predict or forward
functions of your custom layer involve complex numbers, convert all outputs to real values before
returning them. Using complex numbers in the predict or forward functions of your custom layer
can lead to complex learnable parameters. If you are using automatic differentiation (in other words,
you are not writing a backward function for your custom layer) then convert all learnable parameters
to real values at the beginning of the function computation. Doing so ensures that the outputs of
automatically generated backward functions are not complex.

 Define Custom Deep Learning Intermediate Layers

19-25



Reset State Function
When DAGNetwork or SeriesNetwork objects contain layers with state parameters, you can make
predictions and update the layer states using the predictAndUpdateState and
classifyAndUpdateState functions. You can reset the network state using the resetState
function.

The resetState function for DAGNetwork, SeriesNetwork, and dlnetwork objects, by default,
has no effect on custom layers with state parameters. To define the layer behavior for the
resetState function for network objects, define the optional layer resetState function in the
layer definition that resets the state parameters.

The resetState function must have the syntax layer = resetState(layer), where the
returned layer has the reset state properties.

The resetState function must not set any layer properties except for learnable and state
properties. If the function sets other layers properties, then the layer can behave unexpectedly.

Backward Function
The layer backward function computes the derivatives of the loss with respect to the input data and
then outputs (backward propagates) results to the previous layer. If the layer has learnable
parameters (for example, layer weights), then backward also computes the derivatives of the
learnable parameters. When you use the trainNetwork function, the layer automatically updates
the learnable parameters using these derivatives during the backward pass.

Defining the backward function is optional. If you do not specify a backward function, and the layer
forward functions support dlarray objects, then the software automatically determines the
backward function using automatic differentiation. For a list of functions that support dlarray
objects, see “List of Functions with dlarray Support” on page 19-504. Define a custom backward
function when you want to:

• Use a specific algorithm to compute the derivatives.
• Use operations in the forward functions that do not support dlarray objects.

Custom layers with learnable dlnetwork objects do not support custom backward functions.

To define a custom backward function, create a function named backward.

The backward function syntax depends on the type of layer.

• dLdX = backward(layer,X,Z,dLdZ,memory) returns the derivatives dLdX of the loss with
respect to the layer input, where layer has a single input and a single output. Z corresponds to
the forward function output and dLdZ corresponds to the derivative of the loss with respect to Z.
The function input memory corresponds to the memory output of the forward function.

• [dLdX,dLdW] = backward(layer,X,Z,dLdZ,memory) also returns the derivative dLdW of the
loss with respect to the learnable parameter, where layer has a single learnable parameter.

• [dLdX,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory) also returns the
derivative dLdSin of the loss with respect to the state input, where layer has a single state
parameter and dLdSout corresponds to the derivative of the loss with respect to the layer state
output.

19 Import, Export, and Customization

19-26



• [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory) also returns the
derivative dLdW of the loss with respect to the learnable parameter and returns the derivative
dLdSin of the loss with respect to the layer state input, where layer has a single state parameter
and single learnable parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, multiple learnable
parameters, or multiple state parameters:

• For layers with multiple inputs, replace X and dLdX with X1,...,XN and dLdX1,...,dLdXN,
respectively, where N is the number of inputs.

• For layers with multiple outputs, replace Z and dLdZ with Z1,...,ZM and dLdZ1,...,dLdZM,
respectively, where M is the number of outputs.

• For layers with multiple learnable parameters, replace dLdW with dLdW1,...,dLdWP, where P is
the number of learnable parameters.

• For layers with multiple state parameters, replace dLdSin and dLdSout with
dLdSin1,...,dLdSinK and dLdSout1,...,dLdSoutK, respectively, where K is the number of
state parameters.

To reduce memory usage by preventing unused variables being saved between the forward and
backward pass, replace the corresponding input arguments with ~.

Tip If the number of inputs to backward can vary, then use varargin instead of the input
arguments after layer. In this case, varargin is a cell array of the inputs, where the first N
elements correspond to the N layer inputs, the next M elements correspond to the M layer outputs, the
next M elements correspond to the derivatives of the loss with respect to the M layer outputs, the next
K elements correspond to the K derivatives of the loss with respect to the K state outputs, and the last
element corresponds to memory.

If the number of outputs can vary, then use varargout instead of the output arguments. In this case,
varargout is a cell array of the outputs, where the first N elements correspond to the N the
derivatives of the loss with respect to the N layer inputs, the next P elements correspond to the
derivatives of the loss with respect to the P learnable parameters, and the next K elements
correspond to the derivatives of the loss with respect to the K state inputs.

The values of X and Z are the same as in the forward functions. The dimensions of dLdZ are the same
as the dimensions of Z.

The dimensions and data type of dLdX are the same as the dimensions and data type of X. The
dimensions and data types of dLdW are the same as the dimensions and data types of W.

To calculate the derivatives of the loss, you can use the chain rule:

∂L
∂X(i) = ∑

j

∂L
∂Z j

∂Z j

∂X(i)

∂L
∂Wi

= ∑
j

∂L
∂Z j

∂Z j
∂Wi

When you use the trainNetwork function, the layer automatically updates the learnable parameters
using the derivatives dLdW during the backward pass.

 Define Custom Deep Learning Intermediate Layers

19-27



For an example showing how to define a custom backward function, see “Specify Custom Layer
Backward Function” on page 19-117.

The outputs of the custom layer backward function must not be complex. If your backward function
involves complex numbers, then convert all outputs of the backward function to real values before
returning them.

GPU Compatibility

If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

Code Generation Compatibility

To create a custom layer that supports code generation:

• The layer must specify the pragma %#codegen in the layer definition.
• The inputs of predict must be:

• Consistent in dimension. Each input must have the same number of dimensions.
• Consistent in batch size. Each input must have the same batch size.

• The outputs of predict must be consistent in dimension and batch size with the layer inputs.
• Nonscalar properties must have type single, double, or character array.
• Scalar properties must have type numeric, logical, or string.

Code generation supports intermediate layers with 2-D image or feature input only. Code generation
does not support layers with state properties (properties with attribute State).

For an example showing how to create a custom layer that supports code generation, see “Define
Custom Deep Learning Layer for Code Generation” on page 19-156.

Network Composition

To create a custom layer that itself defines a layer graph, you can declare a dlnetwork object as a
learnable parameter in the properties (Learnable) section of the layer definition. This method is
known as network composition. You can use network composition to:

• Create a single custom layer that represents a block of learnable layers, for example, a residual
block.

• Create a network with control flow, for example, a network with a section that can dynamically
change depending on the input data.

• Create a network with loops, for example, a network with sections that feed the output back into
itself.

19 Import, Export, and Customization

19-28



For nested networks that have both learnable and state parameters, for example, networks with
batch normalization or LSTM layers, declare the network in the properties (Learnable,
State) section of the layer definition.

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

Check Validity of Layer
If you create a custom deep learning layer, then you can use the checkLayer function to check that
the layer is valid. The function checks layers for validity, GPU compatibility, correctly defined
gradients, and code generation compatibility. To check that a layer is valid, run the following
command:

checkLayer(layer,validInputSize)

layer is an instance of the layer and validInputSize is a vector or cell array specifying the valid
input sizes to the layer. To check with multiple observations, use the ObservationDimension
option. To run the check for code generation compatibility, set the CheckCodegenCompatibility
option to 1 (true). For large input sizes, the gradient checks take longer to run. To speed up the
check, specify a smaller valid input size.

For more information, see “Check Custom Layer Validity” on page 19-168.

Check Validity of Custom Layer Using checkLayer

Check the layer validity of the custom layer preluLayer.

The custom layer preluLayer, attached to this is example as a supporting file, applies the PReLU
operation to the input data. To access this layer, open this example as a live script.

Create an instance of the layer.

layer = preluLayer;

Because the layer has a custom initialize function, initialize the layer using a networkDataFormat
object that specifies the expected input size and format of a single observation of typical input to the
layer.

Specify a valid input size of [24 24 20], where the dimensions correspond to the height, width, and
number of channels of the previous layer output.

 Define Custom Deep Learning Intermediate Layers

19-29



validInputSize = [24 24 20];
layout = networkDataLayout(validInputSize,"SSC");
layer = initialize(layer,layout);

Check the layer validity using checkLayer. Specify the valid input size as the size as the size as used
to initialize the layer. When you pass data through the network, the layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

Specify the typical size of the input of an observation and set the ObservationDimension option to
4.

checkLayer(layer,validInputSize,ObservationDimension=4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ........
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     18 Passed, 0 Failed, 0 Incomplete, 10 Skipped.
     Time elapsed: 0.21579 seconds.

The function does not detect any issues with the layer.

See Also
functionLayer | checkLayer | setLearnRateFactor | setL2Factor | getLearnRateFactor |
getL2Factor | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer | networkDataLayout

Related Examples
• “Define Custom Deep Learning Layers” on page 19-9
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Specify Custom Layer Backward Function” on page 19-117
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Deep Learning Network Composition” on page 19-131
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-30



Define Custom Deep Learning Output Layers

Tip This topic explains how to define custom deep learning output layers for your problems. For a list
of built-in layers in Deep Learning Toolbox, see “List of Deep Learning Layers” on page 1-43.

To learn how to define custom intermediate layers, see “Define Custom Deep Learning Intermediate
Layers” on page 19-16.

If Deep Learning Toolbox does not provide the output layer that you require for your task, then you
can define your own custom layer using this topic as a guide. After defining the custom layer, you can
check that the layer is valid and GPU compatible, and outputs correctly defined gradients.

Output Layer Architecture
At the end of a forward pass at training time, an output layer takes the predictions (network outputs)
Y of the previous layer and calculates the loss L between these predictions and the training targets.
The output layer computes the derivatives of the loss L with respect to the predictions Y and outputs
(backward propagates) results to the previous layer.

The following figure describes the flow of data through a convolutional neural network and an output
layer.

Output Layer Templates
To define a custom output layer, use one of these class definition templates. The templates give the
structure of an output layer class definition. They outline:

• The optional properties blocks for the layer properties. For more information, see “Output
Layer Properties” on page 19-34.

• The layer constructor function.
• The forwardLoss function. For more information, see “Forward Loss Function” on page 19-35.
• The optional backwardLoss function. For more information, see “Backward Loss Function” on

page 19-35.

 Define Custom Deep Learning Output Layers

19-31



Classification Output Layer Template

This template outlines the structure of a classification output layer with a loss function. For an
example showing how to define a classification output layer and specify a loss function, see “Define
Custom Classification Output Layer” on page 19-101.
classdef myClassificationLayer < nnet.layer.ClassificationLayer % ...
        % & nnet.layer.Acceleratable % (Optional)
        
    properties
        % (Optional) Layer properties.

        % Layer properties go here.
    end
 
    methods
        function layer = myClassificationLayer()           
            % (Optional) Create a myClassificationLayer.

            % Layer constructor function goes here.
        end

        function loss = forwardLoss(layer,Y,T)
            % Return the loss between the predictions Y and the training 
            % targets T.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         loss  - Loss between Y and T

            % Layer forward loss function goes here.
        end
        
        function dLdY = backwardLoss(layer,Y,T)
            % (Optional) Backward propagate the derivative of the loss 
            % function.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         dLdY  - Derivative of the loss with respect to the 
            %                 predictions Y

            % Layer backward loss function goes here.
        end
    end
end

Regression Output Layer Template

This template outlines the structure of a regression output layer with a loss function. For an example
showing how to define a regression output layer and specify a loss function, see “Define Custom
Regression Output Layer” on page 19-109.
classdef myRegressionLayer < nnet.layer.RegressionLayer % ...
        % & nnet.layer.Acceleratable % (Optional)
        
    properties
        % (Optional) Layer properties.

        % Layer properties go here.
    end
 

19 Import, Export, and Customization

19-32



    methods
        function layer = myRegressionLayer()           
            % (Optional) Create a myRegressionLayer.

            % Layer constructor function goes here.
        end

        function loss = forwardLoss(layer,Y,T)
            % Return the loss between the predictions Y and the training
            % targets T.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         loss  - Loss between Y and T

            % Layer forward loss function goes here.
        end
        
        function dLdY = backwardLoss(layer,Y,T)
            % (Optional) Backward propagate the derivative of the loss 
            % function.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         dLdY  - Derivative of the loss with respect to the 
            %                 predictions Y        

            % Layer backward loss function goes here.
        end
    end
end

Custom Layer Acceleration
If you do not specify a backward function when you define a custom layer, then the software
automatically determines the gradients using automatic differentiation.

When you train a network with a custom layer without a backward function, the software traces each
input dlarray object of the custom layer forward function to determine the computation graph used
for automatic differentiation. This tracing process can take some time and can end up recomputing
the same trace. By optimizing, caching, and reusing the traces, you can speed up gradient
computation when training a network. The software can also reuse these traces to speed up network
predictions after training.

The trace depends on the size, format, and underlying data type of the layer inputs. That is, the layer
triggers a new trace for inputs with a size, format, or underlying data type not contained in the
cache. Any inputs differing only by value to a previously cached trace do not trigger a new trace.

To indicate that the custom layer supports acceleration, also inherit from the
nnet.layer.Acceleratable class when defining the custom layer. When a custom layer inherits
from nnet.layer.Acceleratable, the software automatically caches traces when passing data
through a dlnetwork object.

For example, to indicate that the custom layer myLayer supports acceleration, use this syntax

classdef myLayer < nnet.layer.Layer & nnet.layer.Acceleratable
    ...
end

 Define Custom Deep Learning Output Layers

19-33



Acceleration Considerations

Because of the nature of caching traces, not all functions support acceleration.

The caching process can cache values or code structures that you might expect to change or that
depend on external factors. You must take care when accelerating custom layers that:

• Generate random numbers.
• Use if statements and while loops with conditions that depend on the values of dlarray

objects.

Because the caching process requires extra computation, acceleration can lead to longer running
code in some cases. This scenario can happen when the software spends time creating new caches
that do not get reused often. For example, when you pass multiple mini-batches of different sequence
lengths to the function, the software triggers a new trace for each unique sequence length.

When custom layer acceleration causes slowdown, you can disable acceleration by removing the
Acceleratable mixin or by disabling acceleration of the dlnetwork object functions predict and
forward by setting the Acceleration option to "none".

For more information about enabling acceleration support for custom layers, see “Custom Layer
Function Acceleration” on page 19-128.

Output Layer Properties
Declare the layer properties in the properties section of the class definition.

By default, custom output layers have the following properties:

• Name — Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically
assign names to layers with the name ''.

• Description — One-line description of the layer, specified as a character vector or a string
scalar. This description appears when the layer is displayed in a Layer array. If you do not specify
a layer description, then the software displays "Classification Output" or "Regression
Output".

• Type — Type of the layer, specified as a character vector or a string scalar. The value of Type
appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the
software displays the layer class name.

Custom classification layers also have the following property:

• Classes — Classes of the output layer, specified as a categorical vector, string array, cell array of
character vectors, or "auto". If Classes is "auto", then the software automatically sets the
classes at training time. If you specify the string array or cell array of character vectors str, then
the software sets the classes of the output layer to categorical(str,str).

Custom regression layers also have the following property:

• ResponseNames — Names of the responses, specified a cell array of character vectors or a string
array. At training time, the software automatically sets the response names according to the
training data. The default is {}.

If the layer has no other properties, then you can omit the properties section.

19 Import, Export, and Customization

19-34



Forward Loss Function
The output layer computes the loss L between predictions and targets using the forward loss function
and computes the derivatives of the loss with respect to the predictions using the backward loss
function.

The syntax for forwardLoss is loss = forwardLoss(layer,Y,T). The input Y corresponds to
the predictions made by the network. These predictions are the output of the previous layer. The
input T corresponds to the training targets. The output loss is the loss between Y and T according to
the specified loss function. The output loss must be scalar.

Backward Loss Function
The backward loss function computes the derivatives of the loss with respect to the predictions. If the
layer forward loss function supports dlarray objects, then the software automatically determines
the backward loss function using automatic differentiation. The derivatives must be real-valued. For a
list of functions that support dlarray objects, see “List of Functions with dlarray Support” on page
19-504. Alternatively, to define a custom backward loss function, create a function named
backwardLoss. For an example showing how to define a custom backward loss function, see
“Specify Custom Output Layer Backward Loss Function” on page 19-124.

The syntax for backwardLoss is dLdY = backwardLoss(layer,Y,T). The input Y contains the
predictions made by the network and T contains the training targets. The output dLdY is the
derivative of the loss with respect to the predictions Y. The output dLdY must be the same size as the
layer input Y.

For classification problems, the dimensions of T depend on the type of problem.

Classification Task Input Size Observation Dimension
2-D image classification 1-by-1-by-K-by-N, where K is the

number of classes and N is the
number of observations

4

3-D image classification 1-by-1-by-1-by-K-by-N, where K
is the number of classes and N
is the number of observations

5

Sequence-to-label classification K-by-N, where K is the number
of classes and N is the number
of observations

2

Sequence-to-sequence
classification

K-by-N-by-S, where K is the
number of classes, N is the
number of observations, and S
is the sequence length

2

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T, you
must include a layer that outputs the correct size before the output layer. For example, to ensure that
Y is a 4-D array of prediction scores for K classes, you can include a fully connected layer of size K
followed by a softmax layer before the output layer.

For regression problems, the dimensions of T also depend on the type of problem.

 Define Custom Deep Learning Output Layers

19-35



Regression Task Input Size Observation Dimension
2-D image regression 1-by-1-by-R-by-N, where R is the

number of responses and N is
the number of observations

4

2-D Image-to-image regression h-by-w-by-c-by-N, where h, w,
and c are the height, width, and
number of channels of the
output, respectively, and N is
the number of observations

4

3-D image regression 1-by-1-by-1-by-R-by-N, where R
is the number of responses and
N is the number of observations

5

3-D Image-to-image regression h-by-w-by-d-by-c-by-N, where h,
w, d, and c are the height,
width, depth, and number of
channels of the output,
respectively, and N is the
number of observations

5

Sequence-to-one regression R-by-N, where R is the number
of responses and N is the
number of observations

2

Sequence-to-sequence
regression

R-by-N-by-S, where R is the
number of responses, N is the
number of observations, and S
is the sequence length

2

For example, if the network defines an image regression network with one response and has mini-
batches of size 50, then T is a 4-D array of size 1-by-1-by-1-by-50.

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T, you
must include a layer that outputs the correct size before the output layer. For example, for image
regression with R responses, to ensure that Y is a 4-D array of the correct size, you can include a fully
connected layer of size R before the output layer.

The forwardLoss and backwardLoss functions have the following output arguments.

Function Output Argument Description
forwardLoss loss Calculated loss between the

predictions Y and the true
target T.

backwardLoss dLdY Derivative of the loss with
respect to the predictions Y.

The backwardLoss function must output dLdY with the size expected by the previous layer and
dLdY must be the same size as Y.

19 Import, Export, and Customization

19-36



GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

Check Validity of Layer
If you create a custom deep learning layer, then you can use the checkLayer function to check that
the layer is valid. The function checks layers for validity, GPU compatibility, correctly defined
gradients, and code generation compatibility. To check that a layer is valid, run the following
command:

checkLayer(layer,validInputSize)

layer is an instance of the layer and validInputSize is a vector or cell array specifying the valid
input sizes to the layer. To check with multiple observations, use the ObservationDimension
option. To run the check for code generation compatibility, set the CheckCodegenCompatibility
option to 1 (true). For large input sizes, the gradient checks take longer to run. To speed up the
check, specify a smaller valid input size.

For more information, see “Check Custom Layer Validity” on page 19-168.

See Also
checkLayer | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer

Related Examples
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Classification Output Layer” on page 19-101
• “Define Custom Regression Output Layer” on page 19-109
• “Specify Custom Output Layer Backward Loss Function” on page 19-124
• “Check Custom Layer Validity” on page 19-168

 Define Custom Deep Learning Output Layers

19-37



Define Custom Deep Learning Layer with Learnable
Parameters

If Deep Learning Toolbox does not provide the layer you require for your task, then you can define
your own custom layer using this example as a guide. For a list of built-in layers, see “List of Deep
Learning Layers” on page 1-43.

To define a custom deep learning layer, you can use the template provided in this example, which
takes you through the following steps:

1 Name the layer — Give the layer a name so that you can use it in MATLAB.
2 Declare the layer properties — Specify the properties of the layer, including learnable

parameters and state parameters.
3 Create a constructor function (optional) — Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then at creation, the software initializes
the Name, Description, and Type properties with [] and sets the number of layer inputs and
outputs to 1.

4 Create initialize function (optional) — Specify how to initialize the learnable and state
parameters when the software initializes the network. If you do not specify an initialize function,
then the software does not initialize parameters when it initializes the network.

5 Create forward functions — Specify how data passes forward through the layer (forward
propagation) at prediction time and at training time.

6 Create reset state function (optional) — Specify how to reset state parameters.
7 Create a backward function (optional) — Specify the derivatives of the loss with respect to the

input data and the learnable parameters (backward propagation). If you do not specify a
backward function, then the forward functions must support dlarray objects.

When defining the layer functions, you can use dlarray objects. Using dlarray objects makes
working with high dimensional data easier by allowing you to label the dimensions. For example, you
can label which dimensions correspond to spatial, time, channel, and batch dimensions using the "S",
"T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the "U" label. For
dlarray object functions that operate over particular dimensions, you can specify the dimension
labels by formatting the dlarray object directly, or by using the DataFormat option.

Using formatted dlarray objects in custom layers also allows you to define layers where the inputs
and outputs have different formats, such as layers that permute, add, or remove dimensions. For
example, you can define a layer that takes as input a mini-batch of images with the format "SSCB"
(spatial, spatial, channel, batch) and output a mini-batch of sequences with the format "CBT"
(channel, batch, time). Using formatted dlarray objects also allows you to define layers that can
operate on data with different input formats, for example, layers that support inputs with the formats
"SSCB" (spatial, spatial, channel, batch) and "CBT" (channel, batch, time).

dlarray objects also enable support for automatic differentiation. Consequently, if your forward
functions fully support dlarray objects, then defining the backward function is optional.

To enable support for using formatted dlarray objects in custom layer forward functions, also
inherit from the nnet.layer.Formattable class when defining the custom layer. For an example,
see “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67.

This example shows how to create a PReLU layer, which is a layer with a learnable parameter and use
it in a convolutional neural network. A PReLU layer performs a threshold operation, where for each

19 Import, Export, and Customization

19-38



channel, any input value less than zero is multiplied by a scalar learned at training time.[1] For values
less than zero, a PReLU layer applies scaling coefficients αi to each channel of the input. These
coefficients form a learnable parameter, which the layer learns during training.

This figure from [1] compares the ReLU and PReLU layer functions.

Intermediate Layer Template
Copy the intermediate layer template into a new file in MATLAB. This template gives the structure of
an intermediate layer class definition. It outlines:

• The optional properties blocks for the layer properties, learnable parameters, and state
parameters.

• The layer constructor function.
• The optional initialize function.
• The predict function and the optional forward function.
• The optional resetState function for layers with state properties.
• The optional backward function.

classdef myLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)

    properties
        % (Optional) Layer properties.

        % Declare layer properties here.
    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Declare learnable parameters here.
    end

    properties (State)
        % (Optional) Layer state parameters.

        % Declare state parameters here.
    end

 Define Custom Deep Learning Layer with Learnable Parameters

19-39



    properties (Learnable, State)
        % (Optional) Nested dlnetwork objects with both learnable
        % parameters and state parameters.

        % Declare nested networks with learnable and state parameters here.
    end

    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Define layer constructor function here.
        end

        function layer = initialize(layer,layout)
            % (Optional) Initialize layer learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize
            %         layout - Data layout, specified as a networkDataLayout
            %                  object
            %
            % Outputs:
            %         layer - Initialized layer
            %
            %  - For layers with multiple inputs, replace layout with 
            %    layout1,...,layoutN, where N is the number of inputs.
            
            % Define layer initialization function here.
        end
        

        function [Z,state] = predict(layer,X)
            % Forward input data through the layer at prediction time and
            % output the result and updated state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - (Optional) Updated layer state
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer predict function here.
        end

        function [Z,state,memory] = forward(layer,X)
            % (Optional) Forward input data through the layer at training
            % time and output the result, the updated state, and a memory
            % value.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Layer input data
            % Outputs:
            %         Z      - Output of layer forward function 
            %         state  - (Optional) Updated layer state 
            %         memory - (Optional) Memory value for custom backward
            %                  function
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.

19 Import, Export, and Customization

19-40



            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer forward function here.
        end

        function layer = resetState(layer)
            % (Optional) Reset layer state.

            % Define reset state function here.
        end

        function [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory)
            % (Optional) Backward propagate the derivative of the loss
            % function through the layer.
            %
            % Inputs:
            %         layer   - Layer to backward propagate through 
            %         X       - Layer input data 
            %         Z       - Layer output data 
            %         dLdZ    - Derivative of loss with respect to layer 
            %                   output
            %         dLdSout - (Optional) Derivative of loss with respect 
            %                   to state output
            %         memory  - Memory value from forward function
            % Outputs:
            %         dLdX   - Derivative of loss with respect to layer input
            %         dLdW   - (Optional) Derivative of loss with respect to
            %                  learnable parameter 
            %         dLdSin - (Optional) Derivative of loss with respect to 
            %                  state input
            %
            %  - For layers with state parameters, the backward syntax must
            %    include both dLdSout and dLdSin, or neither.
            %  - For layers with multiple inputs, replace X and dLdX with
            %    X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
            %    the number of inputs.
            %  - For layers with multiple outputs, replace Z and dlZ with
            %    Z1,...,ZM and dLdZ,...,dLdZM, respectively, where M is the
            %    number of outputs.
            %  - For layers with multiple learnable parameters, replace 
            %    dLdW with dLdW1,...,dLdWP, where P is the number of 
            %    learnable parameters.
            %  - For layers with multiple state parameters, replace dLdSin
            %    and dLdSout with dLdSin1,...,dLdSinK and 
            %    dLdSout1,...,dldSoutK, respectively, where K is the number
            %    of state parameters.

            % Define layer backward function here.
        end
    end
end

Name Layer and Specify Superclasses
First, give the layer a name. In the first line of the class file, replace the existing name myLayer with
preluLayer.

classdef preluLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)
    ...
end

 Define Custom Deep Learning Layer with Learnable Parameters

19-41



If you do not specify a backward function, then the layer functions, by default, receive unformatted
dlarray objects as input. To specify that the layer receives formatted dlarray objects as input and
also outputs formatted dlarray objects, also inherit from the nnet.layer.Formattable class
when defining the custom layer.

The layer functions support acceleration, so also inherit from nnet.layer.Acceleratable. For
more information about accelerating custom layer functions, see “Custom Layer Function
Acceleration” on page 19-128. The layer does not require formattable inputs, so remove the optional
nnet.layer.Formattable superclass.

classdef preluLayer < nnet.layer.Layer ...
        & nnet.layer.Acceleratable
    ...
end

Next, rename the myLayer constructor function (the first function in the methods section) so that it
has the same name as the layer.

    methods
        function layer = preluLayer()           
            ...
        end

        ...
     end

Save the Layer

Save the layer class file in a new file named preluLayer.m. The file name must match the layer
name. To use the layer, you must save the file in the current folder or in a folder on the MATLAB path.

Declare Properties and Learnable Parameters
Declare the layer properties in the properties section and declare learnable parameters by listing
them in the properties (Learnable) section.

By default, custom intermediate layers have these properties. Do not declare these properties in the
properties section.

Property Description
Name Layer name, specified as a character vector or a

string scalar. For Layer array input, the
trainNetwork, assembleNetwork,
layerGraph, and dlnetwork functions
automatically assign names to layers with the
name ''.

Description One-line description of the layer, specified as a
string scalar or a character vector. This
description appears when the layer is displayed
in a Layer array.

If you do not specify a layer description, then the
software displays the layer class name.

19 Import, Export, and Customization

19-42



Property Description
Type Type of the layer, specified as a character vector

or a string scalar. The value of Type appears
when the layer is displayed in a Layer array.

If you do not specify a layer type, then the
software displays the layer class name.

NumInputs Number of inputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumInputs
to the number of names in InputNames. The
default value is 1.

InputNames Input names of the layer, specified as a cell array
of character vectors. If you do not specify this
value and NumInputs is greater than 1, then the
software automatically sets InputNames to
{'in1',...,'inN'}, where N is equal to
NumInputs. The default value is {'in'}.

NumOutputs Number of outputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumOutputs
to the number of names in OutputNames. The
default value is 1.

OutputNames Output names of the layer, specified as a cell
array of character vectors. If you do not specify
this value and NumOutputs is greater than 1,
then the software automatically sets
OutputNames to {'out1',...,'outM'},
where M is equal to NumOutputs. The default
value is {'out'}.

If the layer has no other properties, then you can omit the properties section.

Tip If you are creating a layer with multiple inputs, then you must set either the NumInputs or
InputNames properties in the layer constructor. If you are creating a layer with multiple outputs,
then you must set either the NumOutputs or OutputNames properties in the layer constructor. For
an example, see “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53.

A PReLU layer does not require any additional properties, so you can remove the properties
section.

A PReLU layer has only one learnable parameter, the scaling coefficient a. Declare this learnable
parameter in the properties (Learnable) section and call the parameter Alpha.

    properties (Learnable)
        % Layer learnable parameters
            
        % Scaling coefficient
        Alpha
    end

 Define Custom Deep Learning Layer with Learnable Parameters

19-43



Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

The PReLU layer constructor function requires one optional argument (the layer name). Specify one
input argument named args in the preluLayer function that corresponds to the optional name-
value argument. Add a comment to the top of the function that explains the syntax of the function.
        function layer = preluLayer(args)
            % layer = preluLayercreates a PReLU layer.
            %
            % layer = preluLayer(Name=name) also specifies the
            % layer name

            ...
        end

Initialize Layer Properties

Initialize the layer properties in the constructor function. Replace the comment % Layer
constructor function goes here with code that initializes the layer properties. Do not initialize
learnable or state parameters in the constructor function, initialize them in the initialize function
instead.

Parse the input arguments using an arguments block and set the Name property.

            arguments
                args.Name = "";
            end

            % Set layer name.
            layer.Name = args.Name;

Give the layer a one-line description by setting the Description property of the layer. Set the
description to describe the type of layer.
            % Set layer description.
            layer.Description = "PReLU";

View the completed constructor function.
        function layer = preluLayer(args) 
            % layer = preluLayer creates a PReLU layer.
            %
            % layer = preluLayer(Name=name) also specifies the
            % layer name.
    
            arguments
                args.Name = "";
            end
    
            % Set layer name.
            layer.Name = args.Name;

            % Set layer description.
            layer.Description = "PReLU";
        end

With this constructor function, the command preluLayer(Name="prelu") creates a PReLU layer
with the name "prelu".

Create Initialize Function
Create the function that initializes the layer learnable and state parameters when the software
initializes the network. Ensure that the function only initializes learnable and state parameters when

19 Import, Export, and Customization

19-44



the property is empty, otherwise the software can overwrite when you load the network from a MAT
file.

To initialize the learnable parameter Alpha, generate a random vector with the same number of
channels as the input data.

Because the size of the input data is unknown until the network is ready to use, you must create an
initialize function that initializes the learnable and state parameters using networkDataLayout
objects that the software provides to the function. Network data layout objects contain information
about the sizes and formats of expected input data. Create an initialize function that uses the size and
format information to initialize learnable and state parameters such that they have the correct size.

The learnable parameter Alpha has the same number of dimensions as the input observations, where
the channel dimension has the same size as the channel dimension of the input data, and the
remaining dimensions are singleton. Create an initialize function that extracts the size and
format information from the input networkDataLayout object and initializes the learnable
parameter Alpha with the same number of channels.
        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the layer
            % learnable parameters using the specified input layout.

            % Skip initialization of nonempty parameters.
            if ~isempty(layer.Alpha)
                return
            end

            % Input data size.
            sz = layout.Size;
            ndims = numel(sz);

            % Find number of channels.
            idx = finddim(layout,"C");
            numChannels = sz(idx);

            % Initialize Alpha.
            szAlpha = ones(1,ndims);
            szAlpha(idx) = numChannels;
            layer.Alpha = rand(szAlpha);
        end

Create Forward Functions
Create the layer forward functions to use at prediction time and training time.

Create a function named predict that propagates the data forward through the layer at prediction
time and outputs the result.

The predict function syntax depends on the type of layer.

• Z = predict(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = predict(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

 Define Custom Deep Learning Layer with Learnable Parameters

19-45



• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the predict
function of the custom layer, use the predict function for the dlnetwork. When you do so, the
dlnetwork object predict function uses the appropriate layer operations for prediction. If the
dlnetwork has state parameters, then also return the network state.

Because a PReLU layer has only one input and one output, the syntax for predict for a PReLU layer
is Z = predict(layer,X).

By default, the layer uses predict as the forward function at training time. To use a different
forward function at training time, or retain a value required for a custom backward function, you
must also create a function named forward.

The dimensions of the inputs depend on the type of data and the output of the connected layers:

Layer Input Input Size Observation Dimension
Feature vectors c-by-N, where c corresponds to

the number of channels and N is
the number of observations

2

2-D images h-by-w-by-c-by-N, where h, w,
and c correspond to the height,
width, and number of channels
of the images, respectively, and
N is the number of observations

4

3-D images h-by-w-by-d-by-c-by-N, where h,
w, d, and c correspond to the
height, width, depth, and
number of channels of the 3-D
images, respectively, and N is
the number of observations

5

Vector sequences c-by-N-by-S, where c is the
number of features of the
sequences, N is the number of
observations, and S is the
sequence length

2

19 Import, Export, and Customization

19-46



Layer Input Input Size Observation Dimension
2-D image sequences h-by-w-by-c-by-N-by-S, where h,

w, and c correspond to the
height, width, and number of
channels of the images,
respectively, N is the number of
observations, and S is the
sequence length

4

3-D image sequences h-by-w-by-d-by-c-by-N-by-S,
where h, w, d, and c correspond
to the height, width, depth, and
number of channels of the 3-D
images, respectively, N is the
number of observations, and S
is the sequence length

5

For layers that output sequences, the layers can output sequences of any length or output data with
no time dimension. Note that when you train a network that outputs sequences using the
trainNetwork function, the lengths of the input and output sequences must match.

The forward function propagates the data forward through the layer at training time and also
outputs a memory value.

The forward function syntax depends on the type of layer:

• Z = forward(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = forward(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

• [__,memory] = forward(layer,X) also returns a memory value for a custom backward
function using any of the previous syntaxes. If the layer has both a custom forward function and
a custom backward function, then the forward function must return a memory value.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

 Define Custom Deep Learning Layer with Learnable Parameters

19-47



Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the forward
function of the custom layer, use the forward function of the dlnetwork object. When you do so, the
dlnetwork object forward function uses the appropriate layer operations for training.

The PReLU operation is given by

f (xi) =
xi if xi > 0

αixi if xi ≤ 0

where xi is the input of the nonlinear activation f on channel i, and αi is the coefficient controlling the
slope of the negative part. The subscript i in αi indicates that the nonlinear activation can vary on
different channels.

Implement this operation in predict. In predict, the input X corresponds to x in the equation. The
output Z corresponds to f (xi). The PReLU layer does not require memory or a different forward
function for training, so you can remove the forward function from the class file. Add a comment to
the top of the function that explains the syntaxes of the function.

Tip If you preallocate arrays using functions such as zeros, then you must ensure that the data
types of these arrays are consistent with the layer function inputs. To create an array of zeros of the
same data type as another array, use the "like" option of zeros. For example, to initialize an array
of zeros of size sz with the same data type as the array X, use Z = zeros(sz,"like",X).

        function Z = predict(layer, X)
            % Z = predict(layer, X) forwards the input data X through the
            % layer and outputs the result Z.
            
            Z = max(X,0) + layer.Alpha .* min(0,X);
        end

Because the predict function uses only functions that support dlarray objects, defining the
backward function is optional. For a list of functions that support dlarray objects, see “List of
Functions with dlarray Support” on page 19-504.

Completed Layer
View the completed layer class file.

classdef preluLayer < nnet.layer.Layer ...
        & nnet.layer.Acceleratable
    % Example custom PReLU layer.

    properties (Learnable)
        % Layer learnable parameters
            
        % Scaling coefficient
        Alpha
    end

    methods
        function layer = preluLayer(args) 
            % layer = preluLayer creates a PReLU layer.
            %

19 Import, Export, and Customization

19-48



            % layer = preluLayer(Name=name) also specifies the
            % layer name.
    
            arguments
                args.Name = "";
            end
    
            % Set layer name.
            layer.Name = args.Name;

            % Set layer description.
            layer.Description = "PReLU";
        end

        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the layer
            % learnable parameters using the specified input layout.

            % Skip initialization of nonempty parameters.
            if ~isempty(layer.Alpha)
                return
            end

            % Input data size.
            sz = layout.Size;
            ndims = numel(sz);

            % Find number of channels.
            idx = finddim(layout,"C");
            numChannels = sz(idx);

            % Initialize Alpha.
            szAlpha = ones(1,ndims);
            szAlpha(idx) = numChannels;
            layer.Alpha = rand(szAlpha);
        end

        function Z = predict(layer, X)
            % Z = predict(layer, X) forwards the input data X through the
            % layer and outputs the result Z.
            
            Z = max(X,0) + layer.Alpha .* min(0,X);
        end
    end
end

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For

 Define Custom Deep Learning Layer with Learnable Parameters

19-49



information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

In this example, the MATLAB functions used in predict all support dlarray objects, so the layer is
GPU compatible.

Check Validity of Custom Layer Using checkLayer

Check the layer validity of the custom layer preluLayer.

The custom layer preluLayer, attached to this is example as a supporting file, applies the PReLU
operation to the input data. To access this layer, open this example as a live script.

Create an instance of the layer.

layer = preluLayer;

Because the layer has a custom initialize function, initialize the layer using a networkDataFormat
object that specifies the expected input size and format of a single observation of typical input to the
layer.

Specify a valid input size of [24 24 20], where the dimensions correspond to the height, width, and
number of channels of the previous layer output.

validInputSize = [24 24 20];
layout = networkDataLayout(validInputSize,"SSC");
layer = initialize(layer,layout);

Check the layer validity using checkLayer. Specify the valid input size as the size as the size as used
to initialize the layer. When you pass data through the network, the layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

Specify the typical size of the input of an observation and set the ObservationDimension option to
4.

checkLayer(layer,validInputSize,ObservationDimension=4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ........
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     18 Passed, 0 Failed, 0 Incomplete, 10 Skipped.
     Time elapsed: 0.21579 seconds.

The function does not detect any issues with the layer.

19 Import, Export, and Customization

19-50



Include Custom Layer in Network

You can use a custom layer in the same way as any other layer in Deep Learning Toolbox. This section
shows how to create and train a network for digit classification using the PReLU layer you created
earlier.

Load the example training data.

[XTrain,YTrain] = digitTrain4DArrayData;

Create a layer array containing the custom layer preluLayer, attached to this is example as a
supporting file. To access this layer, open this example as a live script.

layers = [ 
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    preluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the training options and train the network.

options = trainingOptions("adam",MaxEpochs=10);
net = trainNetwork(XTrain,YTrain,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |        9.38% |       2.8873 |          0.0010 |
|       2 |          50 |       00:00:02 |       79.69% |       0.7222 |          0.0010 |
|       3 |         100 |       00:00:05 |       86.72% |       0.4213 |          0.0010 |
|       4 |         150 |       00:00:08 |       94.53% |       0.2129 |          0.0010 |
|       6 |         200 |       00:00:11 |       94.53% |       0.1884 |          0.0010 |
|       7 |         250 |       00:00:14 |      100.00% |       0.0847 |          0.0010 |
|       8 |         300 |       00:00:17 |      100.00% |       0.0470 |          0.0010 |
|       9 |         350 |       00:00:19 |      100.00% |       0.0299 |          0.0010 |
|      10 |         390 |       00:00:21 |      100.00% |       0.0375 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.

Evaluate the network performance by predicting on new data and calculating the accuracy.

[XTest,YTest] = digitTest4DArrayData;
YPred = classify(net,XTest);
accuracy = mean(YTest==YPred)

accuracy = 0.9534

 Define Custom Deep Learning Layer with Learnable Parameters

19-51



References
[1] "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification."

In 2015 IEEE International Conference on Computer Vision (ICCV), 1026–34. Santiago, Chile:
IEEE, 2015. https://doi.org/10.1109/ICCV.2015.123.

See Also
functionLayer | checkLayer | setLearnRateFactor | setL2Factor | getLearnRateFactor |
getL2Factor | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer | networkDataLayout

More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Specify Custom Layer Backward Function” on page 19-117
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-52



Define Custom Deep Learning Layer with Multiple Inputs
If Deep Learning Toolbox does not provide the layer you require for your classification or regression
problem, then you can define your own custom layer using this example as a guide. For a list of built-
in layers, see “List of Deep Learning Layers” on page 1-43.

To define a custom deep learning layer, you can use the template provided in this example, which
takes you through the following steps:

1 Name the layer — Give the layer a name so that you can use it in MATLAB.
2 Declare the layer properties — Specify the properties of the layer, including learnable

parameters and state parameters.
3 Create a constructor function (optional) — Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then at creation, the software initializes
the Name, Description, and Type properties with [] and sets the number of layer inputs and
outputs to 1.

4 Create initialize function (optional) — Specify how to initialize the learnable and state
parameters when the software initializes the network. If you do not specify an initialize function,
then the software does not initialize parameters when it initializes the network.

5 Create forward functions — Specify how data passes forward through the layer (forward
propagation) at prediction time and at training time.

6 Create reset state function (optional) — Specify how to reset state parameters.
7 Create a backward function (optional) — Specify the derivatives of the loss with respect to the

input data and the learnable parameters (backward propagation). If you do not specify a
backward function, then the forward functions must support dlarray objects.

This example shows how to create a weighted addition layer, which is a layer with multiple inputs and
learnable parameter, and use it in a convolutional neural network. A weighted addition layer scales
and adds inputs from multiple neural network layers element-wise.

Intermediate Layer Template
Copy the intermediate layer template into a new file in MATLAB. This template gives the structure of
an intermediate layer class definition. It outlines:

• The optional properties blocks for the layer properties, learnable parameters, and state
parameters.

• The layer constructor function.
• The optional initialize function.
• The predict function and the optional forward function.
• The optional resetState function for layers with state properties.
• The optional backward function.

classdef myLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)

    properties
        % (Optional) Layer properties.

        % Declare layer properties here.

 Define Custom Deep Learning Layer with Multiple Inputs

19-53



    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Declare learnable parameters here.
    end

    properties (State)
        % (Optional) Layer state parameters.

        % Declare state parameters here.
    end

    properties (Learnable, State)
        % (Optional) Nested dlnetwork objects with both learnable
        % parameters and state parameters.

        % Declare nested networks with learnable and state parameters here.
    end

    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Define layer constructor function here.
        end

        function layer = initialize(layer,layout)
            % (Optional) Initialize layer learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize
            %         layout - Data layout, specified as a networkDataLayout
            %                  object
            %
            % Outputs:
            %         layer - Initialized layer
            %
            %  - For layers with multiple inputs, replace layout with 
            %    layout1,...,layoutN, where N is the number of inputs.
            
            % Define layer initialization function here.
        end
        

        function [Z,state] = predict(layer,X)
            % Forward input data through the layer at prediction time and
            % output the result and updated state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - (Optional) Updated layer state
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer predict function here.
        end

        function [Z,state,memory] = forward(layer,X)
            % (Optional) Forward input data through the layer at training
            % time and output the result, the updated state, and a memory

19 Import, Export, and Customization

19-54



            % value.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Layer input data
            % Outputs:
            %         Z      - Output of layer forward function 
            %         state  - (Optional) Updated layer state 
            %         memory - (Optional) Memory value for custom backward
            %                  function
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer forward function here.
        end

        function layer = resetState(layer)
            % (Optional) Reset layer state.

            % Define reset state function here.
        end

        function [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory)
            % (Optional) Backward propagate the derivative of the loss
            % function through the layer.
            %
            % Inputs:
            %         layer   - Layer to backward propagate through 
            %         X       - Layer input data 
            %         Z       - Layer output data 
            %         dLdZ    - Derivative of loss with respect to layer 
            %                   output
            %         dLdSout - (Optional) Derivative of loss with respect 
            %                   to state output
            %         memory  - Memory value from forward function
            % Outputs:
            %         dLdX   - Derivative of loss with respect to layer input
            %         dLdW   - (Optional) Derivative of loss with respect to
            %                  learnable parameter 
            %         dLdSin - (Optional) Derivative of loss with respect to 
            %                  state input
            %
            %  - For layers with state parameters, the backward syntax must
            %    include both dLdSout and dLdSin, or neither.
            %  - For layers with multiple inputs, replace X and dLdX with
            %    X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
            %    the number of inputs.
            %  - For layers with multiple outputs, replace Z and dlZ with
            %    Z1,...,ZM and dLdZ,...,dLdZM, respectively, where M is the
            %    number of outputs.
            %  - For layers with multiple learnable parameters, replace 
            %    dLdW with dLdW1,...,dLdWP, where P is the number of 
            %    learnable parameters.
            %  - For layers with multiple state parameters, replace dLdSin
            %    and dLdSout with dLdSin1,...,dLdSinK and 
            %    dLdSout1,...,dldSoutK, respectively, where K is the number
            %    of state parameters.

            % Define layer backward function here.
        end
    end
end

 Define Custom Deep Learning Layer with Multiple Inputs

19-55



Name Layer and Specify Superclasses
First, give the layer a name. In the first line of the class file, replace the existing name myLayer with
weightedAdditionLayer.

classdef weightedAdditionLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)
    ...
end

If you do not specify a backward function, then the layer functions, by default, receive unformatted
dlarray objects as input. To specify that the layer receives formatted dlarray objects as input and
also outputs formatted dlarray objects, also inherit from the nnet.layer.Formattable class
when defining the custom layer.

The layer functions support acceleration, so also inherit from nnet.layer.Acceleratable. For
more information about accelerating custom layer functions, see “Custom Layer Function
Acceleration” on page 19-128. The layer does not require formattable inputs, so remove the optional
nnet.layer.Formattable superclass.

classdef weightedAdditionLayer < nnet.layer.Layer ...
        & nnet.layer.Acceleratable
    ...
end

Next, rename the myLayer constructor function (the first function in the methods section) so that it
has the same name as the layer.

    methods
        function layer = weightedAdditionLayer()           
            ...
        end

        ...
     end

Save the Layer

Save the layer class file in a new file named weightedAdditionLayer.m. The file name must match
the layer name. To use the layer, you must save the file in the current folder or in a folder on the
MATLAB path.

Declare Properties and Learnable Parameters
Declare the layer properties in the properties section and declare learnable parameters by listing
them in the properties (Learnable) section.

By default, custom intermediate layers have these properties. Do not declare these properties in the
properties section.

19 Import, Export, and Customization

19-56



Property Description
Name Layer name, specified as a character vector or a

string scalar. For Layer array input, the
trainNetwork, assembleNetwork,
layerGraph, and dlnetwork functions
automatically assign names to layers with the
name ''.

Description One-line description of the layer, specified as a
string scalar or a character vector. This
description appears when the layer is displayed
in a Layer array.

If you do not specify a layer description, then the
software displays the layer class name.

Type Type of the layer, specified as a character vector
or a string scalar. The value of Type appears
when the layer is displayed in a Layer array.

If you do not specify a layer type, then the
software displays the layer class name.

NumInputs Number of inputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumInputs
to the number of names in InputNames. The
default value is 1.

InputNames Input names of the layer, specified as a cell array
of character vectors. If you do not specify this
value and NumInputs is greater than 1, then the
software automatically sets InputNames to
{'in1',...,'inN'}, where N is equal to
NumInputs. The default value is {'in'}.

NumOutputs Number of outputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumOutputs
to the number of names in OutputNames. The
default value is 1.

OutputNames Output names of the layer, specified as a cell
array of character vectors. If you do not specify
this value and NumOutputs is greater than 1,
then the software automatically sets
OutputNames to {'out1',...,'outM'},
where M is equal to NumOutputs. The default
value is {'out'}.

If the layer has no other properties, then you can omit the properties section.

Tip  If you are creating a layer with multiple inputs, then you must set either the NumInputs or
InputNames properties in the layer constructor. If you are creating a layer with multiple outputs,
then you must set either the NumOutputs or OutputNames properties in the layer constructor.

 Define Custom Deep Learning Layer with Multiple Inputs

19-57



A weighted addition layer does not require any additional properties, so you can remove the
properties section.

A weighted addition layer has only one learnable parameter, the weights. Declare this learnable
parameter in the properties (Learnable) section and call the parameter Weights.

    properties (Learnable)
        % Layer learnable parameters
            
        % Scaling coefficients
        Weights
    end

Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

The weighted addition layer constructor function requires two inputs: the number of inputs to the
layer and the layer name. This number of inputs to the layer specifies the size of the learnable
parameter Weights. Specify two input arguments named numInputs and name in the
weightedAdditionLayer function. Add a comment to the top of the function that explains the
syntax of the function.

        function layer = weightedAdditionLayer(numInputs,name)
            % layer = weightedAdditionLayer(numInputs,name) creates a
            % weighted addition layer and specifies the number of inputs
            % and the layer name.
            
            ...
        end

Initialize Layer Properties

Initialize the layer properties, including learnable parameters, in the constructor function. Replace
the comment % Layer constructor function goes here with code that initializes the layer
properties.

Set the NumInputs property to the input argument numInputs.

            % Set number of inputs.
            layer.NumInputs = numInputs;

Set the Name property to the input argument name.

            % Set layer name.
            layer.Name = name;

Give the layer a one-line description by setting the Description property of the layer. Set the
description to describe the type of layer and its size.

            % Set layer description.
            layer.Description = "Weighted addition of " + numInputs + ...
                " inputs";

A weighted addition layer multiplies each layer input by the corresponding coefficient in Weights
and adds the resulting values together. Initialize the learnable parameter Weights to be a random

19 Import, Export, and Customization

19-58



vector of size 1-by-numInputs. Weights is a property of the layer object, so you must assign the
vector to layer.Weights.

            % Initialize layer weights
            layer.Weights = rand(1,numInputs);

View the completed constructor function.

        function layer = weightedAdditionLayer(numInputs,name) 
            % layer = weightedAdditionLayer(numInputs,name) creates a
            % weighted addition layer and specifies the number of inputs
            % and the layer name.

            % Set number of inputs.
            layer.NumInputs = numInputs;

            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = "Weighted addition of " + numInputs +  ... 
                " inputs";
        
            % Initialize layer weights.
            layer.Weights = rand(1,numInputs); 
        end

With this constructor function, the command weightedAdditionLayer(3,'add') creates a
weighted addition layer with three inputs and the name 'add'.

Because the constructor function does not require information from the layer input data to initialize
the learnable parameters, defining the initialize function is optional. For layers that require
information from the input data to initialize the learnable parameters, for example, the weights of a
PReLU layer must have the same number of channels as the input data, you can implement a custom
initialize function. For an example, see “Define Custom Deep Learning Layer with Learnable
Parameters” on page 19-38.

Create Forward Functions
Create the layer forward functions to use at prediction time and training time.

Create a function named predict that propagates the data forward through the layer at prediction
time and outputs the result.

The predict function syntax depends on the type of layer.

• Z = predict(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = predict(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

 Define Custom Deep Learning Layer with Multiple Inputs

19-59



• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the predict
function of the custom layer, use the predict function for the dlnetwork. When you do so, the
dlnetwork object predict function uses the appropriate layer operations for prediction. If the
dlnetwork has state parameters, then also return the network state.

Because a weighted addition layer has only one output and a variable number of inputs, the syntax
for predict for a weighted addition layer is Z = predict(layer,varargin), where
varargin{i} corresponds to Xi for positive integers i less than or equal to NumInputs.

By default, the layer uses predict as the forward function at training time. To use a different
forward function at training time, or retain a value required for the backward function, you must also
create a function named forward.

The dimensions of the inputs depend on the type of data and the output of the connected layers:

Layer Input Input Size Observation Dimension
Feature vectors c-by-N, where c corresponds to

the number of channels and N is
the number of observations

2

2-D images h-by-w-by-c-by-N, where h, w,
and c correspond to the height,
width, and number of channels
of the images, respectively, and
N is the number of observations

4

3-D images h-by-w-by-d-by-c-by-N, where h,
w, d, and c correspond to the
height, width, depth, and
number of channels of the 3-D
images, respectively, and N is
the number of observations

5

Vector sequences c-by-N-by-S, where c is the
number of features of the
sequences, N is the number of
observations, and S is the
sequence length

2

19 Import, Export, and Customization

19-60



Layer Input Input Size Observation Dimension
2-D image sequences h-by-w-by-c-by-N-by-S, where h,

w, and c correspond to the
height, width, and number of
channels of the images,
respectively, N is the number of
observations, and S is the
sequence length

4

3-D image sequences h-by-w-by-d-by-c-by-N-by-S,
where h, w, d, and c correspond
to the height, width, depth, and
number of channels of the 3-D
images, respectively, N is the
number of observations, and S
is the sequence length

5

For layers that output sequences, the layers can output sequences of any length or output data with
no time dimension. Note that when you train a network that outputs sequences using the
trainNetwork function, the lengths of the input and output sequences must match.

The forward function propagates the data forward through the layer at training time and also
outputs a memory value.

The forward function syntax depends on the type of layer:

• Z = forward(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = forward(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

• [__,memory] = forward(layer,X) also returns a memory value for a custom backward
function using any of the previous syntaxes. If the layer has both a custom forward function and
a custom backward function, then the forward function must return a memory value.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

 Define Custom Deep Learning Layer with Multiple Inputs

19-61



Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the forward
function of the custom layer, use the forward function of the dlnetwork object. When you do so, the
dlnetwork object forward function uses the appropriate layer operations for training.

The forward function of a weighted addition layer is

f (X(1), …, X(n)) = ∑
i = 1

n
WiX(i)

where X(1), …, X(n) correspond to the layer inputs and W1,…,Wn are the layer weights.

Implement the forward function in predict. In predict, the output Z corresponds to f (X(1), …, X(n)).
The weighted addition layer does not require memory or a different forward function for training, so
you can remove the forward function from the class file. Add a comment to the top of the function
that explains the syntaxes of the function.

Tip If you preallocate arrays using functions such as zeros, then you must ensure that the data
types of these arrays are consistent with the layer function inputs. To create an array of zeros of the
same data type as another array, use the "like" option of zeros. For example, to initialize an array
of zeros of size sz with the same data type as the array X, use Z = zeros(sz,"like",X).

        function Z = predict(layer, varargin)
            % Z = predict(layer, X1, ..., Xn) forwards the input data X1,
            % ..., Xn through the layer and outputs the result Z.
            
            X = varargin;
            W = layer.Weights;
            
            % Initialize output
            X1 = X{1};
            sz = size(X1);
            Z = zeros(sz,'like',X1);
            
            % Weighted addition
            for i = 1:layer.NumInputs
                Z = Z + W(i)*X{i};
            end
        end

Because the predict function uses only functions that support dlarray objects, defining the
backward function is optional. For a list of functions that support dlarray objects, see “List of
Functions with dlarray Support” on page 19-504.

Completed Layer
View the completed layer class file.

classdef weightedAdditionLayer < nnet.layer.Layer ...
        & nnet.layer.Acceleratable
    % Example custom weighted addition layer.

    properties (Learnable)

19 Import, Export, and Customization

19-62



        % Layer learnable parameters
            
        % Scaling coefficients
        Weights
    end
    
    methods
        function layer = weightedAdditionLayer(numInputs,name) 
            % layer = weightedAdditionLayer(numInputs,name) creates a
            % weighted addition layer and specifies the number of inputs
            % and the layer name.

            % Set number of inputs.
            layer.NumInputs = numInputs;

            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = "Weighted addition of " + numInputs +  ... 
                " inputs";
        
            % Initialize layer weights.
            layer.Weights = rand(1,numInputs); 
        end
        
        function Z = predict(layer, varargin)
            % Z = predict(layer, X1, ..., Xn) forwards the input data X1,
            % ..., Xn through the layer and outputs the result Z.
            
            X = varargin;
            W = layer.Weights;
            
            % Initialize output
            X1 = X{1};
            sz = size(X1);
            Z = zeros(sz,'like',X1);
            
            % Weighted addition
            for i = 1:layer.NumInputs
                Z = Z + W(i)*X{i};
            end
        end
    end
end

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For

 Define Custom Deep Learning Layer with Multiple Inputs

19-63



information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

In this example, the MATLAB functions used in predict all support dlarray objects, so the layer is
GPU compatible.

Check Validity of Layer with Multiple Inputs

Check the layer validity of the custom layer weightedAdditionLayer.

Create an instance of the layer weightedAdditionLayer, attached to this example as a supporting
file, and check its validity using checkLayer. Specify the valid input sizes to be the typical sizes of a
single observation for each input to the layer. The layer expects 4-D array inputs, where the first
three dimensions correspond to the height, width, and number of channels of the previous layer
output, and the fourth dimension corresponds to the observations.

Specify the typical size of the input of an observation and set 'ObservationDimension' to 4.

layer = weightedAdditionLayer(2,'add');
validInputSize = {[24 24 20],[24 24 20]};
checkLayer(layer,validInputSize,'ObservationDimension',4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ........
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     18 Passed, 0 Failed, 0 Incomplete, 10 Skipped.
     Time elapsed: 0.31167 seconds.

Here, the function does not detect any issues with the layer.

Use Custom Weighted Addition Layer in Network

You can use a custom layer in the same way as any other layer in Deep Learning Toolbox. This section
shows how to create and train a network for digit classification using the weighted addition layer you
created earlier.

Load the example training data.

[XTrain,TTrain] = digitTrain4DArrayData;

Create a layer graph including the custom layer weightedAdditionLayer, attached to this example
as a supporting file.

layers = [
    imageInputLayer([28 28 1])

19 Import, Export, and Customization

19-64



    convolution2dLayer(5,20)
    reluLayer('Name',"relu1")
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    weightedAdditionLayer(2,"add")
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,"relu1","add/in2");

Set the training options and train the network.

options = trainingOptions("adam",'MaxEpochs',10);
net = trainNetwork(XTrain,TTrain,lgraph,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |       12.50% |       2.2951 |          0.0010 |
|       2 |          50 |       00:00:10 |       72.66% |       0.7887 |          0.0010 |
|       3 |         100 |       00:00:21 |       89.84% |       0.2990 |          0.0010 |
|       4 |         150 |       00:00:31 |       94.53% |       0.1540 |          0.0010 |
|       6 |         200 |       00:00:40 |       99.22% |       0.0384 |          0.0010 |
|       7 |         250 |       00:00:50 |       99.22% |       0.0338 |          0.0010 |
|       8 |         300 |       00:01:00 |      100.00% |       0.0163 |          0.0010 |
|       9 |         350 |       00:01:10 |       99.22% |       0.0181 |          0.0010 |
|      10 |         390 |       00:01:18 |      100.00% |       0.0061 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.

View the weights learned by the weighted addition layer.

net.Layers(8).Weights

ans = 1x2 single row vector

    1.0217    1.0004

Evaluate the network performance by predicting on new data and calculating the accuracy.

[XTest,TTest] = digitTest4DArrayData;
YPred = classify(net,XTest);
accuracy = mean(TTest==YPred)

accuracy = 0.9898

 Define Custom Deep Learning Layer with Multiple Inputs

19-65



See Also
functionLayer | checkLayer | setLearnRateFactor | setL2Factor | getLearnRateFactor |
getL2Factor | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer | networkDataLayout

More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Specify Custom Layer Backward Function” on page 19-117
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-66



Define Custom Deep Learning Layer with Formatted Inputs
If Deep Learning Toolbox does not provide the layer you require for your task, then you can define
your own custom layer using this example as a guide. For a list of built-in layers, see “List of Deep
Learning Layers” on page 1-43.

To define a custom deep learning layer, you can use the template provided in this example, which
takes you through the following steps:

1 Name the layer — Give the layer a name so that you can use it in MATLAB.
2 Declare the layer properties — Specify the properties of the layer, including learnable

parameters and state parameters.
3 Create a constructor function (optional) — Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then at creation, the software initializes
the Name, Description, and Type properties with [] and sets the number of layer inputs and
outputs to 1.

4 Create initialize function (optional) — Specify how to initialize the learnable and state
parameters when the software initializes the network. If you do not specify an initialize function,
then the software does not initialize parameters when it initializes the network.

5 Create forward functions — Specify how data passes forward through the layer (forward
propagation) at prediction time and at training time.

6 Create reset state function (optional) — Specify how to reset state parameters.
7 Create a backward function (optional) — Specify the derivatives of the loss with respect to the

input data and the learnable parameters (backward propagation). If you do not specify a
backward function, then the forward functions must support dlarray objects.

When defining the layer functions, you can use dlarray objects. Using dlarray objects makes
working with high dimensional data easier by allowing you to label the dimensions. For example, you
can label which dimensions correspond to spatial, time, channel, and batch dimensions using the "S",
"T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the "U" label. For
dlarray object functions that operate over particular dimensions, you can specify the dimension
labels by formatting the dlarray object directly, or by using the DataFormat option.

Using formatted dlarray objects in custom layers also allows you to define layers where the inputs
and outputs have different formats, such as layers that permute, add, or remove dimensions. For
example, you can define a layer that takes as input a mini-batch of images with the format "SSCB"
(spatial, spatial, channel, batch) and output a mini-batch of sequences with the format "CBT"
(channel, batch, time). Using formatted dlarray objects also allows you to define layers that can
operate on data with different input formats, for example, layers that support inputs with the formats
"SSCB" (spatial, spatial, channel, batch) and "CBT" (channel, batch, time).

dlarray objects also enable support for automatic differentiation. Consequently, if your forward
functions fully support dlarray objects, then defining the backward function is optional.

This example shows how to create a project and reshape layer, which is a layer commonly used in
generative adversarial networks (GANs) that takes an array of noise with format "CB" (channel,
batch) and projects and reshapes it to a mini-batch of images with format "SSCB" (spatial, spatial,
channel, batch) using fully connected, reshape, and relabel operations.

 Define Custom Deep Learning Layer with Formatted Inputs

19-67



Intermediate Layer Template
Copy the intermediate layer template into a new file in MATLAB. This template gives the structure of
an intermediate layer class definition. It outlines:

• The optional properties blocks for the layer properties, learnable parameters, and state
parameters.

• The layer constructor function.
• The optional initialize function.
• The predict function and the optional forward function.
• The optional resetState function for layers with state properties.
• The optional backward function.

classdef myLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)

    properties
        % (Optional) Layer properties.

        % Declare layer properties here.
    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Declare learnable parameters here.
    end

    properties (State)
        % (Optional) Layer state parameters.

        % Declare state parameters here.
    end

    properties (Learnable, State)
        % (Optional) Nested dlnetwork objects with both learnable
        % parameters and state parameters.

        % Declare nested networks with learnable and state parameters here.
    end

    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Define layer constructor function here.
        end

        function layer = initialize(layer,layout)
            % (Optional) Initialize layer learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize
            %         layout - Data layout, specified as a networkDataLayout
            %                  object
            %
            % Outputs:
            %         layer - Initialized layer
            %
            %  - For layers with multiple inputs, replace layout with 
            %    layout1,...,layoutN, where N is the number of inputs.
            
            % Define layer initialization function here.
        end

19 Import, Export, and Customization

19-68



        

        function [Z,state] = predict(layer,X)
            % Forward input data through the layer at prediction time and
            % output the result and updated state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - (Optional) Updated layer state
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer predict function here.
        end

        function [Z,state,memory] = forward(layer,X)
            % (Optional) Forward input data through the layer at training
            % time and output the result, the updated state, and a memory
            % value.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Layer input data
            % Outputs:
            %         Z      - Output of layer forward function 
            %         state  - (Optional) Updated layer state 
            %         memory - (Optional) Memory value for custom backward
            %                  function
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer forward function here.
        end

        function layer = resetState(layer)
            % (Optional) Reset layer state.

            % Define reset state function here.
        end

        function [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory)
            % (Optional) Backward propagate the derivative of the loss
            % function through the layer.
            %
            % Inputs:
            %         layer   - Layer to backward propagate through 
            %         X       - Layer input data 
            %         Z       - Layer output data 
            %         dLdZ    - Derivative of loss with respect to layer 
            %                   output
            %         dLdSout - (Optional) Derivative of loss with respect 
            %                   to state output
            %         memory  - Memory value from forward function
            % Outputs:
            %         dLdX   - Derivative of loss with respect to layer input
            %         dLdW   - (Optional) Derivative of loss with respect to
            %                  learnable parameter 

 Define Custom Deep Learning Layer with Formatted Inputs

19-69



            %         dLdSin - (Optional) Derivative of loss with respect to 
            %                  state input
            %
            %  - For layers with state parameters, the backward syntax must
            %    include both dLdSout and dLdSin, or neither.
            %  - For layers with multiple inputs, replace X and dLdX with
            %    X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
            %    the number of inputs.
            %  - For layers with multiple outputs, replace Z and dlZ with
            %    Z1,...,ZM and dLdZ,...,dLdZM, respectively, where M is the
            %    number of outputs.
            %  - For layers with multiple learnable parameters, replace 
            %    dLdW with dLdW1,...,dLdWP, where P is the number of 
            %    learnable parameters.
            %  - For layers with multiple state parameters, replace dLdSin
            %    and dLdSout with dLdSin1,...,dLdSinK and 
            %    dLdSout1,...,dldSoutK, respectively, where K is the number
            %    of state parameters.

            % Define layer backward function here.
        end
    end
end

Name Layer and Specify Superclasses
First, give the layer a name. In the first line of the class file, replace the existing name myLayer with
projectAndReshapeLayer.
classdef projectAndReshapeLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)
    ...
end

If you do not specify a backward function, then the layer functions, by default, receive unformatted
dlarray objects as input. To specify that the layer receives formatted dlarray objects as input and
also outputs formatted dlarray objects, also inherit from the nnet.layer.Formattable class
when defining the custom layer.

Because a project and reshape layer outputs data with different dimensions as the input data, that is,
it outputs data with added spatial dimensions, the layer must also inherit from
nnet.layer.Formattable. This enables the layer to receive and output formatted dlarray
objects.

Next, specify to inherit from both the nnet.layer.Layer and nnet.layer.Formattable
superclasses. The layer functions also support acceleration, so also inherit from
nnet.layer.Acceleratable. For more information about accelerating custom layer functions, see
“Custom Layer Function Acceleration” on page 19-128.
classdef projectAndReshapeLayer < nnet.layer.Layer ...
        & nnet.layer.Formattable ...
        & nnet.layer.Acceleratable
    ...
end

Next, rename the myLayer constructor function (the first function in the methods section) so that it
has the same name as the layer.

    methods
        function layer = projectAndReshapeLayer()           
            ...
        end

19 Import, Export, and Customization

19-70



        ...
     end

Save the Layer

Save the layer class file in a new file named projectAndReshapeLayer.m. The file name must
match the layer name. To use the layer, you must save the file in the current folder or in a folder on
the MATLAB path.

Declare Properties and Learnable Parameters
Declare the layer properties in the properties section and declare learnable parameters by listing
them in the properties (Learnable) section.

By default, custom intermediate layers have these properties. Do not declare these properties in the
properties section.

Property Description
Name Layer name, specified as a character vector or a

string scalar. For Layer array input, the
trainNetwork, assembleNetwork,
layerGraph, and dlnetwork functions
automatically assign names to layers with the
name ''.

Description One-line description of the layer, specified as a
string scalar or a character vector. This
description appears when the layer is displayed
in a Layer array.

If you do not specify a layer description, then the
software displays the layer class name.

Type Type of the layer, specified as a character vector
or a string scalar. The value of Type appears
when the layer is displayed in a Layer array.

If you do not specify a layer type, then the
software displays the layer class name.

NumInputs Number of inputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumInputs
to the number of names in InputNames. The
default value is 1.

InputNames Input names of the layer, specified as a cell array
of character vectors. If you do not specify this
value and NumInputs is greater than 1, then the
software automatically sets InputNames to
{'in1',...,'inN'}, where N is equal to
NumInputs. The default value is {'in'}.

 Define Custom Deep Learning Layer with Formatted Inputs

19-71



Property Description
NumOutputs Number of outputs of the layer, specified as a

positive integer. If you do not specify this value,
then the software automatically sets NumOutputs
to the number of names in OutputNames. The
default value is 1.

OutputNames Output names of the layer, specified as a cell
array of character vectors. If you do not specify
this value and NumOutputs is greater than 1,
then the software automatically sets
OutputNames to {'out1',...,'outM'},
where M is equal to NumOutputs. The default
value is {'out'}.

If the layer has no other properties, then you can omit the properties section.

Tip If you are creating a layer with multiple inputs, then you must set either the NumInputs or
InputNames properties in the layer constructor. If you are creating a layer with multiple outputs,
then you must set either the NumOutputs or OutputNames properties in the layer constructor. For
an example, see “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53.

A project and reshape layer requires an additional property that holds the layer output size. Specify a
single property with name OutputSize in the properties section.

    properties
        % Output size
        OutputSize
    end

A project and reshape layer has two learnable parameters: the weights and the biases of the fully
connect operation. Declare these learnable parameter in the properties (Learnable) section and
call the parameters Weights and Bias, respectively.

    properties (Learnable)
    % Layer learnable parameters
        Weights 
        Bias 
    end

Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

The project and reshape layer constructor function requires one input argument that specifies the
layer output size and one optional input argument that specifies the layer name.

In the constructor function projectAndReshapeLayer, specify the required input argument named
outputSize and the optional arguments as name-value arguments with the name NameValueArgs.
Add a comment to the top of the function that explains the syntax of the function.
        function layer = projectAndReshapeLayer(outputSize,NameValueArgs)
            % layer = projectAndReshapeLayer(outputSize) creates a

19 Import, Export, and Customization

19-72



            % projectAndReshapeLayer object that projects and reshapes the
            % input to the specified output size.
            %
            % layer = projectAndReshapeLayer(outputSize,Name=name) also
            % specifies the layer name.
            
            ...
        end

Parse Input Arguments

Parse the input arguments using an arguments block. List the arguments in the same order as the
function syntax and specify the default values. Then, extract the values from the NameValueArgs
input.
            % Parse input arguments.
            arguments
                outputSize
                NameValueArgs.Name = ''
            end
            
            name = NameValueArgs.Name;

Initialize Layer Properties

Initialize the layer properties in the constructor function. Replace the comment % Layer
constructor function goes here with code that initializes the layer properties. Do not initialize
learnable or state parameters in the constructor function, initialize them in the initialize function
instead.

Set the Name property to the input argument name.

            % Set layer name.
            layer.Name = name;

Give the layer a one-line description by setting the Description property of the layer. Set the
description to describe the type of layer and its size.

            % Set layer description.
            layer.Description = "Project and reshape layer with output size " + join(string(outputSize));

Specify the type of the layer by setting the Type property. The value of Type appears when the layer
is displayed in a Layer array.

            % Set layer type.
            layer.Type = "Project and Reshape";

Set the layer property OutputSize to the specified input value.

            % Set output size.
            layer.OutputSize = outputSize;

View the completed constructor function.

        function layer = projectAndReshapeLayer(outputSize,NameValueArgs)
            % layer = projectAndReshapeLayer(outputSize)
            % creates a projectAndReshapeLayer object that projects and
            % reshapes the input to the specified output size.
            %
            % layer = projectAndReshapeLayer(outputSize,Name=name)
            % also specifies the layer name.
                                  

 Define Custom Deep Learning Layer with Formatted Inputs

19-73



            % Parse input arguments.
            arguments
                outputSize
                NameValueArgs.Name = '';
            end
            
            name = NameValueArgs.Name;
            
            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = "Project and reshape layer with output size " + join(string(outputSize));
            
            % Set layer type.
            layer.Type = "Project and Reshape";
            
            % Set output size.
            layer.OutputSize = outputSize;
        end

With this constructor function, the command projectAndReshapeLayer([4 4
512],Name="proj"); creates a project and reshape layer with name "proj" that projects the input
arrays to a batch of 512 4-by-4 images.

Create Initialize Function
Create the function that initializes the layer learnable and state parameters when the software
initializes the network. Ensure that the function only initializes learnable and state parameters when
the property is empty, otherwise the software can overwrite when you load the network from a MAT
file.

To initialize the learnable parameter Weights, generate a random array using Glorot initialization. To
initialize the learnable parameter Bias, create a vector of zeros with the same number of channels as
the input data. Only initialize the weights and bias when they are empty.

Because the size of the input data is unknown until the network is ready to use, you must create an
initialize function that initializes the learnable and state parameters using networkDataLayout
objects that the software provides to the function. Network data layout objects contain information
about the sizes and formats of expected input data. Create an initialize function that uses the size and
format information to initialize learnable and state parameters such that they have the correct size.

A project and reshape layer applies a fully connect operation to project the input to batch of images.
Initialize the weights using Glorot initialization and initialize the bias with an array of zeros. The
functions initializeGlorot and initializeZeros are attached to the example “Train
Generative Adversarial Network (GAN)” on page 3-72 as supporting files. To access these functions,
open this example as a live script. For more information about initializing learnable parameters for
deep learning operations, see “Initialize Learnable Parameters for Model Function” on page 19-318.

        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the layer
            % learnable parameters using the specified input layout.   
    
            % Layer output size.
            outputSize = layer.OutputSize;

19 Import, Export, and Customization

19-74



            % Initialize fully connect weights.
            if isempty(layer.Weights)
    
                % Find number of channels.
                idx = finddim(layout,"C");
                numChannels = layout.Size(idx);
    
                % Initialize using Glorot.
                sz = [prod(outputSize) numChannels];
                numOut = prod(outputSize);
                numIn = numChannels;
                layer.Weights = initializeGlorot(sz,numOut,numIn);
            end
    
            % Initialize fully connect bias.
            if isempty(layer.Bias)
    
                % Initialize with zeros.
                layer.Bias = initializeZeros([prod(outputSize) 1]);
            end
        end

Create Forward Functions
Create the layer forward functions to use at prediction time and training time.

Create a function named predict that propagates the data forward through the layer at prediction
time and outputs the result.

The predict function syntax depends on the type of layer.

• Z = predict(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = predict(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

 Define Custom Deep Learning Layer with Formatted Inputs

19-75



Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the predict
function of the custom layer, use the predict function for the dlnetwork. When you do so, the
dlnetwork object predict function uses the appropriate layer operations for prediction. If the
dlnetwork has state parameters, then also return the network state.

Because a project and reshape layer has only one input and one output, the syntax for predict for a
project and reshape layer is Z = predict(layer,X).

By default, the layer uses predict as the forward function at training time. To use a different
forward function at training time, or retain a value required for a custom backward function, you
must also create a function named forward.

The dimensions of the inputs depend on the type of data and the output of the connected layers:

Layer Input Input Size Observation Dimension
Feature vectors c-by-N, where c corresponds to

the number of channels and N is
the number of observations

2

2-D images h-by-w-by-c-by-N, where h, w,
and c correspond to the height,
width, and number of channels
of the images, respectively, and
N is the number of observations

4

3-D images h-by-w-by-d-by-c-by-N, where h,
w, d, and c correspond to the
height, width, depth, and
number of channels of the 3-D
images, respectively, and N is
the number of observations

5

Vector sequences c-by-N-by-S, where c is the
number of features of the
sequences, N is the number of
observations, and S is the
sequence length

2

2-D image sequences h-by-w-by-c-by-N-by-S, where h,
w, and c correspond to the
height, width, and number of
channels of the images,
respectively, N is the number of
observations, and S is the
sequence length

4

3-D image sequences h-by-w-by-d-by-c-by-N-by-S,
where h, w, d, and c correspond
to the height, width, depth, and
number of channels of the 3-D
images, respectively, N is the
number of observations, and S
is the sequence length

5

19 Import, Export, and Customization

19-76



For layers that output sequences, the layers can output sequences of any length or output data with
no time dimension. Note that when you train a network that outputs sequences using the
trainNetwork function, the lengths of the input and output sequences must match.

Because the custom layer inherits from the nnet.layer.Formattable class, the layer receives
formatted dlarray objects with labels corresponding to the output of the previous layer.

The forward function propagates the data forward through the layer at training time and also
outputs a memory value.

The forward function syntax depends on the type of layer:

• Z = forward(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = forward(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

• [__,memory] = forward(layer,X) also returns a memory value for a custom backward
function using any of the previous syntaxes. If the layer has both a custom forward function and
a custom backward function, then the forward function must return a memory value.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the forward
function of the custom layer, use the forward function of the dlnetwork object. When you do so, the
dlnetwork object forward function uses the appropriate layer operations for training.

The project and reshape operation consists of a three operations:

• Apply a fully connect operations with the learnable weights and biases.
• Reshape the output to the specified output size.
• Relabel the dimensions so that the output has format 'SSCB' (spatial, spatial, channel, batch)

Implement this operation in the predict function. The project and reshape layer does not require
memory or a different forward function for training, so you can remove the forward function from
the class file. Add a comment to the top of the function that explains the syntaxes of the function.

 Define Custom Deep Learning Layer with Formatted Inputs

19-77



        function Z = predict(layer, X)
            % Forward input data through the layer at prediction time and
            % output the result.
            % 
            % Inputs:
            %         layer - Layer to forward propagate through
            %         X     - Input data, specified as a formatted dlarray
            %                 with a 'C' and optionally a 'B' dimension.
            % Outputs:
            %         Z     - Output of layer forward function returned as 
            %                 a formatted dlarray with format 'SSCB'.

            % Fully connect.
            weights = layer.Weights;
            bias = layer.Bias;
            X = fullyconnect(X,weights,bias);
            
            % Reshape.
            outputSize = layer.OutputSize;
            Z = reshape(X, outputSize(1), outputSize(2), outputSize(3), []);
            
            % Relabel.
            Z = dlarray(Z,'SSCB');
        end

Tip If you preallocate arrays using functions such as zeros, then you must ensure that the data
types of these arrays are consistent with the layer function inputs. To create an array of zeros of the
same data type as another array, use the "like" option of zeros. For example, to initialize an array
of zeros of size sz with the same data type as the array X, use Z = zeros(sz,"like",X).

Because the predict function uses only functions that support dlarray objects, defining the
backward function is optional. For a list of functions that support dlarray objects, see “List of
Functions with dlarray Support” on page 19-504.

Completed Layer
View the completed layer class file.

classdef projectAndReshapeLayer < nnet.layer.Layer ... 
        & nnet.layer.Formattable ...
        & nnet.layer.Acceleratable
    % Example project and reshape layer.

    properties
        % Output size
        OutputSize
    end

    properties (Learnable)
    % Layer learnable parameters
        Weights 
        Bias 
    end
    
    methods

19 Import, Export, and Customization

19-78



        function layer = projectAndReshapeLayer(outputSize,NameValueArgs)
            % layer = projectAndReshapeLayer(outputSize)
            % creates a projectAndReshapeLayer object that projects and
            % reshapes the input to the specified output size.
            %
            % layer = projectAndReshapeLayer(outputSize,Name=name)
            % also specifies the layer name.
                                  
            % Parse input arguments.
            arguments
                outputSize
                NameValueArgs.Name = '';
            end
            
            name = NameValueArgs.Name;
            
            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = "Project and reshape layer with output size " + join(string(outputSize));
            
            % Set layer type.
            layer.Type = "Project and Reshape";
            
            % Set output size.
            layer.OutputSize = outputSize;
        end

        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the layer
            % learnable parameters using the specified input layout.   
    
            % Layer output size.
            outputSize = layer.OutputSize;

            % Initialize fully connect weights.
            if isempty(layer.Weights)
    
                % Find number of channels.
                idx = finddim(layout,"C");
                numChannels = layout.Size(idx);
    
                % Initialize using Glorot.
                sz = [prod(outputSize) numChannels];
                numOut = prod(outputSize);
                numIn = numChannels;
                layer.Weights = initializeGlorot(sz,numOut,numIn);
            end
    
            % Initialize fully connect bias.
            if isempty(layer.Bias)
    
                % Initialize with zeros.
                layer.Bias = initializeZeros([prod(outputSize) 1]);
            end
        end

 Define Custom Deep Learning Layer with Formatted Inputs

19-79



        function Z = predict(layer, X)
            % Forward input data through the layer at prediction time and
            % output the result.
            % 
            % Inputs:
            %         layer - Layer to forward propagate through
            %         X     - Input data, specified as a formatted dlarray
            %                 with a 'C' and optionally a 'B' dimension.
            % Outputs:
            %         Z     - Output of layer forward function returned as 
            %                 a formatted dlarray with format 'SSCB'.

            % Fully connect.
            weights = layer.Weights;
            bias = layer.Bias;
            X = fullyconnect(X,weights,bias);
            
            % Reshape.
            outputSize = layer.OutputSize;
            Z = reshape(X, outputSize(1), outputSize(2), outputSize(3), []);
            
            % Relabel.
            Z = dlarray(Z,'SSCB');
        end
    end
end

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

In this example, the MATLAB functions used in predict all support dlarray objects, so the layer is
GPU compatible.

Include Custom Layer in Network

Define the following generator network architecture for a GAN, which generates images from 1-by-1-
by-100 arrays of random values:

19 Import, Export, and Customization

19-80



This network:

• Converts the random vectors of size 100 to 7-by-7-by-128 arrays using a project and reshape layer.
• Upscales the resulting arrays to 64-by-64-by-3 arrays using a series of transposed convolution

layers and ReLU layers.

Define this network architecture as a layer graph and specify the following network properties.

• For the transposed convolution layers, specify 5-by-5 filters with a decreasing number of filters for
each layer, a stride of 2, and cropping of the output on each edge.

• For the final transposed convolution layer, specify three 5-by-5 filters corresponding to the three
RGB channels of the generated images, and the output size of the previous layer.

• At the end of the network, include a tanh layer.

To project and reshape the noise input, use the custom layer projectAndReshapeLayer.

filterSize = 5;
numFilters = 64;
numLatentInputs = 100;

projectionSize = [4 4 512];

layersG = [
    featureInputLayer(numLatentInputs,Normalization="none")
    projectAndReshapeLayer(projectionSize);
    transposedConv2dLayer(filterSize,4*numFilters)
    reluLayer
    transposedConv2dLayer(filterSize,2*numFilters,Stride=2,Cropping="same")
    reluLayer
    transposedConv2dLayer(filterSize,numFilters,Stride=2,Cropping="same")
    reluLayer
    transposedConv2dLayer(filterSize,3,Stride=2,Cropping="same")
    tanhLayer];

Use the analyzeNetwork function to check the size and format of the layer activations. To analyze
the network for custom training loop workflows, set the TargetUsage option to "dlnetwork".

analyzeNetwork(layersG,TargetUsage="dlnetwork")

 Define Custom Deep Learning Layer with Formatted Inputs

19-81



As expected, the project and reshape layer takes input data with format "CB" (channel, batch) and
outputs data with format "SSCB" (spatial, spatial, channel, batch).

To train the network with a custom training loop and enable automatic differentiation, convert the
layer array to a dlnetwork object.

netG = dlnetwork(layersG);

See Also
dlarray | functionLayer | checkLayer | setLearnRateFactor | setL2Factor |
getLearnRateFactor | getL2Factor | findPlaceholderLayers | replaceLayer |
assembleNetwork | PlaceholderLayer | networkDataLayout

More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Specify Custom Layer Backward Function” on page 19-117
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-82



Define Custom Recurrent Deep Learning Layer
If Deep Learning Toolbox does not provide the layer you require for your task, then you can define
your own custom layer using this example as a guide. For a list of built-in layers, see “List of Deep
Learning Layers” on page 1-43.

To define a custom deep learning layer, you can use the template provided in this example, which
takes you through the following steps:

1 Name the layer — Give the layer a name so that you can use it in MATLAB.
2 Declare the layer properties — Specify the properties of the layer, including learnable

parameters and state parameters.
3 Create a constructor function (optional) — Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then at creation, the software initializes
the Name, Description, and Type properties with [] and sets the number of layer inputs and
outputs to 1.

4 Create initialize function (optional) — Specify how to initialize the learnable and state
parameters when the software initializes the network. If you do not specify an initialize function,
then the software does not initialize parameters when it initializes the network.

5 Create forward functions — Specify how data passes forward through the layer (forward
propagation) at prediction time and at training time.

6 Create reset state function (optional) — Specify how to reset state parameters.
7 Create a backward function (optional) — Specify the derivatives of the loss with respect to the

input data and the learnable parameters (backward propagation). If you do not specify a
backward function, then the forward functions must support dlarray objects.

When defining the layer functions, you can use dlarray objects. Using dlarray objects makes
working with high dimensional data easier by allowing you to label the dimensions. For example, you
can label which dimensions correspond to spatial, time, channel, and batch dimensions using the "S",
"T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the "U" label. For
dlarray object functions that operate over particular dimensions, you can specify the dimension
labels by formatting the dlarray object directly, or by using the DataFormat option.

Using formatted dlarray objects in custom layers also allows you to define layers where the inputs
and outputs have different formats, such as layers that permute, add, or remove dimensions. For
example, you can define a layer that takes as input a mini-batch of images with the format "SSCB"
(spatial, spatial, channel, batch) and output a mini-batch of sequences with the format "CBT"
(channel, batch, time). Using formatted dlarray objects also allows you to define layers that can
operate on data with different input formats, for example, layers that support inputs with the formats
"SSCB" (spatial, spatial, channel, batch) and "CBT" (channel, batch, time).

dlarray objects also enable support for automatic differentiation. Consequently, if your forward
functions fully support dlarray objects, then defining the backward function is optional.

To enable support for using formatted dlarray objects in custom layer forward functions, also
inherit from the nnet.layer.Formattable class when defining the custom layer. For an example,
see “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67.

This example shows how to define a peephole LSTM layer [1], which is a recurrent layer with
learnable parameters, and use it in a neural network. A peephole LSTM layer is a variant of an LSTM
layer, where the gate calculations use the layer cell state.

 Define Custom Recurrent Deep Learning Layer

19-83



Intermediate Layer Template
Copy the intermediate layer template into a new file in MATLAB. This template gives the structure of
an intermediate layer class definition. It outlines:

• The optional properties blocks for the layer properties, learnable parameters, and state
parameters.

• The layer constructor function.
• The optional initialize function.
• The predict function and the optional forward function.
• The optional resetState function for layers with state properties.
• The optional backward function.

classdef myLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)

    properties
        % (Optional) Layer properties.

        % Declare layer properties here.
    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Declare learnable parameters here.
    end

    properties (State)
        % (Optional) Layer state parameters.

        % Declare state parameters here.
    end

    properties (Learnable, State)
        % (Optional) Nested dlnetwork objects with both learnable
        % parameters and state parameters.

        % Declare nested networks with learnable and state parameters here.
    end

    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Define layer constructor function here.
        end

        function layer = initialize(layer,layout)
            % (Optional) Initialize layer learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize
            %         layout - Data layout, specified as a networkDataLayout
            %                  object
            %
            % Outputs:
            %         layer - Initialized layer
            %
            %  - For layers with multiple inputs, replace layout with 
            %    layout1,...,layoutN, where N is the number of inputs.
            
            % Define layer initialization function here.
        end

19 Import, Export, and Customization

19-84



        

        function [Z,state] = predict(layer,X)
            % Forward input data through the layer at prediction time and
            % output the result and updated state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - (Optional) Updated layer state
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer predict function here.
        end

        function [Z,state,memory] = forward(layer,X)
            % (Optional) Forward input data through the layer at training
            % time and output the result, the updated state, and a memory
            % value.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Layer input data
            % Outputs:
            %         Z      - Output of layer forward function 
            %         state  - (Optional) Updated layer state 
            %         memory - (Optional) Memory value for custom backward
            %                  function
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer forward function here.
        end

        function layer = resetState(layer)
            % (Optional) Reset layer state.

            % Define reset state function here.
        end

        function [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory)
            % (Optional) Backward propagate the derivative of the loss
            % function through the layer.
            %
            % Inputs:
            %         layer   - Layer to backward propagate through 
            %         X       - Layer input data 
            %         Z       - Layer output data 
            %         dLdZ    - Derivative of loss with respect to layer 
            %                   output
            %         dLdSout - (Optional) Derivative of loss with respect 
            %                   to state output
            %         memory  - Memory value from forward function
            % Outputs:
            %         dLdX   - Derivative of loss with respect to layer input
            %         dLdW   - (Optional) Derivative of loss with respect to
            %                  learnable parameter 

 Define Custom Recurrent Deep Learning Layer

19-85



            %         dLdSin - (Optional) Derivative of loss with respect to 
            %                  state input
            %
            %  - For layers with state parameters, the backward syntax must
            %    include both dLdSout and dLdSin, or neither.
            %  - For layers with multiple inputs, replace X and dLdX with
            %    X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
            %    the number of inputs.
            %  - For layers with multiple outputs, replace Z and dlZ with
            %    Z1,...,ZM and dLdZ,...,dLdZM, respectively, where M is the
            %    number of outputs.
            %  - For layers with multiple learnable parameters, replace 
            %    dLdW with dLdW1,...,dLdWP, where P is the number of 
            %    learnable parameters.
            %  - For layers with multiple state parameters, replace dLdSin
            %    and dLdSout with dLdSin1,...,dLdSinK and 
            %    dLdSout1,...,dldSoutK, respectively, where K is the number
            %    of state parameters.

            % Define layer backward function here.
        end
    end
end

Name Layer
First, give the layer a name. In the first line of the class file, replace the existing name myLayer with
peepholeLSTMLayer. To allow the layer to output different data formats, for example data with the
format "CBT" (channel, batch, time) for sequence output and the format "CB" (channel, batch) for
single time step or feature output, also include the nnet.layer.Formattable mixin.

classdef peepholeLSTMLayer < nnet.layer.Layer & nnet.layer.Formattable
    ...
end

Next, rename the myLayer constructor function (the first function in the methods section) so that it
has the same name as the layer.

    methods
        function layer = peepholeLSTMLayer()           
            ...
        end

        ...
     end

Save Layer

Save the layer class file in a new file named peepholeLSTMLayer.m. The file name must match the
layer name. To use the layer, you must save the file in the current folder or in a folder on the MATLAB
path.

Declare Properties, State, and Learnable Parameters
Declare the layer properties in the properties section, the layer states in the properties
(State) section, and the learnable parameters in the properties (Learnable) section.

By default, custom intermediate layers have these properties. Do not declare these properties in the
properties section.

19 Import, Export, and Customization

19-86



Property Description
Name Layer name, specified as a character vector or a

string scalar. For Layer array input, the
trainNetwork, assembleNetwork,
layerGraph, and dlnetwork functions
automatically assign names to layers with the
name ''.

Description One-line description of the layer, specified as a
string scalar or a character vector. This
description appears when the layer is displayed
in a Layer array.

If you do not specify a layer description, then the
software displays the layer class name.

Type Type of the layer, specified as a character vector
or a string scalar. The value of Type appears
when the layer is displayed in a Layer array.

If you do not specify a layer type, then the
software displays the layer class name.

NumInputs Number of inputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumInputs
to the number of names in InputNames. The
default value is 1.

InputNames Input names of the layer, specified as a cell array
of character vectors. If you do not specify this
value and NumInputs is greater than 1, then the
software automatically sets InputNames to
{'in1',...,'inN'}, where N is equal to
NumInputs. The default value is {'in'}.

NumOutputs Number of outputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumOutputs
to the number of names in OutputNames. The
default value is 1.

OutputNames Output names of the layer, specified as a cell
array of character vectors. If you do not specify
this value and NumOutputs is greater than 1,
then the software automatically sets
OutputNames to {'out1',...,'outM'},
where M is equal to NumOutputs. The default
value is {'out'}.

If the layer has no other properties, then you can omit the properties section.

Tip If you are creating a layer with multiple inputs, then you must set either the NumInputs or
InputNames properties in the layer constructor. If you are creating a layer with multiple outputs,

 Define Custom Recurrent Deep Learning Layer

19-87



then you must set either the NumOutputs or OutputNames properties in the layer constructor. For
an example, see “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53.

Declare the following layer properties in the properties section:

• NumHiddenUnits — Number of hidden units in the peephole LSTM operation
• OutputMode — Flag indicating whether the layer returns a sequence or a single time step

    properties
        % Layer properties.

        NumHiddenUnits
        OutputMode
    end

A peephole LSTM layer has four learnable parameters: the input weights, the recurrent weights, the
peephole weights, and the bias. Declare these learnable parameters in the properties
(Learnable) section with the names InputWeights, RecurrentWeights, PeepholeWeights,
and Bias, respectively.

    properties (Learnable)
        % Layer learnable parameters.

        InputWeights
        RecurrentWeights
        PeepholeWeights
        Bias
    end

A peephole LSTM layer has two state parameters: the hidden state and the cell state. Declare these
state parameters in the properties (State) section with the names HiddenState and
CellState, respectively.

    properties (State)
        % Layer state parameters.

        HiddenState
        CellState
    end

Parallel training of networks containing custom layers with state parameters using the
trainNetwork function is not supported. When you train a network with custom layers with state
parameters, the ExecutionEnvironment training option must be "auto", "gpu", or "cpu".

Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

The peephole LSTM layer constructor function requires two input arguments (the number of hidden
units and the number of input channels) and two optional arguments (the layer name and output
mode). Specify two input arguments named numHiddenUnits and inputSize in the
peepholeLSTMLayer function that correspond to the number of hidden units and the number of
input channels, respectively. Specify the optional input arguments as a single argument with the
name args. Add a comment to the top of the function that explains the syntaxes of the function.

19 Import, Export, and Customization

19-88



        function layer = peepholeLSTMLayer(numHiddenUnits,inputSize,args)
            %PEEPHOLELSTMLAYER Peephole LSTM Layer
            %   layer = peepholeLSTMLayer(numHiddenUnits,inputSize)
            %   creates a peephole LSTM layer with the specified number of
            %   hidden units and input channels.
            %
            %   layer = peepholeLSTMLayer(numHiddenUnits,inputSize,Name=Value)
            %   creates a peephole LSTM layer and specifies additional
            %   options using one or more name-value arguments:
            %
            %      Name       - Name of the layer, specified as a string.
            %                   The default is "".
            %
            %      OutputMode - Output mode, specified as one of the
            %                   following:
            %                      "sequence" - Output the entire sequence
            %                                   of data.
            %
            %                      "last"     - Output the last time step
            %                                   of the data.
            %                   The default is "sequence".

            ...
        end

Initialize Layer Properties

Initialize the layer properties in the constructor function. Replace the comment % Layer
constructor function goes here with code that initializes the layer properties. Do not initialize
learnable or state parameters in the constructor function, initialize them in the initialize function
instead.

Parse the input arguments using an arguments block and set the Name and output properties.

            arguments
                numHiddenUnits
                inputSize
                args.Name = "";
                args.OutputMode = "sequence"
            end

            layer.NumHiddenUnits = numHiddenUnits;
            layer.Name = args.Name;
            layer.OutputMode = args.OutputMode;

Give the layer a one-line description by setting the Description property of the layer. Set the
description to describe the type of the layer and its size.
            % Set layer description.
            layer.Description = "Peephole LSTM with " + numHiddenUnits + " hidden units";

View the completed constructor function.

        function layer = peepholeLSTMLayer(numHiddenUnits,inputSize,args)
            %PEEPHOLELSTMLAYER Peephole LSTM Layer
            %   layer = peepholeLSTMLayer(numHiddenUnits)
            %   creates a peephole LSTM layer with the specified number of
            %   hidden units.
            %
            %   layer = peepholeLSTMLayer(numHiddenUnits,Name=Value)
            %   creates a peephole LSTM layer and specifies additional
            %   options using one or more name-value arguments:
            %
            %      Name       - Name of the layer, specified as a string.
            %                   The default is "".
            %

 Define Custom Recurrent Deep Learning Layer

19-89



            %      OutputMode - Output mode, specified as one of the
            %                   following:
            %                      "sequence" - Output the entire sequence
            %                                   of data.
            %
            %                      "last"     - Output the last time step
            %                                   of the data.
            %                   The default is "sequence".

            % Parse input arguments.
            arguments
                numHiddenUnits
                inputSize
                args.Name = "";
                args.OutputMode = "sequence";
            end

            layer.NumHiddenUnits = numHiddenUnits;
            layer.Name = args.Name;
            layer.OutputMode = args.OutputMode;

            % Set layer description.
            layer.Description = "Peephole LSTM with " + numHiddenUnits + " hidden units";
        end

With this constructor function, the command
peepholeLSTMLayer(200,12,OutputMode="last",Name="peephole") creates a peephole
LSTM layer with 200 hidden units, an input size of 12, and the name "peephole", and outputs the
last time step of the peephole LSTM operation.

Create Initialize Function
Create the function that initializes the layer learnable and state parameters when the software
initializes the network. Ensure that the function only initializes learnable and state parameters when
the property is empty, otherwise the software can overwrite when you load the network from a MAT
file.

Because the size of the input data is unknown until the network is ready to use, you must create an
initialize function that initializes the learnable and state parameters using networkDataLayout
objects that the software provides to the function. Network data layout objects contain information
about the sizes and formats of expected input data. Create an initialize function that uses the size and
format information to initialize learnable and state parameters such that they have the correct size.

Initialize the input weights using Glorot initialization. Initialize the recurrent weights using
orthogonal initialization. Initialize the bias using unit-forget-gate normalization. This code uses the
helper functions initializeGlorot, initializeOrthogonal, and
initializeUnitForgetGate. To access these functions, open the example in the “Include Custom
Layer in Network” on page 19-98 section as a live script. For more information about initializing
weights, see “Initialize Learnable Parameters for Model Function” on page 19-318.

Note that the recurrent weights of a peephole LSTM layer and standard LSTM layers have different
sizes. A peephole LSTM layer does not require recurrent weights for the cell candidate calculation, so
the recurrent weights is a 3*NumHiddenUnits-by-NumHiddenUnits array.

For convenience, initialize the state parameters using the resetState function defined in the
section “Create Reset State Function” on page 19-94.

19 Import, Export, and Customization

19-90



        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the layer
            % learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize.
            %         layout - Data layout, specified as a
            %                  networkDataLayout object.
            %
            % Outputs:
            %         layer - Initialized layer.

            numHiddenUnits = layer.NumHiddenUnits;

            % Find number of channels.
            idx = finddim(layout,"C");
            numChannels = layout.Size(idx);

            % Initialize input weights.
            if isempty(layer.InputWeights)
                sz = [4*numHiddenUnits numChannels];
                numOut = 4*numHiddenUnits;
                numIn = numChannels;
                layer.InputWeights = initializeGlorot(sz,numOut,numIn);
            end

            % Initialize recurrent weights.
            if isempty(layer.RecurrentWeights)
                sz = [4*numHiddenUnits numHiddenUnits];
                layer.RecurrentWeights = initializeOrthogonal(sz);
            end

            % Initialize peephole weights.
            if isempty(layer.PeepholeWeights)
                sz = [3*numHiddenUnits 1];
                numOut = 3*numHiddenUnits;
                numIn = 1;

                layer.PeepholeWeights = initializeGlorot(sz,numOut,numIn);
            end

            % Initialize bias.
            if isempty(layer.Bias)
                layer.Bias = initializeUnitForgetGate(numHiddenUnits);
            end

            % Initialize hidden state.
            if isempty(layer.HiddenState)
                layer.HiddenState = zeros(numHiddenUnits,1);
            end

            % Initialize cell state.
            if isempty(layer.CellState)
                layer.CellState = zeros(numHiddenUnits,1);
            end
        end

 Define Custom Recurrent Deep Learning Layer

19-91



Create Predict Function
Create the layer forward functions to use at prediction time and training time.

Create a function named predict that propagates the data forward through the layer at prediction
time and outputs the result.

The predict function syntax depends on the type of layer.

• Z = predict(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = predict(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the predict
function of the custom layer, use the predict function for the dlnetwork. When you do so, the
dlnetwork object predict function uses the appropriate layer operations for prediction. If the
dlnetwork has state parameters, then also return the network state.

Because a peephole LSTM layer has only one input, one output, and two state parameters, the syntax
for predict for a peephole LSTM layer is [Z,hiddenState,cellState] = predict(layer,X).

By default, the layer uses predict as the forward function at training time. To use a different
forward function at training time, or retain a value required for a custom backward function, you
must also create a function named forward.

Because the layer inherits from nnet.layer.Formattable, the layer inputs are formatted dlarray
objects and the predict function must also output data as formatted dlarray objects.

The hidden state at time step t is given by

ht = tanh(ct)⊙ ot,

⊙ denotes the Hadamard product (element-wise multiplication of vectors).

The cell state at time step t is given by

19 Import, Export, and Customization

19-92



ct = gt ⊙ it + ct − 1⊙ ft .

The following formulas describe the components at time step t.

Component Formula
Input gate it = σg Wixt + Riht − 1 + pi⊙ ct − 1 + bi

Forget gate f t = σg Wfxt + Rfht − 1 + pf ⊙ ct − 1 + bf

Cell candidate gt = σc Wgxt + Rhht − 1 + bg

Output gate ot = σg Woxt + Roht − 1 + po⊙ ct + bo

Note that the output gate calculation requires the updated cell state ct.

In these calculations, σg and σc denote the gate and state activation functions. For peephole LSTM
layers, use the sigmoid and hyperbolic tangent functions as the gate and state activation functions,
respectively.

Implement this operation in the predict function. Because the layer does not require a different
forward function for training or a memory value for a custom backward function, you can remove the
forward function from the class file. Add a comment to the top of the function that explains the
syntaxes of the function.

Tip If you preallocate arrays using functions such as zeros, then you must ensure that the data
types of these arrays are consistent with the layer function inputs. To create an array of zeros of the
same data type as another array, use the "like" option of zeros. For example, to initialize an array
of zeros of size sz with the same data type as the array X, use Z = zeros(sz,"like",X).

        function [Z,cellState,hiddenState] = predict(layer,X)
            %PREDICT Peephole LSTM predict function
            %   [Z,hiddenState,cellState] = predict(layer,X) forward
            %   propagates the data X through the layer and returns the
            %   layer output Z and the updated hidden and cell states. X
            %   is a dlarray with format "CBT" and Z is a dlarray with
            %   format "CB" or "CBT", depending on the layer OutputMode
            %   property.

            % Initialize sequence output.
            numHiddenUnits = layer.NumHiddenUnits;
            miniBatchSize = size(X,finddim(X,"B"));
            numTimeSteps = size(X,finddim(X,"T"));

            if layer.OutputMode == "sequence"
                Z = zeros(numHiddenUnits,miniBatchSize,numTimeSteps,"like",X);
                Z = dlarray(Z,"CBT");
            end

            % Calculate WX + b.
            X = stripdims(X);
            WX = pagemtimes(layer.InputWeights,X) + layer.Bias;

            % Indices of concatenated weight arrays.
            idx1 = 1:numHiddenUnits;
            idx2 = 1+numHiddenUnits:2*numHiddenUnits;
            idx3 = 1+2*numHiddenUnits:3*numHiddenUnits;
            idx4 = 1+3*numHiddenUnits:4*numHiddenUnits;

            % Initial states.
            hiddenState = layer.HiddenState;
            cellState = layer.CellState;

            % Loop over time steps.
            for t = 1:numTimeSteps

 Define Custom Recurrent Deep Learning Layer

19-93



                % Calculate R*h_{t-1}.
                Rht = layer.RecurrentWeights * hiddenState;

                % Calculate p*c_{t-1}.
                pict = layer.PeepholeWeights(idx1) .* cellState;
                pfct = layer.PeepholeWeights(idx2) .* cellState;
    
                % Gate calculations.
                it = sigmoid(WX(idx1,:,t) + Rht(idx1,:) + pict);
                ft = sigmoid(WX(idx2,:,t) + Rht(idx2,:) + pfct);
                gt = tanh(WX(idx3,:,t) + Rht(idx3,:));
                
                % Calculate ot using updated cell state.
                cellState = gt .* it + cellState .* ft;
                poct = layer.PeepholeWeights(idx3) .* cellState;
                ot = sigmoid(WX(idx4,:,t) + Rht(idx4,:) + poct);

                % Update hidden state.
                hiddenState = tanh(cellState) .* ot;

                % Update sequence output.
                if layer.OutputMode == "sequence"
                    Z(:,:,t) = hiddenState;
                end
            end

            % Last time step output.
            if layer.OutputMode == "last"
                Z = dlarray(hiddenState,"CB");
            end
        end

Because the predict function uses only functions that support dlarray objects, defining the
backward function is optional. For a list of functions that support dlarray objects, see “List of
Functions with dlarray Support” on page 19-504.

Create Reset State Function
When DAGNetwork or SeriesNetwork objects contain layers with state parameters, you can make
predictions and update the layer states using the predictAndUpdateState and
classifyAndUpdateState functions. You can reset the network state using the resetState
function.

The resetState function for DAGNetwork, SeriesNetwork, and dlnetwork objects, by default,
has no effect on custom layers with state parameters. To define the layer behavior for the
resetState function for network objects, define the optional layer resetState function in the
layer definition that resets the state parameters.

The resetState function must have the syntax layer = resetState(layer), where the
returned layer has the reset state properties.

The resetState function must not set any layer properties except for learnable and state
properties. If the function sets other layers properties, then the layer can behave unexpectedly.

Create a function named resetState that resets the layer state parameters to vectors of zeros.
        function layer = resetState(layer)
            %RESETSTATE Reset layer state
            % layer = resetState(layer) resets the state properties of the
            % layer.

            numHiddenUnits = layer.NumHiddenUnits;
            layer.HiddenState = zeros(numHiddenUnits,1);
            layer.CellState = zeros(numHiddenUnits,1);
        end

19 Import, Export, and Customization

19-94



Completed Layer
View the completed layer class file.

classdef peepholeLSTMLayer < nnet.layer.Layer & nnet.layer.Formattable
    %PEEPHOLELSTMLAYER Peephole LSTM Layer

    properties
        % Layer properties.

        NumHiddenUnits
        OutputMode
    end

    properties (Learnable)
        % Layer learnable parameters.

        InputWeights
        RecurrentWeights
        PeepholeWeights
        Bias
    end

    properties (State)
        % Layer state parameters.

        HiddenState
        CellState
    end

    methods
        function layer = peepholeLSTMLayer(numHiddenUnits,inputSize,args)
            %PEEPHOLELSTMLAYER Peephole LSTM Layer
            %   layer = peepholeLSTMLayer(numHiddenUnits)
            %   creates a peephole LSTM layer with the specified number of
            %   hidden units.
            %
            %   layer = peepholeLSTMLayer(numHiddenUnits,Name=Value)
            %   creates a peephole LSTM layer and specifies additional
            %   options using one or more name-value arguments:
            %
            %      Name       - Name of the layer, specified as a string.
            %                   The default is "".
            %
            %      OutputMode - Output mode, specified as one of the
            %                   following:
            %                      "sequence" - Output the entire sequence
            %                                   of data.
            %
            %                      "last"     - Output the last time step
            %                                   of the data.
            %                   The default is "sequence".

            % Parse input arguments.
            arguments
                numHiddenUnits
                inputSize
                args.Name = "";

 Define Custom Recurrent Deep Learning Layer

19-95



                args.OutputMode = "sequence";
            end

            layer.NumHiddenUnits = numHiddenUnits;
            layer.Name = args.Name;
            layer.OutputMode = args.OutputMode;

            % Set layer description.
            layer.Description = "Peephole LSTM with " + numHiddenUnits + " hidden units";
        end

        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the layer
            % learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize.
            %         layout - Data layout, specified as a
            %                  networkDataLayout object.
            %
            % Outputs:
            %         layer - Initialized layer.

            numHiddenUnits = layer.NumHiddenUnits;

            % Find number of channels.
            idx = finddim(layout,"C");
            numChannels = layout.Size(idx);

            % Initialize input weights.
            if isempty(layer.InputWeights)
                sz = [4*numHiddenUnits numChannels];
                numOut = 4*numHiddenUnits;
                numIn = numChannels;
                layer.InputWeights = initializeGlorot(sz,numOut,numIn);
            end

            % Initialize recurrent weights.
            if isempty(layer.RecurrentWeights)
                sz = [4*numHiddenUnits numHiddenUnits];
                layer.RecurrentWeights = initializeOrthogonal(sz);
            end

            % Initialize peephole weights.
            if isempty(layer.PeepholeWeights)
                sz = [3*numHiddenUnits 1];
                numOut = 3*numHiddenUnits;
                numIn = 1;

                layer.PeepholeWeights = initializeGlorot(sz,numOut,numIn);
            end

            % Initialize bias.
            if isempty(layer.Bias)
                layer.Bias = initializeUnitForgetGate(numHiddenUnits);
            end

            % Initialize hidden state.

19 Import, Export, and Customization

19-96



            if isempty(layer.HiddenState)
                layer.HiddenState = zeros(numHiddenUnits,1);
            end

            % Initialize cell state.
            if isempty(layer.CellState)
                layer.CellState = zeros(numHiddenUnits,1);
            end
        end

        function [Z,cellState,hiddenState] = predict(layer,X)
            %PREDICT Peephole LSTM predict function
            %   [Z,hiddenState,cellState] = predict(layer,X) forward
            %   propagates the data X through the layer and returns the
            %   layer output Z and the updated hidden and cell states. X
            %   is a dlarray with format "CBT" and Z is a dlarray with
            %   format "CB" or "CBT", depending on the layer OutputMode
            %   property.

            % Initialize sequence output.
            numHiddenUnits = layer.NumHiddenUnits;
            miniBatchSize = size(X,finddim(X,"B"));
            numTimeSteps = size(X,finddim(X,"T"));

            if layer.OutputMode == "sequence"
                Z = zeros(numHiddenUnits,miniBatchSize,numTimeSteps,"like",X);
                Z = dlarray(Z,"CBT");
            end

            % Calculate WX + b.
            X = stripdims(X);
            WX = pagemtimes(layer.InputWeights,X) + layer.Bias;

            % Indices of concatenated weight arrays.
            idx1 = 1:numHiddenUnits;
            idx2 = 1+numHiddenUnits:2*numHiddenUnits;
            idx3 = 1+2*numHiddenUnits:3*numHiddenUnits;
            idx4 = 1+3*numHiddenUnits:4*numHiddenUnits;

            % Initial states.
            hiddenState = layer.HiddenState;
            cellState = layer.CellState;

            % Loop over time steps.
            for t = 1:numTimeSteps
                % Calculate R*h_{t-1}.
                Rht = layer.RecurrentWeights * hiddenState;

                % Calculate p*c_{t-1}.
                pict = layer.PeepholeWeights(idx1) .* cellState;
                pfct = layer.PeepholeWeights(idx2) .* cellState;
    
                % Gate calculations.
                it = sigmoid(WX(idx1,:,t) + Rht(idx1,:) + pict);
                ft = sigmoid(WX(idx2,:,t) + Rht(idx2,:) + pfct);
                gt = tanh(WX(idx3,:,t) + Rht(idx3,:));
                
                % Calculate ot using updated cell state.

 Define Custom Recurrent Deep Learning Layer

19-97



                cellState = gt .* it + cellState .* ft;
                poct = layer.PeepholeWeights(idx3) .* cellState;
                ot = sigmoid(WX(idx4,:,t) + Rht(idx4,:) + poct);

                % Update hidden state.
                hiddenState = tanh(cellState) .* ot;

                % Update sequence output.
                if layer.OutputMode == "sequence"
                    Z(:,:,t) = hiddenState;
                end
            end

            % Last time step output.
            if layer.OutputMode == "last"
                Z = dlarray(hiddenState,"CB");
            end
        end

        function layer = resetState(layer)
            %RESETSTATE Reset layer state
            % layer = resetState(layer) resets the state properties of the
            % layer.

            numHiddenUnits = layer.NumHiddenUnits;
            layer.HiddenState = zeros(numHiddenUnits,1);
            layer.CellState = zeros(numHiddenUnits,1);
        end
    end
end

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

In this example, the MATLAB functions used in predict all support dlarray objects, so the layer is
GPU compatible.

Include Custom Layer in Network

You can use a custom layer in the same way as any other layer in Deep Learning Toolbox. Create and
train a network for sequence classification using the peephole LSTM layer you created earlier.

Load the example training data.

19 Import, Export, and Customization

19-98



[XTrain,TTrain] = japaneseVowelsTrainData;

Define the network architecture. Create a layer array containing a peephole LSTM layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [
    sequenceInputLayer(inputSize)
    peepholeLSTMLayer(numHiddenUnits,OutputMode="last")
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options and train the network. Train with a mini-batch size of 27 and left-pad the
data.

options = trainingOptions("adam",MiniBatchSize=27,SequencePaddingDirection="left");
net = trainNetwork(XTrain,TTrain,layers,options);

Training on single CPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |        3.70% |       2.2060 |          0.0010 |
|       5 |          50 |       00:00:14 |       92.59% |       0.5917 |          0.0010 |
|      10 |         100 |       00:00:28 |       92.59% |       0.2182 |          0.0010 |
|      15 |         150 |       00:00:41 |      100.00% |       0.0588 |          0.0010 |
|      20 |         200 |       00:00:55 |       96.30% |       0.0889 |          0.0010 |
|      25 |         250 |       00:01:09 |      100.00% |       0.0347 |          0.0010 |
|      30 |         300 |       00:01:24 |      100.00% |       0.0148 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.

Evaluate the network performance by predicting on new data and calculating the accuracy.

[XTest,TTest] = japaneseVowelsTestData;
YTest = classify(net,XTest,MiniBatchSize=27);
accuracy = mean(YTest==TTest)

accuracy = 0.8730

References
[1] Greff, Klaus, Rupesh K. Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen Schmidhuber.

"LSTM: A Search Space Odyssey." IEEE Transactions on Neural Networks and Learning
Systems 28, no. 10 (2016): 2222–2232.

See Also
functionLayer | checkLayer | setLearnRateFactor | setL2Factor | getLearnRateFactor |
getL2Factor | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer | networkDataLayout

 Define Custom Recurrent Deep Learning Layer

19-99



Related Examples
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Specify Custom Layer Backward Function” on page 19-117
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-100



Define Custom Classification Output Layer

Tip  To construct a classification output layer with cross entropy loss for k mutually exclusive classes,
use classificationLayer. If you want to use a different loss function for your classification
problems, then you can define a custom classification output layer using this example as a guide.

This example shows how to define a custom classification output layer with the sum of squares error
(SSE) loss and use it in a convolutional neural network.

To define a custom classification output layer, you can use the template provided in this example,
which takes you through the following steps:

1 Name the layer – Give the layer a name so it can be used in MATLAB.
2 Declare the layer properties – Specify the properties of the layer.
3 Create a constructor function (optional) – Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then the software initializes the
properties with '' at creation.

4 Create a forward loss function – Specify the loss between the predictions and the training
targets.

5 Create a backward loss function (optional) – Specify the derivative of the loss with respect to the
predictions. If you do not specify a backward loss function, then the forward loss function must
support dlarray objects.

A classification SSE layer computes the sum of squares error loss for classification problems. SSE is
an error measure between two continuous random variables. For predictions Y and training targets T,
the SSE loss between Y and T is given by

L = 1
N∑

n = 1

N

∑
i = 1

K

(Yni− Tni)2,

where N is the number of observations and K is the number of classes.

Classification Output Layer Template
Copy the classification output layer template into a new file in MATLAB. This template outlines the
structure of a classification output layer and includes the functions that define the layer behavior.
classdef myClassificationLayer < nnet.layer.ClassificationLayer % ...
        % & nnet.layer.Acceleratable % (Optional)
        
    properties
        % (Optional) Layer properties.

        % Layer properties go here.
    end
 
    methods
        function layer = myClassificationLayer()           
            % (Optional) Create a myClassificationLayer.

            % Layer constructor function goes here.
        end

 Define Custom Classification Output Layer

19-101



        function loss = forwardLoss(layer,Y,T)
            % Return the loss between the predictions Y and the training 
            % targets T.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         loss  - Loss between Y and T

            % Layer forward loss function goes here.
        end
        
        function dLdY = backwardLoss(layer,Y,T)
            % (Optional) Backward propagate the derivative of the loss 
            % function.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         dLdY  - Derivative of the loss with respect to the 
            %                 predictions Y

            % Layer backward loss function goes here.
        end
    end
end

Name the Layer and Specify Superclasses
First, give the layer a name. In the first line of the class file, replace the existing name
myClassificationLayer with sseClassificationLayer. Because the layer supports
acceleration, also include the nnet.layer.Acceleratable mixin. For more information about
custom layer acceleration, see “Custom Layer Function Acceleration” on page 19-128.

classdef sseClassificationLayer < nnet.layer.ClassificationLayer ...
        & nnet.layer.Acceleratable

    ...
end

Next, rename the myClassificationLayer constructor function (the first function in the methods
section) so that it has the same name as the layer.

    methods
        function layer = sseClassificationLayer()           
            ...
        end

        ...
     end

Save the Layer

Save the layer class file in a new file named sseClassificationLayer.m. The file name must
match the layer name. To use the layer, you must save the file in the current folder or in a folder on
the MATLAB path.

19 Import, Export, and Customization

19-102



Declare Layer Properties
Declare the layer properties in the properties section.

By default, custom output layers have the following properties:

• Name — Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically
assign names to layers with the name ''.

• Description — One-line description of the layer, specified as a character vector or a string
scalar. This description appears when the layer is displayed in a Layer array. If you do not specify
a layer description, then the software displays "Classification Output" or "Regression
Output".

• Type — Type of the layer, specified as a character vector or a string scalar. The value of Type
appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the
software displays the layer class name.

Custom classification layers also have the following property:

• Classes — Classes of the output layer, specified as a categorical vector, string array, cell array of
character vectors, or "auto". If Classes is "auto", then the software automatically sets the
classes at training time. If you specify the string array or cell array of character vectors str, then
the software sets the classes of the output layer to categorical(str,str).

Custom regression layers also have the following property:

• ResponseNames — Names of the responses, specified a cell array of character vectors or a string
array. At training time, the software automatically sets the response names according to the
training data. The default is {}.

If the layer has no other properties, then you can omit the properties section.

In this example, the layer does not require any additional properties, so you can remove the
properties section.

Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

Specify the input argument name to assign to the Name property at creation. Add a comment to the
top of the function that explains the syntax of the function.

        function layer = sseClassificationLayer(name)
            % layer = sseClassificationLayer(name) creates a sum of squares
            % error classification layer and specifies the layer name.

            ...
        end

Initialize Layer Properties

Replace the comment % Layer constructor function goes here with code that initializes the
layer properties.

 Define Custom Classification Output Layer

19-103



Give the layer a one-line description by setting the Description property of the layer. Set the Name
property to the input argument name.

        function layer = sseClassificationLayer(name)
            % layer = sseClassificationLayer(name) creates a sum of squares
            % error classification layer and specifies the layer name.
    
            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = 'Sum of squares error';
        end

Create Forward Loss Function
Create a function named forwardLoss that returns the SSE loss between the predictions made by
the network and the training targets. The syntax for forwardLoss is loss =
forwardLoss(layer, Y, T), where Y is the output of the previous layer and T represents the
training targets.

For classification problems, the dimensions of T depend on the type of problem.

Classification Task Input Size Observation Dimension
2-D image classification 1-by-1-by-K-by-N, where K is the

number of classes and N is the
number of observations

4

3-D image classification 1-by-1-by-1-by-K-by-N, where K
is the number of classes and N
is the number of observations

5

Sequence-to-label classification K-by-N, where K is the number
of classes and N is the number
of observations

2

Sequence-to-sequence
classification

K-by-N-by-S, where K is the
number of classes, N is the
number of observations, and S
is the sequence length

2

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T, you
must include a layer that outputs the correct size before the output layer. For example, to ensure that
Y is a 4-D array of prediction scores for K classes, you can include a fully connected layer of size K
followed by a softmax layer before the output layer.

A classification SSE layer computes the sum of squares error loss for classification problems. SSE is
an error measure between two continuous random variables. For predictions Y and training targets T,
the SSE loss between Y and T is given by

L = 1
N∑

n = 1

N

∑
i = 1

K

(Yni− Tni)2,

where N is the number of observations and K is the number of classes.

19 Import, Export, and Customization

19-104



The inputs Y and T correspond to Y and T in the equation, respectively. The output loss corresponds
to L. Add a comment to the top of the function that explains the syntaxes of the function.

        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the SSE loss between
            % the predictions Y and the training targets T.

            % Calculate sum of squares.
            sumSquares = sum((Y-T).^2);
    
            % Take mean over mini-batch.
            N = size(Y,4);
            loss = sum(sumSquares)/N;
        end

Because the forwardLoss function only uses functions that support dlarray objects, defining the
backwardLoss function is optional. For a list of functions that support dlarray objects, see “List of
Functions with dlarray Support” on page 19-504.

Completed Layer
View the completed classification output layer class file.

classdef sseClassificationLayer < nnet.layer.ClassificationLayer ... 
        & nnet.layer.Acceleratable
    % Example custom classification layer with sum of squares error loss.
    
    methods
        function layer = sseClassificationLayer(name)
            % layer = sseClassificationLayer(name) creates a sum of squares
            % error classification layer and specifies the layer name.
    
            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = 'Sum of squares error';
        end
        
        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the SSE loss between
            % the predictions Y and the training targets T.

            % Calculate sum of squares.
            sumSquares = sum((Y-T).^2);
    
            % Take mean over mini-batch.
            N = size(Y,4);
            loss = sum(sumSquares)/N;
        end
    end
end

 Define Custom Classification Output Layer

19-105



GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

The MATLAB functions used in forwardLoss all support dlarray objects, so the layer is GPU
compatible.

Check Output Layer Validity

Check the layer validity of the custom classification output layer sseClassificationLayer.

Create an instance of the layer sseClassificationLayer, attached to this example as a
supporting file.

layer = sseClassificationLayer('sse');

Check the layer is valid using checkLayer. Specify the valid input size to be the size of a single
observation of typical input to the layer. The layer expects a 1-by-1-by-K-by-N array inputs, where K is
the number of classes, and N is the number of observations in the mini-batch.

validInputSize = [1 1 10];
checkLayer(layer,validInputSize,'ObservationDimension',4);

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestOutputLayerWithoutBackward
........
Done nnet.checklayer.TestOutputLayerWithoutBackward
__________

Test Summary:
     8 Passed, 0 Failed, 0 Incomplete, 2 Skipped.
     Time elapsed: 0.47145 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.

Include Custom Classification Output Layer in Network

19 Import, Export, and Customization

19-106



You can use a custom output layer in the same way as any other output layer in Deep Learning
Toolbox. This section shows how to create and train a network for classification using the custom
classification output layer that you created earlier.

Load the example training data.

[XTrain,YTrain] = digitTrain4DArrayData;

Create a layer array including the custom classification output layer sseClassificationLayer,
attached to this example as a supporting file.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    sseClassificationLayer('sse')]

layers = 
  7x1 Layer array with layers:

     1   ''      Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''      2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''      Batch Normalization     Batch normalization
     4   ''      ReLU                    ReLU
     5   ''      Fully Connected         10 fully connected layer
     6   ''      Softmax                 softmax
     7   'sse'   Classification Output   Sum of squares error

Set the training options and train the network.

options = trainingOptions('sgdm');
net = trainNetwork(XTrain,YTrain,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |        9.38% |       0.9944 |          0.0100 |
|       2 |          50 |       00:00:04 |       75.00% |       0.3541 |          0.0100 |
|       3 |         100 |       00:00:08 |       92.97% |       0.1288 |          0.0100 |
|       4 |         150 |       00:00:12 |       96.09% |       0.0970 |          0.0100 |
|       6 |         200 |       00:00:16 |       95.31% |       0.0753 |          0.0100 |
|       7 |         250 |       00:00:20 |       97.66% |       0.0447 |          0.0100 |
|       8 |         300 |       00:00:24 |       99.22% |       0.0211 |          0.0100 |
|       9 |         350 |       00:00:28 |       99.22% |       0.0261 |          0.0100 |
|      11 |         400 |       00:00:32 |      100.00% |       0.0071 |          0.0100 |
|      12 |         450 |       00:00:36 |      100.00% |       0.0054 |          0.0100 |
|      13 |         500 |       00:00:40 |      100.00% |       0.0092 |          0.0100 |
|      15 |         550 |       00:00:43 |      100.00% |       0.0061 |          0.0100 |
|      16 |         600 |       00:00:47 |      100.00% |       0.0019 |          0.0100 |
|      17 |         650 |       00:00:51 |      100.00% |       0.0039 |          0.0100 |
|      18 |         700 |       00:00:55 |      100.00% |       0.0023 |          0.0100 |
|      20 |         750 |       00:00:59 |      100.00% |       0.0023 |          0.0100 |

 Define Custom Classification Output Layer

19-107



|      21 |         800 |       00:01:03 |      100.00% |       0.0019 |          0.0100 |
|      22 |         850 |       00:01:07 |      100.00% |       0.0017 |          0.0100 |
|      24 |         900 |       00:01:11 |      100.00% |       0.0020 |          0.0100 |
|      25 |         950 |       00:01:15 |      100.00% |       0.0012 |          0.0100 |
|      26 |        1000 |       00:01:18 |      100.00% |       0.0011 |          0.0100 |
|      27 |        1050 |       00:01:22 |       99.22% |       0.0103 |          0.0100 |
|      29 |        1100 |       00:01:27 |      100.00% |       0.0013 |          0.0100 |
|      30 |        1150 |       00:01:31 |      100.00% |       0.0011 |          0.0100 |
|      30 |        1170 |       00:01:32 |       99.22% |       0.0070 |          0.0100 |
|========================================================================================|
Training finished: Max epochs completed.

Evaluate the network performance by making predictions on new data and calculating the accuracy.

[XTest,YTest] = digitTest4DArrayData;
YPred = classify(net, XTest);
accuracy = mean(YTest == YPred)

accuracy = 0.9846

See Also
classificationLayer | checkLayer | findPlaceholderLayers | replaceLayer |
assembleNetwork | PlaceholderLayer

More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Regression Output Layer” on page 19-109
• “Specify Custom Output Layer Backward Loss Function” on page 19-124
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-108



Define Custom Regression Output Layer

Tip To create a regression output layer with mean squared error loss, use regressionLayer. If you
want to use a different loss function for your regression problems, then you can define a custom
regression output layer using this example as a guide.

This example shows how to create a custom regression output layer with the mean absolute error
(MAE) loss.

To define a custom regression output layer, you can use the template provided in this example, which
takes you through the following steps:

1 Name the layer – Give the layer a name so it can be used in MATLAB.
2 Declare the layer properties – Specify the properties of the layer.
3 Create a constructor function (optional) – Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then the software initializes the
properties with '' at creation.

4 Create a forward loss function – Specify the loss between the predictions and the training
targets.

5 Create a backward loss function (optional) – Specify the derivative of the loss with respect to the
predictions. If you do not specify a backward loss function, then the forward loss function must
support dlarray objects.

A regression MAE layer computes the mean absolute error loss for regression problems. MAE loss is
an error measure between two continuous random variables. For predictions Y and training targets T,
the MAE loss between Y and T is given by

L = 1
N∑

n = 1

N

1
R∑

i = 1

R

Yni− Tni ,

where N is the number of observations and R is the number of responses.

Regression Output Layer Template
Copy the regression output layer template into a new file in MATLAB. This template outlines the
structure of a regression output layer and includes the functions that define the layer behavior.
classdef myRegressionLayer < nnet.layer.RegressionLayer % ...
        % & nnet.layer.Acceleratable % (Optional)
        
    properties
        % (Optional) Layer properties.

        % Layer properties go here.
    end
 
    methods
        function layer = myRegressionLayer()           
            % (Optional) Create a myRegressionLayer.

            % Layer constructor function goes here.
        end

        function loss = forwardLoss(layer,Y,T)

 Define Custom Regression Output Layer

19-109



            % Return the loss between the predictions Y and the training
            % targets T.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         loss  - Loss between Y and T

            % Layer forward loss function goes here.
        end
        
        function dLdY = backwardLoss(layer,Y,T)
            % (Optional) Backward propagate the derivative of the loss 
            % function.
            %
            % Inputs:
            %         layer - Output layer
            %         Y     – Predictions made by network
            %         T     – Training targets
            %
            % Output:
            %         dLdY  - Derivative of the loss with respect to the 
            %                 predictions Y        

            % Layer backward loss function goes here.
        end
    end
end

Name the Layer and Specify Superclasses
First, give the layer a name. In the first line of the class file, replace the existing name
myRegressionLayer with maeRegressionLayer. Because the layer supports acceleration, also
include the nnet.layer.Acceleratable mixin. For more information about custom layer
acceleration, see “Custom Layer Function Acceleration” on page 19-128.

classdef maeRegressionLayer < nnet.layer.RegressionLayer ...
        & nnet.layer.Acceleratable
    ...
end

Next, rename the myRegressionLayer constructor function (the first function in the methods
section) so that it has the same name as the layer.

    methods
        function layer = maeRegressionLayer()           
            ...
        end

        ...
     end

Save the Layer

Save the layer class file in a new file named maeRegressionLayer.m. The file name must match the
layer name. To use the layer, you must save the file in the current folder or in a folder on the MATLAB
path.

Declare Layer Properties
Declare the layer properties in the properties section.

19 Import, Export, and Customization

19-110



By default, custom output layers have the following properties:

• Name — Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically
assign names to layers with the name ''.

• Description — One-line description of the layer, specified as a character vector or a string
scalar. This description appears when the layer is displayed in a Layer array. If you do not specify
a layer description, then the software displays "Classification Output" or "Regression
Output".

• Type — Type of the layer, specified as a character vector or a string scalar. The value of Type
appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the
software displays the layer class name.

Custom classification layers also have the following property:

• Classes — Classes of the output layer, specified as a categorical vector, string array, cell array of
character vectors, or "auto". If Classes is "auto", then the software automatically sets the
classes at training time. If you specify the string array or cell array of character vectors str, then
the software sets the classes of the output layer to categorical(str,str).

Custom regression layers also have the following property:

• ResponseNames — Names of the responses, specified a cell array of character vectors or a string
array. At training time, the software automatically sets the response names according to the
training data. The default is {}.

If the layer has no other properties, then you can omit the properties section.

The layer does not require any additional properties, so you can remove the properties section.

Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

To initialize the Name property at creation, specify the input argument name. Add a comment to the
top of the function that explains the syntax of the function.
        function layer = maeRegressionLayer(name)
            % layer = maeRegressionLayer(name) creates a
            % mean-absolute-error regression layer and specifies the layer
            % name.

            ...
        end

Initialize Layer Properties

Replace the comment % Layer constructor function goes here with code that initializes the
layer properties.

Give the layer a one-line description by setting the Description property of the layer. Set the Name
property to the input argument name. Set the description to describe the type of layer and its size.

        function layer = maeRegressionLayer(name)
            % layer = maeRegressionLayer(name) creates a
            % mean-absolute-error regression layer and specifies the layer

 Define Custom Regression Output Layer

19-111



            % name.
            
            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = 'Mean absolute error';
        end

Create Forward Loss Function
Create a function named forwardLoss that returns the MAE loss between the predictions made by
the network and the training targets. The syntax for forwardLoss is loss =
forwardLoss(layer, Y, T), where Y is the output of the previous layer and T contains the
training targets.

For regression problems, the dimensions of T also depend on the type of problem.

Regression Task Input Size Observation Dimension
2-D image regression 1-by-1-by-R-by-N, where R is the

number of responses and N is
the number of observations

4

2-D Image-to-image regression h-by-w-by-c-by-N, where h, w,
and c are the height, width, and
number of channels of the
output, respectively, and N is
the number of observations

4

3-D image regression 1-by-1-by-1-by-R-by-N, where R
is the number of responses and
N is the number of observations

5

3-D Image-to-image regression h-by-w-by-d-by-c-by-N, where h,
w, d, and c are the height,
width, depth, and number of
channels of the output,
respectively, and N is the
number of observations

5

Sequence-to-one regression R-by-N, where R is the number
of responses and N is the
number of observations

2

Sequence-to-sequence
regression

R-by-N-by-S, where R is the
number of responses, N is the
number of observations, and S
is the sequence length

2

For example, if the network defines an image regression network with one response and has mini-
batches of size 50, then T is a 4-D array of size 1-by-1-by-1-by-50.

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T, you
must include a layer that outputs the correct size before the output layer. For example, for image
regression with R responses, to ensure that Y is a 4-D array of the correct size, you can include a fully
connected layer of size R before the output layer.

19 Import, Export, and Customization

19-112



A regression MAE layer computes the mean absolute error loss for regression problems. MAE loss is
an error measure between two continuous random variables. For predictions Y and training targets T,
the MAE loss between Y and T is given by

L = 1
N∑

n = 1

N

1
R∑

i = 1

R

Yni− Tni ,

where N is the number of observations and R is the number of responses.

The inputs Y and T correspond to Y and T in the equation, respectively. The output loss corresponds
to L. To ensure that loss is scalar, output the mean loss over the mini-batch. Add a comment to the
top of the function that explains the syntaxes of the function.

        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the MAE loss between
            % the predictions Y and the training targets T.

            % Calculate MAE.
            R = size(Y,3);
            meanAbsoluteError = sum(abs(Y-T),3)/R;
    
            % Take mean over mini-batch.
            N = size(Y,4);
            loss = sum(meanAbsoluteError)/N;
        end

Because the forwardLoss function only uses functions that support dlarray objects, defining the
backwardLoss function is optional. For a list of functions that support dlarray objects, see “List of
Functions with dlarray Support” on page 19-504.

Completed Layer
View the completed regression output layer class file.

classdef maeRegressionLayer < nnet.layer.RegressionLayer ...
        & nnet.layer.Acceleratable
    % Example custom regression layer with mean-absolute-error loss.
    
    methods
        function layer = maeRegressionLayer(name)
            % layer = maeRegressionLayer(name) creates a
            % mean-absolute-error regression layer and specifies the layer
            % name.
            
            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = 'Mean absolute error';
        end
        
        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the MAE loss between
            % the predictions Y and the training targets T.

 Define Custom Regression Output Layer

19-113



            % Calculate MAE.
            R = size(Y,3);
            meanAbsoluteError = sum(abs(Y-T),3)/R;
    
            % Take mean over mini-batch.
            N = size(Y,4);
            loss = sum(meanAbsoluteError)/N;
        end
    end
end

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

The MATLAB functions used in forwardLoss in maeRegressionLayer all support dlarray
objects, so the layer is GPU compatible.

Check Output Layer Validity

Check the layer validity of the custom classification output layer maeRegressionLayer.

Create an instance of the layer maeRegressionLayer, attached to this example as a supporting file.

layer = maeRegressionLayer('mae');

Check the layer is valid using checkLayer. Specify the valid input size to be the size of a single
observation of typical input to the layer. The layer expects a 1-by-1-by-R-by-N array inputs, where R is
the number of responses, and N is the number of observations in the mini-batch.

validInputSize = [1 1 10];
checkLayer(layer,validInputSize,'ObservationDimension',4);

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestOutputLayerWithoutBackward
........
Done nnet.checklayer.TestOutputLayerWithoutBackward
__________

Test Summary:

19 Import, Export, and Customization

19-114



     8 Passed, 0 Failed, 0 Incomplete, 2 Skipped.
     Time elapsed: 0.13652 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.

Include Custom Regression Output Layer in Network

You can use a custom output layer in the same way as any other output layer in Deep Learning
Toolbox. This section shows how to create and train a network for regression using the custom output
layer you created earlier.

The example constructs a convolutional neural network architecture, trains a network, and uses the
trained network to predict angles of rotated, handwritten digits. These predictions are useful for
optical character recognition.

Load the example training data.

[XTrain,~,TTrain] = digitTrain4DArrayData;

Create a layer array including the regression output layer maeRegressionLayer.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(1)
    maeRegressionLayer('mae')]

layers = 
  6x1 Layer array with layers:

     1   ''      Image Input           28x28x1 images with 'zerocenter' normalization
     2   ''      2-D Convolution       20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''      Batch Normalization   Batch normalization
     4   ''      ReLU                  ReLU
     5   ''      Fully Connected       1 fully connected layer
     6   'mae'   Regression Output     Mean absolute error

Set the training options and train the network.

options = trainingOptions('sgdm');
net = trainNetwork(XTrain,TTrain,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |        28.28 |         25.1 |          0.0100 |
|       2 |          50 |       00:00:03 |        14.27 |         11.3 |          0.0100 |
|       3 |         100 |       00:00:06 |        14.90 |         11.9 |          0.0100 |
|       4 |         150 |       00:00:10 |        10.21 |          8.0 |          0.0100 |
|       6 |         200 |       00:00:13 |        10.15 |          7.9 |          0.0100 |

 Define Custom Regression Output Layer

19-115



|       7 |         250 |       00:00:17 |        11.57 |          9.0 |          0.0100 |
|       8 |         300 |       00:00:20 |        10.86 |          8.4 |          0.0100 |
|       9 |         350 |       00:00:23 |         9.94 |          7.7 |          0.0100 |
|      11 |         400 |       00:00:27 |         9.97 |          7.2 |          0.0100 |
|      12 |         450 |       00:00:30 |         8.88 |          6.7 |          0.0100 |
|      13 |         500 |       00:00:34 |         9.39 |          5.9 |          0.0100 |
|      15 |         550 |       00:00:37 |         8.73 |          6.2 |          0.0100 |
|      16 |         600 |       00:00:41 |         8.95 |          6.6 |          0.0100 |
|      17 |         650 |       00:00:44 |         8.01 |          5.7 |          0.0100 |
|      18 |         700 |       00:00:48 |         8.35 |          6.2 |          0.0100 |
|      20 |         750 |       00:00:51 |         7.13 |          5.6 |          0.0100 |
|      21 |         800 |       00:00:55 |         7.50 |          5.5 |          0.0100 |
|      22 |         850 |       00:00:58 |         7.11 |          5.6 |          0.0100 |
|      24 |         900 |       00:01:02 |         7.43 |          5.4 |          0.0100 |
|      25 |         950 |       00:01:05 |         6.66 |          4.9 |          0.0100 |
|      26 |        1000 |       00:01:09 |         6.82 |          4.8 |          0.0100 |
|      27 |        1050 |       00:01:13 |         6.65 |          5.1 |          0.0100 |
|      29 |        1100 |       00:01:16 |         7.39 |          5.9 |          0.0100 |
|      30 |        1150 |       00:01:19 |         7.10 |          5.4 |          0.0100 |
|      30 |        1170 |       00:01:21 |         6.64 |          5.0 |          0.0100 |
|========================================================================================|
Training finished: Max epochs completed.

Evaluate the network performance by calculating the prediction error between the predicted and
actual angles of rotation.

[XTest,~,TTest] = digitTest4DArrayData;
YPred = predict(net,XTest);
predictionError = TTest - YPred;

Calculate the number of predictions within an acceptable error margin from the true angles. Set the
threshold to be 10 degrees and calculate the percentage of predictions within this threshold.

thr = 10;
numCorrect = sum(abs(predictionError) < thr);
numTestImages = size(XTest,4);
accuracy = numCorrect/numTestImages

accuracy = 0.7622

See Also
regressionLayer | checkLayer | findPlaceholderLayers | replaceLayer |
assembleNetwork | PlaceholderLayer

More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Classification Output Layer” on page 19-101
• “Specify Custom Output Layer Backward Loss Function” on page 19-124
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-116



Specify Custom Layer Backward Function
If Deep Learning Toolbox does not provide the layer you require for your classification or regression
problem, then you can define your own custom layer. For a list of built-in layers, see “List of Deep
Learning Layers” on page 1-43.

The example “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38 shows
how to create a custom PreLU layer and goes through the following steps:

1 Name the layer — Give the layer a name so that you can use it in MATLAB.
2 Declare the layer properties — Specify the properties of the layer, including learnable

parameters and state parameters.
3 Create a constructor function (optional) — Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then at creation, the software initializes
the Name, Description, and Type properties with [] and sets the number of layer inputs and
outputs to 1.

4 Create initialize function (optional) — Specify how to initialize the learnable and state
parameters when the software initializes the network. If you do not specify an initialize function,
then the software does not initialize parameters when it initializes the network.

5 Create forward functions — Specify how data passes forward through the layer (forward
propagation) at prediction time and at training time.

6 Create reset state function (optional) — Specify how to reset state parameters.
7 Create a backward function (optional) — Specify the derivatives of the loss with respect to the

input data and the learnable parameters (backward propagation). If you do not specify a
backward function, then the forward functions must support dlarray objects.

If the forward function only uses functions that support dlarray objects, then creating a backward
function is optional. In this case, the software determines the derivatives automatically using
automatic differentiation. For a list of functions that support dlarray objects, see “List of Functions
with dlarray Support” on page 19-504. If you want to use functions that do not support dlarray
objects, or want to use a specific algorithm for the backward function, then you can define a custom
backward function using this example as a guide.

Create Custom Layer
The example “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38 shows
how to create a PReLU layer. A PReLU layer performs a threshold operation, where for each channel,
any input value less than zero is multiplied by a scalar learned at training time.[1] For values less
than zero, a PReLU layer applies scaling coefficients αi to each channel of the input. These
coefficients form a learnable parameter, which the layer learns during training.

The PReLU operation is given by

f (xi) =
xi if xi > 0

αixi if xi ≤ 0

where xi is the input of the nonlinear activation f on channel i, and αi is the coefficient controlling the
slope of the negative part. The subscript i in αi indicates that the nonlinear activation can vary on
different channels.

 Specify Custom Layer Backward Function

19-117



View the layer created in the example “Define Custom Deep Learning Layer with Learnable
Parameters” on page 19-38. This layer does not have a backward function.

classdef preluLayer < nnet.layer.Layer ...
        & nnet.layer.Acceleratable
    % Example custom PReLU layer.

    properties (Learnable)
        % Layer learnable parameters
            
        % Scaling coefficient
        Alpha
    end

    methods
        function layer = preluLayer(args) 
            % layer = preluLayer creates a PReLU layer.
            %
            % layer = preluLayer(Name=name) also specifies the
            % layer name.
    
            arguments
                args.Name = "";
            end
    
            % Set layer name.
            layer.Name = args.Name;

            % Set layer description.
            layer.Description = "PReLU";
        end

        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the layer
            % learnable parameters using the specified input layout.

            % Skip initialization of nonempty parameters.
            if ~isempty(layer.Alpha)
                return
            end

            % Input data size.
            sz = layout.Size;
            ndims = numel(sz);

            % Find number of channels.
            idx = finddim(layout,"C");
            numChannels = sz(idx);

            % Initialize Alpha.
            szAlpha = ones(1,ndims);
            szAlpha(idx) = numChannels;
            layer.Alpha = rand(szAlpha);
        end

        function Z = predict(layer, X)
            % Z = predict(layer, X) forwards the input data X through the
            % layer and outputs the result Z.

19 Import, Export, and Customization

19-118



            
            Z = max(X,0) + layer.Alpha .* min(0,X);
        end
    end
end

Note If the layer has a custom backward function, then you can still inherit from
nnet.layer.Formattable.

Create Backward Function
Implement the backward function that returns the derivatives of the loss with respect to the input
data and the learnable parameters.

The backward function syntax depends on the type of layer.

• dLdX = backward(layer,X,Z,dLdZ,memory) returns the derivatives dLdX of the loss with
respect to the layer input, where layer has a single input and a single output. Z corresponds to
the forward function output and dLdZ corresponds to the derivative of the loss with respect to Z.
The function input memory corresponds to the memory output of the forward function.

• [dLdX,dLdW] = backward(layer,X,Z,dLdZ,memory) also returns the derivative dLdW of the
loss with respect to the learnable parameter, where layer has a single learnable parameter.

• [dLdX,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory) also returns the
derivative dLdSin of the loss with respect to the state input, where layer has a single state
parameter and dLdSout corresponds to the derivative of the loss with respect to the layer state
output.

• [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory) also returns the
derivative dLdW of the loss with respect to the learnable parameter and returns the derivative
dLdSin of the loss with respect to the layer state input, where layer has a single state parameter
and single learnable parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, multiple learnable
parameters, or multiple state parameters:

• For layers with multiple inputs, replace X and dLdX with X1,...,XN and dLdX1,...,dLdXN,
respectively, where N is the number of inputs.

• For layers with multiple outputs, replace Z and dLdZ with Z1,...,ZM and dLdZ1,...,dLdZM,
respectively, where M is the number of outputs.

• For layers with multiple learnable parameters, replace dLdW with dLdW1,...,dLdWP, where P is
the number of learnable parameters.

• For layers with multiple state parameters, replace dLdSin and dLdSout with
dLdSin1,...,dLdSinK and dLdSout1,...,dLdSoutK, respectively, where K is the number of
state parameters.

To reduce memory usage by preventing unused variables being saved between the forward and
backward pass, replace the corresponding input arguments with ~.

Tip If the number of inputs to backward can vary, then use varargin instead of the input
arguments after layer. In this case, varargin is a cell array of the inputs, where the first N

 Specify Custom Layer Backward Function

19-119



elements correspond to the N layer inputs, the next M elements correspond to the M layer outputs, the
next M elements correspond to the derivatives of the loss with respect to the M layer outputs, the next
K elements correspond to the K derivatives of the loss with respect to the K state outputs, and the last
element corresponds to memory.

If the number of outputs can vary, then use varargout instead of the output arguments. In this case,
varargout is a cell array of the outputs, where the first N elements correspond to the N the
derivatives of the loss with respect to the N layer inputs, the next P elements correspond to the
derivatives of the loss with respect to the P learnable parameters, and the next K elements
correspond to the derivatives of the loss with respect to the K state inputs.

Note dlnetwork objects do not support custom layers that require a memory value in a custom
backward function. To use a custom layer with a custom backward function in a dlnetwork object,
the memory input of the backward function definition must be ~.

Because a PReLU layer has only one input, one output, one learnable parameter, and does not require
the outputs of the layer forward function or a memory value, the syntax for backward for a PReLU
layer is [dLdX,dLdAlpha] = backward(layer,X,~,dLdZ,~). The dimensions of X are the same
as in the forward function. The dimensions of dLdZ are the same as the dimensions of the output Z of
the forward function. The dimensions and data type of dLdX are the same as the dimensions and data
type of X. The dimension and data type of dLdAlpha is the same as the dimension and data type of
the learnable parameter Alpha.

During the backward pass, the layer automatically updates the learnable parameters using the
corresponding derivatives.

To include a custom layer in a network, the layer forward functions must accept the outputs of the
previous layer and forward propagate arrays with the size expected by the next layer. Similarly, when
backward is specified, the backward function must accept inputs with the same size as the
corresponding output of the forward function and backward propagate derivatives with the same
size.

The derivative of the loss with respect to the input data is

∂L
∂xi

= ∂L
∂ f (xi)

∂ f (xi)
∂xi

where ∂L/ ∂ f (xi) is the gradient propagated from the next layer, and the derivative of the activation is

∂ f (xi)
∂xi

=
1 if xi ≥ 0
αi if xi < 0

.

The derivative of the loss with respect to the learnable parameters is

∂L
∂αi

= ∑
j

∂L
∂ f (xi j)

∂ f (xi j)
∂αi

where i indexes the channels, j indexes the elements over height, width, and observations, and the
gradient of the activation is

∂ f (xi)
∂αi

=
0 if xi ≥ 0
xi if xi < 0

.

19 Import, Export, and Customization

19-120



Create the backward function that returns these derivatives.
        function [dLdX, dLdAlpha] = backward(layer, X, ~, dLdZ, ~)
            % [dLdX, dLdAlpha] = backward(layer, X, ~, dLdZ, ~)
            % backward propagates the derivative of the loss function
            % through the layer.
            % Inputs:
            %         layer    - Layer to backward propagate through
            %         X        - Input data
            %         dLdZ     - Gradient propagated from the deeper layer
            % Outputs:
            %         dLdX     - Derivative of the loss with respect to the
            %                    input data
            %         dLdAlpha - Derivative of the loss with respect to the
            %                    learnable parameter Alpha
            
            dLdX = layer.Alpha .* dLdZ;
            dLdX(X>0) = dLdZ(X>0);
            dLdAlpha = min(0,X) .* dLdZ;
            dLdAlpha = sum(dLdAlpha,[1 2]);
    
            % Sum over all observations in mini-batch.
            dLdAlpha = sum(dLdAlpha,4);
        end

Complete Layer
View the completed layer class file.

classdef preluLayer < nnet.layer.Layer
    % Example custom PReLU layer.

    properties (Learnable)
        % Layer learnable parameters
            
        % Scaling coefficient
        Alpha
    end
    
    methods
        function layer = preluLayer(args) 
            % layer = preluLayer creates a PReLU layer.
            %
            % layer = preluLayer(Name=name) also specifies the
            % layer name.
    
            arguments
                args.Name = "";
            end
    
            % Set layer name.
            layer.Name = args.Name;

            % Set layer description.
            layer.Description = "PReLU";
        end

        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the layer
            % learnable parameters using the specified input layout.

            % Skip initialization of nonempty parameters.
            if ~isempty(layer.Alpha)
                return

 Specify Custom Layer Backward Function

19-121



            end

            % Input data size.
            sz = layout.Size;
            ndims = numel(sz);

            % Find number of channels.
            idx = finddim(layout,"C");
            numChannels = sz(idx);

            % Initialize Alpha.
            szAlpha = ones(1,ndims);
            szAlpha(idx) = numChannels;
            layer.Alpha = rand(szAlpha);
        end

        function Z = predict(layer, X)
            % Z = predict(layer, X) forwards the input data X through the
            % layer and outputs the result Z.
            
            Z = max(X,0) + layer.Alpha .* min(0,X);
        end
        
        function [dLdX, dLdAlpha] = backward(layer, X, ~, dLdZ, ~)
            % [dLdX, dLdAlpha] = backward(layer, X, ~, dLdZ, ~)
            % backward propagates the derivative of the loss function
            % through the layer.
            % Inputs:
            %         layer    - Layer to backward propagate through
            %         X        - Input data
            %         dLdZ     - Gradient propagated from the deeper layer
            % Outputs:
            %         dLdX     - Derivative of the loss with respect to the
            %                    input data
            %         dLdAlpha - Derivative of the loss with respect to the
            %                    learnable parameter Alpha
            
            dLdX = layer.Alpha .* dLdZ;
            dLdX(X>0) = dLdZ(X>0);
            dLdAlpha = min(0,X) .* dLdZ;
            dLdAlpha = sum(dLdAlpha,[1 2]);
    
            % Sum over all observations in mini-batch.
            dLdAlpha = sum(dLdAlpha,4);
        end
    end
end

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel

19 Import, Export, and Customization

19-122



Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

References
[1] "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification."

In 2015 IEEE International Conference on Computer Vision (ICCV), 1026–34. Santiago, Chile:
IEEE, 2015. https://doi.org/10.1109/ICCV.2015.123.

See Also
functionLayer | checkLayer | setLearnRateFactor | setL2Factor | getLearnRateFactor |
getL2Factor | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer | networkDataLayout

More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168

 Specify Custom Layer Backward Function

19-123



Specify Custom Output Layer Backward Loss Function
If Deep Learning Toolbox does not provide the layer you require for your classification or regression
problem, then you can define your own custom layer. For a list of built-in layers, see “List of Deep
Learning Layers” on page 1-43.

The example “Define Custom Classification Output Layer” on page 19-101 shows how to define and
create a custom classification output layer with sum of squares error (SSE) loss and goes through the
following steps:

1 Name the layer – Give the layer a name so it can be used in MATLAB.
2 Declare the layer properties – Specify the properties of the layer.
3 Create a constructor function (optional) – Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then the software initializes the
properties with '' at creation.

4 Create a forward loss function – Specify the loss between the predictions and the training
targets.

5 Create a backward loss function (optional) – Specify the derivative of the loss with respect to the
predictions. If you do not specify a backward loss function, then the forward loss function must
support dlarray objects.

Creating a backward loss function is optional. If the forward loss function only uses functions that
support dlarray objects, then software determines the derivatives automatically using automatic
differentiation. For a list of functions that support dlarray objects, see “List of Functions with
dlarray Support” on page 19-504. If you want to use functions that do not support dlarray objects,
or want to use a specific algorithm for the backward loss function, then you can define a custom
backward function using this example as a guide.

Create Custom Layer
The example “Define Custom Classification Output Layer” on page 19-101 shows how to create a SSE
classification layer.

A classification SSE layer computes the sum of squares error loss for classification problems. SSE is
an error measure between two continuous random variables. For predictions Y and training targets T,
the SSE loss between Y and T is given by

L = 1
N∑

n = 1

N

∑
i = 1

K

(Yni− Tni)2,

where N is the number of observations and K is the number of classes.

View the layer created in the example “Define Custom Classification Output Layer” on page 19-101.
This layer does not have a backwardLoss function.

classdef sseClassificationLayer < nnet.layer.ClassificationLayer ... 
        & nnet.layer.Acceleratable
    % Example custom classification layer with sum of squares error loss.
    
    methods

19 Import, Export, and Customization

19-124



        function layer = sseClassificationLayer(name)
            % layer = sseClassificationLayer(name) creates a sum of squares
            % error classification layer and specifies the layer name.
    
            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = 'Sum of squares error';
        end
        
        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the SSE loss between
            % the predictions Y and the training targets T.

            % Calculate sum of squares.
            sumSquares = sum((Y-T).^2);
    
            % Take mean over mini-batch.
            N = size(Y,4);
            loss = sum(sumSquares)/N;
        end
    end
end

Create Backward Loss Function
Implement the backwardLoss function that returns the derivatives of the loss with respect to the
input data and the learnable parameters.

The syntax for backwardLoss is dLdY = backwardLoss(layer,Y,T). The input Y contains the
predictions made by the network and T contains the training targets. The output dLdY is the
derivative of the loss with respect to the predictions Y. The output dLdY must be the same size as the
layer input Y.

The dimensions of Y and T are the same as the inputs in forwardLoss.

The derivative of the SSE loss with respect to the predictions Y is given by

δL
δYi

= 2
N (Yi− Ti),

where N is the number of observations in the input.

Create the backward loss function that returns these derivatives.
        function dLdY = backwardLoss(layer, Y, T)
            % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
            % the SSE loss with respect to the predictions Y.
            
            N = size(Y,4);
            dLdY = 2*(Y-T)/N;
        end

Complete Layer
View the completed layer class file.

 Specify Custom Output Layer Backward Loss Function

19-125



classdef sseClassificationLayer < nnet.layer.ClassificationLayer
    % Example custom classification layer with sum of squares error loss.
    
    methods
        function layer = sseClassificationLayer(name)
            % layer = sseClassificationLayer(name) creates a sum of squares
            % error classification layer and specifies the layer name.
    
            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = 'Sum of squares error';
        end
        
        function loss = forwardLoss(layer, Y, T)
            % loss = forwardLoss(layer, Y, T) returns the SSE loss between
            % the predictions Y and the training targets T.

            % Calculate sum of squares.
            sumSquares = sum((Y-T).^2);
    
            % Take mean over mini-batch.
            N = size(Y,4);
            loss = sum(sumSquares)/N;
        end

        function dLdY = backwardLoss(layer, Y, T)
            % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
            % the SSE loss with respect to the predictions Y.
            
            N = size(Y,4);
            dLdY = 2*(Y-T)/N;
        end
    end
end

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

See Also
checkLayer | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer

19 Import, Export, and Customization

19-126



More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Classification Output Layer” on page 19-101
• “Define Custom Regression Output Layer” on page 19-109
• “Check Custom Layer Validity” on page 19-168

 Specify Custom Output Layer Backward Loss Function

19-127



Custom Layer Function Acceleration
If you do not specify a backward function when you define a custom layer, then the software
automatically determines the gradients using automatic differentiation.

When you train a network with a custom layer without a backward function, the software traces each
input dlarray object of the custom layer forward function to determine the computation graph used
for automatic differentiation. This tracing process can take some time and can end up recomputing
the same trace. By optimizing, caching, and reusing the traces, you can speed up gradient
computation when training a network. The software can also reuse these traces to speed up network
predictions after training.

The trace depends on the size, format, and underlying data type of the layer inputs. That is, the layer
triggers a new trace for inputs with a size, format, or underlying data type not contained in the
cache. Any inputs differing only by value to a previously cached trace do not trigger a new trace.

To indicate that the custom layer supports acceleration, also inherit from the
nnet.layer.Acceleratable class when defining the custom layer. When a custom layer inherits
from nnet.layer.Acceleratable, the software automatically caches traces when passing data
through a dlnetwork object.

For example, to indicate that the custom layer myLayer supports acceleration, use this syntax

classdef myLayer < nnet.layer.Layer & nnet.layer.Acceleratable
    ...
end

Acceleration Considerations
Because of the nature of caching traces, not all functions support acceleration.

The caching process can cache values or code structures that you might expect to change or that
depend on external factors. You must take care when accelerating custom layers that:

• Generate random numbers.
• Use if statements and while loops with conditions that depend on the values of dlarray

objects.

Because the caching process requires extra computation, acceleration can lead to longer running
code in some cases. This scenario can happen when the software spends time creating new caches
that do not get reused often. For example, when you pass multiple mini-batches of different sequence
lengths to the function, the software triggers a new trace for each unique sequence length.

When custom layer acceleration causes slowdown, you can disable acceleration by removing the
Acceleratable mixin or by disabling acceleration of the dlnetwork object functions predict and
forward by setting the Acceleration option to "none".

Functions with Random Number Generation

You must take care when accelerating functions that use random number generation, such as
functions that generate random noise to add to the input. When the software caches the trace of a
function that generates random numbers that are not dlarray objects, the software caches the
resulting random samples in the trace. When reusing the trace, the accelerated function uses the
cached random sample. The accelerated function does not generate new random values.

19 Import, Export, and Customization

19-128



Random number generation using the "like" option of the rand function with a dlarray object
supports acceleration. To use random number generation in an accelerated function, ensure that the
function uses the rand function with the "like" option set to a traced dlarray object (a dlarray
object that depends on an input dlarray object).

For example, consider the following layer predict function, which adds random noise to the input.
function Z = predict(layer,X)

sz = size(X);
noise = rand(sz);
Z = X + noise;

end

To ensure that the rand function generates a new value for each evaluation, use the "like" option
with the traced dlarray object X.
function Z = predict(layer,X)

sz = size(X);
noise = rand(sz,"like",X);
Z = X + noise;

end

Functions with if Statements and while Loops

You must take care when accelerating functions that use if statements and while loops. In
particular, you can get unexpected results when you accelerate functions with if statements or
while loops that yield different code paths for function inputs of the same size and format.

Accelerating functions with if statement or while loop conditions that depend on the values of the
function input or values from external sources (for example, results of random number generation)
can lead to unexpected behavior. When the accelerated function caches a new trace, if the function
contains an if statement or while loop, then the software caches the trace of the resulting code
path given by the if statement or while loop condition for that particular trace. Because changes in
the value of the dlarray input does not trigger a new trace, when reusing the trace with different
values, the software uses the same cached trace (which contains the same cached code path) even
when a difference in value should result in a different code path.

Usually, accelerating functions that contain if statements or while loops with conditions that do not
depend on the values of the function input or external factors (for example, while loops that iterate
over elements in an array) does not result in unexpected behavior. For example, because changes in
the size of a dlarray input triggers a new trace, when reusing the trace with inputs of the same size,
the cached code path for inputs of that size remain consistent, even when there are differences in
values.

To avoid unexpected behavior from caching code paths of if statements, you can refactor your code
so that it determines the correct result by combining the results of all branches and extracting the
desired solution.

For example, consider this code.

if tf
  Y = funcA(X);
else
  Y = funcB(X);
end

To support acceleration, you can replace it with code of the following form.

 Custom Layer Function Acceleration

19-129



Y = tf*funcA(X) + ~tf*funcB(X);

Alternatively, to avoid unnecessary multiply operations, you can also use this replacement.

Y = cat(3,funcA(X),funcB(X));
Y = Y(:,:,[tf ~tf]);

Note that these techniques can result in longer running code because they require executing the
code used in both branches of the if statement.

dlode45 Does Not Support Acceleration When GradientMode Is "direct"

The software does not support accelerating the dlode45 function when the GradientMode option is
"direct". The resulting layer output might return unexpected results. To accelerate the code that
calls the dlode45 function, set the GradientMode option to "adjoint".

See Also
functionLayer | checkLayer

Related Examples
• “Define Custom Deep Learning Layers” on page 19-9
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Define Nested Deep Learning Layer” on page 19-134
• “Specify Custom Layer Backward Function” on page 19-117
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-130



Deep Learning Network Composition
To create a custom layer that itself defines a layer graph, you can declare a dlnetwork object as a
learnable parameter in the properties (Learnable) section of the layer definition. This method is
known as network composition. You can use network composition to:

• Create a single custom layer that represents a block of learnable layers, for example, a residual
block.

• Create a network with control flow, for example, a network with a section that can dynamically
change depending on the input data.

• Create a network with loops, for example, a network with sections that feed the output back into
itself.

For nested networks that have both learnable and state parameters, for example, networks with
batch normalization or LSTM layers, declare the network in the properties (Learnable,
State) section of the layer definition.

For an example showing how to define a custom layer containing a learnable dlnetwork object, see
“Define Nested Deep Learning Layer” on page 19-134.

For an example showing how to train a network with nested layers, see “Train Deep Learning
Network with Nested Layers” on page 19-149.

Automatically Initialize Learnable dlnetwork Objects for Training
You can create a custom layer and allow the software to automatically initialize the learnable
parameters of any nested dlnetwork objects after the parent network is fully constructed. Automatic
initialization of the nested network means that you do not need to keep track of the size and shape of
the inputs passed to each custom layer containing a nested dlnetwork

To use the predict and forward functions for dlnetwork objects, the input data must be formatted
dlarray objects. To ensure that the software passes formatted dlarray objects to the layer
functions, include the Formattable mixin in the class definition.

classdef myLayer < nnet.layer.Layer & nnet.layer.Formattable
    ...
end

To take advantage of automatic initialization, you must specify that the constructor function creates
an uninitialized dlnetwork object. To create an uninitialized dlnetwork object, set the Initialize
name-value option to false. You do not need to specify an input layer, so you do not need to specify an
input size for the layer.

function layer = myLayer

    % Initialize layer properties.
    ...

    % Define network.
    layers = [
        % Network layers go here.
        ];

 Deep Learning Network Composition

19-131



    layer.Network = dlnetwork(lgraph,Initialize=false);
end

When the parent network is initialized, the learnable parameters of any nested dlnetwork objects
are initialized at the same time. The size of the learnable parameters depends on the size of the input
data of the custom layer. The software propagates the data through the nested network and
automatically initializes the parameters according to the propagated sizes and the initialization
properties of the layers of the nested network.

If the parent network is trained using the trainNetwork function, then any nested dlnetwork
objects are initialized when you call trainNetwork. If the parent network is a dlnetwork, then any
nested dlnetwork objects are initialized when the parent network is constructed (if the parent
dlnetwork is initialized at construction) or when you use the initialize function with the parent
network (if the parent dlnetwork is not initialized at construction).

If you do not want to make use of automatic initialization, you can construct the custom layer with the
nested network already initialized. In this case, the nested network is initialized before the parent
network. To initialize the nested network at construction, you must manually specify the size of any
inputs to the nested network. This requires manually specifying the size of any inputs to the nested
network. You can do so either by using input layers or by providing example inputs to the dlnetwork
constructor function. Because you must specify the sizes of any inputs to the dlnetwork object, you
might need to specify input sizes when you create the layer. For help determining the size of the
inputs to the layer, you can use the analyzeNetwork function and check the size of the activations
of the previous layers.

Predict and Forward Functions
Some layers behave differently during training and during prediction. For example, a dropout layer
performs dropout only during training and has no effect during prediction. A layer uses one of two
functions to perform a forward pass: predict or forward. If the forward pass is at prediction time,
then the layer uses the predict function. If the forward pass is at training time, then the layer uses
the forward function. If you do not require two different functions for prediction time and training
time, then you can omit the forward function. When you do so, the layer uses predict at training
time.

When implementing the predict and the forward functions of the custom layer, to ensure that the
layers in the dlnetwork object behave in the correct way, use the predict and forward functions
for dlnetwork objects, respectively.

Custom layers with learnable dlnetwork objects do not support custom backward functions.

This example code shows how to use the predict and forward functions with dlnetwork input.

function Z = predict(layer,X)
    % Predict using network.
    net = layer.Network;
    Z = predict(net,X);
end

function Z = forward(layer,X)
    % Forward pass using network.
    net = layer.Network;
    Z = forward(net,X);
end

19 Import, Export, and Customization

19-132



This example code shows how to use the predict and forward functions with dlnetwork objects
that have state parameters.

function [Z,state] = predict(layer,X)
    % Predict using network.
    net = layer.Network;
    [Z,state] = predict(net,X);
end

function [Z,state] = forward(layer,X)
    % Forward pass using network.
    net = layer.Network;
    [Z,state] = forward(net,X);
end

If the dlnetwork object does not behave differently during training and prediction, then you can
omit the forward function. In this case, the software uses the predict function during training.

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

See Also
checkLayer | trainNetwork | trainingOptions | analyzeNetwork | dlnetwork

More About
• “Train Deep Learning Network with Nested Layers” on page 19-149
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168

 Deep Learning Network Composition

19-133



Define Nested Deep Learning Layer
If Deep Learning Toolbox does not provide the layer you require for your classification or regression
problem, then you can define your own custom layer using this example as a guide. For a list of built-
in layers, see “List of Deep Learning Layers” on page 1-43.

To create a custom layer that itself defines a layer graph, you can declare a dlnetwork object as a
learnable parameter in the properties (Learnable) section of the layer definition. This method is
known as network composition. You can use network composition to:

• Create a single custom layer that represents a block of learnable layers, for example, a residual
block.

• Create a network with control flow, for example, a network with a section that can dynamically
change depending on the input data.

• Create a network with loops, for example, a network with sections that feed the output back into
itself.

For nested networks that have both learnable and state parameters, for example, networks with
batch normalization or LSTM layers, declare the network in the properties (Learnable,
State) section of the layer definition.

For more information, see “Deep Learning Network Composition” on page 19-131.

This example shows how to create a custom layer representing a residual block. The custom layer
residualBlockLayer contains a learnable block of layers consisting of convolution, batch
normalization, ReLU, and addition layers, and also includes a skip connection and an optional
convolution layer and batch normalization layer in the skip connection. The layer has a single input
that is used twice, as the input to each branch. This diagram highlights the residual block structure.

Tip For this use case, it's typically easier to use a layer graph without nesting. For an example
showing how to create a residual network without using custom layers, see “Train Residual Network
for Image Classification” on page 3-13.

19 Import, Export, and Customization

19-134



To define a custom deep learning layer, you can use the template provided in this example, which
takes you through the following steps:

1 Name the layer — Give the layer a name so that you can use it in MATLAB.
2 Declare the layer properties — Specify the properties of the layer, including learnable

parameters and state parameters.
3 Create a constructor function (optional) — Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then at creation, the software initializes
the Name, Description, and Type properties with [] and sets the number of layer inputs and
outputs to 1.

4 Create initialize function (optional) — Specify how to initialize the learnable and state
parameters when the software initializes the network. If you do not specify an initialize function,
then the software does not initialize parameters when it initializes the network.

5 Create forward functions — Specify how data passes forward through the layer (forward
propagation) at prediction time and at training time.

6 Create reset state function (optional) — Specify how to reset state parameters.
7 Create a backward function (optional) — Specify the derivatives of the loss with respect to the

input data and the learnable parameters (backward propagation). If you do not specify a
backward function, then the forward functions must support dlarray objects.

 Define Nested Deep Learning Layer

19-135



Intermediate Layer Template
Copy the intermediate layer template into a new file in MATLAB. This template gives the structure of
an intermediate layer class definition. It outlines:

• The optional properties blocks for the layer properties, learnable parameters, and state
parameters.

• The layer constructor function.
• The optional initialize function.
• The predict function and the optional forward function.
• The optional resetState function for layers with state properties.
• The optional backward function.

classdef myLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)

    properties
        % (Optional) Layer properties.

        % Declare layer properties here.
    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Declare learnable parameters here.
    end

    properties (State)
        % (Optional) Layer state parameters.

        % Declare state parameters here.
    end

    properties (Learnable, State)
        % (Optional) Nested dlnetwork objects with both learnable
        % parameters and state parameters.

        % Declare nested networks with learnable and state parameters here.
    end

    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Define layer constructor function here.
        end

        function layer = initialize(layer,layout)
            % (Optional) Initialize layer learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize
            %         layout - Data layout, specified as a networkDataLayout
            %                  object
            %
            % Outputs:
            %         layer - Initialized layer
            %
            %  - For layers with multiple inputs, replace layout with 
            %    layout1,...,layoutN, where N is the number of inputs.
            
            % Define layer initialization function here.
        end

19 Import, Export, and Customization

19-136



        

        function [Z,state] = predict(layer,X)
            % Forward input data through the layer at prediction time and
            % output the result and updated state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - (Optional) Updated layer state
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer predict function here.
        end

        function [Z,state,memory] = forward(layer,X)
            % (Optional) Forward input data through the layer at training
            % time and output the result, the updated state, and a memory
            % value.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Layer input data
            % Outputs:
            %         Z      - Output of layer forward function 
            %         state  - (Optional) Updated layer state 
            %         memory - (Optional) Memory value for custom backward
            %                  function
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer forward function here.
        end

        function layer = resetState(layer)
            % (Optional) Reset layer state.

            % Define reset state function here.
        end

        function [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory)
            % (Optional) Backward propagate the derivative of the loss
            % function through the layer.
            %
            % Inputs:
            %         layer   - Layer to backward propagate through 
            %         X       - Layer input data 
            %         Z       - Layer output data 
            %         dLdZ    - Derivative of loss with respect to layer 
            %                   output
            %         dLdSout - (Optional) Derivative of loss with respect 
            %                   to state output
            %         memory  - Memory value from forward function
            % Outputs:
            %         dLdX   - Derivative of loss with respect to layer input
            %         dLdW   - (Optional) Derivative of loss with respect to
            %                  learnable parameter 

 Define Nested Deep Learning Layer

19-137



            %         dLdSin - (Optional) Derivative of loss with respect to 
            %                  state input
            %
            %  - For layers with state parameters, the backward syntax must
            %    include both dLdSout and dLdSin, or neither.
            %  - For layers with multiple inputs, replace X and dLdX with
            %    X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
            %    the number of inputs.
            %  - For layers with multiple outputs, replace Z and dlZ with
            %    Z1,...,ZM and dLdZ,...,dLdZM, respectively, where M is the
            %    number of outputs.
            %  - For layers with multiple learnable parameters, replace 
            %    dLdW with dLdW1,...,dLdWP, where P is the number of 
            %    learnable parameters.
            %  - For layers with multiple state parameters, replace dLdSin
            %    and dLdSout with dLdSin1,...,dLdSinK and 
            %    dLdSout1,...,dldSoutK, respectively, where K is the number
            %    of state parameters.

            % Define layer backward function here.
        end
    end
end

Name Layer and Specify Superclasses
First, give the layer a name. In the first line of the class file, replace the existing name myLayer with
residualBlockLayer.

classdef residualBlockLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)
    ...
end

If you do not specify a backward function, then the layer functions, by default, receive unformatted
dlarray objects as input. To specify that the layer receives formatted dlarray objects as input and
also outputs formatted dlarray objects, also inherit from the nnet.layer.Formattable class
when defining the custom layer.

Passing data through a dlnetwork requires formatted dlarray objects. To enable the layer to
receive formatted dlarray objects as input, inherit from nnet.layer.Formattable. The layer
functions support acceleration, so also inherit from nnet.layer.Acceleratable. For more
information about accelerating custom layer functions, see “Custom Layer Function Acceleration” on
page 19-128.

classdef residualBlockLayer < nnet.layer.Layer ...
        & nnet.layer.Formattable ...
        & nnet.layer.Acceleratable

    ...
end

Next, rename the myLayer constructor function (the first function in the methods section) so that it
has the same name as the layer.

    methods
        function layer = residualBlockLayer()           
            ...
        end

19 Import, Export, and Customization

19-138



        ...
     end

Save Layer

Save the layer class file in a new file named residualBlockLayer.m. The file name must match the
layer name. To use the layer, you must save the file in the current folder or in a folder on the MATLAB
path.

Declare Properties and Learnable Parameters
Declare the layer properties in the properties section and declare learnable parameters by listing
them in the properties (Learnable) section.

By default, custom intermediate layers have these properties. Do not declare these properties in the
properties section.

Property Description
Name Layer name, specified as a character vector or a

string scalar. For Layer array input, the
trainNetwork, assembleNetwork,
layerGraph, and dlnetwork functions
automatically assign names to layers with the
name ''.

Description One-line description of the layer, specified as a
string scalar or a character vector. This
description appears when the layer is displayed
in a Layer array.

If you do not specify a layer description, then the
software displays the layer class name.

Type Type of the layer, specified as a character vector
or a string scalar. The value of Type appears
when the layer is displayed in a Layer array.

If you do not specify a layer type, then the
software displays the layer class name.

NumInputs Number of inputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumInputs
to the number of names in InputNames. The
default value is 1.

InputNames Input names of the layer, specified as a cell array
of character vectors. If you do not specify this
value and NumInputs is greater than 1, then the
software automatically sets InputNames to
{'in1',...,'inN'}, where N is equal to
NumInputs. The default value is {'in'}.

 Define Nested Deep Learning Layer

19-139



Property Description
NumOutputs Number of outputs of the layer, specified as a

positive integer. If you do not specify this value,
then the software automatically sets NumOutputs
to the number of names in OutputNames. The
default value is 1.

OutputNames Output names of the layer, specified as a cell
array of character vectors. If you do not specify
this value and NumOutputs is greater than 1,
then the software automatically sets
OutputNames to {'out1',...,'outM'},
where M is equal to NumOutputs. The default
value is {'out'}.

If the layer has no other properties, then you can omit the properties section.

Tip If you are creating a layer with multiple inputs, then you must set either the NumInputs or
InputNames properties in the layer constructor. If you are creating a layer with multiple outputs,
then you must set either the NumOutputs or OutputNames properties in the layer constructor. For
an example, see “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53.

The residual block layer does not require any additional properties, so you can remove the
properties section.

This custom layer has only one learnable parameter, the residual block itself specified as a
dlnetwork object. The network also has state parameters (because it has batch normalization
layers), so declare this parameter in the properties (Learnable, State) section and call the
parameter Network.

    properties (Learnable, State)
        % Nested dlnetwork objects with both learnable
        % parameters and state parameters.
    
        % Residual block.
        Network
    end

Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

The residual block layer constructor function requires four input arguments:

• Number of convolutional filters
• Stride (optional, with default stride 1)
• Flag to include convolution in skip connection (optional, with default flag false)
• Layer name (optional, with default name '')

19 Import, Export, and Customization

19-140



In the constructor function residualBlockLayer, specify the required input argument
numFilters and the optional arguments as name-value pairs with the name NameValueArgs. Add a
comment to the top of the function that explains the syntax of the function.
        function layer = residualBlockLayer(numFilters,NameValueArgs)
            % layer = residualBlockLayer(numFilters) creates a residual
            % block layer with the specified number of filters.
            %
            % layer = residualBlockLayer(numFilters,Name=Value) specifies
            % additional options using one or more name-value arguments:
            % 
            %     Stride                 - Stride of convolution operation 
            %                              (default 1)
            %
            %     IncludeSkipConvolution - Flag to include convolution in
            %                              skip connection
            %                              (default false)
            %
            %     Name                   - Layer name
            %                              (default '')

            ...
        end

Parse Input Arguments

Parse the input arguments using an arguments block. List the arguments in the same order as the
function syntax and specify the default values. Then, extract the values from the NameValueArgs
input.
            % Parse input arguments.
            arguments
                numFilters                
                NameValueArgs.Stride = 1
                NameValueArgs.IncludeSkipConvolution = false
                NameValueArgs.Name = ''
            end
            
            stride = NameValueArgs.Stride;
            includeSkipConvolution = NameValueArgs.IncludeSkipConvolution;
            name = NameValueArgs.Name;

Initialize Layer Properties

In the constructor function, initialize the layer properties, including the dlnetwork object. Replace
the comment % Layer constructor function goes here with code that initializes the layer
properties.

Set the Name property to the input argument name.

            % Set layer name.
            layer.Name = name;

Give the layer a one-line description by setting the Description property of the layer. Set the
description to describe the layer and any optional properties.
            % Set layer description.
            description = "Residual block with " + numFilters + " filters, stride " + stride;
            if includeSkipConvolution
                description = description + ", and skip convolution";
            end
            layer.Description = description;

Specify the type of the layer by setting the Type property. The value of Type appears when the layer
is displayed in a Layer array.

            % Set layer type.
            layer.Type = "Residual Block";

 Define Nested Deep Learning Layer

19-141



Define the residual block. You can create the residual block layers as an uninitialized nested
dlnetwork object without an input layer and allow the software to automatically initialize the
learnable and state parameters at training time. For more information, see “Automatically Initialize
Learnable dlnetwork Objects for Training” on page 19-131.

First, create a layer array containing the main layers of the block and convert it to a layer graph.
            % Define nested layer graph.
            layers = [
                convolution2dLayer(3,numFilters,Padding="same",Stride=stride)
                batchNormalizationLayer
                reluLayer
                convolution2dLayer(3,numFilters,Padding="same")
                batchNormalizationLayer
                
                additionLayer(2,Name="add")
                reluLayer];
            
            lgraph = layerGraph(layers);

Next, add the skip connection. If the includeSkipConvolution flag is true, then also include a
convolution layer and batch normalization layer in the skip connection.
            % Add skip connection.
            if includeSkipConvolution
                layers = [
                    convolution2dLayer(1,numFilters,Stride=stride)
                    batchNormalizationLayer(Name="bnSkip")];
                
                lgraph = addLayers(lgraph,layers);
                lgraph = connectLayers(lgraph,"bnSkip","add/in2"); 
            end

Since there is no input layer, this network has two unconnected inputs. If the network does not have
the skip connection, the input to the first convolution layer and one of the inputs to the 'add' layer
are unconnected. If the network does have the skip connection, then the unconnected inputs are the
inputs to the first convolution layer and the convolution layer in the skip connection.

Finally, convert the layer graph to a dlnetwork object and set the layer Network property. Create an
uninitialized dlnetwork object. The weights and learnable parameters in the dlnetwork object are
automatically initialized when the complete network is assembled for training.

            % Convert to dlnetwork.
            net = dlnetwork(lgraph,'Initialize',false);
            
            % Set Network property.
            layer.Network = net;

View the completed constructor function.
        function layer = residualBlockLayer(numFilters,NameValueArgs)
            % layer = residualBlockLayer(numFilters) creates a residual
            % block layer with the specified number of filters.
            %
            % layer = residualBlockLayer(numFilters,Name=Value) specifies
            % additional options using one or more name-value arguments:
            % 
            %     Stride                 - Stride of convolution operation 
            %                              (default 1)
            %
            %     IncludeSkipConvolution - Flag to include convolution in
            %                              skip connection
            %                              (default false)
            %
            %     Name                   - Layer name
            %                              (default '')
    
            % Parse input arguments.
            arguments
                numFilters

19 Import, Export, and Customization

19-142



                NameValueArgs.Stride = 1
                NameValueArgs.IncludeSkipConvolution = false
                NameValueArgs.Name = ''
            end
    
            stride = NameValueArgs.Stride;
            includeSkipConvolution = NameValueArgs.IncludeSkipConvolution;
            name = NameValueArgs.Name;
    
            % Set layer name.
            layer.Name = name;
    
            % Set layer description.
            description = "Residual block with " + numFilters + " filters, stride " + stride;
            if includeSkipConvolution
                description = description + ", and skip convolution";
            end
            layer.Description = description;
            
            % Set layer type.
            layer.Type = "Residual Block";
    
            % Define nested layer graph.
            layers = [
                convolution2dLayer(3,numFilters,Padding="same",Stride=stride)
                batchNormalizationLayer
                reluLayer
                convolution2dLayer(3,numFilters,Padding="same")
                batchNormalizationLayer
    
                additionLayer(2,Name="add")
                reluLayer];
    
            lgraph = layerGraph(layers);
    
            % Add skip connection.
            if includeSkipConvolution
                layers = [
                    convolution2dLayer(1,numFilters,Stride=stride)
                    batchNormalizationLayer(Name="bnSkip")];
     
                lgraph = addLayers(lgraph,layers);
                lgraph = connectLayers(lgraph,'bnSkip','add/in2');  
            end 
    
            % Convert to dlnetwork.
            net = dlnetwork(lgraph,Initialize=false);
    
            % Set Network property.
            layer.Network = net;
        end

With this constructor function, the command
residualBlockLayer(64,Stride=2,IncludeSkipConvolution=true,Name="res5") creates
a residual block layer with 64 filters, a stride of 2, a convolution in the skip connection, and with the
name "res5". The required sizes of weights and parameters are determined when the completed
network is assembled for training.

Because the nested network supports automatic initialization, defining the initialize function is
optional. For layers that require information from the input data to initialize the learnable
parameters, for example, the weights of a PReLU layer must have the same number of channels as
the input data, you can implement a custom initialize function. For an example, see “Define
Custom Deep Learning Layer with Learnable Parameters” on page 19-38.

Create Forward Functions
Create the layer forward functions to use at prediction time and training time.

Create a function named predict that propagates the data forward through the layer at prediction
time and outputs the result.

 Define Nested Deep Learning Layer

19-143



The predict function syntax depends on the type of layer.

• Z = predict(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = predict(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

Tip If the custom layer has a dlnetwork object for a learnable parameter, then in the predict
function of the custom layer, use the predict function for the dlnetwork. When you do so, the
dlnetwork object predict function uses the appropriate layer operations for prediction. If the
dlnetwork has state parameters, then also return the network state.

Because the residual block has only one input, one output, and a state parameter, the syntax for
predict for the custom layer is [Z,state] = predict(layer,X).

By default, the layer uses predict as the forward function at training time. To use a different
forward function at training time, or retain a value required for a custom backward function, you
must also create a function named forward.

The dimensions of the inputs depend on the type of data and the output of the connected layers.

Layer Input Input Size Observation Dimension
Feature vectors c-by-N, where c corresponds to

the number of channels and N is
the number of observations

2

2-D images h-by-w-by-c-by-N, where h, w,
and c correspond to the height,
width, and number of channels
of the images, respectively, and
N is the number of observations

4

19 Import, Export, and Customization

19-144



Layer Input Input Size Observation Dimension
3-D images h-by-w-by-d-by-c-by-N, where h,

w, d, and c correspond to the
height, width, depth, and
number of channels of the 3-D
images, respectively, and N is
the number of observations

5

Vector sequences c-by-N-by-S, where c is the
number of features of the
sequences, N is the number of
observations, and S is the
sequence length

2

2-D image sequences h-by-w-by-c-by-N-by-S, where h,
w, and c correspond to the
height, width, and number of
channels of the images,
respectively, N is the number of
observations, and S is the
sequence length

4

3-D image sequences h-by-w-by-d-by-c-by-N-by-S,
where h, w, d, and c correspond
to the height, width, depth, and
number of channels of the 3-D
images, respectively, N is the
number of observations, and S
is the sequence length

5

For layers that output sequences, the layers can output sequences of any length or output data with
no time dimension. Note that when you train a network that outputs sequences using the
trainNetwork function, the lengths of the input and output sequences must match.

For the residual block layer, a forward pass of the layer is simply a forward pass of the dlnetwork
object.

Implement this operation in the custom layer function predict. To perform a forward pass of the
dlnetwork for prediction, use the predict function for dlnetwork objects. In this case, the input
to the residual block layer is used as the input to both of the unconnected inputs to the dlnetwork
object, so the syntax for predict for the dlnetwork object is [Z,state] = predict(net,X,X).

Because the layers in the dlnetwork object do not behave differently during training and that the
residual block layer does not require memory or a different forward function for training, you can
remove the forward function from the class file.

Create the predict function and add a comment to the top of the function that explains the syntaxes
of the function.

        function [Z,state] = predict(layer, X)
            % Forward input data through the layer at prediction time and
            % output the result and state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through

 Define Nested Deep Learning Layer

19-145



            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - Layer state

            % Predict using network.
            net = layer.Network;
            [Z,state] = predict(net,X,X);
            
        end

Because the predict function uses only functions that support dlarray objects, defining the
backward function is optional. For a list of functions that support dlarray objects, see “List of
Functions with dlarray Support” on page 19-504.

Completed Layer
View the completed layer class file.

classdef residualBlockLayer < nnet.layer.Layer ...
        & nnet.layer.Formattable ...
        & nnet.layer.Acceleratable
    % Example custom residual block layer.

    properties (Learnable, State)
        % Nested dlnetwork objects with both learnable
        % parameters and state parameters.
    
        % Residual block.
        Network
    end
    
    methods
        function layer = residualBlockLayer(numFilters,NameValueArgs)
            % layer = residualBlockLayer(numFilters) creates a residual
            % block layer with the specified number of filters.
            %
            % layer = residualBlockLayer(numFilters,Name=Value) specifies
            % additional options using one or more name-value arguments:
            % 
            %     Stride                 - Stride of convolution operation 
            %                              (default 1)
            %
            %     IncludeSkipConvolution - Flag to include convolution in
            %                              skip connection
            %                              (default false)
            %
            %     Name                   - Layer name
            %                              (default '')
    
            % Parse input arguments.
            arguments
                numFilters
                NameValueArgs.Stride = 1
                NameValueArgs.IncludeSkipConvolution = false
                NameValueArgs.Name = ''

19 Import, Export, and Customization

19-146



            end
    
            stride = NameValueArgs.Stride;
            includeSkipConvolution = NameValueArgs.IncludeSkipConvolution;
            name = NameValueArgs.Name;
    
            % Set layer name.
            layer.Name = name;
    
            % Set layer description.
            description = "Residual block with " + numFilters + " filters, stride " + stride;
            if includeSkipConvolution
                description = description + ", and skip convolution";
            end
            layer.Description = description;
            
            % Set layer type.
            layer.Type = "Residual Block";
    
            % Define nested layer graph.
            layers = [
                convolution2dLayer(3,numFilters,Padding="same",Stride=stride)
                batchNormalizationLayer
                reluLayer
                convolution2dLayer(3,numFilters,Padding="same")
                batchNormalizationLayer
    
                additionLayer(2,Name="add")
                reluLayer];
    
            lgraph = layerGraph(layers);
    
            % Add skip connection.
            if includeSkipConvolution
                layers = [
                    convolution2dLayer(1,numFilters,Stride=stride)
                    batchNormalizationLayer(Name="bnSkip")];
     
                lgraph = addLayers(lgraph,layers);
                lgraph = connectLayers(lgraph,'bnSkip','add/in2');  
            end 
    
            % Convert to dlnetwork.
            net = dlnetwork(lgraph,Initialize=false);
    
            % Set Network property.
            layer.Network = net;
        end
        
        function [Z,state] = predict(layer, X)
            % Forward input data through the layer at prediction time and
            % output the result and state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function

 Define Nested Deep Learning Layer

19-147



            %         state - Layer state

            % Predict using network.
            net = layer.Network;
            [Z,state] = predict(net,X,X);
            
        end
    end
end

GPU Compatibility
If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

In this example, the MATLAB functions used in predict all support dlarray objects, so the layer is
GPU compatible.

See Also
setLearnRateFactor | checkLayer | setL2Factor | getLearnRateFactor | getL2Factor |
assembleNetwork | networkDataLayout

More About
• “Deep Learning Network Composition” on page 19-131
• “Train Deep Learning Network with Nested Layers” on page 19-149
• “Define Custom Deep Learning Layers” on page 19-9
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Custom Classification Output Layer” on page 19-101
• “Define Custom Regression Output Layer” on page 19-109
• “Check Custom Layer Validity” on page 19-168

19 Import, Export, and Customization

19-148



Train Deep Learning Network with Nested Layers

This example shows how to train a network with nested layers.

To create a custom layer that itself defines a layer graph, you can specify a dlnetwork object as a
learnable parameter. This method is known as network composition. You can use network
composition to:

• Create a single custom layer that represents a block of learnable layers, for example, a residual
block.

• Create a network with control flow. For example, a network with a section that can dynamically
change depending on the input data.

• Create a network with loops. For example, a network with sections that feed the output back into
itself.

For more information, see “Deep Learning Network Composition” on page 19-131.

This example shows how to train a network using custom layers representing residual blocks, each
containing multiple convolution, batch normalization, and ReLU layers with a skip connection. For
this use case, it's typically easier to use a layer graph without nesting. For an example showing how
to create a residual network without using custom layers, see “Train Residual Network for Image
Classification” on page 3-13.

Residual connections are a popular element in convolutional neural network architectures. A residual
network is a type of network that has residual (or shortcut) connections that bypass the main network
layers. Using residual connections improves gradient flow through the network and enables the
training of deeper networks. This increased network depth can yield higher accuracies on more
difficult tasks.

This example uses the custom layer residualBlockLayer, which contains a learnable block of
layers consisting of convolution, batch normalization, ReLU, and addition layers, and also includes a
skip connection and an optional convolution layer and batch normalization layer in the skip
connection. This diagram highlights the residual block structure.

 Train Deep Learning Network with Nested Layers

19-149



For an example showing how to create the custom layer residualBlockLayer, see “Define Nested
Deep Learning Layer” on page 19-134.

Prepare Data

Download and extract the Flowers data set [1].

url = "http://download.tensorflow.org/example_images/flower_photos.tgz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"flower_dataset.tgz");

imageFolder = fullfile(downloadFolder,"flower_photos");
if ~datasetExists(imageFolder)
    disp("Downloading Flowers data set (218 MB)...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

Create an image datastore containing the photos.

datasetFolder = fullfile(imageFolder);
imds = imageDatastore(datasetFolder, ...

19 Import, Export, and Customization

19-150

https://www.tensorflow.org/datasets/catalog/tf_flowers


    IncludeSubfolders=true, ...
    LabelSource="foldernames");

Partition the data into training and validation data sets. Use 70% of the images for training and 30%
for validation.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,"randomized");

View the number of classes of the data set.

classes = categories(imds.Labels);
numClasses = numel(classes)

numClasses = 5

Data augmentation helps prevent the network from overfitting and memorizing the exact details of
the training images. Resize and augment the images for training using an imageDataAugmenter
object:

• Randomly reflect the images in the vertical axis.
• Randomly translate the images up to 30 pixels vertically and horizontally.
• Randomly rotate the images up to 45 degrees clockwise and counterclockwise.
• Randomly scale the images up to 10% vertically and horizontally.

pixelRange = [-30 30];
scaleRange = [0.9 1.1];
imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange, ...
    RandRotation=[-45 45], ...
    RandXScale=scaleRange, ...
    RandYScale=scaleRange);

Create an augmented image datastore containing the training data using the image data augmenter.
To automatically resize the images to the network input size, specify the height and width of the input
size of the network. This example uses a network with input size [224 224 3].

inputSize = [224 224 3];
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,DataAugmentation=imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore([224 224],imdsValidation);

Define Network Architecture

Define a residual network with six residual blocks using the custom layer residualBlockLayer. To
access this layer, open the example as a live script. For an example showing how to create this
custom layer, see “Define Nested Deep Learning Layer” on page 19-134.

Because you must specify the input size of the input layer of the dlnetwork object, you must specify
the input size when creating the layer. To help determine the input size to the layer, you can use the
analyzeNetwork function and check the size of the activations of the previous layer.

 Train Deep Learning Network with Nested Layers

19-151



numFilters = 32;

layers = [
    imageInputLayer(inputSize)
    convolution2dLayer(7,numFilters,Stride=2,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3,Stride=2)
    residualBlockLayer(numFilters)
    residualBlockLayer(numFilters)
    residualBlockLayer(2*numFilters,Stride=2,IncludeSkipConvolution=true)
    residualBlockLayer(2*numFilters)
    residualBlockLayer(4*numFilters,Stride=2,IncludeSkipConvolution=true)
    residualBlockLayer(4*numFilters)
    globalAveragePooling2dLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  15×1 Layer array with layers:

     1   ''   Image Input                  224×224×3 images with 'zerocenter' normalization
     2   ''   2-D Convolution              32 7×7 convolutions with stride [2  2] and padding 'same'
     3   ''   Batch Normalization          Batch normalization
     4   ''   ReLU                         ReLU
     5   ''   2-D Max Pooling              3×3 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Residual Block               Residual block with 32 filters, stride 1
     7   ''   Residual Block               Residual block with 32 filters, stride 1
     8   ''   Residual Block               Residual block with 64 filters, stride 2, and skip convolution
     9   ''   Residual Block               Residual block with 64 filters, stride 1
    10   ''   Residual Block               Residual block with 128 filters, stride 2, and skip convolution
    11   ''   Residual Block               Residual block with 128 filters, stride 1
    12   ''   2-D Global Average Pooling   2-D global average pooling
    13   ''   Fully Connected              5 fully connected layer
    14   ''   Softmax                      softmax
    15   ''   Classification Output        crossentropyex

Train Network

Specify training options:

• Train the network with a mini-batch size of 128.
• Shuffle the data every epoch.
• Validate the network once per epoch using the validation data.
• Output the network with lowest validation loss.
• Display the training progress in a plot and disable the verbose output.

miniBatchSize = 128;
numIterationsPerEpoch = floor(augimdsTrain.NumObservations/miniBatchSize);

options = trainingOptions("adam", ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    ValidationData=augimdsValidation, ...
    ValidationFrequency=numIterationsPerEpoch, ...

19 Import, Export, and Customization

19-152



    OutputNetwork="best-validation-loss", ...
    Plots="training-progress", ...
    Verbose=false);

Train the network using the trainNetwork function. By default, trainNetwork uses a GPU if one is
available, otherwise, it uses a CPU. Training on a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). You can also specify the execution environment by using the
ExecutionEnvironment option of trainingOptions.

net = trainNetwork(augimdsTrain,layers,options);

Evaluate Trained Network

Calculate the final accuracy of the network on the training set (without data augmentation) and
validation set. The accuracy is the proportion of images that the network classifies correctly.

YPred = classify(net,augimdsValidation);
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 0.7175

Visualize the classification accuracy in a confusion matrix. Display the precision and recall for each
class by using column and row summaries.

figure
confusionchart(YValidation,YPred, ...

 Train Deep Learning Network with Nested Layers

19-153



    RowSummary="row-normalized", ...
    ColumnSummary="column-normalized");

You can display four sample validation images with predicted labels and the predicted probabilities of
the images having those labels using the following code.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title("Predicted class: " + string(label));
end

References

1 The TensorFlow Team. Flowers http://download.tensorflow.org/example_images/flower_photos.tgz

See Also
checkLayer | trainNetwork | trainingOptions | analyzeNetwork | dlnetwork

More About
• “Define Nested Deep Learning Layer” on page 19-134

19 Import, Export, and Customization

19-154

http://download.tensorflow.org/example_images/flower_photos.tgz


• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168
• “List of Deep Learning Layers” on page 1-43

 Train Deep Learning Network with Nested Layers

19-155



Define Custom Deep Learning Layer for Code Generation
If Deep Learning Toolbox does not provide the layer you require for your classification or regression
problem, then you can define your own custom layer using this example as a guide. For a list of built-
in layers, see “List of Deep Learning Layers” on page 1-43.

To define a custom deep learning layer, you can use the template provided in this example, which
takes you through the following steps:

1 Name the layer — Give the layer a name so that you can use it in MATLAB.
2 Declare the layer properties — Specify the properties of the layer, including learnable

parameters and state parameters.
3 Create a constructor function (optional) — Specify how to construct the layer and initialize its

properties. If you do not specify a constructor function, then at creation, the software initializes
the Name, Description, and Type properties with [] and sets the number of layer inputs and
outputs to 1.

4 Create initialize function (optional) — Specify how to initialize the learnable and state
parameters when the software initializes the network. If you do not specify an initialize function,
then the software does not initialize parameters when it initializes the network.

5 Create forward functions — Specify how data passes forward through the layer (forward
propagation) at prediction time and at training time.

6 Create reset state function (optional) — Specify how to reset state parameters.
7 Create a backward function (optional) — Specify the derivatives of the loss with respect to the

input data and the learnable parameters (backward propagation). If you do not specify a
backward function, then the forward functions must support dlarray objects.

To create a custom layer that supports code generation:

• The layer must specify the pragma %#codegen in the layer definition.
• The inputs of predict must be:

• Consistent in dimension. Each input must have the same number of dimensions.
• Consistent in batch size. Each input must have the same batch size.

• The outputs of predict must be consistent in dimension and batch size with the layer inputs.
• Nonscalar properties must have type single, double, or character array.
• Scalar properties must have type numeric, logical, or string.

Code generation supports intermediate layers with 2-D image or feature input only. Code generation
does not support layers with state properties (properties with attribute State).

This example shows how to create a PReLU layer [1], which is a layer with a learnable parameter, and
use it in a convolutional neural network. A PReLU layer performs a threshold operation, where for
each channel, any input value less than zero is multiplied by a scalar learned at training time. For
values less than zero, a PReLU layer applies scaling coefficients αi to each channel of the input. These
coefficients form a learnable parameter, which the layer learns during training.

This figure from [1] compares the ReLU and PReLU layer functions.

19 Import, Export, and Customization

19-156



Intermediate Layer Template
Copy the intermediate layer template into a new file in MATLAB. This template gives the structure of
an intermediate layer class definition. It outlines:

• The optional properties blocks for the layer properties, learnable parameters, and state
parameters.

• The layer constructor function.
• The optional initialize function.
• The predict function and the optional forward function.
• The optional resetState function for layers with state properties.
• The optional backward function.

classdef myLayer < nnet.layer.Layer % ...
        % & nnet.layer.Formattable ... % (Optional) 
        % & nnet.layer.Acceleratable % (Optional)

    properties
        % (Optional) Layer properties.

        % Declare layer properties here.
    end

    properties (Learnable)
        % (Optional) Layer learnable parameters.

        % Declare learnable parameters here.
    end

    properties (State)
        % (Optional) Layer state parameters.

        % Declare state parameters here.
    end

    properties (Learnable, State)
        % (Optional) Nested dlnetwork objects with both learnable
        % parameters and state parameters.

        % Declare nested networks with learnable and state parameters here.
    end

 Define Custom Deep Learning Layer for Code Generation

19-157



    methods
        function layer = myLayer()
            % (Optional) Create a myLayer.
            % This function must have the same name as the class.

            % Define layer constructor function here.
        end

        function layer = initialize(layer,layout)
            % (Optional) Initialize layer learnable and state parameters.
            %
            % Inputs:
            %         layer  - Layer to initialize
            %         layout - Data layout, specified as a networkDataLayout
            %                  object
            %
            % Outputs:
            %         layer - Initialized layer
            %
            %  - For layers with multiple inputs, replace layout with 
            %    layout1,...,layoutN, where N is the number of inputs.
            
            % Define layer initialization function here.
        end
        

        function [Z,state] = predict(layer,X)
            % Forward input data through the layer at prediction time and
            % output the result and updated state.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Input data
            % Outputs:
            %         Z     - Output of layer forward function
            %         state - (Optional) Updated layer state
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer predict function here.
        end

        function [Z,state,memory] = forward(layer,X)
            % (Optional) Forward input data through the layer at training
            % time and output the result, the updated state, and a memory
            % value.
            %
            % Inputs:
            %         layer - Layer to forward propagate through 
            %         X     - Layer input data
            % Outputs:
            %         Z      - Output of layer forward function 
            %         state  - (Optional) Updated layer state 
            %         memory - (Optional) Memory value for custom backward
            %                  function
            %
            %  - For layers with multiple inputs, replace X with X1,...,XN, 
            %    where N is the number of inputs.
            %  - For layers with multiple outputs, replace Z with 
            %    Z1,...,ZM, where M is the number of outputs.
            %  - For layers with multiple state parameters, replace state 
            %    with state1,...,stateK, where K is the number of state 
            %    parameters.

            % Define layer forward function here.
        end

19 Import, Export, and Customization

19-158



        function layer = resetState(layer)
            % (Optional) Reset layer state.

            % Define reset state function here.
        end

        function [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory)
            % (Optional) Backward propagate the derivative of the loss
            % function through the layer.
            %
            % Inputs:
            %         layer   - Layer to backward propagate through 
            %         X       - Layer input data 
            %         Z       - Layer output data 
            %         dLdZ    - Derivative of loss with respect to layer 
            %                   output
            %         dLdSout - (Optional) Derivative of loss with respect 
            %                   to state output
            %         memory  - Memory value from forward function
            % Outputs:
            %         dLdX   - Derivative of loss with respect to layer input
            %         dLdW   - (Optional) Derivative of loss with respect to
            %                  learnable parameter 
            %         dLdSin - (Optional) Derivative of loss with respect to 
            %                  state input
            %
            %  - For layers with state parameters, the backward syntax must
            %    include both dLdSout and dLdSin, or neither.
            %  - For layers with multiple inputs, replace X and dLdX with
            %    X1,...,XN and dLdX1,...,dLdXN, respectively, where N is
            %    the number of inputs.
            %  - For layers with multiple outputs, replace Z and dlZ with
            %    Z1,...,ZM and dLdZ,...,dLdZM, respectively, where M is the
            %    number of outputs.
            %  - For layers with multiple learnable parameters, replace 
            %    dLdW with dLdW1,...,dLdWP, where P is the number of 
            %    learnable parameters.
            %  - For layers with multiple state parameters, replace dLdSin
            %    and dLdSout with dLdSin1,...,dLdSinK and 
            %    dLdSout1,...,dldSoutK, respectively, where K is the number
            %    of state parameters.

            % Define layer backward function here.
        end
    end
end

Name Layer and Specify Superclasses
First, give the layer a name. In the first line of the class file, replace the existing name myLayer with
codegenPreluLayer and add a comment describing the layer.

classdef codegenPreluLayer < nnet.layer.Layer & nnet.layer.Formattable
    % Example custom PReLU layer with codegen support.

    ...
end

If you do not specify a backward function, then the layer functions, by default, receive unformatted
dlarray objects as input. To specify that the layer receives formatted dlarray objects as input and
also outputs formatted dlarray objects, also inherit from the nnet.layer.Formattable class
when defining the custom layer.

The layer does not require formattable inputs, so remove the optional nnet.layer.Formattable
superclass.

 Define Custom Deep Learning Layer for Code Generation

19-159



classdef codegenPreluLayer < nnet.layer.Layer
    % Example custom PReLU layer with codegen support.

    ...
end

Next, rename the myLayer constructor function (the first function in the methods section) so that it
has the same name as the layer.

    methods
        function layer = codegenPreluLayer()           
            ...
        end

        ...
     end

Save Layer

Save the layer class file in a new file named codegenPreluLayer.m. The file name must match the
layer name. To use the layer, you must save the file in the current folder or in a folder on the MATLAB
path.

Specify Code Generation Pragma
Add the %#codegen directive (or pragma) to your layer definition to indicate that you intend to
generate code for this layer. Adding this directive instructs the MATLAB Code Analyzer to help you
diagnose and fix violations that result in errors during code generation.

classdef codegenPreluLayer < nnet.layer.Layer
    % Example custom PReLU layer with codegen support.

    %#codegen

    ...
end

Declare Properties and Learnable Parameters
Declare the layer properties in the properties section and declare learnable parameters by listing
them in the properties (Learnable) section.

By default, custom intermediate layers have these properties. Do not declare these properties in the
properties section.

Property Description
Name Layer name, specified as a character vector or a

string scalar. For Layer array input, the
trainNetwork, assembleNetwork,
layerGraph, and dlnetwork functions
automatically assign names to layers with the
name ''.

19 Import, Export, and Customization

19-160



Property Description
Description One-line description of the layer, specified as a

string scalar or a character vector. This
description appears when the layer is displayed
in a Layer array.

If you do not specify a layer description, then the
software displays the layer class name.

Type Type of the layer, specified as a character vector
or a string scalar. The value of Type appears
when the layer is displayed in a Layer array.

If you do not specify a layer type, then the
software displays the layer class name.

NumInputs Number of inputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumInputs
to the number of names in InputNames. The
default value is 1.

InputNames Input names of the layer, specified as a cell array
of character vectors. If you do not specify this
value and NumInputs is greater than 1, then the
software automatically sets InputNames to
{'in1',...,'inN'}, where N is equal to
NumInputs. The default value is {'in'}.

NumOutputs Number of outputs of the layer, specified as a
positive integer. If you do not specify this value,
then the software automatically sets NumOutputs
to the number of names in OutputNames. The
default value is 1.

OutputNames Output names of the layer, specified as a cell
array of character vectors. If you do not specify
this value and NumOutputs is greater than 1,
then the software automatically sets
OutputNames to {'out1',...,'outM'},
where M is equal to NumOutputs. The default
value is {'out'}.

If the layer has no other properties, then you can omit the properties section.

Tip If you are creating a layer with multiple inputs, then you must set either the NumInputs or
InputNames properties in the layer constructor. If you are creating a layer with multiple outputs,
then you must set either the NumOutputs or OutputNames properties in the layer constructor. For
an example, see “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53.

To support code generation:

• Nonscalar properties must have type single, double, or character array.

 Define Custom Deep Learning Layer for Code Generation

19-161



• Scalar properties must be numeric or have type logical or string.

A PReLU layer does not require any additional properties, so you can remove the properties
section.

A PReLU layer has only one learnable parameter, the scaling coefficient a. Declare this learnable
parameter in the properties (Learnable) section and call the parameter Alpha.

    properties (Learnable)
        % Layer learnable parameters
            
        % Scaling coefficient
        Alpha
    end

Create Constructor Function
Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

The PReLU layer constructor function requires two input arguments: the number of channels of the
expected input data and the layer name. The number of channels specifies the size of the learnable
parameter Alpha. Specify two input arguments named numChannels and name in the
codegenPreluLayer function. Add a comment to the top of the function that explains the syntax of
the function.
        function layer = codegenPreluLayer(numChannels, name)
            % layer = codegenPreluLayer(numChannels) creates a PReLU layer with
            % numChannels channels and specifies the layer name.

            ...
        end

Code generation does not support arguments blocks.

Initialize Layer Properties

Initialize the layer properties, including learnable parameters, in the constructor function. Replace
the comment % Layer constructor function goes here with code that initializes the layer
properties.

Set the Name property to the input argument name.

            % Set layer name.
            layer.Name = name;

Give the layer a one-line description by setting the Description property of the layer. Set the
description to describe the type of layer and its size.

            % Set layer description.
            layer.Description = "PReLU with " + numChannels + " channels";

For a PReLU layer, when the input values are negative, the layer multiplies each channel of the input
by the corresponding channel of Alpha. Initialize the learnable parameter Alpha as a random vector
of size 1-by-1-by-numChannels. With the third dimension specified as size numChannels, the layer
can use element-wise multiplication of the input in the forward function. Alpha is a property of the
layer object, so you must assign the vector to layer.Alpha.

19 Import, Export, and Customization

19-162



            % Initialize scaling coefficient.
            layer.Alpha = rand([1 1 numChannels]);

View the completed constructor function.

        function layer = codegenPreluLayer(numChannels, name) 
            % layer = codegenPreluLayer(numChannels, name) creates a PReLU
            % layer for 2-D image input with numChannels channels and specifies 
            % the layer name.

            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = "PReLU with " + numChannels + " channels";
        
            % Initialize scaling coefficient.
            layer.Alpha = rand([1 1 numChannels]); 
        end

With this constructor function, the command codegenPreluLayer(3,'prelu') creates a PReLU
layer with three channels and the name 'prelu'.

Create Forward Functions
Create the layer forward functions to use at prediction time and training time.

Create a function named predict that propagates the data forward through the layer at prediction
time and outputs the result.

The predict function syntax depends on the type of layer.

• Z = predict(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = predict(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

 Define Custom Deep Learning Layer for Code Generation

19-163



Because a PReLU layer has only one input and one output, the syntax for predict for a PReLU layer
is Z = predict(layer,X).

Code generation supports custom intermediate layers with 2-D image input only. The inputs are h-by-
w-by-c-by-N arrays, where h, w, and c correspond to the height, width, and number of channels of the
images, respectively, and N is the number of observations. The observation dimension is 4.

For code generation support, all the layer inputs must have the same number of dimensions and
batch size.

By default, the layer uses predict as the forward function at training time. To use a different
forward function at training time, or retain a value required for a custom backward function, you
must also create a function named forward. The software does not generate code for the forward
function but it must be code generation compatible.

The forward function propagates the data forward through the layer at training time and also
outputs a memory value.

The forward function syntax depends on the type of layer:

• Z = forward(layer,X) forwards the input data X through the layer and outputs the result Z,
where layer has a single input and a single output.

• [Z,state] = forward(layer,X) also outputs the updated state parameter state, where
layer has a single state parameter.

• [__,memory] = forward(layer,X) also returns a memory value for a custom backward
function using any of the previous syntaxes. If the layer has both a custom forward function and
a custom backward function, then the forward function must return a memory value.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, or multiple state
parameters:

• For layers with multiple inputs, replace X with X1,...,XN, where N is the number of inputs. The
NumInputs property must match N.

• For layers with multiple outputs, replace Z with Z1,...,ZM, where M is the number of outputs.
The NumOutputs property must match M.

• For layers with multiple state parameters, replace state with state1,...,stateK, where K is
the number of state parameters.

Tip If the number of inputs to the layer can vary, then use varargin instead of X1,…,XN. In this
case, varargin is a cell array of the inputs, where varargin{i} corresponds to Xi.

If the number of outputs can vary, then use varargout instead of Z1,…,ZN. In this case, varargout
is a cell array of the outputs, where varargout{j} corresponds to Zj.

The PReLU operation is given by

f (xi) =
xi if xi > 0

αixi if xi ≤ 0

19 Import, Export, and Customization

19-164



where xi is the input of the nonlinear activation f on channel i, and αi is the coefficient controlling the
slope of the negative part. The subscript i in αi indicates that the nonlinear activation can vary on
different channels.

Implement this operation in predict. In predict, the input X corresponds to x in the equation. The
output Z corresponds to f (xi).

Add a comment to the top of the function that explains the syntaxes of the function.

Tip If you preallocate arrays using functions such as zeros, then you must ensure that the data
types of these arrays are consistent with the layer function inputs. To create an array of zeros of the
same data type as another array, use the "like" option of zeros. For example, to initialize an array
of zeros of size sz with the same data type as the array X, use Z = zeros(sz,"like",X).

Implementing the backward function is optional when the forward functions fully support dlarray
input. For code generation support, the predict function must also support numeric input.

One way to calculate the output of the PReLU operation is to use the following code.

Z = max(X,0) + layer.Alpha .* min(0,X);

Because code generation does not support implicit expansion via the .* operation, you can use the
bsxfun function instead.

Z = max(X,0) + bsxfun(@times, layer.Alpha, min(0,X));

However, the bsxfun does not support dlarray input. To implement the predict function, which
supports both code generation and dlarray input, use an if statement with the isdlarray
function to select the appropriate code for the type of input.

        function Z = predict(layer, X)
            % Z = predict(layer, X) forwards the input data X through the
            % layer and outputs the result Z.
            
            if isdlarray(X)
                Z = max(X,0) + layer.Alpha .* min(0,X);
            else
                Z = max(X,0) + bsxfun(@times, layer.Alpha, min(0,X));
            end
        end

Because the predict function fully supports dlarray objects, defining the backward function is
optional. For a list of functions that support dlarray objects, see “List of Functions with dlarray
Support” on page 19-504.

Completed Layer
View the completed layer class file.

classdef codegenPreluLayer < nnet.layer.Layer
    % Example custom PReLU layer with codegen support.

    %#codegen

 Define Custom Deep Learning Layer for Code Generation

19-165



    properties (Learnable)
        % Layer learnable parameters
            
        % Scaling coefficient
        Alpha
    end
    
    methods
        function layer = codegenPreluLayer(numChannels, name) 
            % layer = codegenPreluLayer(numChannels, name) creates a PReLU
            % layer for 2-D image input with numChannels channels and specifies 
            % the layer name.

            % Set layer name.
            layer.Name = name;

            % Set layer description.
            layer.Description = "PReLU with " + numChannels + " channels";
        
            % Initialize scaling coefficient.
            layer.Alpha = rand([1 1 numChannels]); 
        end
        
        function Z = predict(layer, X)
            % Z = predict(layer, X) forwards the input data X through the
            % layer and outputs the result Z.
            
            if isdlarray(X)
                Z = max(X,0) + layer.Alpha .* min(0,X);
            else
                Z = max(X,0) + bsxfun(@times, layer.Alpha, min(0,X));
            end
        end
    end
end

Check Custom Layer for Code Generation Compatibility

Check the code generation compatibility of the custom layer codegenPreluLayer.

The custom layer codegenPreluLayer, attached to this is example as a supporting file, applies the
PReLU operation to the input data. To access this layer, open this example as a live script.

Create an instance of the layer and check its validity using checkLayer. Specify the valid input size
as the size of a single observation of typical input to the layer. The layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

Specify the typical size of the input of an observation and set the 'ObservationDimension' option
to 4. To check for code generation compatibility, set the CheckCodegenCompatibility option to
true. The checkLayer function does not check for functions that are not compatible with code
generation. To check that the custom layer definition is supported for code generation, first use the
Code Generation Readiness app. For more information, see “Check Code by Using the Code
Generation Readiness Tool” (MATLAB Coder).

19 Import, Export, and Customization

19-166



layer = codegenPreluLayer(20,"prelu");
validInputSize = [24 24 20];
checkLayer(layer,validInputSize,ObservationDimension=4,CheckCodegenCompatibility=true)

Skipping GPU tests. No compatible GPU device found.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... .......... ...
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     23 Passed, 0 Failed, 0 Incomplete, 5 Skipped.
     Time elapsed: 0.87346 seconds.

The function does not detect any issues with the layer.

References
[1] "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification."

In 2015 IEEE International Conference on Computer Vision (ICCV), 1026–34. Santiago, Chile:
IEEE, 2015. https://doi.org/10.1109/ICCV.2015.123.

See Also
functionLayer | checkLayer | setLearnRateFactor | setL2Factor | getLearnRateFactor |
getL2Factor | findPlaceholderLayers | replaceLayer | assembleNetwork |
PlaceholderLayer

More About
• “Code Generation for Deep Learning Networks” on page 21-3
• “Code Generation for Object Detection Using YOLO v3 Deep Learning Network” on page 21-34
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Define Nested Deep Learning Layer” on page 19-134
• “Check Custom Layer Validity” on page 19-168

 Define Custom Deep Learning Layer for Code Generation

19-167



Check Custom Layer Validity
If you create a custom deep learning layer, then you can use the checkLayer function to check that
the layer is valid. The function checks layers for validity, GPU compatibility, correctly defined
gradients, and code generation compatibility. To check that a layer is valid, run the following
command:

checkLayer(layer,validInputSize)

layer is an instance of the layer and validInputSize is a vector or cell array specifying the valid
input sizes to the layer. To check with multiple observations, use the ObservationDimension
option. To run the check for code generation compatibility, set the CheckCodegenCompatibility
option to 1 (true). For large input sizes, the gradient checks take longer to run. To speed up the
check, specify a smaller valid input size.

Check Custom Layer Validity

Check the validity of the example custom layer preluLayer.

The custom layer preluLayer, attached to this example as a supporting file, applies the PReLU
operation to the input data. To access this layer, open this example as a live script.

Create an instance of the layer.

layer = preluLayer;

Because the layer has a custom initialize function, initialize the layer using a networkDataFormat
object that specifies the expected input size and format of a single observation of typical input to the
layer.

Specify a valid input size of [24 24 20], where the dimensions correspond to the height, width, and
number of channels of the previous layer output.

validInputSize = [24 24 20];
layout = networkDataLayout(validInputSize,"SSC");
layer = initialize(layer,layout);

Check the layer validity using checkLayer. Specify the valid input size as the size as the size as used
to initialize the layer. When you pass data through the network, the layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

checkLayer(layer,validInputSize)

Skipping multi-observation tests. To enable tests with multiple observations, specify the 'ObservationDimension' option.
For 2-D image data, set 'ObservationDimension' to 4.
For 3-D image data, set 'ObservationDimension' to 5.
For sequence data, set 'ObservationDimension' to 2.
 
Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward

19 Import, Export, and Customization

19-168



.......... ..
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     12 Passed, 0 Failed, 0 Incomplete, 16 Skipped.
     Time elapsed: 0.054851 seconds.

The results show the number of passed, failed, and skipped tests. If you do not specify the
ObservationsDimension option, or do not have a GPU, then the function skips the corresponding
tests.

Check Multiple Observations

For multi-observation image input, the layer expects an array of observations of size h-by-w-by-c-by-
N, where h, w, and c are the height, width, and number of channels, respectively, and N is the
number of observations.

To check the layer validity for multiple observations, specify the typical size of an observation and set
the ObservationDimension option to 4.

checkLayer(layer,validInputSize,ObservationDimension=4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ........
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     18 Passed, 0 Failed, 0 Incomplete, 10 Skipped.
     Time elapsed: 0.030498 seconds.

In this case, the function does not detect any issues with the layer.

List of Tests
The checkLayer function checks the validity of a custom layer by performing a series of tests.

Intermediate Layers

The checkLayer function uses these tests to check the validity of custom intermediate layers (layers
of type nnet.layer.Layer).

Test Description
functionSyntaxesAreCorrect The syntaxes of the layer functions are correctly

defined.
predictDoesNotError predict function does not error.
forwardDoesNotError When specified, the forward function does not

error.

 Check Custom Layer Validity

19-169



Test Description
forwardPredictAreConsistentInSize When forward is specified, forward and

predict output values of the same size.
backwardDoesNotError When specified, backward does not error.
backwardIsConsistentInSize When backward is specified, the outputs of

backward are consistent in size:

• The derivatives with respect to each input are
the same size as the corresponding input.

• The derivatives with respect to each learnable
parameter are the same size as the
corresponding learnable parameter.

predictIsConsistentInType The outputs of predict are consistent in type
with the inputs.

forwardIsConsistentInType When forward is specified, the outputs of
forward are consistent in type with the inputs.

backwardIsConsistentInType When backward is specified, the outputs of
backward are consistent in type with the inputs.

gradientsAreNumericallyCorrect When backward is specified, the gradients
computed in backward are consistent with the
numerical gradients.

backwardPropagationDoesNotError When backward is not specified, the derivatives
can be computed using automatic differentiation.

predictReturnsValidStates For layers with state properties, the predict
function returns valid states.

forwardReturnsValidStates For layers with state properties, the forward
function, if specified, returns valid states.

resetStateDoesNotError For layers with state properties, the resetState
function, if specified, does not error and resets
the states to valid states.

codegenPragmaDefinedInClassDef The pragma "%#codegen" for code generation is
specified in class file.

layerPropertiesSupportCodegen The layer properties support code generation.
predictSupportsCodegen predict is valid for code generation.
doesNotHaveStateProperties For code generation, the layer does not have

state properties.
functionLayerSupportsCodegen For code generation, the layer function must be a

named function on the path and the
Formattable property must be 0 (false).

Some tests run multiple times. These tests also check different data types and for GPU compatibility:

• predictIsConsistentInType
• forwardIsConsistentInType
• backwardIsConsistentInType

19 Import, Export, and Customization

19-170



To execute the layer functions on a GPU, the functions must support inputs and outputs of type
gpuArray with the underlying data type single.

Output Layers

The checkLayer function uses these tests to check the validity of custom output layers (layers of
type nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer).

Test Description
forwardLossDoesNotError forwardLoss does not error.
backwardLossDoesNotError backwardLoss does not error.
forwardLossIsScalar The output of forwardLoss is scalar.
backwardLossIsConsistentInSize When backwardLoss is specified, the output of

backwardLoss is consistent in size: dLdY is the
same size as the predictions Y.

forwardLossIsConsistentInType The output of forwardLoss is consistent in type:
loss is the same type as the predictions Y.

backwardLossIsConsistentInType When backwardLoss is specified, the output of
backwardLoss is consistent in type: dLdY must
be the same type as the predictions Y.

gradientsAreNumericallyCorrect When backwardLoss is specified, the gradients
computed in backwardLoss are numerically
correct.

backwardPropagationDoesNotError When backwardLoss is not specified, the
derivatives can be computed using automatic
differentiation.

The forwardLossIsConsistentInType and backwardLossIsConsistentInType tests also
check for GPU compatibility. To execute the layer functions on a GPU, the functions must support
inputs and outputs of type gpuArray with the underlying data type single.

Generated Data
To check the layer validity, the checkLayer function generates data depending on the type of layer:

Layer Type Description of Generated Data
Intermediate Values in the range [-1,1]
Regression output Predictions and targets with values in the range

[-1,1]

 Check Custom Layer Validity

19-171



Layer Type Description of Generated Data
Classification output Predictions with values in the range [0,1].

If you specify the ObservationDimension
option, then the targets are one-hot encoded
vectors (vectors containing a single 1, and 0
elsewhere).

If you do not specify the
ObservationDimension option, then the
targets are values in the range [0,1].

To check for multiple observations, specify the observation dimension using the
ObservationDimension option. If you specify the observation dimension, then the checkLayer
function checks that the layer functions are valid using generated data with mini-batches of size 1
and 2. If you do not specify this name-value pair, then the function skips the tests that check that the
layer functions are valid for multiple observations.

Diagnostics
If a test fails when you use checkLayer, then the function provides a test diagnostic and a
framework diagnostic. The test diagnostic highlights any issues found with the layer. The framework
diagnostic provides more detailed information.

Function Syntaxes

The test functionSyntaxesAreCorrect checks that the layer functions have correctly defined
syntaxes.

Test Diagnostic Description Possible Solution
Incorrect number of
input arguments for
'predict' in Layer.

The syntax for the predict
function is not consistent with
the number of layer inputs.

Specify the correct number of
input and output arguments in
predict.

The predict function syntax
depends on the type of layer.

• Z = predict(layer,X)
forwards the input data X
through the layer and
outputs the result Z, where
layer has a single input and
a single output.

• [Z,state] =
predict(layer,X) also
outputs the updated state
parameter state, where
layer has a single state
parameter.

You can adjust the syntaxes for
layers with multiple inputs,

19 Import, Export, and Customization

19-172



Test Diagnostic Description Possible Solution
Incorrect number of
output arguments for
'predict' in Layer

The syntax for the predict
function is not consistent with
the number of layer outputs.

multiple outputs, or multiple
state parameters:

• For layers with multiple
inputs, replace X with
X1,...,XN, where N is the
number of inputs. The
NumInputs property must
match N.

• For layers with multiple
outputs, replace Z with
Z1,...,ZM, where M is the
number of outputs. The
NumOutputs property must
match M.

• For layers with multiple state
parameters, replace state
with state1,...,stateK,
where K is the number of
state parameters.

Tip If the number of inputs to
the layer can vary, then use
varargin instead of X1,…,XN.
In this case, varargin is a cell
array of the inputs, where
varargin{i} corresponds to
Xi.

If the number of outputs can
vary, then use varargout
instead of Z1,…,ZN. In this
case, varargout is a cell array
of the outputs, where
varargout{j} corresponds to
Zj.

Tip If the custom layer has a
dlnetwork object for a
learnable parameter, then in the
predict function of the custom
layer, use the predict function
for the dlnetwork. When you
do so, the dlnetwork object
predict function uses the
appropriate layer operations for
prediction. If the dlnetwork

 Check Custom Layer Validity

19-173



Test Diagnostic Description Possible Solution
has state parameters, then also
return the network state.

Incorrect number of
input arguments for
'forward' in Layer

The syntax for the optional
forward function is not
consistent with the number of
layer inputs.

Specify the correct number of
input and output arguments in
forward.

The forward function syntax
depends on the type of layer:

• Z = forward(layer,X)
forwards the input data X
through the layer and
outputs the result Z, where
layer has a single input and
a single output.

• [Z,state] =
forward(layer,X) also
outputs the updated state
parameter state, where
layer has a single state
parameter.

• [__,memory] =
forward(layer,X) also
returns a memory value for a
custom backward function
using any of the previous
syntaxes. If the layer has
both a custom forward
function and a custom
backward function, then the
forward function must return
a memory value.

You can adjust the syntaxes for
layers with multiple inputs,
multiple outputs, or multiple
state parameters:

• For layers with multiple
inputs, replace X with
X1,...,XN, where N is the
number of inputs. The
NumInputs property must
match N.

• For layers with multiple
outputs, replace Z with
Z1,...,ZM, where M is the
number of outputs. The
NumOutputs property must
match M.

19 Import, Export, and Customization

19-174



Test Diagnostic Description Possible Solution
Incorrect number of
output arguments for
'forward' in Layer

The syntax for the optional
forward function is not
consistent with the number of
layer outputs.

• For layers with multiple state
parameters, replace state
with state1,...,stateK,
where K is the number of
state parameters.

Tip If the number of inputs to
the layer can vary, then use
varargin instead of X1,…,XN.
In this case, varargin is a cell
array of the inputs, where
varargin{i} corresponds to
Xi.

If the number of outputs can
vary, then use varargout
instead of Z1,…,ZN. In this
case, varargout is a cell array
of the outputs, where
varargout{j} corresponds to
Zj.

Tip If the custom layer has a
dlnetwork object for a
learnable parameter, then in the
forward function of the custom
layer, use the forward function
of the dlnetwork object. When
you do so, the dlnetwork
object forward function uses
the appropriate layer operations
for training.

Incorrect number of
input arguments for
'backward' in Layer

The syntax for the optional
backward function is not
consistent with the number of
layer inputs and outputs.

Specify the correct number of
input and output arguments in
backward.

The backward function syntax
depends on the type of layer.

• dLdX =
backward(layer,X,Z,dLd
Z,memory) returns the
derivatives dLdX of the loss
with respect to the layer
input, where layer has a
single input and a single
output. Z corresponds to the
forward function output and
dLdZ corresponds to the

 Check Custom Layer Validity

19-175



Test Diagnostic Description Possible Solution
Incorrect number of
output arguments for
'backward' in Layer

The syntax for the optional
backward function is not
consistent with the number of
layer outputs.

derivative of the loss with
respect to Z. The function
input memory corresponds to
the memory output of the
forward function.

• [dLdX,dLdW] =
backward(layer,X,Z,dLd
Z,memory) also returns the
derivative dLdW of the loss
with respect to the learnable
parameter, where layer has
a single learnable parameter.

• [dLdX,dLdSin] =
backward(layer,X,Z,dLd
Z,dLdSout,memory) also
returns the derivative
dLdSin of the loss with
respect to the state input,
where layer has a single
state parameter and
dLdSout corresponds to the
derivative of the loss with
respect to the layer state
output.

• [dLdX,dLdW,dLdSin] =
backward(layer,X,Z,dLd
Z,dLdSout,memory) also
returns the derivative dLdW
of the loss with respect to
the learnable parameter and
returns the derivative
dLdSin of the loss with
respect to the layer state
input, where layer has a
single state parameter and
single learnable parameter.

You can adjust the syntaxes for
layers with multiple inputs,
multiple outputs, multiple
learnable parameters, or
multiple state parameters:

• For layers with multiple
inputs, replace X and dLdX
with X1,...,XN and
dLdX1,...,dLdXN,
respectively, where N is the
number of inputs.

19 Import, Export, and Customization

19-176



Test Diagnostic Description Possible Solution
• For layers with multiple

outputs, replace Z and dLdZ
with Z1,...,ZM and
dLdZ1,...,dLdZM,
respectively, where M is the
number of outputs.

• For layers with multiple
learnable parameters,
replace dLdW with
dLdW1,...,dLdWP, where P
is the number of learnable
parameters.

• For layers with multiple state
parameters, replace dLdSin
and dLdSout with
dLdSin1,...,dLdSinK and
dLdSout1,...,dLdSoutK,
respectively, where K is the
number of state parameters.

To reduce memory usage by
preventing unused variables
being saved between the
forward and backward pass,
replace the corresponding input
arguments with ~.

Tip If the number of inputs to
backward can vary, then use
varargin instead of the input
arguments after layer. In this
case, varargin is a cell array
of the inputs, where the first N
elements correspond to the N
layer inputs, the next M
elements correspond to the M
layer outputs, the next M
elements correspond to the
derivatives of the loss with
respect to the M layer outputs,
the next K elements correspond
to the K derivatives of the loss
with respect to the K state
outputs, and the last element
corresponds to memory.

If the number of outputs can
vary, then use varargout
instead of the output
arguments. In this case,

 Check Custom Layer Validity

19-177



Test Diagnostic Description Possible Solution
varargout is a cell array of the
outputs, where the first N
elements correspond to the N
the derivatives of the loss with
respect to the N layer inputs, the
next P elements correspond to
the derivatives of the loss with
respect to the P learnable
parameters, and the next K
elements correspond to the
derivatives of the loss with
respect to the K state inputs.

Tip If the layer forward
functions support dlarray
objects, then the software
automatically determines the
backward function and you do
not need to specify the
backward function. For a list of
functions that support dlarray
objects, see “List of Functions
with dlarray Support” on page
19-504.

For layers with multiple inputs or outputs, you must set the values of the layer properties NumInputs
(or alternatively, InputNames) and NumOutputs (or alternatively, OutputNames) in the layer
constructor function, respectively.

Multiple Observations

The checkLayer function checks that the layer functions are valid for single and multiple
observations. To check for multiple observations, specify the observation dimension using the
ObservationDimension option. If you specify the observation dimension, then the checkLayer
function checks that the layer functions are valid using generated data with mini-batches of size 1
and 2. If you do not specify this name-value pair, then the function skips the tests that check that the
layer functions are valid for multiple observations.

19 Import, Export, and Customization

19-178



Test Diagnostic Description Possible Solution
Skipping multi-
observation tests. To
enable checks with
multiple observations,
specify the
'ObservationDimension'
parameter in checkLayer.

If you do not specify the
'ObservationDimension'
parameter in checkLayer, then
the function skips the tests that
check data with multiple
observations.

Use the command
checkLayer(layer,validIn
putSize,'ObservationDime
nsion',dim), where layer is
an instance of the custom layer,
validInputSize is a vector
specifying the valid input size to
the layer, and dim specifies the
dimension of the observations in
the layer input.

For more information, see
“Layer Input Sizes”.

Functions Do Not Error

These tests check that the layers do not error when passed input data of valid size.

Intermediate Layers

The tests predictDoesNotError, forwardDoesNotError, and backwardDoesNotError check
that the layer functions do not error when passed inputs of valid size. If you specify an observation
dimension, then the function checks the layer for both a single observation and multiple observations.

Test Diagnostic Description Possible Solution
The function 'predict'
threw an error:

The predict function errors
when passed data of size
validInputSize.

Address the error described in
the Framework Diagnostic
section.

Tip If the layer forward
functions support dlarray
objects, then the software
automatically determines the
backward function and you do
not need to specify the
backward function. For a list of
functions that support dlarray
objects, see “List of Functions
with dlarray Support” on page
19-504.

The function 'forward'
threw an error:

The optional forward function
errors when passed data of size
validInputSize.

The function 'backward'
threw an error:

The optional backward function
errors when passed the output
of predict.

Output Layers

The tests forwardLossDoesNotError and backwardLossDoesNotError check that the layer
functions do not error when passed inputs of valid size. If you specify an observation dimension, then
the function checks the layer for both a single observation and multiple observations.

 Check Custom Layer Validity

19-179



Test Diagnostic Description Possible Solution
The function
'forwardLoss' threw an
error:

The forwardLoss function
errors when passed data of size
validInputSize.

Address the error described in
the Framework Diagnostic
section.

Tip If the forwardLoss
function supports dlarray
objects, then the software
automatically determines the
backward loss function and you
do not need to specify the
backwardLoss function. For a
list of functions that support
dlarray objects, see “List of
Functions with dlarray Support”
on page 19-504.

The function
'backwardLoss' threw an
error:

The optional backwardLoss
function errors when passed
data of size validInputSize.

Outputs Are Consistent in Size

These tests check that the layer function outputs are consistent in size.

Intermediate Layers

The test backwardIsConsistentInSize checks that the backward function outputs derivatives of
the correct size.

The backward function syntax depends on the type of layer.

• dLdX = backward(layer,X,Z,dLdZ,memory) returns the derivatives dLdX of the loss with
respect to the layer input, where layer has a single input and a single output. Z corresponds to
the forward function output and dLdZ corresponds to the derivative of the loss with respect to Z.
The function input memory corresponds to the memory output of the forward function.

• [dLdX,dLdW] = backward(layer,X,Z,dLdZ,memory) also returns the derivative dLdW of the
loss with respect to the learnable parameter, where layer has a single learnable parameter.

• [dLdX,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory) also returns the
derivative dLdSin of the loss with respect to the state input, where layer has a single state
parameter and dLdSout corresponds to the derivative of the loss with respect to the layer state
output.

• [dLdX,dLdW,dLdSin] = backward(layer,X,Z,dLdZ,dLdSout,memory) also returns the
derivative dLdW of the loss with respect to the learnable parameter and returns the derivative
dLdSin of the loss with respect to the layer state input, where layer has a single state parameter
and single learnable parameter.

You can adjust the syntaxes for layers with multiple inputs, multiple outputs, multiple learnable
parameters, or multiple state parameters:

• For layers with multiple inputs, replace X and dLdX with X1,...,XN and dLdX1,...,dLdXN,
respectively, where N is the number of inputs.

• For layers with multiple outputs, replace Z and dLdZ with Z1,...,ZM and dLdZ1,...,dLdZM,
respectively, where M is the number of outputs.

19 Import, Export, and Customization

19-180



• For layers with multiple learnable parameters, replace dLdW with dLdW1,...,dLdWP, where P is
the number of learnable parameters.

• For layers with multiple state parameters, replace dLdSin and dLdSout with
dLdSin1,...,dLdSinK and dLdSout1,...,dLdSoutK, respectively, where K is the number of
state parameters.

To reduce memory usage by preventing unused variables being saved between the forward and
backward pass, replace the corresponding input arguments with ~.

Tip If the number of inputs to backward can vary, then use varargin instead of the input
arguments after layer. In this case, varargin is a cell array of the inputs, where the first N
elements correspond to the N layer inputs, the next M elements correspond to the M layer outputs, the
next M elements correspond to the derivatives of the loss with respect to the M layer outputs, the next
K elements correspond to the K derivatives of the loss with respect to the K state outputs, and the last
element corresponds to memory.

If the number of outputs can vary, then use varargout instead of the output arguments. In this case,
varargout is a cell array of the outputs, where the first N elements correspond to the N the
derivatives of the loss with respect to the N layer inputs, the next P elements correspond to the
derivatives of the loss with respect to the P learnable parameters, and the next K elements
correspond to the derivatives of the loss with respect to the K state inputs.

The derivatives dLdX1, …, dLdXn must be the same size as the corresponding layer inputs, and
dLdW1,…,dLdWk must be the same size as the corresponding learnable parameters. The sizes must
be consistent for input data with single and multiple observations.

Test Diagnostic Description Possible Solution
Incorrect size of 'dLdX'
for 'backward'.

The derivatives of the loss with
respect to the layer inputs must
be the same size as the
corresponding layer input.

Return the derivatives dLdX1,
…,dLdXn with the same size as
the corresponding layer inputs
X1,…,Xn.

Incorrect size of the
derivative of the loss
with respect to the
input 'in1' for
'backward'
The size of 'Z' returned
from 'forward' must be
the same as for
'predict'.

The outputs of predict must
be the same size as the
corresponding outputs of
forward.

Return the outputs Z1,…,Zm of
predict with the same size as
the corresponding outputs Z1,
…,Zm of forward.

Incorrect size of the
derivative of the loss
with respect to 'W' for
'backward'.

The derivatives of the loss with
respect to the learnable
parameters must be the same
size as the corresponding
learnable parameters.

Return the derivatives dLdW1,
…,dLdWk with the same size as
the corresponding learnable
parameters W1,…,Wk.

Tip If the layer forward functions support dlarray objects, then the software automatically
determines the backward function and you do not need to specify the backward function. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.

 Check Custom Layer Validity

19-181



Output Layers

The test forwardLossIsScalar checks that the output of the forwardLoss function is scalar.
When the backwardLoss function is specified, the test backwardLossIsConsistentInSize
checks that the outputs of forwardLoss and backwardLoss are of the correct size.

The syntax for forwardLoss is loss = forwardLoss(layer,Y,T). The input Y corresponds to
the predictions made by the network. These predictions are the output of the previous layer. The
input T corresponds to the training targets. The output loss is the loss between Y and T according to
the specified loss function. The output loss must be scalar.

If the forwardLoss function supports dlarray objects, then the software automatically determines
the backward loss function and you do not need to specify the backwardLoss function. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.

The syntax for backwardLoss is dLdY = backwardLoss(layer,Y,T). The input Y contains the
predictions made by the network and T contains the training targets. The output dLdY is the
derivative of the loss with respect to the predictions Y. The output dLdY must be the same size as the
layer input Y.

Test Diagnostic Description Possible Solution
Incorrect size of 'loss'
for 'forwardLoss'.

The output loss of
forwardLoss must be a scalar.

Return the output loss as a
scalar. For example, if you have
multiple values of the loss, then
you can use mean or sum.

Incorrect size of the
derivative of loss
'dLdY' for
'backwardLoss'.

When backwardLoss is
specified, the derivatives of the
loss with respect to the layer
input must be the same size as
the layer input.

Return derivative dLdY with the
same size as the layer input Y.

If the forwardLoss function
supports dlarray objects, then
the software automatically
determines the backward loss
function and you do not need to
specify the backwardLoss
function. For a list of functions
that support dlarray objects,
see “List of Functions with
dlarray Support” on page 19-
504.

Consistent Data Types and GPU Compatibility

These tests check that the layer function outputs are consistent in type and that the layer functions
are GPU compatible.

If the layer forward functions fully support dlarray objects, then the layer is GPU compatible.
Otherwise, to be GPU compatible, the layer functions must support inputs and return outputs of type
gpuArray.

Many MATLAB built-in functions support gpuArray and dlarray input arguments. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.
For a list of functions that execute on a GPU, see “Run MATLAB Functions on a GPU” (Parallel
Computing Toolbox). To use a GPU for deep learning, you must also have a supported GPU device. For

19 Import, Export, and Customization

19-182



information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
For more information on working with GPUs in MATLAB, see “GPU Computing in MATLAB” (Parallel
Computing Toolbox).

Intermediate Layers

The tests predictIsConsistentInType, forwardIsConsistentInType, and
backwardIsConsistentInType check that the layer functions output variables of the correct data
type. The tests check that the layer functions return consistent data types when given inputs of the
data types single, double, and gpuArray with the underlying types single or double.

Tip If you preallocate arrays using functions such as zeros, then you must ensure that the data
types of these arrays are consistent with the layer function inputs. To create an array of zeros of the
same data type as another array, use the "like" option of zeros. For example, to initialize an array
of zeros of size sz with the same data type as the array X, use Z = zeros(sz,"like",X).

Test Diagnostic Description Possible Solution
Incorrect type of 'Z'
for 'predict'.

The types of the outputs Z1,
…,Zm of the predict function
must be consistent with the
inputs X1,…,Xn.

Return the outputs Z1,…,Zm
with the same type as the inputs
X1,…,Xn.Incorrect type of output

'out1' for 'predict'.
Incorrect type of 'Z'
for 'forward'.

The types of the outputs Z1,
…,Zm of the optional forward
function must be consistent with
the inputs X1,…,Xn.

Incorrect type of output
'out1' for 'forward'.
Incorrect type of 'dLdX'
for 'backward'.

The types of the derivatives
dLdX1,…,dLdXn of the optional
backward function must be
consistent with the inputs X1,
…,Xn.

Return the derivatives dLdX1,
…,dLdXn with the same type as
the inputs X1,…,Xn.Incorrect type of the

derivative of the loss
with respect to the
input 'in1' for
'backward'.
Incorrect type of the
derivative of loss with
respect to 'W' for
'backward'.

The type of the derivative of the
loss of the learnable parameters
must be consistent with the
corresponding learnable
parameters.

For each learnable parameter,
return the derivative with the
same type as the corresponding
learnable parameter.

Tip If the layer forward functions support dlarray objects, then the software automatically
determines the backward function and you do not need to specify the backward function. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.

Output Layers

The tests forwardLossIsConsistentInType and backwardLossIsConsistentInType check
that the layer functions output variables of the correct data type. The tests check that the layers

 Check Custom Layer Validity

19-183



return consistent data types when given inputs of the data types single, double, and gpuArray
with the underlying types single or double.

Test Diagnostic Description Possible Solution
Incorrect type of 'loss'
for 'forwardLoss'.

The type of the output loss of
the forwardLoss function must
be consistent with the input Y.

Return loss with the same type
as the input Y.

Incorrect type of the
derivative of loss
'dLdY' for
'backwardLoss'.

The type of the output dLdY of
the optional backwardLoss
function must be consistent with
the input Y.

Return dLdY with the same type
as the input Y.

Tip If the forwardLoss function supports dlarray objects, then the software automatically
determines the backward loss function and you do not need to specify the backwardLoss function.
For a list of functions that support dlarray objects, see “List of Functions with dlarray Support” on
page 19-504.

Correct Gradients

The test gradientsAreNumericallyCorrect checks that the gradients computed by the layer
functions are numerically correct. The test backwardPropagationDoesNotError checks that the
derivatives can be computed using automatic differentiation.

Intermediate Layers

When the optional backward function is not specified, the test
backwardPropagationDoesNotError checks that the derivatives can be computed using
automatic differentiation. When the optional backward function is specified, the test
gradientsAreNumericallyCorrect tests that the gradients computed in backward are
numerically correct.

Test Diagnostic Description Possible Solution
Expected a dlarray with
no dimension labels, but
instead found labels.

When the optional backward
function is not specified, the
layer forward functions must
output dlarray objects without
dimension labels.

Ensure that any dlarray
objects created in the layer
forward functions do not contain
dimension labels.

Unable to backward
propagate through the
layer. Check that the
'forward' function fully
supports automatic
differentiation.
Alternatively, implement
the 'backward' function
manually.

One or more of the following:

• When the optional backward
function is not specified, the
layer forward functions do
not support dlarray
objects.

• When the optional backward
function is not specified, the
tracing of the input dlarray
objects in the forward
functions have been broken.

Check that the forward
functions support dlarray
objects. For a list of functions
that support dlarray objects,
see “List of Functions with
dlarray Support” on page 19-
504.

Check that the derivatives of the
input dlarray objects can be
traced. To learn more about the
derivative trace of dlarray

19 Import, Export, and Customization

19-184



Test Diagnostic Description Possible Solution
Unable to backward
propagate through the
layer. Check that the
'predict' function fully
supports automatic
differentiation.
Alternatively, implement
the 'backward' function
manually.

For example, by using the
extractdata function.

objects, see “Derivative Trace”
on page 19-220.

Alternatively, define a custom
backward function by creating a
function named backward. To
learn more, see “Specify Custom
Layer Backward Function” on
page 19-117.

The derivative 'dLdX'
for 'backward' is
inconsistent with the
numerical gradient.

One or more of the following:

• When the optional backward
function is specified, the
derivative is incorrectly
computed

• The forward functions are
non-differentiable at some
input points

• Error tolerance is too small

If the layer forward functions
support dlarray objects, then
the software automatically
determines the backward
function and you can omit the
backward function. For a list of
functions that support dlarray
objects, see “List of Functions
with dlarray Support” on page
19-504.

Check that the derivatives in
backward are correctly
computed.

If the derivatives are correctly
computed, then in the
Framework Diagnostic
section, manually check the
absolute and relative error
between the actual and
expected values of the
derivative.

If the absolute and relative
errors are within an acceptable
margin of the tolerance, then
you can ignore this test
diagnostic.

The derivative of the
loss with respect to the
input 'in1' for
'backward' is
inconsistent with the
numerical gradient.
The derivative of loss
with respect to 'W' for
'backward' is
inconsistent with the
numerical gradient.

Tip If the layer forward functions support dlarray objects, then the software automatically
determines the backward function and you do not need to specify the backward function. For a list of
functions that support dlarray objects, see “List of Functions with dlarray Support” on page 19-504.

Output Layers

When the optional backwardLoss function is not specified, the test
backwardPropagationDoesNotError checks that the derivatives can be computed using
automatic differentiation. When the optional backwardLoss function is specified, the test
gradientsAreNumericallyCorrect tests that the gradients computed in backwardLoss are
numerically correct.

 Check Custom Layer Validity

19-185



Test Diagnostic Description Possible Solution
Expected a dlarray with
no dimension labels, but
instead found labels

When the optional
backwardLoss function is not
specified, the forwardLoss
function must output dlarray
objects without dimension
labels.

Ensure that any dlarray
objects created in the
forwardLoss function does not
contain dimension labels.

Unable to backward
propagate through the
layer. Check that the
'forwardLoss' function
fully supports automatic
differentiation.
Alternatively, implement
the 'backwardLoss'
function manually

One or more of the following:

• When the optional
backwardLoss function is
not specified, the layer
forwardLoss function does
not support dlarray
objects.

• When the optional
backwardLoss function is
not specified, the tracing of
the input dlarray objects in
the forwardLoss function
has been broken. For
example, by using the
extractdata function.

Check that the forwardLoss
function supports dlarray
objects. For a list of functions
that support dlarray objects,
see “List of Functions with
dlarray Support” on page 19-
504.

Check that the derivatives of the
input dlarray objects can be
traced. To learn more about the
derivative trace of dlarray
objects, see “Derivative Trace”
on page 19-220.

Alternatively, define a custom
backward loss function by
creating a function named
backwardLoss. To learn more,
see “Specify Custom Output
Layer Backward Loss Function”
on page 19-124.

The derivative 'dLdY'
for 'backwardLoss' is
inconsistent with the
numerical gradient.

One or more of the following:

• The derivative with respect
to the predictions Y is
incorrectly computed

• Function is non-
differentiable at some input
points

• Error tolerance is too small

Check that the derivatives in
backwardLoss are correctly
computed.

If the derivatives are correctly
computed, then in the
Framework Diagnostic
section, manually check the
absolute and relative error
between the actual and
expected values of the
derivative.

If the absolute and relative
errors are within an acceptable
margin of the tolerance, then
you can ignore this test
diagnostic.

Tip If the forwardLoss function supports dlarray objects, then the software automatically
determines the backward loss function and you do not need to specify the backwardLoss function.

19 Import, Export, and Customization

19-186



For a list of functions that support dlarray objects, see “List of Functions with dlarray Support” on
page 19-504.

Valid States

For layers with state properties, the test predictReturnsValidStates checks that the predict
function returns valid states. When forward is specified, the test forwardReturnsValidStates
checks that the forward function returns valid states. The test resetStateDoesNotError checks
that the resetState function returns a layer with valid state properties.

Test Diagnostic Description Possible Solution
Error using 'predict' in
Layer. 'State' must be
real-values numeric
array or unformatted
dlarray object.

State outputs must be real-
valued numeric arrays or
unformatted dlarray objects.

Ensure that the states identified
in the Framework Diagnostic
are real-valued numeric arrays
or unformatted dlarray
objects.

Error using 'resetState'
in Layer. 'State' must
be real-values numeric
array or unformatted
dlarray object

State properties of returned
layer must be real-valued
numeric arrays or unformatted
dlarray objects.

Code Generation Compatibility

If you set the CheckCodegenCompatibility option to 1 (true), then the checkLayer function
checks the layer for code generation compatibility.

The test codegenPragmaDefinedInClassDef checks that the layer definition contains the code
generation pragma %#codegen. The test layerPropertiesSupportCodegen checks that the layer
properties support code generation. The test predictSupportsCodegen checks that the outputs of
predict are consistent in dimension and batch size.

Code generation supports intermediate layers with 2-D image or feature input only. Code generation
does not support layers with state properties (properties with attribute State).

The checkLayer function does not check that functions used by the layer are compatible with code
generation. To check that functions used by the custom layer also support code generation, first use
the Code Generation Readiness app. For more information, see “Check Code by Using the Code
Generation Readiness Tool” (MATLAB Coder).

Test Diagnostic Description Possible Solution
Specify '%#codegen' in
the class definition of
custom layer

The layer definition does not
include the pragma
"%#codegen" for code
generation.

Add the %#codegen directive
(or pragma) to your layer
definition to indicate that you
intend to generate code for this
layer. Adding this directive
instructs the MATLAB Code
Analyzer to help you diagnose
and fix violations that result in
errors during code generation.

 Check Custom Layer Validity

19-187



Test Diagnostic Description Possible Solution
Nonscalar layer
properties must be type
single or double or
character array for
custom layer

The layer contains non-scalar
properties of type other than
single, double, or character
array.

Convert non-scalar properties to
use a representation of type
single, double, or character
array.

For example, convert a
categorical array to an array of
integers of type double
representing the categories.

Scalar layer properties
must be numeric,
logical, or string for
custom layer

The layer contains scalar
properties of type other than
numeric, logical, or string.

Convert scalar properties to use
a numeric representation, or a
representation of type logical or
string.

For example, convert a
categorical scalar to an integer
of type double representing the
category.

For code generation, 'Z'
must have the same
number of dimensions as
the layer input.

The number of dimensions of
the output Z of predict does
not match the number of
dimensions of the layer inputs.

In the predict function, return
the outputs with the same
number of dimensions as the
layer inputs.

For code generation, 'Z'
must have the same batch
size as the layer input.

The size of the batch size of the
output Z of predict does not
match the size of the batch size
of the layer inputs.

In the predict function, return
the outputs with the batch size
as the layer inputs.

See Also
checkLayer | analyzeNetwork

More About
• “Define Custom Deep Learning Intermediate Layers” on page 19-16
• “Define Custom Deep Learning Output Layers” on page 19-31
• “Define Custom Deep Learning Layer with Learnable Parameters” on page 19-38
• “Define Custom Deep Learning Layer with Multiple Inputs” on page 19-53
• “Define Custom Deep Learning Layer with Formatted Inputs” on page 19-67
• “Define Custom Recurrent Deep Learning Layer” on page 19-83
• “Define Custom Deep Learning Layer for Code Generation” on page 19-156
• “Define Custom Classification Output Layer” on page 19-101
• “Define Custom Regression Output Layer” on page 19-109
• “Define Nested Deep Learning Layer” on page 19-134

19 Import, Export, and Customization

19-188



Specify Custom Weight Initialization Function

This example shows how to create a custom He weight initialization function for convolution layers
followed by leaky ReLU layers.

The He initializer for convolution layers followed by leaky ReLU layers samples from a normal
distribution with zero mean and variance σ2 = 2

1 + a2 n
, where a is the scale of the leaky ReLU layer

that follows the convolution layer and n = FilterSize(1) * FilterSize(2) * NumChannels.

For learnable layers, when setting the options 'WeightsInititializer',
'InputWeightsInitializer', or 'RecurrentWeightsInitializer' to 'he', the software
uses a=0. To set a to different value, create a custom function to use as a weights initializer.

Load Data

Load the digit sample data as an image datastore. The imageDatastore function automatically
labels the images based on folder names.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets, so that each category in the training set
contains 750 images, and the validation set contains the remaining images from each label.
splitEachLabel splits the datastore into two new datastores for training and validation.

numTrainFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');

Define Network Architecture

Define the convolutional neural network architecture:

• Image input layer size of [28 28 1], the size of the input images
• Three 2-D convolution layers with filter size 3 and with 8, 16, and 32 filters respectively
• A leaky ReLU layer following each convolutional layer
• Fully connected layer of size 10, the number of classes
• Softmax layer
• Classification layer

For each of the convolutional layers, set the weights initializer to the leakyHe function. The
leakyHe function, listed at the end of the example, takes the input sz (the size of the layer weights)
and returns an array of weights given by the He Initializer for convolution layers followed by a leaky
ReLU layer.

inputSize = [28 28 1];
numClasses = 10;

layers = [
    imageInputLayer(inputSize)

 Specify Custom Weight Initialization Function

19-189



    convolution2dLayer(3,8,'WeightsInitializer',@leakyHe)
    leakyReluLayer
    convolution2dLayer(3,16,'WeightsInitializer',@leakyHe)
    leakyReluLayer
    convolution2dLayer(3,32,'WeightsInitializer',@leakyHe)
    leakyReluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Train Network

Specify the training options and train the network. Train for four epochs. To prevent the gradients
from exploding, set the gradient threshold to 2. Validate the network once per epoch. View the
training progress plot.

By default, trainNetwork uses a GPU if one is available, otherwise, it uses a CPU. Training on a
GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). You can also
specify the execution environment by using the 'ExecutionEnvironment' name-value pair
argument of trainingOptions.

maxEpochs = 4;
miniBatchSize = 128;
numObservations = numel(imdsTrain.Files);
numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('sgdm', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',2, ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',numIterationsPerEpoch, ...
    'Verbose',false, ...
    'Plots','training-progress');

[netDefault,infoDefault] = trainNetwork(imdsTrain,layers,options);

19 Import, Export, and Customization

19-190



Test Network

Classify the validation data and calculate the classification accuracy.

YPred = classify(netDefault,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 0.9684

Specify Additional Options

The leakyHe function accepts the optional input argument scale. To input extra variables into the
custom weight initialization function, specify the function as an anonymous function that accepts a
single input sz. To do this, replace instances of @leakyHe with @(sz) leakyHe(sz,scale). Here,
the anonymous function accepts the single input argument sz only and calls the leakyHe function
with the specified scale input argument.

Create and train the same network as before with the following changes:

• For the leaky ReLU layers, specify a scale multiplier of 0.01.
• Initialize the weights of the convolutional layers with the leakyHe function and also specify the

scale multiplier.

scale = 0.01;

layers = [
    imageInputLayer(inputSize)

 Specify Custom Weight Initialization Function

19-191



    convolution2dLayer(3,8,'WeightsInitializer',@(sz) leakyHe(sz,scale))
    leakyReluLayer(scale)
    convolution2dLayer(3,16,'WeightsInitializer',@(sz) leakyHe(sz,scale))
    leakyReluLayer(scale)
    convolution2dLayer(3,32,'WeightsInitializer',@(sz) leakyHe(sz,scale))
    leakyReluLayer(scale)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

[netCustom,infoCustom] = trainNetwork(imdsTrain,layers,options);

Classify the validation data and calculate the classification accuracy.

YPred = classify(netCustom,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 0.9456

Compare Results

Extract the validation accuracy from the information structs output from the trainNetwork
function.

validationAccuracy = [
    infoDefault.ValidationAccuracy;
    infoCustom.ValidationAccuracy];

19 Import, Export, and Customization

19-192



The vectors of validation accuracy contain NaN for iterations that the validation accuracy was not
computed. Remove the NaN values.

idx = all(isnan(validationAccuracy));
validationAccuracy(:,idx) = [];

For each of the networks, plot the epoch numbers against the validation accuracy.

figure
epochs = 0:maxEpochs;
plot(epochs,validationAccuracy)
title("Validation Accuracy")
xlabel("Epoch")
ylabel("Validation Accuracy")
legend(["Leaky He (Default)" "Leaky He (Custom)"],'Location','southeast')

Custom Weight Initialization Function

The leakyHe function takes the input sz (the size of the layer weights) and returns an array of
weights given by the He Initializer for convolution layers followed by a leaky ReLU layer. The function
also accepts the optional input argument scale which specifies the scale multiplier for the leaky
ReLU layer.

function weights = leakyHe(sz,scale)

% If not specified, then use default scale = 0.1
if nargin < 2
    scale = 0.1;

 Specify Custom Weight Initialization Function

19-193



end

filterSize = [sz(1) sz(2)];
numChannels = sz(3);
numIn = filterSize(1) * filterSize(2) * numChannels;

varWeights = 2 / ((1 + scale^2) * numIn);
weights = randn(sz) * sqrt(varWeights);

end

Bibliography

1 He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

See Also
trainNetwork | trainingOptions

Related Examples
• “Compare Layer Weight Initializers” on page 19-195
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87
• “Deep Learning in MATLAB” on page 1-2

19 Import, Export, and Customization

19-194



Compare Layer Weight Initializers

This example shows how to train deep learning networks with different weight initializers.

When training a deep learning network, the initialization of layer weights and biases can have a big
impact on how well the network trains. The choice of initializer has a bigger impact on networks
without batch normalization layers.

Depending on the type of layer, you can change the weights and bias initialization using the
'WeightsInitializer', 'InputWeightsInitializer', 'RecurrentWeightsInitializer',
and 'BiasInitializer' options.

This example shows the effect of using these three different weight initializers when training an
LSTM network:

1 Glorot Initializer – Initialize the input weights with the Glorot initializer. [1]
2 He Initializer – Initialize the input weights with the He initializer. [2]
3 Narrow-Normal Initializer – Initialize the input weights by independently sampling from a

normal distribution with zero mean and standard deviation 0.01.

Load Data

Load the Japanese Vowels data set. XTrain is a cell array containing 270 sequences of varying length
with a feature dimension of 12. Y is a categorical vector of labels 1,2,...,9. The entries in XTrain are
matrices with 12 rows (one row for each feature) and a varying number of columns (one column for
each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;
[XValidation,YValidation] = japaneseVowelsTestData;

Specify Network Architecture

Specify the network architecture. For each initializer, use the same network architecture.

Specify the input size as 12 (the number of features of the input data). Specify an LSTM layer with
100 hidden units and to output the last element of the sequence. Finally, specify nine classes by
including a fully connected layer of size 9, followed by a softmax layer and a classification layer.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units

 Compare Layer Weight Initializers

19-195



     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Training Options

Specify the training options. For each initializer, use the same training options to train the network.

maxEpochs = 30;
miniBatchSize = 27;
numObservations = numel(XTrain);
numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',2, ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',numIterationsPerEpoch, ...
    'Verbose',false, ...
    'Plots','training-progress');

Glorot Initializer

Specify the network architecture listed earlier in the example and set the input weights initializer of
the LSTM layer and the weights initializer of the fully connected layer to 'glorot'.

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last','InputWeightsInitializer','glorot')
    fullyConnectedLayer(numClasses,'WeightsInitializer','glorot')
    softmaxLayer
    classificationLayer];

Train the network using the layers with the Glorot weights initializers.

[netGlorot,infoGlorot] = trainNetwork(XTrain,YTrain,layers,options);

19 Import, Export, and Customization

19-196



He Initializer

Specify the network architecture listed earlier in the example and set the input weights initializer of
the LSTM layer and the weights initializer of the fully connected layer to 'he'.

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last','InputWeightsInitializer','he')
    fullyConnectedLayer(numClasses,'WeightsInitializer','he')
    softmaxLayer
    classificationLayer];

Train the network using the layers with the He weights initializers.

[netHe,infoHe] = trainNetwork(XTrain,YTrain,layers,options);

 Compare Layer Weight Initializers

19-197



Narrow-Normal Initializer

Specify the network architecture listed earlier in the example and set the input weights initializer of
the LSTM layer and the weights initializer of the fully connected layer to 'narrow-normal'.

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last','InputWeightsInitializer','narrow-normal')
    fullyConnectedLayer(numClasses,'WeightsInitializer','narrow-normal')
    softmaxLayer
    classificationLayer];

Train the network using the layers with the narrow-normal weights initializers.

[netNarrowNormal,infoNarrowNormal] = trainNetwork(XTrain,YTrain,layers,options);

19 Import, Export, and Customization

19-198



Plot Results

Extract the validation accuracy from the information structs output from the trainNetwork
function.

validationAccuracy = [
    infoGlorot.ValidationAccuracy;
    infoHe.ValidationAccuracy;
    infoNarrowNormal.ValidationAccuracy];

The vectors of validation accuracy contain NaN for iterations that the validation accuracy was not
computed. Remove the NaN values.

idx = all(isnan(validationAccuracy));
validationAccuracy(:,idx) = [];

For each of the initializers, plot the epoch numbers against the validation accuracy.

figure
epochs = 0:maxEpochs;
plot(epochs,validationAccuracy)
title("Validation Accuracy")
xlabel("Epoch")
ylabel("Validation Accuracy")
legend(["Glorot" "He" "Narrow-Normal"],'Location','southeast')

 Compare Layer Weight Initializers

19-199



This plot shows the overall effect of the different initializers and how quickly the training converges
for each one.

Bibliography

1 Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward
neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

2 He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

See Also
trainNetwork | trainingOptions

Related Examples
• “Specify Custom Weight Initialization Function” on page 19-189
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87
• “Deep Learning in MATLAB” on page 1-2

19 Import, Export, and Customization

19-200



Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")

 Assemble Network from Pretrained Keras Layers

19-201



Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Create two Gaussian noise layers with the same configurations as the imported Keras layers using the
helper gaussianNoiseLayer function.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")

19 Import, Export, and Customization

19-202



Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

 Assemble Network from Pretrained Keras Layers

19-203



The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
    ClassWeights: 'none'
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

See Also
importKerasNetwork | assembleNetwork | replaceLayer | importKerasLayers |
trainNetwork | layerGraph | DAGNetwork | findPlaceholderLayers

19 Import, Export, and Customization

19-204



Related Examples
• “Deep Learning in MATLAB” on page 1-2
• “Pretrained Deep Neural Networks” on page 1-11
• “Define Custom Deep Learning Layers” on page 19-9

 Assemble Network from Pretrained Keras Layers

19-205



Replace Unsupported Keras Layer with Function Layer

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with function layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in "digitsNet.h5" classifies images of
digits.

filename = "digitsNet.h5";
layers = importKerasLayers(filename,ImportWeights=true)

Warning: Unable to import layer. Keras layer 'Activation' with the specified settings is not supported. The problem was: Activation type 'softsign' is not supported.

Warning: Unable to import layer. Keras layer 'Activation' with the specified settings is not supported. The problem was: Activation type 'softsign' is not supported.

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

layers = 
  13x1 Layer array with layers:

     1   'ImageInputLayer'               Image Input             28x28x1 images
     2   'conv2d'                        2-D Convolution         8 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'conv2d_softsign'               PLACEHOLDER LAYER       Placeholder for 'Activation' Keras layer
     4   'max_pooling2d'                 2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   'conv2d_1'                      2-D Convolution         16 3x3x8 convolutions with stride [1  1] and padding [0  0  0  0]
     6   'conv2d_1_softsign'             PLACEHOLDER LAYER       Placeholder for 'Activation' Keras layer
     7   'max_pooling2d_1'               2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     8   'flatten'                       Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
     9   'dense'                         Fully Connected         100 fully connected layer
    10   'dense_relu'                    ReLU                    ReLU
    11   'dense_1'                       Fully Connected         10 fully connected layer
    12   'dense_1_softmax'               Softmax                 softmax
    13   'ClassificationLayer_dense_1'   Classification Output   crossentropyex

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using the findPlaceholderLayers function.

placeholderLayers = findPlaceholderLayers(layers)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'conv2d_softsign'     PLACEHOLDER LAYER   Placeholder for 'Activation' Keras layer
     2   'conv2d_1_softsign'   PLACEHOLDER LAYER   Placeholder for 'Activation' Keras layer

Replace the placeholder layers with function layers with function specified by the softsign function,
listed at the end of the example.

19 Import, Export, and Customization

19-206



Create a function layer with function specified by the softsign function, attached to this example as
a supporting file. To access this function, open this example as a live script. Set the layer description
to "softsign".

layer = functionLayer(@softsign,Description="softsign");

Replace the layers using the replaceLayer function. To use the replaceLayer function, first
convert the layer array to a layer graph.

lgraph = layerGraph(layers);
lgraph = replaceLayer(lgraph,"conv2d_softsign",layer);
lgraph = replaceLayer(lgraph,"conv2d_1_softsign",layer);

Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans = 
  13x1 Layer array with layers:

     1   'ImageInputLayer'               Image Input             28x28x1 images
     2   'conv2d'                        2-D Convolution         8 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'layer'                         Function                softsign
     4   'max_pooling2d'                 2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   'conv2d_1'                      2-D Convolution         16 3x3x8 convolutions with stride [1  1] and padding [0  0  0  0]
     6   'layer_1'                       Function                softsign
     7   'max_pooling2d_1'               2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     8   'flatten'                       Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
     9   'dense'                         Fully Connected         100 fully connected layer
    10   'dense_relu'                    ReLU                    ReLU
    11   'dense_1'                       Fully Connected         10 fully connected layer
    12   'dense_1_softmax'               Softmax                 softmax
    13   'ClassificationLayer_dense_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_dense_1'. View the classification
layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_dense_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is "auto", you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

 Replace Unsupported Keras Layer with Function Layer

19-207



cLayer.Classes = string(0:9);
lgraph = replaceLayer(lgraph,"ClassificationLayer_dense_1",cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [12x2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'ClassificationLayer_dense_1'}

Test Network

Make predictions with the network using a test data set.

[XTest,YTest] = digitTest4DArrayData;
YPred = classify(net,XTest);

View the accuracy.

mean(YPred == YTest)

ans = 0.9900

Visualize the predictions in a confusion matrix.

confusionchart(YTest,YPred)

19 Import, Export, and Customization

19-208



See Also
importKerasNetwork | assembleNetwork | replaceLayer | importKerasLayers |
trainNetwork | layerGraph | DAGNetwork | findPlaceholderLayers

Related Examples
• “Deep Learning in MATLAB” on page 1-2
• “Pretrained Deep Neural Networks” on page 1-11
• “Define Custom Deep Learning Layers” on page 19-9

 Replace Unsupported Keras Layer with Function Layer

19-209



Assemble Multiple-Output Network for Prediction

This example shows how to assemble a multiple output network for prediction.

Instead of using the dlnetwork object for prediction, you can assemble the network into a
DAGNetwork ready for prediction using the assembleNetwork function. This lets you use the
predict function with other data types such as datastores.

Load Model Function and Parameters

Load the model parameters from the MAT file dlnetDigits.mat. The MAT file contains a
dlnetwork object that predicts both the scores for categorical labels and numeric angles of rotation
of images of digits, and the corresponding class names.

s = load("dlnetDigits.mat");
net = s.net;
classNames = s.classNames;

Assemble Network for Prediction

Extract the layer graph from the dlnetwork object using the layerGraph function.

lgraph = layerGraph(net);

The layer graph does not include output layers. Add a classification layer and a regression layer to
the layer graph using the addLayers and connectLayers functions.

layers = classificationLayer(Classes=classNames,Name="coutput");
lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"softmax","coutput");

layers = regressionLayer(Name="routput");
lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"fc2","routput");

View a plot of the network.

figure
plot(lgraph)

19 Import, Export, and Customization

19-210



Assemble the network using the assembleNetwork function.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [19x1 nnet.cnn.layer.Layer]
    Connections: [19x2 table]
     InputNames: {'in'}
    OutputNames: {'coutput'  'routput'}

Make Predictions on New Data

Load the test data.

[XTest,T1Test,T2Test] = digitTest4DArrayData;

To make predictions using the assembled network, use the predict function. To return categorical
labels for the classification output, set the ReturnCategorical option to true.

[Y1Test,Y2Test] = predict(net,XTest,ReturnCategorical=true);

Evaluate the classification accuracy.

accuracy = mean(Y1Test==T1Test)

accuracy = 0.9870

 Assemble Multiple-Output Network for Prediction

19-211



Evaluate the regression accuracy.

angleRMSE = sqrt(mean((Y2Test - T2Test).^2))

angleRMSE = single
    6.0091

View some of the images with their predictions. Display the predicted angles in red and the correct
labels in green.

idx = randperm(size(XTest,4),9);
figure
for i = 1:9
    subplot(3,3,i)
    I = XTest(:,:,:,idx(i));
    imshow(I)
    hold on
    
    sz = size(I,1);
    offset = sz/2;
    
    thetaPred = Y2Test(idx(i));
    plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],"r--")
    
    thetaValidation = T2Test(idx(i));
    plot(offset*[1-tand(thetaValidation) 1+tand(thetaValidation)],[sz 0],"g--")
    
    hold off
    label = string(Y1Test(idx(i)));
    title("Label: " + label)
end

19 Import, Export, and Customization

19-212



See Also
convolution2dLayer | batchNormalizationLayer | reluLayer | fullyConnectedLayer |
softmaxLayer | assembleNetwork | predict

More About
• “Multiple-Input and Multiple-Output Networks” on page 1-41
• “Make Predictions Using dlnetwork Object” on page 19-280
• “Train Network with Multiple Outputs” on page 3-57
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “List of Deep Learning Layers” on page 1-43

 Assemble Multiple-Output Network for Prediction

19-213



Automatic Differentiation Background

What Is Automatic Differentiation?
Automatic differentiation (also known as autodiff, AD, or algorithmic differentiation) is a widely used
tool for deep learning. It is particularly useful for creating and training complex deep learning models
without needing to compute derivatives manually for optimization. For examples showing how to
create and customize deep learning models, training loops, and loss functions, see “Define Custom
Training Loops, Loss Functions, and Networks” on page 19-223.

Automatic differentiation is a set of techniques for evaluating derivatives (gradients) numerically. The
method uses symbolic rules for differentiation, which are more accurate than finite difference
approximations. Unlike a purely symbolic approach, automatic differentiation evaluates expressions
numerically early in the computations, rather than carrying out large symbolic computations. In other
words, automatic differentiation evaluates derivatives at particular numeric values; it does not
construct symbolic expressions for derivatives.

• Forward mode evaluates a numerical derivative by performing elementary derivative operations
concurrently with the operations of evaluating the function itself. As detailed in the next section,
the software performs these computations on a computational graph.

• Reverse mode automatic differentiation uses an extension of the forward mode computational
graph to enable the computation of a gradient by a reverse traversal of the graph. As the software
runs the code to compute the function and its derivative, it records operations in a data structure
called a trace.

As many researchers have noted (for example, Baydin, Pearlmutter, Radul, and Siskind [1]), for a
scalar function of many variables, reverse mode calculates the gradient more efficiently than forward
mode. Because a deep learning loss function is a scalar function of all the weights, Deep Learning
Toolbox automatic differentiation uses reverse mode.

Forward Mode
Consider the problem of evaluating this function and its gradient:

f (x) = x1exp −1
2 x1

2 + x2
2 .

Automatic differentiation works at particular points. In this case, take x1 = 2, x2 = 1/2.

The following computational graph encodes the calculation of the function f(x).

19 Import, Export, and Customization

19-214



To compute the gradient of f(x) using forward mode, you compute the same graph in the same
direction, but modify the computation based on the elementary rules of differentiation. To further
simplify the calculation, you fill in the value of the derivative of each subexpression ui as you go. To
compute the entire gradient, you must traverse the graph twice, once for the partial derivative with
respect to each independent variable. Each subexpression in the chain rule has a numeric value, so
the entire expression has the same sort of evaluation graph as the function itself.

The computation is a repeated application of the chain rule. In this example, the derivative of f with
respect to x1 expands to this expression:

df
dx1

=
du6
dx1

=
∂u6
∂u−1

+
∂u6
∂u5

∂u5
∂x1

=
∂u6
∂u−1

+
∂u6
∂u5

∂u5
∂u4

∂u4
∂x1

=
∂u6
∂u−1

+
∂u6
∂u5

∂u5
∂u4

∂u4
∂u3

∂u3
∂x1

=
∂u6
∂u−1

+
∂u6
∂u5

∂u5
∂u4

∂u4
∂u3

∂u3
∂u1

∂u1
∂x1

.

Let u̇i represent the derivative of the expression ui with respect to x1. Using the evaluated values of
the ui from the function evaluation, you compute the partial derivative of f with respect to x1 as shown

 Automatic Differentiation Background

19-215



in the following figure. Notice that all the values of the u̇i become available as you traverse the graph
from top to bottom.

To compute the partial derivative with respect to x2, you traverse a similar computational graph.
Therefore, when you compute the gradient of the function, the number of graph traversals is the
same as the number of variables. This process is too slow for typical deep learning applications,
which have thousands or millions of variables.

Reverse Mode
Reverse mode uses one forward traversal of a computational graph to set up the trace. Then it
computes the entire gradient of the function in one traversal of the graph in the opposite direction.
For deep learning applications, this mode is far more efficient.

The theory behind reverse mode is also based on the chain rule, along with associated adjoint
variables denoted with an overbar. The adjoint variable for ui is

ui = ∂ f
∂ui

.

In terms of the computational graph, each outgoing arrow from a variable contributes to the
corresponding adjoint variable by its term in the chain rule. For example, the variable u–1 has
outgoing arrows to two variables, u1 and u6. The graph has the associated equation

19 Import, Export, and Customization

19-216



∂ f
∂u−1

= ∂ f
∂u1

∂u1
∂u−1

+ ∂ f
∂u6

∂u6
∂u−1

= u1
∂u1
∂u−1

+ u6
∂u6
∂u−1

.

In this calculation, recalling that u1 = u−1
2  and u6 = u5u–1, you obtain

u−1 = u12u−1 + u6u5 .

During the forward traversal of the graph, the software calculates the intermediate variables ui.
During the reverse traversal, starting from the seed value u6 = ∂ f

∂ f = 1, the reverse mode
computation obtains the adjoint values for all variables. Therefore, the reverse mode computes the
gradient in just one computation, saving a great deal of time compared to forward mode.

The following figure shows the computation of the gradient in reverse mode for the function

f (x) = x1exp −1
2 x1

2 + x2
2 .

Again, the computation takes x1 = 2, x2 = 1/2. The reverse mode computation relies on the ui values
that are obtained during the computation of the function in the original computational graph. In the
right portion of the figure, the computed values of the adjoint variables appear next to the adjoint
variable names, using the formulas from the left portion of the figure.

The final gradient values appear as u0 = ∂ f
∂u0

= ∂ f
∂x2

 and u−1 = ∂ f
∂u−1

= ∂ f
∂x1

.

 Automatic Differentiation Background

19-217



For more details, see Baydin, Pearlmutter, Radul, and Siskind [1] or the Wikipedia article on
automatic differentiation [2].

References
[1] Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. "Automatic Differentiation in

Machine Learning: a Survey." The Journal of Machine Learning Research, 18(153), 2018, pp.
1–43. Available at https://arxiv.org/abs/1502.05767.

[2] Automatic differentiation. Wikipedia. Available at https://en.wikipedia.org/wiki/
Automatic_differentiation.

See Also
dlarray | dlgradient | dlfeval | dlnetwork

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Train Network Using Model Function” on page 19-284
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “List of Functions with dlarray Support” on page 19-504

19 Import, Export, and Customization

19-218

https://arxiv.org/abs/1502.05767
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation


Use Automatic Differentiation In Deep Learning Toolbox

In this section...
“Custom Training and Calculations Using Automatic Differentiation” on page 19-219
“Use dlgradient and dlfeval Together for Automatic Differentiation” on page 19-220
“Derivative Trace” on page 19-220
“Characteristics of Automatic Derivatives” on page 19-221

Custom Training and Calculations Using Automatic Differentiation
Automatic differentiation makes it easier to create custom training loops, custom layers, and other
deep learning customizations.

Generally, the simplest way to customize deep learning training is to create a dlnetwork. Include the
layers you want in the network. Then perform training in a custom loop by using some sort of
gradient descent, where the gradient is the gradient of the objective function. The objective function
can be classification error, cross-entropy, or any other relevant scalar function of the network
weights. See “List of Functions with dlarray Support” on page 19-504.

This example is a high-level version of a custom training loop. Here, f is the objective function, such
as loss, and g is the gradient of the objective function with respect to the weights in the network net.
The update function represents some type of gradient descent.

% High-level training loop
n = 1;
while (n < nmax)
    [f,g] = dlfeval(@model,net,X,T);
    net = update(net,g);
    n = n + 1;
end

You call dlfeval to compute the numeric value of the objective and gradient. To enable the
automatic computation of the gradient, the data X must be a dlarray.

X = dlarray(X);

The objective function has a dlgradient call to calculate the gradient. The dlgradient call must
be inside of the function that dlfeval evaluates.

function [f,g] = model(net,X,T)
% Calculate objective using supported functions for dlarray
    Y = forward(net,X);
    f = fcnvalue(Y,T); % crossentropy or similar
    g = dlgradient(f,net.Learnables); % Automatic gradient
end

For an example using a dlnetwork with a dlfeval-dlgradient-dlarray syntax and a custom
training loop, see “Train Network Using Custom Training Loop” on page 19-239. For further details
on custom training using automatic differentiation, see “Define Custom Training Loops, Loss
Functions, and Networks” on page 19-223.

 Use Automatic Differentiation In Deep Learning Toolbox

19-219



Use dlgradient and dlfeval Together for Automatic Differentiation
To use automatic differentiation, you must call dlgradient inside a function and evaluate the
function using dlfeval. Represent the point where you take a derivative as a dlarray object, which
manages the data structures and enables tracing of evaluation. For example, the Rosenbrock function
is a common test function for optimization.

function [f,grad] = rosenbrock(x)

f = 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2;
grad = dlgradient(f,x);

end

Calculate the value and gradient of the Rosenbrock function at the point x0 = [–1,2]. To enable
automatic differentiation in the Rosenbrock function, pass x0 as a dlarray.

x0 = dlarray([-1,2]);
[fval,gradval] = dlfeval(@rosenbrock,x0)

fval =

  1x1 dlarray

   104

gradval =

  1x2 dlarray

   396   200

For an example using automatic differentiation, see “Train Network Using Custom Training Loop” on
page 19-239.

Derivative Trace
To evaluate a gradient numerically, a dlarray constructs a data structure for reverse mode
differentiation, as described in “Automatic Differentiation Background” on page 19-214. This data
structure is the trace of the derivative computation. Keep in mind these guidelines when using
automatic differentiation and the derivative trace:

• Do not introduce a new dlarray inside of an objective function calculation and attempt to
differentiate with respect to that object. For example:
function [dy,dy1] = fun(x1)
x2 = dlarray(0);
y = x1 + x2;
dy = dlgradient(y,x2); % Error: x2 is untraced
dy1 = dlgradient(y,x1); % No error even though y has an untraced portion
end

• Do not use extractdata with a traced argument. Doing so breaks the tracing. For example:

fun = @(x)dlgradient(x + atan(extractdata(x)),x);
% Gradient for any point is 1 due to the leading 'x' term in fun.
dlfeval(fun,dlarray(2.5))

19 Import, Export, and Customization

19-220



ans =

  1x1 dlarray

     1

However, you can use extractdata to introduce a new independent variable from a dependent
one.

• When working in parallel, moving traced dlarray objects between the client and workers breaks
the tracing. The traced dlarray object is saved on the worker and loaded in the client as an
untraced dlarray object. To avoid breaking tracing when working in parallel, compute all required
gradients on the worker and then combine the gradients on the client. For an example, see “Train
Network in Parallel with Custom Training Loop” on page 7-64.

• Use only supported functions. For a list of supported functions, see “List of Functions with dlarray
Support” on page 19-504. To use an unsupported function f, try to implement f using supported
functions.

Characteristics of Automatic Derivatives
• You can evaluate gradients using automatic differentiation only for scalar-valued functions.

Intermediate calculations can have any number of variables, but the final function value must be
scalar. If you need to take derivatives of a vector-valued function, take derivatives of one
component at a time. In this case, consider setting the dlgradient 'RetainData' name-value
pair argument to true.

• A call to dlgradient evaluates derivatives at a particular point. The software generally makes an
arbitrary choice for the value of a derivative when there is no theoretical value. For example, the
relu function, relu(x) = max(x,0), is not differentiable at x = 0. However, dlgradient
returns a value for the derivative.

x = dlarray(0);
y = dlfeval(@(t)dlgradient(relu(t),t),x)

y =

  1x1 dlarray

     0

The value at the nearby point eps is different.

x = dlarray(eps);
y = dlfeval(@(t)dlgradient(relu(t),t),x)

y =

  1x1 dlarray

     1

See Also
dlarray | dlgradient | dlfeval | dlnetwork

 Use Automatic Differentiation In Deep Learning Toolbox

19-221



More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Train Network Using Model Function” on page 19-284
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “List of Functions with dlarray Support” on page 19-504

19 Import, Export, and Customization

19-222



Define Custom Training Loops, Loss Functions, and Networks
In this section...
“Define Deep Learning Network for Custom Training Loops” on page 19-223
“Specify Loss Functions” on page 19-227
“Update Learnable Parameters Using Automatic Differentiation” on page 19-228

For most deep learning tasks, you can use a pretrained neural network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images” on page 3-6.
Alternatively, you can create and train neural networks from scratch using layerGraph objects with
the trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops” on page 19-223.

If Deep Learning Toolbox does not provide the layers you need for your task (including output layers
that specify loss functions), then you can create a custom layer. To learn more, see “Define Custom
Deep Learning Layers” on page 19-9. For loss functions that cannot be specified using an output
layer, you can specify the loss in a custom training loop. To learn more, see “Specify Loss Functions”
on page 19-227. For networks that cannot be created using layer graphs, you can define custom
networks as a function. To learn more, see “Define Network as Model Function” on page 19-223.

For more information about which training method to use for which task, see “Train Deep Learning
Model in MATLAB” on page 19-3.

Define Deep Learning Network for Custom Training Loops
Define Network as dlnetwork Object

For most tasks, you can control the training algorithm details using the trainingOptions and
trainNetwork functions. If the trainingOptions function does not provide the options you need
for your task (for example, a custom learning rate schedule), then you can define your own custom
training loop using a dlnetwork object. A dlnetwork object allows you to train a network specified
as a layer graph using automatic differentiation.

For networks specified as a layer graph, you can create a dlnetwork object from the layer graph by
using the dlnetwork function directly.

net = dlnetwork(lgraph);

For a list of layers supported by dlnetwork objects, see the “Supported Layers” section of the
dlnetwork page. For an example showing how to train a network with a custom learning rate
schedule, see “Train Network Using Custom Training Loop” on page 19-239.

Define Network as Model Function

For architectures that cannot be created using layer graphs (for example, a Siamese network that
requires shared weights), you can define the model as a function of the form [Y1,...,YM] =
model(parameters,X1,...,XN), where parameters contains the network parameters,
X1,...,XN corresponds to the input data for the N model inputs, and Y1,...,YM corresponds to the

 Define Custom Training Loops, Loss Functions, and Networks

19-223



M model outputs. To train a deep learning model defined as a function, use a custom training loop. For
an example, see “Train Network Using Model Function” on page 19-284.

When you define a deep learning model as a function, you must manually initialize the layer weights.
For more information, see “Initialize Learnable Parameters for Model Function” on page 19-318.

If you define a custom network as a function, then the model function must support automatic
differentiation. You can use the following deep learning operations. The functions listed here are only
a subset. For a complete list of functions that support dlarray input, see “List of Functions with
dlarray Support” on page 19-504.

Function Description
attention The attention operation focuses on parts of the

input using weighted multiplication operations.
avgpool The average pooling operation performs

downsampling by dividing the input into pooling
regions and computing the average value of each
region.

batchnorm The batch normalization operation normalizes the
input data across all observations for each
channel independently. To speed up training of
the convolutional neural network and reduce the
sensitivity to network initialization, use batch
normalization between convolution and nonlinear
operations such as relu.

crossentropy The cross-entropy operation computes the cross-
entropy loss between network predictions and
target values for single-label and multi-label
classification tasks.

crosschannelnorm The cross-channel normalization operation uses
local responses in different channels to normalize
each activation. Cross-channel normalization
typically follows a relu operation. Cross-channel
normalization is also known as local response
normalization.

ctc The CTC operation computes the connectionist
temporal classification (CTC) loss between
unaligned sequences.

dlconv The convolution operation applies sliding filters
to the input data. Use the dlconv function for
deep learning convolution, grouped convolution,
and channel-wise separable convolution.

dlode45 The neural ordinary differential equation (ODE)
operation returns the solution of a specified ODE.

dltranspconv The transposed convolution operation upsamples
feature maps.

19 Import, Export, and Customization

19-224



Function Description
embed The embed operation converts numeric indices to

numeric vectors, where the indices correspond to
discrete data. Use embeddings to map discrete
data such as categorical values or words to
numeric vectors.

fullyconnect The fully connect operation multiplies the input
by a weight matrix and then adds a bias vector.

gelu The Gaussian error linear unit (GELU) activation
operation weights the input by its probability
under a Gaussian distribution.

groupnorm The group normalization operation normalizes
the input data across grouped subsets of
channels for each observation independently. To
speed up training of the convolutional neural
network and reduce the sensitivity to network
initialization, use group normalization between
convolution and nonlinear operations such as
relu.

gru The gated recurrent unit (GRU) operation allows
a network to learn dependencies between time
steps in time series and sequence data.

huber The Huber operation computes the Huber loss
between network predictions and target values
for regression tasks. When the
'TransitionPoint' option is 1, this is also
known as smooth L1 loss.

instancenorm The instance normalization operation normalizes
the input data across each channel for each
observation independently. To improve the
convergence of training the convolutional neural
network and reduce the sensitivity to network
hyperparameters, use instance normalization
between convolution and nonlinear operations
such as relu.

l1loss The L1 loss operation computes the L1 loss given
network predictions and target values. When the
Reduction option is "sum" and the
NormalizationFactor option is "batch-
size", the computed value is known as the mean
absolute error (MAE).

l2loss The L2 loss operation computes the L2 loss (based
on the squared L2 norm) given network
predictions and target values. When the
Reduction option is "sum" and the
NormalizationFactor option is "batch-
size", the computed value is known as the mean
squared error (MSE).

 Define Custom Training Loops, Loss Functions, and Networks

19-225



Function Description
layernorm The layer normalization operation normalizes the

input data across all channels for each
observation independently. To speed up training
of recurrent and multilayer perceptron neural
networks and reduce the sensitivity to network
initialization, use layer normalization after the
learnable operations, such as LSTM and fully
connect operations.

leakyrelu The leaky rectified linear unit (ReLU) activation
operation performs a nonlinear threshold
operation, where any input value less than zero is
multiplied by a fixed scale factor.

lstm The long short-term memory (LSTM) operation
allows a network to learn long-term dependencies
between time steps in time series and sequence
data.

maxpool The maximum pooling operation performs
downsampling by dividing the input into pooling
regions and computing the maximum value of
each region.

maxunpool The maximum unpooling operation unpools the
output of a maximum pooling operation by
upsampling and padding with zeros.

mse The half mean squared error operation computes
the half mean squared error loss between
network predictions and target values for
regression tasks.

onehotdecode The one-hot decode operation decodes probability
vectors, such as the output of a classification
network, into classification labels.

The input A can be a dlarray. If A is formatted,
the function ignores the data format.

relu The rectified linear unit (ReLU) activation
operation performs a nonlinear threshold
operation, where any input value less than zero is
set to zero.

sigmoid The sigmoid activation operation applies the
sigmoid function to the input data.

softmax The softmax activation operation applies the
softmax function to the channel dimension of the
input data.

19 Import, Export, and Customization

19-226



Specify Loss Functions
When you use a custom training loop, you must calculate the loss in the model gradients function.
Use the loss value when computing gradients for updating the network weights. To compute the loss,
you can use the following functions.

Function Description
softmax The softmax activation operation applies the

softmax function to the channel dimension of the
input data.

sigmoid The sigmoid activation operation applies the
sigmoid function to the input data.

crossentropy The cross-entropy operation computes the cross-
entropy loss between network predictions and
target values for single-label and multi-label
classification tasks.

l1loss The L1 loss operation computes the L1 loss given
network predictions and target values. When the
Reduction option is "sum" and the
NormalizationFactor option is "batch-
size", the computed value is known as the mean
absolute error (MAE).

l2loss The L2 loss operation computes the L2 loss (based
on the squared L2 norm) given network
predictions and target values. When the
Reduction option is "sum" and the
NormalizationFactor option is "batch-
size", the computed value is known as the mean
squared error (MSE).

huber The Huber operation computes the Huber loss
between network predictions and target values
for regression tasks. When the
'TransitionPoint' option is 1, this is also
known as smooth L1 loss.

mse The half mean squared error operation computes
the half mean squared error loss between
network predictions and target values for
regression tasks.

ctc The CTC operation computes the connectionist
temporal classification (CTC) loss between
unaligned sequences.

Alternatively, you can use a custom loss function by creating a function of the form loss =
myLoss(Y,T), where Y and T correspond to the network predictions and targets, respectively, and
loss is the returned loss.

For an example showing how to train a generative adversarial network (GAN) that generates images
using a custom loss function, see “Train Generative Adversarial Network (GAN)” on page 3-72.

 Define Custom Training Loops, Loss Functions, and Networks

19-227



Update Learnable Parameters Using Automatic Differentiation
When you train a deep learning model with a custom training loop, the software minimizes the loss
with respect to the learnable parameters. To minimize the loss, the software uses the gradients of the
loss with respect to the learnable parameters. To calculate these gradients using automatic
differentiation, you must define a model gradients function.

Define Model Loss Function

For a model specified as a dlnetwork object, create a function of the form [loss,gradients] =
modelLoss(net,X,T), where net is the network, X is the network input, T contains the targets, and
loss and gradients are the returned loss and gradients, respectively. Optionally, you can pass extra
arguments to the gradients function (for example, if the loss function requires extra information), or
return extra arguments (for example, the updated network state).

For a model specified as a function, create a function of the form [loss,gradients] =
modelLoss(parameters,X,T), where parameters contains the learnable parameters, X is the
model input, T contains the targets, and loss and gradients are the returned loss and gradients,
respectively. Optionally, you can pass extra arguments to the gradients function (for example, if the
loss function requires extra information), or return extra arguments (for example, the updated model
state).

To learn more about defining model loss functions for custom training loops, see “Define Model Loss
Function for Custom Training Loop” on page 19-256.

Update Learnable Parameters

To evaluate the model loss function using automatic differentiation, use the dlfeval function, which
evaluates a function with automatic differentiation enabled. For the first input of dlfeval, pass the
model loss function specified as a function handle. For the following inputs, pass the required
variables for the model loss function. For the outputs of the dlfeval function, specify the same
outputs as the model loss function.

To update the learnable parameters using the gradients, you can use the following functions.

Function Description
adamupdate Update parameters using adaptive moment

estimation (Adam)
rmspropupdate Update parameters using root mean squared

propagation (RMSProp)
sgdmupdate Update parameters using stochastic gradient

descent with momentum (SGDM)
lbfgsupdate Update parameters using limited-memory BFGS

(L-BFGS)
dlupdate Update parameters using custom function

See Also
dlarray | dlgradient | dlfeval | dlnetwork

19 Import, Export, and Customization

19-228



More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Update Batch Normalization Statistics in Custom Training Loop” on page 19-261
• “Update Batch Normalization Statistics Using Model Function” on page 19-298
• “Make Predictions Using dlnetwork Object” on page 19-280
• “Make Predictions Using Model Function” on page 19-312
• “Train Network Using Model Function” on page 19-284
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “Train Deep Learning Model in MATLAB” on page 19-3
• “Define Custom Deep Learning Layers” on page 19-9
• “List of Functions with dlarray Support” on page 19-504
• “Automatic Differentiation Background” on page 19-214
• “Use Automatic Differentiation In Deep Learning Toolbox” on page 19-219

 Define Custom Training Loops, Loss Functions, and Networks

19-229



Specify Training Options in Custom Training Loop
For most tasks, you can control the training algorithm details using the trainingOptions and
trainNetwork functions. If the trainingOptions function does not provide the options you need
for your task (for example, a custom learning rate schedule), then you can define your own custom
training loop using a dlnetwork object. A dlnetwork object allows you to train a network specified
as a layer graph using automatic differentiation.

To specify the same options as the trainingOptions, use these examples as a guide:

Training Option trainingOptions Argument Example
Adam solver • solverName

• 'GradientDecayFactor'
• 'SquaredGradientDecayF

actor'

“Adaptive Moment Estimation
(ADAM)” on page 19-231

RMSProp solver • solverName
• 'Epsilon'

“Root Mean Square Propagation
(RMSProp)” on page 19-231

SGDM solver • solverName
• 'Momentum'

“Stochastic Gradient Descent
with Momentum (SGDM)” on
page 19-231

Learn rate 'InitialLearnRate' “Learn Rate” on page 19-231
Learn rate schedule • 'LearnRateSchedule'

• 'LearnRateDropPeriod'
• 'LearnRateDropFactor'

“Piecewise Learn Rate
Schedule” on page 19-231

Training progress 'Plots' “Plots” on page 19-232
Verbose output • 'Verbose'

• 'VerboseFrequency'
“Verbose Output” on page 19-
233

Mini-batch size 'MiniBatchSize' “Mini-Batch Size” on page 19-
234

Number of epochs 'MaxEpochs' “Number of Epochs” on page
19-234

Validation • 'ValidationData'
• 'ValidationPatience'

“Validation” on page 19-235

L2 regularization 'L2Regularization' “L2 Regularization” on page 19-
236

Gradient clipping • 'GradientThreshold'
• 'GradientThresholdMeth

od'

“Gradient Clipping” on page 19-
236

Single CPU or GPU training 'ExecutionEnvironment' “Single CPU or GPU Training”
on page 19-237

Checkpoints 'CheckpointPath' “Checkpoints” on page 19-238

19 Import, Export, and Customization

19-230



Solver Options
To specify the solver, use the adamupdate, rmspropupdate, and sgdmupdate functions for the
update step in your training loop. To implement your own custom solver, update the learnable
parameters using the dlupdate function.

Adaptive Moment Estimation (ADAM)

To update your network parameters using Adam, use the adamupdate function. Specify the gradient
decay and the squared gradient decay factors using the corresponding input arguments.

Root Mean Square Propagation (RMSProp)

To update your network parameters using RMSProp, use the rmspropupdate function. Specify the
denominator offset (epsilon) value using the corresponding input argument.

Stochastic Gradient Descent with Momentum (SGDM)

To update your network parameters using SGDM, use the sgdmupdate function. Specify the
momentum using the corresponding input argument.

Learn Rate
To specify the learn rate, use the learn rate input arguments of the adamupdate, rmspropupdate,
and sgdmupdate functions.

To easily adjust the learn rate or use it for custom learn rate schedules, set the initial learn rate
before the custom training loop.

learnRate = 0.01;

Piecewise Learn Rate Schedule

To automatically drop the learn rate during training using a piecewise learn rate schedule, multiply
the learn rate by a given drop factor after a specified interval.

To easily specify a piecewise learn rate schedule, create the variables learnRate,
learnRateSchedule, learnRateDropFactor, and learnRateDropPeriod, where learnRate is
the initial learn rate, learnRateSchedule contains either "piecewise" or "none",
learnRateDropFactor is a scalar in the range [0, 1] that specifies the factor for dropping the
learning rate, and learnRateDropPeriod is a positive integer that specifies how many epochs
between dropping the learn rate.

learnRate = 0.01;
learnRateSchedule = "piecewise"
learnRateDropPeriod = 10;
learnRateDropFactor = 0.1;

Inside the training loop, at the end of each epoch, drop the learn rate when the learnRateSchedule
option is "piecewise" and the current epoch number is a multiple of learnRateDropPeriod. Set
the new learn rate to the product of the learn rate and the learn rate drop factor.
if learnRateSchedule == "piecewise" && mod(epoch,learnRateDropPeriod) == 0
    learnRate = learnRate * learnRateDropFactor;
end

 Specify Training Options in Custom Training Loop

19-231



Plots
To plot the training loss and accuracy during training, calculate the mini-batch loss and either the
accuracy or the root-mean-squared-error (RMSE) in the model loss function and plot them using a
TrainingProgressMonitor object.

To easily specify that the plot should be on or off, set the Visible property of the
TrainingProgressMonitor object. By default, Visible is set to true. When Visible is set to
false, the software logs the training metrics and information but does not display the Training
Progress window. You can display the Training Progress window after training by changing the
Visible property. To also plot validation metrics, use the same options validationData and
validationFrequency described in “Validation” on page 19-235.

validationData = {XValidation, YValidation};
validationFrequency = 50;

Before training, initialize a TrainingProgressMonitor object. The monitor automatically tracks
the elapsed time since the construction of the object. To use this elapsed time as a proxy for training
time, make sure you create the TrainingProgressMonitor object close to the start of the training
loop.

For classification tasks, create a plot to track the loss and accuracy for the training and validation
data. Also track the epoch number and the training progress percentage.

monitor = trainingProgressMonitor;

monitor.Metrics = ["TrainingAccuracy","ValidationAccuracy","TrainingLoss","ValidationLoss"];

groupSubPlot(monitor,"Accuracy",["TrainingAccuracy","ValidationAccuracy"]);
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);

monitor.Info = "Epoch";

monitor.XLabel = "Iteration";
monitor.Progress = 0;

For regression tasks, adjust the code by changing the variable names and labels so that it initializes
plots for the training and validation RMSE instead of the training and validation accuracy.

Inside the training loop, at the end of an iteration, use the recordMetrics and updateInfo
functions to include the appropriate metrics and information for the training loop. For classification
tasks, add points corresponding to the mini-batch accuracy and the mini-batch loss. If the current
iteration is either 1 or a multiple of the validation frequency option, then also add points for the
validation data.
recordMetrics(monitor,iteration, ...
    TrainingLoss=lossTrain, ...
    TrainingAccuracy=accuracyTrain);

updateInfo(monitor,Epoch=string(epoch) + " of " + string(numEpochs));

if iteration == 1 || mod(iteration,validationFrequency) == 0
    recordMetrics(monitor,iteration, ...
        ValidationLoss=lossValidation, ...
        ValidationAccuracy=accuracyValidation);
end
monitor.Progress = 100*iteration/numIterations;

19 Import, Export, and Customization

19-232



where accuracyTrain and lossTrain correspond to the mini-batch accuracy and loss calculated in
the model loss function. For regression tasks, use the mini-batch RMSE losses instead of the mini-
batch accuracies.

You can stop training using the Stop button in the Training Progress window. When you click Stop,
the Stop property of the monitor changes to 1 (true). Training stops if your training loop exits when
the Stop property is 1.

while numEpochs < maxEpochs && ~monitor.Stop    
% Custom training loop code.   
end

For more information about plotting and recording metrics during training, see “Monitor Custom
Training Loop Progress During Training” on page 19-523.

To learn how to compute validation metrics, see “Validation” on page 19-235.

Verbose Output
To display the training loss and accuracy during training in a verbose table, calculate the mini-batch
loss and either the accuracy (for classification tasks) or the RMSE (for regression tasks) in the model
loss function and display them using the disp function.

To easily specify that the verbose table should be on or off, create the variables verbose and
verboseFrequency, where verbose is true or false and verbosefrequency specifies how
many iterations between printing verbose output. To display validation metrics, use the same options
validationData and validationFrequency described in “Validation” on page 19-235.

verbose = true
verboseFrequency = 50;

validationData = {XValidation, YValidation};
validationFrequency = 50;

Before training, display the verbose output table headings and initialize a timer using the tic
function.
disp("|======================================================================================================================|")
disp("|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |")
disp("|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |")
disp("|======================================================================================================================|")

start = tic;

For regression tasks, adjust the code so that it displays the training and validation RMSE instead of
the training and validation accuracy.

Inside the training loop, at the end of an iteration, print the verbose output when the verbose option
is true and it is either the first iteration or the iteration number is a multiple of
verboseFrequency.
if verbose && (iteration == 1 || mod(iteration,verboseFrequency) == 0
    D = duration(0,0,toc(start),'Format','hh:mm:ss');

    if isempty(validationData) || mod(iteration,validationFrequency) ~= 0 
        accuracyValidation = "";
        lossValidation = "";
    end

    disp("| " + ...
        pad(epoch,7,'left') + " | " + ...

 Specify Training Options in Custom Training Loop

19-233



        pad(iteration,11,'left') + " | " + ...
        pad(D,14,'left') + " | " + ...
        pad(accuracyTrain,12,'left') + " | " + ...
        pad(accuracyValidation,12,'left') + " | " + ...
        pad(lossTrain,12,'left') + " | " + ...
        pad(lossValidation,12,'left') + " | " + ...
        pad(learnRate,15,'left') + " |")
end

For regression tasks, adjust the code so that it displays the training and validation RMSE instead of
the training and validation accuracy.

When training is finished, print the last border of the verbose table.
disp("|======================================================================================================================|")

To learn how to compute validation metrics, see “Validation” on page 19-235.

Mini-Batch Size
Setting the mini-batch size depends on the format of data or type of datastore used.

To easily specify the mini-batch size, create a variable miniBatchSize.

miniBatchSize = 128;

For data in an image datastore, before training, set the ReadSize property of the datastore to the
mini-batch size.

imds.ReadSize = miniBatchSize;

For data in an augmented image datastore, before training, set the MiniBatchSize property of the
datastore to the mini-batch size.

augimds.MiniBatchSize = miniBatchSize;

For in-memory data, during training at the start of each iteration, read the observations directly from
the array.

idx = ((iteration - 1)*miniBatchSize + 1):(iteration*miniBatchSize);
X = XTrain(:,:,:,idx);

Number of Epochs
Specify the maximum number of epochs for training in the outer loop of the training loop.

To easily specify the maximum number of epochs, create the variable maxEpochs that contains the
maximum number of epochs.

maxEpochs = 30;

In the outer loop of the training loop, specify to loop over the range 1, 2, …, maxEpochs.

epoch = 0;
while numEpochs < maxEpochs
    epoch = epoch + 1;
    ...
end

19 Import, Export, and Customization

19-234



Validation
To validate your network during training, set aside a held-out validation set and evaluate how well the
network performs on that data.

To easily specify validation options, create the variables validationData and
validationFrequency, where validationData contains the validation data or is empty and
validationFrequency specifies how many iterations between validating the network.

validationData = {XValidation,TValidation};
validationFrequency = 50;

During the training loop, after updating the network parameters, test how well the network performs
on the held-out validation set using the predict function. Validate the network only when validation
data is specified and it is either the first iteration or the current iteration is a multiple of the
validationFrequency option.
if iteration == 1 || mod(iteration,validationFrequency) == 0
    YValidation = predict(net,XValidation);
    lossValidation = crossentropy(YValidation,TValidation);

    [~,idx] = max(YValidation);
    labelsPredValidation = classNames(idx);

    accuracyValidation = mean(labelsPredValidation == labelsValidation);
end

Here, TValidation is a one-hot encoded array of labels over classNames. To calculate the
accuracy, convert TValidation to an array of labels.

For regression tasks, adjust the code so that it calculates the validation RMSE instead of the
validation accuracy.

For an example showing how to calculate and plot validation metrics during training, see “Monitor
Custom Training Loop Progress During Training” on page 19-523.

Early Stopping

To stop training early when the loss on the held-out validation stops decreasing, use a flag to break
out of the training loops.

To easily specify the validation patience (the number of times that the validation loss can be larger
than or equal to the previously smallest loss before network training stops), create the variable
validationPatience.

validationPatience = 5;

Before training, initialize a variables earlyStop and validationLosses, where earlyStop is a
flag to stop training early and validationLosses contains the losses to compare. Initialize the early
stopping flag with false and array of validation losses with inf.

earlyStop = false;
if isfinite(validationPatience)
    validationLosses = inf(1,validationPatience);
end

Inside the training loop, in the loop over mini-batches, add the earlyStop flag to the loop condition.

 Specify Training Options in Custom Training Loop

19-235



while hasdata(ds) && ~earlyStop
    ...
end

During the validation step, append the new validation loss to the array validationLosses. If the
first element of the array is the smallest, then set the earlyStop flag to true. Otherwise, remove
the first element.

if isfinite(validationPatience)
    validationLosses = [validationLosses validationLoss];
    if min(validationLosses) == validationLosses(1)
        earlyStop = true;
    else
        validationLosses(1) = [];
    end
end

L2 Regularization
To apply L2 regularization to the weights, use the dlupdate function.

To easily specify the L2 regularization factor, create the variable l2Regularization that contains
the L2 regularization factor.

l2Regularization = 0.0001;

During training, after computing the model loss and gradients, for each of the weight parameters,
add the product of the L2 regularization factor and the weights to the computed gradients using the
dlupdate function. To update only the weight parameters, extract the parameters with name
"Weights".
idx = net.Learnables.Parameter == "Weights";
gradients(idx,:) = dlupdate(@(g,w) g + l2Regularization*w, gradients(idx,:), net.Learnables(idx,:));

After adding the L2 regularization parameter to the gradients, update the network parameters.

Gradient Clipping
To clip the gradients, use the dlupdate function.

To easily specify gradient clipping options, create the variables gradientThresholdMethod and
gradientThreshold, where gradientThresholdMethod contains "global-l2norm",
"l2norm", or "absolute-value", and gradientThreshold is a positive scalar containing the
threshold or inf.

gradientThresholdMethod = "global-l2norm";
gradientThreshold = 2;

Create functions named thresholdGlobalL2Norm, thresholdL2Norm, and
thresholdAbsoluteValue that apply the "global-l2norm", "l2norm", and "absolute-value"
threshold methods, respectively.

For the "global-l2norm" option, the function operates on all gradients of the model.
function gradients = thresholdGlobalL2Norm(gradients,gradientThreshold)

globalL2Norm = 0;
for i = 1:numel(gradients)

19 Import, Export, and Customization

19-236



    globalL2Norm = globalL2Norm + sum(gradients{i}(:).^2);
end
globalL2Norm = sqrt(globalL2Norm);

if globalL2Norm > gradientThreshold
    normScale = gradientThreshold / globalL2Norm;
    for i = 1:numel(gradients)
        gradients{i} = gradients{i} * normScale;
    end
end

end

For the "l2norm" and "absolute-value" options, the functions operate on each gradient
independently.
function gradients = thresholdL2Norm(gradients,gradientThreshold)

gradientNorm = sqrt(sum(gradients(:).^2));
if gradientNorm > gradientThreshold
    gradients = gradients * (gradientThreshold / gradientNorm);
end

end

function gradients = thresholdAbsoluteValue(gradients,gradientThreshold)

gradients(gradients > gradientThreshold) = gradientThreshold;
gradients(gradients < -gradientThreshold) = -gradientThreshold;

end

During training, after computing the model loss and gradients, apply the appropriate gradient
clipping method to the gradients using the dlupdate function. Because the "global-l2norm"
option requires all the gradient values, apply the thresholdGlobalL2Norm function directly to the
gradients. For the "l2norm" and "absolute-value" options, update the gradients independently
using the dlupdate function.
switch gradientThresholdMethod
    case "global-l2norm"
        gradients = thresholdGlobalL2Norm(gradients, gradientThreshold);
    case "l2norm"
        gradients = dlupdate(@(g) thresholdL2Norm(g, gradientThreshold),gradients);
    case "absolute-value"
        gradients = dlupdate(@(g) thresholdAbsoluteValue(g, gradientThreshold),gradients);
end

After applying the gradient threshold operation, update the network parameters.

Single CPU or GPU Training
The software, by default, performs calculations using only the CPU. To train on a single GPU, convert
the data to gpuArray objects. Using a GPU requires a Parallel Computing Toolbox license and a
supported GPU device. For information about supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

To easily specify the execution environment, create the variable executionEnvironment that
contains either "cpu", "gpu", or "auto".

executionEnvironment = "auto"

During training, after reading a mini-batch, check the execution environment option and convert the
data to a gpuArray if necessary. The canUseGPU function checks for useable GPUs.
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    X = gpuArray(X);
end

 Specify Training Options in Custom Training Loop

19-237



Checkpoints
To save checkpoint networks during training save the network using the save function.

To easily specify whether checkpoints should be switched on, create the variable checkpointPath
contains the folder for the checkpoint networks or is empty.

checkpointPath = fullfile(tempdir,"checkpoints");

If the checkpoint folder does not exist, then before training, create the checkpoint folder.

if ~exist(checkpointPath,"dir")
    mkdir(checkpointPath)
end

During training, at the end of an epoch, save the network in a MAT file. Specify a file name containing
the current iteration number, date, and time.
if ~isempty(checkpointPath)
    D = string(datetime("now",Format="yyyy_MM_dd__HH_mm_ss"));
    filename = "net_checkpoint__" + iteration + "__" + D + ".mat";
    save(filename,"net")
end

where net is the dlnetwork object to be saved.

See Also
adamupdate | rmspropupdate | sgdmupdate | dlupdate | dlarray | dlgradient | dlfeval |
dlnetwork

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Train Network Using Custom Training Loop” on page 19-239
• “Train Network Using Model Function” on page 19-284
• “Make Predictions Using dlnetwork Object” on page 19-280
• “Make Predictions Using Model Function” on page 19-312
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “Update Batch Normalization Statistics in Custom Training Loop” on page 19-261
• “Update Batch Normalization Statistics Using Model Function” on page 19-298
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “List of Functions with dlarray Support” on page 19-504

19 Import, Export, and Customization

19-238



Train Network Using Custom Training Loop

This example shows how to train a network that classifies handwritten digits with a custom learning
rate schedule.

You can train most types of neural networks using the trainNetwork and trainingOptions
functions. If the trainingOptions function does not provide the options you need (for example, a
custom learning rate schedule), then you can define your own custom training loop using dlarray
and dlnetwork objects for automatic differentiation. For an example showing how to retrain a
pretrained deep learning network using the trainNetwork function, see “Transfer Learning Using
Pretrained Network” on page 3-29.

Training a deep neural network is an optimization task. By considering a neural network as a function
f (X; θ), where X is the network input, and θ is the set of learnable parameters, you can optimize θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable
parameters θ such that for a given inputs X with a corresponding targets T, they minimize the error
between the predictions Y = f (X; θ) and T.

The loss function used depends on the type of task. For example:

• For classification tasks, you can minimize the cross entropy error between the predictions and
targets.

• For regression tasks, you can minimize the mean squared error between the predictions and
targets.

You can optimize the objective using gradient descent: minimize the loss L by iteratively updating the
learnable parameters θ by taking steps towards the minimum using the gradients of the loss with
respect to the learnable parameters. Gradient descent algorithms typically update the learnable
parameters by using a variant of an update step of the form θt + 1 = θt − ρ∇L, where t is the iteration
number, ρ is the learning rate, and ∇L denotes the gradients (the derivatives of the loss with respect
to the learnable parameters).

This example trains a network to classify handwritten digits with the time-based decay learning rate
schedule: for each iteration, the solver uses the learning rate given by ρt =

ρ0
1 + k t , where t is the

iteration number, ρ0 is the initial learning rate, and k is the decay.

Load Training Data

Load the digits data as an image datastore using the imageDatastore function and specify the
folder containing the image data.

dataFolder = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");

imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ....
    LabelSource="foldernames");

Partition the data into training and validation sets. Set aside 10% of the data for validation using the
splitEachLabel function.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,"randomize");

 Train Network Using Custom Training Loop

19-239



The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the training images, use an augmented image datastore. Specify additional augmentation operations
to perform on the training images: randomly translate the images up to 5 pixels in the horizontal and
vertical axes. Data augmentation helps prevent the network from overfitting and memorizing the
exact details of the training images.

inputSize = [28 28 1];
pixelRange = [-5 5];

imageAugmenter = imageDataAugmenter( ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,DataAugmentation=imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Determine the number of classes in the training data.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network

Define the network for image classification.

• For image input, specify an image input layer with input size matching the training data.
• Do not normalize the image input, set the Normalization option of the input layer to "none".
• Specify three convolution-batchnorm-ReLU blocks.
• Pad the input to the convolution layers such that the output has the same size by setting the

Padding option to "same".
• For the first convolution layer specify 20 filters of size 5. For the remaining convolution layers

specify 20 filters of size 3.
• For classification, specify a fully connected layer with size matching the number of classes
• To map the output to probabilities, include a softmax layer.

When training a network using a custom training loop, do not include an output layer.

layers = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(5,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

19 Import, Export, and Customization

19-240



Create a dlnetwork object from the layer array.

net = dlnetwork(layers)

net = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [11×2 table]
     Learnables: [14×3 table]
          State: [6×3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Define Model Loss Function

Training a deep neural network is an optimization task. By considering a neural network as a function
f (X; θ), where X is the network input, and θ is the set of learnable parameters, you can optimize θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable
parameters θ such that for a given inputs X with a corresponding targets T, they minimize the error
between the predictions Y = f (X; θ) and T.

Create the function modelLoss, listed in the Model Loss Function on page 19-245 section of the
example, that takes as input the dlnetwork object, a mini-batch of input data with corresponding
targets, and returns the loss, the gradients of the loss with respect to the learnable parameters, and
the network state.

Specify Training Options

Train for ten epochs with a mini-batch size of 128.

numEpochs = 10;
miniBatchSize = 128;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.01 with a decay of 0.01,
and momentum 0.9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not format the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a

 Train Network Using Custom Training Loop

19-241



supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" ""]);

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Calculate the total number of iterations for the training progress monitor.

numObservationsTrain = numel(imdsTrain.Files);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info=["Epoch","LearnRate"],XLabel="Iteration");

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model loss, gradients, and state using the dlfeval and modelLoss functions and
update the network state.

• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the sgdmupdate function.
• Update the loss, learn rate, and epoch values in the training progress monitor.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop

        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [X,T] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelLoss function and update the network state.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T);

19 Import, Export, and Customization

19-242



        net.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);
        
        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch,LearnRate=learnRate);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

After training, making predictions on new data does not require the labels. Create minibatchqueue
object containing only the predictors of the test data:

• To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format "SSCB" (spatial, spatial,

channel, batch).

 Train Network Using Custom Training Loop

19-243



numOutputs = 1;

mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="SSCB");

Loop over the mini-batches and classify the images using modelPredictions function, listed at the
end of the example.

YTest = modelPredictions(net,mbqTest,classes);

Evaluate the classification accuracy.

TTest = imdsValidation.Labels;
accuracy = mean(TTest == YTest)

accuracy = 0.9750

Visualize the predictions in a confusion chart.

figure
confusionchart(TTest,YTest)

Large values on the diagonal indicate accurate predictions for the corresponding class. Large values
on the off-diagonal indicate strong confusion between the corresponding classes.

19 Import, Export, and Customization

19-244



Supporting Functions

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding targets T and returns the loss, the gradients of the loss with respect to the learnable
parameters in net, and the network state. To compute the gradients automatically, use the
dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T)

% Forward data through network.
[Y,state] = forward(net,X);

% Calculate cross-entropy loss.
loss = crossentropy(Y,T);

% Calculate gradients of loss with respect to learnable parameters.
gradients = dlgradient(loss,net.Learnables);

end

Model Predictions Function

The modelPredictions function takes a dlnetwork object net, a minibatchqueue of input data
mbq, and the network classes, and computes the model predictions by iterating over all data in the
minibatchqueue object. The function uses the onehotdecode function to find the predicted class
with the highest score.

function Y = modelPredictions(net,mbq,classes)

Y = [];

% Loop over mini-batches.
while hasdata(mbq)
    X = next(mbq);

    % Make prediction.
    scores = predict(net,X);

    % Decode labels and append to output.
    labels = onehotdecode(scores,classes,1)';
    Y = [Y; labels];
end

end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

 Train Network Using Custom Training Loop

19-245



function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenate into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(dataX)

% Concatenate.
X = cat(4,dataX{1:end});

end

See Also
trainingProgressMonitor | dlarray | dlgradient | dlfeval | dlnetwork | forward |
adamupdate | predict | minibatchqueue | onehotencode | onehotdecode

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Update Batch Normalization Statistics in Custom Training Loop” on page 19-261
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Monitor Custom Training Loop Progress” on page 19-521
• “List of Deep Learning Layers” on page 1-43
• “List of Functions with dlarray Support” on page 19-504

19 Import, Export, and Customization

19-246



Train Sequence Classification Network Using Custom Training
Loop

This example shows how to train a network that classifies sequences with a custom learning rate
schedule.

You can train most types of neural networks using the trainNetwork and trainingOptions
functions. If the trainingOptions function does not provide the options you need (for example, a
custom learning rate schedule), then you can define your own custom training loop using dlarray
and dlnetwork objects for automatic differentiation. For an example showing how to train a
convolutional neural network for sequence classification using the trainNetwork function, see
“Sequence Classification Using 1-D Convolutions” on page 4-10.

Training a network in a custom training loop with sequence data requires some additional processing
steps when compared with image or feature data. Most deep learning functions require data passed
as numeric arrays with a fixed sequence length. If you have sequence data where observations have
varying lengths, then you must pad or truncate the sequences in each mini-batch so that they have
the same length.

This example trains a network to classify sequences with the time-based decay learning rate
schedule: for each iteration, the solver uses the learning rate given by ρt =

ρ0
1 + k t , where t is the

iteration number, ρ0 is the initial learning rate, and k is the decay.

Load Training Data

Load the Waveform data set from WaveformData.mat. The observations are numChannels-by-
numTimeSteps arrays, where numChannels and numTimeSteps are the number of channels and
time steps of the sequence, respectively. The sequences have different lengths.

load WaveformData

View the sizes of the first few sequences.

data(1:5)

ans=5×1 cell array
    {3×103 double}
    {3×136 double}
    {3×140 double}
    {3×124 double}
    {3×127 double}

View the number of channels. To train the network, each sequence must have the same number of
channels.

numChannels = size(data{1},1)

numChannels = 3

Visualize the first few sequences in a plot.

figure
tiledlayout(2,2)

 Train Sequence Classification Network Using Custom Training Loop

19-247



for i = 1:4
    nexttile
    stackedplot(data{i}',DisplayLabels="Channel " + (1:numChannels));
    title("Observation " + i + newline + "Class: " + string(labels(i)))
    xlabel("Time Step")
end

Determine the number of classes in the training data.

classes = categories(labels);
numClasses = numel(classes);

Partition the data into training and test partitions. Train the network using the 90% of the data and
set aside 10% for testing.

numObservations = numel(data);
idxTrain = 1:floor(0.9*numObservations);
XTrain = data(idxTrain);
TTrain = labels(idxTrain);

idxTest = floor(0.9*numObservations)+1:numObservations;
XTest = data(idxTest);
TTest = labels(idxTest);

19 Import, Export, and Customization

19-248



Define Network

Define the network for sequence classification.

• For the sequence input, specify a sequence input layer with input size matching the number of
channels of the training data.

• Specify three convolution-layernorm-ReLU blocks.
• Pad the input to the convolution layers such that the output has the same size by setting the

Padding option to "same".
• For the first convolution layer specify 20 filters of size 5.
• Pool the timesteps to a single value using a 1-D global average pooling layer.
• For classification, specify a fully connected layer with size matching the number of classes
• To map the output to probabilities, include a softmax layer.

When training a network using a custom training loop, do not include an output layer.

layers = [
    sequenceInputLayer(numChannels)
    convolution1dLayer(5,20,Padding="same")
    layerNormalizationLayer
    reluLayer
    convolution1dLayer(5,20,Padding="same")
    layerNormalizationLayer
    reluLayer
    convolution1dLayer(5,20,Padding="same")
    layerNormalizationLayer
    reluLayer
    globalAveragePooling1dLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers)

net = 
  dlnetwork with properties:

         Layers: [13×1 nnet.cnn.layer.Layer]
    Connections: [12×2 table]
     Learnables: [14×3 table]
          State: [0×3 table]
     InputNames: {'sequenceinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Define Model Loss Function

Training a deep neural network is an optimization task. By considering a neural network as a function
f (X; θ), where X is the network input, and θ is the set of learnable parameters, you can optimize θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable

 Train Sequence Classification Network Using Custom Training Loop

19-249



parameters θ such that for a given inputs X with a corresponding targets T, they minimize the error
between the predictions Y = f (X; θ) and T.

Create the function modelLoss, listed in the Model Loss Function on page 19-253 section of the
example, that takes as input the dlnetwork object, a mini-batch of input data with corresponding
targets, and returns the loss, the gradients of the loss with respect to the learnable parameters, and
the network state.

Specify Training Options

Train for 60 epochs with a mini-batch size of 128.

numEpochs = 60;
miniBatchSize = 128;

Specify the options for Adam optimization. Specify an initial learn rate of 0.005 with a decay of 0.01.

initialLearnRate = 0.005;
learnRateDecay = 0.01;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of data during training.

Mini-batch queue objects require data specified as datastores. Convert the sequences and labels to
array datastores and combine them using the combine function. To output sequences as a cell array
of numeric arrays, specify an output type of "same" for the sequence data.

adsXTrain = arrayDatastore(XTrain,OutputType="same");
adsTTrain = arrayDatastore(TTrain);
cdsTrain = combine(adsXTrain,adsTTrain);

Create a minibatchqueue object that processes and manages mini-batches of data during training.
For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to pad the sequences to have the same length and convert the labels to one-hot
encoded variables.

• Format the sequence data with the dimension labels "CTB" (channel, time, batch). By default, the
minibatchqueue object converts the data to dlarray objects with underlying type single. Do
not format the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(cdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["CTB" ""]);

Initialize the average gradient and average square gradient parameters for the Adam solver.

averageGrad = [];
averageSqGrad = [];

Calculate the total number of iterations for the training progress monitor.

19 Import, Export, and Customization

19-250



numObservationsTrain = size(XTrain,1);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics="Loss", ...
    Info=["Epoch","LearnRate"], ...
    XLabel="Iteration");

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model loss and gradients using the dlfeval and modelLoss functions.
• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the adamupdate function.
• Update the loss, learn rate, and epoch values in the training progress monitor.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button.

epoch = 0;
iteration = 0;
% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop

        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(mbq);
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelLoss function.
        [loss,gradients] = dlfeval(@modelLoss,net,X,T);

        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + learnRateDecay*iteration);
        
        % Update the network parameters using the Adam optimizer.
        [net,averageGrad,averageSqGrad] = adamupdate(net,gradients, ...
            averageGrad,averageSqGrad,iteration,learnRate);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch,LearnRate=learnRate);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

 Train Sequence Classification Network Using Custom Training Loop

19-251



Test Model

Test the classification accuracy of the model by comparing the predictions on the test set with the
targets.

After training, making predictions on new data does not require the labels. Create minibatchqueue
object containing only the predictors of the test data:

• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format "CTB" (channel, time, batch).

adsXTest = arrayDatastore(XTest,OutputType="same");

mbqTest = minibatchqueue(adsXTest, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="CTB");

Loop over the mini-batches and classify the sequences using modelPredictions function, listed at
the end of the example.

YTest = modelPredictions(net,mbqTest,classes);

Evaluate the classification accuracy.

accuracy = mean(TTest == YTest)

19 Import, Export, and Customization

19-252



accuracy = 0.8200

Visualize the predictions in a confusion chart.

figure
confusionchart(TTest,YTest)

Large values on the diagonal indicate accurate predictions for the corresponding class. Large values
on the off-diagonal indicate strong confusion between the corresponding classes.

Supporting Functions

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding targets T and returns the loss and the gradients of the loss with respect to the
learnable parameters in net. To compute the gradients automatically, use the dlgradient function.

function [loss,gradients] = modelLoss(net,X,T)

% Forward data through network.
Y = forward(net,X);

% Calculate cross-entropy loss.
loss = crossentropy(Y,T);

 Train Sequence Classification Network Using Custom Training Loop

19-253



% Calculate gradients of loss with respect to learnable parameters.
gradients = dlgradient(loss,net.Learnables);

end

Model Predictions Function

The modelPredictions function takes a dlnetwork object net, a minibatchqueue of input data
mbq, and the network classes, and computes the model predictions by iterating over all data in the
minibatchqueue object. The function uses the onehotdecode function to find the predicted class
with the highest score.

function Y = modelPredictions(net,mbq,classes)

Y = [];

% Loop over mini-batches.
while hasdata(mbq)
    X = next(mbq);

    % Make prediction.
    scores = predict(net,X);

    % Decode labels and append to output.
    labels = onehotdecode(scores,classes,1)';
    Y = [Y; labels];
end

end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the sequences using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

end

19 Import, Export, and Customization

19-254



Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
padding the sequence data in the input cell array over the second (time) dimension. The function
returns the data as a numChannels-by-numTimeSteps-by-numObservations array. To pass this
information to downstream functions, specify that this data has a format of "CTB" (channel, time,
batch).

function X = preprocessMiniBatchPredictors(dataX)

% Pad sequences.
X = padsequences(dataX,2);

end

See Also
trainingProgressMonitor | dlarray | dlgradient | dlfeval | dlnetwork | forward |
adamupdate | predict | minibatchqueue | onehotencode | onehotdecode

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Update Batch Normalization Statistics in Custom Training Loop” on page 19-261
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Monitor Custom Training Loop Progress” on page 19-521
• “List of Deep Learning Layers” on page 1-43
• “List of Functions with dlarray Support” on page 19-504

 Train Sequence Classification Network Using Custom Training Loop

19-255



Define Model Loss Function for Custom Training Loop
When you train a deep learning model with a custom training loop, the software minimizes the loss
with respect to the learnable parameters. To minimize the loss, the software uses the gradients of the
loss with respect to the learnable parameters. To calculate these gradients using automatic
differentiation, you must define a model gradients function.

For an example showing how to train deep learning model with a dlnetwork object, see “Train
Network Using Custom Training Loop” on page 19-239. For an example showing how to training a
deep learning model defined as a function, see “Train Network Using Model Function” on page 19-
284.

Create Model Loss Function for Model Defined as dlnetwork Object
If you have a deep learning model defined as a dlnetwork object, then create a model loss function
that takes the dlnetwork object as input.

For a model specified as a dlnetwork object, create a function of the form [loss,gradients] =
modelLoss(net,X,T), where net is the network, X is the network input, T contains the targets, and
loss and gradients are the returned loss and gradients, respectively. Optionally, you can pass extra
arguments to the gradients function (for example, if the loss function requires extra information), or
return extra arguments (for example, the updated network state).

For example, this function returns the cross-entropy loss and the gradients of the loss with respect to
the learnable parameters in the specified dlnetwork object net, given input data X, and targets T.

function [loss,gradients] = modelLoss(net,X,T)

    % Forward data through the dlnetwork object.
    Y = forward(net,X);

    % Compute loss.
    loss = crossentropy(Y,T);

    % Compute gradients.
    gradients = dlgradient(loss,net.Learnables);

end

Create Model Loss Function for Model Defined as Function
If you have a deep learning model defined as a function, then create a model loss function that takes
the model learnable parameters as input.

For a model specified as a function, create a function of the form [loss,gradients] =
modelLoss(parameters,X,T), where parameters contains the learnable parameters, X is the
model input, T contains the targets, and loss and gradients are the returned loss and gradients,
respectively. Optionally, you can pass extra arguments to the gradients function (for example, if the
loss function requires extra information), or return extra arguments (for example, the updated model
state).

For example, this function returns the cross-entropy loss and the gradients of the loss with respect to
the learnable parameters parameters, given input data X, and targets T.

19 Import, Export, and Customization

19-256



function [loss,gradients] = modelLoss(parameters,X,T)

    % Forward data through the model function.
    Y = model(parameters,X);

    % Compute loss.
    loss = crossentropy(Y,T);

    % Compute gradients.
    gradients = dlgradient(loss,parameters);

end

Evaluate Model Loss Function
To evaluate the model loss function using automatic differentiation, use the dlfeval function, which
evaluates a function with automatic differentiation enabled. For the first input of dlfeval, pass the
model loss function specified as a function handle. For the following inputs, pass the required
variables for the model loss function. For the outputs of the dlfeval function, specify the same
outputs as the model loss function.

For example, evaluate the model loss function modelLoss with a dlnetwork object net, input data
X, and targets T, and return the model loss and gradients.

[loss,gradients] = dlfeval(@modelLoss,net,X,T);

Similarly, evaluate the model loss function modelLoss using a model function with learnable
parameters specified by the structure parameters, input data X, and targets T, and return the model
loss and gradients.

[loss,gradients] = dlfeval(@modelLoss,parameters,X,T);

Update Learnable Parameters Using Gradients
To update the learnable parameters using the gradients, you can use the following functions.

Function Description
adamupdate Update parameters using adaptive moment

estimation (Adam)
rmspropupdate Update parameters using root mean squared

propagation (RMSProp)
sgdmupdate Update parameters using stochastic gradient

descent with momentum (SGDM)
lbfgsupdate Update parameters using limited-memory BFGS

(L-BFGS)
dlupdate Update parameters using custom function

For example, update the learnable parameters of a dlnetwork object net using the adamupdate
function.

[net,trailingAvg,trailingAvgSq] = adamupdate(net,gradients, ...
    trailingAvg,trailingAverageSq,iteration);

 Define Model Loss Function for Custom Training Loop

19-257



Here, gradients is the gradients of the loss with respect to the learnable parameters, and
trailingAvg, trailingAvgSq, and iteration are the hyperparameters required by the
adamupdate function.

Similarly, update the learnable parameters for a model function parameters using the adamupdate
function.
[parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
    trailingAvg,trailingAverageSq,iteration);

Here, gradients is the gradients of the loss with respect to the learnable parameters, and
trailingAvg, trailingAvgSq, and iteration are the hyperparameters required by the
adamupdate function.

Use Model Loss Function in Custom Training Loop
When training a deep learning model using a custom training loop, evaluate the model loss and
gradients and update the learnable parameters for each mini-batch.

This code snippet shows an example of using the dlfeval and adamupdate functions in a custom
training loop.
iteration = 0;

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;

        % Prepare mini-batch.
        % ...

        % Evaluate model loss and gradients.
        [loss,gradients] = dlfeval(@modelLoss,net,X,T);

        % Update learnable parameters.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAverageSq,iteration);

    end
end

For an example showing how to train a deep learning model with a dlnetwork object, see “Train
Network Using Custom Training Loop” on page 19-239. For an example showing how to training a
deep learning model defined as a function, see “Train Network Using Model Function” on page 19-
284.

Debug Model Loss Functions
If the implementation of the model loss function has an issue, then the call to dlfeval can throw an
error. Sometimes, when you use the dlfeval function, it is not clear which line of code is throwing
the error. To help locate the error, you can try the following.

Call Model Loss Function Directly

Try calling the model loss function directly (that is, without using the dlfeval function) with
generated inputs of the expected sizes. If any of the lines of code throw an error, then the error

19 Import, Export, and Customization

19-258



message provides extra detail. Note that when you do not use the dlfeval function, any calls to the
dlgradient function throw an error.

% Generate image input data.
X = rand([28 28 1 100],'single');
X = dlarray(X);

% Generate one-hot encoded target data.
T = repmat(eye(10,'single'),[1 10]);

[loss,gradients] = modelLoss(net,X,T);

Run Model Loss Code Manually

Run the code inside the model loss function manually with generated inputs of the expected sizes and
inspect the output and any thrown error messages.

For example, consider the following model loss function.

function [loss,gradients] = modelLoss(net,X,T)

    % Forward data through the dlnetwork object.
    Y = forward(net,X);

    % Compute loss.
    loss = crossentropy(Y,T);

    % Compute gradients.
    gradients = dlgradient(loss,net.Learnables);

end

Check the model loss function by running the following code.

% Generate image input data.
X = rand([28 28 1 100],'single');
X = dlarray(X);

% Generate one-hot encoded target data.
T = repmat(eye(10,'single'),[1 10]);

% Check forward pass.
Y = forward(net,X);

% Check loss calculation.
loss = crossentropy(Y,T)

See Also

More About
• “Train Network Using Custom Training Loop” on page 19-239
• “Train Network Using Model Function” on page 19-284
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230

 Define Model Loss Function for Custom Training Loop

19-259



• “Update Batch Normalization Statistics in Custom Training Loop” on page 19-261
• “Make Predictions Using dlnetwork Object” on page 19-280
• “List of Functions with dlarray Support” on page 19-504

19 Import, Export, and Customization

19-260



Update Batch Normalization Statistics in Custom Training Loop

This example shows how to update the network state in a custom training loop.

A batch normalization layer normalizes each input channel across a mini-batch. To speed up training
of convolutional neural networks and reduce the sensitivity to network initialization, use batch
normalization layers between convolutional layers and nonlinearities, such as ReLU layers.

During training, batch normalization layers first normalize the activations of each channel by
subtracting the mini-batch mean and dividing by the mini-batch standard deviation. Then, the layer
shifts the input by a learnable offset β and scales it by a learnable scale factor γ.

When network training finishes, batch normalization layers calculate the mean and variance over the
full training set and stores the values in the TrainedMean and TrainedVariance properties. When
you use a trained network to make predictions on new images, the batch normalization layers use the
trained mean and variance instead of the mini-batch mean and variance to normalize the activations.

To compute the data set statistics, batch normalization layers keep track of the mini-batch statistics
by using a continually updating state. If you are implementing a custom training loop, then you must
update the network state between mini-batches.

Load Training Data

The digitTrain4DArrayData function loads images of handwritten digits and their digit labels.
Create an arrayDatastore object for the images and the angles, and then use the combine
function to make a single datastore that contains all of the training data. Extract the class names.

[XTrain,TTrain] = digitTrain4DArrayData;

dsXTrain = arrayDatastore(XTrain,IterationDimension=4);
dsTTrain = arrayDatastore(TTrain);

dsTrain = combine(dsXTrain,dsTTrain);

classNames = categories(TTrain);
numClasses = numel(classNames);

Define Network

Define the network and specify the average image using the Mean option in the image input layer.

layers = [
    imageInputLayer([28 28 1],Mean=mean(XTrain,4))
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

 Update Batch Normalization Statistics in Custom Training Loop

19-261



net = dlnetwork(layers)

net = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [11×2 table]
     Learnables: [14×3 table]
          State: [6×3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

View the network state. Each batch normalization layer has a TrainedMean parameter and a
TrainedVariance parameter containing the data set mean and variance, respectively.

net.State

ans=6×3 table
        Layer            Parameter             Value      
    _____________    _________________    ________________

    "batchnorm_1"    "TrainedMean"        {1×1×20 dlarray}
    "batchnorm_1"    "TrainedVariance"    {1×1×20 dlarray}
    "batchnorm_2"    "TrainedMean"        {1×1×20 dlarray}
    "batchnorm_2"    "TrainedVariance"    {1×1×20 dlarray}
    "batchnorm_3"    "TrainedMean"        {1×1×20 dlarray}
    "batchnorm_3"    "TrainedVariance"    {1×1×20 dlarray}

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, which takes as input a dlnetwork
object, and a mini-batch of input data with corresponding labels, and returns the loss, the gradients
of the loss with respect to the learnable parameters, and the updated network state.

Specify Training Options

Train for five epochs using a mini-batch size of 128. For the SGDM optimization, specify a learning
rate of 0.01 and a momentum of 0.9.

numEpochs = 5;
miniBatchSize = 128;

learnRate = 0.01;
momentum = 0.9;

Train Model

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to one-hot encode the class labels.

19 Import, Export, and Customization

19-262



• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" ""]);

Initialize the velocity parameter for the SGDM solver.

velocity = [];

To update the progress bar of the training progress monitor, calculate the total number of training
iterations.

numObservationsTrain = numel(TTrain);
numIterationsPerEpoch = ceil(numObservationsTrain/miniBatchSize);
numIterations = numIterationsPerEpoch * numEpochs;

Initialize the TrainingProgressMonitor object.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. At the end of each iteration, display the training progress. For each mini-batch:

• Evaluate the model loss, gradients, and state using dlfeval and the modelLoss function and
update the network state.

• Update the network parameters using the sgdmupdate function.

iteration = 0;
epoch = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop

        iteration = iteration + 1;

        % Read mini-batch of data and convert the labels to dummy
        % variables.
        [X,T] = next(mbq);

        % Evaluate the model loss, gradients, and state using dlfeval and the
        % modelLoss function and update the network state.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T);

 Update Batch Normalization Statistics in Custom Training Loop

19-263



        net.State = state;

        % Update the network parameters using the SGDM optimizer.
        [net, velocity] = sgdmupdate(net, gradients, velocity, learnRate, momentum);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=(epoch+" of "+numEpochs));
        monitor.Progress = 100*(iteration/numIterations);
    end
end

Test Model

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels. Test the classification accuracy of the model by comparing the predictions on a test set with
the true labels and angles.

Load the test data and create a combined datastore containing the images and features.

[XTest,TTest] = digitTest4DArrayData;
dsTest = arrayDatastore(XTest,IterationDimension=4);

Create a minibatchqueue object that processes and manage mini-batches of images during testing.
For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatchPredictors, defined
at the end of this example.

• By default, the minibatchqueue object converts the data to dlarray objects with underlying
type single. Format the images with the dimension labels "SSCB" (spatial, spatial, channel,
batch).

19 Import, Export, and Customization

19-264



mbqTest = minibatchqueue(dsTest,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatchPredictors,...
    MiniBatchFormat="SSCB");

Classify the images using the modelPredictions function, listed at the end of the example.

predictions = modelPredictions(net,mbqTest,classNames);

Evaluate the classification accuracy.

accuracy = mean(predictions == TTest)

accuracy = 0.9958

Model Loss Function

The modelLoss function takes as input a dlnetwork object net and a mini-batch of input data X
with corresponding labels T, and returns the loss, the gradients of the loss with respect to the
learnable parameters in net, and the network state. To compute the gradients automatically, use the
dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T)

[Y,state] = forward(net,X);

loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Model Predictions Function

The modelPredictions function takes as input a dlnetwork object net, a minibatchqueue of
input data mbq, and computes the model predictions by iterating all data in the minibatchqueue.
The function uses the onehotdecode function to find the predicted class with the highest score.

function predictions = modelPredictions(net,mbq,classes)

predictions = [];

while hasdata(mbq)
    X = next(mbq);

    % Make predictions using the model function.
    Y = predict(net,X);

    % Determine predicted classes.
    YPredBatch = onehotdecode(Y,classes,1);
    predictions = [predictions; YPredBatch'];
end

end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

 Update Batch Normalization Statistics in Custom Training Loop

19-265



1 Preprocess the images and features using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataY)

% Extract image data from cell and concatenate
X = cat(4,dataX{:});

% Extract label data from cell and concatenate
T = cat(2,dataY{:});

% One-hot encode labels
T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses the predictors by extracting the
image data from the incoming cell array and concatenating into a numeric array. Concatenating the
image data over the fourth dimension adds a third dimension to each image, to be used as a singleton
channel dimension.

function X = preprocessMiniBatchPredictors(dataX)

% Extract image data from cell and concatenate
X = cat(4,dataX{:});

end

See Also
dlarray | dlgradient | dlfeval | dlnetwork | forward | adamupdate | predict |
minibatchqueue | onehotencode | onehotdecode

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Make Predictions Using dlnetwork Object” on page 19-280
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87
• “Automatic Differentiation Background” on page 19-214

19 Import, Export, and Customization

19-266



Train Robust Deep Learning Network with Jacobian
Regularization

This example shows how to train a neural network that is robust to adversarial examples using a
Jacobian regularization scheme [1].

Neural networks can be susceptible to a phenomenon known as adversarial examples [2], where very
small changes to an input can cause it to be misclassified. These changes are often imperceptible to
humans. Second-order methods such as Jacobian regularization have been shown to help increase the
robustness of networks against adversaries [3].

For example, consider the figure below. On the left is an image of a zero, and on the right is the same
image with white noise added to create an adversarial example. A network trained without Jacobian
regularization classifies the original image of a zero correctly but misclassifies the adversarial
example. In contrast, a network trained with Jacobian regularization classifies both the original and
the noisy image correctly.

This example shows how to:

1 Train a robust image classification network using a Jacobian regularization scheme.
2 Compare its predictions to a network trained without Jacobian regularization.

 Train Robust Deep Learning Network with Jacobian Regularization

19-267



Load Training Data

The digitTrain4DArrayData function loads the images and their digit labels. Create an
arrayDatastore object for the images and the labels, and then use the combine function to make a
single datastore that contains all of the training data.

[XTrain,TTrain] = digitTrain4DArrayData;

dsXTrain = arrayDatastore(XTrain,IterationDimension=4);
dsTTrain = arrayDatastore(TTrain);

dsTrain = combine(dsXTrain,dsTTrain);

Determine the number of classes in the training data.

classes = categories(TTrain);
numClasses = numel(classes);

Next, apply noise to the training images to create adversarial examples. Compare images from the
training data with no noise and with noise affecting 10% of the pixels.

Select 16 images at random.

numImages = size(XTrain,4);
randompick = randperm(numImages,16);
XOriginal = XTrain(:,:,:,randompick);

Create the noisy images by setting a proportion of the pixels to a random grayscale value.

noiseProp = 0.1;
noise = rand(size(XOriginal));
idx = rand(size(XOriginal)) < noiseProp;

XNoisy = XOriginal;
XNoisy(idx) = noise(idx);

Plot the original images next to the noisy images.

I1 = imtile(XOriginal);
I2 = imtile(XNoisy);

figure;
subplot(1,2,1)
imshow(I1)
subplot(1,2,2)
imshow(I2)

19 Import, Export, and Customization

19-268



Define Network

Define the architecture of the network.

Specify an image input layer of the same size as the training images.

imageInputSize = size(XTrain, 1:3)

imageInputSize = 1×3

    28    28     1

layers = [
    imageInputLayer(imageInputSize,Mean=mean(XTrain,4))
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)

 Train Robust Deep Learning Network with Jacobian Regularization

19-269



    softmaxLayer];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph);

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, which takes a dlnetwork object,
and a mini-batch of input data with corresponding labels, and returns the loss, the gradients of the
loss with respect to the learnable parameters in the network, and the state of the network.

Specify Training Options

Train for 15 epochs with a mini-batch size of 32.

numEpochs = 15;
miniBatchSize = 32;

Specify the options for SGDM optimization. Specify a learning rate of 0.01 and a momentum of 0.9.

learningRate = 0.01;
momentum = 0.9;

The Jacobian regularization λJRis a hyperparameter that controls the effect of the Jacobian
regularization term on the training of the network. If the coefficient is too large, then the cross-
entropy term is not effectively minimized and the accuracy of the network classification is poor. If the
coefficient is too small, the trained network does not have the expected robustness to white noise. For
example, choose λJR = 1.

jacobianRegularizationCoefficient = 1;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. If a GPU is available, the minibatchqueue object converts
each output to a gpuArray by default. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    PartialMiniBatch="discard",...
    MiniBatchFormat=["SSCB",""]);

Initialize the training progress plot.

19 Import, Export, and Customization

19-270



figure;
lineLossTrain = animatedline(Color=[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Train the network using a custom training loop.

For each epoch, shuffle the data and loop over mini-batches of data. For each mini-batch:

• Evaluate the model loss, gradients, and state using the dlfeval and modelLoss functions and
update the network state.

• Update the network parameters using the sgdmupdate function.
• Display the training progress.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Reset and shuffle mini-batch queue.
    shuffle(mbq);
    
    while hasdata(mbq)
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [X, T] = next(mbq);
     
        % Evaluate the model loss, gradients and the network state using
        % dlfeval and the modelLoss function listed at the end of the example.
        [totalLoss, gradTotalLoss, state] = dlfeval(@modelLoss, dlnet, X, T, ...
            miniBatchSize, jacobianRegularizationCoefficient);
        dlnet.State = state;
        
        % Update the network parameters.
        [dlnet, velocity] = sgdmupdate(dlnet,gradTotalLoss,velocity,learningRate,momentum);
        
        % Plot the training progress.
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        addpoints(lineLossTrain,iteration,double(totalLoss))
        title("Training with Jacobian regularization" + ", Epoch: " + epoch + ", Elapsed: " + string(D))
        drawnow
        
    end
end

 Train Robust Deep Learning Network with Jacobian Regularization

19-271



Load Reference Network

Load a reference network, with the same layers, but trained without Jacobian regularization.

dlnetReference = load("dlnetWithoutJacobian.mat").dlnetReference;

Test Model

Load the test data for a comparison test between the network trained with Jacobian regularization
and the reference network.

[XTest, TTest] = digitTest4DArrayData;
classes = categories(TTest);

Pass through test images that the networks have not seen before. With each pass, add noise affecting
0% to 50% of the pixels in increments of 5%.

% Initialize test parameters and arrays.
noiseProps = 0:0.05:0.5;

% Prepare arguments for mini-batch queue.
dsTTest = arrayDatastore(TTest);
miniBatchSize = 5000;
        
for i = 1:numel(noiseProps)
    % Load the noise proportion.
    noiseProp = noiseProps(i);
    fprintf("Testing robustness to noise proportion %1.2g\n", noiseProp)

19 Import, Export, and Customization

19-272



    
    % Set a proportion of the pixels to a random grayscale value.         
    noise = rand(size(XTest));
    idx = rand(size(XTest)) < noiseProp;
    XNoisy = XTest;
    XNoisy(idx) = noise(idx);
    
    % Prepare mini-batch queue with noisy test data.
    dsXTest = arrayDatastore(XNoisy,IterationDimension=4);
    dsTest = combine(dsXTest,dsTTest);
    mbq = minibatchqueue(dsTest,...
        MiniBatchSize=miniBatchSize,...
        MiniBatchFcn=@preprocessMiniBatch,...
        MiniBatchFormat=["SSCB",""]);
        
    % Loop over batches to find predicted classifications.
    while hasdata(mbq)
        [XNoisy, T] = next(mbq);
        
        % Classify noisy data with the robust network.
        YPredNoisy = predict(dlnet, XNoisy);
        
        % Convert the predictions into labels.
        YPred = onehotdecode(YPredNoisy, classes, 1)';
        TTestBatch = onehotdecode(T, classes, 1)';
        
        % Evaluate accuracy of predictions.
        accuracyRobust(i) =  mean(YPred == TTestBatch);
        
        % Classify noisy data with reference network.
        YPredNoisy = predict(dlnetReference, XNoisy);
        
        % Convert the predictions into labels.
        YPred = onehotdecode(YPredNoisy, classes, 1)';
        
        % Evaluate accuracy of predictions.
        accuracyReference(i) =  mean(YPred == TTestBatch);
    end

end

Testing robustness to noise proportion 0
Testing robustness to noise proportion 0.05
Testing robustness to noise proportion 0.1
Testing robustness to noise proportion 0.15
Testing robustness to noise proportion 0.2
Testing robustness to noise proportion 0.25
Testing robustness to noise proportion 0.3
Testing robustness to noise proportion 0.35
Testing robustness to noise proportion 0.4
Testing robustness to noise proportion 0.45
Testing robustness to noise proportion 0.5

Plot the results of the percentage accuracy of both networks against the proportion of the white
noise.

 Train Robust Deep Learning Network with Jacobian Regularization

19-273



Note that the network trained with Jacobian regularization has a slightly lower accuracy when the
noise proportion is equal to 0 but achieves higher accuracy than the reference network when noise is
added to the images.

x = noiseProps';

figure;

plot(x,accuracyRobust*100, "-o", x, accuracyReference*100, "-o")
xlabel("Proportion of noise")
ylabel("Accuracy (%)")
xlim([0,0.5]);
ylim([0,100]);
title("Image classification accuracy")
legend("Jacobian regularization", "Reference");

Test Specific Example

Add noise affecting 15% of the pixels to the first test image, which contains the number 0. Plot both
the original image and the image perturbed by the white noise. Use the network trained with
Jacobian regularization and the reference network to classify the image.

% Choose test image
testchoice = 1;

19 Import, Export, and Customization

19-274



% Add noise, with a proportion of 0.15, to the first image.
noise = rand(size(XTest(:,:,:,testchoice)));
idx = rand(size(XTest(:,:,:,testchoice))) < 0.15;
XNoisy = XTest(:,:,:,testchoice);
XNoisy(idx) = noise(idx);

% Convert to dlarray.
XTest  = dlarray(XTest(:,:,:,testchoice),"SSCB");
XNoisy = dlarray(XNoisy,"SSCB");

% Print true number classification
disp("True digit label: " + char(TTest(testchoice)));

True digit label: 0

Classify the original image by using the network trained with Jacobian regularization.

YPredTestJR = predict(dlnet, XTest);
YPredTestJR = onehotdecode(YPredTestJR, classes, 1)';
disp("Robust network classification of original image: " + char(YPredTestJR));

Robust network classification of original image: 0

Classify the noisy image by using the network trained with Jacobian regularization.

YPredNoisyJR = predict(dlnet, XNoisy);
YPredNoisyJR = onehotdecode(YPredNoisyJR, classes, 1)';
disp("Robust network classification of noisy image: " + char(YPredNoisyJR));

Robust network classification of noisy image: 0

Classify the original image by using the network trained without Jacobian regularization.

YPredTest = predict(dlnetReference, XTest);
YPredTestR = onehotdecode(YPredTest, classes, 1)';
disp("Reference network classification of original image: " + char(YPredTestR));

Reference network classification of original image: 0

Classify the noisy image by using the network trained without Jacobian regularization.

YPredNoisy = predict(dlnetReference, XNoisy);
YPredNoisyR = onehotdecode(YPredNoisy, classes, 1)';
disp("Reference network classification of noisy image: " + char(YPredNoisyR));

Reference network classification of noisy image: 8

Plot the original and noisy images and display the predictions given by each network.

figure;
I1 = extractdata(XTest(:,:,:,testchoice));
subplot(1,2,1)
imshow(I1)
title("Original image")
xlabel({"Prediction without"; "Jacobian regularization: " + char(YPredTestR);...
    "Prediction with"; "Jacobian regularization: " + char(YPredTestJR)})
I2 = extractdata(XNoisy);
subplot(1,2,2)

 Train Robust Deep Learning Network with Jacobian Regularization

19-275



imshow(I2)
title("Noisy image")
xlabel({"Prediction without"; "Jacobian regularization: " + char(YPredNoisyR);...
    "Prediction with"; "Jacobian regularization: " + char(YPredNoisyJR)})

Model Loss Function

The goal of Jacobian regularization is to penalize large changes of the prediction y with respect to
small changes in the input x. Doing so makes the network more robust to input data polluted by
noise. The Jacobian J encodes the change of prediction with respect to the input by containing the
partial derivatives of y with respect to x.

J =

∂ y1
∂ x1

⋯ ∂ y1
∂ xn

⋮ ⋱ ⋮
∂ ym
∂ x1

⋯ ∂ ym
∂ xn

Jacobian regularization is achieved by adding the Frobenius norm of the Jacobian to the loss function
that is subsequently minimized when you train the network. However, the Jacobian can be expensive
to compute, requiring m backward passes through the network, where m is the size of the output y.
Therefore, instead of computing the full Jacobian, an approximation to the Frobenius norm of the
Jacobian JR  is computed as follows [4]:

19 Import, Export, and Customization

19-276



J F
2 = tr J J⊤ = Ev ∼ N 0, Im v⊤ JJ⊤ v ≈ 1

mproj
∑k = 1

mproj vk
⊤ J 2

2 = 1
mproj

∑k = 1
mproj ∇x vk

⊤ y 2
2.

where vk ∼ N 0, Im  is a draw from the standard Normal distribution and Im is is the m-by-m identity
matrix. This can be implemented as follows:

JR = 0

Choose a mini-batch size B

For i = 1, …, mproj

1 Sample a random vector v ∼ N 0, Im
2 Normalize the random vector v = v

v 2

3 Compute the derivative ∇x v⊤ y
4

JR = JR +
m ∇x v⊤ y 2

2

B mproj

The gradient of the vector inner product requires one backward pass to compute. So, this
approximation requires only mproj backward passes to compute, and in practice, mproj = 1.

In this example, the cross-entropy between the predicted classification y and the true classification z
is used, resulting in the loss function

loss = crossentropy +
λJR
2 JR

where λJR is the Jacobian regularization coefficient. The approximation of the Frobenius norm of the
Jacobian requires taking gradients with respect to x, and the training phase requires taking gradients
of the loss with respect to the parameters. These calculations require support for second-order
automatic differentiation.

The modelLoss function is used during the training of the network. It takes as input the network, the
input data X, their respective classifications T, the mini-batch size miniBatchSize, and the Jacobian
regularization coefficient jacobianRegularizationCoefficient. The function returns the total
loss totalLoss, the gradient of the loss with respect to the network parameters gradTotalLoss,
and the state of the network state. To compute the approximation to the norm of the Jacobian, a
derivative of a vector-vector dot product is taken. Since a second order derivative is necessary to
compute the gradient of the loss function with respect to the network parameters, you must set the
option EnableHigherDerivatives to true when calling the function dlgradient.

function [totalLoss, gradTotalLoss, state] = modelLoss(net, X, T, miniBatchSize, jacobianRegularizationCoefficient)

% Find prediction and loss.
[Z,state] = forward(net, X);
loss = crossentropy(Z, T);

numClasses = size(Z,1);
numProjections = 1;
regularizationTerm = 0;

% Compute Jacobian term and its gradient.

 Train Robust Deep Learning Network with Jacobian Regularization

19-277



for i = 1:numProjections
   
    % Sample a matrix whose elements are drawn from the standard Normal distribution.
    rndarray = randn(numClasses, miniBatchSize);
    
    % Normalize the columns of the random matrix.
    rndarray = normc(rndarray);
    
    % Compute the vector-vector product.
    vectorproduct = rndarray(:)' * Z(:);  
   
    % Compute the gradient of the vector-vector product. Since another
    % derivative will be taken, set EnableHigherDerivatives to true.
    vectorJacobianTerm = dlgradient(vectorproduct, X, EnableHigherDerivatives=true);
    
    % Multiply by necessary constants to obtain approximation of the
    % Frobenius norm of the Jacobian.
    regularizationTerm = regularizationTerm + numClasses*sum(vectorJacobianTerm.^2,"all") /(numProjections*miniBatchSize);
end
totalLoss = loss + jacobianRegularizationCoefficient/2 * regularizationTerm;

% Calculate the gradient of the loss.
gradTotalLoss = dlgradient(totalLoss, net.Learnables);
end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating over the fourth dimension adds a third dimension to each image, to be used as a
singleton channel dimension.

2 Extract the label data from the incoming cell array and concatenate the data into a categorical
array along the second dimension.

3 One-hot encode the categorical labels into numeric arrays. Encoding the labels into the first
dimension produces an encoded array that matches the shape of the network output.

function [X, T] = preprocessMiniBatch(XCell,TCell)
    % Extract image data from cell and concatenate
    X = cat(4,XCell{1:end});

    % Extract label data from cell and concatenate
    T = cat(2,TCell{1:end});
    
    % One-hot encode labels
    T = onehotencode(T,1);
end

References

1 Hoffman, Judy, Daniel A. Roberts, and Sho Yaida. “Robust Learning with Jacobian
Regularization.” Preprint, submitted August 7, 2019. https://arxiv.org/abs/1908.02729.

2 Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. “Intriguing Properties of Neural Networks.” Preprint, submitted
February 19, 2014. http://arxiv.org/abs/1312.6199.

19 Import, Export, and Customization

19-278



3 Ma, Avery, Fartash Faghri, and Amir-Massoud Farahmand. “Adversarial Robustness through
Regularization: A Second-Order Approach.” Preprint, submitted, April 3, 2020. http://
arxiv.org/abs/2004.01832.

4 Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples.” Preprint, submitted, March 20, 2015. http://arxiv.org/abs/1412.6572.

See Also
dlarray | dlgradient | dlfeval | dlnetwork | predict | minibatchqueue | onehotencode |
onehotdecode | sgdmupdate

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87
• “Automatic Differentiation Background” on page 19-214
• “Generate Untargeted and Targeted Adversarial Examples for Image Classification” on page 5-

102
• “Train Image Classification Network Robust to Adversarial Examples” on page 5-109

 Train Robust Deep Learning Network with Jacobian Regularization

19-279



Make Predictions Using dlnetwork Object

This example shows how to make predictions using a dlnetwork object by splitting data into mini-
batches.

For large data sets, or when predicting on hardware with limited memory, make predictions by
splitting the data into mini-batches. When making predictions with SeriesNetwork or DAGNetwork
objects, the predict function automatically splits the input data into mini-batches. For dlnetwork
objects, you must split the data into mini-batches manually.

Load dlnetwork Object

Load a trained dlnetwork object and the corresponding classes.

s = load("digitsCustom.mat");
dlnet = s.dlnet;
classes = s.classes;

Load Data for Prediction

Load the digits data for prediction.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true);

Make Predictions

Loop over the mini-batches of the test data and make predictions using a custom prediction loop.

Use minibatchqueue to process and manage the mini-batches of images. Specify a mini-batch size
of 128. Set the read size property of the image datastore to the mini-batch size.

For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to concatenate the data into a batch and normalize the images.

• Format the images with the dimensions 'SSCB' (spatial, spatial, channel, batch). By default, the
minibatchqueue object converts the data to dlarray objects with underlying type single.

• Make predictions on a GPU if one is available. By default, the minibatchqueue object converts
the output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

miniBatchSize = 128;
imds.ReadSize = miniBatchSize;

mbq = minibatchqueue(imds,...
    "MiniBatchSize",miniBatchSize,...
    "MiniBatchFcn", @preprocessMiniBatch,...
    "MiniBatchFormat","SSCB");

Loop over the minibatches of data and make predictions using the predict function. Use the
onehotdecode function to determine the class labels. Store the predicted class labels.

19 Import, Export, and Customization

19-280



numObservations = numel(imds.Files);
YPred = strings(1,numObservations);

predictions = [];

% Loop over mini-batches.
while hasdata(mbq)
    
    % Read mini-batch of data.
    dlX = next(mbq);
       
    % Make predictions using the predict function.
    dlYPred = predict(dlnet,dlX);
   
    % Determine corresponding classes.
    predBatch = onehotdecode(dlYPred,classes,1);
    predictions = [predictions predBatch];
  
end

Visualize some of the predictions.

idx = randperm(numObservations,9);

figure
for i = 1:9
    subplot(3,3,i)
    I = imread(imds.Files{idx(i)});    
    label = predictions(idx(i));
    imshow(I)
    title("Label: " + string(label))
  
end

 Make Predictions Using dlnetwork Object

19-281



Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the data from the incoming cell array and concatenate into a numeric array.
Concatenating over the fourth dimension adds a third dimension to each image, to be used as a
singleton channel dimension.

2 Normalize the pixel values between 0 and 1.

function X = preprocessMiniBatch(data)    
    % Extract image data from cell and concatenate
    X = cat(4,data{:});
    
    % Normalize the images.
    X = X/255;
end

See Also
dlarray | dlnetwork | predict | minibatchqueue | onehotdecode

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Train Network Using Custom Training Loop” on page 19-239

19 Import, Export, and Customization

19-282



• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Update Batch Normalization Statistics in Custom Training Loop” on page 19-261
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87
• “Automatic Differentiation Background” on page 19-214

 Make Predictions Using dlnetwork Object

19-283



Train Network Using Model Function

This example shows how to create and train a deep learning network by using functions rather than a
layer graph or a dlnetwork. The advantage of using functions is the flexibility to describe a wide
variety of networks. The disadvantage is that you must complete more steps and prepare your data
carefully. This example uses images of handwritten digits, with the dual objectives of classifying the
digits and determining the angle of each digit from the vertical.

Load Training Data

The digitTrain4DArrayData function loads the images, their digit labels, and their angles of
rotation from the vertical. Create arrayDatastore objects for the images, labels, and angles, and
then use the combine function to make a single datastore that contains all of the training data.
Extract the class names and number of nondiscrete responses.

[XTrain,T1Train,T2Train] = digitTrain4DArrayData;

dsXTrain = arrayDatastore(XTrain,IterationDimension=4);
dsT1Train = arrayDatastore(T1Train);
dsT2Train = arrayDatastore(T2Train);

dsTrain = combine(dsXTrain,dsT1Train,dsT2Train);

classNames = categories(T1Train);
numClasses = numel(classNames);
numResponses = size(T2Train,2);
numObservations = numel(T1Train);

View some images from the training data.

idx = randperm(numObservations,64);
I = imtile(XTrain(:,:,:,idx));
figure
imshow(I)

19 Import, Export, and Customization

19-284



Define Deep Learning Model

Define the following network that predicts both labels and angles of rotation.

• A convolution-batchnorm-ReLU block with 16 5-by-5 filters.
• A branch of two convolution-batchnorm blocks each with 32 3-by-3 filters with a ReLU operation

between
• A skip connection with a convolution-batchnorm block with 32 1-by-1 convolutions.
• Combine both branches using addition followed by a ReLU operation
• For the regression output, a branch with a fully connected operation of size 1 (the number of

responses).
• For classification output, a branch with a fully connected operation of size 10 (the number of

classes) and a softmax operation.

 Train Network Using Model Function

19-285



Define and Initialize Model Parameters and State

Define the parameters for each of the operations and include them in a struct. Use the format
parameters.OperationName.ParameterName where parameters is the struct, OperationName
is the name of the operation (for example "conv1") and ParameterName is the name of the parameter
(for example, "Weights").

Create a structure parameters containing the model parameters. Initialize the learnable weights
and biases using the initializeGlorot and initializeZeros example functions, respectively.
Initialize the batch normalization offset and scale parameters with the initializeZeros and
initializeOnes example functions, respectively.

To perform training and inference using batch normalization operations, you must also manage the
network state. Before prediction, you must specify the dataset mean and variance derived from the
training data. Create a structure state containing the state parameters. The batch normalization
statistics must not be dlarray objects. Initialize the batch normalization trained mean and trained
variance states using the zeros and ones functions, respectively.

The initialization example functions are attached to this example as supporting files.

Initialize the parameters for the first convolution operation, "conv1".

filterSize = [5 5];
numChannels = 1;
numFilters = 16;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv1.Bias = initializeZeros([numFilters 1]);

Initialize the parameters and state for the first batch normalization operation, "batchnorm1".

parameters.batchnorm1.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm1.Scale = initializeOnes([numFilters 1]);
state.batchnorm1.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm1.TrainedVariance = initializeOnes([numFilters 1]);

Initialize the parameters for the second convolution operation, "conv2".

filterSize = [3 3];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv2.Bias = initializeZeros([numFilters 1]);

Initialize the parameters and state for the second batch normalization operation, "batchnorm2".

parameters.batchnorm2.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm2.Scale = initializeOnes([numFilters 1]);

19 Import, Export, and Customization

19-286



state.batchnorm2.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm2.TrainedVariance = initializeOnes([numFilters 1]);

Initialize the parameters for the third convolution operation, "conv3".

filterSize = [3 3];
numChannels = 32;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv3.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv3.Bias = initializeZeros([numFilters 1]);

Initialize the parameters and state for the third batch normalization operation, "batchnorm3".

parameters.batchnorm3.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm3.Scale = initializeOnes([numFilters 1]);
state.batchnorm3.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm3.TrainedVariance = initializeOnes([numFilters 1]);

Initialize the parameters for the convolution operation in the skip connection, "convSkip".

filterSize = [1 1];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.convSkip.Weights = initializeGlorot(sz,numOut,numIn);
parameters.convSkip.Bias = initializeZeros([numFilters 1]);

Initialize the parameters and state for the batch normalization operation in the skip connection,
"batchnormSkip".

parameters.batchnormSkip.Offset = initializeZeros([numFilters 1]);
parameters.batchnormSkip.Scale = initializeOnes([numFilters 1]);
state.batchnormSkip.TrainedMean = initializeZeros([numFilters 1]);
state.batchnormSkip.TrainedVariance = initializeOnes([numFilters 1]);

Initialize the parameters for the fully connected operation corresponding to the classification output,
"fc1".

sz = [numClasses 6272];
numOut = numClasses;
numIn = 6272;
parameters.fc1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc1.Bias = initializeZeros([numClasses 1]);

Initialize the parameters for the fully connected operation corresponding to the regression output,
"fc2".

sz = [numResponses 6272];
numOut = numResponses;

 Train Network Using Model Function

19-287



numIn = 6272;
parameters.fc2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc2.Bias = initializeZeros([numResponses 1]);

View the structure of the parameters.

parameters

parameters = struct with fields:
            conv1: [1×1 struct]
       batchnorm1: [1×1 struct]
            conv2: [1×1 struct]
       batchnorm2: [1×1 struct]
            conv3: [1×1 struct]
       batchnorm3: [1×1 struct]
         convSkip: [1×1 struct]
    batchnormSkip: [1×1 struct]
              fc1: [1×1 struct]
              fc2: [1×1 struct]

View the parameters for the "conv1" operation.

parameters.conv1

ans = struct with fields:
    Weights: [5×5×1×16 dlarray]
       Bias: [16×1 dlarray]

View the structure of the state parameters.

state

state = struct with fields:
       batchnorm1: [1×1 struct]
       batchnorm2: [1×1 struct]
       batchnorm3: [1×1 struct]
    batchnormSkip: [1×1 struct]

View the state parameters for the "batchnorm1" operation.

state.batchnorm1

ans = struct with fields:
        TrainedMean: [16×1 dlarray]
    TrainedVariance: [16×1 dlarray]

Define Model Function

Create the function model, listed at the end of the example, that computes the outputs of the deep
learning model described earlier.

The function model takes the model parameters parameters, the input data, the flag doTraining
which specifies whether to model should return outputs for training or prediction, and the network
state. The network outputs the predictions for the labels, the predictions for the angles, and the
updated network state.

19 Import, Export, and Customization

19-288



Define Model Loss Function

Create the function modelLoss, listed at the end of the example, that takes the model parameters, a
mini-batch of input data with corresponding targets containing the labels and angles, and returns the
loss, the gradients of the loss with respect to the learnable parameters, and the updated network
state.

Specify Training Options

Specify the training options. Train for 20 epochs with a mini-batch size of 128.

numEpochs = 20;
miniBatchSize = 128;

Train Model

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to one-hot encode the class labels.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels or angles.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" "" ""]);

For each epoch, shuffle the data and loop over mini-batches of data. At the end of each iteration,
display the training progress. For each mini-batch:

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.

Initialize parameters for Adam.

trailingAvg = [];
trailingAvgSq = [];

To update the progress bar of the training progress monitor, calculate the total number of training
iterations.

numIterationsPerEpoch = ceil(numObservations/miniBatchSize);
numIterations = numIterationsPerEpoch * numEpochs;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the model.

 Train Network Using Model Function

19-289



epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches
    while hasdata(mbq) && ~monitor.Stop

        iteration = iteration + 1;

        [X,T1,T2] = next(mbq);

        % Evaluate the model loss, gradients, and state, using dlfeval and the
        % modelLoss function.
        [loss,gradients,state] = dlfeval(@modelLoss,parameters,X,T1,T2,state);

        % Update the network parameters using the Adam optimizer.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=(epoch+" of "+numEpochs));
        monitor.Progress = 100 * iteration/numIterations;
    end
end

19 Import, Export, and Customization

19-290



Test Model

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels and angles. Manage the test data set using a minibatchqueue object with the same setting as
the training data.

[XTest,T1Test,T2Test] = digitTest4DArrayData;

dsXTest = arrayDatastore(XTest,IterationDimension=4);
dsT1Test = arrayDatastore(T1Test);
dsT2Test = arrayDatastore(T2Test);

dsTest = combine(dsXTest,dsT1Test,dsT2Test);

mbqTest = minibatchqueue(dsTest,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" "" ""]);

To predict the labels and angles of the validation data, loop over the mini-batches and use the model
function with the doTraining option set to false. Store the predicted classes and angles. Compare
the predicted and true classes and angles and store the results.

doTraining = false;

classesPredictions = [];
anglesPredictions = [];
classCorr = [];
angleDiff = [];

% Loop over mini-batches.
while hasdata(mbqTest)
    
    % Read mini-batch of data.
    [X,T1,T2] = next(mbqTest);
    
    % Make predictions using the predict function.
    [Y1,Y2] = model(parameters,X,doTraining,state);
    
    % Determine predicted classes.
    Y1 = onehotdecode(Y1,classNames,1);
    classesPredictions = [classesPredictions Y1];
    
    % Dermine predicted angles
    Y2 = extractdata(Y2);
    anglesPredictions = [anglesPredictions Y2];
    
    % Compare predicted and true classes
    Y1Test = onehotdecode(T1,classNames,1);
    classCorr = [classCorr Y1 == Y1Test];
    
    % Compare predicted and true angles
    angleDiffBatch = Y2 - T2;
    angleDiff = [angleDiff extractdata(gather(angleDiffBatch))];
end

Evaluate the classification accuracy.

 Train Network Using Model Function

19-291



accuracy = mean(classCorr)

accuracy = 0.9848

Evaluate the regression accuracy.

angleRMSE = sqrt(mean(angleDiff.^2))

angleRMSE = single
    6.5363

View some of the images with their predictions. Display the predicted angles in red and the correct
labels in green.

idx = randperm(size(XTest,4),9);
figure
for i = 1:9
    subplot(3,3,i)
    I = XTest(:,:,:,idx(i));
    imshow(I)
    hold on
    
    sz = size(I,1);
    offset = sz/2;
    
    thetaPred = anglesPredictions(idx(i));
    plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],"r--")
    
    thetaValidation = T2Test(idx(i));
    plot(offset*[1-tand(thetaValidation) 1+tand(thetaValidation)],[sz 0],"g--")
    
    hold off
    label = string(classesPredictions(idx(i)));
    title("Label: " + label)
end

19 Import, Export, and Customization

19-292



Model Function

The function model takes the model parameters parameters, the input data X, the flag doTraining
which specifies whether to model should return outputs for training or prediction, and the network
state state. The network outputs the predictions for the labels, the predictions for the angles, and
the updated network state.

 Train Network Using Model Function

19-293



function [Y1,Y2,state] = model(parameters,X,doTraining,state)

% Initial operations
% Convolution - conv1
weights = parameters.conv1.Weights;
bias = parameters.conv1.Bias;
Y = dlconv(X,weights,bias,Padding="same");

% Batch normalization, ReLU - batchnorm1, relu1
offset = parameters.batchnorm1.Offset;
scale = parameters.batchnorm1.Scale;
trainedMean = state.batchnorm1.TrainedMean;
trainedVariance = state.batchnorm1.TrainedVariance;

if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm1.TrainedMean = trainedMean;

19 Import, Export, and Customization

19-294



    state.batchnorm1.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

Y = relu(Y);

% Main branch operations
% Convolution - conv2
weights = parameters.conv2.Weights;
bias = parameters.conv2.Bias;
YnoSkip = dlconv(Y,weights,bias,Padding="same",Stride=2);

% Batch normalization, ReLU - batchnorm2, relu2
offset = parameters.batchnorm2.Offset;
scale = parameters.batchnorm2.Scale;
trainedMean = state.batchnorm2.TrainedMean;
trainedVariance = state.batchnorm2.TrainedVariance;

if doTraining
    [YnoSkip,trainedMean,trainedVariance] = batchnorm(YnoSkip,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm2.TrainedMean = trainedMean;
    state.batchnorm2.TrainedVariance = trainedVariance;
else
    YnoSkip = batchnorm(YnoSkip,offset,scale,trainedMean,trainedVariance);
end

YnoSkip = relu(YnoSkip);

% Convolution - conv3
weights = parameters.conv3.Weights;
bias = parameters.conv3.Bias;
YnoSkip = dlconv(YnoSkip,weights,bias,Padding="same");

% Batch normalization - batchnorm3
offset = parameters.batchnorm3.Offset;
scale = parameters.batchnorm3.Scale;
trainedMean = state.batchnorm3.TrainedMean;
trainedVariance = state.batchnorm3.TrainedVariance;

if doTraining
    [YnoSkip,trainedMean,trainedVariance] = batchnorm(YnoSkip,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm3.TrainedMean = trainedMean;
    state.batchnorm3.TrainedVariance = trainedVariance;
else
    YnoSkip = batchnorm(YnoSkip,offset,scale,trainedMean,trainedVariance);
end

% Skip connection operations
% Convolution, batch normalization (Skip connection) - convSkip, batchnormSkip
weights = parameters.convSkip.Weights;
bias = parameters.convSkip.Bias;

 Train Network Using Model Function

19-295



YSkip = dlconv(Y,weights,bias,Stride=2);

offset = parameters.batchnormSkip.Offset;
scale = parameters.batchnormSkip.Scale;
trainedMean = state.batchnormSkip.TrainedMean;
trainedVariance = state.batchnormSkip.TrainedVariance;

if doTraining
    [YSkip,trainedMean,trainedVariance] = batchnorm(YSkip,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnormSkip.TrainedMean = trainedMean;
    state.batchnormSkip.TrainedVariance = trainedVariance;
else
    YSkip = batchnorm(YSkip,offset,scale,trainedMean,trainedVariance);
end

% Final operations
% Addition, ReLU - addition, relu4
Y = YSkip + YnoSkip;
Y = relu(Y);

% Fully connect, softmax (labels) - fc1, softmax
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
Y1 = fullyconnect(Y,weights,bias);
Y1 = softmax(Y1);

% Fully connect (angles) - fc2
weights = parameters.fc2.Weights;
bias = parameters.fc2.Bias;
Y2 = fullyconnect(Y,weights,bias);

end

Model Loss Function

The modelLoss function, takes the model parameters, a mini-batch of input data X with
corresponding targets T1 and T2 containing the labels and angles, respectively, and returns the loss,
the gradients of the loss with respect to the learnable parameters, and the updated network state.

function [loss,gradients,state] = modelLoss(parameters,X,T1,T2,state)

doTraining = true;
[Y1,Y2,state] = model(parameters,X,doTraining,state);

lossLabels = crossentropy(Y1,T1);
lossAngles = mse(Y2,T2);

loss = lossLabels + 0.1*lossAngles;
gradients = dlgradient(loss,parameters);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

19 Import, Export, and Customization

19-296



1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
to be used as a singleton channel dimension.

2 Extract the label and angle data from the incoming cell arrays and concatenate along the second
dimension into a categorical array and a numeric array, respectively.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,T1,T2] = preprocessMiniBatch(dataX,dataT1,dataT2)
    
    % Extract image data from cell and concatenate
    X = cat(4,dataX{:});
    % Extract label data from cell and concatenate
    T1 = cat(2,dataT1{:});
    % Extract angle data from cell and concatenate
    T2 = cat(2,dataT2{:});
        
    % One-hot encode labels
    T1 = onehotencode(T1,1);
        
end

See Also
dlarray | sgdmupdate | dlfeval | dlgradient | fullyconnect | dlconv | softmax | relu |
batchnorm | crossentropy | minibatchqueue | onehotencode | onehotdecode

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Update Batch Normalization Statistics Using Model Function” on page 19-298
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Functions with dlarray Support” on page 19-504

 Train Network Using Model Function

19-297



Update Batch Normalization Statistics Using Model Function

This example shows how to update the network state in a network defined as a function.

A batch normalization operation normalizes each input channel across a mini-batch. To speed up
training of convolutional neural networks and reduce the sensitivity to network initialization, use
batch normalization operations between convolutions and nonlinearities, such as ReLU layers.

During training, batch normalization operations first normalize the activations of each channel by
subtracting the mini-batch mean and dividing by the mini-batch standard deviation. Then, the
operation shifts the input by a learnable offset β and scales it by a learnable scale factor γ.

When you use a trained network to make predictions on new data, the batch normalization operations
use the trained data set mean and variance instead of the mini-batch mean and variance to normalize
the activations.

To compute the data set statistics, you must keep track of the mini-batch statistics by using a
continually updating state.

If you use batch normalization operations in a model function, then you must define the behavior for
both training and prediction. For example, you can specify a Boolean option doTraining to control
whether the model uses mini-batch statistics for training or data set statistics for prediction.

This example piece of code from a model function shows how to apply a batch normalization
operation and update only the data set statistics during training.

if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm1.TrainedMean = trainedMean;
    state.batchnorm1.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

Load Training Data

The digitTrain4DArrayData function loads the images, their digit labels, and their angles of
rotation from the vertical. Create an arrayDatastore object for the images, labels, and the angles,
and then use the combine function to make a single datastore that contains all of the training data.
Extract the class names and number of nondiscrete responses.

[XTrain,TTrain,anglesTrain] = digitTrain4DArrayData;

dsXTrain = arrayDatastore(XTrain,IterationDimension=4);
dsTTrain = arrayDatastore(TTrain);
dsAnglesTrain = arrayDatastore(anglesTrain);

dsTrain = combine(dsXTrain,dsTTrain,dsAnglesTrain);

classNames = categories(TTrain);
numClasses = numel(classNames);
numResponses = size(anglesTrain,2);
numObservations = numel(TTrain);

19 Import, Export, and Customization

19-298



View some images from the training data.

idx = randperm(numObservations,64);
I = imtile(XTrain(:,:,:,idx));
figure
imshow(I)

Define Deep Learning Model

Define the following network that predicts both labels and angles of rotation.

• A convolution-batchnorm-ReLU block with 16 5-by-5 filters.
• A branch of two convolution-batchnorm blocks each with 32 3-by-3 filters with a ReLU operation

between
• A skip connection with a convolution-batchnorm block with 32 1-by-1 convolutions.
• Combine both branches using addition followed by a ReLU operation
• For the regression output, a branch with a fully connected operation of size 1 (the number of

responses).
• For classification output, a branch with a fully connected operation of size 10 (the number of

classes) and a softmax operation.

 Update Batch Normalization Statistics Using Model Function

19-299



Define and Initialize Model Parameters and State

Define the parameters for each of the operations and include them in a struct. Use the format
parameters.OperationName.ParameterName where parameters is the struct, OperationName
is the name of the operation (for example "conv1") and ParameterName is the name of the parameter
(for example, "Weights").

Create a struct parameters containing the model parameters. Initialize the learnable layer weights
and biases using the initializeGlorot and initializeZeros example functions, respectively.
Initialize the batch normalization offset and scale parameters with the initializeZeros and
initializeOnes example functions, respectively.

To perform training and inference using batch normalization layers, you must also manage the
network state. Before prediction, you must specify the dataset mean and variance derived from the
training data. Create a struct state containing the state parameters. The batch normalization
statistics must not be dlarray objects. Initialize the batch normalization trained mean and trained
variance states using the zeros and ones functions, respectively.

The initialization example functions are attached to this example as supporting files.

Initialize the parameters for the first convolutional layer.

filterSize = [5 5];
numChannels = 1;
numFilters = 16;

19 Import, Export, and Customization

19-300



sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv1.Bias = initializeZeros([numFilters 1]);

Initialize the parameters and state for the first batch normalization layer.

parameters.batchnorm1.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm1.Scale = initializeOnes([numFilters 1]);
state.batchnorm1.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm1.TrainedVariance = initializeOnes([numFilters 1]);

Initialize the parameters for the second convolutional layer.

filterSize = [3 3];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv2.Bias = initializeZeros([numFilters 1]);

Initialize the parameters and state for the second batch normalization layer.

parameters.batchnorm2.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm2.Scale = initializeOnes([numFilters 1]);
state.batchnorm2.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm2.TrainedVariance = initializeOnes([numFilters 1]);

Initialize the parameters for the third convolutional layer.

filterSize = [3 3];
numChannels = 32;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv3.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv3.Bias = initializeZeros([numFilters 1]);

Initialize the parameters and state for the third batch normalization layer.

parameters.batchnorm3.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm3.Scale = initializeOnes([numFilters 1]);
state.batchnorm3.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm3.TrainedVariance = initializeOnes([numFilters 1]);

Initialize the parameters for the convolutional layer in the skip connection.

filterSize = [1 1];
numChannels = 16;
numFilters = 32;

 Update Batch Normalization Statistics Using Model Function

19-301



sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.convSkip.Weights = initializeGlorot(sz,numOut,numIn);
parameters.convSkip.Bias = initializeZeros([numFilters 1]);

Initialize the parameters and state for the batch normalization layer in the skip connection.

parameters.batchnormSkip.Offset = initializeZeros([numFilters 1]);
parameters.batchnormSkip.Scale = initializeOnes([numFilters 1]);
state.batchnormSkip.TrainedMean = initializeZeros([numFilters 1]);
state.batchnormSkip.TrainedVariance = initializeOnes([numFilters 1]);

Initialize the parameters for the fully connected layer corresponding to the classification output.

sz = [numClasses 6272];
numOut = numClasses;
numIn = 6272;
parameters.fc1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc1.Bias = initializeZeros([numClasses 1]);

Initialize the parameters for the fully connected layer corresponding to the regression output.

sz = [numResponses 6272];
numOut = numResponses;
numIn = 6272;
parameters.fc2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc2.Bias = initializeZeros([numResponses 1]);

View the struct of the state.

state

state = struct with fields:
       batchnorm1: [1×1 struct]
       batchnorm2: [1×1 struct]
       batchnorm3: [1×1 struct]
    batchnormSkip: [1×1 struct]

View the state parameters for the batchnorm1 operation.

state.batchnorm1

ans = struct with fields:
        TrainedMean: [16×1 dlarray]
    TrainedVariance: [16×1 dlarray]

Define Model Function

Create the function model, listed at the end of the example, which computes the outputs of the deep
learning model described earlier.

The function model takes as input the model parameters parameters, input data, the flag
doTraining, which specifies whether the model returns outputs for training or prediction, and the

19 Import, Export, and Customization

19-302



network state state. The network outputs the predictions for the labels, the predictions for the
angles, and the updated network state.

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, which takes as input a mini-batch of
input data with corresponding targets T1 and T2 containing the labels and angles, respectively, and
returns the loss, the gradients of the loss with respect to the learnable parameters, and the updated
network state.

Specify Training Options

Specify the training options.

numEpochs = 20;
miniBatchSize = 128;

Train Model

Train the model using a custom training loop. Use minibatchqueue to process and manage the
mini-batches of images. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to one-hot encode the class labels.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels or the angles.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" "" ""]);

For each epoch, shuffle the data and loop over mini-batches of data. At the end of each epoch, display
the training progress. For each mini-batch:

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.

Initialize the parameters for the Adam solver.

trailingAvg = [];
trailingAvgSq = [];

Initialize the training progress plot.

figure
C = colororder;
lineLossTrain = animatedline(Color=C(2,:));
ylim([0 inf])
xlabel("Iteration")

 Update Batch Normalization Statistics Using Model Function

19-303



ylabel("Loss")
grid on

Train the model.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches
    while hasdata(mbq)
        iteration = iteration + 1;

        [X,T1,T2] = next(mbq);

        % Evaluate the model loss, gradients, and state using dlfeval and the
        % modelLoss function.
        [loss,gradients,state] = dlfeval(@modelLoss,parameters,X,T1,T2,state);

        % Update the network parameters using the Adam optimizer.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration);

        % Display the training progress.
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        loss = double(loss);
        addpoints(lineLossTrain,iteration,loss)
        title("Epoch: " + epoch + ", Elapsed: " + string(D))
        drawnow
    end
end

19 Import, Export, and Customization

19-304



Test Model

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels and angles. Manage the test data set using a minibatchqueue object with the same setting as
the training data.

[XTest,T1Test,anglesTest] = digitTest4DArrayData;

dsXTest = arrayDatastore(XTest,IterationDimension=4);
dsTTest = arrayDatastore(T1Test);
dsAnglesTest = arrayDatastore(anglesTest);

dsTest = combine(dsXTest,dsTTest,dsAnglesTest);

mbqTest = minibatchqueue(dsTest,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" "" ""]);

To predict the labels and angles of the validation data, use the modelPredictions function, listed at
the end of the example. The function returns the predicted classes and angles, as well as comparison
with the true values.

[classesPredictions,anglesPredictions,classCorr,angleDiff] = modelPredictions(parameters,state,mbqTest,classNames);

Evaluate the classification accuracy.

accuracy = mean(classCorr)

 Update Batch Normalization Statistics Using Model Function

19-305



accuracy = 0.9824

Evaluate the regression accuracy.

angleRMSE = sqrt(mean(angleDiff.^2))

angleRMSE = single
    7.9194

View some of the images with their predictions. Display the predicted angles in red and the correct
angles in green.

idx = randperm(size(XTest,4),9);
figure
for i = 1:9
    subplot(3,3,i)
    I = XTest(:,:,:,idx(i));
    imshow(I)
    hold on

    sz = size(I,1);
    offset = sz/2;

    thetaPred = anglesPredictions(idx(i));
    plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],"r--")

    thetaValidation = anglesTest(idx(i));
    plot(offset*[1-tand(thetaValidation) 1+tand(thetaValidation)],[sz 0],"g--")

    hold off
    label = string(classesPredictions(idx(i)));
    title("Label: " + label)
end

19 Import, Export, and Customization

19-306



Model Function

The function model takes as input the model parameters parameters, the input data X, the flag
doTraining, which specifies whether the model returns the outputs for training or prediction, and
the network state state. The function returns the predictions for the labels, the predictions for the
angles, and the updated network state.

function [Y1,Y2,state] = model(parameters,X,doTraining,state)

% Convolution
weights = parameters.conv1.Weights;
bias = parameters.conv1.Bias;
Y = dlconv(X,weights,bias,Padding=2);

% Batch normalization, ReLU
offset = parameters.batchnorm1.Offset;
scale = parameters.batchnorm1.Scale;
trainedMean = state.batchnorm1.TrainedMean;
trainedVariance = state.batchnorm1.TrainedVariance;

if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm1.TrainedMean = trainedMean;
    state.batchnorm1.TrainedVariance = trainedVariance;
else

 Update Batch Normalization Statistics Using Model Function

19-307



    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

Y = relu(Y);

% Convolution, batch normalization (skip connection)
weights = parameters.convSkip.Weights;
bias = parameters.convSkip.Bias;
YSkip = dlconv(Y,weights,bias,Stride=2);

offset = parameters.batchnormSkip.Offset;
scale = parameters.batchnormSkip.Scale;
trainedMean = state.batchnormSkip.TrainedMean;
trainedVariance = state.batchnormSkip.TrainedVariance;

if doTraining
    [YSkip,trainedMean,trainedVariance] = batchnorm(YSkip,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnormSkip.TrainedMean = trainedMean;
    state.batchnormSkip.TrainedVariance = trainedVariance;
else
    YSkip = batchnorm(YSkip,offset,scale,trainedMean,trainedVariance);
end

% Convolution
weights = parameters.conv2.Weights;
bias = parameters.conv2.Bias;
Y = dlconv(Y,weights,bias,Padding=1,Stride=2);

% Batch normalization, ReLU
offset = parameters.batchnorm2.Offset;
scale = parameters.batchnorm2.Scale;
trainedMean = state.batchnorm2.TrainedMean;
trainedVariance = state.batchnorm2.TrainedVariance;

if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm2.TrainedMean = trainedMean;
    state.batchnorm2.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

Y = relu(Y);

% Convolution
weights = parameters.conv3.Weights;
bias = parameters.conv3.Bias;
Y = dlconv(Y,weights,bias,Padding=1);

% Batch normalization
offset = parameters.batchnorm3.Offset;
scale = parameters.batchnorm3.Scale;
trainedMean = state.batchnorm3.TrainedMean;
trainedVariance = state.batchnorm3.TrainedVariance;

19 Import, Export, and Customization

19-308



if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm3.TrainedMean = trainedMean;
    state.batchnorm3.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

% Addition, ReLU
Y = YSkip + Y;
Y = relu(Y);

% Fully connect, softmax (labels)
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
Y1 = fullyconnect(Y,weights,bias);
Y1 = softmax(Y1);

% Fully connect (angles)
weights = parameters.fc2.Weights;
bias = parameters.fc2.Bias;
Y2 = fullyconnect(Y,weights,bias);

end

Model Loss Function

The modelLoss function takes as input the model parameters, a mini-batch of the input data X with
corresponding targets T1 and T2 containing the labels and angles, respectively, and returns the loss,
the gradients of the loss with respect to the learnable parameters, and the updated network state.

function [loss,gradients,state] = modelLoss(parameters,X,T1,T2,state)

doTraining = true;
[Y1,Y2,state] = model(parameters,X,doTraining,state);

lossLabels = crossentropy(Y1,T1);
lossAngles = mse(Y2,T2);

loss = lossLabels + 0.1*lossAngles;
gradients = dlgradient(loss,parameters);

end

Model Predictions Function

The modelPredictions function takes the model parameters, the network state, a
minibatchqueue of input data mbq, and the network classes, and returns the model predictions by
iterating over all data in the minibatchqueue using the model function with the doTraining
option set to false. The function returns the predicted classes and angles, as well as comparison
with the true values. For the classes, the comparison is a vector of ones and zeros that represents
correct and incorrect predictions. For the angles, the comparison is the difference between the
predicted angle and the true value.

 Update Batch Normalization Statistics Using Model Function

19-309



function [classesPredictions,anglesPredictions,classCorr,angleDiff] = modelPredictions(parameters,state,mbq,classes)

doTraining = false;

classesPredictions = [];
anglesPredictions = [];
classCorr = [];
angleDiff = [];

while hasdata(mbq)
    [X,T1,T2] = next(mbq);

    % Make predictions using the model function.
    [Y1,Y2] = model(parameters,X,doTraining,state);

    % Determine predicted classes.
    Y1PredBatch = onehotdecode(Y1,classes,1);
    classesPredictions = [classesPredictions Y1PredBatch];

    % Dermine predicted angles
    Y2PredBatch = extractdata(Y2);
    anglesPredictions = [anglesPredictions Y2PredBatch];

    % Compare predicted and true classes
    Y1 = onehotdecode(T1,classes,1);
    classCorr = [classCorr Y1PredBatch == Y1];

    % Compare predicted and true angles
    angleDiffBatch = Y2PredBatch - T2;
    angleDiff = [angleDiff extractdata(gather(angleDiffBatch))];

end

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
to be used as a singleton channel dimension.

2 Extract the label and angle data from the incoming cell arrays and concatenate into a categorical
array and a numeric array, respectively.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,T,angle] = preprocessMiniBatch(dataX,dataT,dataAngle)

% Extract image data from cell and concatenate
X = cat(4,dataX{:});

% Extract label data from cell and concatenate
T = cat(2,dataT{:});

% Extract angle data from cell and concatenate
angle = cat(2,dataAngle{:});

19 Import, Export, and Customization

19-310



% One-hot encode labels
T = onehotencode(T,1);

end

See Also
dlarray | sgdmupdate | dlfeval | dlgradient | fullyconnect | dlconv | softmax | relu |
batchnorm | crossentropy | minibatchqueue | onehotencode | onehotdecode

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Train Network Using Model Function” on page 19-284
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Functions with dlarray Support” on page 19-504

 Update Batch Normalization Statistics Using Model Function

19-311



Make Predictions Using Model Function

This example shows how to make predictions using a model function by splitting data into mini-
batches.

For large data sets, or when predicting on hardware with limited memory, make predictions by
splitting the data into mini-batches. When making predictions with SeriesNetwork or DAGNetwork
objects, the predict function automatically splits the input data into mini-batches. For model
functions, you must split the data into mini-batches manually.

Create Model Function and Load Parameters

Load the model parameters from the MAT file digitsMIMO.mat. The MAT file contains the model
parameters in a struct named parameters, the model state in a struct named state, and the class
names in classNames.

s = load("digitsMIMO.mat");
parameters = s.parameters;
state = s.state;
classNames = s.classNames;

The model function model, listed at the end of the example, defines the model given the model
parameters and state.

Load Data for Prediction

Load the digits data for prediction.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

numObservations = numel(imds.Files);

Make Predictions

Loop over the mini-batches of the test data and make predictions using a custom prediction loop.

Use minibatchqueue to process and manage the mini-batches of images. Specify a mini-batch size
of 128. Set the read size property of the image datastore to the mini-batch size.

For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to concatenate the data into a batch and normalize the images.

• Format the images with the dimensions 'SSCB' (spatial, spatial, channel, batch). By default, the
minibatchqueue object converts the data to dlarray objects with underlying type single.

• Make predictions on a GPU if one is available. By default, the minibatchqueue object converts
the output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

19 Import, Export, and Customization

19-312



miniBatchSize = 128;
imds.ReadSize = miniBatchSize;

mbq = minibatchqueue(imds,...
    "MiniBatchSize",miniBatchSize,...
    "MiniBatchFcn", @preprocessMiniBatch,...
    "MiniBatchFormat","SSCB");

Loop over the minibatches of data and make predictions using the predict function. Use the
onehotdecode function to determine the class labels. Store the predicted class labels.

doTraining = false;

Y1Predictions = [];
Y2Predictions = [];

% Loop over mini-batches.
while hasdata(mbq)
    
    % Read mini-batch of data.
    dlX = next(mbq);
    
    % Make predictions using the predict function.
    [dlY1Pred,dlY2Pred] = model(parameters,dlX,doTraining,state);
    
    % Determine corresponding classes.
    Y1PredBatch = onehotdecode(dlY1Pred,classNames,1);
    Y1Predictions = [Y1Predictions Y1PredBatch];
    
    Y2PredBatch = extractdata(dlY2Pred);
    Y2Predictions = [Y2Predictions Y2PredBatch];

end

View some of the images with their predictions.

idx = randperm(numObservations,9);
figure
for i = 1:9
    subplot(3,3,i)
    I = imread(imds.Files{idx(i)});
    imshow(I)
    hold on
    
    sz = size(I,1);
    offset = sz/2;
    
    thetaPred = Y2Predictions(idx(i));
    plot(offset*[1-tand(thetaPred) 1+tand(thetaPred)],[sz 0],'r--')
    
    hold off
    label = string(Y1Predictions(idx(i)));
    title("Label: " + label)
end

 Make Predictions Using Model Function

19-313



Model Function

The function model takes the model parameters parameters, the input data dlX, the flag
doTraining which specifies whether to model should return outputs for training or prediction, and
the network state state. The network outputs the predictions for the labels, the predictions for the
angles, and the updated network state.

function [dlY1,dlY2,state] = model(parameters,dlX,doTraining,state)

% Convolution
weights = parameters.conv1.Weights;
bias = parameters.conv1.Bias;
dlY = dlconv(dlX,weights,bias,'Padding','same');

% Batch normalization, ReLU
offset = parameters.batchnorm1.Offset;
scale = parameters.batchnorm1.Scale;
trainedMean = state.batchnorm1.TrainedMean;
trainedVariance = state.batchnorm1.TrainedVariance;

if doTraining
    [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm1.TrainedMean = trainedMean;
    state.batchnorm1.TrainedVariance = trainedVariance;
else

19 Import, Export, and Customization

19-314



    dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end

dlY = relu(dlY);

% Convolution, batch normalization (Skip connection)
weights = parameters.convSkip.Weights;
bias = parameters.convSkip.Bias;
dlYSkip = dlconv(dlY,weights,bias,'Stride',2);

offset = parameters.batchnormSkip.Offset;
scale = parameters.batchnormSkip.Scale;
trainedMean = state.batchnormSkip.TrainedMean;
trainedVariance = state.batchnormSkip.TrainedVariance;

if doTraining
    [dlYSkip,trainedMean,trainedVariance] = batchnorm(dlYSkip,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnormSkip.TrainedMean = trainedMean;
    state.batchnormSkip.TrainedVariance = trainedVariance;
else
    dlYSkip = batchnorm(dlYSkip,offset,scale,trainedMean,trainedVariance);
end

% Convolution
weights = parameters.conv2.Weights;
bias = parameters.conv2.Bias;
dlY = dlconv(dlY,weights,bias,'Padding','same','Stride',2);

% Batch normalization, ReLU
offset = parameters.batchnorm2.Offset;
scale = parameters.batchnorm2.Scale;
trainedMean = state.batchnorm2.TrainedMean;
trainedVariance = state.batchnorm2.TrainedVariance;

if doTraining
    [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm2.TrainedMean = trainedMean;
    state.batchnorm2.TrainedVariance = trainedVariance;
else
    dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end

dlY = relu(dlY);

% Convolution
weights = parameters.conv3.Weights;
bias = parameters.conv3.Bias;
dlY = dlconv(dlY,weights,bias,'Padding','same');

% Batch normalization
offset = parameters.batchnorm3.Offset;
scale = parameters.batchnorm3.Scale;
trainedMean = state.batchnorm3.TrainedMean;
trainedVariance = state.batchnorm3.TrainedVariance;

 Make Predictions Using Model Function

19-315



if doTraining
    [dlY,trainedMean,trainedVariance] = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
    
    % Update state
    state.batchnorm3.TrainedMean = trainedMean;
    state.batchnorm3.TrainedVariance = trainedVariance;
else
    dlY = batchnorm(dlY,offset,scale,trainedMean,trainedVariance);
end

% Addition, ReLU
dlY = dlYSkip + dlY;
dlY = relu(dlY);

% Fully connect, softmax (labels)
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
dlY1 = fullyconnect(dlY,weights,bias);
dlY1 = softmax(dlY1);

% Fully connect (angles)
weights = parameters.fc2.Weights;
bias = parameters.fc2.Bias;
dlY2 = fullyconnect(dlY,weights,bias);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the data from the incoming cell array and concatenate into a numeric array.
Concatenating over the fourth dimension adds a third dimension to each image, to be used as a
singleton channel dimension.

2 Normalize the pixel values between 0 and 1.

function X = preprocessMiniBatch(data)    
    % Extract image data from cell and concatenate
    X = cat(4,data{:});
    
    % Normalize the images.
    X = X/255;
end

See Also
dlarray | dlgradient | dlfeval | sgdmupdate | dlconv | batchnorm | relu | fullyconnect |
softmax | minibatchqueue | onehotdecode

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Train Network Using Model Function” on page 19-284

19 Import, Export, and Customization

19-316



• “Update Batch Normalization Statistics Using Model Function” on page 19-298
• “Initialize Learnable Parameters for Model Function” on page 19-318
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Functions with dlarray Support” on page 19-504

 Make Predictions Using Model Function

19-317



Initialize Learnable Parameters for Model Function
When you train a network using layers, layer graphs, or dlnetwork objects, the software
automatically initializes the learnable parameters according to the layer initialization properties.
When you define a deep learning model as a function, you must initialize the learnable parameters
manually.

How you initialize learnable parameters (for example, weights and biases) can have a big impact on
how quickly a deep learning model converges.

Tip This topic explains how to initialize learnable parameters for a deep learning model defined a
function in a custom training loop. To learn how to specify the learnable parameter initialization for a
deep learning layer, use the corresponding layer property. For example, to set the weights initializer
of a convolution2dLayer object, use the WeightsInitializer property.

Default Layer Initializations
This table shows the default initializations for the learnable parameters for each layer, and provides
links that show how to initialize learnable parameters for model functions by using the same
initialization.

Layer Learnable Parameter Default Initialization
convolution2dLayer Weights “Glorot Initialization” on page

19-322
Bias “Zeros Initialization” on page

19-328
convolution3dLayer Weights “Glorot Initialization” on page

19-322
Bias “Zeros Initialization” on page

19-328
groupedConvolution2dLaye
r

Weights “Glorot Initialization” on page
19-322

Bias “Zeros Initialization” on page
19-328

transposedConv2dLayer Weights “Glorot Initialization” on page
19-322

Bias “Zeros Initialization” on page
19-328

transposedConv3dLayer Weights “Glorot Initialization” on page
19-322

Bias “Zeros Initialization” on page
19-328

fullyConnectedLayer Weights “Glorot Initialization” on page
19-322

19 Import, Export, and Customization

19-318



Layer Learnable Parameter Default Initialization
Bias “Zeros Initialization” on page

19-328
batchNormalizationLayer Offset “Zeros Initialization” on page

19-328
Scale “Ones Initialization” on page 19-

327
lstmLayer Input weights “Glorot Initialization” on page

19-322
Recurrent weights “Orthogonal Initialization” on

page 19-326
Bias “Unit Forget Gate Initialization”

on page 19-327
gruLayer Input weights “Glorot Initialization” on page

19-322
Recurrent weights “Orthogonal Initialization” on

page 19-326
Bias “Zeros Initialization” on page

19-328
wordEmbeddingLayer Weights “Gaussian Initialization” on

page 19-325, with mean 0 and
standard deviation 0.01

Learnable Parameter Sizes
When initializing learnable parameters for model functions, you must specify parameters of the
correct size. The size of the learnable parameters depends on the type of deep learning operation.

Operation Learnable Parameter Size
batchnorm Offset [numChannels 1], where

numChannels is the number of
input channels

Scale [numChannels 1], where
numChannels is the number of
input channels

dlconv Weights [filterSize numChannels
numFilters], where
filterSize is a 1-by-K vector
specifying the filter size,
numChannels is the number of
input channels, numFilters is
the number of filters, and K is
the number of spatial
dimensions

 Initialize Learnable Parameters for Model Function

19-319



Operation Learnable Parameter Size
Bias One of the following:

• [numFilters 1], where
numFilters is the number
of filters

• [1 1]
dlconv (grouped) Weights [filterSize

numChannelsPerGroup
numFiltersPerGroup
numGroups], where
filterSize is a 1-by-K vector
specifying the filter size,
numChannelsPerGroup is the
number of input channels for
each group,
numFiltersPerGroup is the
number of filters for each group,
numGroups is the number of
groups, and K is the number of
spatial dimensions

Bias One of the following:

• [numFiltersPerGroup
1], where
numFiltersPerGroup is
the number of filters for each
group.

• [1 1]
dltranspconv Weights [filterSize numFilters

numChannels], where
filterSize is a 1-by-K vector
specifying the filter size,
numChannels is the number of
input channels, numFilters is
the number of filters, and K is
the number of spatial
dimensions

Bias One of the following:

• [numFilters 1], where
numFilters is the number
of filters for each group.

• [1 1]

19 Import, Export, and Customization

19-320



Operation Learnable Parameter Size
dltranspconv (grouped) Weights [filterSize

numFiltersPerGroup
numChannelsPerGroup
numGroups], where
filterSize is a 1-by-K vector
specifying the filter size,
numChannelsPerGroup is the
number of input channels for
each group,
numFiltersPerGroup is the
number of filters for each group,
numGroups is the number of
groups, and K is the number of
spatial dimensions

Bias One of the following:

• [numFiltersPerGroup
1], where
numFiltersPerGroup is
the number of filters for each
group.

• [1 1]
fullyconnect Weights [outputSize inputSize],

where outputSize and
inputSize is the number of
output and input channels,
respectively

Bias [outputSize 1], where
outputSize is the number of
output channels

gru Input weights [3*numHiddenUnits
inputSize], where
numHiddenUnits is the
number of hidden units of the
operation and inputSize is the
number of input channels

Recurrent weights [3*numHiddenUnits
numHiddenUnits], where
numHiddenUnits is the
number of hidden units of the
operation

Bias [3*numHiddenUnits 1],
where numHiddenUnits is the
number of hidden units of the
operation

 Initialize Learnable Parameters for Model Function

19-321



Operation Learnable Parameter Size
lstm Input weights [4*numHiddenUnits

inputSize], where
numHiddenUnits is the
number of hidden units of the
operation and inputSize is the
number of input channels

Recurrent weights [4*numHiddenUnits
numHiddenUnits], where
numHiddenUnits is the
number of hidden units of the
operation

Bias [4*numHiddenUnits 1],
where numHiddenUnits is the
number of hidden units of the
operation

Glorot Initialization
The Glorot (also known as Xavier) initializer [1] samples weights from the uniform distribution with

bounds − 6
No + Ni

, 6
No + Ni

, where the values of No and Ni depend on the type of deep learning

operation.

Operation Learnable Parameter No Ni
dlconv Weights prod(filterSize)*n

umFilters, where
filterSize is a 1-by-K
vector containing the
filter size, numFilters
is the number of filters,
and K is the number of
spatial dimensions

prod(filterSize)*n
umChannels, where
filterSize is a 1-by-K
vector containing the
filter size,
numChannels is the
number of input
channels, and K is the
number of spatial
dimensions

dlconv (grouped) Weights prod(filterSize)*n
umFiltersPerGroup,
where filterSize is a
1-by-K vector containing
the filter size,
numFiltersPerGroup
is the number of filters
for each group, and K is
the number of spatial
dimensions

prod(filterSize)*n
umChannelsPerGroup,
where filterSize is a
1-by-K vector containing
the filter size,
numChannelsPerGrou
p is the number of input
channels for each
group, and K is the
number of spatial
dimensions

19 Import, Export, and Customization

19-322



Operation Learnable Parameter No Ni
dltranspconv Weights prod(filterSize)*n

umFilters, where
filterSize is a 1-by-K
vector containing the
filter size, numFilters
is the number of filters,
and K is the number of
spatial dimensions

prod(filterSize)*n
umChannels, where
filterSize is a 1-by-K
vector containing the
filter size,
numChannels is the
number of input
channels, and K is the
number of spatial
dimensions

dltranspconv
(grouped)

Weights prod(filterSize)*n
umFiltersPerGroup,
where filterSize is a
1-by-K vector containing
the filter size,
numFiltersPerGroup
is the number of filters
for each group, and K is
the number of spatial
dimensions

prod(filterSize)*n
umChannelsPerGroup,
where filterSize is a
1-by-K vector containing
the filter size,
numChannelsPerGrou
p is the number of input
channels for each
group, and K is the
number of spatial
dimensions

fullyconnect Weights Number of output
channels of the
operation

Number of input
channels of the
operation

gru Input weights 3*numHiddenUnits,
where
numHiddenUnits is the
number of hidden units
of the operation

Number of input
channels of the
operation

Recurrent weights 3*numHiddenUnits,
where
numHiddenUnits is the
number of hidden units
of the operation

Number of hidden units
of the operation

lstm Input weights 4*numHiddenUnits,
where
numHiddenUnits is the
number of hidden units
of the operation

Number of input
channels of the
operation

Recurrent weights 4*numHiddenUnits,
where
numHiddenUnits is the
number of hidden units
of the operation

Number of hidden units
of the operation

To initialize learnable parameters using the Glorot initializer easily, you can define a custom function.
The function initializeGlorot takes as input the size of the learnable parameters sz and the

 Initialize Learnable Parameters for Model Function

19-323



values No and Ni (numOut and numIn, respectively), and returns the sampled weights as a dlarray
object with underlying type 'single'.

function weights = initializeGlorot(sz,numOut,numIn)

Z = 2*rand(sz,'single') - 1;
bound = sqrt(6 / (numIn + numOut));

weights = bound * Z;
weights = dlarray(weights);

end

Example

Initialize the weights for a convolutional operation with 128 filters of size 5-by-5 and 3 input
channels.

filterSize = [5 5];
numChannels = 3;
numFilters = 128;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numChannels;

parameters.conv.Weights = initializeGlorot(sz,numOut,numIn);

He Initialization

The He initializer [2] samples weights from the normal distribution with zero mean and variance 2
Ni

,

where the value Ni depends on the type of deep learning operation.

Operation Learnable Parameter Ni
dlconv Weights prod(filterSize)*numChan

nelsPerGroup, where
filterSize is a 1-by-K vector
containing the filter size,
numChannelsPerGroup is the
number of input channels for
each group, and K is the number
of spatial dimensions

dltranspconv Weights prod(filterSize)*numChan
nelsPerGroup, where
filterSize is a 1-by-K vector
containing the filter size,
numChannelsPerGroup is the
number of input channels for
each group, and K is the number
of spatial dimensions

19 Import, Export, and Customization

19-324



Operation Learnable Parameter Ni
fullyconnect Weights Number of input channels of the

operation
gru Input weights Number of input channels of the

operation
Recurrent weights Number of hidden units of the

operation.
lstm Input weights Number of input channels of the

operation
Recurrent weights Number of hidden units of the

operation.

To initialize learnable parameters using the He initializer easily, you can define a custom function.
The function initializeHe takes as input the size of the learnable parameters sz, and the value Ni,
and returns the sampled weights as a dlarray object with underlying type 'single'.

function weights = initializeHe(sz,numIn)

weights = randn(sz,'single') * sqrt(2/numIn);
weights = dlarray(weights);

end

Example

Initialize the weights for a convolutional operation with 128 filters of size 5-by-5 and 3 input
channels.

filterSize = [5 5];
numChannels = 3;
numFilters = 128;

sz = [filterSize numChannels numFilters];
numIn = prod(filterSize) * numChannels;

parameters.conv.Weights = initializeHe(sz,numIn);

Gaussian Initialization
The Gaussian initializer samples weights from a normal distribution.

To initialize learnable parameters using the Gaussian initializer easily, you can define a custom
function. The function initializeGaussian takes as input the size of the learnable parameters sz,
the distribution mean mu, and the distribution standard deviation sigma, and returns the sampled
weights as a dlarray object with underlying type 'single'.

function weights = initializeGaussian(sz,mu,sigma)

weights = randn(sz,'single')*sigma + mu;
weights = dlarray(weights);

end

 Initialize Learnable Parameters for Model Function

19-325



Example

Initialize the weights for an embedding operation with a dimension of 300 and vocabulary size of
5000 using the Gaussian initializer with mean 0 and standard deviation 0.01.

embeddingDimension = 300;
vocabularySize = 5000;
mu = 0;
sigma = 0.01;

sz = [embeddingDimension vocabularySize];

parameters.emb.Weights = initializeGaussian(sz,mu,sigma);

Uniform Initialization
The uniform initializer samples weights from a uniform distribution.

To initialize learnable parameters using the uniform initializer easily, you can define a custom
function. The function initializeUniform takes as input the size of the learnable parameters sz,
and the distribution bound bound, and returns the sampled weights as a dlarray object with
underlying type 'single'.

function parameter = initializeUniform(sz,bound)

Z = 2*rand(sz,'single') - 1;
parameter = bound * Z;
parameter = dlarray(parameter);

end

Example

Initialize the weights for an attention mechanism with size 100-by-100 and bound 0.1 using the
uniform initializer.

sz = [100 100];
bound = 0.1;

parameters.attentionn.Weights = initializeUniform(sz,bound);

Orthogonal Initialization
The orthogonal initializer returns the orthogonal matrix Q given by the QR decomposition of Z = QR,
where Z is sampled from a unit normal distribution and the size of Z matches the size of the learnable
parameter.

To initialize learnable parameters using the orthogonal initializer easily, you can define a custom
function. The function initializeOrthogonal takes as input the size of the learnable parameters
sz, and returns the orthogonal matrix as a dlarray object with underlying type 'single'.

function parameter = initializeOrthogonal(sz)

Z = randn(sz,'single');
[Q,R] = qr(Z,0);

19 Import, Export, and Customization

19-326



D = diag(R);
Q = Q * diag(D ./ abs(D));

parameter = dlarray(Q);

end

Example

Initialize the recurrent weights for an LSTM operation with 100 hidden units using the orthogonal
initializer.

numHiddenUnits = 100;

sz = [4*numHiddenUnits numHiddenUnits];

parameters.lstm.RecurrentWeights = initializeOrthogonal(sz);

Unit Forget Gate Initialization
The unit forget gate initializer initializes the bias for an LSTM operation such that the forget gate
component of the biases are ones and the remaining entries are zeros.

To initialize learnable parameters using the orthogonal initializer easily, you can define a custom
function. The function initializeUnitForgetGate takes as input the number of hidden units in
the LSTM operation, and returns the bias as a dlarray object with underlying type 'single'.

function bias = initializeUnitForgetGate(numHiddenUnits)

bias = zeros(4*numHiddenUnits,1,'single');

idx = numHiddenUnits+1:2*numHiddenUnits;
bias(idx) = 1;

bias = dlarray(bias);

end

Example

Initialize the bias of an LSTM operation with 100 hidden units using the unit forget gate initializer.

numHiddenUnits = 100;

parameters.lstm.Bias = initializeUnitForgetGate(numHiddenUnits,'single');

Ones Initialization
To initialize learnable parameters with ones easily, you can define a custom function. The function
initializeOnes takes as input the size of the learnable parameters sz, and returns the parameters
as a dlarray object with underlying type 'single'.

function parameter = initializeOnes(sz)

parameter = ones(sz,'single');
parameter = dlarray(parameter);

 Initialize Learnable Parameters for Model Function

19-327



end

Example

Initialize the scale for a batch normalization operation with 128 input channels with ones.

numChannels = 128;

sz = [numChannels 1];

parameters.bn.Scale = initializeOnes(sz);

Zeros Initialization
To initialize learnable parameters with zeros easily, you can define a custom function. The function
initializeZeros takes as input the size of the learnable parameters sz, and returns the
parameters as a dlarray object with underlying type 'single'.

function parameter = initializeZeros(sz)

parameter = zeros(sz,'single');
parameter = dlarray(parameter);

end

Example

Initialize the offset for a batch normalization operation with 128 input channels with zeros.

numChannels = 128;

sz = [numChannels 1];

parameters.bn.Offset = initializeZeros(sz);

Storing Learnable Parameters
It is recommended to store the learnable parameters for a given model function in a single object,
such as a structure, table, or cell array. For an example showing how to initialize learnable
parameters as a struct, see “Train Network Using Model Function” on page 19-284.

Storing Parameters on GPU

If you train your model using a GPU, then the software converts the learnable parameters of the
model function to gpuArray objects which are stored on the GPU.

To make it easier to load learnable parameters on machines without a GPU, it is recommended
practice to gather all the parameters to the local workspace before saving them. To gather learnable
parameters stored as a structure, table, or cell array of dlarray objects, use the dlupdate function
with the gather function. For example, if you have network learnable parameters stored on the GPU
in the structure, table, or cell array parameters, you can transfer the parameters to the local
workspace by using the following code:

parameters = dlupdate(@gather,parameters);

19 Import, Export, and Customization

19-328



If you load learnable parameters that are not on the GPU, you can move the parameters onto the GPU
using the dlupdate function with the gpuArray function. Doing so ensures that your network
executes on the GPU for training and inference, regardless of where the input data is stored. For
example, to move the parameters stored in the structure, table, or cell array parameters, you can
transfer the parameters to the GPU by using the following code:

parameters = dlupdate(@gpuArray,parameters);

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010. https://
proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015. https://doi.org/10.1109/ICCV.2015.123

See Also
dlarray | dlgradient | dlfeval | dlnetwork

More About
• “Train Network Using Model Function” on page 19-284
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Update Batch Normalization Statistics Using Model Function” on page 19-298
• “Make Predictions Using Model Function” on page 19-312
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “List of Functions with dlarray Support” on page 19-504

 Initialize Learnable Parameters for Model Function

19-329

https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://doi.org/10.1109/ICCV.2015.123


Deep Learning Function Acceleration for Custom Training
Loops

When using the dlfeval function in a custom training loop, the software traces each input dlarray
object of the model loss function to determine the computation graph used for automatic
differentiation. This tracing process can take some time and can spend time recomputing the same
trace. By optimizing, caching, and reusing the traces, you can speed up gradient computation in deep
learning functions. You can also optimize, cache, and reuse traces to accelerate other deep learning
functions that do not require automatic differentiation, for example you can also accelerate model
functions and functions used for prediction.

To speed up calls to deep learning functions, you can use the dlaccelerate function to create an
AcceleratedFunction object that automatically optimizes, caches, and reuses the traces. You can
use the dlaccelerate function to accelerate model functions and model loss functions directly.

The returned AcceleratedFunction object caches the traces of calls to the underlying function
and reuses the cached result when the same input pattern reoccurs.

Try using dlaccelerate for function calls that:

• are long-running
• have dlarray objects, structures of dlarray objects, or dlnetwork objects as inputs
• do not have side effects like writing to files or displaying output

Invoke the accelerated function as you would invoke the underlying function. Note that the
accelerated function is not a function handle.

Note When using the dlfeval function, the software automatically accelerates the forward and
predict functions for dlnetwork input. If you accelerate a deep learning function where the
majority of the computation takes place in calls to the forward or predict functions for dlnetwork
input, then you might not see an improvement in training time.

Because of the nature of caching traces, not all functions support acceleration.

The caching process can cache values that you might expect to change or that depend on external
factors. You must take care when accelerating functions that:

• have inputs with random or frequently changing values
• have outputs with frequently changing values
• generate random numbers
• use if statements and while loops with conditions that depend on the values of dlarray objects
• have inputs that are handles or that depend on handles
• Read data from external sources (for example, by using a datastore or a minibatchqueue object)

Because the caching process requires extra computation, acceleration can lead to longer running
code in some cases. This scenario can happen when the software spends time creating new caches
that do not get reused often. For example, when you pass multiple mini-batches of different sequence
lengths to the function, the software triggers a new trace for each unique sequence length.

Accelerated functions can do the following when calculating a new trace only.

19 Import, Export, and Customization

19-330



• modify the global state such as, the random number stream or global variables
• use file input or output
• display data using graphics or the command line display

When using accelerated functions in parallel, such as when using a parfor loop, then each worker
maintains its own cache. The cache is not transferred to the host.

Functions and custom layers used in accelerated functions must also support acceleration.

You can nest and recursively call accelerated functions. However, it is usually more efficient to have a
single accelerated function.

Accelerate Deep Learning Function Directly
In most cases, you can accelerate deep learning functions directly. For example, you can accelerate
the model loss function directly by replacing calls to the model loss function with calls to the
corresponding accelerated function:

Consider the following use of the dlfeval function in a custom training loop.
[loss,gradients,state] = dlfeval(@modelLoss,parameters,X,T,state)

To accelerate the model loss function and evaluate the accelerated function, use the dlaccelerate
function and evaluate the returned AcceleratedFunction object:

accfun = dlaccelerate(@modelLoss);
[loss,gradients,state] = dlfeval(accfun,parameters,X,T,state)

Because the cached traces are not directly attached to the AcceleratedFunction object and that
they are shared between AcceleratedFunction objects that use the same underlying function, you
can create the AcceleratedFunction either in or before the custom training loop body.

Accelerate Parts of Deep Learning Function
If a deep learning function does not fully support acceleration, for example, functions that require an
if statement with a condition that depends on the value of a dlarray object, then you can
accelerate parts of a deep learning function by creating a separate function contains any supported
function calls you want to accelerate.

For example, consider the following code snippet that calls different functions depending on whether
the sum of the dlarray object X is negative or nonnegative.

if sum(X,"all") < 0
   Y = negFun1(parameters,X);
   Y = negFun2(parameters,Y);
else
   Y = posFun1(parameters,X);
   Y = posFun2(parameters,Y);
end

Because the if statement depends on the value of a dlarray object, a function that contains this
code snippet does not support acceleration. However, if the blocks of code used inside the body of the
if statement support acceleration, then you can accelerate these parts separately by creating a new
function containing those blocks and accelerating the new functions instead.

 Deep Learning Function Acceleration for Custom Training Loops

19-331



For example, create the functions negFunAll and posFunAll that contain the blocks of code used in
the body of the if statement.

function Y = negFunAll(parameters,X)

Y = negFun1(parameters,X);
Y = negFun2(parameters,Y);

end

function Y = posFunAll(parameters,X)

Y = posFun1(parameters,X);
Y = posFun2(parameters,Y);

end

Then, accelerate these functions and use them in the body of the if statement instead.

accfunNeg = dlaccelerate(@negFunAll)
accfunPos = dlaccelerate(@posFunAll)

if sum(X,"all") < 0
   Y = accfunNeg(parameters,X);
else
   Y = accfunPos(parameters,X);
end

Reusing Caches
Reusing a cached trace depends on the function inputs and outputs:

• For any dlarray object or structure of dlarray object inputs, the trace depends on the size,
format, and underlying datatype of the dlarray. That is, the accelerated function triggers a new
trace for dlarray inputs with size, format, or underlying datatype not contained in the cache. Any
dlarray inputs differing only by value to a previously cached trace do not trigger a new trace.

• For any dlnetwork inputs, the trace depends on the size, format, and underlying datatype of the
dlnetwork state and learnable parameters. That is, the accelerated function triggers a new trace
for dlnetwork inputs with learnable parameters or state with size, format, and underlying
datatype not contained in the cache. Any dlnetwork inputs differing only by the value of the state
and learnable parameters to a previously cached trace do not trigger a new trace.

• For other types of input, the trace depends on the values of the input. That is, the accelerated
function triggers a new trace for other types of input with value not contained in the cache. Any
other inputs that have the same value as a previously cached trace do not trigger a new trace.

• The trace depends on the number of function outputs. That is, the accelerated function triggers a
new trace for function calls with previously unseen numbers of output arguments. Any function
calls with the same number of output arguments as a previously cached trace do not trigger a new
trace.

When necessary, the software caches any new traces by evaluating the underlying function and
caching the resulting trace in the AcceleratedFunction object.

19 Import, Export, and Customization

19-332



Caution An AcceleratedFunction object is not aware of updates to the underlying function. If you
modify the function associated with the accelerated function, then clear the cache using the
clearCache object function or alternatively use the command clear functions.

Storing and Clearing Caches
AcceleratedFunction objects store the cache in a queue:

• The software adds new traces to the back of the queue.
• When the cache is full, the software discards the cached item at the head of the queue.
• When a cache is reused, the software moves the cached item towards the back of the queue. This

helps prevents the software from discarding commonly reused cached items.

The AcceleratedFunction objects do not directly hold the cache. This means that:

• Multiple AcceleratedFunction objects that have the same underlying function share the same
cache.

• Clearing or overwriting a variable containing an AcceleratedFunction object does not clear
the cache.

• Overwriting a variable containing an AcceleratedFunction with another
AcceleratedFunction with the same underlying function does not clear the cache.

Accelerated functions that have the same underlying function share the same cache.

To clear the cache of an accelerated function, use the clearCache object function. Alternatively, you
can clear all functions in the current MATLAB session using the commands clear functions or
clear all.

Note Clearing the AcceleratedFunction variable does not clear the cache associated with the
input function. To clear the cache for an AcceleratedFunction object that no longer exists in the
workspace, create a new AcceleratedFunction object to the same function, and use the
clearCache function on the new object. Alternatively, you can clear all functions in the current
MATLAB session using the commands clear functions or clear all.

Acceleration Considerations
Because of the nature of caching traces, not all functions support acceleration.

The caching process can cache values that you might expect to change or that depend on external
factors. You must take care when accelerating functions that:

• have inputs with random or frequently changing values
• have outputs with frequently changing values
• generate random numbers
• use if statements and while loops with conditions that depend on the values of dlarray objects
• have inputs that are handles or that depend on handles
• Read data from external sources (for example, by using a datastore or a minibatchqueue object)

 Deep Learning Function Acceleration for Custom Training Loops

19-333



Because the caching process requires extra computation, acceleration can lead to longer running
code in some cases. This scenario can happen when the software spends time creating new caches
that do not get reused often. For example, when you pass multiple mini-batches of different sequence
lengths to the function, the software triggers a new trace for each unique sequence length.

Accelerated functions can do the following when calculating a new trace only.

• modify the global state such as, the random number stream or global variables
• use file input or output
• display data using graphics or the command line display

When using accelerated functions in parallel, such as when using a parfor loop, then each worker
maintains its own cache. The cache is not transferred to the host.

Functions and custom layers used in accelerated functions must also support acceleration.

Function Inputs with Random or Frequently Changing Values

You must take care when accelerating functions that take random or frequently changing values as
input, such as a model loss function that takes random noise as input and adds it to the input data. If
any random or frequently changing inputs to an accelerated function are not dlarray objects, then
the function trigger a new trace for each previously unseen value.

You can check for scenarios like this by inspecting the Occupancy and HitRate properties of the
AcceleratedFunction object. If the Occupancy property is high and the HitRate is low, then this
can indicate that the AcceleratedFunction object creates many new traces that it does not reuse.

For dlarray object input, changes in value to not trigger new traces. To prevent frequently changing
input from triggering new traces for each evaluation, refactor your code such that the random inputs
are dlarray inputs.

For example, consider the model loss function that accepts a random array of noise values:
function [loss,gradients,state] = modelLoss(parameters,X,T,state,noise)

X = X + noise;
[Y,state] = model(parameters,X,state);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,parameters);

end

To accelerate this model loss function, convert the input noise to dlarray before evaluating the
accelerated function. Because the modelLoss function also supports dlarray input for noise, you do
not need to make changes to the function.

noise = dlarray(noise,"SSCB");
accfun = dlaccelerate(@modelLoss);
[loss,gradients,state] = dlfeval(accfun,parameters,X,T,state,noise);

Alternatively, you can accelerate the parts of the model loss function that do not require the random
input.

Functions with Random Number Generation

You must take care when accelerating functions that use random number generation, such as
functions that generate random noise to add to the input. When the software caches the trace of a
function that generates random numbers that are not dlarray objects, the software caches the

19 Import, Export, and Customization

19-334



resulting random samples in the trace. When reusing the trace, the accelerated function uses the
cached random sample. The accelerated function does not generate new random values.

Random number generation using the "like" option of the rand function with a dlarray object
supports acceleration. To use random number generation in an accelerated function, ensure that the
function uses the rand function with the "like" option set to a traced dlarray object (a dlarray
object that depends on an input dlarray object).

For example, consider the following model loss function.
[loss,gradients,state] = modelLoss(parameters,X,T,state)

sz = size(X);
noise = rand(sz);
X = X + noise;

[Y,state] = model(parameters,X,state);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,parameters);

end

To ensure that the rand function generates a new value for each evaluation, use the "like" option
with the traced dlarray object X.
[loss,gradients,state] = modelLoss(parameters,X,T,state)

sz = size(X);
noise = rand(sz,"like",X);
X = X + noise;

[Y,state] = model(parameters,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,parameters);

end

Alternatively, you can accelerate the parts of the model loss function that do not require random
number generation.

Using if Statements and while Loops

You must take care when accelerating functions that use if statements and while loops. In
particular, you can get unexpected results when you accelerate functions with if statements or
while loops that yield different code paths for function inputs of the same size and format.

Accelerating functions with if statement or while loop conditions that depend on the values of the
function input or values from external sources (for example, results of random number generation)
can lead to unexpected behavior. When the accelerated function caches a new trace, if the function
contains an if statement or while loop, then the software caches the trace of the resulting code
path given by the if statement or while loop condition for that particular trace. Because changes in
the value of the dlarray input does not trigger a new trace, when reusing the trace with different
values, the software uses the same cached trace (which contains the same cached code path) even
when a difference in value should result in a different code path.

Usually, accelerating functions that contain if statements or while loops with conditions that do not
depend on the values of the function input or external factors (for example, while loops that iterate
over elements in an array) does not result in unexpected behavior. For example, because changes in
the size of a dlarray input triggers a new trace, when reusing the trace with inputs of the same size,
the cached code path for inputs of that size remain consistent, even when there are differences in
values.

 Deep Learning Function Acceleration for Custom Training Loops

19-335



To avoid unexpected behavior from caching code paths of if statements, you can refactor your code
so that it determines the correct result by combining the results of all branches and extracting the
desired solution.

For example, consider this code.

if tf
  Y = funcA(X);
else
  Y = funcB(X);
end

To support acceleration, you can replace it with code of the following form.

Y = tf*funcA(X) + ~tf*funcB(X);

Alternatively, to avoid unnecessary multiply operations, you can also use this replacement.

Y = cat(3,funcA(X),funcB(X));
Y = Y(:,:,[tf ~tf]);

Note that these techniques can result in longer running code because they require executing the
code used in both branches of the if statement.

To use if statements and while loops that depend on dlarray object values, accelerate the body of
the if statement or while loop only.

Function Inputs that Depend on Handles

You must take care when accelerating functions that take objects that depend on handles as input,
such as a minibatchqueue object that has a preprocessing function specified as a function handle.
The AcceleratedFunction object throws an error when evaluating the function with inputs
depending on handles.

Instead, you can accelerate the parts of the model loss function that do not require inputs that
depend on handles.

Debugging

You must take care when debugging accelerated functions. Cached traces do not support break
points. When using accelerated functions, the software reaches break points in the underlying
function during the tracing process only.

To debug the code in the underlying function using breakpoints, disable the acceleration by setting
the Enabled property to false.

To debug the cached traces, you can compare the outputs of the accelerated functions with the
outputs of the underlying function, by setting the CheckMode property to "tolerance".

dlode45 Does Not Support Acceleration When GradientMode Is "direct"

The dlaccelerate function does not support accelerating the dlode45 function when the
GradientMode option is "direct". To accelerate the code that calls the dlode45 function, set the
GradientMode option to "adjoint" or accelerate parts of your code that do not call the dlode45
function with the GradientMode option set to "direct".

19 Import, Export, and Customization

19-336



See Also
dlaccelerate | AcceleratedFunction | clearCache | dlarray | dlgradient | dlfeval

Related Examples
• “Accelerate Custom Training Loop Functions” on page 19-338
• “Check Accelerated Deep Learning Function Outputs” on page 19-365
• “Evaluate Performance of Accelerated Deep Learning Function” on page 19-350

 Deep Learning Function Acceleration for Custom Training Loops

19-337



Accelerate Custom Training Loop Functions

This example shows how to accelerate deep learning custom training loop and prediction functions.

When using the dlfeval function in a custom training loop, the software traces each input dlarray
object of the model loss function to determine the computation graph used for automatic
differentiation. This tracing process can take some time and can spend time recomputing the same
trace. By optimizing, caching, and reusing the traces, you can speed up gradient computation in deep
learning functions. You can also optimize, cache, and reuse traces to accelerate other deep learning
functions that do not require automatic differentiation, for example you can also accelerate model
functions and functions used for prediction.

To speed up calls to deep learning functions, use the dlaccelerate function to create an
AcceleratedFunction object that automatically optimizes, caches, and reuses the traces. You can
use the dlaccelerate function to accelerate model functions and model loss functions directly, or to
accelerate subfunctions used by these functions.

The returned AcceleratedFunction object caches the traces of calls to the underlying function
and reuses the cached result when the same input pattern reoccurs.

Try using dlaccelerate for function calls that:

• are long-running
• have dlarray object, structures of dlarray objects, or dlnetwork objects as inputs
• do not have side effects like writing to files or displaying output

Load Training and Test Data

The digitTrain4DArrayData function loads the images, their digit labels, and their angles of
rotation from the vertical. Create arrayDatastore objects for the images, labels, and angles, and
then use the combine function to make a single datastore that contains all of the training data.
Extract the class names and number of nondiscrete responses.

[imagesTrain,labelsTrain,anglesTrain] = digitTrain4DArrayData;

dsImagesTrain = arrayDatastore(imagesTrain,IterationDimension=4);
dsLabelsTrain = arrayDatastore(labelsTrain);
dsAnglesTrain = arrayDatastore(anglesTrain);

dsTrain = combine(dsImagesTrain,dsLabelsTrain,dsAnglesTrain);

classNames = categories(labelsTrain);
numClasses = numel(classNames);
numResponses = size(anglesTrain,2);
numObservations = numel(labelsTrain);

View some images from the training data.

idx = randperm(numObservations,64);
I = imtile(imagesTrain(:,:,:,idx));
figure
imshow(I)

19 Import, Export, and Customization

19-338



Create a datastore containing the test data given by the digitTest4DArrayData function using the
same steps.

[imagesTest,labelsTest,anglesTest] = digitTest4DArrayData;

dsImagesTest = arrayDatastore(imagesTest,IterationDimension=4);
dsLabelsTest = arrayDatastore(labelsTest);
dsAnglesTest = arrayDatastore(anglesTest);

dsTest = combine(dsImagesTest,dsLabelsTest,dsAnglesTest);

Define Deep Learning Model

Define the following network that predicts both labels and angles of rotation.

• A convolution-batchnorm-ReLU block with 16 5-by-5 filters.
• A branch of two convolution-batchnorm blocks each with 32 3-by-3 filters with a ReLU operation

between
• A skip connection with a convolution-batchnorm block with 32 1-by-1 convolutions.
• Combine both branches using addition followed by a ReLU operation
• For the regression output, a branch with a fully connected operation of size 1 (the number of

responses).
• For classification output, a branch with a fully connected operation of size 10 (the number of

classes) and a softmax operation.

 Accelerate Custom Training Loop Functions

19-339



Define and Initialize Model Parameters and State

Create structures parameters and state that contain the initialized model parameters and state,
respectively, using the modelParameters function, listed in the Model Parameters Function on page
19-343 section of the example.

The output uses the format parameters.OperationName.ParameterName where parameters is
the structure, OperationName is the name of the operation (for example "conv1") and
ParameterName is the name of the parameter (for example, "Weights").

[parameters,state] = modelParameters(numClasses,numResponses);

Define Model Function

Create the function model, listed at the end of the example, that computes the outputs of the deep
learning model described earlier.

The function model takes the model parameters parameters, the input data X, the flag doTraining
which specifies whether to model should return outputs for training or prediction, and the network
state state. The network outputs the predictions for the labels, the predictions for the angles, and
the updated network state.

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, that takes the model parameters, a
mini-batch of input data X with corresponding targets T1 and T2 containing the labels and angles,

19 Import, Export, and Customization

19-340



respectively, and returns the loss, the gradients of the loss with respect to the learnable parameters,
and the updated network state.

Specify Training Options

Specify the training options. Train for 20 epochs with a mini-batch size of 32. Displaying the plot can
make training take longer to complete. Disable the plot by setting the plots variable to "none". To
enable the plot, set this variable to "training-progress".

numEpochs = 20;
miniBatchSize = 32;
plots = "none";

Train Accelerated Model

Accelerate the model loss function using the dlaccelerate function.

accfun = dlaccelerate(@modelLoss);

Clear any previoulsy cached traces of the accelerated function using the clearCache function.

clearCache(accfun)

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to one-hot encode the class labels.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels or angles.

• Discard any partial mini-batches returned at the end of an epoch.
• Train on a GPU if one is available. By default, the minibatchqueue object converts each output

to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB","",""], ...
    PartialMiniBatch="discard");

Initialize parameters for Adam.

trailingAvg = [];
trailingAvgSq = [];

If required, initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline(Color=[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

 Accelerate Custom Training Loop Functions

19-341



Train the model using the accelerated model loss function. For each epoch, shuffle the data and loop
over mini-batches of data. For each mini-batch:

• Evaluate the model loss and gradients using dlfeval and the accelerated model loss function.
• Update the network parameters using the adamupdate function.
• If required, update the training progress plot.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches
    while hasdata(mbq)

        iteration = iteration + 1;

        [X,T1,T2] = next(mbq);

        % Evaluate the model loss, gradients, and state using dlfeval and the
        % accelerated function.
        [loss,gradients,state] = dlfeval(accfun, parameters, X, T1, T2, state);

        % Update the network parameters using the Adam optimizer.
        [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
            trailingAvg,trailingAvgSq,iteration);

        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),Format="hh:mm:ss");
            loss = double(loss);
            addpoints(lineLossTrain,iteration,loss)
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

Check the efficiency of the accelerated function by inspecting the HitRate property. The HitRate
property contains the percentage of function calls that reuse a cached trace.

accfun.HitRate

ans = 99.9679

Accelerate Predictions

Measure the time required to make predictions using the test data set.

Because the model predictions function requires a mini-batch queue as input, the function does not
support acceleration. To speed up prediction, accelerate the model function.

Accelerate the model function using the dlaccelerate function.

19 Import, Export, and Customization

19-342



accfun2 = dlaccelerate(@model);

Clear any previoulsy cached traces of the accelerated function using the clearCache function.

clearCache(accfun2)

After training, making predictions on new data does not require the labels. Create minibatchqueue
object containing only the predictors of the test data:

• To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format 'SSCB' (spatial, spatial,

channel, batch).

numOutputs = 1;
mbqTest = minibatchqueue(dsTest,numOutputs, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="SSCB");

Loop over the mini-batches and classify the images using the modelPredictions function, listed at
the end of the example.

[labelsPred,anglesPred] = modelPredictions(accfun2,parameters,state,mbqTest,classNames);

Check the efficiency of the accelerated function by inspecting the HitRate property. The HitRate
property contains the percentage of function calls that reuse a cached trace.

accfun2.HitRate

ans = 98.7261

Model Parameters Function

The modelParameters function creates structures parameters and state that contain the
initialized model parameters and state, respectively for the model described in the Define Deep
Learning Model on page 19-339 section. The function takes as input the number of classes and the
number of responses and initializes the learnable parameters. The function:

• initializes the layer weights using the initializeGlorot function
• initializes the layer biases using the initializeZeros function
• initializes the batch normalization offset and scale parameters with the initializeZeros

function
• initializes the batch normalization scale parameters with the initializeOnes function
• initializes the batch normalization state trained mean with the initializeZeros function
• initializes the batch normalization state trained variance with the initializeOnes example

function

The initialization example functions are attached to this example as supporting files. To access these
files, open the example as a live script. To learn more about initializing learnable parameters for deep
learning models, see “Initialize Learnable Parameters for Model Function” on page 19-318.

 Accelerate Custom Training Loop Functions

19-343



The output uses the format parameters.OperationName.ParameterName where parameters is
the structure, OperationName is the name of the operation (for example "conv1") and
ParameterName is the name of the parameter (for example, "Weights").

function [parameters,state] = modelParameters(numClasses,numResponses)

% First convolutional layer.
filterSize = [5 5];
numChannels = 1;
numFilters = 16;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv1.Bias = initializeZeros([numFilters 1]);

% First batch normalization layer.
parameters.batchnorm1.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm1.Scale = initializeOnes([numFilters 1]);
state.batchnorm1.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm1.TrainedVariance = initializeOnes([numFilters 1]);

% Second convolutional layer.
filterSize = [3 3];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv2.Bias = initializeZeros([numFilters 1]);

% Second batch normalization layer.
parameters.batchnorm2.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm2.Scale = initializeOnes([numFilters 1]);
state.batchnorm2.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm2.TrainedVariance = initializeOnes([numFilters 1]);

% Third convolutional layer.
filterSize = [3 3];
numChannels = 32;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv3.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv3.Bias = initializeZeros([numFilters 1]);

% Third batch normalization layer.
parameters.batchnorm3.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm3.Scale = initializeOnes([numFilters 1]);
state.batchnorm3.TrainedMean = initializeZeros([numFilters 1]);

19 Import, Export, and Customization

19-344



state.batchnorm3.TrainedVariance = initializeOnes([numFilters 1]);

% Convolutional layer in the skip connection.
filterSize = [1 1];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.convSkip.Weights = initializeGlorot(sz,numOut,numIn);
parameters.convSkip.Bias = initializeZeros([numFilters 1]);

% Batch normalization layer in the skip connection.
parameters.batchnormSkip.Offset = initializeZeros([numFilters 1]);
parameters.batchnormSkip.Scale = initializeOnes([numFilters 1]);

state.batchnormSkip.TrainedMean = initializeZeros([numFilters 1]);
state.batchnormSkip.TrainedVariance = initializeOnes([numFilters 1]);

% Fully connected layer corresponding to the classification output.
sz = [numClasses 6272];
numOut = numClasses;
numIn = 6272;
parameters.fc1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc1.Bias = initializeZeros([numClasses 1]);

% Fully connected layer corresponding to the regression output.
sz = [numResponses 6272];
numOut = numResponses;
numIn = 6272;
parameters.fc2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc2.Bias = initializeZeros([numResponses 1]);

end

Model Function

The function model takes the model parameters parameters, the input data X, the flag doTraining
which specifies whether to model should return outputs for training or prediction, and the network
state state. The network outputs the predictions for the labels, the predictions for the angles, and
the updated network state.

function [Y1,Y2,state] = model(parameters,X,doTraining,state)

% Convolution
weights = parameters.conv1.Weights;
bias = parameters.conv1.Bias;
Y = dlconv(X,weights,bias,Padding="same");

% Batch normalization, ReLU
offset = parameters.batchnorm1.Offset;
scale = parameters.batchnorm1.Scale;
trainedMean = state.batchnorm1.TrainedMean;
trainedVariance = state.batchnorm1.TrainedVariance;

if doTraining

 Accelerate Custom Training Loop Functions

19-345



    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm1.TrainedMean = trainedMean;
    state.batchnorm1.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

Y = relu(Y);

% Convolution, batch normalization (Skip connection)
weights = parameters.convSkip.Weights;
bias = parameters.convSkip.Bias;
YSkip = dlconv(Y,weights,bias,Stride=2);

offset = parameters.batchnormSkip.Offset;
scale = parameters.batchnormSkip.Scale;
trainedMean = state.batchnormSkip.TrainedMean;
trainedVariance = state.batchnormSkip.TrainedVariance;

if doTraining
    [YSkip,trainedMean,trainedVariance] = batchnorm(YSkip,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnormSkip.TrainedMean = trainedMean;
    state.batchnormSkip.TrainedVariance = trainedVariance;
else
    YSkip = batchnorm(YSkip,offset,scale,trainedMean,trainedVariance);
end

% Convolution
weights = parameters.conv2.Weights;
bias = parameters.conv2.Bias;
Y = dlconv(Y,weights,bias,Padding="same",Stride=2);

% Batch normalization, ReLU
offset = parameters.batchnorm2.Offset;
scale = parameters.batchnorm2.Scale;
trainedMean = state.batchnorm2.TrainedMean;
trainedVariance = state.batchnorm2.TrainedVariance;

if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm2.TrainedMean = trainedMean;
    state.batchnorm2.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

Y = relu(Y);

% Convolution
weights = parameters.conv3.Weights;
bias = parameters.conv3.Bias;
Y = dlconv(Y,weights,bias,Padding="same");

19 Import, Export, and Customization

19-346



% Batch normalization
offset = parameters.batchnorm3.Offset;
scale = parameters.batchnorm3.Scale;
trainedMean = state.batchnorm3.TrainedMean;
trainedVariance = state.batchnorm3.TrainedVariance;

if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm3.TrainedMean = trainedMean;
    state.batchnorm3.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

% Addition, ReLU
Y = YSkip + Y;
Y = relu(Y);

% Fully connect, softmax (labels)
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
Y1 = fullyconnect(Y,weights,bias);
Y1 = softmax(Y1);

% Fully connect (angles)
weights = parameters.fc2.Weights;
bias = parameters.fc2.Bias;
Y2 = fullyconnect(Y,weights,bias);

end

Model Loss Function

The modelLoss function takes the model parameters, a mini-batch of input data X with
corresponding targets T1 and T2 containing the labels and angles, respectively, and returns the loss,
the gradients of the loss with respect to the learnable parameters, and the updated network state.

function [loss,gradients,state] = modelLoss(parameters,X,T1,T2,state)

doTraining = true;
[Y1,Y2,state] = model(parameters,X,doTraining,state);

lossLabels = crossentropy(Y1,T1);
lossAngles = mse(Y2,T2);

loss = lossLabels + 0.1*lossAngles;
gradients = dlgradient(loss,parameters);

end

Model Predictions Function

The modelPredictions function takes the model parameters, state, a minibatchqueue of input
data mbq, and the network classes, and computes the model predictions by iterating over all data in

 Accelerate Custom Training Loop Functions

19-347



the minibatchqueue object. The function uses the onehotdecode function to find the predicted
class with the highest score.

function [predictions1, predictions2] = modelPredictions(modelFcn,parameters,state,mbq,classes)

doTraining = false;
predictions1 = [];
predictions2 = [];

while hasdata(mbq)

    XTest = next(mbq);

    [YPred1,YPred2] = modelFcn(parameters,XTest,doTraining,state);

    YPred1 = onehotdecode(YPred1,classes,1)';
    YPred2 = extractdata(YPred2)';

    predictions1 = [predictions1; YPred1];
    predictions2 = [predictions2; YPred2];
end

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
to be used as a singleton channel dimension.

2 Extract the label and angle data from the incoming cell arrays and concatenate along the second
dimension into a categorical array and a numeric array, respectively.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,T,angle] = preprocessMiniBatch(XCell,TCell,angleCell)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);

% Extract label data from cell and concatenate
T = cat(2,TCell{:});

% Extract angle data from cell and concatenate
angle = cat(2,angleCell{:});

% One-hot encode labels
T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and then concatenating them into a numeric array.

19 Import, Export, and Customization

19-348



For grayscale input, concatenating over the fourth dimension adds a third dimension to each image,
to use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(XCell)

% Concatenate.
X = cat(4,XCell{1:end});

end

See Also
dlaccelerate | AcceleratedFunction | clearCache | dlarray | dlgradient | dlfeval

Related Examples
• “Deep Learning Function Acceleration for Custom Training Loops” on page 19-330
• “Check Accelerated Deep Learning Function Outputs” on page 19-365
• “Evaluate Performance of Accelerated Deep Learning Function” on page 19-350

 Accelerate Custom Training Loop Functions

19-349



Evaluate Performance of Accelerated Deep Learning Function

This example shows how to evaluate the performance gains of using an accelerated function.

When using the dlfeval function in a custom training loop, the software traces each input dlarray
object of the model loss function to determine the computation graph used for automatic
differentiation. This tracing process can take some time and can spend time recomputing the same
trace. By optimizing, caching, and reusing the traces, you can speed up gradient computation in deep
learning functions. You can also optimize, cache, and reuse traces to accelerate other deep learning
functions that do not require automatic differentiation, for example you can also accelerate model
functions and functions used for prediction.

To speed up calls to deep learning functions, use the dlaccelerate function to create an
AcceleratedFunction object that automatically optimizes, caches, and reuses the traces. You can
use the dlaccelerate function to accelerate model functions and model loss functions directly, or to
accelerate subfunctions used by these functions. The performance gains are most noticeable for
deeper networks and training loops with many epochs and iterations.

The returned AcceleratedFunction object caches the traces of calls to the underlying function
and reuses the cached result when the same input pattern reoccurs.

Try using dlaccelerate for function calls that:

• are long-running
• have dlarray object, structures of dlarray objects, or dlnetwork objects as inputs
• do not have side effects like writing to files or displaying output

This example compares training and prediction times when using and not using acceleration.

Load Training and Test Data

The digitTrain4DArrayData function loads the images, their digit labels, and their angles of
rotation from the vertical. Create arrayDatastore objects for the images, labels, and angles, and
then use the combine function to make a single datastore that contains all of the training data.
Extract the class names and number of nondiscrete responses.

[imagesTrain,labelsTrain,anglesTrain] = digitTrain4DArrayData;

dsImagesTrain = arrayDatastore(imagesTrain,'IterationDimension',4);
dsLabelsTrain = arrayDatastore(labelsTrain);
dsAnglesTrain = arrayDatastore(anglesTrain);

dsTrain = combine(dsImagesTrain,dsLabelsTrain,dsAnglesTrain);

classNames = categories(labelsTrain);
numClasses = numel(classNames);
numResponses = size(anglesTrain,2);
numObservations = numel(labelsTrain);

Create a datastore containing the test data given by the digitTest4DArrayData function using the
same steps.

[imagesTest,labelsTest,anglesTest] = digitTest4DArrayData;

19 Import, Export, and Customization

19-350



dsImagesTest = arrayDatastore(imagesTest,'IterationDimension',4);
dsLabelsTest = arrayDatastore(labelsTest);
dsAnglesTest = arrayDatastore(anglesTest);

dsTest = combine(dsImagesTest,dsLabelsTest,dsAnglesTest);

Define Deep Learning Model

Define the following network that predicts both labels and angles of rotation.

• A convolution-batchnorm-ReLU block with 16 5-by-5 filters.
• A branch of two convolution-batchnorm blocks each with 32 3-by-3 filters with a ReLU operation

between
• A skip connection with a convolution-batchnorm block with 32 1-by-1 convolutions.
• Combine both branches using addition followed by a ReLU operation
• For the regression output, a branch with a fully connected operation of size 1 (the number of

responses).
• For classification output, a branch with a fully connected operation of size 10 (the number of

classes) and a softmax operation.

Define and Initialize Model Parameters and State

Create a struct parametersBaseline containing the model parameters using the
modelParameters function, listed at the end of the example. The modelParameters function

 Evaluate Performance of Accelerated Deep Learning Function

19-351



creates structures parameters and state that contain the initialized model parameters and state,
respectively.

The output uses the format parameters.OperationName.ParameterName where parameters is
the structure, OperationName is the name of the operation (for example "conv1") and
ParameterName is the name of the parameter (for example, "Weights").

[parametersBaseline,stateBaseline] = modelParameters(numClasses,numResponses);

Create a copy of the parameters and state for the baseline model to use for the accelerated model.

parametersAccelerated = parametersBaseline;
stateAccelerated = stateBaseline;

Define Model Function

Create the function model, listed at the end of the example, that computes the outputs of the deep
learning model described earlier.

The function model takes the model parameters parameters, the input data X, the flag doTraining
which specifies whether to model should return outputs for training or prediction, and the network
state state. The network outputs the predictions for the labels, the predictions for the angles, and
the updated network state.

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, that takes the model parameters, a
mini-batch of input data X with corresponding targets T1 and T2 containing the labels and angles,
respectively, and returns the loss, the updated network state, and the gradients of the loss with
respect to the learnable parameters.

Specify Training Options

Specify the training options. Train for 20 epochs with a mini-batch size of 32. Displaying the plot can
make training take longer to complete. Disable the plot by setting the plots variable to "none". To
enable the plot, set this variable to "training-progress".

numEpochs = 20;
miniBatchSize = 32;
plots = "none";

Train Baseline Model

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to one-hot encode the class labels.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels or angles.

• Discard any partial mini-batches returned at the end of an epoch.
• Train on a GPU if one is available. By default, the minibatchqueue object converts each output

to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

19 Import, Export, and Customization

19-352



mbq = minibatchqueue(dsTrain,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFcn',@preprocessMiniBatch,...
    'MiniBatchFormat',{'SSCB','',''}, ...
    'PartialMiniBatch','discard');

Initialize parameters for Adam.

trailingAvg = [];
trailingAvgSq = [];

If required, initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

Train the model. For each epoch, shuffle the data and loop over mini-batches of data. For each mini-
batch:

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.
• Update the training progress plot.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches
    while hasdata(mbq)

        iteration = iteration + 1;

        [X,T1,T2] = next(mbq);

        % Evaluate the model loss, state, and gradients using dlfeval and the
        % model loss function.
        [loss,stateBaseline,gradients] = dlfeval(@modelLoss,parametersBaseline,X,T1,T2,stateBaseline);

        % Update the network parameters using the Adam optimizer.
        [parametersBaseline,trailingAvg,trailingAvgSq] = adamupdate(parametersBaseline,gradients, ...
            trailingAvg,trailingAvgSq,iteration);

        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            loss = double(loss);

 Evaluate Performance of Accelerated Deep Learning Function

19-353



            addpoints(lineLossTrain,iteration,loss)
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end
elapsedBaseline = toc(start)

elapsedBaseline = 225.8675

Train Accelerated Model

Accelerate the model loss function using the dlaccelerate function.

accfun = dlaccelerate(@modelLoss);

Clear any previously cached traces of the accelerated function using the clearCache function.

clearCache(accfun)

Initialize parameters for Adam.

trailingAvg = [];
trailingAvgSq = [];

If required, initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

Train the model using the accelerated model loss function in the call to the dlfeval function.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs

    % Shuffle data.
    shuffle(mbq)

    % Loop over mini-batches
    while hasdata(mbq)

        iteration = iteration + 1;

        [X,T1,T2] = next(mbq);

        % Evaluate the model loss, state, and gradients using dlfeval and the
        % accelerated function.
        [loss,stateAccelerated,gradients] = dlfeval(accfun, parametersAccelerated, X, T1, T2, stateAccelerated);

        % Update the network parameters using the Adam optimizer.

19 Import, Export, and Customization

19-354



        [parametersAccelerated,trailingAvg,trailingAvgSq] = adamupdate(parametersAccelerated,gradients, ...
            trailingAvg,trailingAvgSq,iteration);

        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            loss = double(loss);
            addpoints(lineLossTrain,iteration,loss)
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end
elapsedAccelerated = toc(start)

elapsedAccelerated = 151.9836

Check the efficiency of the accelerated function by inspecting the HitRate property. The HitRate
property contains the percentage of function calls that reuse a cached trace.

accfun.HitRate

ans = 99.9679

Compare Training Times

Compare the training times in a bar chart.

figure
bar(categorical(["Baseline" "Accelerated"]),[elapsedBaseline elapsedAccelerated]);
ylabel("Time (seconds)")
title("Training Time")

 Evaluate Performance of Accelerated Deep Learning Function

19-355



Calculate the speedup of acceleration.

speedup = elapsedBaseline / elapsedAccelerated

speedup = 1.4861

Time Baseline Predictions

Measure the time required to make predictions using the test data set.

After training, making predictions on new data does not require the labels. Create minibatchqueue
object containing only the predictors of the test data:

• To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format 'SSCB' (spatial, spatial,

channel, batch).

numOutputs = 1;
mbqTest = minibatchqueue(dsTest,numOutputs, ...
    'MiniBatchSize',miniBatchSize, ...
    'MiniBatchFcn',@preprocessMiniBatchPredictors, ...
    'MiniBatchFormat','SSCB');

19 Import, Export, and Customization

19-356



Loop over the mini-batches and classify the images using the modelPredictions function, listed at
the end of the example and measure the elapsed time.

tic
[labelsPred,anglesPred] = modelPredictions(@model,parametersBaseline,stateBaseline,mbqTest,classNames);
elapsedPredictionBaseline = toc

elapsedPredictionBaseline = 5.3212

Time Accelerated Predictions

Because the model predictions function requires a mini-batch queue as input, the function does not
support acceleration. To speed up prediction, accelerate the model function.

Accelerate the model function using the dlaccelerate function.

accfun2 = dlaccelerate(@model);

Clear any previously cached traces of the accelerated function using the clearCache function.

clearCache(accfun2)

Reset the mini-batch queue.

reset(mbqTest)

Loop over the mini-batches and classify the images using the modelPredictions function, listed at
the end of the example and measure the elapsed time.

tic
[labelsPred,anglesPred] = modelPredictions(accfun2,parametersBaseline,stateBaseline,mbqTest,classNames);
elapsedPredictionAccelerated = toc

elapsedPredictionAccelerated = 4.2596

Check the efficiency of the accelerated function by inspecting the HitRate property. The HitRate
property contains the percentage of function calls that reuse a cached trace.

accfun2.HitRate

ans = 98.7261

Compare Prediction Times

Compare the prediction times in a bar chart.

figure
bar(categorical(["Baseline" "Accelerated"]),[elapsedPredictionBaseline elapsedPredictionAccelerated]);
ylabel("Time (seconds)")
title("Prediction Time")

 Evaluate Performance of Accelerated Deep Learning Function

19-357



Calculate the speedup of acceleration.

speedup = elapsedPredictionBaseline / elapsedPredictionAccelerated

speedup = 1.2492

Model Parameters Function

The modelParameters function creates structures parameters and state that contain the
initialized model parameters and state, respectively for the model described in the Define Deep
Learning Model on page 19-351 section. The function takes as input the number of classes and the
number of responses and initializes the learnable parameters. The function:

• initializes the layer weights using the initializeGlorot function
• initializes the layer biases using the initializeZeros function
• initializes the batch normalization offset and scale parameters with the initializeZeros

function
• initializes the batch normalization scale parameters with the initializeOnes function
• initializes the batch normalization state trained mean with the initializeZeros function
• initializes the batch normalization state trained variance with the initializeOnes example

function

The initialization example functions are attached to this example as supporting files. To access these
files, open the example as a live script. To learn more about initializing learnable parameters for deep
learning models, see “Initialize Learnable Parameters for Model Function” on page 19-318.

19 Import, Export, and Customization

19-358



The output uses the format parameters.OperationName.ParameterName where parameters is
the structure, OperationName is the name of the operation (for example "conv1") and
ParameterName is the name of the parameter (for example, "Weights").

function [parameters,state] = modelParameters(numClasses,numResponses)

% First convolutional layer.
filterSize = [5 5];
numChannels = 1;
numFilters = 16;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv1.Bias = initializeZeros([numFilters 1]);

% First batch normalization layer.
parameters.batchnorm1.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm1.Scale = initializeOnes([numFilters 1]);
state.batchnorm1.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm1.TrainedVariance = initializeOnes([numFilters 1]);

% Second convolutional layer.
filterSize = [3 3];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv2.Bias = initializeZeros([numFilters 1]);

% Second batch normalization layer.
parameters.batchnorm2.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm2.Scale = initializeOnes([numFilters 1]);
state.batchnorm2.TrainedMean = initializeZeros([numFilters 1]);
state.batchnorm2.TrainedVariance = initializeOnes([numFilters 1]);

% Third convolutional layer.
filterSize = [3 3];
numChannels = 32;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.conv3.Weights = initializeGlorot(sz,numOut,numIn);
parameters.conv3.Bias = initializeZeros([numFilters 1]);

% Third batch normalization layer.
parameters.batchnorm3.Offset = initializeZeros([numFilters 1]);
parameters.batchnorm3.Scale = initializeOnes([numFilters 1]);
state.batchnorm3.TrainedMean = initializeZeros([numFilters 1]);

 Evaluate Performance of Accelerated Deep Learning Function

19-359



state.batchnorm3.TrainedVariance = initializeOnes([numFilters 1]);

% Convolutional layer in the skip connection.
filterSize = [1 1];
numChannels = 16;
numFilters = 32;

sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

parameters.convSkip.Weights = initializeGlorot(sz,numOut,numIn);
parameters.convSkip.Bias = initializeZeros([numFilters 1]);

% Batch normalization layer in the skip connection.
parameters.batchnormSkip.Offset = initializeZeros([numFilters 1]);
parameters.batchnormSkip.Scale = initializeOnes([numFilters 1]);

state.batchnormSkip.TrainedMean = initializeZeros([numFilters 1]);
state.batchnormSkip.TrainedVariance = initializeOnes([numFilters 1]);

% Fully connected layer corresponding to the classification output.
sz = [numClasses 6272];
numOut = numClasses;
numIn = 6272;
parameters.fc1.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc1.Bias = initializeZeros([numClasses 1]);

% Fully connected layer corresponding to the regression output.
sz = [numResponses 6272];
numOut = numResponses;
numIn = 6272;
parameters.fc2.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fc2.Bias = initializeZeros([numResponses 1]);

end

Model Function

The function model takes the model parameters parameters, the input data X, the flag doTraining
which specifies whether to model should return outputs for training or prediction, and the network
state state. The network outputs the predictions for the labels, the predictions for the angles, and
the updated network state.

function [Y1,Y2,state] = model(parameters,X,doTraining,state)

% Convolution
weights = parameters.conv1.Weights;
bias = parameters.conv1.Bias;
Y = dlconv(X,weights,bias,'Padding','same');

% Batch normalization, ReLU
offset = parameters.batchnorm1.Offset;
scale = parameters.batchnorm1.Scale;
trainedMean = state.batchnorm1.TrainedMean;
trainedVariance = state.batchnorm1.TrainedVariance;

if doTraining

19 Import, Export, and Customization

19-360



    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm1.TrainedMean = trainedMean;
    state.batchnorm1.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

Y = relu(Y);

% Convolution, batch normalization (Skip connection)
weights = parameters.convSkip.Weights;
bias = parameters.convSkip.Bias;
YSkip = dlconv(Y,weights,bias,'Stride',2);

offset = parameters.batchnormSkip.Offset;
scale = parameters.batchnormSkip.Scale;
trainedMean = state.batchnormSkip.TrainedMean;
trainedVariance = state.batchnormSkip.TrainedVariance;

if doTraining
    [YSkip,trainedMean,trainedVariance] = batchnorm(YSkip,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnormSkip.TrainedMean = trainedMean;
    state.batchnormSkip.TrainedVariance = trainedVariance;
else
    YSkip = batchnorm(YSkip,offset,scale,trainedMean,trainedVariance);
end

% Convolution
weights = parameters.conv2.Weights;
bias = parameters.conv2.Bias;
Y = dlconv(Y,weights,bias,'Padding','same','Stride',2);

% Batch normalization, ReLU
offset = parameters.batchnorm2.Offset;
scale = parameters.batchnorm2.Scale;
trainedMean = state.batchnorm2.TrainedMean;
trainedVariance = state.batchnorm2.TrainedVariance;

if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm2.TrainedMean = trainedMean;
    state.batchnorm2.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

Y = relu(Y);

% Convolution
weights = parameters.conv3.Weights;
bias = parameters.conv3.Bias;
Y = dlconv(Y,weights,bias,'Padding','same');

 Evaluate Performance of Accelerated Deep Learning Function

19-361



% Batch normalization
offset = parameters.batchnorm3.Offset;
scale = parameters.batchnorm3.Scale;
trainedMean = state.batchnorm3.TrainedMean;
trainedVariance = state.batchnorm3.TrainedVariance;

if doTraining
    [Y,trainedMean,trainedVariance] = batchnorm(Y,offset,scale,trainedMean,trainedVariance);

    % Update state
    state.batchnorm3.TrainedMean = trainedMean;
    state.batchnorm3.TrainedVariance = trainedVariance;
else
    Y = batchnorm(Y,offset,scale,trainedMean,trainedVariance);
end

% Addition, ReLU
Y = YSkip + Y;
Y = relu(Y);

% Fully connect, softmax (labels)
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
Y1 = fullyconnect(Y,weights,bias);
Y1 = softmax(Y1);

% Fully connect (angles)
weights = parameters.fc2.Weights;
bias = parameters.fc2.Bias;
Y2 = fullyconnect(Y,weights,bias);

end

Model Loss Function

The modelLoss function, takes the model parameters, a mini-batch of input data X with
corresponding targets T1 and T2 containing the labels and angles, respectively, and returns the loss,
the updated network state, and the gradients of the loss with respect to the learnable parameters.

function [loss,state,gradients] = modelLoss(parameters,X,T1,T2,state)

doTraining = true;
[Y1,Y2,state] = model(parameters,X,doTraining,state);

lossLabels = crossentropy(Y1,T1);
lossAngles = mse(Y2,T2);

loss = lossLabels + 0.1*lossAngles;
gradients = dlgradient(loss,parameters);

end

Model Predictions Function

The modelPredictions function takes the model parameters, state, a minibatchqueue of input
data mbq, and the network classes, and computes the model predictions by iterating over all data in

19 Import, Export, and Customization

19-362



the minibatchqueue object. The function uses the onehotdecode function to find the predicted
class with the highest score.

function [predictions1, predictions2] = modelPredictions(modelFcn,parameters,state,mbq,classes)

doTraining = false;
predictions1 = [];
predictions2 = [];

while hasdata(mbq)

    XTest = next(mbq);

    [YPred1,YPred2] = modelFcn(parameters,XTest,doTraining,state);

    YPred1 = onehotdecode(YPred1,classes,1)';
    YPred2 = extractdata(YPred2)';

    predictions1 = [predictions1; YPred1];
    predictions2 = [predictions2; YPred2];
end

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
to be used as a singleton channel dimension.

2 Extract the label and angle data from the incoming cell arrays and concatenate along the second
dimension into a categorical array and a numeric array, respectively.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,Y,angle] = preprocessMiniBatch(XCell,YCell,angleCell)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);

% Extract label data from cell and concatenate
Y = cat(2,YCell{:});

% Extract angle data from cell and concatenate
angle = cat(2,angleCell{:});

% One-hot encode labels
Y = onehotencode(Y,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenate into a numeric array. For

 Evaluate Performance of Accelerated Deep Learning Function

19-363



grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(XCell)

% Concatenate.
X = cat(4,XCell{1:end});

end

See Also
dlaccelerate | AcceleratedFunction | clearCache | dlarray | dlgradient | dlfeval

Related Examples
• “Deep Learning Function Acceleration for Custom Training Loops” on page 19-330
• “Accelerate Custom Training Loop Functions” on page 19-338
• “Check Accelerated Deep Learning Function Outputs” on page 19-365

19 Import, Export, and Customization

19-364



Check Accelerated Deep Learning Function Outputs

This example shows how to check that the outputs of accelerated functions match the outputs of the
underlying function.

In some cases, the outputs of accelerated functions differ to the outputs of the underlying function.
For example, you must take care when accelerating functions that use random number generation,
such as a function that generates random noise to add to the network input. When caching the trace
of a function that generates random numbers that are not dlarray objects, the accelerated function
caches resulting random numbers in the trace. When reusing the trace, the accelerated function uses
the cached random values. The accelerated function does not generate new random values.

To check that the outputs of the accelerated function match the outputs of the underlying function,
use the CheckMode property of the accelerated function. When the CheckMode property of the
accelerated function is 'tolerance' and the outputs differ by more than a specified tolerance, the
accelerated function throws a warning.

Accelerate the function myUnsupportedFun, listed at the end of the example using the
dlaccelerate function. The function myUnsupportedFun generates random noise and adds it to
the input. This function does not support acceleration because the function generates random
numbers that are not dlarray objects.

accfun = dlaccelerate(@myUnsupportedFun)

accfun = 
  AcceleratedFunction with properties:

          Function: @myUnsupportedFun
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

Clear any previously cached traces using the clearCache function.

clearCache(accfun)

To check that the outputs of reused cached traces match the outputs of the underlying function, set
the CheckMode property to 'tolerance'.

accfun.CheckMode = 'tolerance'

accfun = 
  AcceleratedFunction with properties:

          Function: @myUnsupportedFun
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'tolerance'
    CheckTolerance: 1.0000e-04

 Check Accelerated Deep Learning Function Outputs

19-365



Evaluate the accelerated function with an array of ones as input, specified as a dlarray input.

dlX = dlarray(ones(3,3));
dlY = accfun(dlX)

dlY = 
  3×3 dlarray

    1.8147    1.9134    1.2785
    1.9058    1.6324    1.5469
    1.1270    1.0975    1.9575

Evaluate the accelerated function again with the same input. Because the accelerated function reuses
the cached random noise values instead of generating new random values, the outputs of the reused
trace differs from the outputs of the underlying function. When the CheckMode property of the
accelerated function is 'tolerance' and the outputs differ, the accelerated function throws a
warning.

dlY = accfun(dlX)

Warning: Accelerated outputs differ from underlying function outputs.

dlY = 
  3×3 dlarray

    1.8147    1.9134    1.2785
    1.9058    1.6324    1.5469
    1.1270    1.0975    1.9575

Random number generation using the 'like' option of the rand function with a dlarray object
supports acceleration. To use random number generation in an accelerated function, ensure that the
function uses the rand function with the 'like' option set to a traced dlarray object (a dlarray
object that depends on an input dlarray object).

Accelerate the function mySupportedFun, listed at the end of the example. The function
mySupportedFun adds noise to the input by generating noise using the 'like' option with a traced
dlarray object.

accfun2 = dlaccelerate(@mySupportedFun);

Clear any previously cached traces using the clearCache function.

clearCache(accfun2)

To check that the outputs of reused cached traces match the outputs of the underlying function, set
the CheckMode property to 'tolerance'.

accfun2.CheckMode = 'tolerance';

Evaluate the accelerated function twice with the same input as before. Because the outputs of the
reused cache match the outputs of the underlying function, the accelerated function does not throw a
warning.

dlY = accfun2(dlX)

dlY = 
  3×3 dlarray

19 Import, Export, and Customization

19-366



    1.7922    1.0357    1.6787
    1.9595    1.8491    1.7577
    1.6557    1.9340    1.7431

dlY = accfun2(dlX)

dlY = 
  3×3 dlarray

    1.3922    1.7060    1.0462
    1.6555    1.0318    1.0971
    1.1712    1.2769    1.8235

Checking the outputs match requires extra processing and increases the time required for function
evaluation. After checking the outputs, set the CheckMode property to 'none'.

accfun1.CheckMode = 'none';
accfun2.CheckMode = 'none';

Example Functions

The function myUnsupportedFun generates random noise and adds it to the input. This function
does not support acceleration because the function generates random numbers that are not dlarray
objects.

function out = myUnsupportedFun(dlX)

sz = size(dlX);
noise = rand(sz);
out = dlX + noise;

end

The function mySupportedFun adds noise to the input by generating noise using the 'like' option
with a traced dlarray object.

function out = mySupportedFun(dlX)

sz = size(dlX);
noise = rand(sz,'like',dlX);
out = dlX + noise;

end

See Also
dlaccelerate | AcceleratedFunction | clearCache | dlarray | dlgradient | dlfeval

Related Examples
• “Deep Learning Function Acceleration for Custom Training Loops” on page 19-330
• “Accelerate Custom Training Loop Functions” on page 19-338
• “Evaluate Performance of Accelerated Deep Learning Function” on page 19-350

 Check Accelerated Deep Learning Function Outputs

19-367



Solve Partial Differential Equations Using Deep Learning

This example shows how to solve Burger's equation using deep learning.

The Burger's equation is a partial differential equation (PDE) that arises in different areas of applied
mathematics. In particular, fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flows.

Given the computational domain[− 1, 1] × [0, 1], this example uses a physics informed neural network
(PINN) [1] and trains a multilayer perceptron neural network that takes samples (x, t) as input, where
x ∈ [− 1, 1] is the spatial variable, and t ∈ [0, 1] is the time variable, and returns u(x, t), where u is the
solution of the Burger's equation:

∂u
∂t + u∂u∂x −

0 . 01
π

∂2u
∂x2 = 0,

with u(x, t = 0) = − sin(πx)as the initial condition, and u(x = − 1, t) = 0 and u(x = 1, t) = 0 as the
boundary conditions.

The example trains the model by enforcing that given an input (x, t), the output of the network u(x, t)
fulfills the Burger's equation, the boundary conditions, and the initial condition.

Training this model does not require collecting data in advance. You can generate data using the
definition of the PDE and the constraints.

Generate Training Data

Training the model requires a data set of collocation points that enforce the boundary conditions,
enforce the initial conditions, and fulfill the Burger's equation.

Select 25 equally spaced time points to enforce each of the boundary conditions u(x = − 1, t) = 0 and
u(x = 1, t) = 0.

numBoundaryConditionPoints = [25 25];

x0BC1 = -1*ones(1,numBoundaryConditionPoints(1));
x0BC2 = ones(1,numBoundaryConditionPoints(2));

t0BC1 = linspace(0,1,numBoundaryConditionPoints(1));
t0BC2 = linspace(0,1,numBoundaryConditionPoints(2));

u0BC1 = zeros(1,numBoundaryConditionPoints(1));
u0BC2 = zeros(1,numBoundaryConditionPoints(2));

Select 50 equally spaced spatial points to enforce the initial condition u(x, t = 0) = − sin(πx).

numInitialConditionPoints  = 50;

x0IC = linspace(-1,1,numInitialConditionPoints);
t0IC = zeros(1,numInitialConditionPoints);
u0IC = -sin(pi*x0IC);

Group together the data for initial and boundary conditions.

19 Import, Export, and Customization

19-368



X0 = [x0IC x0BC1 x0BC2];
T0 = [t0IC t0BC1 t0BC2];
U0 = [u0IC u0BC1 u0BC2];

Select 10,000 points to enforce the output of the network to fulfill the Burger's equation.

numInternalCollocationPoints = 10000;

pointSet = sobolset(2);
points = net(pointSet,numInternalCollocationPoints);

dataX = 2*points(:,1)-1;
dataT = points(:,2);

Create an array datastore containing the training data.

ds = arrayDatastore([dataX dataT]);

Define Deep Learning Model

Define a multilayer perceptron architecture with 9 fully connect operations with 20 hidden neurons.
The first fully connect operation has two input channels corresponding to the inputs x and t. The last
fully connect operation has one output u(x, t).

Define and Initialize Model Parameters

Define the parameters for each of the operations and include them in a struct. Use the format
parameters.OperationName.ParameterName where parameters is the struct, OperationName
is the name of the operation (for example "fc1") and ParameterName is the name of the parameter
(for example, "Weights").

Specify the number of layers and the number of neurons for each layer.

numLayers = 9;
numNeurons = 20;

Initialize the parameters for the first fully connect operation. The first fully connect operation has two
input channels.

parameters = struct;

sz = [numNeurons 2];
parameters.fc1.Weights = initializeHe(sz,2);
parameters.fc1.Bias = initializeZeros([numNeurons 1]);

Initialize the parameters for each of the remaining intermediate fully connect operations.

for layerNumber=2:numLayers-1
    name = "fc"+layerNumber;

    sz = [numNeurons numNeurons];
    numIn = numNeurons;
    parameters.(name).Weights = initializeHe(sz,numIn);
    parameters.(name).Bias = initializeZeros([numNeurons 1]);
end

Initialize the parameters for the final fully connect operation. The final fully connect operation has
one output channel.

 Solve Partial Differential Equations Using Deep Learning

19-369



sz = [1 numNeurons];
numIn = numNeurons;
parameters.("fc" + numLayers).Weights = initializeHe(sz,numIn);
parameters.("fc" + numLayers).Bias = initializeZeros([1 1]);

View the network parameters.

parameters

parameters = struct with fields:
    fc1: [1×1 struct]
    fc2: [1×1 struct]
    fc3: [1×1 struct]
    fc4: [1×1 struct]
    fc5: [1×1 struct]
    fc6: [1×1 struct]
    fc7: [1×1 struct]
    fc8: [1×1 struct]
    fc9: [1×1 struct]

View the parameters of the first fully connected layer.

parameters.fc1

ans = struct with fields:
    Weights: [20×2 dlarray]
       Bias: [20×1 dlarray]

Define Model and Model Loss Functions

Create the function model, listed in the Model Function on page 19-377section at the end of the
example, that computes the outputs of the deep learning model. The function model takes as input
the model parameters and the network inputs, and returns the model output.

Create the function modelLoss, listed in the Model Loss Function on page 19-376 section at the end
of the example, that takes as input the model parameters, the network inputs, and the initial and
boundary conditions, and returns the loss and the gradients of the loss with respect to the learnable
parameters.

Specify Training Options

Train the model for 3000 epochs with a mini-batch size of 1000.

numEpochs = 3000;
miniBatchSize = 1000;

To train on a GPU if one is available, specify the execution environment "auto". Using a GPU
requires Parallel Computing Toolbox™ and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox) (Parallel Computing
Toolbox).

executionEnvironment = "auto";

Specify ADAM optimization options.

initialLearnRate = 0.01;
decayRate = 0.005;

19 Import, Export, and Customization

19-370



Train Network

Train the network using a custom training loop.

Create a minibatchqueue object that processes and manages mini-batches of data during training.
For each mini-batch:

• Format the data with the dimension labels 'BC' (batch, channel). By default, the
minibatchqueue object converts the data to dlarray objects with underlying type single.

• Train on a GPU according to the value of the executionEnvironment variable. By default, the
minibatchqueue object converts each output to a gpuArray if a GPU is available.

mbq = minibatchqueue(ds, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat="BC", ...
    OutputEnvironment=executionEnvironment);

Convert the initial and boundary conditions to dlarray. For the input data points, specify format
with dimensions "CB" (channel, batch).

X0 = dlarray(X0,"CB");
T0 = dlarray(T0,"CB");
U0 = dlarray(U0);

If training using a GPU, convert the initial and boundary conditions to gpuArray.

if (executionEnvironment == "auto" && canUseGPU) || (executionEnvironment == "gpu")
    X0 = gpuArray(X0);
    T0 = gpuArray(T0);
    U0 = gpuArray(U0);
end

Initialize the parameters for the Adam solver.

averageGrad = [];
averageSqGrad = [];

Accelerate the model loss function using the dlaccelerate function. To learn more, see “Accelerate
Custom Training Loop Functions” on page 19-338.

accfun = dlaccelerate(@modelLoss);

Initialize the training progress plot.

figure
C = colororder;
lineLoss = animatedline(Color=C(2,:));
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

Train the network.

For each iteration:

• Read a mini-batch of data from the mini-batch queue

 Solve Partial Differential Equations Using Deep Learning

19-371



• Evaluate the model loss and gradients using the accelerated model loss and dlfeval functions.
• Update the learning rate.
• Update the learnable parameters using the adamupdate function.

At the end of each epoch, update the training plot with the loss values.

start = tic;

iteration = 0;

for epoch = 1:numEpochs
    reset(mbq);

    while hasdata(mbq)
        iteration = iteration + 1;

        XT = next(mbq);
        X = XT(1,:);
        T = XT(2,:);

        % Evaluate the model loss and gradients using dlfeval and the
        % modelLoss function.
        [loss,gradients] = dlfeval(accfun,parameters,X,T,X0,T0,U0);

        % Update learning rate.
        learningRate = initialLearnRate / (1+decayRate*iteration);

        % Update the network parameters using the adamupdate function.
        [parameters,averageGrad,averageSqGrad] = adamupdate(parameters,gradients,averageGrad, ...
            averageSqGrad,iteration,learningRate);
    end

    % Plot training progress.
    loss = double(gather(extractdata(loss)));
    addpoints(lineLoss,iteration, loss);

    D = duration(0,0,toc(start),Format="hh:mm:ss");
    title("Epoch: " + epoch + ", Elapsed: " + string(D) + ", Loss: " + loss)
    drawnow
end

19 Import, Export, and Customization

19-372



Check the effectiveness of the accelerated function by checking the hit and occupancy rate.

accfun

accfun = 
  AcceleratedFunction with properties:

          Function: @modelLoss
           Enabled: 1
         CacheSize: 50
           HitRate: 99.9967
         Occupancy: 2
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

Evaluate Model Accuracy

For values of t at 0.25, 0.5, 0.75, and 1, compare the predicted values of the deep learning model with
the true solutions of the Burger's equation using the l2 error.

Set the target times to test the model at. For each time, calculate the solution at 1001 equally spaced
points in the range [-1,1].

tTest = [0.25 0.5 0.75 1];
numPredictions = 1001;
XTest = linspace(-1,1,numPredictions);

 Solve Partial Differential Equations Using Deep Learning

19-373



figure

for i=1:numel(tTest)
    t = tTest(i);
    TTest = t*ones(1,numPredictions);

    % Make predictions.
    XTest = dlarray(XTest,"CB");
    TTest = dlarray(TTest,"CB");
    UPred = model(parameters,XTest,TTest);

    % Calculate true values.
    UTest = solveBurgers(extractdata(XTest),t,0.01/pi);

    % Calculate error.
    err = norm(extractdata(UPred) - UTest) / norm(UTest);

    % Plot predictions.
    subplot(2,2,i)
    plot(XTest,extractdata(UPred),"-",LineWidth=2);
    ylim([-1.1, 1.1])

    % Plot true values.
    hold on
    plot(XTest, UTest, "--",LineWidth=2)
    hold off

    title("t = " + t + ", Error = " + gather(err));
end

subplot(2,2,2)
legend("Predicted","True")

19 Import, Export, and Customization

19-374



The plots show how close the predictions are to the true values.

Solve Burger's Equation Function

The solveBurgers function returns the true solution of Burger's equation at times t as outlined in
[2].

function U = solveBurgers(X,t,nu)

% Define functions.
f = @(y) exp(-cos(pi*y)/(2*pi*nu));
g = @(y) exp(-(y.^2)/(4*nu*t));

% Initialize solutions.
U = zeros(size(X));

% Loop over x values.
for i = 1:numel(X)
    x = X(i);

    % Calculate the solutions using the integral function. The boundary
    % conditions in x = -1 and x = 1 are known, so leave 0 as they are
    % given by initialization of U.
    if abs(x) ~= 1
        fun = @(eta) sin(pi*(x-eta)) .* f(x-eta) .* g(eta);
        uxt = -integral(fun,-inf,inf);
        fun = @(eta) f(x-eta) .* g(eta);

 Solve Partial Differential Equations Using Deep Learning

19-375



        U(i) = uxt / integral(fun,-inf,inf);
    end
end

end

Model Loss Function

The model is trained by enforcing that given an input (x, t) the output of the network u(x, t) fulfills the
Burger's equation, the boundary conditions, and the initial condition. In particular, two quantities
contribute to the loss to be minimized:

loss = MSEf + MSEu,

where MSEf = 1
Nf
∑

i = 1

Nf
f (xf

i , tf
i ) 2 and MSEu = 1

Nu
∑

i = 1

Nu
u(xu

i , tui )− ui 2.

Here, {xu
i , tui }i = 1

Nu  correspond to collocation points on the boundary of the computational domain and

account for both boundary and initial condition. {xf
i , tf

i }i = 1
Nf  are points in the interior of the domain.

Calculating MSEf  requires the derivatives ∂u∂t , ∂u∂x , ∂
2u
∂x2  of the output u of the model.

The function modelLoss takes as input, the model parameters parameters, the network inputs X
and T, the initial and boundary conditions X0, T0, and U0, and returns the loss and the gradients of
the loss with respect to the learnable parameters.

function [loss,gradients] = modelLoss(parameters,X,T,X0,T0,U0)

% Make predictions with the initial conditions.
U = model(parameters,X,T);

% Calculate derivatives with respect to X and T.
gradientsU = dlgradient(sum(U,"all"),{X,T},EnableHigherDerivatives=true);
Ux = gradientsU{1};
Ut = gradientsU{2};

% Calculate second-order derivatives with respect to X.
Uxx = dlgradient(sum(Ux,"all"),X,EnableHigherDerivatives=true);

% Calculate lossF. Enforce Burger's equation.
f = Ut + U.*Ux - (0.01./pi).*Uxx;
zeroTarget = zeros(size(f), "like", f);
lossF = mse(f, zeroTarget);

% Calculate lossU. Enforce initial and boundary conditions.
U0Pred = model(parameters,X0,T0);
lossU = mse(U0Pred, U0);

% Combine losses.
loss = lossF + lossU;

% Calculate gradients with respect to the learnable parameters.
gradients = dlgradient(loss,parameters);

19 Import, Export, and Customization

19-376



end

Model Function

The model trained in this example consists of a series of fully connect operations with a tanh
operation between each one.

The model function takes as input the model parameters parameters and the network inputs X and
T, and returns the model output U.

function U = model(parameters,X,T)

XT = [X;T];
numLayers = numel(fieldnames(parameters));

% First fully connect operation.
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
U = fullyconnect(XT,weights,bias);

% tanh and fully connect operations for remaining layers.
for i=2:numLayers
    name = "fc" + i;

    U = tanh(U);

    weights = parameters.(name).Weights;
    bias = parameters.(name).Bias;
    U = fullyconnect(U, weights, bias);
end

end

References

1 Maziar Raissi, Paris Perdikaris, and George Em Karniadakis, Physics Informed Deep Learning
(Part I): Data-driven Solutions of Nonlinear Partial Differential Equations https://arxiv.org/abs/
1711.10561

2 C. Basdevant, M. Deville, P. Haldenwang, J. Lacroix, J. Ouazzani, R. Peyret, P. Orlandi, A. Patera,
Spectral and finite difference solutions of the Burgers equation, Computers & fluids 14 (1986)
23–41.

See Also
dlarray | dlfeval | dlgradient | minibatchqueue

More About
• “Solve Partial Differential Equation with L-BFGS Method and Deep Learning” on page 19-378
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230

 Solve Partial Differential Equations Using Deep Learning

19-377

https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561


Solve Partial Differential Equation with L-BFGS Method and
Deep Learning

This example shows how to train a physics informed neural network (PINN) to numerically compute
the solution of the Burger's equation by using the limited-memory BFGS (L-BFGS) algorithm.

The Burger's equation is a partial differential equation (PDE) that arises in different areas of applied
mathematics. In particular, fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flows. The
L-BFGS algorithm [1 on page 19-385] is a quasi-Newton method that approximates the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm.

Given the computational domain[− 1, 1] × [0, 1], this examples uses a physics informed neural
network (PINN) [2 on page 19-385] and trains a multilayer perceptron neural network that takes
samples (x, t) as input, where x ∈ [− 1, 1] is the spatial variable, and t ∈ [0, 1] is the time variable, and
returns u(x, t), where u is the solution of the Burger's equation:

∂u
∂t + u∂u∂x −

0 . 01
π

∂2u
∂x2 = 0,

with u(x, t = 0) = − sin(πx)as the initial condition, and u(x = − 1, t) = 0 and u(x = 1, t) = 0 as the
boundary conditions.

The example trains the model by enforcing that given an input (x, t), the output of the network u(x, t)
fulfills the Burger's equation, the boundary conditions, and the initial condition. Training this model
does not require collecting data in advance. You can generate data using the definition of the PDE
and the constraints.

Generate Training Data

Training the model requires a data set of collocation points that enforce the boundary conditions,
enforce the initial conditions, and fulfill the Burger's equation.

Select 25 equally spaced time points to enforce each of the boundary conditions u(x = − 1, t) = 0 and
u(x = 1, t) = 0.

numBoundaryConditionPoints = [25 25];

x0BC1 = -1*ones(1,numBoundaryConditionPoints(1));
x0BC2 = ones(1,numBoundaryConditionPoints(2));

t0BC1 = linspace(0,1,numBoundaryConditionPoints(1));
t0BC2 = linspace(0,1,numBoundaryConditionPoints(2));

u0BC1 = zeros(1,numBoundaryConditionPoints(1));
u0BC2 = zeros(1,numBoundaryConditionPoints(2));

Select 50 equally spaced spatial points to enforce the initial condition u(x, t = 0) = − sin(πx).

numInitialConditionPoints  = 50;

x0IC = linspace(-1,1,numInitialConditionPoints);
t0IC = zeros(1,numInitialConditionPoints);
u0IC = -sin(pi*x0IC);

19 Import, Export, and Customization

19-378



Group together the data for initial and boundary conditions.

X0 = [x0IC x0BC1 x0BC2];
T0 = [t0IC t0BC1 t0BC2];
U0 = [u0IC u0BC1 u0BC2];

Select 10,000 points to enforce the output of the network to fulfill the Burger's equation.

numInternalCollocationPoints = 10000;

points = rand(numInternalCollocationPoints,2);

dataX = 2*points(:,1)-1;
dataT = points(:,2);

Define Neural Network Architecture

Define a multilayer perceptron neural network architecture with 9 fully connect operations with 20
hidden neurons each. The first fully connect operation has two input channels corresponding to the
inputs x and t. The last fully connect operation has one output u(x, t).

Specify the network hyperparameters.

numLayers = 9;
numNeurons = 20;

Create the neural network.

layers = featureInputLayer(2);

for i = 1:numLayers-1
    layers = [
        layers
        fullyConnectedLayer(numNeurons)
        tanhLayer];
end

layers = [
    layers
    fullyConnectedLayer(1)]

layers = 
  18×1 Layer array with layers:

     1   ''   Feature Input     2 features
     2   ''   Fully Connected   20 fully connected layer
     3   ''   Tanh              Hyperbolic tangent
     4   ''   Fully Connected   20 fully connected layer
     5   ''   Tanh              Hyperbolic tangent
     6   ''   Fully Connected   20 fully connected layer
     7   ''   Tanh              Hyperbolic tangent
     8   ''   Fully Connected   20 fully connected layer
     9   ''   Tanh              Hyperbolic tangent
    10   ''   Fully Connected   20 fully connected layer
    11   ''   Tanh              Hyperbolic tangent
    12   ''   Fully Connected   20 fully connected layer
    13   ''   Tanh              Hyperbolic tangent
    14   ''   Fully Connected   20 fully connected layer

 Solve Partial Differential Equation with L-BFGS Method and Deep Learning

19-379



    15   ''   Tanh              Hyperbolic tangent
    16   ''   Fully Connected   20 fully connected layer
    17   ''   Tanh              Hyperbolic tangent
    18   ''   Fully Connected   1 fully connected layer

Convert the layer array to a dlnetwork object.

net = dlnetwork(layers)

net = 
  dlnetwork with properties:

         Layers: [18×1 nnet.cnn.layer.Layer]
    Connections: [17×2 table]
     Learnables: [18×3 table]
          State: [0×3 table]
     InputNames: {'input'}
    OutputNames: {'fc_9'}
    Initialized: 1

  View summary with summary.

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 19-384 section at the end
of the example, that takes as input the neural network, the network inputs, and the initial and
boundary conditions, and returns the gradients of the loss with respect to the learnable parameters
and the corresponding loss.

Specify Training Options

Train for 1500 epochs and use the default options for the L-BFGS solver state.

numEpochs = 1500;
solverState = lbfgsState;

Train Neural Network

Convert the training data to dlarray objects. Specify that the inputs X and T have format "BC"
(batch, channel) and that the initial conditions have format "CB" (channel, batch).

X = dlarray(dataX,"BC");
T = dlarray(dataT,"BC");
X0 = dlarray(X0,"CB");
T0 = dlarray(T0,"CB");
U0 = dlarray(U0,"CB");

Create a function handle containing the loss function for the L-BFGS update. In order to evaluate the
dlgradient function inside the modelLoss function using automatic differentiation, use the
dlfeval function.

lossFcn = @(net) dlfeval(@modelLoss,net,X,T,X0,T0,U0);

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics="TrainingLoss", ...

19 Import, Export, and Customization

19-380



    Info="Epoch", ...
    XLabel="Epoch");

Train the network using a custom training loop. Use the full data set at each iteration. Update the
network learnable parameters and solver state using the lbfgsupdate function. At the end of each
iteration, update the training progress monitor.

for i = 1:numEpochs
    [net, solverState] = lbfgsupdate(net,lossFcn,solverState);

    updateInfo(monitor,Epoch=i);
    recordMetrics(monitor,i,TrainingLoss=solverState.Loss);
end

Evaluate Model Accuracy

For values of t at 0.25, 0.5, 0.75, and 1, compare the predicted values of the deep learning model with
the true solutions of the Burger's equation using the relative l2 error.

Set the target times to test the model at. For each time, calculate the solution at 1001 equally spaced
points in the range [-1,1].

tTest = [0.25 0.5 0.75 1];
numPredictions = 1001;
XTest = linspace(-1,1,numPredictions);
XTest = dlarray(XTest,"CB");

Test the model.

 Solve Partial Differential Equation with L-BFGS Method and Deep Learning

19-381



figure
tiledlayout("flow")

for i=1:numel(tTest)
    t = tTest(i);
    TTest = t*ones(1,numPredictions);
    TTest = dlarray(TTest,"CB");

    % Make predictions.
    XTTest = cat(1,XTest,TTest);
    UPred = forward(net,XTTest);

    % Calculate target.
    UTest = solveBurgers(extractdata(XTest),t,0.01/pi);

    % Calculate error.
    UPred = extractdata(UPred);
    err = norm(UPred - UTest) / norm(UTest);

    % Plot prediction.
    nexttile
    plot(XTest,UPred,"-",LineWidth=2);
    ylim([-1.1, 1.1])

    % Plot target.
    hold on
    plot(XTest, UTest,"--",LineWidth=2)
    hold off

    title("t = " + t + ", Error = " + gather(err));
end

legend(["Prediction" "Target"])

19 Import, Export, and Customization

19-382



Supporting Functions

Solve Burger's Equation Function

The solveBurgers function returns the true solution of Burger's equation at times t as outlined in
[3 on page 19-385].

function U = solveBurgers(X,t,nu)

% Define functions.
f = @(y) exp(-cos(pi*y)/(2*pi*nu));
g = @(y) exp(-(y.^2)/(4*nu*t));

% Initialize solutions.
U = zeros(size(X));

% Loop over x values.
for i = 1:numel(X)
    x = X(i);

    % Calculate the solutions using the integral function. The boundary
    % conditions in x = -1 and x = 1 are known, so leave 0 as they are
    % given by initialization of U.
    if abs(x) ~= 1
        fun = @(eta) sin(pi*(x-eta)) .* f(x-eta) .* g(eta);
        uxt = -integral(fun,-inf,inf);
        fun = @(eta) f(x-eta) .* g(eta);
        U(i) = uxt / integral(fun,-inf,inf);

 Solve Partial Differential Equation with L-BFGS Method and Deep Learning

19-383



    end
end

end

Model Loss Function

The model is trained by enforcing that given an input (x, t) the output of the network u(x, t) fulfills the
Burger's equation, the boundary conditions, and the initial condition. In particular, two quantities
contribute to the loss to be minimized:

loss = MSEf + MSEu,

where MSEf = 1
Nf
∑

i = 1

Nf
f (xf

i , tf
i ) 2 and MSEu = 1

Nu
∑

i = 1

Nu
u(xu

i , tui )− ui 2.

Here, {xu
i , tui }i = 1

Nu  correspond to collocation points on the boundary of the computational domain and

account for both boundary and initial condition. {xf
i , tf

i }i = 1
Nf  are points in the interior of the domain.

Calculating MSEf  requires the derivatives ∂u∂t , ∂u∂x , ∂
2u
∂x2  of the output u of the model.

The function modelLoss takes as input, the network net, the network inputs X and T, the initial and
boundary conditions X0, T0, and U0, and returns the loss and the gradients of the loss with respect to
the learnable parameters.

function [loss,gradients] = modelLoss(net,X,T,X0,T0,U0)

% Make predictions with the initial conditions.
XT = cat(1,X,T);
U = forward(net,XT);

% Calculate derivatives with respect to X and T.
gradientsU = dlgradient(sum(U,"all"),{X,T},EnableHigherDerivatives=true);
Ux = gradientsU{1};
Ut = gradientsU{2};

% Calculate second-order derivatives with respect to X.
Uxx = dlgradient(sum(Ux,"all"),X,EnableHigherDerivatives=true);

% Calculate mseF. Enforce Burger's equation.
f = Ut + U.*Ux - (0.01./pi).*Uxx;
zeroTarget = zeros(size(f),"like",f);
mseF = l2loss(f,zeroTarget);

% Calculate mseU. Enforce initial and boundary conditions.
XT0 = cat(1,X0,T0);
U0Pred = forward(net,XT0);
mseU = l2loss(U0Pred,U0);

% Calculated loss to be minimized by combining errors.
loss = mseF + mseU;

% Calculate gradients with respect to the learnable parameters.

19 Import, Export, and Customization

19-384



gradients = dlgradient(loss,net.Learnables);

end

References

1 Liu, Dong C., and Jorge Nocedal. "On the limited memory BFGS method for large scale
optimization." Mathematical programming 45, no. 1 (1989): 503-528.

2 Maziar Raissi, Paris Perdikaris, and George Em Karniadakis, Physics Informed Deep Learning
(Part I): Data-driven Solutions of Nonlinear Partial Differential Equations https://arxiv.org/abs/
1711.10561

3 C. Basdevant, M. Deville, P. Haldenwang, J. Lacroix, J. Ouazzani, R. Peyret, P. Orlandi, A. Patera,
Spectral and finite difference solutions of the Burgers equation, Computers & fluids 14 (1986)
23–41.

See Also
dlarray | dlfeval | dlgradient

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230

 Solve Partial Differential Equation with L-BFGS Method and Deep Learning

19-385

https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561


Solve Ordinary Differential Equation Using Neural Network

This example shows how to solve an ordinary differential equation (ODE) using a neural network.

Not all differential equations have a closed-form solution. To find approximate solutions to these types
of equations, many traditional numerical algorithms are available. However, you can also solve an
ODE by using a neural network. This approach comes with several advantages, including that it
provides differentiable approximate solutions in a closed analytic form [1].

This example shows you how to:

1 Generate training data in the range x ∈ [0, 2].
2 Define a neural network that takes x as input and returns the approximate solution to the ODE

ẏ = − 2xy, evaluated at x, as output.
3 Train the network with a custom loss function.
4 Compare the network predictions with the analytic solution.

ODE and Loss Function

In this example, you solve the ODE

ẏ = − 2xy,

with the initial condition y 0 = 1. This ODE has the analytic solution

y x = e−x2 .

Define a custom loss function that penalizes deviations from satisfying the ODE and the initial
condition. In this example, the loss function is a weighted sum of the ODE loss and the initial
condition loss:

Lθ(x) = ‖ẏθ + 2xyθ‖2 + k‖yθ(0)− 1‖2

θ is the network parameters, k is a constant coefficient, yθ  is the solution predicted by the network,
and yθ̇  is the derivative of the predicted solution computed using automatic differentiation. The term

yθ̇ + 2xyθ
2 is the ODE loss and it quantifies how much the predicted solution deviates from

satisfying the ODE definition. The term yθ 0 − 1 2 is the initial condition loss and it quantifies how
much the predicted solution deviates from satisfying the initial condition.

Generate Input Data and Define Network

Generate 10,000 training data points in the range x ∈ [0, 2].

x = linspace(0,2,10000)';

Define the network for solving the ODE. As the input is a real number x ∈ ℝ, specify an input size of
1.

inputSize = 1;
layers = [
    featureInputLayer(inputSize,Normalization="none")

19 Import, Export, and Customization

19-386



    fullyConnectedLayer(10)
    sigmoidLayer
    fullyConnectedLayer(1)
    sigmoidLayer];

Create a dlnetwork object from the layer array.

dlnet = dlnetwork(layers)

dlnet = 
  dlnetwork with properties:

         Layers: [5×1 nnet.cnn.layer.Layer]
    Connections: [4×2 table]
     Learnables: [4×3 table]
          State: [0×3 table]
     InputNames: {'input'}
    OutputNames: {'layer_2'}
    Initialized: 1

Define Model Gradients Function

Create the function modelGradients on page 19-392, listed at the end of the example, which takes
as inputs a dlnetwork object dlnet, a mini-batch of input data dlX, and the coefficient associated
with the initial condition loss icCoeff. This function returns the gradients of the loss with respect to
the learnable parameters in dlnet and the corresponding loss.

Specify Training Options

Train for 15 epochs with a mini-batch size of 100.

numEpochs = 15;
miniBatchSize = 100;

Specify the options for SGDM optimization. Specify a learning rate of 0.5, a learning rate drop factor
of 0.5, a learning rate drop period of 5, and a momentum of 0.9.

initialLearnRate = 0.5;
learnRateDropFactor = 0.5;
learnRateDropPeriod = 5;
momentum = 0.9;

Specify the coefficient of the initial condition term in the loss function as 7. This coefficient specifies
the relative contribution of the initial condition to the loss. Tweaking this parameter can help training
converge faster.

icCoeff = 7;

Train Model

To use mini-batches of data during training:

1 Create an arrayDatastore object from the training data.
2 Create a minibatchqueue object that takes the arrayDatastore object as input, specify a

mini-batch size, and format the training data with the dimension labels 'BC' (batch, channel).

 Solve Ordinary Differential Equation Using Neural Network

19-387



ads = arrayDatastore(x,IterationDimension=1);
mbq = minibatchqueue(ads,MiniBatchSize=miniBatchSize,MiniBatchFormat="BC");

By default, the minibatchqueue object converts the data to dlarray objects with underlying type
single.

Train on a GPU if one is available. By default, the minibatchqueue object converts each output to a
gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a supported
GPU device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

Initialize the training progress plot.

figure
set(gca,YScale="log")
lineLossTrain = animatedline(Color=[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss (log scale)")
grid on

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model gradients and loss using the dlfeval and modelGradients functions.
• Update the network parameters using the sgdmupdate function.
• Display the training progress.

Every learnRateDropPeriod epochs, multiply the learning rate by learnRateDropFactor.

iteration = 0;
learnRate = initialLearnRate;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs

    % Shuffle data.
    mbq.shuffle

    % Loop over mini-batches.
    while hasdata(mbq)

        iteration = iteration + 1;

        % Read mini-batch of data.
        dlX = next(mbq);

        % Evaluate the model gradients and loss using dlfeval and the modelGradients function.
        [gradients,loss] = dlfeval(@modelGradients, dlnet, dlX, icCoeff);

        % Update network parameters using the SGDM optimizer.
        [dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity,learnRate,momentum);

19 Import, Export, and Customization

19-388



        % To plot, convert the loss to double.
        loss = double(gather(extractdata(loss)));
        
        % Display the training progress.
        D = duration(0,0,toc(start),Format="mm:ss.SS");
        addpoints(lineLossTrain,iteration,loss)
        title("Epoch: " + epoch + " of " + numEpochs + ", Elapsed: " + string(D))
        drawnow

    end
    % Reduce the learning rate.
    if mod(epoch,learnRateDropPeriod)==0
        learnRate = learnRate*learnRateDropFactor;
    end
end

Test Model

Test the accuracy of the network by comparing its predictions with the analytic solution.

 Solve Ordinary Differential Equation Using Neural Network

19-389



Generate test data in the range x ∈ [0, 4] to see if the network is able to extrapolate outside the
training range x ∈ [0, 2].

xTest = linspace(0,4,1000)';

To use mini-batches of data during testing:

1 Create an arrayDatastore object from the testing data.
2 Create a minibatchqueue object that takes the arrayDatastore object as input, specify a

mini-batch size of 100, and format the training data with the dimension labels 'BC' (batch,
channel).

adsTest = arrayDatastore(xTest,IterationDimension=1);
mbqTest = minibatchqueue(adsTest,MiniBatchSize=100,MiniBatchFormat="BC");

Loop over the mini-batches and make predictions using the modelPredictions function, listed at
the end of the example.

yModel = modelPredictions(dlnet,mbqTest);

Evaluate the analytic solution.

yAnalytic = exp(-xTest.^2);

Compare the analytic solution and the model prediction by plotting them on a logarithmic scale.

figure;
plot(xTest,yAnalytic,"-")
hold on
plot(xTest,yModel,"--")
legend("Analytic","Model")
xlabel("x")
ylabel("y (log scale)")
set(gca,YScale="log")

19 Import, Export, and Customization

19-390



The model approximates the analytic solution accurately in the training range x ∈ [0, 2] and it
extrapolates in the range x ∈ (2, 4] with lower accuracy.

Calculate the mean squared relative error in the training range x ∈ [0, 2].

yModelTrain = yModel(1:500);
yAnalyticTrain = yAnalytic(1:500);

errorTrain = mean(((yModelTrain-yAnalyticTrain)./yAnalyticTrain).^2) 

errorTrain = single
    4.3454e-04

Calculate the mean squared relative error in the extrapolated range x ∈ (2, 4].

yModelExtra = yModel(501:1000);
yAnalyticExtra = yAnalytic(501:1000);

errorExtra = mean(((yModelExtra-yAnalyticExtra)./yAnalyticExtra).^2) 

errorExtra = single
    17576612

 Solve Ordinary Differential Equation Using Neural Network

19-391



Notice that the mean squared relative error is higher in the extrapolated range than it is in the
training range.

Model Gradients Function

The modelGradients function takes as inputs a dlnetwork object dlnet, a mini-batch of input
data dlX, and the coefficient associated with the initial condition loss icCoeff. This function returns
the gradients of the loss with respect to the learnable parameters in dlnet and the corresponding
loss. The loss is defined as a weighted sum of the ODE loss and the initial condition loss. The
evaluation of this loss requires second order derivatives. To enable second order automatic
differentiation, use the function dlgradient and set the EnableHigherDerivatives name-value
argument to true.

function [gradients,loss] = modelGradients(dlnet, dlX, icCoeff)
y = forward(dlnet,dlX);

% Evaluate the gradient of y with respect to x. 
% Since another derivative will be taken, set EnableHigherDerivatives to true.
dy = dlgradient(sum(y,"all"),dlX,EnableHigherDerivatives=true);

% Define ODE loss.
eq = dy + 2*y.*dlX;

% Define initial condition loss.
ic = forward(dlnet,dlarray(0,"CB")) - 1;

% Specify the loss as a weighted sum of the ODE loss and the initial condition loss.
loss = mean(eq.^2,"all") + icCoeff * ic.^2;

% Evaluate model gradients.
gradients = dlgradient(loss, dlnet.Learnables);

end

Model Predictions Function

The modelPredictions function takes a dlnetwork object dlnet and a minibatchqueue of input
data mbq and computes the model predictions y by iterating over all data in the minibatchqueue
object.

function Y = modelPredictions(dlnet,mbq)

Y = [];

while hasdata(mbq)

    % Read mini-batch of data.
    dlXTest = next(mbq);
    
    % Predict output using trained network.
    dlY = predict(dlnet,dlXTest);
    YPred = gather(extractdata(dlY));
    Y = [Y; YPred'];

end

end

19 Import, Export, and Customization

19-392



References

1 Lagaris, I. E., A. Likas, and D. I. Fotiadis. “Artificial Neural Networks for Solving Ordinary and
Partial Differential Equations.” IEEE Transactions on Neural Networks 9, no. 5 (September
1998): 987–1000. https://doi.org/10.1109/72.712178.

See Also
dlarray | dlfeval | dlgradient

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Dynamical System Modeling Using Neural ODE” on page 19-394
• “Solve Partial Differential Equations Using Deep Learning” on page 19-368

 Solve Ordinary Differential Equation Using Neural Network

19-393

https://doi.org/10.1109/72.712178


Dynamical System Modeling Using Neural ODE

This example shows how to train a neural network with neural ordinary differential equations (ODEs)
to learn the dynamics of a physical system.

Neural ODEs [1] are deep learning operations defined by the solution of an ODE. More specifically,
neural ODE is an operation that can be used in any architecture and, given an input, defines its
output as the numerical solution of the ODE

y′ = f (t, y, θ)

for the time horizon (t0, t1) and the initial condition y(t0) = y0. The right-hand side f (t, y, θ) of the ODE
depends on a set of trainable parameters θ, which the model learns during the training process. In
this example, f (t, y, θ) is modeled with a model function containing fully connected operations and
nonlinear activations. The initial condition y0 is either the input of the entire architecture, as in the
case of this example, or is the output of a previous operation.

This example shows how to train a neural network with neural ODEs to learn the dynamics x of a
given physical system, described by the following ODE:

x′ = Ax,

where A is a 2-by-2 matrix.

The neural network of this example takes as input an initial condition and computes the ODE solution
through the learned neural ODE model.

The neural ODE operation, given an initial condition, outputs the solution of an ODE model. In this
example, specify a block with a fully connected layer, a tanh layer, and another fully connected layer
as the ODE model.

In this example, the ODE that defines the model is solved numerically with the explicit Runge-Kutta
(4,5) pair of Dormand and Prince [2]. The backward pass uses automatic differentiation to learn the
trainable parameters θ by backpropagating through each operation of the ODE solver.

The learned function f (t, y, θ) is used as the right-hand side for computing the solution of the same
model for additional initial conditions.

Synthesize Data of Target Dynamics

Define the target dynamics as a linear ODE model x′ = Ax, with x0 as its initial condition, and
compute its numerical solution xTrain with ode45 in the time interval [0 15]. To compute an
accurate ground truth data, set the relative tolerance of the ode45 numerical solver to 10−7. Later,

19 Import, Export, and Customization

19-394



you use the value of xTrain as ground truth data for learning an approximated dynamics with a
neural ODE model.

x0 = [2; 0];
A = [-0.1 -1; 1 -0.1];
trueModel = @(t,y) A*y;

numTimeSteps = 2000;
T = 15;
odeOptions = odeset(RelTol=1.e-7);
t = linspace(0, T, numTimeSteps);
[~, xTrain] = ode45(trueModel, t, x0, odeOptions);
xTrain = xTrain';

Visualize the training data in a plot.

figure
plot(xTrain(1,:),xTrain(2,:))
title("Ground Truth Dynamics") 
xlabel("x(1)") 
ylabel("x(2)")
grid on

Define and Initialize Model Parameters

The model function consists of a single call to dlode45 to solve the ODE defined by the approximated
dynamics f (t, y, θ) for 40 time steps.

 Dynamical System Modeling Using Neural ODE

19-395



neuralOdeTimesteps = 40;
dt = t(2);
timesteps = (0:neuralOdeTimesteps)*dt;

Define the learnable parameters to use in the call to dlode45 and collect them in the variable
neuralOdeParameters. The function initializeGlorot takes as input the size of the learnable
parameters sz and the number of outputs and number of inputs of the fully connected operations,
and returns a dlarray object with underlying type single with values set using Glorot initialization.
The function initializeZeros takes as input the size of the learnable parameters, and returns the
parameters as a dlarray object with underlying type single. The initialization example functions
are attached to this example as supporting files. To access these functions, open this example as a
live script. For more information about initializing learnable parameters for model functions, see
“Initialize Learnable Parameters for Model Function” on page 19-318.

Initialize the parameters structure.

neuralOdeParameters = struct;

Initialize the parameters for the fully connected operations in the ODE model. The first fully
connected operation takes as input a vector of size stateSize and increases its length to
hiddenSize. Conversely, the second fully connected operation takes as input a vector of length
hiddenSize and decreases its length to stateSize.

stateSize = size(xTrain,1);
hiddenSize = 20;

neuralOdeParameters.fc1 = struct;
sz = [hiddenSize stateSize];
neuralOdeParameters.fc1.Weights = initializeGlorot(sz, hiddenSize, stateSize);
neuralOdeParameters.fc1.Bias = initializeZeros([hiddenSize 1]);

neuralOdeParameters.fc2 = struct;
sz = [stateSize hiddenSize];
neuralOdeParameters.fc2.Weights = initializeGlorot(sz, stateSize, hiddenSize);
neuralOdeParameters.fc2.Bias = initializeZeros([stateSize 1]);

Display the learnable parameters of the model.

neuralOdeParameters.fc1

ans = struct with fields:
    Weights: [20×2 dlarray]
       Bias: [20×1 dlarray]

neuralOdeParameters.fc2

ans = struct with fields:
    Weights: [2×20 dlarray]
       Bias: [2×1 dlarray]

Define Neural ODE Model

Create the function odeModel, listed in the ODE Model on page 19-401 section of the example, which
takes as input the time input (unused), the corresponding solution, and the ODE function parameters.
The function applies a fully connected operation, a tanh operation, and another fully connected
operation to the input data using the weights and biases given by the parameters.

19 Import, Export, and Customization

19-396



Define Model Function

Create the function model, listed in the Model Function on page 19-400 section of the example,
which computes the outputs of the deep learning model. The function model takes as input the model
parameters and the input data. The function outputs the solution of the neural ODE.

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 19-401 section of the
example, which takes as input the model parameters, a mini-batch of input data with corresponding
targets, and returns the loss and the gradients of the loss with respect to the learnable parameters.

Specify Training Options

Specify options for Adam optimization.

gradDecay = 0.9;
sqGradDecay = 0.999;
learnRate = 0.002;

Train for 1200 iterations with a mini-batch-size of 200.

numIter = 1200;
miniBatchSize = 200;

Every 50 iterations, solve the learned dynamics and display them against the ground truth in a phase
diagram to show the training path.

plotFrequency = 50;

Train Model Using Custom Training Loop

Initialize the training progress plot.

f = figure;
f.Position(3) = 2*f.Position(3);

subplot(1,2,1)
C = colororder;
lineLossTrain = animatedline(Color=C(2,:));
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

Initialize the averageGrad and averageSqGrad parameters for the Adam solver.

averageGrad = [];
averageSqGrad = [];

Train the network using a custom training loop.

For each iteration:

• Construct a mini-batch of data from the synthesized data with the createMiniBatch function,
listed in the Create Mini-Batches Function on page 19-401 section of the example.

• Evaluate the model loss and gradients and loss using the dlfeval function and the modelLoss
function, listed in the Model Loss Function on page 19-401 section of the example.

 Dynamical System Modeling Using Neural ODE

19-397



• Update the model parameters using the adamupdate function.
• Update the training progress plot.

numTrainingTimesteps = numTimeSteps;
trainingTimesteps = 1:numTrainingTimesteps;
plottingTimesteps = 2:numTimeSteps;

start = tic;

for iter = 1:numIter
    
    % Create batch 
    [X, targets] = createMiniBatch(numTrainingTimesteps, neuralOdeTimesteps, miniBatchSize, xTrain);

    % Evaluate network and compute loss and gradients
    [loss,gradients] = dlfeval(@modelLoss,timesteps,X,neuralOdeParameters,targets);
    
    % Update network 
    [neuralOdeParameters,averageGrad,averageSqGrad] = adamupdate(neuralOdeParameters,gradients,averageGrad,averageSqGrad,iter,...
        learnRate,gradDecay,sqGradDecay);
    
    % Plot loss
    subplot(1,2,1)
    currentLoss = double(loss);
    addpoints(lineLossTrain,iter,currentLoss);
    D = duration(0,0,toc(start),Format="hh:mm:ss");
    title("Elapsed: " + string(D))
    drawnow
    
    % Plot predicted vs. real dynamics
    if mod(iter,plotFrequency) == 0  || iter == 1
        subplot(1,2,2)

        % Use ode45 to compute the solution 
        y = dlode45(@odeModel,t,dlarray(x0),neuralOdeParameters,DataFormat="CB");
        
        plot(xTrain(1,plottingTimesteps),xTrain(2,plottingTimesteps),"r--")
        
        hold on
        plot(y(1,:),y(2,:),"b-")
        hold off

        xlabel("x(1)")
        ylabel("x(2)")
        title("Predicted vs. Real Dynamics")
        legend("Training Ground Truth", "Predicted")

        drawnow
    end
end

19 Import, Export, and Customization

19-398



Evaluate Model

Use the model to compute approximated solutions with different initial conditions.

Define four new initial conditions different from the one used for training the model.

tPred = t;

x0Pred1 = sqrt([2;2]);
x0Pred2 = [-1;-1.5];
x0Pred3 = [0;2];
x0Pred4 = [-2;0];

Numerically solve the ODE true dynamics with ode45 for the four new initial conditions.

[~, xTrue1] = ode45(trueModel, tPred, x0Pred1, odeOptions);
[~, xTrue2] = ode45(trueModel, tPred, x0Pred2, odeOptions);
[~, xTrue3] = ode45(trueModel, tPred, x0Pred3, odeOptions);
[~, xTrue4] = ode45(trueModel, tPred, x0Pred4, odeOptions);

Numerically solve the ODE with the learned neural ODE dynamics.

xPred1 = dlode45(@odeModel,tPred,dlarray(x0Pred1),neuralOdeParameters,DataFormat="CB");
xPred2 = dlode45(@odeModel,tPred,dlarray(x0Pred2),neuralOdeParameters,DataFormat="CB");
xPred3 = dlode45(@odeModel,tPred,dlarray(x0Pred3),neuralOdeParameters,DataFormat="CB");
xPred4 = dlode45(@odeModel,tPred,dlarray(x0Pred4),neuralOdeParameters,DataFormat="CB");

Visualize Predictions

Visualize the predicted solutions for different initial conditions against the ground truth solutions
with the function plotTrueAndPredictedSolutions, listed in the Plot True and Predicted
Solutions Function on page 19-402 section of the example.

 Dynamical System Modeling Using Neural ODE

19-399



figure
subplot(2,2,1)
plotTrueAndPredictedSolutions(xTrue1, xPred1);
subplot(2,2,2)
plotTrueAndPredictedSolutions(xTrue2, xPred2);
subplot(2,2,3)
plotTrueAndPredictedSolutions(xTrue3, xPred3);
subplot(2,2,4)
plotTrueAndPredictedSolutions(xTrue4, xPred4);

Helper Functions

Model Function

The model function, which defines the neural network used to make predictions, is composed of a
single neural ODE call. For each observation, this function takes a vector of length stateSize,
which is used as initial condition for solving numerically the ODE with the function odeModel on
page 19-401, which represents the learnable right-hand side f (t, y, θ) of the ODE to be solved, as right
hand side and a vector of time points tspan defining the time at which the numerical solution is
output. The function uses the vector tspan for each observation, regardless of the initial condition,
since the learned system is autonomous. That is, the odeModel function does not explicitly depend on
time.

function X = model(tspan,X0,neuralOdeParameters)

X = dlode45(@odeModel,tspan,X0,neuralOdeParameters,DataFormat="CB");

19 Import, Export, and Customization

19-400



end

ODE Model

The odeModel function is the learnable right-hand side used in the call to dlode45. It takes as input
a vector of size stateSize, enlarges it so that it has length hiddenSize, and applies a nonlinearity
function tanh. Then the function compresses the vector again to have length stateSize.

function y = odeModel(~,y,theta)

y = tanh(theta.fc1.Weights*y + theta.fc1.Bias);
y = theta.fc2.Weights*y + theta.fc2.Bias;

end

Model Loss Function

This function takes as inputs a vector tspan, a set of initial conditions X0, the learnable parameters
neuralOdeParameters, and target sequences targets. It computes the predictions with the
model function, and compares them with the given targets sequences. Finally, it computes the loss
and the gradient of the loss with respect to the learnable parameters of the neural ODE.

function [loss,gradients] = modelLoss(tspan,X0,neuralOdeParameters,targets)

% Compute predictions.
X = model(tspan,X0,neuralOdeParameters);

% Compute L1 loss.
loss = l1loss(X,targets,NormalizationFactor="all-elements",DataFormat="CBT");

% Compute gradients.
gradients = dlgradient(loss,neuralOdeParameters);

end

Create Mini-Batches Function

The createMiniBatch function creates a batch of observations of the target dynamics. It takes as
input the total number of time steps of the ground truth data numTimesteps, the number of
consecutive time steps to be returned for each observation numTimesPerObs, the number of
observations miniBatchSize, and the ground truth data X.

function [x0, targets] = createMiniBatch(numTimesteps,numTimesPerObs,miniBatchSize,X)

% Create batches of trajectories.
s = randperm(numTimesteps - numTimesPerObs, miniBatchSize);

x0 = dlarray(X(:, s));
targets = zeros([size(X,1) miniBatchSize numTimesPerObs]);

for i = 1:miniBatchSize
    targets(:, i, 1:numTimesPerObs) = X(:, s(i) + 1:(s(i) + numTimesPerObs));
end

end

 Dynamical System Modeling Using Neural ODE

19-401



Plot True and Predicted Solutions Function

The plotTrueAndPredictedSolutions function takes as input the true solution xTrue, the
approximated solution xPred computed with the learned neural ODE model, and the corresponding
initial condition x0Str. It computes the error between the true and predicted solutions and plots it in
a phase diagram.

function plotTrueAndPredictedSolutions(xTrue,xPred)

xPred = squeeze(xPred)';

err = mean(abs(xTrue(2:end,:) - xPred), "all");

plot(xTrue(:,1),xTrue(:,2),"r--",xPred(:,1),xPred(:,2),"b-",LineWidth=1)

title("Absolute Error = " + num2str(err,"%.4f"))
xlabel("x(1)")
ylabel("x(2)")

xlim([-2 3])
ylim([-2 3])

legend("Ground Truth","Predicted")

end

[1] Chen, Ricky T. Q., Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. “Neural Ordinary
Differential Equations.” Preprint, submitted December 13, 2019. https://arxiv.org/abs/1806.07366.

[2] Shampine, Lawrence F., and Mark W. Reichelt. “The MATLAB ODE Suite.” SIAM Journal on
Scientific Computing 18, no. 1 (January 1997): 1–22. https://doi.org/10.1137/S1064827594276424.

See Also
dlode45 | dlarray | dlgradient | dlfeval | adamupdate

More About
• “Train Neural ODE Network” on page 3-152
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Train Network Using Custom Training Loop” on page 19-239
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “List of Functions with dlarray Support” on page 19-504

19 Import, Export, and Customization

19-402



Reduced Order Modeling Using Continuous-Time Echo State
Network

This example shows how to train a continuous-time echo state network (CTESN) model to solve
Robertson's equation.

An echo state network (ESN) is a reservoir computing framework that projects signals from higher
dimensional spaces defined by the dynamics of a fixed nonlinear system called a reservoir [1, 2]. A
continuous-time echo state network (CTESN) is a variant of an ESN that supports an underlying
adaptive time process and avoids issues when it computes gradients during training [1].

If you need to solve an ODE in a model multiple times with different parameters, then to save
computational resources, instead of approximating the solution using an ODE solver within the
system, you can train a neural network using a collection of automatically solutions and then
incorporate the neural network in your model. A CTESN model typically evaluates faster than an ODE
solver.

This example trains a CTESN model to solve the Robertson equation, which is a system of ODEs that
models the concentration of chemicals in a reaction.

Define Model

The Robertson equation is a system of three ODEs that model the concentrations of chemicals in a
reaction. The parameterized form of this equation is given by:

dy1
dt = − p1y1 + p3y2y3

dy2
dt = p1y1− p3y2y3− p2y2

2

dy3
dt = p2y2

2

where y1, y2, and y3 are functions of t, p = (p1, p2, p3) ∈ ℝ are parameters, and the ODE has initial
condition y0 = (1, 0, 0).

 Reduced Order Modeling Using Continuous-Time Echo State Network

19-403



Define the robertson function, listed in the Robertson Equation ODE Function on page 19-411
section of the example, that takes as input the ODE inputs t (unused) the ODE solutions

y = (y1, y2, y3), and the ODE parameters p and outputs the derivatives 
dy1
dt , 

dy2
dt , and 

dy3
dt .

Generate Training Data

Use the ode15s ODE solver to generate training data. Generate a set of input parameters pTrain
and the corresponding ODE solutions yTrain.

Solve the ODE on the time interval [0, 105] with initial condition y(0) = (1, 0, 0).

tspan = [0 1e5];
y0 = [1 0 0];

Randomly sample 100 values for pTrain, where the parameters are in the space
[0 . 9p0, 1, 1 . 1p0, 1] × [0 . 9p0, 2, 1 . 1p0, 2] × [0 . 9p0, 3, 1 . 1p0, 3], where p0 = (0 . 04, 3 × 107, 104).

p0 = [0.04 3e7 1e4]';
numObservationsTrain = 100;
m = 0.9 * p0;
M = 1.1 * p0;
pTrain = m + (M-m).*rand(numel(p0),numObservationsTrain);

Solve the ODE system on the training parameter space to create training data. The Robertson
equation is a stiff system, so the ode15s function is well suited.

The ode15s function requires a ODE function with two inputs. For each observation, use an
anonymous function to parameterize the robertson function with the corresponding parameters in
pTrain to have two inputs.

tTrain = cell(numObservationsTrain,1);
yTrain = cell(numObservationsTrain,1);

for n = 1:numObservationsTrain
    fcn = @(t,u) robertson(t,u,pTrain(:,n));
    [t,y] = ode15s(fcn,tspan,y0);
    tTrain{n} = t;
    yTrain{n} = y;
end

View the sizes of the first few observations. The time steps are vectors of time step values. The ODE
solutions are T-by-C matrices, where T is the number of time steps of the sequence and C is the
output size.

head(tTrain)

    {123x1 double}
    {121x1 double}
    {114x1 double}
    {120x1 double}
    {120x1 double}
    {114x1 double}
    {118x1 double}
    {120x1 double}

head(yTrain)

19 Import, Export, and Customization

19-404



    {123x3 double}
    {121x3 double}
    {114x3 double}
    {120x3 double}
    {120x3 double}
    {114x3 double}
    {118x3 double}
    {120x3 double}

Define CTESN Model

A CTESN models an ODE system using a reservoir system in a latent space.

In particular, given the parameterized system

dyp
dt = fp(t, y)

where p denotes a set of parameters, the reservoir system is defined by

dr
dt = tanh(Ar + Vyp∗)

y∼p(t) = r(t)Wp

where

• p∗ denotes a set of parameters with known solution yp∗.

• y∼p denotes the model approximation of the targets yp.
• r ∈ ℝNR is the reservoir state with reservoir dimension NR.
• A ∈ ℝNR × NR and V ∈ ℝNR × N are random matrices and N is the size of y.
• Wp ∈ ℝN × NR is the trained output matrix.

Define the reservoir function, listed in the Reservoir System ODE Function on page 19-412 section of
the example, that takes as input a time step t, the reservoir state, an interpolant that evaluates yp∗
for a specified time t, and random matrices A and V, and outputs the derivative dr that satisfies the
ODE system.

Specify the dimension of the reservoir system and the density of the sparse random matrix A.

reservoirDimension = 500;
density = 0.01;

Train CTESN Model

The CTESN model is characterized by the reservoir r and the matrix Wp. The CTESN model uses the
same reservoir r for any value of p. For an input p, the model predicts the solution yp using the
equation yp(t) = r(t)Wp, where r is the reservoir and Wp is the output of the radial basis network.

Solve Reservoir System

Initialize the reservoir system and sparse reservoir matrix.

 Reduced Order Modeling Using Continuous-Time Echo State Network

19-405



outputSize = numel(y0);
A = sprandn(reservoirDimension,reservoirDimension,density);
V = randn(reservoirDimension,outputSize);

To allow the ODE solver of the reservoir system to evaluate yp∗(t) for arbitrary time t, choose an
arbitrary parameter sample as p∗ and fit an interpolation to yp∗(t) from the ode15s solution for that
parameter. Create a gridded data interpolant for yp∗ using the first training observation.

tpStar = tTrain{1};
ypStar = yTrain{1};
ypStarInterpolant = griddedInterpolant(tpStar,ypStar,"spline");

Solve the reservoir system for p∗. The reservoir system is not stiff so the fast solver ode23 is well
suited.

fcn = @(t,r) reservoir(t,r,ypStarInterpolant,A,V);
r0 = zeros(reservoirDimension,1);
[tr,r] = ode23(fcn,tspan,r0);

To introduce a bias term to the linear output r(t)Wp, add a column of ones to the reservoir state.

r(:,end+1) = 1;

Create an interpolant for r.

rInterpolant = griddedInterpolant(tr,r,"spline")

rInterpolant = 
  griddedInterpolant with properties:

            GridVectors: {[1192x1 double]}
                 Values: [1192x501 double]
                 Method: 'spline'
    ExtrapolationMethod: 'spline'

Train Radial Basis Network

Train a radial basis neural network that that maps p to the matrix Wp, where W is a learned matrix.

This diagram shows the structure of a radial bias network.

The network has three layers:

• The feature input layer inputs data to the network as 2-D arrays with dimensions corresponding to
channels and observations.

• The radial basis layer maps its input to the vector exp(− d2), where d is the weighted distance
between its input and its centroids with weight given by 1S log(2), where S denotes the spread.

19 Import, Export, and Customization

19-406



• The linear layer applies a transformation Ax + b, where A and b are fixed parameters (that is, they
are not learnable parameters).

Fit an exact radial basis network using the trainExactRadialBasisNetwork example function,
attached to this example as a supporting file. To access this file, open the example as a live script.

The function

• Sets the radial basis layer centroids to pTrain.
• Fits the linear layer weights using linear regression using the outputs of the radial basis layer as

predictors and yTrain as the targets.

net = trainExactRadialBasisNetwork(tTrain,yTrain,pTrain,tr,r,Spread=0.1)

net = 
  dlnetwork with properties:

         Layers: [3x1 nnet.cnn.layer.Layer]
    Connections: [2x2 table]
     Learnables: [0x3 table]
          State: [0x3 table]
     InputNames: {'input'}
    OutputNames: {'linear'}
    Initialized: 1

  View summary with summary.

Test Model

To test the model, compare the predicted outputs with the outputs from an ODE solver for a set of
previously unseen input parameters.

Create an array of time steps and a set of previously unseen parameters.

tTest = linspace(tspan(1),tspan(2),1e4);
p0Test = [0.041 3.1e7 1.02e4]';

Calculate the targets TTest by solving the ODE using the ODE solver ode15s with the time steps
tTest and initial conditions y0.

fcn = @(t,y) robertson(t,y,p0Test);
[~,TTest] = ode15s(fcn,tTest,y0);

For the specified time steps and parameters predict the values of y using the modelPredictions
function, listed in the Model Predictions Function on page 19-412 section of the example. To access
this function, open the example as a live script.

p0Test = dlarray(p0Test,"CB");
yTest = modelPredictions(net,rInterpolant,outputSize,tTest,p0Test);

Calculate the mean squared error between the predictions and the targets.

err = mean((yTest-TTest).^2,"all")

err = 1.5642e-05

Plot the predictions and targets with the time steps in logarithmic scale.

 Reduced Order Modeling Using Continuous-Time Echo State Network

19-407



figure
layout = tiledlayout(outputSize,1);
title(layout,"Robertson Equation Solution and CTESN Approximation");
for i = 1:outputSize
    nexttile

    semilogx(tTest,yTest(:,i),"--");

    hold on
    semilogx(tTest,TTest(:,i))

    xlabel("t")
    ylabel("y_" + i)
end
legend(["Prediction" "Target"])

Compare Performance

For 100 random sets of parameters, measure the time it takes to evaluate the ODE solutions using an
ODE solver and a CTESN model.

Generate 100 random sets of parameters.

numSamples = 100;
pTest = (0.9 + 0.2*rand(outputSize,numSamples)).*p0;

Measure the time taken to solve the ODE system using the ode15s ODE solver.

19 Import, Export, and Customization

19-408



tic
for n = 1:numSamples
    p = pTest(:,n);
    fcn = @(t,y) robertson(t,y,p);
    [~,y] = ode15s(fcn,tTest,y0);
end
elapsedODE15s = toc

elapsedODE15s = 19.5034

Measure the time taken evaluating the CTESN model.

tic
pTest = dlarray(pTest,"CB");
for n = 1:numSamples
    p = pTest(:,n);
    yTest = modelPredictions(net,rInterpolant,outputSize,tTest,p);
end
elapsedCTESN = toc

elapsedCTESN = 6.0024

Display the results in a bar chart.

figure
bar([elapsedODE15s elapsedCTESN])
xticklabels(["ode15s" "CTESN"])
xlabel("Model")
ylabel("Time Elapsed (s)")
title("Time Elapsed" + newline + "(" + numSamples + " samples)")

 Reduced Order Modeling Using Continuous-Time Echo State Network

19-409



The bar chart shows the time elapsed for each model. For larger ODE systems, numbers of samples,
or numbers of time steps, the CTESN model can be much faster than using an ODE solver directly.

Make Predictions Using New Data

Create an array of time steps and a set of parameters.

tNew = linspace(tspan(1),tspan(2),1e4);
pNew = [0.041 3.1e7 1.02e4]';

Make predictions using the modelPredictions function.

pNew = dlarray(pNew,"CB");
yNew = modelPredictions(net,rInterpolant,outputSize,tNew,pNew);

Display the predictions in a plot.

figure
layout = tiledlayout(3,1);
title(layout,"Predicted Values")
for i = 1:3
    nexttile
    semilogx(tNew,yNew(:,i),"--");
    xlabel("t")
    ylabel("y_"+i)
end

19 Import, Export, and Customization

19-410



Supporting Functions

Robertson Equation ODE Function

The Robertson equation is a system of three ODEs that model the concentrations of chemicals in a
reaction. The parameterized form of this equation can be written as

dy1
dt = − p1y1 + p3y2y3

dy2
dt = p1y1− p3y2y3− p2y2

2

dy3
dt = p2y2

2

where y1, y2, and y3 are functions of t, p = (p1, p2, p3) ∈ ℝ are parameters, and the ODE has initial
condition y0 = (1, 0, 0).

The robertson function takes as input the ODE inputs t (unused), y(t) = (y1(t), y2(t), y3(t)), and the
ODE parameters p, and outputs the derivatives.

function dy = robertson(~,y,p)

ax = p(1)*y(1);
cyz = p(3)*y(2)*y(3);
by2 = p(2)*(y(2)^2);

 Reduced Order Modeling Using Continuous-Time Echo State Network

19-411



dy(1,1) = -ax + cyz;
dy(2,1) = ax - cyz - by2;
dy(3,1) = by2;

end

Reservoir System ODE Function

The reservoir function takes as input a time step t, the reservoir state r, an interpolant
yInterpolant that evaluates yp∗ for a specified time t, and random matrices A and V, and outputs
the derivative dr that satisfies the ODE system given by

dr
dt = tanh(Ar + Vyp∗)

function dr = reservoir(t,r,yInterpolant,A,V)

dr = tanh(A*r + V*yInterpolant(t).');

end

Model Predictions Function

The modelPredictions function takes as input the radial basis network net, an interpolant
rInterpolant that evaluates the reservoir for a specified time step, the output size outputSize,
time steps t, and parameters p and outputs the solutions to the ODE system y.

function y = modelPredictions(net,rInterpolant,outputSize,t,p)

% Predict Wp.
WTest = predict(net,p);

% Calculate y = r*Wp.
numSamples = size(p,2);
WTest = reshape(WTest,[],outputSize,numSamples);
WTest = extractdata(WTest);
y = pagemtimes(rInterpolant(t),WTest);

end

References

[1] Ranjan Anatharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral Shah, Alan Edelman,
Chris Rackauckas. "Accelerating Simulation of Stiff Nonlinear Systems using Continuous-Time Echo
State Networks." Preprint, submitted October 7, 2020. https://arxiv.org/abs/2010.04004

[2] Ozturk, Mustafa C., Dongming Xu, and Jose C. Principe. "Analysis and design of echo state
networks." Neural computation 19, no. 1 (2007): 111-138.

19 Import, Export, and Customization

19-412

https://arxiv.org/abs/2010.04004


Node Classification Using Graph Convolutional Network

This example shows how to classify nodes in a graph using a graph convolutional network (GCN).

To predict categorical labels of the nodes in a graph, you can use a GCN [1]. For example, you can
use a GCN to predict types of atoms in a molecule (for example, carbon and oxygen) given the
molecular structure (the chemical bonds represented as a graph).

A GCN is a variant of a convolutional neural network that takes two inputs:

1 An N-by-C feature matrix X, where N is the number of nodes of the graph and C is the number
channels per node.

2 An N-by-N adjacency matrix A that represents the connections between nodes in the graph.

This figure shows some example node classifications of a graph.

Because the graph data is sparse, a custom training loop is best suited for training a GCN. This
example shows how to train a GCN using a custom training loop with the QM7 dataset [2] [3], which
is a molecular data set consisting of 7165 molecules composed of up to 23 atoms. That is, the
molecule with the highest number of atoms has 23 atoms.

Download and Load QM7 Data

Download the QM7 data set from the http://quantum-machine.org/data/qm7.mat. The data set
consists of five unique atoms: carbon, hydrogen, nitrogen, oxygen, and sulphur.

dataURL = "http://quantum-machine.org/data/qm7.mat";
outputFolder = fullfile(tempdir,"qm7Data");
dataFile = fullfile(outputFolder,"qm7.mat");

if ~exist(dataFile,"file")
    mkdir(outputFolder);
    disp("Downloading QM7 data...");
    websave(dataFile, dataURL);
    disp("Done.")
end

The MAT file contains consists of five different arrays. This example uses the arrays X and Z, which
represent the Coulomb matrix [3] representation of each molecule and the atomic numbers of each
atom of the molecule, respectively. Molecules in the data that have fewer than 23 atoms are padded
with zeros.

Load the QM7 data from the MAT file.

 Node Classification Using Graph Convolutional Network

19-413

http://quantum-machine.org/datasets/
http://quantum-machine.org/data/qm7.mat


data = load(dataFile)

data = struct with fields:
    X: [7165×23×23 single]
    R: [7165×23×3 single]
    Z: [7165×23 single]
    T: [-417.9600 -712.4200 -564.2100 -404.8800 -808.8700 -677.1600 -796.9800 -860.3300 -1.0085e+03 -861.7300 -708.3700 -725.9300 -879.3800 -618.7200 -871.1900 -653.4400 -1.0109e+03 -1.1594e+03 -1.0039e+03 -1.0184e+03 -1.0250e+03 -1.1750e+03 … ]
    P: [5×1433 int64]

Extract the Coulomb data and the atomic numbers from the loaded structure. Permute the Coulomb
data so that the third dimension corresponds to the observations. Sort the atomic numbers in
descending order.

coulombData = double(permute(data.X, [2 3 1]));
atomData = sort(data.Z,2,'descend');

View the atoms of the first observation. The number of nonzero elements indicates the number of
different atoms in the molecule. Each nonzero element corresponds to the atomic number of a
specific element in the molecule.

atomData(1,:)

ans = 1×23 single row vector

     6     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

Preprocess Graph Data

The GCN used in this example requires the Coulomb matrices as feature input as well as the
corresponding adjacency matrices.

To convert the Coulomb matrices in the training data to adjacency matrices, use the
coulomb2Adjacency function, attached to this example as a supporting file. To access this file, open
the example as a live script. To facilitate splitting the data into separate molecules for training,
validation, and inference, the coloumb2Adjacency function does not remove padded zeros from the
data.

adjacencyData = coulomb2Adjacency(coulombData,atomData);

Visualize the first few molecules in a plot. For each molecule, extract the unpadded adjacency matrix
and plot the graph with labeled nodes. To convert atomic numbers to symbols, use the
atomicSymbol function, attached to this example as a supporting file. To access this function, open
the example as a live script.

figure
tiledlayout("flow")

for i = 1:9
    % Extract unpadded adjacency matrix.
    atomicNumbers = nonzeros(atomData(i,:));
    numNodes = numel(atomicNumbers);
    A = adjacencyData(1:numNodes,1:numNodes,i);

    % Convert adjacency matrix to graph.
    G = graph(A);

19 Import, Export, and Customization

19-414



    % Convert atomic numbers to symbols.
    symbols = atomicSymbol(atomicNumbers);

    % Plot graph.
    nexttile
    plot(G,NodeLabel=symbols,Layout="force")
    title("Molecule " + i)
end

Visualize the frequency of each label category using a histogram.

figure
histogram(categorical(atomicSymbol(atomData)))
xlabel("Node Label")
ylabel("Frequency")
title("Label Counts")

 Node Classification Using Graph Convolutional Network

19-415



Partition the data into training, validation, and test partitions containing 80%, 10%, and 10% of the
data, respectively. To get a random split, use the trainingPartitions function, attached to this
example as a supporting file. To access this file, open the example as a live script.

numObservations = size(adjacencyData,3);
[idxTrain,idxValidation,idxTest] = trainingPartitions(numObservations,[0.8 0.1 0.1]);

adjacencyDataTrain = adjacencyData(:,:,idxTrain);
adjacencyDataValidation = adjacencyData(:,:,idxValidation);
adjacencyDataTest = adjacencyData(:,:,idxTest);

coulombDataTrain = coulombData(:,:,idxTrain);
coulombDataValidation = coulombData(:,:,idxValidation);
coulombDataTest = coulombData(:,:,idxTest);

atomDataTrain = atomData(idxTrain,:);
atomDataValidation = atomData(idxValidation,:);
atomDataTest = atomData(idxTest,:);

Preprocess the training and validation data using the preprocessData function, defined in the
Preprocess Data Function on page 19-423 section of the example. The preprocessData function
builds a sparse block-diagonal matrix of the adjacency matrices of different graph instances such that
each block in the matrix corresponds to the adjacency matrix of one graph instance. This
preprocessing is required because a GCN accepts a single adjacency matrix as input, whereas this
example deals with multiple graph instances. The function takes the nonzero diagonal elements of the
Coulomb matrices and assigns them as features. Therefore, the number of input features per node in
the example is 1.

19 Import, Export, and Customization

19-416



[ATrain,XTrain,labelsTrain] = preprocessData(adjacencyDataTrain,coulombDataTrain,atomDataTrain);
size(XTrain)

ans = 1×2

       88424           1

size(labelsTrain)

ans = 1×2

       88424           1

[AValidation,XValidation,labelsValidation] = preprocessData(adjacencyDataValidation,coulombDataValidation,atomDataValidation);

Normalize the features using the mean and variance of the training features. Normalize the validation
features using the same statistics.

muX = mean(XTrain);
sigsqX = var(XTrain,1);

XTrain = (XTrain - muX)./sqrt(sigsqX);
XValidation = (XValidation - muX)./sqrt(sigsqX);

Define Deep Learning Model

Define the following deep learning model, which takes as input an adjacency matrix A and a feature
matrix X and outputs categorical predictions.

The multiplication operations are weighted multiplication operations with learnable weights.

In more detail, the model is a series of operations of the form Zl + 1 = σl D−1/2AD−1/2ZlWl + Zl (the
final operation does not include the addition step). In this formula:

• σl is the activation function.

• Z1 = X.

• Wl is the weight matrix for the multiplication.

• A = A + IN is the adjacency matrix of graph G with added self-connections. IN is the identity
matrix.

• D is the degree matrix of A.

The expression D−1/2AD−1/2 is also known as the normalized adjacency matrix of the graph.

 Node Classification Using Graph Convolutional Network

19-417



Initialize Model Parameters

Define the parameters for each of the operations and include them in a structure. Use the format
parameters.OperationName.ParameterName where parameters is the structure,
OperationName is the name of the operation (for example, multiply1), and ParameterName is the
name of the parameter (for example, Weights).

Create a structure parameters containing the model parameters.

parameters = struct;

Initialize the learnable weights using the initializeGlorot function, attached to this example as a
supporting file. To access this function, open the example as a live script.

Initialize the weights of the first multiply operation. Initialize the weights to have an output size of 32.
The input size is the number of channels of the input feature data.

numHiddenFeatureMaps = 32;
numInputFeatures = size(XTrain,2);

sz = [numInputFeatures numHiddenFeatureMaps];
numOut = numHiddenFeatureMaps;
numIn = numInputFeatures;
parameters.mult1.Weights = initializeGlorot(sz,numOut,numIn,"double");

Initialize the weights of the second multiply operation. Initialize the weights to have the same output
size as the previous multiply operation. The input size is the output size of the previous multiply
operation.

sz = [numHiddenFeatureMaps numHiddenFeatureMaps];
numOut = numHiddenFeatureMaps;
numIn = numHiddenFeatureMaps;
parameters.mult2.Weights = initializeGlorot(sz,numOut,numIn,"double");

Initialize the weights of the third multiply operation. Initialize the weights to have an output size
matching the number of classes. The input size is the output size of the previous multiply operation.

classes = categories(labelsTrain);
numClasses = numel(classes);

sz = [numHiddenFeatureMaps numClasses];
numOut = numClasses;
numIn = numHiddenFeatureMaps;
parameters.mult3.Weights = initializeGlorot(sz,numOut,numIn,"double");

View the parameters structure.

parameters

parameters = struct with fields:
    mult1: [1×1 struct]
    mult2: [1×1 struct]
    mult3: [1×1 struct]

View the parameters of the first multiply operation.

parameters.mult1

19 Import, Export, and Customization

19-418



ans = struct with fields:
    Weights: [1×32 dlarray]

Define Model Function

Create the function model, defined in the Model Function on page 19-425 section of the example,
which takes as input the model parameters, the feature data, and the adjacency matrix, and returns
the predictions.

Define Model Loss Function

Create the function modelLoss, defined in the Model Loss Function on page 19-425 section of the
example, which takes as input the model parameters, the feature data, the adjacency matrix, and the
one-hot encoded targets, and returns the loss, the gradients of the loss with respect to the
parameters, and the network predictions.

Specify Training Options

Train for 1500 epochs and set the learning rate for the Adam solver to 0.01.

numEpochs = 1500;
learnRate = 0.01;

Validate the network after every 300 epochs.

validationFrequency = 300;

Train Model

Initialize parameters for Adam.

trailingAvg = [];
trailingAvgSq = [];

Convert the training and validation feature data to dlarray objects.

XTrain = dlarray(XTrain);
XValidation = dlarray(XValidation);

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox) (Parallel Computing Toolbox). To train on a GPU, convert the data to
gpuArray objects.

if canUseGPU
    XTrain = gpuArray(XTrain);
end

Convert the training and validation labels to one-hot encoded vectors using the onehotencode
function.

TTrain = onehotencode(labelsTrain,2,ClassNames=classes);
TValidation = onehotencode(labelsValidation,2,ClassNames=classes);

Initialize the TrainingProgressMonitor object.

monitor = trainingProgressMonitor( ...
    Metrics=["TrainingLoss","ValidationLoss"], ...

 Node Classification Using Graph Convolutional Network

19-419



    Info="Epoch", ...
    XLabel="Epoch");

groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"])

Train the model using a custom training loop. The training uses full-batch gradient descent.

For each epoch:

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using adamupdate.
• Update the training plot.
• If required, validate the network by making predictions using the model function and plotting the

validation loss.

epoch = 0;

while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Evaluate the model loss and gradients.
    [loss,gradients] = dlfeval(@modelLoss,parameters,XTrain,ATrain,TTrain);

    % Update the network parameters using the Adam optimizer.
    [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
        trailingAvg,trailingAvgSq,epoch,learnRate);

    % Record the training loss and epoch.
    recordMetrics(monitor,epoch,TrainingLoss=loss);
    updateInfo(monitor,Epoch=(epoch+" of "+numEpochs));

    % Display the validation metrics.
    if epoch == 1 || mod(epoch,validationFrequency) == 0
        YValidation = model(parameters,XValidation,AValidation);
        lossValidation = crossentropy(YValidation,TValidation,DataFormat="BC");

        % Record the validation loss.
        recordMetrics(monitor,epoch,ValidationLoss=lossValidation);
    end

    monitor.Progress = 100*(epoch/numEpochs);
end

19 Import, Export, and Customization

19-420



Test Model

Test the model using the test data.

Preprocess the test data using the same steps as for the training and validation data.

[ATest,XTest,labelsTest] = preprocessData(adjacencyDataTest,coulombDataTest,atomDataTest);
XTest = (XTest - muX)./sqrt(sigsqX);

Convert the test feature data to a dlarray object.

XTest = dlarray(XTest);

Make predictions on the data and convert the probabilities to categorical labels using the
onehotdecode function.

YTest = model(parameters,XTest,ATest);
YTest = onehotdecode(YTest,classes,2);

Calculate the accuracy.

accuracy = mean(YTest == labelsTest)

accuracy = 0.8930

To visualize how the model makes incorrect predictions and evaluate the model based on class-wise
precision and class-wise recall, calculate the confusion matrix using the confusionchart function.

The per-class precision is the ratio of true positives to total positive predictions for a class. The total
positive predictions include the true positives and false positives. A false positive is an outcome
where the model incorrectly predicts a class as present in an observation. The per-class recall, also
known as true positive rate, is the ratio of true positives to total positive observations for a class. The
total positive observation includes the true positives and false negatives. A false negative is an
outcome where the model incorrectly predicts a class as absent in an observation.

 Node Classification Using Graph Convolutional Network

19-421



figure
cm = confusionchart(labelsTest,YTest, ...
    ColumnSummary="column-normalized", ...
    RowSummary="row-normalized");
title("GCN QM7 Confusion Chart");

The per-class precision scores are in the first row of the column summary of the chart and the per-
class recall scores are in the first column of the row summary of the chart.

Predict Using New Data

Make some predictions on unlabeled data using the modelPredictions function, listed in the Model
Predictions Function on page 19-426 section of the example. For simplicity, use the first few
observations of the test data.

numObservationsNew = 4;
adjacencyDataNew = adjacencyDataTest(:,:,1:numObservationsNew);
coulombDataNew = coulombDataTest(:,:,1:numObservationsNew);

predictions = modelPredictions(parameters,coulombDataNew,adjacencyDataNew,muX,sigsqX,classes);

Visualize the predictions in a plot. For each molecule, create the graph representation using the
adjacency matrix and label the nodes with the predictions.

figure
tiledlayout("flow")

19 Import, Export, and Customization

19-422



for i = 1:numObservationsNew
    % Extract unpadded adjacency data.
    numNodes = find(any(adjacencyDataTest(:,:,i)),1,"last");

    A = adjacencyDataTest(1:numNodes,1:numNodes,i);

    % Create and plot graph representation.
    nexttile
    G = graph(A);
    plot(G,NodeLabel=string(predictions{i}),Layout="force")
    title("Observation " + i + " Prediction")
end

Supporting Functions

Preprocess Data Function

The preprocessData function preprocesses the adjacency, Coulomb, and atom data using the
following steps:

• Preprocess the adjacency and Coulomb matrices using the preprocessPredictors function,
listed in the Preprocess Predictors Function on page 19-424 section of the example.

• Convert the atom data to a flattened array of categorical labels.

function [adjacency,features,labels] = preprocessData(adjacencyData,coulombData,atomData)

[adjacency, features] = preprocessPredictors(adjacencyData,coulombData);

 Node Classification Using Graph Convolutional Network

19-423



labels = [];

% Convert labels to categorical.
for i = 1:size(adjacencyData,3)
    % Extract and append unpadded data.
    T = nonzeros(atomData(i,:));
    labels = [labels; T];
end

labels2 = nonzeros(atomData);
assert(isequal(labels2,labels2))

atomicNumbers = unique(labels);
atomNames =  atomicSymbol(atomicNumbers);
labels = categorical(labels, atomicNumbers, atomNames);

end

Preprocess Predictors Function

The preprocessPredictors function preprocesses the adjacency and Coulomb matrices using the
following steps:

For each molecule:

• Extract the unpadded data.
• Extract the feature vector from the diagonal of the unpadded Coulomb matrix.
• Append the extracted data to the output arrays.

For the adjacency matrix input, the GCN requires a single sparse block-diagonal matrix containing
each of the adjacency matrices, where each block corresponds to the adjacency matrix of one graph
instance. To append data to the block-diagonal matrix, the function uses the blkdiag function.

function [adjacency,features] = preprocessPredictors(adjacencyData,coulombData)

adjacency = sparse([]);
features = [];

for i = 1:size(adjacencyData, 3)
    % Extract unpadded data.
    numNodes = find(any(adjacencyData(:,:,i)),1,"last");

    A = adjacencyData(1:numNodes,1:numNodes,i);
    X = coulombData(1:numNodes,1:numNodes,i);

    % Extract feature vector from diagonal of Coulomb matrix.
    X = diag(X);

    % Append extracted data.
    adjacency = blkdiag(adjacency,A);
    features = [features; X];
end

end

19 Import, Export, and Customization

19-424



Model Function

The model function takes as input the model parameters parameters, the feature matrix X, and the
adjacency matrix A, and returns the network predictions. In a preprocessing step, the model function
calculates the normalized adjacency matrix using the normalizeAdjacency function, listed in the
Normalize Adjacency Function on page 19-426 section of the example. The normalized adjacency
matrix corresponds to D−1/2AD−1/2 in the formula below.

The deep learning model takes as input an adjacency matrix A and a feature matrix X and outputs
categorical predictions.

The multiplication operations are weighted multiply operations with learnable weights.

In more detail, the model is a series of operations of the form Zl + 1 = σl D−1/2AD−1/2ZlWl + Zl (the
final operation does not include the addition step). In this formula:

• σl is the activation function.
• Z1 = X.
• Wl is the weight matrix for the multiplication.
• A = A + IN is the adjacency matrix of graph G with added self-connections. IN is the identity

matrix.
• D is the degree matrix of A.

function Y = model(parameters,X,A)

ANorm = normalizeAdjacency(A);

Z1 = X;

Z2 = ANorm * Z1 * parameters.mult1.Weights;
Z2 = relu(Z2) + Z1;

Z3 = ANorm * Z2 * parameters.mult2.Weights;
Z3 = relu(Z3) + Z2;

Z4 = ANorm * Z3 * parameters.mult3.Weights;
Y = softmax(Z4,DataFormat="BC");

end

Model Loss Function

The modelLoss function takes as input the model parameters parameters, the feature matrix X, the
adjacency matrix A, and the one-hot encoded target data T, and returns the loss and the gradients of
the loss with respect to the model parameters.

 Node Classification Using Graph Convolutional Network

19-425



function [loss,gradients] = modelLoss(parameters,X,A,T)

Y = model(parameters,X,A);
loss = crossentropy(Y,T,DataFormat="BC");
gradients = dlgradient(loss, parameters);

end

Model Predictions Function

The modelPredictions function takes as input the model parameters, the input Coulomb and
adjacency data, the normalization statistics mu and sigsq, and a list of the class names, and returns
a cell array of the predicted node labels of the input data. The function makes predictions by looping
over the input graphs one at a time.

function predictions = modelPredictions(parameters,coulombData,adjacencyData,mu,sigsq,classes)

predictions = {};
numObservations = size(coulombData,3);

for i = 1:numObservations
    % Extract unpadded data.
    numNodes = find(any(adjacencyData(:,:,i)),1,"last");
    A = adjacencyData(1:numNodes,1:numNodes,i);
    X = coulombData(1:numNodes,1:numNodes,i);

    % Preprocess data.
    [A,X] = preprocessPredictors(A,X);
    X = (X - mu)./sqrt(sigsq);
    X = dlarray(X);

    % Make predictions.
    Y = model(parameters,X,A);
    Y = onehotdecode(Y,classes,2);
    predictions{end+1} = Y;
end

end

Normalize Adjacency Function

The normalizeAdjacency function takes as input the adjacency matrix A and returns the
normalized adjacency matrix D−1/2AD−1/2, where A = A + IN is the adjacency matrix of a graph with
added self-connections, IN is the identity matrix, and D is the degree matrix of A.

function ANorm = normalizeAdjacency(A)

% Add self connections to adjacency matrix.
A = A + speye(size(A));

% Compute inverse square root of degree.
degree = sum(A, 2);
degreeInvSqrt = sparse(sqrt(1./degree));

% Normalize adjacency matrix.
ANorm = diag(degreeInvSqrt) * A * diag(degreeInvSqrt);

19 Import, Export, and Customization

19-426



end

References

1 Kipf, Thomas N., and Max Welling. “Semi-Supervised Classification with Graph Convolutional
Networks.” Paper presented at ICLR 2017, Toulon, France, April 2017.

2 Blum, Lorenz C., and Jean-Louis Reymond. “970 Million Druglike Small Molecules for Virtual
Screening in the Chemical Universe Database GDB-13.” Journal of the American Chemical
Society 131, no. 25 (July 1, 2009): 8732–33. https://doi.org/10.1021/ja902302h.

3 Rupp, Matthias, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld. “Fast
and Accurate Modeling of Molecular Atomization Energies with Machine Learning.” Physical
Review Letters 108, no. 5 (January 31, 2012): 058301. https://doi.org/10.1103/
PhysRevLett.108.058301.

Copyright 2021, The MathWorks, Inc.

See Also
dlarray | dlfeval | dlgradient | minibatchqueue

More About
• “Multilabel Graph Classification Using Graph Attention Networks” on page 19-428
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230

 Node Classification Using Graph Convolutional Network

19-427



Multilabel Graph Classification Using Graph Attention
Networks

This example shows how to classify graphs that have multiple independent labels using graph
attention networks (GATs).

If the observations in your data have a graph structure with multiple independent labels, you can use
a GAT [1] to predict labels for observations with unknown labels. Using the graph structure and
available information on graph nodes, GAT uses a masked multihead self-attention mechanism to
aggregate features across neighboring nodes, and computes output features or embeddings for each
node in the graph. The output features are used to classify the graph usually after employing a
readout, or a graph pooling, operation to aggregate or summarize the output features of the nodes.

This example shows how to train a GAT using the QM7-X data set [2], a collection of graphs that
represent 6950 molecules. Each molecule is composed of up to 23 atoms, which are represented as
nodes. The data set contains 5 unique atoms: carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and
sulfur (S). Three physicochemical properties of the atoms are used as node information: scalar
Hirshfeld dipole moments, atomic polarizabilities, and Van der Waals radii. Graph labels are
functional groups or specific groups of atoms that play important roles in the formation of molecules.
Each functional group represents a subgraph, so a graph can have more than one label or no label if
the molecule representing the graph does not have a functional group. This example considers the
functional groups CH, CH2, CH3, N, NH, NH2, NOH, and OH.

This figure illustrates the multilabel graph classification workflow in this example.

Note: Training a GAT is a computationally intensive task. To make the example run quicker, this
example skips the training step and loads a pretrained network. To instead train the network, set the
doTraining variable to true.

doTraining = false;

Load Data

Download and unzip the folder containing a processed version of the QM7-X data set from the
MathWorks website. The processed version of the data set is a 4.85 MB MAT file consisting of data
extracted from the original version downloaded from the QM7-X website.

zipFile = matlab.internal.examples.downloadSupportFile("nnet","data/QM7X.zip");
dataFolder = fileparts(zipFile);
unzip(zipFile,dataFolder);

Load the QM7-X data.

19 Import, Export, and Customization

19-428

https://doi.org/10.5281/zenodo.3905360


load(fullfile(dataFolder,"QM7X","QM7X.mat"))

View the data.

dataQM7X

dataQM7X = struct with fields:
    atNUM: [23×6950 double]
    atXYZ: [3×23×6950 double]
     hDIP: [23×6950 double]
    atPOL: [23×6950 double]
     vdwR: [23×6950 double]

The data is a structure with 5 fields. The field atNUM contains atomic numbers, atXYZ contains node
coordinates, and hDIP, atPOL, and vdwR contain node features. The data consists of a total of 6950
graphs with up to 23 nodes per graph. For graphs that have fewer than 23 nodes, the data is padded
with zeros.

Prepare Data for Training

Extract and concatenate the node features.

features = cat(3,dataQM7X.hDIP,dataQM7X.atPOL,dataQM7X.vdwR);
features = permute(features,[1 3 2]);

View the size of the feature data.

size(features)

ans = 1×3

          23           3        6950

Extract the atomic numbers and the coordinates data and use them to build the adjacency matrix
data by using the coordinates2Adjacency function, attached to this example as a supporting file.
To access this file, open the example as a live script.

atomicNumber = dataQM7X.atNUM;
coordinates = dataQM7X.atXYZ;
adjacency = coordinates2Adjacency(coordinates,atomicNumber);

View the size of the adjacency data.

size(adjacency)

ans = 1×3

          23          23        6950

Extract the labels using the uniqueFunctionalGroups function, attached to this example as a
supporting file. To access this file, open the example as a live script.

labels = uniqueFunctionalGroups(adjacency,atomicNumber);

View the size of the label data.

 Multilabel Graph Classification Using Graph Attention Networks

19-429



size(labels)

ans = 1×2

        6950           1

Partition the data into training, validation, and test partitions containing 80%, 10%, and 10% of the
data, respectively. To get a random split, use the trainingPartitions function, attached to this
example as a supporting file. To access this file, open the example as a live script.

numGraphs = size(adjacency,3);
[idxTrain,idxValidation,idxTest] = trainingPartitions(numGraphs,[0.8 0.1 0.1]);

featuresTrain = features(:,:,idxTrain);
featuresValidation = features(:,:,idxValidation);
featuresTest = features(:,:,idxTest);

adjacencyTrain = adjacency(:,:,idxTrain);
adjacencyValidation = adjacency(:,:,idxValidation);
adjacencyTest = adjacency(:,:,idxTest);

labelsTrain = labels(idxTrain);
labelsValidation = labels(idxValidation);
labelsTest = labels(idxTest);

Normalize the features using the mean and variance of the nonzero elements of the training features.

numFeatures = size(featuresTrain,2);
muX = zeros(1,numFeatures);
sigsqX = zeros(1,numFeatures);

for i = 1:numFeatures
    X = nonzeros(featuresTrain(:,i,:));
    muX(i) = mean(X);
    sigsqX(i) = var(X, 1);
end

Normalize the training features, excluding the zero elements that pad the data.

numGraphsTrain = size(featuresTrain,3);

for j = 1:numGraphsTrain
    validIdx = 1:nnz(featuresTrain(:,1,j));
    featuresTrain(validIdx,:,j) = (featuresTrain(validIdx,:,j) - muX)./sqrt(sigsqX);
end

Normalize the validation features using the same statistics and also exclude the zero elements that
pad the data.

numGraphsValidation = size(featuresValidation,3);
for j = 1:numGraphsValidation
    validIdx = 1:nnz(featuresValidation(:,1,j));
    featuresValidation(validIdx,:,j) = (featuresValidation(validIdx,:,j) - muX)./sqrt(sigsqX);
end

Get the class names from the label data.

classNames = unique(cat(1,labels{:}))

19 Import, Export, and Customization

19-430



classNames = 8×1 string
    "CH"
    "CH2"
    "CH3"
    "N"
    "NH"
    "NH2"
    "NOH"
    "OH"

Encode the training labels into a binary array of size numObservations-by-numClasses, where
numObservations is the number of observations and numClasses is the number of classes. In each
row, the nonzero entries correspond to the labels of each observation.

TTrain = zeros(numGraphsTrain,numel(classNames));

for j = 1:numGraphsTrain
    if ~isempty(labelsTrain{j})
        [~,idx] = ismember(labelsTrain{j},classNames);
        TTrain(j,idx) = 1;
    end
end

View the size of the training target data.

size(TTrain)

ans = 1×2

        5560           8

Visualize the number of graphs per class using a bar graph.

classCounts = sum(TTrain,1);

figure
bar(classCounts)
ylabel("Count")
xticklabels(classNames)

 Multilabel Graph Classification Using Graph Attention Networks

19-431



Visualize the number of labels per graph using a histogram.

labelCounts = sum(TTrain,2);

figure
histogram(labelCounts)
xlabel("Number of Labels")
ylabel("Frequency")

19 Import, Export, and Customization

19-432



The plot shows that a very small percentage of the graphs have zero labels.

Encode the validation labels into a binary array.

TValidation = zeros(numGraphsValidation,numel(classNames));
for j = 1:numGraphsValidation
    if ~isempty(labelsValidation{j})
        [~,idx] = ismember(labelsValidation{j},classNames);
        TValidation(j,idx) = 1;
    end
end

To train using mini-batches of data, create array datastores for the feature, adjacency, and target
training data and combine them.

featuresTrain = arrayDatastore(featuresTrain,IterationDimension=3);
adjacencyTrain = arrayDatastore(adjacencyTrain,IterationDimension=3);
targetTrain = arrayDatastore(TTrain);

dsTrain = combine(featuresTrain,adjacencyTrain,targetTrain);

To make predictions using mini-batches of data, create an array datastore for the validation features
and adjacency data and combine them.

featuresValidation = arrayDatastore(featuresValidation,IterationDimension=3);
adjacencyValidation = arrayDatastore(adjacencyValidation,IterationDimension=3);
dsValidation = combine(featuresValidation,adjacencyValidation);

 Multilabel Graph Classification Using Graph Attention Networks

19-433



Define Model

Define the model. The model takes as input a feature matrix X and an adjacency matrix A and outputs
categorical predictions.

• The model uses a masked multihead self attention mechanism to aggregate features across the
neighborhood of a node, that is, the set of nodes that are directly connected to the node. The
mask, which is obtained from the adjacency matrix, is used to prevent attention between nodes
that are not in the same neighborhood.

• The model uses ELU nonlinearity, after the first two attention operators, as the activation function.
• To aid convergence, the model uses a skip connection between the last two attention operators.
• To make graph-level predictions using output node features, the model uses averaging to

summarize the node features.
• Finally, the model computes independent class probabilities using a sigmoid operation.

Initialize Model Parameters

Define the parameters for the each of the operations and include them in a structure.

Create a structure to contain the number of heads for the attention operations.

numHeads = struct;

Specify 3 heads for the first and second attention operations. Specify 5 heads for the third attention
operation.

numHeads.attn1 = 3;
numHeads.attn2 = 3;
numHeads.attn3 = 5;

Create a structure to contain the learnable parameters for the model.

parameters = struct;

Use the format parameters.operationName.parameterName, where parameters is the
structure, operationName is the name of the operation (for example, "attn1"), and parameterName
is the name of the parameter (for example, "Weights").

Initialize the learnable weights using the initializeGlorot function, attached to this example as a
supporting file. To access the function, open the example as a live script.

The attention operation uses two types of weights. Linear weights are used to transform the input
features across different attention heads linearly. Attention weights are used to compute attention
coefficients at each head. Specify the two weights in a structure with the fields linearWeights and
attentionWeights.

Initialize the weights of the first attention operation to have an output size of 96. The input size is the
number of channels of the input feature data.

19 Import, Export, and Customization

19-434



numInputFeatures = size(features,2);
numHiddenFeatureMaps = 96;
numClasses = numel(classNames);

sz = [numInputFeatures numHiddenFeatureMaps];
numOut = numHiddenFeatureMaps;
numIn = numInputFeatures;

parameters.attn1.weights.linearWeights = initializeGlorot(sz,numOut,numIn);
parameters.attn1.weights.attentionWeights = initializeGlorot([numOut 2],1,2*numOut);

Initialize the weights of the second attention operation to have the same output size as the previous
multiply operation. The input size is the output size of the previous attention operation.

sz = [numHiddenFeatureMaps numHiddenFeatureMaps];
numOut = numHiddenFeatureMaps;
numIn = numHiddenFeatureMaps;

parameters.attn2.weights.linearWeights = initializeGlorot(sz,numOut,numIn);
parameters.attn2.weights.attentionWeights = initializeGlorot([numOut 2],1,2*numOut);

Initialize the weights of the third attention operation to have an output size matching the number of
classes. The input size is the output size of the previous attention operation.

numOutputFeatureMaps = numHeads.attn3*numClasses;

sz = [numHiddenFeatureMaps numOutputFeatureMaps];
numOut = numClasses;
numIn = numHiddenFeatureMaps;
parameters.attn3.weights.linearWeights = initializeGlorot(sz,numOut,numIn);
parameters.attn3.weights.attentionWeights = initializeGlorot([numOutputFeatureMaps 2],1,2*numOut);

View the parameters structure.

parameters

parameters = struct with fields:
    attn1: [1×1 struct]
    attn2: [1×1 struct]
    attn3: [1×1 struct]

View the parameters of the first attention operation.

parameters.attn1.weights

ans = struct with fields:
       linearWeights: [3×96 dlarray]
    attentionWeights: [96×2 dlarray]

Define Model Function

Create the function model, defined in the Model Function on page 19-446 section of the example,
which takes as input the model parameters, the input features and adjacency matrix, and the number
of nodes per graph, and returns predictions for the labels.

 Multilabel Graph Classification Using Graph Attention Networks

19-435



Define Model Loss Function

Create the function modelLoss, defined in the Model Loss Function on page 19-447 section of the
example, which takes as input the model parameters, a mini-batch of input features and
corresponding adjacency matrix, the number of nodes per graph, and the corresponding encoded
targets of the labels, and returns the loss, the gradients of the loss with respect to the learnable
parameters, and the model predictions.

Specify Training Options

Train for 70 epochs with a mini-batch size of 300. Large mini-batches of training data for GATs can
cause out-of-memory errors. If your hardware does not have enough memory, then reduce the mini-
batch size.

numEpochs = 70;
miniBatchSize = 300;

Train using a learning rate of 0.01.

learnRate = 0.01;

To convert prediction probabilities to binary encoded labels, specify a label threshold of 0.5. When
the network makes predictions, the network outputs 1 where the probability is greater than or equal
to the threshold.

labelThreshold = 0.5;

Validate the model every 210 iterations.

validationFrequency = 210;

Train Model

Train the model using a custom training loop.

Use minibatchqueue to process and manage mini-batches of training data. For each iteration and
mini-batch:

• Discard partial mini-batches.
• Use the custom mini-batch preprocessing function preprocessMiniBatch, defined in the

Preprocess Mini-Batch Function on page 19-447 section of the example to remove zero paddings
from the data, compute the number of nodes per graph, and merge multiple graph instances into a
single graph instance. The preprocessMiniBatch function returns 4 variables as output.
Therefore, set the number of outputs of the minibatchqueue object to 4. By default, the
minibatchqueue object sets the number of outputs to the number of variables of the input
datastore, which is 3 in this case.

• Cast the data types of the output data to double. The adjacency data is returned as a sparse
matrix, and sparse does not support single. By default, the minibatchqueue object casts the
data type to single.

• Convert only the feature data to a dlarray object. By default, the minibatchqueue object
converts all output data to dlarray objects.

• Train on a GPU if one is available by specifying the output environment of the first output as
"auto" and the remaining outputs as "cpu". By default, the minibatchqueue object converts
each output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing

19 Import, Export, and Customization

19-436



Toolbox™ and a supported GPU device. For information on supported devices, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,4, ...
    MiniBatchSize=miniBatchSize, ...
    PartialMiniBatch="discard", ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    OutputCast="double", ...
    OutputAsDlarray=[1 0 0 0], ...
    OutputEnvironment = ["auto" "cpu" "cpu" "cpu"]);

The modelPredictions function, defined in the Model Predictions on page 19-449 section of the
example, can be used to obtain model predictions for validating the network. The function makes
predictions by iterating over mini-batches of data using the read size property of the datastore object.
Set the read size properties of the array datastore holding the validation data to miniBatchSize.
You can use any value within your hardware memory allowance.

dsValidation.UnderlyingDatastores{1}.ReadSize = miniBatchSize;
dsValidation.UnderlyingDatastores{2}.ReadSize = miniBatchSize;

Initialize the parameters for Adam optimizer.

trailingAvg = [];
trailingAvgSq = [];

Train the model.

For each epoch, shuffle the data and loop over the mini-batches.

For each mini-batch:

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.
• Update the training plot.
• If necessary, validate the network using the modelPredictions function. The

modelPredictions function takes as input the datastore object dsValidation and the model
parameters and returns the model predictions. Calculate the validation loss and update the
training plot.

Note: Training a GAT is a computationally intensive task. To make the example run quicker, this
example skips the training step and loads a pretrained network. To instead train the network, set the
doTraining variable to true.

if doTraining

    % Initialize the training progress plot.
    figure
    C = colororder;
    
    lineLossTrain = animatedline(Color=C(2,:));
    lineLossValidation = animatedline( ...
        LineStyle="--", ...
        Marker="o", ...
        MarkerFaceColor="black");
    ylim([0 inf])
    xlabel("Iteration")

 Multilabel Graph Classification Using Graph Attention Networks

19-437



    ylabel("Loss")
    grid on

    iteration = 0;
    start = tic;
    
    % Loop over epochs.
    for epoch = 1:numEpochs

        % Shuffle data.
        shuffle(mbq);
            
        while hasdata(mbq)
            iteration = iteration + 1;
            
            % Read mini-batches of data.
            [XTrain,ATrain,numNodes,TTrain] = next(mbq);
    
            % Evaluate the model loss and gradients using dlfeval and the
            % modelLoss function.
            [loss,gradients,Y] = dlfeval(@modelLoss,parameters,XTrain,ATrain,numNodes,TTrain,numHeads);
            
            % Update the network parameters using the Adam optimizer.
            [parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients, ...
                trailingAvg,trailingAvgSq,iteration,learnRate);
            
            % Display the training progress.
            D = duration(0,0,toc(start),Format="hh:mm:ss");
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            loss = double(loss);
            addpoints(lineLossTrain,iteration,loss)
            drawnow
    
            % Display validation metrics.
            if iteration == 1 || mod(iteration,validationFrequency) == 0
                YValidation = modelPredictions(parameters,dsValidation,numHeads);
                lossValidation = crossentropy(YValidation,TValidation,TargetCategories="independent",DataFormat="BC");

                lossValidation = double(lossValidation);
                addpoints(lineLossValidation,iteration,lossValidation)
                drawnow
            end
        end
    end
else
    % Load the pretrained parameters.
    load("parametersQM7X_GAT.mat")
end

19 Import, Export, and Customization

19-438



Test Model

Normalize the test features using the statistics of the training features.

numGraphsTest = size(featuresTest,3);

for j = 1:numGraphsTest
    validIdx = 1:nnz(featuresTest(:,1,j));
    featuresTest(validIdx,:,j) = (featuresTest(validIdx,:,j) - muX)./sqrt(sigsqX);
end

Create array datastores for the test features and adjacency data, setting their ReadSize properties
to miniBatchSize, and combine them.

featuresTest = arrayDatastore(featuresTest,IterationDimension=3,ReadSize=miniBatchSize);
adjacencyTest = arrayDatastore(adjacencyTest,IterationDimension=3,ReadSize=miniBatchSize);
dsTest = combine(featuresTest,adjacencyTest);

Encode the test labels into a binary array.

TTest = zeros(numGraphsTest,numel(classNames));

for j = 1:numGraphsTest
    if ~isempty(labelsTest{j})
        [~,idx] = ismember(labelsTest{j},classNames);
        TTest(j,idx) = 1;
    end
end

 Multilabel Graph Classification Using Graph Attention Networks

19-439



Use the modelPredictions function to make predictions on the test data.

predictions = modelPredictions(parameters,dsTest,numHeads);

Convert prediction probabilities to binary encoded labels using a label threshold of 0.5, which is the
same as the label threshold labelThreshold, used when training and validating the model.

predictions = double(gather(extractdata(predictions)));
YTest = double(predictions >= 0.5);

Evaluate the performance by calculating the F-score using the fScore function, defined in the F-
Score Function on page 19-448 section of the example.

The fScore function uses a weighting parameter beta to place greater value on either precision or
recall. Precision is the ratio of true positive results to all positive results, including those that are
incorrectly predicted as positive, and recall is the ratio of true positive results to all actual positive
samples.

Calculate the F-score using three weighting parameters:

• 0.5 — Precision is twice as important as recall.
• 1 — Precision and recall are equally important. Use this value to monitor the performance of the

model during training and validation.
• 2 — Recall is twice as important as precision.

scoreWeight = [0.5 1 2];
for i = 1:3
    scoreTest(i) = fScore(YTest,TTest,scoreWeight(i));
end

View the scores in a table.

scoreTestTbl = table;
scoreTestTbl.Beta = scoreWeight';
scoreTestTbl.FScore = scoreTest'

scoreTestTbl=3×2 table
    Beta    FScore
    ____    ______

    0.5     0.9492
      1     0.9475
      2     0.9458

Visualize the confusion chart for each class.

figure
tiledlayout("flow")
for i = 1:numClasses
    nexttile
    confusionchart(YTest(:,i),TTest(:,i));
    title(classNames(i))
end

19 Import, Export, and Customization

19-440



Visualize the receiver operating characteristics (ROC) curves for each class.

The ROC curve plots the true positive rates versus false positive rates and illustrates the performance
of the model at all labeling thresholds. The true positive rate is the ratio of true positive results to all
actual positive samples, including those that the model incorrectly predicts as negative. The false
positive rate is the ratio of false positive results to all actual negative samples, including those that
are incorrectly predicted as positive. The area under the curve (AUC) provides an aggregate measure
of performance across all possible labeling thresholds.

For each class:

• Compute the true positive rates and false positive rates using the roc function.
• Calculate the AUC using the trapz function.
• Plot the ROC curve and display the AUC. Also plot the ROC curve of a random, or no-skill, model

that makes random predictions, or always predicts the same result.

figure
tiledlayout("flow")

for i = 1:numClasses
    currentTargets = TTest(:,i)';
    currentPredictions = predictions(:,i)';

    [truePositiveRates,falsePositiveRates] = roc(currentTargets,currentPredictions);
    AUC = trapz(falsePositiveRates,truePositiveRates);

 Multilabel Graph Classification Using Graph Attention Networks

19-441



    nexttile
    plot(falsePositiveRates,truePositiveRates, ...
        falsePositiveRates,falsePositiveRates,"--",LineWidth=0.7)
    text(0.075,0.75,"\bf AUC = "+num2str(AUC),FontSize=6.75)
    xlabel("FPR")
    ylabel("TPR")
    title(classNames(i))
end

lgd = legend("ROC Curve - GAT", "ROC Curve - Random");
lgd.Layout.Tile = numClasses+1;

Predict Using New Data

Load the preprocessed QM7X sample data.

load(fullfile(dataFolder,"QM7X","preprocessedQM7XSample.mat"))

Get the adjacency matrix and node features from the sample data.

adjacencyMatrixSample = dataSample.AdjacencyMatrix;
featuresSample = dataSample.Features;

View the number of nodes in the graph.

numNodesSample = size(adjacencyMatrixSample,1)

numNodesSample = 10

19 Import, Export, and Customization

19-442



Extract the graph data. To compute the attention scores, remove added self-connections from the
adjacency matrix, then use the matrix to construct the graph.

A = adjacencyMatrixSample - eye(numNodesSample);
G = graph(A);

Map the atomic numbers to symbols using the atomicSymbol function, attached to this example as a
supporting file. To access this function, open the example as a live script.

atomicNumbersSample = dataSample.AtomicNumbers;
[symbols,symbolsCount] = atomicSymbol(atomicNumbersSample);

Display the graph in a plot, using the mapped symbols as node labels.

figure
plot(G,NodeLabel=symbols,LineWidth= 0.75,Layout="force")
title("Sample Molecule")

Convert the features to a dlarray object.

XSample = dlarray(featuresSample);

If a GPU is available, convert the input data to gpuArray.

if canUseGPU
    XSample = gpuArray(XSample);
end

 Multilabel Graph Classification Using Graph Attention Networks

19-443



Make predictions using the model function. Also obtain the attention scores computed by the
attention operator in the model.

[YSample,attentionScores] = model(parameters,XSample,adjacencyMatrixSample,numNodesSample,numHeads);

Convert prediction probabilities to binary encoded labels.

YSample = gather(extractdata(YSample));
YSample = YSample >= 0.5;

Convert the predicted binary labels to actual labels.

predictionsSample = classNames(YSample)

predictionsSample = 3×1 string
    "CH"
    "CH2"
    "CH3"

Visualize the attention scores.

Create a heat map of the attention scores per head in the final attention operation of the model using
heatmap.

attention3Scores = double(gather(extractdata(attentionScores.attn3)));
numHeadsAttention3 = numHeads.attn3;

figure
tiledlayout("flow")
for i = 1:numHeadsAttention3
    nexttile
    heatmap(symbolsCount,symbolsCount,attention3Scores(:,:,i),ColorScaling="scaledrows",Title="Head "+num2str(i))
end

19 Import, Export, and Customization

19-444



The x and y values in the attention maps correspond to the node labels in the plot below.

figure
plot(G,NodeLabel=symbolsCount,LineWidth= 0.75,Layout="force")

 Multilabel Graph Classification Using Graph Attention Networks

19-445



The color map intensity signifies the relative level of attention that the node at a particular row index
gives to the node at a particular column index. For example, at head 1, the first carbon atom C1 gives
an almost equal level of attention to the first three hydrogen atoms H1, H2, and H3, and it gives little
or no attention to itself, the oxygen atom O1, which it is also connected to, or to all the other atoms
with which it shares no connection.

Model Function

The model function takes as inputs the model parameters parameters, the feature matrix X, the
adjacency matrix A, the number of nodes per graph numNodes, and the number of heads numHeads,
and returns the predictions and the attention scores.

The function:

• Computes the graph attention at each layer using the attention function defined in the
Attention Function on page 19-450 section of the example.

• Uses ELU nonlinearity, using the elu function defined in the ELU Function on page 19-451 section
of the example as the activation function for the first two layers.

• Employs a residual connection in the hidden layer to aid convergence.
• Uses the globalAveragePool function, defined in the Global Average Pool Function on page 19-

452 section of the example, to perform the readout operation after the final layer.
• Uses the sigmoid function to compute the label predictions as independent class probabilities.

function [Y,attentionScores] = model(parameters,X,A,numNodes,numHeads)

19 Import, Export, and Customization

19-446



weights = parameters.attn1.weights;
numHeadsAttention1 = numHeads.attn1;

Z1 = X;
[Z2,attentionScores.attn1] = attention(Z1,A,weights,numHeadsAttention1,"cat");
Z2  = elu(Z2);

weights = parameters.attn2.weights;
numHeadsAttention2 = numHeads.attn2;

[Z3,attentionScores.attn2] = attention(Z2,A,weights,numHeadsAttention2,"cat");
Z3  = elu(Z3) + Z2;

weights = parameters.attn3.weights;
numHeadsAttention3 = numHeads.attn3;

[Z4,attentionScores.attn3] = attention(Z3,A,weights,numHeadsAttention3,"mean");
Z4 = globalAveragePool(Z4,numNodes);

Y = sigmoid(Z4);

end

Model Loss Function

The modelLoss function takes as inputs the model parameters parameters, the feature matrix X,
the adjacency matrix adjacencyTrain, the number of nodes per graph numNodes, the binary
encoded labels T, and the number of heads numHeads, and returns the gradients of the loss with
respect to the model parameters, the corresponding loss, and the model predictions.

function [loss,gradients,Y] = modelLoss(parameters,X,adjacencyTrain,numNodes,T,numHeads)

Y = model(parameters,X,adjacencyTrain,numNodes,numHeads);
loss = crossentropy(Y,T,TargetCategories="independent",DataFormat="BC");
gradients = dlgradient(loss,parameters);

end

Preprocess Mini-Batch Function

The preprocessMiniBatch function takes as inputs the feature data featureData, the adjacency
data adjacencyData, and the target data targetData, and merges mini-batches of different graph
instances into a single graph instance.

Note that the target data is an optional input argument to the function.

For each graph, the function:

• Calculates the number of nodes and concatenates the data.
• Removes zero paddings from the adjacencyData input and concatenates the data by building a

sparse block-diagonal matrix so that the nodes in different graph instances do not interact, that is,
they are not regarded as neighbors. Each block in the matrix corresponds to the adjacency matrix
of one graph instance.

• Removes zero paddings from the featureData input and concatenates the data.

function [features,adjacency,numNodes,target] = preprocessMiniBatch(featureData,adjacencyData,targetData)

 Multilabel Graph Classification Using Graph Attention Networks

19-447



% Extract feature and adjacency data from their cell array and concatenate the
% data along the third (batch) dimension
featureData = cat(3,featureData{:});
adjacencyData = cat(3,adjacencyData{:});

% Extract target data if it exists
if nargin > 2
    target = cat(1,targetData{:});
end

adjacency = sparse([]);
features = [];
numNodes = [];

for i = 1:size(adjacencyData, 3)
    % Get the number of nodes in the current graph
    numNodesInGraph = nnz(featureData(:,1,i));
    numNodes = [numNodes; numNodesInGraph];

    % Get the indices of the actual nonzero data
    validIdx = 1:numNodesInGraph;

    % Remove zero paddings from adjacencyData
    tmpAdjacency = adjacencyData(validIdx, validIdx, i);

    % Add self connections
    tmpAdjacency = tmpAdjacency + eye(size(tmpAdjacency));

    % Build the adjacency matrix into a block diagonal matrix
    adjacency = blkdiag(adjacency, tmpAdjacency);

    % Remove zero paddings from featureData
    tmpFeatures = featureData(validIdx, :, i);
    features = [features; tmpFeatures];
end

end

F-Score Function

The fScore function calculates the micro-average F-score, which measures the model accuracy on
the data using the precision and the recall.

The micro-average precision can be defined as

precision =
∑n = 1

N ∑c = 1
C Ync × Tnc

∑n = 1
N ∑c = 1

C Ync × Tnc + Ync × 1− Tnc
,

where Y is encoded binary predictions, T is encoded binary targets, N is the number of observations,
and C is the number of classes.

The micro-average recall can be defined as

recall =
∑n = 1

N ∑c = 1
C Ync × Tnc

∑n = 1
N ∑c = 1

C Tnc
,

19 Import, Export, and Customization

19-448



and the micro-average F-Score is defined as:

(1 + β2) × precision×recall
β2 × precision + recall

,

where β is a weighting parameter that is used to place greater value on either the precision or the
recall.

function score = fScore(predictions,targets,beta)

truePositive = sum(predictions .* targets,"all");
falsePositive = sum(predictions .* (1-targets),"all");

% Precision
precision = truePositive/(truePositive + falsePositive);

% Recall
recall = truePositive/sum(targets,"all");

% FScore
if nargin == 2
    beta = 1;
end

score = (1+beta^2)*precision*recall/(beta^2*precision+recall);

end

Model Predictions Function

The modelPredictions function takes as inputs the model parameters parameters, the datastore
object ds holding the features and adjacency data, and the number of heads numHeads, and returns
the model predictions by iterating over mini-batches of data and preprocessing each mini-batch using
the preprocessMiniBatch function.

function Y = modelPredictions(parameters,ds,numHeads)

Y = [];

reset(ds)

while hasdata(ds)

    data = read(ds);

    featureData = data(:,1);
    adjacencyData = data(:,2);

    [features,adjacency,numNodes] = preprocessMiniBatch(featureData,adjacencyData);

    X = dlarray(features);

    minibatchPred = model(parameters,X,adjacency,numNodes,numHeads);
    Y = [Y;minibatchPred];
end

end

 Multilabel Graph Classification Using Graph Attention Networks

19-449



Attention Function

The attention function computes node features using masked multihead self-attention.

Given input node features Zl of dimension N × F, where N is the number of nodes and F is the
number of input features, at layer l, the attention function computes the output node features Zl + 1 of
dimension N × KF′, where KF′ is the number of output features of the layer, as follows:

1 Using K independent heads, it computes linear transformations Hk, for k = 1, . . . , K, of the input
features using weight matrices Wl

k of dimensions F × F′. That is, Hk = ZlWl
k.

2 It uses an attention mechanism to compute the scalar attention coefficients εnm
k = ak(hn

k, hm
k ) for

all node pairs (n, m), where hn
k is a vector of dimension 1 × F′ corresponding to the nth row of

matrix Hk. The attention coefficient εnm
k  represents the importance of node m to node n at head k.

The attention mechanism a can be a dot product operation of features hn and hm, or a neural
network. This example follows the approach in [1], where features hn and hm are concatenated
and the attention mechanism is a single-layer neural network with weights array θl

k, consisting of
2F′ elements, that is shared across all nodes, followed by leaky-ReLU nonlinearity.

3 To prevent attention between nodes that are not directly connected, the GAT implements masked
attention by using the graph structure, defined by the adjacency matrix, to compute a mask such
that the masked attention coefficients ε‾nm = − inf for all m ∉ Nn, where Nn is the neighborhood
of node n, including n, and ε‾nm = εnm for all m ∈ Nn.

4 Attention scores are computed by normalizing the masked attention coefficients using a softmax

operation. That is, the attention score αnm
k =

exp(ε‾nm
k )

∑ j ∈ Nnexp(ε‾n j
k )

.

5 The attention scores are then used to obtain the output features of the layer as a linear
combination of transformations Hk. That is, given a N × Nmatrix of attention scores αk computed
at head k, output features Zl + 1

k  from attention head k are obtained as Zl + 1
k = αkHk.

6 The output features from each attention head are aggregated, either by concatenation, that is,

Zl + 1 = [Zl + 1
1 , . . . , Zl + 1

K ], or by averaging, that is Zl + 1 = 1
K ∑k = 1

K
Zl + 1

k , to give the output features

of the layer.

The attention function takes as inputs the feature matrix inputFeatures, adjacency matrix
adjacency, learnable parameters weights, the number of heads numHeads, and aggregation
method for the multiple attention heads aggregation, and computes and returns features using
masked multihead self attention.

The function splits the learnable parameters into multiple heads, and for each attention head, it:

• Computes a linear transformation of the input features.
• Computes attention coefficients using linearly transformed features.
• Masks attention coefficients.
• Normalizes masked attention coefficients.
• Normalizes linearly transformed features using normalized masked attention coefficients.

19 Import, Export, and Customization

19-450



Finally, it aggregates the output features of different attention heads.

function [outputFeatures,normAttentionCoeff] = attention(inputFeatures,adjacency,weights,numHeads,aggregation)

% Split weights with respect to the number of heads and reshape the matrix to a 3-D array
szFeatureMaps = size(weights.linearWeights);
numOutputFeatureMapsPerHead = szFeatureMaps(2)/numHeads;
linearWeights = reshape(weights.linearWeights,[szFeatureMaps(1), numOutputFeatureMapsPerHead, numHeads]);
attentionWeights = reshape(weights.attentionWeights,[numOutputFeatureMapsPerHead, 2, numHeads]);

% Compute linear transformations of input features
value = pagemtimes(inputFeatures,linearWeights);

% Compute attention coefficients
query = pagemtimes(value, attentionWeights(:, 1, :));
key = pagemtimes(value, attentionWeights(:, 2, :));

attentionCoefficients = query + permute(key,[2, 1, 3]);
attentionCoefficients = leakyrelu(attentionCoefficients,0.2);

% Compute masked attention coefficients
mask = -10e9 * (1 - adjacency);
attentionCoefficients = attentionCoefficients + mask;

% Compute normalized masked attention coefficients
normAttentionCoeff = softmax(attentionCoefficients,DataFormat = "BCU");

% Normalize features using normalized masked attention coefficients
headOutputFeatures = pagemtimes(normAttentionCoeff,value);

% Aggregate features from multiple heads
if strcmp(aggregation, "cat")
    outputFeatures = headOutputFeatures(:,:);
else
    outputFeatures =  mean(headOutputFeatures,3);
end

end

ELU Function

The elu function implements the ELU activation function defined as

f x =
x, x ≥ 0
α exp x − 1 , x < 0

The function uses α = 1 .

function y = elu(x)

y = max(0, x) + (exp(min(0, x)) -1);

end

 Multilabel Graph Classification Using Graph Attention Networks

19-451



Global Average Pool Function

The globalAveragePool function takes as inputs a feature representation inFeatures and the
number of nodes per graph numNodes, and returns an output feature representation for each graph
by averaging the input features with respect to the number of nodes per graph.

For a graph G with NG nodes, the function computes output features for the graph as yG = 1
NG
∑

n = 1

NG
zn,

where zn is a 1 × F′ vector, corresponding to the nth row of a NG × F′ submatrix of input features of
the graph, and F′ is the number of input features.

function outFeatures = globalAveragePool(inFeatures,numNodes)

numGraphs = numel(numNodes);
numFeatures = size(inFeatures, 2);
outFeatures = zeros(numGraphs,numFeatures,"like",inFeatures);

startIdx = 1;
for i = 1:numGraphs
    endIdx = startIdx + numNodes(i) - 1;
    idx = startIdx:endIdx;
    outFeatures(i,:) = mean(inFeatures(idx,:));
    startIdx = endIdx + 1;
end

end

References

1 Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. “Graph Attention Networks." Preprint, submitted February 4, 2018. https://arxiv.org/abs/
1710.10903.

2 Hoja, Johannes, Leonardo Medrano Sandonas, Brian Ernst, Alvaro Vazquez-Mayagoitia, Robert A.
DiStasio, and Alexandre Tkatchenko. “QM7-X: A Comprehensive Dataset of Quantum-Mechanical
Properties Spanning the Chemical Space of Small Organic Molecules.” Zenodo, November 23,
2020. https://doi.org/10.5281/ZENODO.3905360.

See Also
dlarray | dlfeval | dlgradient | minibatchqueue

More About
• “Node Classification Using Graph Convolutional Network” on page 19-413
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230

19 Import, Export, and Customization

19-452

https://doi.org/10.5281/ZENODO.3905360


Train Network Using Cyclical Learning Rate for Snapshot
Ensembling

This example shows how to train a network to classify images of objects using a cyclical learning rate
schedule and snapshot ensembling for better test accuracy. In the example, you learn how to use a
cosine function for the learning rate schedule, take snapshots of the network during training to
create a model ensemble, and add L2-norm regularization (weight decay) to the training loss.

This example trains a residual network [1] on the CIFAR-10 data set [2] with a custom cyclical
learning rate: for each iteration, the solver uses the learning rate given by a shifted cosine function
[3] alpha(t) = (alpha0/2)*cos(pi*mod(t-1,T/M)/(T/M)+1), where t is the iteration
number, T is the total number of training iterations, alpha0 is the initial learning rate, and M is the
number of cycles/snapshots. This learning rate schedule effectively splits the training process into M
cycles. Each cycle begins with a large learning rate that decays monotonically, forcing the network to
explore different local minima. At the end of each training cycle, you take a snapshot of the network
(that is, you save the model at this iteration) and later average the predictions of all the snapshot
models, also known as snapshot ensembling [4], to improve the final test accuracy.

Prepare Data

Download the CIFAR-10 data set [2]. The data set contains 60,000 images. Each image is 32-by-32 in
size and has three color channels (RGB). The size of the data set is 175 MB. Depending on your
internet connection, the download process can take time.

datadir = tempdir;
downloadCIFARData(datadir);

Load the CIFAR-10 training and test images as 4-D arrays. The training set contains 50,000 images
and the test set contains 10,000 images.

[XTrain,TTrain,XTest,TTest] = loadCIFARData(datadir);
classes = categories(TTrain);
numClasses = numel(classes);

You can display a random sample of the training images using the following code.

figure;
idx = randperm(size(XTrain,4),20);
im = imtile(XTrain(:,:,:,idx),ThumbnailSize=[96,96]);
imshow(im)

Create an augmentedImageDatastore object to use for network training. During training, the
datastore randomly flips the training images along the vertical axis and randomly translates them up
to four pixels horizontally and vertically. Data augmentation helps prevent the network from
overfitting and memorizing the exact details of the training images.

imageSize = [32 32 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);
augimdsTrain = augmentedImageDatastore(imageSize,XTrain,TTrain, ...
    DataAugmentation=imageAugmenter);

 Train Network Using Cyclical Learning Rate for Snapshot Ensembling

19-453



Define Network Architecture

Create a residual network [1] with six standard convolutional units (two units per stage) and a width
of 16. The total network depth is 2*6+2 = 14. In addition, specify the average image using the Mean
option in the image input layer.

netWidth = 16;
layers = [
    imageInputLayer(imageSize,Mean=mean(XTrain,4))
    convolution2dLayer(3,netWidth,Padding="same")
    batchNormalizationLayer
    reluLayer(Name="reluInp")

    convolutionalUnit(netWidth,1)
    additionLayer(2,Name="add11")
    reluLayer(Name="relu11")
    convolutionalUnit(netWidth,1)
    additionLayer(2,Name="add12")
    reluLayer(Name="relu12")

    convolutionalUnit(2*netWidth,2)
    additionLayer(2,Name="add21")
    reluLayer(Name="relu21")
    convolutionalUnit(2*netWidth,1)
    additionLayer(2,Name="add22")
    reluLayer(Name="relu22")

    convolutionalUnit(4*netWidth,2)
    additionLayer(2,Name="add31")
    reluLayer(Name="relu31")
    convolutionalUnit(4*netWidth,1)
    additionLayer(2,Name="add32")
    reluLayer(Name="relu32")

    globalAveragePooling2dLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,"reluInp","add11/in2");
lgraph = connectLayers(lgraph,"relu11","add12/in2");

skip1 = [
    convolution2dLayer(1,2*netWidth,Stride=2,Name="skipConv1")
    batchNormalizationLayer(Name="skipBN1")];

lgraph = addLayers(lgraph,skip1);
lgraph = connectLayers(lgraph,"relu12","skipConv1");
lgraph = connectLayers(lgraph,"skipBN1","add21/in2");
lgraph = connectLayers(lgraph,"relu21","add22/in2");

skip2 = [
    convolution2dLayer(1,4*netWidth,Stride=2,Name="skipConv2")
    batchNormalizationLayer(Name="skipBN2")];

lgraph = addLayers(lgraph,skip2);
lgraph = connectLayers(lgraph,"relu22","skipConv2");

19 Import, Export, and Customization

19-454



lgraph = connectLayers(lgraph,"skipBN2","add31/in2");
lgraph = connectLayers(lgraph,"relu31","add32/in2");

Plot the ResNet architecture.

figure
plot(lgraph)

Create a dlnetwork object from the layer graph.

net = dlnetwork(lgraph);

Define Model Loss Function

Create the helper function modelLoss, listed at the end of the example. The function takes in a
dlnetwork object net and a mini-batch of input data X with corresponding labels T, and returns the
loss, the gradients of the loss with respect to the learnable parameters in net, and the state of the
nonlearnable parameters of the network at a given iteration.

Specify Training Options

Specify the training options.

• Train for 200 epochs with a mini-batch size of 64.
• Train using SGDM with a momentum of 0.9.
• Regularize the weights using a weight decay value of 10−4.

 Train Network Using Cyclical Learning Rate for Snapshot Ensembling

19-455



numEpochs = 200;
miniBatchSize = 64;
momentum = 0.9;
weightDecay = 1e-4;

Determine the indices of the weights to apply weight decay to.

idxWeights = ismember(net.Learnables.Parameter,["Weights" "Scale"]);

Initialize the parameters for SGDM optimization.

velocity = [];

Specify the training options specific to the cyclical learning rate. alpha0 is the initial learning rate
and numSnapshots is the number of cycles or snapshots taken during training.

alpha0 = 0.1;
numSnapshots = 5;
epochsPerSnapshot = numEpochs./numSnapshots;
numObservations = numel(TTrain);
iterationsPerSnapshot = ceil(numObservations./miniBatchSize)*numEpochs./numSnapshots;
modelPrefix = "SnapshotEpoch";

Initialize the training figure.

[lossLine,learnRateLine] = plotLossAndLearnRate;

Train Model

Use minibatchqueue to process and manage mini-batches of images during training. For each mini-
batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to one-hot encode the class labels.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

augimdsTrain.MiniBatchSize = miniBatchSize;

mbqTrain = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB",""]);

Accelerate the modelLoss function using dlaccelerate.

accfun = dlaccelerate(@modelLoss);

Train the model using a custom training loop. For each epoch, shuffle the datastore, loop over mini-
batches of data, and save the model (snapshot) if the current epoch is a multiple of
epochsPerSnapshot. At the end of each epoch, display the training progress. For each mini-batch:

19 Import, Export, and Customization

19-456



• Evaluate the model loss and gradients using dlfeval and the accelerated modelLoss function.
• Update the state of the nonlearnable parameters of the network.
• Determine the learning rate for the cyclical learning rate schedule.
• Update the network parameters using the sgdmupdate function.
• Plot the loss and learning rate at each iteration.

For this example, the training took approximately 11 hours on a NVIDIA™ TITAN RTX.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs

    % Shuffle data.
    shuffle(mbqTrain);

    % Save snapshot model.
    if ~mod(epoch,epochsPerSnapshot)
        save(modelPrefix + epoch + ".mat","net");
    end

    % Loop over mini-batches.
    while hasdata(mbqTrain)
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(mbqTrain);

        % Evaluate the model loss and gradients using dlfeval and the
        % accelerated modelLoss function.
        [loss, gradients, state] = dlfeval(accfun,net,X,T,weightDecay,idxWeights);

        % Update the state of nonlearnable parameters.
        net.State = state;

        % Determine learning rate for cyclical learning rate schedule.
        learnRate = 0.5*alpha0*(cos((pi*mod(iteration-1,iterationsPerSnapshot)./iterationsPerSnapshot))+1);

        % Update the network parameters using the SGDM optimizer.
        [net, velocity] = sgdmupdate(net, gradients, velocity, learnRate, momentum);

        % Display the training progress.
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        addpoints(lossLine,iteration,double(loss))
        addpoints(learnRateLine, iteration, learnRate);
        sgtitle("Epoch: " + epoch + ", Elapsed: " + string(D))
        drawnow
    end
end

 Train Network Using Cyclical Learning Rate for Snapshot Ensembling

19-457



Create Snapshot Ensemble and Test Model

Combine the M snapshots of the network taken during training to form a final ensemble and test the
classification accuracy of the model. The ensemble predictions correspond to the average of the
output of the fully connected layer from all M individual models.

Test the model on the test data provided with the CIFAR-10 data set. Manage the test data set using a
minibatchqueue object with the same setting as the training data.

augimdsTest = augmentedImageDatastore(imageSize,XTest,TTest);
augimdsTest.MiniBatchSize = miniBatchSize;

mbqTest = minibatchqueue(augimdsTest,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB",""]);

Evaluate the accuracy of each snapshot network. Use the modelPredictions function defined at
the end of this example to iterate over all the data in the test data set. The function returns the
output of the fully connected layer from the model, the predicted classes, and the comparison with
the true class.

modelName = cell(numSnapshots+1,1);
fcOutput = zeros(numClasses,numel(TTest),numSnapshots+1);
classPredictions = cell(1,numSnapshots+1);
modelAccuracy = zeros(numSnapshots+1,1);

19 Import, Export, and Customization

19-458



for m = 1:numSnapshots
    modelName{m} = modelPrefix + m*epochsPerSnapshot;
    load(modelName{m} + ".mat");

    reset(mbqTest);
    [fcOutputTest,classPredTest,classCorrTest] = modelPredictions(net,mbqTest,classes);

    fcOutput(:,:,m) = fcOutputTest;
    classPredictions{m} = classPredTest;
    modelAccuracy(m) = 100*mean(classCorrTest);

    disp(modelName{m} + " accuracy: " + modelAccuracy(m) + "%")
end

SnapshotEpoch40 accuracy: 87.93%
SnapshotEpoch80 accuracy: 89.92%
SnapshotEpoch120 accuracy: 90.55%
SnapshotEpoch160 accuracy: 90.67%
SnapshotEpoch200 accuracy: 91.33%

To determine the output of the ensemble networks, compute the average of the fully connected
output of each snapshot network. Find the predicted classes from the ensemble network using the
onehotdecode function. Compare with the true classes to evaluate the accuracy of the ensemble.

fcOutput(:,:,end) = mean(fcOutput(:,:,1:end-1),3);
classPredictions{end} = onehotdecode(softmax(fcOutput(:,:,end)),classes,1,"categorical");

classCorrEnsemble = classPredictions{end} == TTest';
modelAccuracy(end) = 100*mean(classCorrEnsemble);

modelName{end} = "Ensemble model";
disp("Ensemble accuracy: " + modelAccuracy(end) + "%")

Ensemble accuracy: 91.74%

Plot Accuracy

Plot the accuracy on the test data set for all snapshot models and the ensemble model.

figure;bar(modelAccuracy);
ylabel("Accuracy (%)");
xticklabels(modelName)
xtickangle(45)
title("Model accuracy")

 Train Network Using Cyclical Learning Rate for Snapshot Ensembling

19-459



Helper Functions

Model Loss Function

The modelLoss function takes in a dlnetwork object net, a mini-batch of input data X, the labels T,
the parameter for weight decay, and the indices of the weights to decay. The function returns the loss,
the gradients, and the state of the nonlearnable parameters. To compute the gradients automatically,
use the dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T,weightDecay,idxWeights)

[Y,state] = forward(net,X);

loss = crossentropy(Y, T);

% L2-regularization (weight decay)
allParams = net.Learnables(idxWeights,:).Value;
L = dlupdate(@(x) sum(x.^2,"all"),allParams);
L = sum(cat(1,L{:}));
loss = loss + weightDecay*0.5*L;

gradients = dlgradient(loss,net.Learnables);

end

19 Import, Export, and Customization

19-460



Model Predictions Function

The modelPredictions function takes as input a dlnetwork object net, a minibatchqueue of
input data mbq, and computes the model predictions by iterating over all data in the
minibatchqueue. The function uses the onehotdecode function to find the predicted class with the
highest score and then compares the prediction with the true class. The function returns the network
output, the class predictions, and a vector of ones and zeros that represents correct and incorrect
predictions.

function [rawPredictions,classPredictions,classCorr] = modelPredictions(net,mbq,classes)

rawPredictions = [];
classPredictions = [];
classCorr = [];

while hasdata(mbq)
    [X,T] = next(mbq);

    % Make predictions
    YPred = predict(net,X);
    rawPredictions = [rawPredictions extractdata(gather(YPred))];

    % Convert network output to probabilities and determine predicted
    % classes
    YPred = softmax(YPred);
    YPredBatch = onehotdecode(YPred,classes,1);
    classPredictions = [classPredictions YPredBatch];

    % Compare predicted and true classes
    T = onehotdecode(T,classes,1);
    classCorr = [classCorr YPredBatch == T];
end

end

Plot Loss and Learning Rate Function

The plotLossAndLearnRate function initiliaizes the plots for displaying the loss and learning rate
at each iteration during training.

function [lossLine, learnRateLine] = plotLossAndLearnRate

figure
subplot(2,1,1);

lossLine = animatedline(Color=[0.85 0.325 0.098]);
title("Loss");
xlabel("Iteration")
ylabel("Loss")
grid on

subplot(2,1,2);
learnRateLine = animatedline(Color=[0 0.447 0.741]);
title("Learning rate");
xlabel("Iteration")
ylabel("Learning rate")
grid on

 Train Network Using Cyclical Learning Rate for Snapshot Ensembling

19-461



end

Convolutional Unit Function

The convolutionalUnit(numF,stride) function creates an array of layers with two convolutional
layers and corresponding batch normalization and ReLU layers. numF is the number of convolutional
filters and stride is the stride of the first convolutional layer.

function layers = convolutionalUnit(numF,stride)

layers = [
    convolution2dLayer(3,numF,Padding="same",Stride=stride)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,numF,Padding="same")
    batchNormalizationLayer];

end

Data Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
to be used as a singleton channel dimension.

2 Extract the label data from the incoming cell arrays and concatenate into a categorical array
along the second dimension.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(XCell,TCell)

% Extract image data from cell and concatenate
X = cat(4,XCell{:});

% Extract label data from cell and concatenate
T = cat(2,TCell{:});

% One-hot encode labels
T = onehotencode(T,1);

end

References

[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778. 2016.

[2] Krizhevsky, Alex. "Learning multiple layers of features from tiny images." (2009). https://
www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[3] Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts."
(2016). arXiv preprint arXiv:1608.03983.

19 Import, Export, and Customization

19-462

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


[4] Huang, Gao, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
"Snapshot ensembles: Train 1, get m for free." (2017). arXiv preprint arXiv:1704.00109.

See Also
dlnetwork | layerGraph | dlarray | sgdmupdate | dlfeval | dlgradient | sigmoid |
minibatchqueue | onehotencode | onehotdecode

More About
• “Train Generative Adversarial Network (GAN)” on page 3-72
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Make Predictions Using Model Function” on page 19-312
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Automatic Differentiation Background” on page 19-214

 Train Network Using Cyclical Learning Rate for Snapshot Ensembling

19-463



Interoperability Between Deep Learning Toolbox, TensorFlow,
PyTorch, and ONNX

This topic provides an overview of the Deep Learning Toolbox import and export functions and
describes common deep learning workflows that you can perform in MATLAB with an imported
network from TensorFlow, PyTorch, or ONNX. For more information on how to overcome hurdles
when you import networks, see “Tips on Importing Models from TensorFlow, PyTorch, and ONNX” on
page 19-474.

Many pretrained networks are available in Deep Learning Toolbox. For more information, see
“Pretrained Deep Neural Networks” on page 1-11. However, MATLAB does not stand alone in the
deep learning ecosystem. Use the import and export functions to access models available in open-
source repositories and collaborate with colleagues who work in other deep learning frameworks.

Support Packages for Interoperability
You must have the relevant support packages to run the Deep Learning Toolbox import and export
functions. If the support package is not installed, each function provides a download link to the
corresponding support package in the Add-On Explorer. A recommended practice is to download the
support package to the default location for the version of MATLAB you are running. You can also
directly download the support packages from File Exchange.

This table lists the Deep Learning Toolbox support packages for import and export, the File Exchange
links, and the functions each support package provides.

Support Package Import Functions Export Function
Deep Learning Toolbox
Converter for TensorFlow
Models

importTensorFlowNetwork exportNetworkToTensorFlo
wimportTensorFlowLayers

importKerasNetwork
importKerasLayers

Deep Learning Toolbox
Converter for PyTorch Models

importNetworkFromPyTorch Not applicable

Deep Learning Toolbox
Converter for ONNX Model
Format

importONNXNetwork exportONNXNetwork
importONNXLayers
importONNXFunction

By using ONNX as an intermediate format, you can interoperate with other deep learning frameworks
that support ONNX model export or import.

Note The importTensorFlowNetwork and importTensorFlowLayers functions are
recommended over the importKerasNetwork and importKerasLayers functions. For more
details, see “Recommended Functions to Import TensorFlow Models” on page 19-474.

19 Import, Export, and Customization

19-464

https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/111925
https://www.mathworks.com/matlabcentral/fileexchange/111925
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format


Functions that Import Deep Learning Networks

External Deep Learning Platforms and Import Functions

This table describes the deep learning platforms from which the Deep Learning Toolbox functions
import models and which model formats they can import.

External Deep
Learning Platform

Model Format Import Model as
Network

Import Model as
Layer Graph

TensorFlow 2 SavedModel format importTensorFlowNe
twork

importTensorFlowLa
yers

TensorFlow-Keras HDF5 format importKerasNetwork importKerasLayers
PyTorch Traced model file with

the .pt extension
importNetworkFromP
yTorch

Not applicable

ONNX ONNX model format importONNXNetwork importONNXLayers

Each import and export function reference page contains a Limitations section which describes the
supported versions of the external platform. For example, for the TensorFlow versions that the
importTensorFlowNetwork function supports, see “Limitations”.

Objects Returned by Import Functions

This table describes the Deep Learning Toolbox network or layer graph that the import functions
return when you import a pretrained model from TensorFlow, PyTorch, or ONNX.

Import Function Deep Learning Toolbox
Object

Examples

importTensorFlowNetwork DAGNetwork or dlnetwork “Import TensorFlow Network as
DAGNetwork to Classify Image”,
“Import TensorFlow Network as
dlnetwork to Classify Image”

 Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX

19-465



Import Function Deep Learning Toolbox
Object

Examples

importTensorFlowLayers LayerGraph “Import TensorFlow Network as
Layer Graph Compatible with
DAGNetwork”, “Import
TensorFlow Network as Layer
Graph Compatible with
dlnetwork”

importKerasNetwork DAGNetwork or
SeriesNetwork

“Import and Plot Keras
Network”

importKerasLayers LayerGraph or Layer array “Import Keras Network Layers
and Train Network”

importNetworkFromPytorch Uninitialized dlnetwork “Import Network from PyTorch
and Classify Image”

importONNXNetwork DAGNetwork or dlnetwork “Import ONNX Network as
DAGNetwork”, “Import ONNX
Network with Autogenerated
Custom Layers”

importONNXLayers LayerGraph “Import ONNX Model as Layer
Graph Compatible with
DAGNetwork”, “Import ONNX
Model as Layer Graph
Compatible with dlnetwork”

importONNXFunction Model function and
ONNXParameters object

“Predict Using Imported ONNX
Function”

After you import a network or layer graph, the returned object is ready for all the workflows that
Deep Learning Toolbox supports.

Automatic Generation of Custom Layers

The importTensorFlowNetwork, importTensorFlowLayers, importNetworkFromPyTorch,
importONNXNetwork, and importONNXLayers functions create automatically generated custom
layers when you import a model with TensorFlow layers, PyTorch layers, or ONNX operators that the
functions cannot convert to built-in MATLAB layers. The functions save the automatically generated
custom layers to a package in the current folder. For more information, see “Autogenerated Custom
Layers” on page 19-475.

Visualize Imported Network
Use the plot function to plot a diagram of the imported network or layer graph. You cannot use the
plot function with dlnetwork objects.

net = importTensorFlowNetwork("digitsNet");
plot(net)

19 Import, Export, and Customization

19-466



Use the analyzeNetwork function to visualize and understand the architecture of the imported
network or layer graph, check that you have defined the architecture correctly, and detect problems
before training. Problems that analyzeNetwork detects include missing or unconnected layers,
incorrectly sized layer inputs, an incorrect number of layer inputs, and invalid graph structures.

net = importTensorFlowNetwork("NASNetMobile", ...
    OutputLayerType="classification",Classes=ClassNames);
analyzeNetwork(net)

 Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX

19-467



Predict with Imported Model
Preprocess Input Data

Preprocessing data is a common first step in the deep learning workflow to prepare data in a format
that the network can accept. The input data size must match the network input size. If the sizes do
not match, you must resize the input data. For an example, see “Import ONNX Network as
DAGNetwork”. In some cases, the input data requires further processing, such as normalization. For
an example, see “Import ONNX Network with Autogenerated Custom Layers”.

You must preprocess the input data in the same way as the training data. Often, open-source
repositories provide information about the required input data preprocessing. To learn more about
how to preprocess images and other types of data, see “Preprocess Images for Deep Learning” on
page 20-16 and “Preprocess Data for Deep Neural Networks”.

Import Model as DAGNetwork Object and Predict

Import a TensorFlow model in the SavedModel format. By default, importTensorFlowNetwork
imports the network as a DAGNetwork object. Specify the output layer type for an image
classification problem and the class names.

net = importTensorFlowNetwork("NASNetMobile", ...
    OutputLayerType="classification",Classes=ClassNames);

19 Import, Export, and Customization

19-468



Predict the label of an image.

label = classify(net,Im);

Import Model as dlnetwork Object and Predict

You must first convert the input data to a dlarray object. For image input data, specify the data
format as "SSCB". For more information on how to specify the input data format, see “Data Formats
for Prediction with dlnetwork” on page 19-477.

dlIm = dlarray(Im,"SSCB");

Import a TensorFlow model in the SavedModel format as a dlnetwork object. Specify the class
names. A dlnetwork does not have output layers.

net = importTensorFlowNetwork("NASNetMobile", ...
    Classes=ClassNames,TargetNetwork="dlnetwork");

Predict the label of an image.

prob = predict(net,dlIm);
[~,label] = max(prob);

Note The importNetworkFromPyTorch function imports the network as an uninitialized
dlnetwork object. Before prediction, add an input layer or initialize the imported network. For
examples, see “Import Network from PyTorch and Add Input Layer” and “Import Network from
PyTorch and Initialize”.

Compare Prediction Results

To check whether the TensorFlow or ONNX model matches the imported network, you can compare
inference results by using real or randomized inputs to the network. For examples that show how to
compare inference results, see “Inference Comparison Between TensorFlow and Imported Networks
for Image Classification” on page 19-496 and “Inference Comparison Between ONNX and Imported
Networks for Image Classification” on page 19-500.

Predict in Simulink

You can use the imported network with the Predict block of Deep Learning Toolbox to classify an
image in Simulink. The imported network can contain automatically generated custom layers. For an
example, see “Classify Images in Simulink with Imported TensorFlow Network” on page 19-489.

 Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX

19-469



Predict on GPU

The import functions do not execute on a GPU. However, the functions import a pretrained neural
network for deep learning as a DAGNetwork or dlnetwork object, which you can use on a GPU.

• If you import the network as a DAGNetwork object, you can make predictions with the imported
network on a CPU or GPU by using classify or predict. Specify the hardware requirements
using the ExecutionEnvironment name-value argument.

For networks with multiple outputs, use the predict function and specify the
ReturnCategorical name-value argument as true.

• If you import the network as a dlnetwork object, you can make predictions with the imported
network on a CPU or GPU by using predict. The predict function executes on the GPU if the
input data or network parameters are stored on the GPU.

• If you use minibatchqueue to process and manage the mini-batches of input data, the
minibatchqueue object converts the output to a GPU array by default if a GPU is available.

• Use dlupdate to convert the learnable parameters of a dlnetwork object to GPU arrays.

net = dlupdate(@gpuArray,net)

Transfer Learning with Imported Network
Transfer learning is common in deep learning applications. You can use a pretrained network as a
starting point to learn a new task. Fine-tuning a network with transfer learning is usually much faster
and easier than training a network with randomly initialized weights from scratch. You can quickly
transfer learned features to a new task using a smaller quantity of training data. This section
describes how to import a convolutional model from TensorFlow for transfer learning.

Import the NASNetMobile model as a layer graph and display its final layers.

lgraph = importTensorFlowLayers("NASNetMobile", ...
    OutputLayerType="classification");
lgraph.Layers(end-2:end)

ans = 

19 Import, Export, and Customization

19-470



  3×1 Layer array with layers:

     1   'predictions'                       Fully Connected         1000 fully connected layer
     2   'predictions_softmax'               Softmax                 softmax
     3   'ClassificationLayer_predictions'   Classification Output   crossentropyex

The last layer with learnable weights is a fully connected layer. Replace this fully connected layer
with a new fully connected layer in which the number of outputs is equal to the number of classes in
the new data set. To learn faster in the new layer than in the transferred layers, increase the learning
rate factors of the layer.

learnableLayer = lgraph.Layers(end-2);

numClasses = numel(categories(imdsTrain.Labels));
newLearnableLayer = fullyConnectedLayer(numClasses, ...
        Name="new_fc", ...
        WeightLearnRateFactor=10, ...
        BiasLearnRateFactor=10);

lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one that does not have class labels. The trainNetwork function automatically sets the
output classes of the layer at training time.

classLayer = lgraph.Layers(end);
newClassLayer = classificationLayer(Name="new_classoutput");
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);

For an example that shows the complete transfer learning workflow, see “Train Deep Learning
Network to Classify New Images” on page 3-6. For an example that shows how to train a network
imported as a dlnetwork object to classify new images, see “Train Network Imported from PyTorch
to Classify New Images”.

Train Network on GPU

You can train the imported network on a CPU or GPU by using trainNetwork. To specify training
options, including options for the execution environment, use the trainingOptions function.
Specify the hardware requirements using the ExecutionEnvironment name-value argument. For
more information on how to accelerate training, see “Scale Up Deep Learning in Parallel, on GPUs,
and in the Cloud” on page 7-2.

Deploy Imported Network
Deploy Imported Network with MATLAB Coder or GPU Coder

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Code Generation”.

• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM® Compute library. Alternatively, you can generate generic C or
C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

 Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX

19-471



• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).

The import functions return the network as a DAGNetwork or dlnetwork object. Both of these
objects support code generation. For more information on MATLAB Coder and GPU Coder support for
Deep Learning Toolbox objects, see “Supported Classes” (MATLAB Coder) and “Supported Classes”
(GPU Coder), respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see the “Code Generation” and “GPU Code Generation”
sections of imageInputLayer.

Deploy Imported Network with MATLAB Compiler

An imported network might include layers that MATLAB Coder does not support for deployment. In
this case, you can deploy the imported network as a standalone application using MATLAB
Compiler™. The standalone executable you create with MATLAB Compiler is independent of
MATLAB; therefore, you can deploy it to users who do not have access to MATLAB.

You can deploy only the imported network using MATLAB Compiler, either programmatically by using
the mcc function or interactively by using the Application Compiler app. For an example, see
“Deploy Imported TensorFlow Model with MATLAB Compiler” on page 19-480.

Note Automatically generated custom layers do not support code generation with MATLAB Coder,
GPU Coder, or MATLAB Compiler.

Functions that Export Networks and Layer Graphs
When you complete your deep learning workflows in MATLAB, you can share the deep learning
network or layer graph with colleagues who work in different deep learning platforms. By entering
one line of code, you can export the network.

exportNetworkToTensorFlow(net,"myModel")

You can export networks and layer graphs to TensorFlow and ONNX by using the
exportNetworkToTensorFlow and exportONNXNetwork functions. The functions can export
DAGNetwork, dlnetwork, and LayerGraph objects.

19 Import, Export, and Customization

19-472



• The exportONNXNetwork function exports to the ONNX model format.
• The exportNetworkToTensorFlow function saves the exported TensorFlow model in a regular

Python package. You can load the exported model and use it for prediction or training. You can
also share the exported model by saving it to SavedModel or HDF5 format. For more information
on how to load the exported model and save it in a standard TensorFlow format, see “Load
Exported TensorFlow Model” and “Save Exported TensorFlow Model in Standard Format”.

See Also
importTensorFlowNetwork | importONNXNetwork | importNetworkFromPyTorch |
importTensorFlowLayers | importONNXLayers | exportNetworkToTensorFlow |
exportONNXNetwork

More About
• “Tips on Importing Models from TensorFlow, PyTorch, and ONNX” on page 19-474
• “Pretrained Deep Neural Networks” on page 1-11
• “Select Function to Import ONNX Pretrained Network” on page 19-485
• “Inference Comparison Between TensorFlow and Imported Networks for Image Classification”

on page 19-496
• “Inference Comparison Between ONNX and Imported Networks for Image Classification” on

page 19-500
• “Deploy Imported TensorFlow Model with MATLAB Compiler” on page 19-480

External Websites
• https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-

for-tensorflow-models
• https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-

for-onnx-model-format

 Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX

19-473

https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format


Tips on Importing Models from TensorFlow, PyTorch, and ONNX
This topic provides tips on how to overcome common hurdles in importing a model from TensorFlow,
PyTorch, or ONNX as a MATLAB network or layer graph. You can read each section of this topic
independently. For a high-level overview of the import and export functions in Deep Learning Toolbox,
see “Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX” on page 19-
464.

Import Functions of Deep Learning Toolbox
This table lists the Deep Learning Toolbox import functions. Use these functions to import networks
or layer graphs from TensorFlow, PyTorch, and ONNX.

Support Package Import Functions
Deep Learning Toolbox Converter for TensorFlow
Models

importTensorFlowNetwork
importTensorFlowLayers
importKerasNetwork
importKerasLayers

Deep Learning Toolbox Converter for PyTorch
Models

importNetworkFromPyTorch

Deep Learning Toolbox Converter for ONNX
Model Format

importONNXNetwork
importONNXLayers

You must have the relevant support package to run these import functions. If the support package is
not installed, each function provides a download link to the corresponding support package in the
Add-On Explorer. A recommended practice is to download the support package to the default location
for the version of MATLAB you are running. You can also directly download the support packages
from File Exchange.

Recommended Functions to Import TensorFlow Models
The Deep Learning Toolbox Converter for TensorFlow Models support package offers these functions:

• importTensorFlowNetwork and importKerasNetwork — Import a TensorFlow model as a
network.

• importTensorFlowLayers and importKerasLayers — Import a TensorFlow model as a layer
graph.

Note The importTensorFlowNetwork and importTensorFlowLayers functions are
recommended over the importKerasNetwork and importKerasLayers functions.

This table compares the Deep Learning Toolbox Converter for TensorFlow Models functions. The
comparison highlights the reasons that the importTensorFlowNetwork and
importTensorFlowLayers functions are recommended over the importKerasNetwork and
importKerasLayers functions.

19 Import, Export, and Customization

19-474

https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/111925
https://www.mathworks.com/matlabcentral/fileexchange/111925
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format


Features importTensorFlowNetwork
and
importTensorFlowLayers

importKerasNetwork and
importKerasLayers

Automatically generates custom
layers

Yes No

Supports TensorFlow 2 Yes Limited
Supports SavedModel format Yes No
Can import network as
dlnetwork (or LayerGraph
compatible with dlnetwork)

Yes No

For more information on the advantages of migrating from TensorFlow 1 to TensorFlow 2, see
Migrate from TensorFlow 1.x to TensorFlow 2. For more information on the TensorFlow versions that
the import functions support, see “Limitations” (importTensorFlowNetwork and
importTensorFlowLayers) and “Limitations” (importKerasNetwork and importKerasLayers).

To import a TensorFlow model that is in the HDF5 format, instead of using importKerasNetwork to
import the model as a Deep Learning Toolbox network, convert the TensorFlow model to the
SavedModel format and use the importTensorFlowNetwork function.

Autogenerated Custom Layers
• The importTensorFlowNetwork and importTensorFlowLayers functions can automatically

generate custom layers when you import custom TensorFlow layers or when the software cannot
convert TensorFlow layers into equivalent built-in MATLAB layers. For an example, see “Import
TensorFlow Network with Autogenerated Custom Layers”. For a list of layers for which the
software supports conversion, see “TensorFlow-Keras Layers Supported for Conversion into Built-
In MATLAB Layers”.

• The importONNXNetwork and importONNXLayers functions can also generate custom layers
when the software cannot convert ONNX operators into equivalent built-in MATLAB layers. For an
example, see “Import ONNX Network with Autogenerated Custom Layers”. For a list of layers for
which the software supports conversion, see “ONNX Operators Supported for Conversion into
Built-In MATLAB Layers”.

In rare cases, when importONNXNetwork and importONNXLayers cannot import an ONNX
model into layers, you can use importONNXFunction to import the model as a function. For more
information on how to select an ONNX import function, see “Select Function to Import ONNX
Pretrained Network” on page 19-485.

• The importNetworkFromPyTorch function imports a PyTorch layer into MATLAB by trying these
steps in order:

1 The function tries to import the PyTorch layer as a built-in MATLAB layer. For more
information, see “Conversion of PyTorch Layers”.

2 The function tries to import the PyTorch layer as a built-in MATLAB function. For more
information, see “Conversion of PyTorch Layers”.

3 The function tries to import the PyTorch layer as a custom layer. For an example, see “Import
Network from PyTorch and Find Generated Custom Layers”.

4 The function imports the PyTorch layer as a custom layer with a placeholder function. For
more information, see “Placeholder Functions”.

 Tips on Importing Models from TensorFlow, PyTorch, and ONNX

19-475

https://www.tensorflow.org/guide/migrate


The importTensorFlowNetwork, importTensorFlowLayers, importONNXNetwork,
importONNXLayers, and importNetworkFromPyTorch functions save the automatically generated
custom layers to a package in the current folder. For more information on the custom layers package,
see the PackageName name-value argument of each function.

Placeholder Layers
The importTensorFlowLayers and importONNXLayers functions insert placeholder layers in the
place of TensorFlow layers or ONNX operators when these conditions apply:

• The function cannot convert the TensorFlow layers or ONNX operators to built-in MATLAB layers.
For lists of TensorFlow layers and ONNX operators for which the functions support conversion,
see “TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers” and
“ONNX Operators Supported for Conversion into Built-In MATLAB Layers”, respectively.

• The function cannot generate custom layers in place of the TensorFlow layers or ONNX operators
that the function cannot convert to built-in MATLAB layers.

If these conditions apply, the importTensorFlowNetwork and importONNXNetwork functions
return an error. These flowcharts describe these workflows.

19 Import, Export, and Customization

19-476



To find the names and indices of the placeholder layers in the layer graph, use the
findPlaceholderLayers function. You can then replace a placeholder layer with a built-in
MATLAB layer, custom layer, or functionLayerobject. For more information about custom layers,
see “Define Custom Deep Learning Layers” on page 19-9. For an example with a functionLayer
object, see “Replace Unsupported Keras Layer with Function Layer”. To replace a layer, use
replaceLayer. For an example, see “Import ONNX Model as Layer Graph with Placeholder Layers”.

The importNetworkFromPyTorch function generates a custom layer with a placeholder function
instead of a placeholder layer. For more information, see “Placeholder Functions”.

Input Dimension Ordering
The dimension ordering of the input data differs between Deep Learning Toolbox, TensorFlow, and
ONNX. This table compares input dimension ordering between platforms for different input types.

Input Type Dimension Ordering
MATLAB TensorFlow PyTorch ONNX

Features CN NC NC NC
2-D image HWCN NHWC NCHW NCHW
3-D image HWDCN NHWDC NCDHW NCHWD
Vector sequence CSN NSC SNC NSC
2-D image
sequence

HWCSN NSWHC NCSHW NSCHW

3-D image
sequence

HWDCSN NSWHDC NCSDHW NSCHWD

Variable names in the table:

• N — Number of observations
• C — Number of features or channels
• H — Height of images
• W — Width of images
• D — Depth of images
• S — Sequence length

Data Formats for Prediction with dlnetwork
The importTensorFlowNetwork and importONNXNetwork functions can import a TensorFlow or
ONNX model as a DAGNetwork or dlnetwork object. Specify the type of imported network by
setting the TargetNetwork name-value argument. For more details, see TargetNetwork for
importTensorFlowNetwork and TargetNetwork for importONNXNetwork.

The importNetworkFromPyTorch function imports a PyTorch model as an uninitialized dlnetwork
object. Before you use the network, do one of the following:

• Add an input layer to the imported network and initialize the network by using the
addInputLayer function. For an example, see “Import Network from PyTorch and Add Input
Layer”.

 Tips on Importing Models from TensorFlow, PyTorch, and ONNX

19-477



• Initialize the network by using the initialize function and set the appropriate format. For an
example, see “Import Network from PyTorch and Initialize”.

To predict using a dlnetwork object, you must convert the input data to a dlarray object with the
appropriate data format. For an example, see “Import TensorFlow Network as dlnetwork to Classify
Image”. Use this table to choose the right data format for each input type and layer.

Input Type Input Layer ** Input Format *
Features featureInputLayer CB
2-D image imageInputLayer SSCB
3-D image image3dInputLayer SSCB
Vector sequence sequenceInputLayer CBT
2-D image sequence sequenceInputLayer SSCBT
3-D image sequence sequenceInputLayer SSSCBT

* In Deep Learning Toolbox, each data format must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations
• T — Time or sequence
• U — Unspecified

** A dlnetwork object does not require an input layer. The network can infer the input layer type
from the input data format.

For more information on data formats, see dlarray.

Input Data Preprocessing
Preprocessing data is a common first step in the deep learning workflow to prepare data in a format
that the network can accept. You must preprocess the input data in the same way as the training
data.

The input layer of the pretrained deep learning networks available in Deep Learning Toolbox
performs some of the input data preprocessing. For example, the input layer of the pretrained
mobilenetv2 normalizes the image input data. Display the Normalization property of the network
input layer.

net = mobilenetv2;
net.Layers(1).Normalization

ans =

    'zscore'

Networks that you import from TensorFlow or ONNX might not have built-in preprocessing in the
input layer. For example, the input layer of the imported MobileNetV2 from TensorFlow does not
normalize the input image. Import MobileNetV2 and display the Normalization property of the
network input layer.

19 Import, Export, and Customization

19-478



net = importTensorFlowNetwork("MobileNetV2", ...
    OutputLayerType="classification");
net.Layers(1).Normalization

ans =

    'none'

Often, open-source repositories provide information about the required input data preprocessing. For
example, see tf.keras.applications.mobilenet_v2.preprocess_input and ShuffleNet in ONNX Model
Zoo. To learn more about how to preprocess images and other types of data in Deep Learning
Toolbox, see “Preprocess Images for Deep Learning” on page 20-16 and “Preprocess Data for Deep
Neural Networks”.

See Also
importTensorFlowNetwork | importNetworkFromPyTorch | importONNXNetwork |
importTensorFlowLayers | importONNXLayers | dlarray

More About
• “Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX” on page 19-

464
• “Pretrained Deep Neural Networks” on page 1-11
• “Select Function to Import ONNX Pretrained Network” on page 19-485

External Websites
• https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-

for-tensorflow-models
• https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-

for-onnx-model-format

 Tips on Importing Models from TensorFlow, PyTorch, and ONNX

19-479

https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2/preprocess_input
https://github.com/onnx/models/tree/master/vision/classification/shufflenet
https://github.com/onnx/models/tree/master/vision/classification/shufflenet
https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tensorflow-models
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format


Deploy Imported TensorFlow Model with MATLAB Compiler

This example shows how to import a pretrained TensorFlow™ model using
importTensorFlowNetwork, and deploy the imported network using MATLAB® Compiler™. The
example shows programmatic and interactive deployment workflows.

The imported network might include TensorFlow-Keras layers that MATLAB Coder™ does not support
for deployment. For a list of layers that MATLAB Coder supports, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder). In this case, you can deploy the imported network
as a standalone application using MATLAB Compiler. The standalone executable you create with
MATLAB Compiler is independent of MATLAB; therefore, you can deploy it to users who do not have
access to MATLAB.

In the deployment workflow, you first define a classification function that loads the imported network
and predicts class labels. Then, you compile the classification function into a standalone application
either programmatically by using the mcc function, or interactively by using the Application Compiler
(MATLAB Compiler) app. The app suggests the support packages that MATLAB Compiler can include
in the standalone application. For more information about support packages, see “Pretrained
Networks from External Platforms”.

You can deploy only the imported network using MATLAB Compiler. The programmatic and
interactive workflows do not support the deployment of network import functions, such as
importTensorFlowNetwork and importONNXNetwork.

You can modify this example to deploy a network that you import from ONNX™ or PyTorch® by using
the importONNXNetwork or importNetworkFromPyTorch function, respectively. To use the
importONNXNetwork function, you need the Deep Learning Toolbox Converter for ONNX Model
Format support package. To use the importNetworkFromPyTorch function, you need the Deep
Learning Toolbox Converter for PyTorch Models.

Download Required Support Package

The importTensorFlowNetwork function requires the Deep Learning Toolbox Converter for
TensorFlow Models support package. If this support package is not installed,
importTensorFlowNetwork provides a download link to the required support package in the Add-
On Explorer. A recommended practice is to download the support package to the default location for
the version of MATLAB you are running. However, you can specify a different location during
installation.

Display the support package root and release number for the version of MATLAB you are running.
The support package is in the default location for MATLAB R2021b.

supportPKGFolder = matlabshared.supportpkg.getSupportPackageRoot

supportPKGFolder = 
'C:\ProgramData\MATLAB\SupportPackages\R2021b'

version('-release')

ans = 
'2021b'

Import Pretrained TensorFlow Model

Specify the model folder and class names.

19 Import, Export, and Customization

19-480



if ~exist('digitsDAGnet','dir')
    unzip('digitsDAGnet.zip')
end
modelFolder = './digitsDAGnet';

ClassNames = string(0:9);

Import the digitsDAGnet TensorFlow model in the saved model format. By default,
importTensorFlowNetwork imports the network as a DAGNetwork object.

net = importTensorFlowNetwork(modelFolder, ...
    Classes=ClassNames);

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation. Assembling network...
Import finished.

Save the imported network to a MAT file. The digitsDAGnet file contains a convolutional neural
network that classifies images of digits.

save("digitsDAGnet.mat","net");

Read and Save Image

Read and save the image to classify.

digitDatasetPath = fullfile(toolboxdir("nnet"),...
    "nndemos","nndatasets","DigitDataset");
I = imread(fullfile(digitDatasetPath,"5","image4009.png"));
imwrite(I,"testImg.png")

Display the image.

imshow(I)

Define Classification Function

Define a classification function named tfNetClassify that accepts a digit image, loads the
imported network, and predicts the class label using the loaded network.

type tfNetClassify.m

function tfNetClassify(imFile)
% TFNETCLASSIFY Classify image using imported network 
% TFNETCLASSIFY loads the imported TensorFlow pretrained network
% 'digitsDAGnet.mat', reads the image in imFile, and predicts the image
% label using the imported network.
load("digitsDAGnet.mat","net");

 Deploy Imported TensorFlow Model with MATLAB Compiler

19-481



I = imread(imFile);
label = classify(net, I);
disp(label)    
end

Create Executable Using mcc

Compile the classification function into the standalone executable tfNetClassify.exe by using the
mcc function.

mcc -m tfNetClassify.m

The executable in this example was created on a Windows® 10 system.

If you are using a MATLAB version older than R2021b, you must manually specify the path to the
Keras layers folder. The layers folder is located in the support package folder. First, display the path
to the Keras layers folder, and then create the executable file by using the mcc function.

fullfile(supportPKGFolder,'\toolbox\nnet\supportpackages\keras_importer\+nnet\+keras\+layer')
mcc -m tfNetClassify.m...
    -a 'C:\ProgramData\MATLAB\SupportPackages\R2020b\toolbox\nnet\supportpackages\keras_importer\+nnet\+keras\+layer'...
    -n

Classify the image testImg.png by using the executable file.

!tfNetClassify.exe testImg.png

     5  
 

Create Executable Using Application Compiler App

Start the Application Compiler app by using the deploytool (MATLAB Compiler) function.

deploytool

In the MATLAB Compiler window, click Application Compiler. (You can also open the app by
selecting it from the apps gallery, available from the Apps tab.)

In the Main File section of the Compiler tab, add the main file of the application by clicking the plus
sign. In the Add Files dialog box, specify the main file as the classification function
tfNetClassify.m.

The app suggests software support packages from the installed support packages, which the
executable can include. Because you have installed the Deep Learning Toolbox Converter for
TensorFlow Models and Deep Learning Toolbox Converter for ONNX Model Format support
packages, the app displays both. You must select the Deep Learning Toolbox Converter for
TensorFlow Models support package. Selecting the Deep Learning Toolbox Converter for ONNX

19 Import, Export, and Customization

19-482



Model Format support package does not influence the execution of the application, but unnecessarily
increases the application footprint.

In the Package section, click Package to save the standalone application.

The software compiles the standalone application. The default name for the output folder is
tfNetClassify, and the executable file tfNetClassify.exe is located in the subfolder
for_redistribution_files_only.

Copy the image file testImg.png to the folder that contains the executable file. Change the current
folder to the folder containing the executable file.

copyfile("testImg.png","tfNetClassify\for_redistribution_files_only")
cd("tfNetClassify\for_redistribution_files_only")

Classify the image testImg.png by using the executable file.

!tfNetClassify.exe testImg.png

See Also
Functions
importTensorFlowNetwork | importONNXNetwork | importNetworkFromPyTorch |
importKerasNetwork | mcc | deploytool

 Deploy Imported TensorFlow Model with MATLAB Compiler

19-483



Apps
Application Compiler

Related Examples
• “Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX” on page 19-

464
• “Pretrained Deep Neural Networks” on page 1-11
• “Load Pretrained Networks for Code Generation” (MATLAB Coder)
• “Networks and Layers Supported for Code Generation” (MATLAB Coder)
• “Create Standalone Application from MATLAB Function Using Application Compiler App”

(MATLAB Compiler)

19 Import, Export, and Customization

19-484



Select Function to Import ONNX Pretrained Network
Deep Learning Toolbox Converter for ONNX Model Format provides three functions to import a
pretrained ONNX (Open Neural Network Exchange) network: importONNXNetwork,
importONNXLayers, and importONNXFunction.

This flow chart illustrates which import function best suits different scenarios.

Note By default, importONNXNetwork and importONNXLayers try to generate a custom layer
when the software cannot convert an ONNX operator into an equivalent built-in MATLAB layer. For a
list of operators for which the software supports conversion, see “ONNX Operators Supported for
Conversion into Built-In MATLAB Layers”.

importONNXNetwork and importONNXLayers save the generated custom layers in the package
+PackageName in the current folder.

importONNXNetwork and importONNXLayers do not automatically generate a custom layer for
each ONNX operator that is not supported for conversion into a built-in MATLAB layer.

Decisions
This table describes each decision in the workflow for selecting an ONNX import function.

 Select Function to Import ONNX Pretrained Network

19-485



Decision Description
Are all the ONNX operators supported for
conversion into equivalent built-in MATLAB
layers or can the software automatically generate
custom layers?

• If the imported network contains an ONNX
operator not supported for conversion into a
built-in MATLAB layer (see “ONNX Operators
Supported for Conversion into Built-In
MATLAB Layers”) and importONNXNetwork
does not generate a custom layer, then
importONNXNetwork returns an error.

• If the imported network contains an ONNX
operator not supported for conversion into a
built-in MATLAB layer and
importONNXLayers does not generate a
custom layer, then importONNXLayers
inserts a placeholder layer in place of the
unsupported layer.

• importONNXFunction supports most ONNX
operators. For more information, see “ONNX
Operators That importONNXFunction
Supports”.

Will you deploy the imported network? If you use importONNXNetwork or
importONNXLayers, you can generate code for
the imported network. To create a DAGNetwork
object for code generation, see “Load Pretrained
Networks for Code Generation” (MATLAB Coder).

Will you load the imported network with Deep
Network Designer?

If you use importONNXNetwork or
importONNXLayers, you can load the imported
network with the Deep Network Designer app.

If you retrain the imported network, will you use
a custom training loop?

• If you use importONNXFunction, you can
retrain the imported network only with a
custom training loop. For an example, see
“Train Imported ONNX Function Using
Custom Training Loop”.

• Use importONNXNetwork with
TargetNetwork specified as "dlnetwork"
to import the network as a dlnetwork object.
A dlnetwork enables support for custom
training loops using automatic differentiation.

• Use importONNXLayers with
TargetNetwork specified as "dlnetwork"
to import the network as a LayerGraph
object compatible with a dlnetwork object.
Then convert the layer graph to a dlnetwork
by using dlnetwork.

• For more information about training options,
see “Train Deep Learning Model in MATLAB”
on page 19-3.

19 Import, Export, and Customization

19-486



Actions
This table describes each action in the workflow for selecting an ONNX import function.

Action Description
Use importONNXNetwork importONNXNetwork returns a DAGNetwork or

dlnetwork object that is ready to use for
prediction (for more information, see the
TargetNetwork name-value argument). Predict
class labels by using the classify function on
the DAGNetwork object or the predict function
on the dlnetwork object.

Use importONNXLayers importONNXLayers returns a LayerGraph
object compatible with a DAGNetwork or
dlnetwork object (for more information, see the
TargetNetwork name-value argument).
importONNXLayers inserts placeholder layers in
the place of unsupported layers. Find and replace
the placeholder layers. Then, you can assemble
the layer graph by using assembleNetwork,
which returns a DAGNetwork object, or convert
the layer graph to a dlnetwork object by using
dlnetwork.

Use importONNXFunction importONNXFunction returns an
ONNXParameters object, which contains the
network parameters, and a model function (see
“Imported ONNX Model Function”), which
contains the network architecture. The
ONNXParameters object and the model function
are ready to use for prediction. For an example,
see “Predict Using Imported ONNX Function”.

Find and replace the placeholder layers To find the names and indices of the placeholder
layers in the imported network, use the
findPlaceholderLayers function. You then
can replace a placeholder layer with a new layer
that you define. To replace a layer, use
replaceLayer.

See Also
importONNXNetwork | importONNXLayers | importONNXFunction | DAGNetwork | dlnetwork |
layerGraph | ONNXParameters

More About
• “Pretrained Deep Neural Networks” on page 1-11
• “Train Deep Learning Model in MATLAB” on page 19-3
• “Assemble Network from Pretrained Keras Layers” on page 19-201
• “Train Network Using Custom Training Loop” on page 19-239

 Select Function to Import ONNX Pretrained Network

19-487



• “Define Custom Deep Learning Layers” on page 19-9
• “Load Pretrained Networks for Code Generation” (MATLAB Coder)

19 Import, Export, and Customization

19-488



Classify Images in Simulink with Imported TensorFlow Network

This example shows how to import a pretrained TensorFlow™ network in the saved model format by
using importTensorFlowNetwork, and then use the Predict block to classify a sequence of images
in Simulink®. The imported network contains layers that are not supported for conversion into built-
in MATLAB® layers. importTensorFlowNetwork automatically generates custom layers when you
import these layers. The Predict block predicts responses for the data at the input by using the
trained network that you specify using the block parameters.

importTensorFlowNetwork requires the Deep Learning Toolbox™ Converter for TensorFlow
Models support package. If this support package is not installed, then importTensorFlowNetwork
provides a download link.

Load Image Data

Load the digit sample data as an image datastore. imageDatastore automatically labels the images
based on folder names and stores the data as an ImageDatastore object.

digitDatasetPath = fullfile(matlabroot,"toolbox","nnet","nndemos", ...
    "nndatasets","DigitDataset");
imds = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true,LabelSource="foldernames");

For reproducibility, specify the seed for the MATLAB random number generator. Randomly select
eight images from the image datastore, create the array of images inputIms, and display the
selected images by using montage (Image Processing Toolbox).

rng("default")
perm = randperm(10000,8);
for i = 1:8
    inputIms(:,:,:,i) = imread(imds.Files{perm(i)});
end
montage(inputIms,size=[1 NaN]);

Import Pretrained TensorFlow Network

Specify the model folder that contains the pretrained network digitsDAGnetwithnoise in the
saved model format. digitsDAGnetwithnoise can classify images of digits.

if ~exist("digitsDAGnetwithnoise","dir")
    unzip("digitsDAGnetwithnoise.zip")
end
modelFolder = "./digitsDAGnetwithnoise";

Specify the class names.

 Classify Images in Simulink with Imported TensorFlow Network

19-489



classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import a TensorFlow network in the saved model format. By default, importTensorFlowNetwork
imports the network as a DAGNetwork object.

net = importTensorFlowNetwork(modelFolder,Classes=classNames);

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation. Assembling network...
Import finished.

Analyze the imported network. analyzeNetwork displays an interactive plot of the network
architecture and a table containing information about the network layers.

analyzeNetwork(net)

The imported network contains layers that are not supported for conversion into built-in MATLAB
layers. The software automatically generates the custom layers gaussian_noise_1 and
gaussian_noise_2. The function importTensorFlowNetwork saves each generated custom layer
to a separate .m file in the package +digitsDAGnetwithnoise in the current folder. For more
information on these generated custom layers, see “Import TensorFlow Network with Autogenerated
Custom Layers”.

Save the imported network in a MAT file.

19 Import, Export, and Customization

19-490



filename = "digitsNet.mat";
save(filename,"net")

Create Simulink Model

This example provides the Simulink model slexDigitsImportedNetworkPredictExample.slx.
You can open the Simulink model (provided in this example) or create a new model by following the
steps described in this section.

Open the Simulink model slexDigitsImportedNetworkPredictExample.slx.

SimMdlName = "slexDigitsImportedNetworkPredictExample"; 
open_system(SimMdlName)

1. To create a new Simulink model, open the Blank Model template and add the Predict block from
the Deep Learning Toolbox™ library. The Predict block predicts responses for the data at the input by
using the trained network that you specify using the block parameters. The input to the block can be
an h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels
of the images, respectively, and N is the number of images.

Double-click the Predict block to open the Block Parameters dialog box. Select Network from MAT-
file for the Network parameter. Click Browse in the File Path section to specify the network as
the digitsNet.mat network in the current folder.

 Classify Images in Simulink with Imported TensorFlow Network

19-491



2. Insert the Video from Workspace block from the Computer Vision Toolbox™ library. Double-click
the Video from Workspace block to open the Block Parameters dialog box. Specify Signal as
inputIms, Sample time as 1, and Form output after final value by as Holding final value.

19 Import, Export, and Customization

19-492



3. Check if the size of the input images matches the network input size. If they do not match, you
must resize the input data by adding the Resize block from the Computer Vision Toolbox library to the
model.

Display the size of the image and the input size of the network.

size(inputIms)

ans = 1×4

    28    28     1     8

netInputSize = net.Layers(1).InputSize

netInputSize = 1×3

    28    28     1

 Classify Images in Simulink with Imported TensorFlow Network

19-493



The input is a sequence of eight grayscale (one-channel) images that are 28-by-28 pixels in size. The
image size matches the network input size.

4. Add a To Workspace block to the model and change the variable name to yPred. Connect the Video
from Workspace block to the input of the Predict block and the To Workspace block to the output of
the Predict block.

5. Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
Under Solver selection, set Type to Fixed-step, and set Solver to discrete (no continuous
states).

Predict Using Simulink Model

Simulate the model and save the simulation output to modelOutput. The field
modelOutput.yPred.Data contains the classification results.

modelOutput = sim(SimMdlName)

modelOutput = 
  Simulink.SimulationOutput:

                   tout: [8x1 double] 
                  yPred: [1x1 timeseries] 

     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 

Display the sequence of images and the classification results.

tiledlayout(1,12,TileSpacing="None");
for i = 1:size(inputIms,4)
    nexttile
    imshow(inputIms(:,:,:,i))
    label = modelOutput.yPred.Data(:,:,i)==1;
    title([classNames{label}],FontSize=20)
end

See Also
importTensorFlowNetwork | importKerasNetwork | importONNXNetwork |
importCaffeNetwork

Related Examples
• “GPU Code Generation for Blocks from the Deep Neural Networks Library” (GPU Coder)

19 Import, Export, and Customization

19-494



• “Deploy Imported TensorFlow Model with MATLAB Compiler” on page 19-480
• “Assemble Network from Pretrained Keras Layers” on page 19-201

 Classify Images in Simulink with Imported TensorFlow Network

19-495



Inference Comparison Between TensorFlow and Imported
Networks for Image Classification

This example shows how to compare the inference (prediction) results of a TensorFlow™ network and
the imported network in MATLAB® for an image classification task. First, use the network for
prediction in TensorFlow and save the prediction results. Then, import the network in MATLAB using
the importTensorFlowNetwork function and predict the classification outputs for the same images
used to predict in TensorFlow.

This example provides the supporting files digitsNet.zip and TFData.mat. To access these
supporting files, open the example in Live Editor.

Image Data Set

Load the Digits data set. The data contains images of digits and the corresponding labels.

[XTest,YTest] = digitTest4DArrayData;

Create the test data that the TensorFlow network uses for prediction. Permute the 2-D image data
from the Deep Learning Toolbox™ ordering (HWCN) to the TensorFlow ordering (NHWC), where H, W,
and C are the height, width, and number of channels of the images, respectively, and N is the number
of images.

x_test = permute(XTest,[4,1,2,3]);
y_test = double(string(YTest));

Save the data to a MAT file.

filename = "digitsMAT.mat";
save(filename,"x_test","y_test")

Inference with Pretrained Network in TensorFlow

Load a pretrained TensorFlow network for image classification in Python® and classify new images.

Import libraries.

import tensorflow as tf
import scipy.io as sio

Load the test data set from digitsMAT.mat.

data = sio.loadmat("digitsMAT.mat")
x_test = data["x_test"]
y_test = data["y_test"]

Load the digitsNet pretrained TensorFlow model, which is in the saved model format. If the folder
is archived in digitsNet.zip, extract the archived contents of digitsNet.zip into the current
folder.

from tensorflow import keras
model = keras.models.load_model("digitsNet")

Display a summary of the model.

model.summary()

19 Import, Export, and Customization

19-496



Classify new digit images.

scores = model.predict(tf.expand_dims(x_test,-1))

Save the classification scores in the MAT file TFData.mat.

sio.savemat("TFData.mat", 
            {"scores_tf":scores})

Inference with Imported Network in MATLAB

Import the pretrained TensorFlow network into MATLAB using importTensorFlowNetwork and
classify the same images as in TensorFlow.

Specify the model folder, which contains the digitsNet TensorFlow model in the saved model
format.

if ~exist("digitsNet","dir")
    unzip("digitsNet.zip")
end
modelFolder = "./digitsNet";

Specify the class names.

classNames = string(0:9);

Import the TensorFlow network in the saved model format. By default, importTensorFlowNetwork
imports the network as a DAGNetwork object.

net = importTensorFlowNetwork(modelFolder,Classes=classNames);

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation. Assembling network...
Import finished.

 Inference Comparison Between TensorFlow and Imported Networks for Image Classification

19-497



Display the network layers.

net.Layers

ans = 
  13x1 Layer array with layers:

     1   'conv2d_input'                  Image Input             28x28x1 images
     2   'conv2d'                        2-D Convolution         8 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'conv2d_relu'                   ReLU                    ReLU
     4   'max_pooling2d'                 2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   'conv2d_1'                      2-D Convolution         16 3x3x8 convolutions with stride [1  1] and padding [0  0  0  0]
     6   'conv2d_1_relu'                 ReLU                    ReLU
     7   'max_pooling2d_1'               2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     8   'flatten'                       Flatten                 Flatten activations into 1-D assuming C-style (row-major) order
     9   'dense'                         Fully Connected         100 fully connected layer
    10   'dense_relu'                    ReLU                    ReLU
    11   'dense_1'                       Fully Connected         10 fully connected layer
    12   'dense_1_softmax'               Softmax                 softmax
    13   'ClassificationLayer_dense_1'   Classification Output   crossentropyex with '0' and 9 other classes

Predict class labels and classification scores using the imported network.

[labels_dlt,scores_dlt] = classify(net,XTest);

For this example, the data XTest is in the correct ordering. Note that if the image data XTest is in
TensorFlow dimension ordering, you must convert XTest to the Deep Learning Toolbox ordering by
entering Xtest = permute(Xtest,[2 3 4 1]).

Compare Accuracy

Load the TensorFlow network scores from TFData.mat.

load("TFData.mat")

Compare the inference results (classification scores) of the TensorFlow network and the imported
network.

diff = max(abs(scores_dlt-scores_tf),[],"all")

diff = single
    7.3314e-06

The difference between inference results is negligible, which strongly indicates that the TensorFlow
network and the imported network are the same.

As a secondary check, you can compare the classification labels. First, compute the class labels
predicted by the TensorFlow network. Then, compare the labels predicted by the TensorFlow network
and the imported network.

[~,ind] = max(scores_tf,[],2);
labels_tf = categorical(classNames(ind))';
isequal(labels_dlt,labels_tf)

ans = logical
   1

The labels are the same, which indicates that the two networks are the same.

19 Import, Export, and Customization

19-498



Plot confusion matrix charts for the labels predicted by the TensorFlow network and the imported
network.

tiledlayout(2,1)
nexttile
confusionchart(YTest,labels_tf)
title("TensorFlow Predictions")
nexttile
confusionchart(YTest,labels_dlt)
title("Deep Learning Toolbox Predictions")

See Also
importTensorFlowNetwork | importTensorFlowLayers

 Inference Comparison Between TensorFlow and Imported Networks for Image Classification

19-499



Inference Comparison Between ONNX and Imported Networks
for Image Classification

This example shows how to compare the inference (prediction) results of an ONNX™ model and the
imported MATLAB® network for an image classification task. First, use the network for prediction in
ONNX and save the prediction results. Then, import the network in MATLAB using the
importONNXNetwork function and predict the classification outputs for the same images used to
predict in ONNX.

You can also use the workflow in this example to compare a MATLAB deep learning network and the
exported model into ONNX. Use exportONNXNetwork to export a MATLAB network to the ONNX
model format.

Create ONNX Model and Image Data Set

Generate an ONNX model of the squeezenet convolutional neural network.

squeezeNet = squeezenet;
exportONNXNetwork(squeezeNet,"squeezeNet.onnx");

Create the image data set.

Im1 = imresize(imread("peacock.jpg"),[227 227]);
Im2 = imresize(imread("sherlock.jpg"),[227 227]);
Im3 = imresize(imread("peppers.png"),[227 227]);
Im4 = imresize(imread("lighthouse.png"),[227 227]);

X = cat(4,Im1,Im2,Im3,Im4);

Create the data set that the ONNX model uses for prediction. Permute the 2-D image data from the
Deep Learning Toolbox™ ordering (HWCN) to the ONNX ordering (NCHW), where H, W, and C are the
height, width, and number of channels of the images, respectively, and N is the number of images.

X_onnx = single(X);
X_onnx = permute(X_onnx,[4,3,1,2]);

Save the data set to a MAT file.

filename = "TestIms.mat";
save(filename,"X")

Inference with ONNX Network

Load a pretrained ONNX network for image classification in Python® and classify new images.

Import libraries.

import onnxruntime as rt
import scipy.io as sio

Load the image data from TestIms.mat.

data = sio.loadmat("TestIms.mat")
X = data["X_onnx"]

Load the pretrained ONNX network.

19 Import, Export, and Customization

19-500



sess = rt.InferenceSession("squeezeNet.onnx")
input_name = sess.get_inputs()[0].name

Classify new images.

scores = sess.run(None,{input_name:X})

Save the classification scores in the MAT file ONNXData.mat.

sio.savemat("ONNXData.mat", 
            {"scores_onnx":scores})

Inference with Imported Network

Import the pretrained ONNX network into MATLAB using importONNXNetwork and classify the
same images as with the ONNX network.

Specify the class names.

ClassNames = squeezeNet.Layers(end).Classes;

Import the pretrained squeezeNet.onnx model and specify the classes. By default,
importONNXNetwork imports the network as a DAGNetwork object.

net = importONNXNetwork("squeezeNet.onnx",Classes=ClassNames)

net = 
  DAGNetwork with properties:

         Layers: [70x1 nnet.cnn.layer.Layer]
    Connections: [77x2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_prob'}

Predict class labels and classification scores using the imported network.

[labels_dlt,scores_dlt] = classify(net,X);

For this example, the data X is in the correct ordering. Note that if the image data X is in ONNX
dimension ordering, you must convert X to the Deep Learning Toolbox ordering by entering X =
permute(X,[3,4,2,1]).

Display the sequence of images and the classification results.

t = tiledlayout(2,2);
for i = 1:size(X,4)
    nexttile
    imshow(X(:,:,:,i))
    title([ClassNames(labels_dlt(i))],FontSize=12)
end
t.TileSpacing = "compact";
t.Padding = "compact";

 Inference Comparison Between ONNX and Imported Networks for Image Classification

19-501



Compare Accuracy

Load the ONNX network scores from ONNXData.mat, attached to this example as a supporting file.
To access ONNXData.zip, open the example in Live Editor.

load("ONNXData.mat")

Compare the inference results (classification scores) of the ONNX network (scores_onnx) and the
imported network (scores_dlt).

diff = max(abs(scores_dlt-squeeze(scores_onnx)),[],"all")

diff = single
    4.8578e-06

The difference between inference results is negligible, which strongly indicates that the ONNX
network and the imported network are the same.

As a secondary check, you can compare the classification labels. First, compute the class labels
predicted by the ONNX network. Then, compare the labels predicted by the ONNX network and the
imported network.

[~,ind] = max(squeeze(scores_onnx),[],2);
labels_onnx = categorical(ClassNames(ind))

labels_onnx = 4x1 categorical
     peacock 
     golden retriever 

19 Import, Export, and Customization

19-502



     bell pepper 
     beacon 

isequal(labels_dlt,labels_onnx)

ans = logical
   1

The labels are the same, which indicates that the two networks are the same.

See Also
importONNXNetwork | importONNXLayers

 Inference Comparison Between ONNX and Imported Networks for Image Classification

19-503



List of Functions with dlarray Support

Deep Learning Toolbox Functions with dlarray Support
These tables list and briefly describe the Deep Learning Toolbox functions that operate on dlarray
objects.

Deep Learning Operations

Function Description
attention The attention operation focuses on parts of the

input using weighted multiplication operations.
avgpool The average pooling operation performs

downsampling by dividing the input into pooling
regions and computing the average value of each
region.

batchnorm The batch normalization operation normalizes the
input data across all observations for each
channel independently. To speed up training of
the convolutional neural network and reduce the
sensitivity to network initialization, use batch
normalization between convolution and nonlinear
operations such as relu.

crossentropy The cross-entropy operation computes the cross-
entropy loss between network predictions and
target values for single-label and multi-label
classification tasks.

crosschannelnorm The cross-channel normalization operation uses
local responses in different channels to normalize
each activation. Cross-channel normalization
typically follows a relu operation. Cross-channel
normalization is also known as local response
normalization.

ctc The CTC operation computes the connectionist
temporal classification (CTC) loss between
unaligned sequences.

dlconv The convolution operation applies sliding filters
to the input data. Use the dlconv function for
deep learning convolution, grouped convolution,
and channel-wise separable convolution.

dlode45 The neural ordinary differential equation (ODE)
operation returns the solution of a specified ODE.

dltranspconv The transposed convolution operation upsamples
feature maps.

19 Import, Export, and Customization

19-504



Function Description
embed The embed operation converts numeric indices to

numeric vectors, where the indices correspond to
discrete data. Use embeddings to map discrete
data such as categorical values or words to
numeric vectors.

fullyconnect The fully connect operation multiplies the input
by a weight matrix and then adds a bias vector.

gelu The Gaussian error linear unit (GELU) activation
operation weights the input by its probability
under a Gaussian distribution.

groupnorm The group normalization operation normalizes
the input data across grouped subsets of
channels for each observation independently. To
speed up training of the convolutional neural
network and reduce the sensitivity to network
initialization, use group normalization between
convolution and nonlinear operations such as
relu.

gru The gated recurrent unit (GRU) operation allows
a network to learn dependencies between time
steps in time series and sequence data.

huber The Huber operation computes the Huber loss
between network predictions and target values
for regression tasks. When the
'TransitionPoint' option is 1, this is also
known as smooth L1 loss.

instancenorm The instance normalization operation normalizes
the input data across each channel for each
observation independently. To improve the
convergence of training the convolutional neural
network and reduce the sensitivity to network
hyperparameters, use instance normalization
between convolution and nonlinear operations
such as relu.

l1loss The L1 loss operation computes the L1 loss given
network predictions and target values. When the
Reduction option is "sum" and the
NormalizationFactor option is "batch-
size", the computed value is known as the mean
absolute error (MAE).

l2loss The L2 loss operation computes the L2 loss (based
on the squared L2 norm) given network
predictions and target values. When the
Reduction option is "sum" and the
NormalizationFactor option is "batch-
size", the computed value is known as the mean
squared error (MSE).

 List of Functions with dlarray Support

19-505



Function Description
layernorm The layer normalization operation normalizes the

input data across all channels for each
observation independently. To speed up training
of recurrent and multilayer perceptron neural
networks and reduce the sensitivity to network
initialization, use layer normalization after the
learnable operations, such as LSTM and fully
connect operations.

leakyrelu The leaky rectified linear unit (ReLU) activation
operation performs a nonlinear threshold
operation, where any input value less than zero is
multiplied by a fixed scale factor.

lstm The long short-term memory (LSTM) operation
allows a network to learn long-term dependencies
between time steps in time series and sequence
data.

maxpool The maximum pooling operation performs
downsampling by dividing the input into pooling
regions and computing the maximum value of
each region.

maxunpool The maximum unpooling operation unpools the
output of a maximum pooling operation by
upsampling and padding with zeros.

mse The half mean squared error operation computes
the half mean squared error loss between
network predictions and target values for
regression tasks.

onehotdecode The one-hot decode operation decodes probability
vectors, such as the output of a classification
network, into classification labels.

The input A can be a dlarray. If A is formatted,
the function ignores the data format.

relu The rectified linear unit (ReLU) activation
operation performs a nonlinear threshold
operation, where any input value less than zero is
set to zero.

sigmoid The sigmoid activation operation applies the
sigmoid function to the input data.

softmax The softmax activation operation applies the
softmax function to the channel dimension of the
input data.

19 Import, Export, and Customization

19-506



dlarray-Specific Functions

Function Description
dims This function returns the data format of a

dlarray.
dlfeval This function evaluates a dlarray function using

automatic differentiation.
dlgradient This function computes gradients using automatic

differentiation.
extractdata This function extracts the data from a dlarray.
finddim This function finds the indices of dlarray

dimensions with a given dimension label.
stripdims This function removes the data format from a

dlarray.

Domain-Specific Functions with dlarray Support
These tables list and briefly describe the domain-specific functions that operate on dlarray objects.

Computer Vision

Function Description
focalCrossEntropy Calculate the focal cross-entropy loss between

two dlarray objects that represent predicted
and target classification labels.

generalizedDice Measure the similarity between two dlarray
objects that represent segmented images, using a
generalized Dice metric that accounts for class
weighting.

roialign Perform ROI pooling of dlarray data.

Image Processing

Function Description
depthToSpace Rearrange dlarray data from the depth

dimension into spatial blocks.
dlresize Resize the spatial dimensions of a dlarray.
multissim Measure the similarity between two dlarray

objects that represent 2-D images, using the
multiscale structural similarity (MS-SSIM)
metric.

multissim3 Measure the similarity between two dlarray
objects that represent 3-D images, using the 3-D
MS-SSIM metric.

 List of Functions with dlarray Support

19-507



Function Description
psnr Measure the similarity between two dlarray

objects that represent images using the peak
signal-to-noise ratio (PSNR) metric.

spaceToDepth Rearrange spatial blocks of dlarray data into
the depth dimension.

ssim Measure the similarity between two dlarray
objects that represent images using the
structural similarity (SSIM) metric.

Signal Processing

Function Description
dlcwt Compute continuous wavelet transform
dlmodwt Compute maximal overlap discrete wavelet

transform and multiresolution analysis.
dlstft Compute short-time Fourier transform.

Wireless Communications

Function Description
ofdmmod Modulate a input frequency-domain signal

represented in a dlarray object using
orthogonal frequency division multiplexing
(OFDM). Only unformatted input arrays are
supported.

ofdmdemod Demodulate a time-domain signal represented in
a dlarray object using orthogonal frequency
division multiplexing (OFDM). Only unformatted
input arrays are supported.

MATLAB Functions with dlarray Support
Many MATLAB functions operate on dlarray objects. These tables list the usage notes and
limitations for these functions when you use dlarray arguments.

Unary Element-wise Functions

Function Notes and Limitations
abs The output dlarray has the same data format as

the input dlarray.acos
acosh
acot
acsc
angle

19 Import, Export, and Customization

19-508



Function Notes and Limitations
asec
asin
asinh
atan
atan2
atanh
conj
cos
cosh
cot
csc
erf
exp
imag
log
real
reallog
realsqrt
sec
sign
sin
sinh
sqrt
tan
tanh
uminus, -
uplus, +

Binary Element-wise Operators

Function Notes and Limitations
complex For the one-input syntax, the output dlarray has

the same data format as the input dlarray

For the two-input syntax, if dlarray inputs are
formatted, their data formats must match.

minus, - If the two dlarray inputs are formatted, then
the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the

plus, +
power, .^

 List of Functions with dlarray Support

19-509



Function Notes and Limitations
rdivide, ./ inputs. For more information, see “Implicit

Expansion with Data Formats” on page 19-518.realpow
times, .*

Reduction Functions

Function Notes and Limitations
mean • The output dlarray has the same data format

as the input dlarray.
• The 'omitnan' option is not supported.
• If the input dlarray is on the GPU, the

'native' option is not supported.
std • The output dlarray has the same data format

as the input dlarray.
• The 'omitnan' option is not supported.

prod • The output dlarray has the same data format
as the input dlarray.

• The 'omitnan' option is not supported.
sum

Extrema Functions

Function Notes and Limitations
ceil The output dlarray has the same data format as

the input dlarray.
eps • The output dlarray has the same data format

as the input dlarray.
• Use eps(ones('like', x)) to get a scalar

epsilon value based on the data type of a
dlarray x.

fix The output dlarray has the same data format as
the input dlarray.

floor The output dlarray has the same data format as
the input dlarray.

max • When you find the maximum or minimum
elements of a single dlarray, the output
dlarray has the same data format as the
input dlarray.

• When you find the maximum or minimum
elements between two formatted dlarray
inputs, the output dlarray has a combination
of both of their data formats. The function
uses implicit expansion to combine the inputs.
For more information, see “Implicit Expansion
with Data Formats” on page 19-518.

19 Import, Export, and Customization

19-510



Function Notes and Limitations
min • The index output argument is not traced and

cannot be used with automatic differentiation.
For more information, see “Use Automatic
Differentiation In Deep Learning Toolbox” on
page 19-219.

rescale • If the first input dlarray A is unformatted, all
additional inputs must be unformatted.

• If the first input dlarray A is formatted, all
additional inputs must either be unformatted
scalars, or have data formats that are a subset
of the data format of A. In this case, each
dimension must either be singleton or match
the length of the corresponding dimension of
A.

round • Only the syntax Y = round(X) is supported.
• The output dlarray has the same data format

as the input dlarray.

Fourier Transforms

Function Notes and Limitations
fft Only unformatted input arrays are supported.
ifft • Only unformatted input arrays are supported.

• When you use the 'symmetric' option, ifft
treats the input Y as exactly symmetric. If you
compute the derivative using automatic
differentiation, then the derivative is also
exactly symmetric. If Y is non-symmetric, then
the function and gradient behavior might not
match. To ensure that function and gradient
behavior match for non-symmetric inputs,
explicitly symmetrize Y.

Other Math Operations

Function Notes and Limitations
colon, : • The supported operations are:

• a:b
• a:b:c

For information on indexing into a dlarray,
see “Indexing” on page 19-519.

• All inputs must be real scalars. The output
dlarray is unformatted.

 List of Functions with dlarray Support

19-511



Function Notes and Limitations
interp1 • Sample points input x must be a finite,

increasing vector without repeating elements.
• method must be 'linear' or 'nearest'.
• The piecewise polynomial syntax ('pp') is not

supported.
• Only the sample values input v can be a

formatted dlarray. All other inputs must be
unformatted. If v is a formatted dlarray,
query points input xq must be a vector, and
the output vq has the same data format as v.

mrdivide, / The second dlarray input must be a scalar. The
output dlarray has the same data format as the
first dlarray input.

mtimes, * • One input can be a formatted dlarray only
when the other input is an unformatted scalar.
In this case, the output dlarray has the same
data format as the formatted dlarray input.

• Multiplying a dlarray with a non-dlarray
sparse matrix is supported only when both
inputs are non-scalar.

ode45 The supported syntaxes are:

• [t,y] = ode45(odefun,tspan,y0)
• [t,y] =

ode45(odefun,tspan,y0,options)

At least one of y0 and tspan must be an
unformatted dlarray object.

If tspan is a dlarray object, then the output t
is an unformatted dlarray object. If y0 is a
dlarray object, then the output y is an
unformatted dlarray object.

For dlarray input, the ode45 function does not
support the OutputFcn, Mass, NonNegative,
and Events options.

For dlarray input, the ode45 function does not
support acceleration using dlaccelerate.

Tip For neural ODE workflows, use dlode45.
pagemtimes One input can be a formatted dlarray only when

the other input is unformatted, with scalar pages.
In this case, the output dlarray has the same
data format as the formatted dlarray input.

19 Import, Export, and Customization

19-512



Logical Operations

Function Notes and Limitations
all The output dlarray has the same data format as

the input dlarray.
and, & If the two dlarray inputs are formatted, then

the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” on page 19-518.

any The output dlarray has the same data format as
the input dlarray.

eq, == If the two dlarray inputs are formatted, then
the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” on page 19-518.

ge, >=
gt, >
le, <=
lt, <
ne, ~=
not, ~ The output dlarray has the same data format as

the input dlarray.
or, | If the two dlarray inputs are formatted, then

the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” on page 19-518.

xor

Size Manipulation Functions

Function Notes and Limitations
reshape The output dlarray is unformatted, even if the

input dlarray is formatted.
squeeze Two-dimensional dlarray objects are unaffected

by squeeze. If the input dlarray is formatted,
the function removes dimension labels belonging
to singleton dimensions. If the input dlarray has
more than two dimensions and its third and
above dimensions are singleton, then the function
discards these dimensions and their labels.

 List of Functions with dlarray Support

19-513



Transposition Operations

Function Notes and Limitations
ctranspose, ' If the input dlarray is formatted, then the labels

of both dimensions must be the same. The
function performs transposition implicitly, and
transposes directly only if necessary for other
operations.

permute If the input dlarray is formatted, then the
permutation must be among only those
dimensions that have the same label. The
function performs permutations implicitly, and
permutes directly only if necessary for other
operations.

transpose, .' If the input dlarray is formatted, then the labels
of both dimensions must be the same. The
function performs transposition implicitly, and
transposes directly only if necessary for other
operations.

Concatenation Functions

Function Notes and Limitations
cat The dlarray inputs must have matching formats

or be unformatted. Mixed formatted and
unformatted inputs are supported. If any
dlarray inputs are formatted, then the output
dlarray is formatted with the same data format.

horzcat
vertcat

Conversion Functions

Function Notes and Limitations
cast • cast(A,newdatatype) copies the data in

the dlarray A into a dlarray of the
underlying data type newdatatype. The
newdatatype option must be 'double',
'single', or 'logical'. The output
dlarray is formatted with the same data
format as A.

• cast(A,'like',Y) returns an array of the
same type as Y. If Y is a dlarray, then the
output is a dlarray that has the same
underlying data type as Y. If Y is on the GPU,
then the output is on the GPU. If both A and Y
are dlarray objects, then the output
dlarray is formatted with the same data
format as the input A.

double The output is a dlarray that contains data of
type double.

19 Import, Export, and Customization

19-514



Function Notes and Limitations
gather • The supported syntaxes are:

• X = gather(A)
• [X,Y,Z,...] = gather(A,B,C,...)

• gather(A) returns a dlarray containing
numeric or logical data. This function applies
gather to the underlying data in the
dlarray A. If A is on the GPU, then X is in the
local workspace, not on the GPU. If A is in the
local workspace (not on the GPU), then X is
equal to A.

• gather(A,B,C,...) gathers multiple
arrays.

gpuArray • This function requires Parallel Computing
Toolbox.

• gpuArray returns a dlarray containing a
gpuArray. This function applies gpuArray to
the underlying data. If the input dlarray is in
the local workspace, then its data is moved to
the GPU and internally represented as a
gpuArray. If the input dlarray is on the
GPU, then the output dlarray is equal to the
input dlarray.

logical The output is a dlarray that contains data of
type logical.

single The output is a dlarray that contains data of
type single.

Comparison Functions

Function Notes and Limitations
isequal • The syntax with more than two input

arguments is not supported.
• Two dlarray inputs are equal if the numeric

data they represent are equal and if they both
are either formatted with the same data
format or unformatted.

isequaln • The syntax with more than two input
arguments is not supported.

• Two dlarray inputs are equal if the numeric
data they represent are equal (treating NaNs
as equal) and if they both are either formatted
with the same data format or unformatted.

 List of Functions with dlarray Support

19-515



Data Type and Value Identification Functions

Function Notes and Limitations
isdlarray N/A
isfinite The software applies the function to the

underlying data of an input dlarray.isfloat
isgpuarray
isinf
islogical
isnan
isnumeric
isreal
isUnderlyingType N/A
mustBeUnderlyingType
underlyingType
validateattributes If input array A is a formatted dlarray, its

dimensions are permuted to match the order
"SCBTU". Size validation is applied after
permutation.

Size Identification Functions

Function Notes and Limitations
iscolumn This function returns true for a dlarray that is

a column vector, where each dimension except
the first is a singleton. For example, a 3-by-1-by-1
dlarray is a column vector.

ismatrix This function returns true for dlarray objects
with only two dimensions and for dlarray
objects where each dimension except the first
two is a singleton. For example, a 3-by-4-by-1
dlarray is a matrix.

isrow This function returns true for a dlarray that is
a row vector, where each dimension except the
second is a singleton. For example, a 1-by-3-by-1
dlarray is a row vector.

isscalar N/A
isvector This function returns true for a dlarray that is

a row vector or column vector. Note that
isvector does not consider a 1-by-1-by-3
dlarray to be a vector.

length N/A

19 Import, Export, and Customization

19-516



Function Notes and Limitations
ndims If the input dlarray X is formatted, then

ndims(X) returns the number of dimension
labels, even if some of the labeled dimensions are
trailing singleton dimensions.

numel N/A
size If the input dlarray X is formatted, then

size(X) returns a vector of length equal to the
number of dimension labels, even if some of the
labeled dimensions are trailing singleton
dimensions.

Creator Functions

Function Notes and Limitations
false Only the 'like' syntax is supported for

dlarray.inf
nan
ones
rand
randi
randn
true
zeros

String, Character, and Categorical Functions

Function Notes and Limitations
string string(A) converts the data in the dlarray

object A to a string array.
categorical The output is a categorical array.
compose N/A
fprintf
int2str
mat2str
sprintf
num2str

Visualization Functions

Function Notes and Limitations
plot Plotting functions do not support tracing.
addpoints

 List of Functions with dlarray Support

19-517



Notable dlarray Behaviors
Implicit Expansion with Data Formats

Some functions use implicit expansion to combine two formatted dlarray inputs. The function
introduces labeled singleton dimensions (dimensions of size 1) into the inputs, as necessary, to make
their formats match. The function inserts singleton dimensions at the end of each block of dimensions
with the same label.

To see an example of this behavior, enter the following code.

X = ones(2,3,2);
X = dlarray(X,'SCB')
Y = 1:3;
Y = dlarray(Y,'C')
Z = X.*Y

X = 

  2(S) × 3(C) × 2(B) dlarray

(:,:,1) =

     1     1     1
     1     1     1

(:,:,2) =

     1     1     1
     1     1     1

Y = 

  3(C) × 1(U) dlarray

     1
     2
     3

Z = 

  2(S) × 3(C) × 2(B) dlarray

(:,:,1) =

     1     2     3
     1     2     3

(:,:,2) =

     1     2     3
     1     2     3

19 Import, Export, and Customization

19-518



In this example, Z(i,j,k) = X(i,j,k).*Y(j) for indices i, j, and k. The second dimension of Z
(labeled 'C') corresponds to the second dimension of X and the first dimension of Y.

In general, the format of one dlarray input does not need to be a subset of the format of another
dlarray input. For example, if X and Y are input arguments with dims(X) = 'SCB' and dims(Y)
= 'SSCT', then the output Z has dims(Z) = 'SSCBT'. The 'S' dimension of X maps to the first
'S' dimension of Y.

Special 'U' Dimension Behavior

The 'U' dimension of a dlarray behaves differently from other labeled dimensions in that it exhibits
the standard MATLAB singleton dimension behavior. You can think of a formatted dlarray as having
infinitely many 'U' dimensions of size 1 following the dimensions returned by size.

The software discards a 'U' label unless the dimension is nonsingleton or it is one of the first two
dimensions of the dlarray.

To see an example of this behavior, enter the following code.

X = ones(2,2);
X = dlarray(X,'SC')
X(:,:,2) = 2

X = 

  2(S) × 2(C) dlarray

     1     1
     1     1

X = 

  2(S) × 2(C) × 2(U) dlarray

(:,:,1) =

     1     1
     1     1

(:,:,2) =

     2     2
     2     2

In this example, the software expands a formatted two-dimensional dlarray to a three-dimensional
dlarray, and labels the third dimension with 'U' by default. For an example of how the 'U'
dimension is used in implicit expansion, see “Implicit Expansion with Data Formats” on page 19-518.

Indexing

Indexing with a dlarray is supported and exhibits the following behaviors:

• X(idx1,...,idxn) returns a dlarray with the same data format as X if n is greater than or
equal to ndims(X). Otherwise, it returns an unformatted dlarray.

 List of Functions with dlarray Support

19-519



• If you set Y(idx1,...,idxn) = X, then the data format of Y is preserved, although the software
might add or remove trailing 'U' dimension labels. The data format of X has no impact on this
operation.

• If you delete parts of a dlarray using X(idx1,…,idxn) = [], then the data format of X is
preserved if n is greater than or equal to ndims(X). Otherwise, X is returned unformatted.

Round-off Error

When you use a function with a dlarray input, the order of the operations within the function can
change based on the internal storage order of the dlarray. This change can result in differences on
the order of round-off for two dlarray objects that are otherwise equal.

See Also
dlarray | dlgradient | dlfeval | dlnetwork

More About
• “Define Custom Training Loops, Loss Functions, and Networks” on page 19-223
• “Train Network Using Custom Training Loop” on page 19-239
• “Specify Training Options in Custom Training Loop” on page 19-230
• “Define Model Loss Function for Custom Training Loop” on page 19-256
• “Update Batch Normalization Statistics in Custom Training Loop” on page 19-261
• “Make Predictions Using dlnetwork Object” on page 19-280
• “Train Network Using Model Function” on page 19-284
• “Update Batch Normalization Statistics Using Model Function” on page 19-298
• “Make Predictions Using Model Function” on page 19-312
• “Initialize Learnable Parameters for Model Function” on page 19-318

19 Import, Export, and Customization

19-520



Monitor Custom Training Loop Progress
When you train networks for deep learning, it is often useful to monitor the training progress. By
plotting various metrics during training, you can learn how the training is progressing. For example,
you can determine whether and how quickly the network accuracy is improving, and whether the
network is starting to overfit the training data.

To monitor and plot the training progress of a custom training loop, use a
TrainingProgressMonitor object. You can use a TrainingProgressMonitor to:

• Create animated custom metric plots and record custom metrics during training.
• Display and record training information during training.
• Stop training early.
• Track training progress with a progress bar.
• Track elapsed time.

If you are training a network using trainNetwork and the training option Plots="training-
progress", the trainNetwork function automatically plots metrics during training. For more
information, see “Monitor Deep Learning Training Progress” on page 5-192.

Create Training Progress Monitor
Create a custom training progress monitor using the trainingProgressMonitor function.

monitor = trainingProgressMonitor;

The TrainingProgressMonitor object automatically tracks elapsed time. The timer starts when
you create the TrainingProgressMonitor object. To ensure that the elapsed time accurately
reflects the training time, create the monitor object immediately before the start of your training
loop.

Training Progress Window
Control the display of the Training Progress window using the properties of the
TrainingProgressMonitor object. You can set the properties before, during, or after training. For
an example showing how to use the monitor to track training progress, see “Monitor Custom Training
Loop Progress During Training” on page 19-523.

Example Training Progress Window K
e
y

Properties and
Settings

Example Code

1 Specify metrics to plot
using the Metrics

property.

Add metric names
before training.

monitor.Metrics = ["TrainingLoss","ValidationLoss"];

 Monitor Custom Training Loop Progress

19-521



Example Training Progress Window K
e
y

Properties and
Settings

Example Code

For an example showing how to generate this figure,
see “Monitor Custom Training Loop Progress During

Training” on page 19-523.

Add new points to the
plot and save the values
in the MetricValues

property using
recordMetrics. The
recordMetrics

function requires metric
values and the training
loop step, such as an
iteration or epoch. In
the training plots, the

metric values
correspond to the y-
coordinate and the
training loop step

corresponds to the x-
coordinate.

Update metric
values during

training.

recordMetrics(monitor,iteration, ...
TrainingLoss=lossTrain, ...
ValidationLoss=lossValidation);

2 Set the x-axis label
using the XLabel

property.

Set the x-axis label
to Iteration.

monitor.XLabel = "Iteration";

3 Group metrics into a
single training subplot

using the
groupSubPlot

function.

Group the training
and validation loss

plots.

groupSubPlot(monitor, ...
    "Accuracy",["TrainingAccuracy","ValidationAccuracy"]);

4 Track training progress
using the Progress

property. The progress
value must be a number

in the range [0,100].
This value appears as a

progress bar in the
Training Progress

window.

Set the training
progress

percentage.

monitor.Progress = 100*(currentIteration/maxIterations);

5 Track training status by
setting the Status

property.

Set the current
status to

"Running".

monitor.Status = "Running";

19 Import, Export, and Customization

19-522



Example Training Progress Window K
e
y

Properties and
Settings

Example Code

6 Enable early stopping.
When you click the

Stop button, the Stop
property changes to 1
(true). The training
stops if your training
loop exits when the
Stop property is 1.

To enable early
stopping, include
the following code

in your custom
training loop.

while numEpochs < maxEpochs && ~monitor.Stop    
% Custom training loop code.   
end

7 Track the start and
elapsed time. Timing

starts when you create
the

TrainingProgressMo
nitor object.

Create a monitor
and start the timer.

monitor = trainingProgressMonitor;

8 Display information in
the Training Progress

window using the Info
property. The

information values are
displayed in the

Training Progress
window but do not

appear in plots. Use
information for text and
numerical values that
you want to display in
the Training Progress

window.

Add information
names before

training.

monitor.Info = ["Epoch","LearningRate"];

Update information
values in the Training
Progress window and
save the values in the
InfoData property

using the updateInfo
function.

Update
information values

during training.

updateInfo(monitor, ...
Epoch=currentEpoch, ...
LearningRate=learnRate);

Monitor Custom Training Loop Progress During Training

This example shows how to monitor the progress of a deep learning custom training loop.

Load Training Data

Load the digits data set as an image datastore using the imageDatastore function and specify the
folder containing the image data.

dataFolder = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");

 Monitor Custom Training Loop Progress

19-523



imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ....
    LabelSource="foldernames");

Partition the data into training and validation sets.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.6,0.2,"randomize");

The network in this example requires input images of size 28-by-28-by-1. To automatically resize the
training images, use an augmented image datastore. Specify additional augmentation operations to
perform on the training images.

inputSize = [28 28 1];
pixelRange = [-5 5];

imageAugmenter = imageDataAugmenter( ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    "DataAugmentation",imageAugmenter);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Determine the number of classes in the training data.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network

Define a network for image classification.

layers = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(5,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers);

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 19-528 section of the
example. The function takes as input the dlnetwork object and a mini-batch of input data with
corresponding targets. The function returns the loss, the gradients of the loss with respect to the
learnable parameters, and the network state.

Specify Training Options

Train the network for ten epochs with a mini-batch size of 128.

19 Import, Export, and Customization

19-524



numEpochs = 10;
miniBatchSize = 128;

Specify the options for stochastic gradient descent with momentum (SGDM) optimization. Specify an
initial learn rate of 0.01 with a decay of 0.01, and momentum of 0.9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying data
type single. Do not format the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray object if a GPU is available. Using a GPU requires a Parallel Computing Toolbox™
license and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

Prepare the training and validation data.

mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" ""]);

mbqValidation = minibatchqueue(augimdsValidation, ...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat="SSCB");

Convert the validation labels to one-hot encoded vectors and transpose the encoded labels to match
the network output format.

TValidation = onehotencode(imdsValidation.Labels,2);
TValidation = TValidation';

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Compute the number of iterations per epoch.

numObservationsTrain = numel(imdsTrain.Files);
numIterationsPerEpoch = ceil(numObservationsTrain/miniBatchSize);
numIterations = numEpochs*numIterationsPerEpoch;

Prepare Training Progress Monitor

To track the training progress, create a TrainingProgressMonitor object. Record the training loss
and accuracy, and the validation loss and accuracy during training. The training progress monitor

 Monitor Custom Training Loop Progress

19-525



automatically tracks the elapsed time since the construction of the object. To use this elapsed time as
a proxy for training time, make sure you create the TrainingProgressMonitor object close to the
start of the training loop.

monitor = trainingProgressMonitor( ...
    Metrics=["TrainingLoss","ValidationLoss","TrainingAccuracy","ValidationAccuracy"]);

Plot the training and validation metrics on the same subplot using groupSubPlot.

groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);
groupSubPlot(monitor,"Accuracy",["TrainingAccuracy","ValidationAccuracy"]);

Track the information values for the learning rate, epoch, iteration, and execution environment.

monitor.Info = ["LearningRate","Epoch","Iteration","ExecutionEnvironment"];

Set the x-axis label to Iteration and the current status to Configuring. Set the Progress
property to 0 to indicate that training has not yet started.

monitor.XLabel = "Iteration";
monitor.Status = "Configuring";
monitor.Progress = 0;

Select the execution environment and record this information in the training progress monitor using
updateInfo.

executionEnvironment = "auto";

if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    updateInfo(monitor,ExecutionEnvironment="GPU");
else
    updateInfo(monitor,ExecutionEnvironment="CPU");
end

Start Custom Training Loop

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model loss, gradients, and state using the dlfeval and modelLoss functions.
Update the network state.

• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the sgdmupdate function.
• Record and plot the training loss and accuracy using recordMetrics.
• Update and display the learning rate, epoch, and iteration using updateInfo.
• Update the progress percentage.

At the end of each epoch, record and plot the validation accuracy and loss.

Plotting the accuracy and loss of both the training and validation sets is a good way to monitor
training progress and check whether the network is overfitting. However, computing and plotting
these metrics results in longer training times.

epoch = 0;
iteration = 0;

19 Import, Export, and Customization

19-526



monitor.Status = "Running";

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);

    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(mbq);

        % Evaluate the model gradients, state, and loss using the dlfeval and 
        % modelLoss functions. Update the network state.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T);
        net.State = state;

        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);

        % Update the network parameters using the SGDM optimizer.
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);

        % Record training loss and accuracy.
        Tdecode = onehotdecode(T,classes,1);
        scores = predict(net,X);
        Y = onehotdecode(scores,classes,1);
        accuracyTrain = 100*mean(Tdecode == Y);

        recordMetrics(monitor,iteration, ...
            TrainingLoss=loss, ...
            TrainingAccuracy=accuracyTrain);

        % Update learning rate, epoch, and iteration information values.
        updateInfo(monitor, ...
            LearningRate=learnRate, ...
            Epoch=string(epoch) + " of " + string(numEpochs), ...
            Iteration=string(iteration) + " of " + string(numIterations));

        % Record validation loss and accuracy.
        if iteration == 1 || ~hasdata(mbq)
            [YTest,scoresValidation] = modelPredictions(net,mbqValidation,classes);

            lossValidation = crossentropy(scoresValidation,TValidation);
            accuracyValidation = 100*mean(imdsValidation.Labels == YTest);

            recordMetrics(monitor,iteration, ...
                ValidationLoss=lossValidation, ...
                ValidationAccuracy=accuracyValidation);
        end

        % Update progress percentage.
        monitor.Progress = 100*iteration/numIterations;

 Monitor Custom Training Loop Progress

19-527



    end
end

Update the training status.

if monitor.Stop == 1
    monitor.Status = "Training stopped";
else
    monitor.Status = "Training complete";
end

A TrainingProgressMonitor object has the same properties and methods as an
experiments.Monitor object. Therefore, you can easily adapt your plotting code for use in an
Experiment Manager setup script. For more information, see “Prepare Plotting Code for Custom
Training Experiment”.

Supporting Functions

Model Loss Function

The modelLoss function takes as input a dlnetwork object net and a mini-batch of input data X
with corresponding targets T. The function returns the loss, the gradients of the loss with respect to
the learnable parameters in net, and the network state. To compute the gradients automatically, use
the dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T)

% Forward data through network.
[Y,state] = forward(net,X);

% Calculate cross-entropy loss.
loss = crossentropy(Y,T);

19 Import, Export, and Customization

19-528



% Calculate gradients of loss with respect to learnable parameters.
gradients = dlgradient(loss,net.Learnables);

end

Model Predictions Function

The modelPredictions function takes as input a dlnetwork object net and a minibatchqueue
object mbq, and the network classes. The function computes the model predictions by iterating over
all data in the minibatchqueue object. The function uses the onehotdecode function to find the
predicted class with the highest score.

function [predictions,scores] = modelPredictions(net,mbq,classes)

predictions = [];
scores = [];

% Reset mini-batch queue.
reset(mbq);

% Loop over mini-batches.
while hasdata(mbq)
    X = next(mbq);
    Y = predict(net,X);

    % Make prediction.
    scores = [scores Y];

    % Decode labels and append to output.
    Y = onehotdecode(Y,classes,1)';
    predictions = [predictions;Y];
end

end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using these
steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the input cell array and concatenating the entries into a categorical

array along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

 Monitor Custom Training Loop Progress

19-529



end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenate into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(dataX)

% Concatenate.
X = cat(4,dataX{1:end});

end

See Also
trainingProgressMonitor | groupSubPlot | recordMetrics | updateInfo

Related Examples
• “Train Network Using Custom Training Loop” on page 19-239
• “Monitor Deep Learning Training Progress” on page 5-192
• “Detect Issues During Deep Neural Network Training” on page 5-200

19 Import, Export, and Customization

19-530



Train Bayesian Neural Network

This example shows how to train a Bayesian neural network (BNN) for image regression using Bayes
by backpropagation [1] on page 19-545. You can use a BNN to predict the rotation of handwritten
digits and model the uncertainty of those predictions.

A Bayesian neural network (BNN) is a type of deep learning network that uses Bayesian methods to
quantify the uncertainty in the predictions of a deep learning network. This example uses Bayes by
backpropagation (also known as Bayes by backprop) to estimate the distribution of the weights of a
neural network. By using a distribution of weights instead of a single set of weights, you can estimate
the uncertainty of the network predictions.

This figure shows an example of the predicted angles of rotation and the uncertainty regions for an
estimated distribution of weights.

Load Data

Load the digits data set. This data set contains synthetic images of handwritten digits together with
the corresponding angles (in degrees) by which each image is rotated.

Load the training and test images as 4-D arrays using digitTrain4DArrayData and
digitTest4DArrayData. The TTrain and TTest outputs are the rotation angles in degrees. The
training and test data sets each contain 5000 images.

[XTrain,~,TTrain] = digitTrain4DArrayData;
[XTest,~,TTest] = digitTest4DArrayData;

Create a single datastore that contains the training predictors and responses. To convert numeric
arrays to datastores, use arrayDatastore. Then, use the combine function to combine these
datastores into a single datastore.

dsXTrain = arrayDatastore(XTrain,IterationDimension=4);
dsTTrain = arrayDatastore(TTrain);
dsTrain = combine(dsXTrain,dsTTrain);

Extract the size of the responses and the number of observations.

 Train Bayesian Neural Network

19-531



numResponses = size(TTrain,2)

numResponses = 1

numObservations = numel(TTrain)

numObservations = 5000

Display 64 random training images.

idx = randperm(numObservations,64);
I = imtile(XTrain(:,:,:,idx));
figure
imshow(I)

Define Network Architecture

To model the weights and biases using a distribution rather than a single deterministic set, you must
define a probability distribution for the weights. You can define the distribution using Bayes' theorem:

P parameters |data = P data|parameters × P parameters
P data ∝ likelihood × prior

where P data|parameters = L parameters data  is the likelihood and P parameters  is the prior
distribution. In this example, you set the weights and biases to follow a Gaussian distribution
(corresponding to squared-loss). During training, the network learns the means and variances of the
Gaussian distributions, which determine the distributions of the weights and biases.

Set the prior to a Gaussian mixture model [1] on page 19-545 with two components, each with a
mean of 0 and variances sigma1 and sigma2. You can fix the variances before training or learn them
during training. Both components of the mixture model have a mixing proportion of 0.5.

Define a Bayesian neural network for image regression.

• For image input, specify an image input layer with an input size matching the training data.

19 Import, Export, and Customization

19-532



• Do not normalize the image input. Set the Normalization option of the input layer to "none".
• Specify three Bayes fully connected layers with ReLU activation layers between them.

A Bayes fully connected layer is a type of fully connected layer that stores the average weights and
biases of the expected distribution of the weights. When computing the activations of the layer, the
software shifts the mean weights and biases by random Gaussian noise and uses the shifted weights
and biases to compute the outputs of the layer.

To create a Bayes fully connected layer, use the bayesFullyConnectedLayer.m custom layer,
attached to this example as a supporting file. The Bayes fully connected layer takes as input the
output size and the parameters of the prior probabilities of the weight distribution, sigma1 and
sigma2.

Define the network.

inputSize = [28 28 1];
outputSize = 784;

sigma1 = 1;
sigma2 = 0.5;

layers = [
    imageInputLayer(inputSize,Normalization="none")
    bayesFullyConnectedLayer(outputSize,Sigma1=sigma1,Sigma2=sigma2)
    reluLayer
    bayesFullyConnectedLayer(outputSize/2,Sigma1=sigma1,Sigma2=sigma2)
    reluLayer
    bayesFullyConnectedLayer(1,Sigma1=sigma1,Sigma2=sigma2)];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers);

Visualize the network using analyzeNetwork. You can see that the learnables for the Bayes fully
connected layers include the means and variances for the weights and biases.

analyzeNetwork(net)

 Train Bayesian Neural Network

19-533



Define Learnable Parameters

The learnable parameters comprise network (layer) learnables and global learnables. During training,
the algorithm updates these learnable parameters:

• The means and variances of the layer weights and biases (per layer)
• The prior probabilities for the weight distributions (per layer)
• The sampling noise (global)

Initialize Sampling Noise

Use sampling noise to represent the noise in the predictions of the neural network. Learn the
sampling noise with the network weights and biases.

Initialize the sampling noise.

samplingNoise = dlarray(1);

Initialize Prior Probability

You can fix the prior variance parameters or learn them during training like the other learnable
parameters. Learn the prior parameters during training using a small learn rate so that their values
remain close to the initial values. Set the initial learn rate to 0.25.

doLearnPrior = true;
priorLearnRate = 0.25;

numLearnables = size(net.Learnables,1);

19 Import, Export, and Customization

19-534



for i=1:numLearnables
    layerName = net.Learnables.Layer(i);
    parameterName = net.Learnables.Parameter(i);

    if parameterName == "Sigma1" || parameterName == "Sigma2"
        if doLearnPrior
            net = setLearnRateFactor(net,layerName,parameterName,priorLearnRate);
        else
            net = setLearnRateFactor(net,layerName,parameterName,0);
        end
    end
end

Define Model Loss Functions

Define a function that returns the model loss and the gradients of the loss with respect to the
learnable parameters. In this example, you minimize the evidence lower bound (ELBO) loss defined in
the Evidence Lower Bound Loss on page 19-543 section.

Create the function modelLoss, listed in the Model Loss Function on page 19-543 section. The
function takes as input a dlnetwork object and a mini-batch of input data with corresponding
targets. The function returns these values:

• ELBO loss
• Root mean squared error (RMSE)
• Gradients of the loss with respect to the learnable parameters
• Gradients of the loss with respect to the sampling noise
• Network state

Specify Training Options

Train for 50 epochs with a mini-batch size of 128.

numEpochs = 50;
miniBatchSize = 128;

Track the ELBO loss during training. Plot the loss every 50 iterations and average the loss across five
samples of the learnable parameters.

numSamplesForavgELBO = 5;
averageLossComputationFrequency = 50;

Train Model

Create a minibatchqueue object to process and manage the mini-batches of images. For each mini-
batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to one-hot encode the class labels.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray object if a GPU is available. Using a GPU requires a Parallel Computing Toolbox™

 Train Bayesian Neural Network

19-535



license and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["SSCB" "CB"]);

Initialize the parameters for Adam optimization.

trailingAvg = [];
trailingAvgSq = [];
trailingAvgNoise = [];
trailingAvgNoiseSq = [];

Calculate the total number of iterations for the training progress monitor.

numIterationsPerEpoch = ceil(numObservations/miniBatchSize);
numIterations = numEpochs*numIterationsPerEpoch;

Initialize the training progress monitor.

monitor = trainingProgressMonitor( ...
    Metrics=["RMSE","AverageELBOLoss"], ...
    Info="Epoch", ...
    XLabel="Iteration");

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. At the end of each iteration, display the training progress. For each mini-batch:

• Evaluate the model loss and gradients using dlfeval and the modelLoss function.
• Update the network parameters using the adamupdate function.
• Update the sampling noise parameters (global parameters) using the adamupdate function.
• Record the RMSE and the average ELBO loss.

iteration = 0;
epoch = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;
    miniBatchIdx = 0;

    % Shuffle data.
    shuffle(mbq);

    while hasdata(mbq) && ~monitor.Stop
        iteration = iteration + 1;
        miniBatchIdx = miniBatchIdx + 1;

        [X,T] = next(mbq);

        [elboLoss,rmsError,gradientsNet,gradientsNoise] = dlfeval(@modelLoss, ...
            net,X,T,samplingNoise,miniBatchIdx,numIterationsPerEpoch);

        % Update the network parameters using the Adam optimizer.
        [net,trailingAvg,trailingAvgSq] = adamupdate(net,gradientsNet, ...

19 Import, Export, and Customization

19-536



            trailingAvg,trailingAvgSq,iteration);

        % Update the sampling noise.
        [samplingNoise,trailingAvgNoise,trailingAvgNoiseSq] = adamupdate(samplingNoise, ...
            gradientsNoise,trailingAvgNoise,trailingAvgNoiseSq,iteration);

        % Record the RMSE.
        recordMetrics(monitor,iteration,RMSE=double(rmsError))

        % Record the average ELBO loss.
        if mod(iteration,averageLossComputationFrequency) == 0
            avgELBOLoss = averageNegativeELBO(net,X,T,samplingNoise,miniBatchIdx, ...
                numIterationsPerEpoch,numSamplesForavgELBO);

            recordMetrics(monitor,iteration,AverageELBOLoss=double(avgELBOLoss))
        end

        % Update the epoch and progress values in the monitor.
        updateInfo(monitor,Epoch=string(epoch) + " of " + string(numEpochs))
        monitor.Progress = 100*(iteration/numIterations);
    end
end

Test Network

BNNs learn the probability distribution of the weights rather than optimizing a single set of weights
like convolutional neural networks. Therefore, you can view a BNN as an ensemble of networks
where you sample each network from the learned probability distribution of the learnable
parameters.

To test the accuracy of a BNN, generate N samples for the weights and biases and compare the
average prediction across the N samples with the true value. The standard deviation across the N

 Train Bayesian Neural Network

19-537



predictions is the model uncertainty. Use the modelPosteriorSample function listed in the Model
Prediction Function on page 19-542 section to generate predictions for a set of inputs. The function
samples N times from the posterior distribution of the weights and biases. For each of the N samples,
the function generates predictions for the input images. The predictions from a BNN use a sample of
the weights and biases; therefore, the predictions include some variational noise.

Convert the test data to a dlarray object.

XTest = dlarray(XTest,"SSCB");
if canUseGPU
    XTest = gpuArray(XTest);
end

Test Single Image

Generate 10 samples for the first test image using modelPosteriorSample. The function returns 10
predictions for the angle of rotation. The final model prediction is the average value across the 10
predictions.

idx = 1;
numSamples = 10;
img = XTest(:,:,:,idx);

predictions = modelPosteriorSample(net,img,samplingNoise,numSamples);
YTestImg = mean(predictions,1);

Plot the true angle, the predicted angles, and the mean of the predictions.

figure
lineWidth = 1.5;
uncertaintyColor = "#EDB120";

I = extractdata(img);
imshow(I,InitialMagnification=800)
hold on

inputSize = size(img,1);
offset = inputSize/2;

thetaActual = TTest(idx);
plot(offset*[1 - tand(thetaActual),1 + tand(thetaActual)],[inputSize 0], ...
    LineWidth=lineWidth)

thetaPredAvg = YTestImg;
plot(offset*[1 - tand(thetaPredAvg),1 + tand(thetaPredAvg)],[inputSize 0], ...
    LineWidth=lineWidth)

for i=1:numSamples
    thetaPred = predictions(i);
    plot(offset*[1 - tand(thetaPred),1 + tand(thetaPred)],[inputSize 0],"--", ...
        Color=uncertaintyColor)
end

hold off
title("Pred: " + round(thetaPredAvg,2)+" (Mean)" + ", True: " + round(thetaActual,2))
legend(["True","Mean Prediction","Prediction"],Location="southeast")

19 Import, Export, and Customization

19-538



Increase the number of samples to 500 and plot the distribution of the predicted angles of rotation for
the test image.

numSamples = 500;

predictions = modelPosteriorSample(net,img,samplingNoise,numSamples);
YTestImg = mean(predictions,1);
uncertaintyImg = std(predictions,1);

figure
histogram(predictions)

trueColor = "#0072BD";
predColor = "#D95319";

hold on
xline(TTest(idx),Color=trueColor,LineWidth=lineWidth)
xline(YTestImg,Color=predColor,LineWidth=lineWidth)
xline(YTestImg - 2*uncertaintyImg,"--",Color=uncertaintyColor,LineWidth=lineWidth)
xline(YTestImg + 2*uncertaintyImg,"--",Color=uncertaintyColor,LineWidth=lineWidth)
hold off

xlabel("Angle of Rotation")
ylabel("Frequency")
title("Distribution of Predictions (Number of Samples = " + numSamples + ")")
legend("","True","Mean Prediction","+-" + "2\sigma (Standard Deviation)")

 Train Bayesian Neural Network

19-539



Test All Images

Predict the angle of rotation for each test image using 100 samples of the learnable parameters.

numSamples = 100;
predictions = modelPosteriorSample(net,XTest,samplingNoise,numSamples);
YTest = mean(predictions,1);
uncertainty = std(predictions,1);

Calculate the prediction error between the true and predicted angles of rotation.

predictionError = TTest - YTest';

Use the RMSE to measure the differences between the true and predicted angles of rotation.

squares = predictionError.^2;
rmse = sqrt(mean(squares))

rmse = 15.0308

Visualize Predicted Angles and Uncertainties

View some of the images with their predicted and true angles. Show the uncertainty in the
predictions using the standard deviation of the model predictions.

numTestImages = numel(TTest);
numObservationToShow = 9;
idxTestSubset = randperm(numTestImages,numObservationToShow);

19 Import, Export, and Customization

19-540



sdToPlot = 2;

tiledlayout("flow",TileSpacing="tight");

for i = 1:numObservationToShow
    idx = idxTestSubset(i);

    nexttile
    I = extractdata(XTest(:,:,:,idx));
    imshow(I)
    hold on

    thetaActual = TTest(idx);
    plot(offset*[1 - tand(thetaActual),1 + tand(thetaActual)],[inputSize 0],LineWidth=lineWidth)

    thetaPred = YTest(idx);
    plot(offset*[1 - tand(thetaPred),1 + tand(thetaPred)],[inputSize 0],LineWidth=lineWidth)

    thetaUncertainty = [thetaPred - sdToPlot*uncertainty(idx),thetaPred + sdToPlot*uncertainty(idx)];

    % Plot upper and lower bounds.
    lowerBound = [1 - tand(thetaUncertainty(1)),1 + tand(thetaUncertainty(1))];
    upperBound = [1 - tand(thetaUncertainty(2)),1 + tand(thetaUncertainty(2))];
    plot(offset*lowerBound,[inputSize 0],"--",Color=uncertaintyColor,LineWidth=lineWidth)
    plot(offset*upperBound,[inputSize 0],"--",Color=uncertaintyColor,LineWidth=lineWidth)

    hold off
    title({"True = " + round(thetaActual,2),"Pred: " + round(thetaPred,2)})
    if i == 2
        legend(["True","Mean Prediction","+-" + sdToPlot + "\sigma (Standard Deviation)"], ...
            Location="northoutside", ...
            NumColumns=3)
    end
end

 Train Bayesian Neural Network

19-541



Supporting Functions

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using these steps:

1 Extract the image data from the input cell array dataX and concatenate it into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
for the network to use as a singleton channel dimension.

2 Extract angle data from the input cell arrays dataAng and concatenate it along the second
dimension into a numeric array.

function [X,A] = preprocessMiniBatch(dataX,dataAng)

X = cat(4,dataX{:});
A = cat(2,dataAng{:});

end

Model Prediction Function

The modelPosteriorSample function takes as input the dlnetwork object net, an input image X,
the sampling noise samplingNoise, and the number of samples to generate numSamples. The
function returns numSample predictions for the input image.

19 Import, Export, and Customization

19-542



function predictions = modelPosteriorSample(net,X,samplingNoise,numSamples)

predictions = zeros(numSamples,size(X,4));

for i=1:numSamples
    Y = predict(net,X,Acceleration="none");
    sigmaY = exp(samplingNoise);
    predictions(i,:) = Y + sigmaY.*randn(size(Y));
end

end

Maximum Likelihood Estimation Function

The logLikelihood function estimates the likelihood of the network prediction given the true
values and the sampling noise. The function takes as input the predictions Y, true values T, and
sampling noise samplingNoise and returns the log-likelihood l.

function l = logLikelihood(Y,T,samplingNoise)

sigmaY = exp(samplingNoise);
l = sum(logProbabilityNormal(T,Y,sigmaY),"all");

end

Model Loss Function

The modelLoss function takes as input the dlnetwork object net, a mini-batch of input data X with
corresponding targets T, the sampling noise samplingNoise, the mini-batch index miniBatchIdx,
and the number of batches numBatches. The function returns the ELBO loss, the RMSE loss, the
gradients of the loss with respect to the learnable parameters, and the gradients of the loss with
respect to the sampling noise.

function [elboLoss,meanError,gradientsNet,gradientsNoise] = modelLoss(net,X,T,samplingNoise,miniBatchIdx,numBatches)

[elboLoss,Y] = negativeELBO(net,X,T,samplingNoise,miniBatchIdx,numBatches);

[gradientsNet,gradientsNoise] = dlgradient(elboLoss,net.Learnables,samplingNoise);

meanError = double(sqrt(mse(Y,T)));

end

Evidence Lower Bound (ELBO) Loss Function

The negativeELBO function computes the ELBO loss for a given mini-batch.

The ELBO loss combines these aims:

• Maximize the likelihood of the network predictions.
• Minimize the Kullback-Leibler (KL) divergence between the variational distribution q(w|θ) and

the posterior. The variational distribution q(w|θ) approximates the true posterior distribution and
decreases the computational complexity during training.

The negativeELBO function takes as inputs a dlnetwork object net, a mini-batch of input data X
with corresponding targets T, the sampling noise samplingNoise, the mini-batch index

 Train Bayesian Neural Network

19-543



miniBatchIdx, and the number of batches numBatches. The function returns the ELBO loss ELBO
and the result of the forward pass (network prediction) Y.

function [ELBO,Y] = negativeELBO(net,X,T,samplingNoise,miniBatchIdx,numBatches)

[Y,state] = forward(net,X,Acceleration="auto");

beta = KLWeight(miniBatchIdx,numBatches);

logPosterior = state.Value(state.Parameter == "LogPosterior");
logPosterior = sum([logPosterior{:}]);
logPrior = state.Value(state.Parameter == "LogPrior");
logPrior = sum([logPrior{:}]);

l = logLikelihood(Y,T,samplingNoise) ;

ELBO = (-1*l) + ((logPosterior - logPrior)*beta);

end

Average ELBO Loss

The averageNegativeELBO function takes as input a dlnetwork object net, a mini-batch of input
data X with corresponding targets T, the sampling noise samplingNoise, the mini-batch index
miniBatchIdx, the number of batches numBatches, and the number of samples numSamples. The
function returns the ELBO loss averaged across numSamples samples of the ELBO loss.

function avgELBO = averageNegativeELBO(net,X,T,samplingNoise,miniBatchIdx,numBatches,numSamples)

avgELBO = 0;

for i=1: numSamples
    ELBO = negativeELBO(net,X,T,samplingNoise,miniBatchIdx,numBatches);
    avgELBO = avgELBO + ELBO;
end

avgELBO = avgELBO/numSamples;

end

Mini-Batches and KL Reweighting

The KLWeight function takes as input the current batch index i and the total number of batches m.
The function returns beta, a scalar value in the range [0, 1] that you can use to scale the current
batch KL sum.

Minimize the cost for each mini-batch using this reweighting strategy:

β ∈ [0, 1]M and  ∑
i = 1

M
βi = 1,

where βi = 2M − i

2M − 1
.

β is a scaling factor for an estimate of the posterior distribution of the weights [1] on page 19-545.

19 Import, Export, and Customization

19-544



function beta = KLWeight(i,m)

beta = 2^(m - i)/(2^m - 1);

end

References

[1] Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra, “Weight Uncertainty
in Neural Networks”. arXiv preprint arXiv:1505.05424 (May 2015)., https://arxiv.org/abs/1505.05424.

See Also
dlnetwork | dlarray | minibatchqueue | dlfeval | adamupdate

Related Examples
• “Train Convolutional Neural Network for Regression” on page 3-49
• “Define Custom Deep Learning Layers” on page 19-9
• “Train Network Using Custom Training Loop” on page 19-239

 Train Bayesian Neural Network

19-545





Deep Learning Data Preprocessing

• “Datastores for Deep Learning” on page 20-2
• “Create and Explore Datastore for Image Classification ” on page 20-10
• “Preprocess Images for Deep Learning” on page 20-16
• “Preprocess Volumes for Deep Learning” on page 20-20
• “Preprocess Data for Domain-Specific Deep Learning Applications” on page 20-27
• “Develop Custom Mini-Batch Datastore” on page 20-38
• “Augment Images for Deep Learning Workflows” on page 20-45
• “Augment Pixel Labels for Semantic Segmentation ” on page 20-67
• “Augment Bounding Boxes for Object Detection” on page 20-77
• “Prepare Datastore for Image-to-Image Regression” on page 20-90
• “Train Network Using Out-of-Memory Sequence Data” on page 20-97
• “Train Network Using Custom Mini-Batch Datastore for Sequence Data” on page 20-102
• “Classify Out-of-Memory Text Data Using Deep Learning” on page 20-106
• “Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore” on page 20-112
• “Data Sets for Deep Learning” on page 20-116
• “Choose an App to Label Ground Truth Data” on page 20-164

20



Datastores for Deep Learning
Datastores in MATLAB are a convenient way of working with and representing collections of data that
are too large to fit in memory at one time. Because deep learning often requires large amounts of
data, datastores are an important part of the deep learning workflow in MATLAB.

Select Datastore
For many applications, the easiest approach is to start with a built-in datastore. For more information
about the available built-in datastores, see “Select Datastore for File Format or Application”.
However, only some types of built-in datastores can be used directly as input for network training,
validation, and inference. These datastores are:

Datastore Description Additional Toolbox Required
ImageDatastore Datastore for image data none
AugmentedImageDatastore Datastore for resizing and

augmenting training images

Datastore is nondeterministic

none

PixelLabelDatastore Datastore for pixel label data Computer Vision Toolbox
PixelLabelImageDatastore Datastore for training semantic

segmentation networks

Datastore is nondeterministic

Computer Vision Toolbox

boxLabelDatastore Datastore for bounding box
label data

Computer Vision Toolbox

RandomPatchExtractionDat
astore

Datastore for extracting random
patches from image-based data

Datastore is nondeterministic

Image Processing Toolbox

blockedImageDatastore Datastore for blockwise reading
and processing of image data,
including large images that do
not fit in memory

Image Processing Toolbox

blockedPointCloudDatasto
re

Datastore for blockwise reading
and processing of point cloud
data, including large point
clouds that do not fit in memory

Lidar Toolbox™

DenoisingImageDatastore Datastore to train an image
denoising deep neural network

Datastore is nondeterministic

Image Processing Toolbox

audioDatastore Datastore for audio data Audio Toolbox
signalDatastore Datastore for signal data Signal Processing Toolbox™

Other built-in datastores can be used as input for deep learning, but the data read from these
datastores must be preprocessed into a format required by a deep learning network. For more
information on the required format of read data, see “Input Datastore for Training, Validation, and

20 Deep Learning Data Preprocessing

20-2



Inference” on page 20-3. For more information on how to preprocess data read from datastores,
see “Transform and Combine Datastores” on page 20-6.

For some applications, there may not be a built-in datastore type that fits your data well. For these
problems, you can create a custom datastore. For more information, see “Develop Custom Datastore”.
All custom datastores are valid inputs to deep learning interfaces as long as the read function of the
custom datastore returns data in the required form.

Input Datastore for Training, Validation, and Inference
Datastores are valid inputs in Deep Learning Toolbox for training, validation, and inference.

Training and Validation

You can use an image datastore or other types of datastore as a source of training data when training
using the trainNetwork function. To use a datastore for validation, use the 'ValidationData'
name-value pair argument in trainingOptions.

To be a valid input for training or validation, the read function of a datastore must return data as
either a cell array or a table (with the exception of ImageDatastore objects which can output
numeric arrays and custom mini-batch datastores which must output tables).

For networks with a single input, the table or cell array returned by the datastore must have two
columns. The first column of data represents inputs to the network and the second column of data
represents responses. Each row of data represents a separate observation. For ImageDatastore
only, trainNetwork and trainingOptions support data returned as integer arrays and single-
column cell array of integer arrays.

To use a datastore for networks with multiple input layers, use the combine and transform
functions to create a datastore that outputs a cell array with (numInputs + 1) columns, where
numInputs is the number of network inputs. In this case, the first numInputs columns specify the
predictors for each input and the last column specifies the responses. The order of inputs is given by
the InputNames property of the layer graph layers.

The following table shows example outputs of calling the read function for datastore ds.

Neural Network Architecture Datastore Output Example Output
Single input layer Table or cell array with two

columns.

The first and second columns
specify the predictors and
responses, respectively.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

Table for neural network with
one input and one output:

data = read(ds)

data =

  4×2 table

        Predictors        Response
    __________________    ________

    {224×224×3 double}       2    
    {224×224×3 double}       7    
    {224×224×3 double}       9    
    {224×224×3 double}       9  

 Datastores for Deep Learning

20-3



Neural Network Architecture Datastore Output Example Output
Cell array for neural network
with one input and one output:

data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {[2]}
    {224×224×3 double}    {[7]}
    {224×224×3 double}    {[9]}
    {224×224×3 double}    {[9]}

Multiple input layers Cell array with (numInputs +
1) columns, where numInputs
is the number of neural network
inputs.

The first numInputs columns
specify the predictors for each
input and the last column
specifies the responses.

The order of inputs is given by
the InputNames property of the
layer graph layers.

Cell array for neural network
with two inputs and one output.

data = read(ds)

data =

  4×3 cell array

    {224×224×3 double}    {128×128×3 double}    {[2]}
    {224×224×3 double}    {128×128×3 double}    {[2]}
    {224×224×3 double}    {128×128×3 double}    {[9]}
    {224×224×3 double}    {128×128×3 double}    {[9]}

The format of the predictors depend on the type of data.

Data Format of Predictors
2-D image h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
image, respectively.

3-D image h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the image, respectively.

Vector sequence c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length.

1-D image sequence h-by-c-by-s array, where h and c correspond to
the height and number of channels of the image,
respectively, and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

20 Deep Learning Data Preprocessing

20-4



Data Format of Predictors
2-D image sequence h-by-w-by-c-by-s array, where h, w, and c

correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

Features c-by-1 column vector, where c is the number of
features.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,
or a 1-by-1 cell array containing a numeric array.

The trainNetwork function does not support networks with multiple sequence input layers.

The format of the responses depend on the type of task.

Task Format of Responses
Classification Categorical scalar
Regression • Scalar

• Numeric vector
• 3-D numeric array representing an image

Sequence-to-sequence classification 1-by-s sequence of categorical labels, where s is
the sequence length of the corresponding
predictor sequence.

Sequence-to-sequence regression R-by-s matrix, where R is the number of
responses and s is the sequence length of the
corresponding predictor sequence.

For responses returned in tables, the elements must be a categorical scalar, a numeric scalar, a
numeric row vector, or a 1-by-1 cell array containing a numeric array.

Prediction

For inference using predict, classify, and activations, a datastore is only required to yield the
columns corresponding to the predictors. The inference functions use the first NumInputs columns
and ignores the subsequent layers, where NumInputs is the number of network input layers.

Specify Read Size and Mini-Batch Size
A datastore may return any number of rows (observations) for each call to read. Functions such as
trainNetwork, predict, classify, and activations that accept datastores and support

 Datastores for Deep Learning

20-5



specifying a 'MiniBatchSize' call read as many times as is necessary to form complete mini-
batches of data. As these functions form mini-batches, they use internal queues in memory to store
read data. For example, if a datastore consistently returns 64 rows per call to read and
MiniBatchSize is 128, then to form each mini-batch of data requires two calls to read.

For best runtime performance, it is recommended to configure datastores such that the number of
observations returned by read is equal to the 'MiniBatchSize'. For datastores that have a
'ReadSize' property, set the 'ReadSize' to change the number of observations returned by the
datastore for each call to read.

Transform and Combine Datastores
Deep learning frequently requires the data to be preprocessed and augmented before data is in an
appropriate form to input to a network. The transform and combine functions of datastore are
useful in preparing data to be fed into a network.

To use a datastore for networks with multiple input layers, use the combine and transform
functions to create a datastore that outputs a cell array with (numInputs + 1) columns, where
numInputs is the number of network inputs. In this case, the first numInputs columns specify the
predictors for each input and the last column specifies the responses. The order of inputs is given by
the InputNames property of the layer graph layers.

Transform Datastores

A transformed datastore applies a particular data transformation to an underlying datastore when
reading data. To create a transformed datastore, use the transform function and specify the
underlying datastore and the transformation.

• For complex transformations involving several preprocessing operations, define the complete set
of transformations in your own function. Then, specify a handle to your function as the @fcn
argument of transform. For more information, see “Create Functions in Files”.

• For simple transformations that can be expressed in one line of code, you can specify a handle to
an anonymous function as the @fcn argument of transform. For more information, see
“Anonymous Functions”.

The function handle provided to transform must accept input data in the same format as returned
by the read function of the underlying datastore.

Example: Transform Image Datastore to Train Digit Classification Network

This example uses the transform function to create a training set in which randomized 90 degree
rotation is added to each image within an image datastore. Pass the resulting
TransformedDatastore to trainNetwork to train a simple digit classification network.

Create an image datastore containing digit images.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet', ...
    'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Set the mini-batch size equal to the ReadSize of the image datastore.

20 Deep Learning Data Preprocessing

20-6



miniBatchSize = 128;
imds.ReadSize = miniBatchSize;

Transform images in the image datastore by adding randomized 90 degree rotation. The
transformation function, preprocessForTraining, is defined at the end of this example.

dsTrain = transform(imds,@preprocessForTraining,'IncludeInfo',true)

dsTrain = 

  TransformedDatastore with properties:

    UnderlyingDatastore: [1×1 matlab.io.datastore.ImageDatastore]
             Transforms: {@preprocessForTraining}
            IncludeInfo: 1

Specify layers of the network and training options, then train the network using the transformed
datastore dsTrain as a source of data.

layers = [
    imageInputLayer([28 28 1],'Normalization','none')
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10);
    softmaxLayer
    classificationLayer];
 
options = trainingOptions('adam', ...
    'Plots','training-progress', ...
    'MiniBatchSize',miniBatchSize);
 
net = trainNetwork(dsTrain,layers,options);

Define the transformation function, preprocessForTraining. The input to the function is a batch
of data, data, read from the underlying datastore. The function in this example loops through each
read image and performs randomized rotation, then returns the transformed image and
corresponding label as a cell array as expected by trainNetwork.

function [dataOut,info] = preprocessForTraining(data,info)
 
numRows = size(data,1);
dataOut = cell(numRows,2);
 
for idx = 1:numRows
    
    % Randomized 90 degree rotation
    imgOut = rot90(data{idx,1},randi(4)-1);
    
    % Return the label from info struct as the 
    % second column in dataOut.
    dataOut(idx,:) = {imgOut,info.Label(idx)};
    
end

end

 Datastores for Deep Learning

20-7



Combine Datastores

The combine function associates multiple datastores. Operating on the resulting
CombinedDatastore, such as resetting the datastore, performs the same operation on all of the
underlying datastores. Calling the read function of a combined datastore reads one batch of data
from all of the N underlying datastores, which must return the same number of observations. Reading
from a combined datastore returns the horizontally concatenated results in an N-column cell array
that is suitable for training and validation. Shuffling a combined datastore results in an identical
randomized ordering of files in the underlying datastores.

For example, if you are training an image-to-image regression network, then you can create the
training data set by combining two image datastores. This sample code demonstrates combining two
image datastores named imdsX and imdsY. The combined datastore imdsTrain returns data as a
two-column cell array.

imdsX = imageDatastore(___);
imdsY = imageDatastore(___);
imdsTrain = combine(imdsX,imdsY)

imdsTrain = 

  CombinedDatastore with properties:

    UnderlyingDatastores: {1×2 cell}

If you have Image Processing Toolbox, then the randomPatchExtractionDatastore provides an
alternate solution to associating image-based data in ImageDatastores, PixelLabelDatastores,
and TransformedDatastores. A randomPatchExtractionDatastore has several advantages
over associating data using the combine function. Specifically, a random patch extraction datastore:

• Provides an easy way to extract patches from both 2-D and 3-D data without requiring you to
implement a custom cropping operation using transform and combine

• Provides an easy way to generate multiple patches per image per mini-batch without requiring
you to define a custom concatenation operation using transform.

• Supports efficient conversion between categorical and numeric data when applying image
transforms to categorical data

• Supports parallel training
• Improves performance by caching images

Use Datastore for Parallel Training and Background Dispatching
Parallel Training

Specify parallel or multi-GPU training using the 'ExecutionEnvironment' name-value pair
argument of trainingOptions. Training in parallel or using single or multiple GPUs requires
Parallel Computing Toolbox.

Many built-in datastores already support parallel and multi-GPU training. Using the transform and
combine functions with built-in datastores frequently maintains support for parallel and multi-GPU
training.

If you need to create a custom datastore that supports parallel or multi-GPU training, your datastore
should implement the matlab.io.datastore.Subsettable class.

20 Deep Learning Data Preprocessing

20-8



To use a datastore for parallel training or multi-GPU training, it must be subsettable or partitionable.
To determine if a datastore is subsettable or partitionable, use the functions isSubsettable and
isPartitionable respectively.

When training in parallel, datastores do not support specifying the 'Shuffle' name-value pair
argument of trainingOptions as 'never'.

Background Dispatch

Background dispatch uses parallel workers to read data from memory while the MATLAB client
session and other parallel workers are training a network. Specify background dispatching using the
'DispatchInBackground' name-value pair argument of trainingOptions. Background
dispatching requires Parallel Computing Toolbox.

Datastores that are subsettable or partitionable support reading training data using background
dispatching.

See Also
transform | combine | trainNetwork | trainingOptions | read

Related Examples
• “Prepare Datastore for Image-to-Image Regression” on page 20-90
• “Classify Text Data Using Convolutional Neural Network” on page 4-203

More About
• “Getting Started with Datastore”
• “Select Datastore for File Format or Application”
• “Develop Custom Datastore”

 Datastores for Deep Learning

20-9



Create and Explore Datastore for Image Classification

This example shows how to create, read, and augment an image datastore for use in training a deep
learning network. In particular, this example shows how to create an ImageDatastore object from a
collection of images, read and extract the properties of the datastore, and create an
augmentedImageDatastore for use during training.

Create Image Datastore

Use an imageDatastore object to manage a large collection of images that cannot altogether fit in
memory. Large collections of images are common in deep learning applications, which regularly
involve training on thousands of labeled images. These images are often stored in a folder, with
subfolders containing images for each class.

Download Data Set

This example uses the Example Food Images data set, which contains 978 photographs of food in nine
classes and is approximately 77 MB in size. Download the ExampleFoodImageDataset.zip file
from the MathWorks website, then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile('nnet','data/ExampleFoodImageDataset.zip'); 
filepath = fileparts(zipFile); 
dataFolder = fullfile(filepath,'ExampleFoodImageDataset'); 
unzip(zipFile,dataFolder); 

The images in this data set are separated into subfolders for each class.

20 Deep Learning Data Preprocessing

20-10



Create an image datastore from the images in the path and their subfolders. Use the folder names as
label names.

foodImds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Properties of Datastore

Extract the properties of the datastore.

Find the total number of observations. This data set has 978 observations split into nine classes.

numObs = length(foodImds.Labels)

numObs = 978

Find the number of observations per class. You can see that this data set does not contain an equal
number of observations in each class.

numObsPerClass = countEachLabel(foodImds)

numObsPerClass=9×2 table
        Label        Count
    _____________    _____

    caesar_salad       26 
    caprese_salad      15 
    french_fries      181 
    greek_salad        24 
    hamburger         238 
    hot_dog            31 
    pizza             299 
    sashimi            40 
    sushi             124 

You can also visualize the distribution of the class labels using a histogram.

histogram(foodImds.Labels)
set(gca,'TickLabelInterpreter','none')

 Create and Explore Datastore for Image Classification 

20-11



Explore Datastore

Check that the data is as expected by viewing a random selection of images from the datastore.

numObsToShow = 8;
idx = randperm(numObs,numObsToShow);
imshow(imtile(foodImds.Files(idx),'GridSize',[2 4],'ThumbnailSize',[100 100]))

You can also view images that belong to a specific class.

class = ;
idxClass = find(foodImds.Labels == class);
idx = randsample(idxClass,numObsToShow);
imshow(imtile(foodImds.Files(idx),'GridSize',[2 4],'ThumbnailSize',[100 100]));

20 Deep Learning Data Preprocessing

20-12



To take a closer look at individual images in your datastore or folder, use the Image Browser (Image
Processing Toolbox) app.

Image Augmentation

Augmentation enables you to train networks to be invariant to distortions in image data. For example,
you can add randomized rotations to input images so that a network is invariant to the presence of
rotation. An augmentedImageDatastore object provides a convenient way to apply a limited set of
augmentations to 2-D images for classification problems.

Define an augmentation scheme. This scheme applies a random rotation between [–90,90] degrees
and a random scaling between [1,2]. The augmented datastore automatically resizes the images to
the inputSize value during training.

imageAugmenter = imageDataAugmenter( ...
    'RandRotation',[-90 90], ...
    'RandScale',[1 2]);

inputSize = [100 100]; 

Using the augmentation scheme, define the augmented image datastore.

augFoodImds = augmentedImageDatastore(inputSize,foodImds, ...
    'DataAugmentation',imageAugmenter);

The augmented datastore contains the same number of images as the original image datastore.

augFoodImds.NumObservations

ans = 978

When you use an augmented image datastore as a source of training images, the datastore randomly
perturbs the training data for each epoch, where an epoch is a full pass of the training algorithm over
the entire training data set. Therefore, each epoch uses a slightly different data set, but the actual
number of training images in each epoch does not change.

 Create and Explore Datastore for Image Classification 

20-13



Visualize Augmented Data

Visualize the augmented image data that you want to use to train the network.

Shuffle the datastore.

augFoodImds = shuffle(augFoodImds);

The augmentedImageDatastore object applies the transformations when reading the datastore and
does not store the transformed images in memory. Consequently, each time you read the same
images, you see a random combination of the augmentations defined.

Use the read function to read a subset of the augmented datastore.

subset1 = read(augFoodImds);

Reset the datastore to its state before calling read and read a subset of the datastore again.

reset(augFoodImds)
subset2 = read(augFoodImds);

Display the two subsets of the augmented images.

imshow(imtile(subset1.input,'GridSize',[2 4]))

imshow(imtile(subset2.input,'GridSize',[2 4]))

20 Deep Learning Data Preprocessing

20-14



You can see that both instances show the same images with different transformations. Applying
transformations to images is useful in deep learning applications, as you can train the network on
randomly altered versions of an image. Doing so exposes the network to different variations of images
from that class and enables it to learn to classify images even if they have different visual properties.

After creating your datastore object, use the Deep Network Designer app or trainNetwork function
to train an image classification network. For an example, see “Transfer Learning Using Pretrained
Network” on page 3-29.

For more information on preprocessing images for deep learning applications, see “Preprocess
Images for Deep Learning” on page 20-16. You can also apply more advanced augmentations, such
as varying levels of brightness or saturation, by using the transform and combine functions. For
more information, see “Datastores for Deep Learning” on page 20-2.

See Also
trainNetwork | Deep Network Designer | augmentedImageDatastore | imageDatastore

Related Examples
• “Transfer Learning with Deep Network Designer” on page 2-2
• “Transfer Learning Using Pretrained Network” on page 3-29
• “Data Sets for Deep Learning” on page 20-116
• “Datastores for Deep Learning” on page 20-2
• “Preprocess Images for Deep Learning” on page 20-16

 Create and Explore Datastore for Image Classification 

20-15



Preprocess Images for Deep Learning
To train a network and make predictions on new data, your images must match the input size of the
network. If you need to adjust the size of your images to match the network, then you can rescale or
crop your data to the required size.

You can effectively increase the amount of training data by applying randomized augmentation to
your data. Augmentation also enables you to train networks to be invariant to distortions in image
data. For example, you can add randomized rotations to input images so that a network is invariant to
the presence of rotation in input images. An augmentedImageDatastore provides a convenient way
to apply a limited set of augmentations to 2-D images for classification problems.

For more advanced preprocessing operations, to preprocess images for regression problems, or to
preprocess 3-D volumetric images, you can start with a built-in datastore. You can also preprocess
images according to your own pipeline by using the transform and combine functions.

Resize Images Using Rescaling and Cropping
You can store image data as a numeric array, an ImageDatastore object, or a table. An
ImageDatastore enables you to import data in batches from image collections that are too large to
fit in memory. You can use an augmented image datastore or a resized 4-D array for training,
prediction, and classification. You can use a resized 3-D array for prediction and classification only.

There are two ways to resize image data to match the input size of a network.

• Rescaling multiplies the height and width of the image by a scaling factor. If the scaling factor is
not identical in the vertical and horizontal directions, then rescaling changes the spatial extents of
the pixels and the aspect ratio.

• Cropping extracts a subregion of the image and preserves the spatial extent of each pixel. You can
crop images from the center or from random positions in the image.

Resizing
Option

Data Format Resizing
Function

Sample Code

Rescaling • 3-D array representing a
single color or multispectral
image

• 3-D array representing a
stack of grayscale images

• 4-D array representing a
stack of images

imresize im = imresize(I,outputSize);

outputSize specifies the
dimensions of the rescaled
image.

• 4-D array representing a
stack of images

• ImageDatastore
• table

augmentedIma
geDatastore

auimds = augmentedImageDatastore(outputSize,I);

outputSize specifies the
dimensions of the rescaled
image.

Cropping • 3-D array representing a
single color or multispectral
image

imcrop im = imcrop(I,rect);

rect specifies the size and
position of the 2-D cropping
window.

20 Deep Learning Data Preprocessing

20-16



Resizing
Option

Data Format Resizing
Function

Sample Code

• 3-D array representing a
stack of grayscale images

• 4-D array representing a
stack of color or
multispectral images

imcrop3 im = imcrop3(I,cuboid);

cuboid specifies the size and
position of the 3-D cropping
window.

• 4-D array representing a
stack of images

• ImageDatastore
• table

augmentedIma
geDatastore

auimds = augmentedImageDatastore(outputSize,I,'OutputSizeMode',m);

Specify m as 'centercrop' to
crop from the center of the
input image.

Specify m as 'randcrop' to
crop from a random location in
the input image.

Augment Images for Training with Random Geometric Transformations
For image classification problems, you can use an augmentedImageDatastore to augment images
with a random combination of resizing, rotation, reflection, shear, and translation transformations.

The diagram shows how trainNetwork uses an augmented image datastore to transform training
data for each epoch. When you use data augmentation, one randomly augmented version of each
image is used during each epoch of training. For an example of the workflow, see “Train Network
with Augmented Images”.

1 Specify training images.
2 Configure image transformation options, such as the range of rotation angles and whether to

apply reflection at random, by creating an imageDataAugmenter.

Tip To preview the transformations applied to sample images, use the augment function.

 Preprocess Images for Deep Learning

20-17



3 Create an augmentedImageDatastore. Specify the training images, the size of output images,
and the imageDataAugmenter. The size of output images must be compatible with the size of
the imageInputLayer of the network.

4 Train the network, specifying the augmented image datastore as the data source for
trainNetwork. For each iteration of training, the augmented image datastore applies a random
combination of transformations to images in the mini-batch of training data.

When you use an augmented image datastore as a source of training images, the datastore
randomly perturbs the training data for each epoch, so that each epoch uses a slightly different
data set. The actual number of training images at each epoch does not change. The transformed
images are not stored in memory.

Perform Additional Image Processing Operations Using Built-In
Datastores
Some datastores perform specific and limited image preprocessing operations when they read a
batch of data. These application-specific datastores are listed in the table. You can use these
datastores as a source of training, validation, and test data sets for deep learning applications that
use Deep Learning Toolbox. All of these datastores return data in a format supported by
trainNetwork.

Datastore Description
augmentedImageData
store

Apply random affine geometric transformations, including resizing,
rotation, reflection, shear, and translation, for training deep neural
networks. For an example, see “Transfer Learning Using Pretrained
Network” on page 3-29.

randomPatchExtract
ionDatastore

Extract multiple pairs of random patches from images or pixel label images
(requires Image Processing Toolbox). You optionally can apply identical
random affine geometric transformations to the pairs of patches. For an
example, see “Increase Image Resolution Using Deep Learning” on page 9-
8.

denoisingImageData
store

Apply randomly generated Gaussian noise for training denoising networks
(requires Image Processing Toolbox).

Apply Custom Image Processing Pipelines Using Combine and
Transform
To perform more general and complex image preprocessing operations than offered by the
application-specific datastores, you can use the transform and combine functions. For more
information, see “Datastores for Deep Learning” on page 20-2.

Transform Datastores with Image Data

The transform function creates an altered form of a datastore, called an underlying datastore, by
transforming the data read by the underlying datastore according to a transformation function that
you define.

The custom transformation function must accept data in the format returned by the read function of
the underlying datastore. For image data in an ImageDatastore, the format depends on the
ReadSize property .

20 Deep Learning Data Preprocessing

20-18



• When ReadSize is 1, the transformation function must accept an integer array. The size of the
array is consistent with the type of images in the ImageDatastore. For example, a grayscale
image has dimensions m-by-n, a truecolor image has dimensions m-by-n-by-3, and a multispectral
image with c channels has dimensions m-by-n-by-c.

• When ReadSize is greater than 1, the transformation function must accept a cell array of image
data. Each element corresponds to an image in the batch.

The transform function must return data that matches the input size of the network. The
transform function does not support one-to-many observation mappings.

Tip The transform function supports prefetching when the underlying ImageDatastore reads a
batch of JPG or PNG image files. For these image types, do not use the readFcn argument of
ImageDatastore to apply image preprocessing, as this option is usually significantly slower. If you
use a custom read function, then ImageDatastore does not prefetch.

Combine Datastores with Image Data

The combine function concatenates the data read from multiple datastores and maintains parity
between the datastores.

• Concatenate data into a two-column table or two-column cell array for training networks with a
single input, such as image-to-image regression networks.

• Concatenate data to a (numInputs+1)-column cell array for training networks with multiple
inputs.

See Also
trainNetwork | imresize | transform | combine | ImageDatastore

Related Examples
• “Train Network with Augmented Images”
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Create and Explore Datastore for Image Classification” on page 20-10
• “Prepare Datastore for Image-to-Image Regression” on page 20-90

More About
• “Datastores for Deep Learning” on page 20-2
• “Preprocess Volumes for Deep Learning” on page 20-20
• “Deep Learning in MATLAB” on page 1-2

 Preprocess Images for Deep Learning

20-19



Preprocess Volumes for Deep Learning

Read Volumetric Data
Supported file formats for volumetric image data include MAT-files, Digital Imaging and
Communications in Medicine (DICOM) files, and Neuroimaging Informatics Technology Initiative
(NIfTI) files.

Read volumetric image data into an ImageDatastore. Read volumetric pixel label data into a
PixelLabelDatastore. For more information, see “Datastores for Deep Learning” on page 20-2.

The table shows typical usages of imageDatastore and pixelLabelDatastore for each of the
supported file formats. When you create the datastore, specify the FileExtensions name-value
argument as the file extensions of your data. Specify the ReadFcn property as a function handle that
reads data of the file format. The filepath argument specifies the path to the files or folder
containing image data. For pixel label images, the additional classNames and pixelLabelID
arguments specify the mapping of voxel label values to class names.

Image File
Format

Create Image Datastore or Pixel Label Datastore

MAT volds = imageDatastore(filepath, ...
   "FileExtensions",".mat","ReadFcn",@(x) fcn(x));

pxds = pixelLabelDatastore(filepath,classNames,pixelLabelID, ...
    "FileExtensions",".mat","ReadFcn",@(x) fcn(x));

fcn is a custom function that reads data from a MAT file. For example, this code
defines a function called matRead that loads volume data from the first variable
of a MAT file. Save the function in a file called matRead.m.

function data = matRead(filename)
    inp = load(filename);
    f = fields(inp);
    data = inp.(f{1});
end

DICOM volume in
single file

volds = imageDatastore(filepath, ...
   "FileExtensions",".dcm","ReadFcn",@(x) dicomread(x));

pxds = pixelLabelDatastore(filepath,classNames,pixelLabelID, ...
   "FileExtensions",".dcm","ReadFcn",@(x) dicomread(x));

For more information about reading DICOM files, see dicomread.
DICOM volume in
multiple files

Follow these steps. For an example, see “Create Image Datastore Containing
Single and Multi-File DICOM Volumes” (Image Processing Toolbox).

• Aggregate the files into a single study by using the dicomCollection
function.

• Read the DICOM data in the study by using the dicomreadVolume function.
• Write each volume as a MAT file.
• Create the ImageDatastore or PixelLabelDatastore from the collection

of MAT files by following the procedure for MAT files.

20 Deep Learning Data Preprocessing

20-20



Image File
Format

Create Image Datastore or Pixel Label Datastore

NIfTI volds = imageDatastore(filepath, ...
   "FileExtensions",".nii","ReadFcn",@(x) niftiread(x));

pxds = pixelLabelDatastore(filepath,classNames,pixelLabelID, ...
   "FileExtensions",".nii","ReadFcn",@(x) niftiread(x));

For more information about reading NIfTI files, see niftiread.

Pair Image and Label Data
To associate volumetric image and label data for semantic segmentation, or two volumetric image
datastores for regression, use a randomPatchExtractionDatastore. A random patch extraction
datastore extracts corresponding randomly-positioned patches from two datastores. Patching is a
common technique to prevent running out of memory when training with arbitrarily large volumes.
Specify a patch size that matches the input size of the network and, for memory efficiency, is smaller
than the full size of the volume, such as 64-by-64-by-64 voxels.

You can also use the combine function to associate two datastores. However, associating two
datastores using a randomPatchExtractionDatastore has some benefits over combine.

• randomPatchExtractionDatastore supports parallel training, multi-GPU training, and
prefetch reading. Specify parallel or multi-GPU training using the ExecutionEnvironment
name-value argument of trainingOptions. Specify prefetch reading using the
DispatchInBackground name-value argument of trainingOptions. Prefetch reading requires
Parallel Computing Toolbox.

• randomPatchExtractionDatastore inherently supports patch extraction. In contrast, to
extract patches from a CombinedDatastore, you must define your own function that crops
images into patches, and then use the transform function to apply the cropping operations.

• randomPatchExtractionDatastore can generate several image patches from one test image.
One-to-many patch extraction effectively increases the amount of available training data.

Preprocess Volumetric Data
Deep learning frequently requires the data to be preprocessed and augmented. For example, you may
want to normalize image intensities, enhance image contrast, or add randomized affine
transformations to prevent overfitting.

To preprocess volumetric data, use the transform function. transform creates an altered form of a
datastore, called an underlying datastore, by transforming the data read by the underlying datastore
according to the set of operations you define in a custom function. Image Processing Toolbox provides
several functions that accept volumetric input. For a full list of functions, see 3-D Volumetric Image
Processing (Image Processing Toolbox). You can also preprocess volumetric images using functions in
MATLAB that work on multidimensional arrays.

The custom transformation function must accept data in the format returned by the read function of
the underlying datastore.

 Preprocess Volumes for Deep Learning

20-21



Underlying
Datastore

Format of Input to Custom Transformation Function

ImageDatastore The input to the custom transformation function depends on the ReadSize
property.

• When ReadSize is 1, the transformation function must accept an integer
array. The size of the array is consistent with the type of images in the
ImageDatastore. For example, a grayscale image has size m-by-n, a
truecolor image has size m-by-n-by-3, and a multispectral image with c
channels has size m-by-n-by-c.

• When ReadSize is greater than 1, the transformation function must accept
a cell array of image data corresponding to each image in the batch.

For more information, see the read function of ImageDatastore.
PixelLabelData
store

The input to the custom transformation function depends on the ReadSize
property.

• When ReadSize is 1, the transformation function must accept a categorical
matrix.

• When ReadSize is greater than 1, the transformation function must accept
a cell array of categorical matrices.

For more information, see the read function of PixelLabelDatastore.
RandomPatchExt
ractionDatasto
re

The input to the custom transformation function must be a table with two
columns.

For more information, see the read function of
RandomPatchExtractionDatastore.

The transform function must return data that matches the input size of the network. The
transform function does not support one-to-many observation mappings.

To apply random affine transformations to volumetric data in RandomPatchExtractionDatastore,
you must use the transform function. The DataAugmentation property of this datastore does not
support volumetric data.

Examples
Transform Batch of Volumetric Data in Image Datastore

This example shows how to transform volumetric data in an image datastore using a sample image
preprocessing pipeline.

Specify a set of volumetric images saved at MAT files.

filepath = fullfile(matlabroot,"toolbox","images","imdata","mristack.mat");
files = [filepath; filepath; filepath];

Create an image datastore that stores multiple volumetric images. Specify that the ReadSize of the
datastore is greater than 1. Specify a custom read function, matRead. This function is defined in the
Supporting Functions section of this example.

20 Deep Learning Data Preprocessing

20-22



volDS = imageDatastore(files,FileExtensions=".mat", ...
    ReadSize=3,ReadFcn=@(x) matRead(x));

Specify the input size of the network.

inputSize = [128 128];

Preprocess the volumetric images in volDS using the custom preprocessing pipeline defined in the
preprocessVolumetricIMDS supporting function.

dsTrain = transform(volDS,@(x) preprocessVolumetricIMDS(x,inputSize));

Read a batch of data.

minibatch = read(dsTrain)

minibatch=3×1 cell array
    {128x128x21 uint8}
    {128x128x21 uint8}
    {128x128x21 uint8}

Supporting Functions

The matRead function loads volume data from the first variable of a MAT file.

function data = matRead(filename)
    inp = load(filename);
    f = fields(inp);
    data = inp.(f{1});
end

The preprocessVolumetricIMDS function performs the desired transformations of data read from
an underlying image datastore. Because the read size of the image datastore is greater than 1, the
function must accept a cell array of image data. The function loops through each read image and
transforms the data according to this preprocessing pipeline:

• Randomly rotate the image about the z-axis.
• Resize the volume to the size expected by the network.
• Create a noisy version of the image with Gaussian noise.
• Return the image in a cell array.

function batchOut = preprocessVolumetricIMDS(batchIn,inputSize)
 
numRows = size(batchIn,1);
batchOut = cell(numRows,1);
 
for idx = 1:numRows
    
    % Perform randomized 90 degree rotation about the z-axis
    imRotated = imrotate3(batchIn{idx,1},90*(randi(4)-1),[0 0 1]);

    % Resize the volume to the size expected by the network
    imResized = imresize(imRotated,inputSize);
    
    % Add zero-mean Gaussian noise with a normalized variance of 0.01
    imNoisy = imnoise(imResized,"gaussian",0.01);

 Preprocess Volumes for Deep Learning

20-23



    % Return the preprocessed data
    batchOut(idx) = {imNoisy};
    
end
end

Transform Volumetric Data in Random Patch Extraction Datastore

This example shows how to transform pairs of volumetric data in a random patch extraction datastore
using a sample image preprocessing pipeline.

Specify two sets of volumetric images saved at MAT files. Each set contains five volumetric images.

dir = fullfile(matlabroot,"toolbox","images","imdata","BrainMRILabeled");
filesVol1 = fullfile(dir,"images");
filesVol2 = fullfile(dir,"labels");

Store each set of volumetric images in an image datastore. Specify a custom read function, matRead.
This function is defined in the Supporting Functions section of this example. Use the default
ReadSize of 1.

vol1DS = imageDatastore(filesVol1,FileExtensions=".mat",ReadFcn=@(x) matRead(x));
vol2DS = imageDatastore(filesVol2,FileExtensions=".mat",ReadFcn=@(x) matRead(x));

Specify the input size of the network.

inputSize = [128 128];

Create a random patch extraction datastore that extracts corresponding patches from the two
datastores. Select three patches per image.

patchVolDS = randomPatchExtractionDatastore(vol1DS,vol2DS,inputSize,PatchesPerImage=3);

Preprocess the volumetric images in patchVolDS using the custom preprocessing pipeline defined in
the preprocessVolumetricPatchDS supporting function.

dsTrain = transform(patchVolDS,@(x) preprocessVolumetricPatchDS(x));

Read a batch of data.

minibatch = read(dsTrain)

minibatch=15×2 table
         InputImage            ResponseImage   
    ____________________    ___________________

    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}

20 Deep Learning Data Preprocessing

20-24



    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}
    {128x128x155 uint16}    {128x128x155 uint8}

Supporting Functions

The matRead function loads volume data from the first variable of a MAT file.

function data = matRead(filename)
    inp = load(filename);
    f = fields(inp);
    data = inp.(f{1});
end

The preprocessVolumetricPatchDS function performs the desired transformations of data read
from the underlying random patch extraction datastore. The function must accept a table. The
function transforms the data according to this preprocessing pipeline:

• Randomly select one of five augmentations.
• Apply the same augmentation to the data in both columns of the table.
• Return the augmented image pair in a table.

function batchOut = preprocessVolumetricPatchDS(batchIn)

numRows = size(batchIn,1); 
batchOut = batchIn;

% 5 augmentations: nil,rot90,fliplr,flipud,rot90(fliplr)
augType = {@(x) x,@rot90,@fliplr,@flipud,@(x) rot90(fliplr(x))};

for idx = 1:numRows

    img = batchIn{idx,1}{1};
    resp = batchIn{idx,2}{1};
    
    rndIdx = randi(5,1);
    imgAug = augType{rndIdx}(img);
    respAug = augType{rndIdx}(resp);
    
    batchOut(idx,:) = {imgAug,respAug};

end
end

See Also
trainNetwork | imageDatastore | pixelLabelDatastore |
randomPatchExtractionDatastore | transform

Related Examples
• “Create Image Datastore Containing Single and Multi-File DICOM Volumes” (Image Processing

Toolbox)

 Preprocess Volumes for Deep Learning

20-25



• “3-D Brain Tumor Segmentation Using Deep Learning” on page 8-185

More About
• “Datastores for Deep Learning” on page 20-2
• “Deep Learning in MATLAB” on page 1-2
• “Create Functions in Files”

20 Deep Learning Data Preprocessing

20-26



Preprocess Data for Domain-Specific Deep Learning
Applications

Data preprocessing is used for training, validation, and inference. Preprocessing consists of a series
of deterministic operations that normalize or enhance desired data features. For example, you can
normalize data to a fixed range or rescale data to the size required by the network input layer.

Preprocessing can occur at two stages in the deep learning workflow.

• Commonly, preprocessing occurs as a separate step that you complete before preparing the data
to be fed to the network. You load your original data, apply the preprocessing operations, then
save the result to disk. The advantage of this approach is that the preprocessing overhead is only
required once, then the preprocessed images are readily available as a starting place for all future
trials of training a network.

• If you load your data into a datastore, then you can also apply preprocessing during training by
using the transform and combine functions. For more information, see “Datastores for Deep
Learning” on page 20-2. The transformed images are not stored in memory. This approach is
convenient to avoid writing a second copy of training data to disk if your preprocessing operations
are not computationally expensive and do not noticeably impact the speed of training the network.

Data augmentation consists of randomized operations that are applied to the training data while the
network is training. Augmentation increases the effective amount of training data and helps to make
the network invariant to common distortion in the data. For example, you can add artificial noise to
training data so that the network is invariant to noise.

To augment training data, start by loading your data into a datastore. For more information, see
“Datastores for Deep Learning” on page 20-2. Some built-in datastores apply a specific and limited
set of augmentation to data for specific applications. You can also apply your own set of augmentation
operations on data in the datastore by using the transform and combine functions. During training,
the datastore randomly perturbs the training data for each epoch, so that each epoch uses a slightly
different data set.

Image Processing Applications
Augment image data to simulate variations in the image acquisition. For example, the most common
type of image augmentation operations are geometric transformations such as rotation and
translation, which simulate variations in the camera orientation with respect to the scene. Color jitter
simulates variations of lighting conditions and color in the scene. Artificial noise simulates distortions
caused by the electrical fluctuations in the sensor and analog-to-digital conversion errors. Blur
simulates an out-of-focus lens or movement of the camera with respect to the scene.

Common image preprocessing operations include noise removal, edge-preserving smoothing, color
space conversion, contrast enhancement, and morphology.

If you have Image Processing Toolbox, then you can process data using these operations as well as
any other functionality in the toolbox. For an example that shows how to create and apply these
transformations, see “Augment Images for Deep Learning Workflows” on page 20-45.

 Preprocess Data for Domain-Specific Deep Learning Applications

20-27



Processing
Type

Description Sample
Functions

Sample Output

Resize
images

Resize images by
a fixed scaling
factor or to a
target size

• imresize,
imresize3

Warp
images

Apply random
reflection,
rotation, scale,
shear, and
translation to
images

• randomAffin
e2d,
randomAffin
e3d

Crop
images

Crop an image to
a target size from
the center or a
random position

• centerCropW
indow2d,
centerCropW
indow3d

• randomWindo
w2d,
randomCropW
indow3d

Jitter color Randomly adjust
image hue,
saturation,
brightness, or
contrast

• jitterColor
HSV

20 Deep Learning Data Preprocessing

20-28



Processing
Type

Description Sample
Functions

Sample Output

Simulate
noise

Add random
Gaussian,
Poisson, salt and
pepper, or
multiplicative
noise

• imnoise

Simulate
blur

Add Gaussian or
directional motion
blur

• imgaussfilt,
imgaussfilt
3

• imfilter

Object Detection
Object detection data consists of an image and bounding boxes that describe the location and
characteristics of objects in the image.

If you have Computer Vision Toolbox, then you can use the Image Labeler and the Video Labeler
apps to interactively label ROIs and export the label data for training a neural network. If you have
Automated Driving Toolbox™, then you also use the Ground Truth Labeler app to create labeled
ground truth training data.

When you transform an image, you must perform an identical transformation to the corresponding
bounding boxes. If you have Computer Vision Toolbox, then you can process bounding box data using
the operations in the table. For an example that shows how to create and apply these
transformations, see “Augment Bounding Boxes for Object Detection” on page 20-77. For more
information, see “Getting Started with Object Detection Using Deep Learning” (Computer Vision
Toolbox).

 Preprocess Data for Domain-Specific Deep Learning Applications

20-29



Processing
Type

Description Sample
Functions

Sample Output

Resize
bounding
boxes

Resize bounding
boxes by a fixed
scaling factor or
to a target size

• bboxresize

Crop
bounding
boxes

Crop a bounding
box to a target
size from the
center or a
random position

• bboxcrop

Warp
bounding
boxes

Apply reflection,
rotation, scale,
shear, and
translation to
bounding boxes

• bboxwarp

Semantic Segmentation
Semantic segmentation data consists of images and corresponding pixel labels represented as
categorical arrays.

If you have Computer Vision Toolbox, then you can use the Image Labeler and the Video Labeler
apps to interactively label pixels and export the label data for training a neural network. If you have
Automated Driving Toolbox, then you also use the Ground Truth Labeler app to create labeled
ground truth training data.

When you transform an image, you must perform an identical transformation to the corresponding
pixel labeled image. If you have Image Processing Toolbox, then you can preprocess pixel label
images using the functions in the table and any other toolbox function that supports categorical
input. For an example that shows how to create and apply these transformations, see “Augment Pixel
Labels for Semantic Segmentation” on page 20-67. For more information, see “Getting Started with
Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox).

20 Deep Learning Data Preprocessing

20-30



Processing
Type

Description Sample
Functions

Sample Output

Resize pixel
labels

Resize pixel label
images by a fixed
scaling factor or
to a target size

• imresize

Crop pixel
labels

Crop a pixel label
image to a target
size from the
center or a
random position

• imcrop
• centerCropW

indow2d,
centerCropW
indow3d

• randomWindo
w2d,
randomCropW
indow3d

Warp pixel
labels

Apply random
reflection,
rotation, scale,
shear, and
translation to
pixel label images

• randomAffin
e2d,
randomAffin
e3d

Lidar Processing Applications
Lidar Toolbox enables you to design, analyze, and test lidar systems. You can perform object detection
and tracking, semantic segmentation, shape fitting, and registration. Raw point cloud data from lidar
sensors requires basic processing before you can use them for these advanced workflows.

Lidar Toolbox provides tools to perform preprocessing such as downsampling, filtering, aligning, and
extracting features from point cloud data. You can also augment and transform point clouds to
increase the diversity of your training data.

Use Lidar Viewer app to visualize, analyze and measure point cloud data. You can preprocess data
by using the built-in preprocessing algorithms or import a custom algorithm. For more information,
see “Create Custom Preprocessing Workflow with Lidar Viewer” (Lidar Toolbox).

You can create labeled ground truth training data by using the Lidar Labeler app. For more
information on automated labelling, see “Automate Ground Truth Labeling For Vehicle Detection
Using PointPillars” (Lidar Toolbox).

 Preprocess Data for Domain-Specific Deep Learning Applications

20-31



Processing
Type

Description Sample
Functions

Sample Output

Clean and
filter point
cloud data

• Downsample
point cloud
data using
downsampling
algorithms

• Apply median
filtering

• Remove noise

• pcdownsampl
e

• pcmedian
• pcdenoise

Organize
point cloud

Convert point
cloud into
organized format,
where you
arrange the data
as rows and
columns
according to the
spatial
relationship
between the
points

• pcorganize size(ptCloudUnorg.Location)

ans = 1×2

       37879           3

ptCloudOrg = pcorganize(ptCloudUnorg,params);
size(ptCloudOrg.Location)

ans = 1×3

          64        1024           3

Create
blocked
point clouds

When your data is
too large to fit
into the memory,
divide and
process the point
cloud as discrete
blocks

• blockedPoin
tCloud

• blockedPoin
tCloudDatas
tore

20 Deep Learning Data Preprocessing

20-32



Processing
Type

Description Sample
Functions

Sample Output

Augment
point cloud
data

• Apply a
geometric
transformation
, such as
random
rotation,
translation,
shearing, and
scaling

• Randomly add
bounding
boxes to the
training data

• pctransform,
transform

• sampleLidar
Data,
pcBboxOvers
ample

Signal Processing Applications
Signal Processing Toolbox enables you to denoise, smooth, detrend, and resample signals. You can
augment training data with noise, multipath fading, and synthetic signals such as pulses and chirps.
You can also create labeled sets of signals by using the Signal Labeler app and the
labeledSignalSet object. For an example that shows how to create and apply these
transformations, see “Waveform Segmentation Using Deep Learning” on page 13-24.

Wavelet Toolbox™ and Signal Processing Toolbox enable you to generate 2-D time-frequency
representations of time series data that you can use as image inputs for signal classification
applications. For an example, see “Classify Time Series Using Wavelet Analysis and Deep Learning”
on page 13-79. Similarly, you can extract sequences from signal data to use as input for LSTM
networks. For an example, see “Classify ECG Signals Using Long Short-Term Memory Networks”
(Signal Processing Toolbox).

Communications Toolbox™ expands on signal processing functionality to enable you to perform error
correction, interleaving, modulation, filtering, synchronization, and equalization of communication
systems. For an example that shows how to create and apply these transformations, see “Modulation
Classification with Deep Learning” on page 14-150.

 Preprocess Data for Domain-Specific Deep Learning Applications

20-33



You can process signal data using the functions in the table as well as any other functionality in each
toolbox.

Processing
Type

Description Sample
Functions

Sample Output

Clean
signals

• Apply median
filtering or
moving
average to
signal

• Remove
polynomial
trend

• Resample
signal to new
fixed rate

• medfilt1,
smoothdata

• detrend
• downsample,

interp,
upsample

Filter
signals

• Perform
lowpass,
highpass, and
bandstop
filtering of IIR
and FIR
signals

• Design IIR and
FIR filters

• Apply IIR and
FIR filters

• bandpass,
bandstop,
highpass,
lowpass

• butter,
designfilt,
fir1,
gaussdesign,
rcosdesign

• filter

Augment
signals

• Add white
Gaussian noise
to signal using
Communicatio
ns Toolbox

• Adjust time
information of
the signal, and
perform
multipath
fading using
Communicatio
ns Toolbox

• Add synthetic
chirps and
waveforms

• awgn
• chirp,

square,
rectpuls,
sawtooth

20 Deep Learning Data Preprocessing

20-34



Processing
Type

Description Sample
Functions

Sample Output

Create
time-
frequency
representat
ions

Create
spectrograms,
scalograms, and
other 2-D
representations of
1-D signals

• pspectrum,
xspectrogra
m

• fsst, ifsst
• stft, istft
• cwt

Extract
features
from
signals

Estimate
instantaneous
frequency and
spectral entropy

• instfreq,
pentropy

Audio Processing Applications
Audio Toolbox provides tools for audio processing, speech analysis, and acoustic measurement. Use
these tools to extract auditory features and transform audio signals. Augment audio data with
randomized or deterministic time scaling, time stretching, and pitch shifting. You can also create
labeled ground truth training data by using the Signal Labeler app. You can process audio data
using the functions in this table as well as any other functionality in the toolbox. For an example that
shows how to create and apply these transformations, see “Augment Audio Dataset” (Audio Toolbox).

Audio Toolbox also provides MATLAB and Simulink support for pretrained audio deep learning
networks. Locate and classify sounds with YAMNet and estimate pitch with CREPE. Extract VGGish
or OpenL3 feature embeddings to input to machine learning and deep learning systems. The Audio
Toolbox pretrained networks are available in Deep Network Designer. For a YAMNet example, see
“Transfer Learning with Pretrained Audio Networks in Deep Network Designer” on page 2-93.

 Preprocess Data for Domain-Specific Deep Learning Applications

20-35



Processing
Type

Description Sample
Functions

Sample Output

Augment
audio data

Perform random
or deterministic
pitch shifting,
time-scale
modification, time
shifting, noise
addition, and
volume control

• audioDataAu
gmenter,
audioTimeSc
aler,
shiftPitch,
stretchAudi
o

Extract
audio
features

Extract spectral
parameters from
audio segments

• audioFeatur
eExtractor,
mfcc

Processed output:

ans = struct with fields:
                mfcc: [1 2 3 4 5 6 7 8 9 10 11 12 13]
           mfccDelta: [14 15 16 17 18 19 20 21 22 23 24 25 26]
      mfccDeltaDelta: [27 28 29 30 31 32 33 34 35 36 37 38 39]
    spectralCentroid: 40
               pitch: 41

Create
time-
frequency
representat
ions

• Create mel
spectrograms
and other 2-D
representation
s of audio
signals

• Prepare audio
signals to feed
to pretrained
deep learning
networks

• melSpectrog
ram, mdct

• crepePrepro
cess,
openl3Prepr
ocess,
vggishPrepr
ocess,
yamnetPrepr
ocess

20 Deep Learning Data Preprocessing

20-36



Text Analytics
Text Analytics Toolbox includes tools for processing raw text from sources such as equipment logs,
news feeds, surveys, operator reports, and social media. Use these tools to extract text from popular
file formats, preprocess raw text, extract individual words or multiword phrases (n-grams), convert
text into numerical representations, and build statistical models. You can process text data using the
functions in this table as well as any other functionality in the toolbox. For an example showing how
to get started, see “Prepare Text Data for Analysis” (Text Analytics Toolbox).

Processing
Type

Description Sample
Functions

Sample Output

Tokenize
text

Parse text into
words and
punctuation

• tokenizedDo
cument

Original:

"A few tree limbs greater than 6
inches down on HWY 18 in Roseland."

Processed output:

15 tokens: A few tree limbs greater
than 6 inches down on HWY 18 in
Roseland .

Clean text • Remove
variations in
word forms
and case

• Remove
punctuation

• Remove stop
words, short
words, and
long words

• normalizeWo
rds

• erasePunctu
ation

• removeStopW
ords,
removeShort
Words,
removeLongW
ords

Processed output:

15 tokens: a few tree limb great than
6 inch down on hwy 18 in roseland .

14 tokens: a few tree limb great than
6 inch down on hwy 18 in roseland

8 tokens: few tree limb great inch
down hwy roseland

See Also
transform | combine | trainNetwork | trainingOptions | read

More About
• “Datastores for Deep Learning” on page 20-2
• “Select Datastore for File Format or Application”

 Preprocess Data for Domain-Specific Deep Learning Applications

20-37



Develop Custom Mini-Batch Datastore
A mini-batch datastore is an implementation of a datastore with support for reading data in batches.
You can use a mini-batch datastore as a source of training, validation, test, and prediction data sets
for deep learning applications that use Deep Learning Toolbox.

To preprocess sequence, time series, or text data, build your own mini-batch datastore using the
framework described here. For an example showing how to use a custom mini-batch datastore, see
“Train Network Using Custom Mini-Batch Datastore for Sequence Data” on page 20-102.

Overview
Build your custom datastore interface using the custom datastore classes and objects. Then, use the
custom datastore to bring your data into MATLAB.

Designing your custom mini-batch datastore involves inheriting from the matlab.io.Datastore
and matlab.io.datastore.MiniBatchable classes, and implementing the required properties
and methods. You optionally can add support for shuffling during training.

Processing Needs Classes
Mini-batch datastore for training, validation, test,
and prediction data sets in Deep Learning
Toolbox

matlab.io.Datastore and
matlab.io.datastore.MiniBatchable

See “Implement MiniBatchable Datastore” on
page 20-38.

Mini-batch datastore with support for shuffling
during training

matlab.io.Datastore,
matlab.io.datastore.MiniBatchable, and
matlab.io.datastore.Shuffleable

See “Add Support for Shuffling” on page 20-43.

Implement MiniBatchable Datastore
To implement a custom mini-batch datastore named MyDatastore, create a script MyDatastore.m.
The script must be on the MATLAB path and should contain code that inherits from the appropriate
class and defines the required methods. The code for creating a mini-batch datastore for training,
validation, test, and prediction data sets in Deep Learning Toolbox must:

• Inherit from the classes matlab.io.Datastore and matlab.io.datastore.MiniBatchable.
• Define these properties: MiniBatchSize and NumObservations.
• Define these methods: hasdata, read, reset, and progress.

In addition to these steps, you can define any other properties or methods that you need to process
and analyze your data.

Note If you are training a network and trainingOptions specifies 'Shuffle' as 'once' or
'every-epoch', then you must also inherit from the matlab.io.datastore.Shuffleable class.
For more information, see “Add Support for Shuffling” on page 20-43.

20 Deep Learning Data Preprocessing

20-38



The datastore read function must return data in a table. The table elements must be scalars, row
vectors, or 1-by-1 cell arrays containing a numeric array.

For networks with a single input layer, the first and second columns specify the predictors and
responses, respectively.

Tip To use a datastore for networks with multiple input layers, use the combine and transform
functions to create a datastore that outputs a cell array with (numInputs + 1) columns, where
numInputs is the number of network inputs. In this case, the first numInputs columns specify the
predictors for each input and the last column specifies the responses. The order of inputs is given by
the InputNames property of the layer graph layers.

The format of the predictors depend on the type of data.

Data Format of Predictors
2-D image h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
image, respectively.

3-D image h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the image, respectively.

Vector sequence c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length.

1-D image sequence h-by-c-by-s array, where h and c correspond to
the height and number of channels of the image,
respectively, and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

2-D image sequence h-by-w-by-c-by-s array, where h, w, and c
correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

Features c-by-1 column vector, where c is the number of
features.

The table elements must contain a numeric scalar, a numeric row vector, or a 1-by-1 cell array
containing a numeric array.

 Develop Custom Mini-Batch Datastore

20-39



The trainNetwork function does not support networks with multiple sequence input layers.

The format of the responses depend on the type of task.

Task Format of Responses
Classification Categorical scalar
Regression • Scalar

• Numeric vector
• 3-D numeric array representing an image

Sequence-to-sequence classification 1-by-s sequence of categorical labels, where s is
the sequence length of the corresponding
predictor sequence.

Sequence-to-sequence regression R-by-s matrix, where R is the number of
responses and s is the sequence length of the
corresponding predictor sequence.

The table elements must contain a categorical scalar, a numeric scalar, a numeric row vector, or a 1-
by-1 cell array containing a numeric array.

This example shows how to create a custom mini-batch datastore for processing sequence data. Save
the script in a file called MySequenceDatastore.m.

20 Deep Learning Data Preprocessing

20-40



Steps Implementation
 

1 Begin defining your
class. Inherit from the
base class
matlab.io.Datasto
re and the
matlab.io.datasto
re.MiniBatchable
class.

 
2 Define properties.

• Redefine the
MiniBatchSize
and
NumObservation
s properties. You
optionally can
assign additional
property attributes
to either property.
For more
information, see
“Property
Attributes”.

• You can also
define properties
unique to your
custom mini-batch
datastore.

 
3 Define methods.

• Implement the
custom mini-batch
datastore
constructor.

• Implement the
hasdata method.

• Implement the
read method,
which must return
data as a table
with the
predictors in the
first column and

classdef MySequenceDatastore < matlab.io.Datastore & ...
                       matlab.io.datastore.MiniBatchable
    
    properties
        Datastore
        Labels
        NumClasses
        SequenceDimension
        MiniBatchSize
    end
    
    properties(SetAccess = protected)
        NumObservations
    end

    properties(Access = private)
        % This property is inherited from Datastore
        CurrentFileIndex
    end

    methods
        
        function ds = MySequenceDatastore(folder)
            % Construct a MySequenceDatastore object

            % Create a file datastore. The readSequence function is
            % defined following the class definition.
            fds = fileDatastore(folder, ...
                'ReadFcn',@readSequence, ...
                'IncludeSubfolders',true);
            ds.Datastore = fds;

            % Read labels from folder names
            numObservations = numel(fds.Files);
            for i = 1:numObservations
                file = fds.Files{i};
                filepath = fileparts(file);
                [~,label] = fileparts(filepath);
                labels{i,1} = label;
            end
            ds.Labels = categorical(labels);
            ds.NumClasses = numel(unique(labels));
            
            % Determine sequence dimension. When you define the LSTM
            % network architecture, you can use this property to
            % specify the input size of the sequenceInputLayer.
            X = preview(fds);
            ds.SequenceDimension = size(X,1);
            
            % Initialize datastore properties.
            ds.MiniBatchSize = 128;
            ds.NumObservations = numObservations;
            ds.CurrentFileIndex = 1;
        end

        function tf = hasdata(ds)
            % Return true if more data is available
            tf = ds.CurrentFileIndex + ds.MiniBatchSize - 1 ...
                <= ds.NumObservations;
        end

        function [data,info] = read(ds)            
            % Read one mini-batch batch of data
            miniBatchSize = ds.MiniBatchSize;
            info = struct;
            
            for i = 1:miniBatchSize
                predictors{i,1} = read(ds.Datastore);
                responses(i,1) = ds.Labels(ds.CurrentFileIndex);

 Develop Custom Mini-Batch Datastore

20-41



Steps Implementation
responses in the
second column.

For sequence data,
the sequences
must be matrices
of size c-by-s,
where c is the
number of
features and s is
sequence length.
The value of s can
vary between
mini-batches.

• Implement the
reset method.

• Implement the
progress
method.

• You can also
define methods
unique to your
custom mini-batch
datastore.

 
4 End the classdef

section.

                ds.CurrentFileIndex = ds.CurrentFileIndex + 1;
            end
            
            data = preprocessData(ds,predictors,responses);
        end

        function data = preprocessData(ds,predictors,responses)
            % data = preprocessData(ds,predictors,responses) preprocesses
            % the data in predictors and responses and returns the table
            % data
            
            miniBatchSize = ds.MiniBatchSize;
            
            % Pad data to length of longest sequence.
            sequenceLengths = cellfun(@(X) size(X,2),predictors);
            maxSequenceLength = max(sequenceLengths);
            for i = 1:miniBatchSize
                X = predictors{i};
                
                % Pad sequence with zeros.
                if size(X,2) < maxSequenceLength
                    X(:,maxSequenceLength) = 0;
                end
                
                predictors{i} = X;
            end
            
            % Return data as a table.
            data = table(predictors,responses);
        end

        function reset(ds)
            % Reset to the start of the data
            reset(ds.Datastore);
            ds.CurrentFileIndex = 1;
        end
        
    end 

    methods (Hidden = true)

        function frac = progress(ds)
            % Determine percentage of data read from datastore
            frac = (ds.CurrentFileIndex - 1) / ds.NumObservations;
        end

    end

end % end class definition

The implementation of the read method of your custom datastore uses a
function called readSequence. You must create this function to read
sequence data from a MAT-file.

function data = readSequence(filename)
% data = readSequence(filename) reads the sequence X from the MAT-file
% filename

S = load(filename);
data = S.X;
end

20 Deep Learning Data Preprocessing

20-42



Add Support for Shuffling
To add support for shuffling, first follow the instructions in “Implement MiniBatchable Datastore” on
page 20-38 and then update your implementation code in MySequenceDatastore.m to:

• Inherit from an additional class matlab.io.datastore.Shuffleable.
• Define the additional method shuffle.

This example code adds shuffling support to the MySequenceDatastore class. Vertical ellipses
indicate where you should copy code from the MySequenceDatastore implementation.

Steps Implementation
 

1 Update the class
definition to also
inherit from the
matlab.io.datasto
re.Shuffleable
class.

 
2 Add the definition for

shuffle to the
existing methods
section.

classdef MySequenceDatastore < matlab.io.Datastore & ...
                       matlab.io.datastore.MiniBatchable & ...
                       matlab.io.datastore.Shuffleable
   
   % previously defined properties 
   .
   .
   . 

   methods

        % previously defined methods
        .
        .
        . 
   
        function dsNew = shuffle(ds)
            % dsNew = shuffle(ds) shuffles the files and the
            % corresponding labels in the datastore.
            
            % Create a copy of datastore
            dsNew = copy(ds);
            dsNew.Datastore = copy(ds.Datastore);
            fds = dsNew.Datastore;
            
            % Shuffle files and corresponding labels
            numObservations = dsNew.NumObservations;
            idx = randperm(numObservations);
            fds.Files = fds.Files(idx);
            dsNew.Labels = dsNew.Labels(idx);
        end

     end

end
  

Validate Custom Mini-Batch Datastore
If you have followed all the instructions presented here, then the implementation of your custom
mini-batch datastore is complete. Before using this datastore, qualify it using the guidelines
presented in “Testing Guidelines for Custom Datastores”.

 Develop Custom Mini-Batch Datastore

20-43



See Also
trainNetwork

Related Examples
• “Train Network Using Custom Mini-Batch Datastore for Sequence Data” on page 20-102

More About
• “Datastores for Deep Learning” on page 20-2
• “Getting Started with Datastore”
• “Develop Custom Datastore”
• “Developing Classes That Work Together”
• “Testing Guidelines for Custom Datastores”
• “Deep Learning in MATLAB” on page 1-2

20 Deep Learning Data Preprocessing

20-44



Augment Images for Deep Learning Workflows

This example shows how you can perform common kinds of randomized image augmentation such as
geometric transformations, cropping, and adding noise.

Image Processing Toolbox functions enable you to implement common styles of image augmentation.
This example demonstrates five common types of transformations:

• Random Image Warping Transformations on page 20-46
• Cropping Transformations on page 20-52
• Color Transformations on page 20-53
• Synthetic Noise on page 20-58
• Synthetic Blur on page 20-59

The example then shows how to apply augmentation to image data in datastores on page 20-60
using a combination of multiple types of transformations.

You can use augmented training data to train a network. For an example of training a network using
augmented images, see “Prepare Datastore for Image-to-Image Regression” on page 20-90.

Read and display a sample image. To compare the effect of the different types of image augmentation,
each transformation uses the same input image.

imOriginal = imresize(imread("kobi.png"),0.25);
imshow(imOriginal) 

 Augment Images for Deep Learning Workflows

20-45



Random Image Warping Transformations

The randomAffine2d (Image Processing Toolbox) function creates a randomized 2-D affine
transformation from a combination of rotation, translation, scale (resizing), reflection, and shear. You
can specify which transformations to include and the range of transformation parameters. If you
specify the range as a 2-element numeric vector, then randomAffine2d selects the value of a
parameter from a uniform probability distribution over the specified interval. For more control of the
range of parameter values, you can specify the range using a function handle.

Control the spatial bounds and resolution of the warped image created by imwarp (Image Processing
Toolbox) by using the affineOutputView (Image Processing Toolbox) function.

Rotation

Create a randomized rotation transformation that rotates the input image by an angle selected
randomly from the range [-45, 45] degrees.

tform = randomAffine2d(Rotation=[-45 45]); 
outputView = affineOutputView(size(imOriginal),tform);
imAugmented = imwarp(imOriginal,tform,OutputView=outputView);  
imshow(imAugmented)

Translation

Create a translation transformation that shifts the input image horizontally and vertically by a
distance selected randomly from the range [-50, 50] pixels.

tform = randomAffine2d(XTranslation=[-50 50],YTranslation=[-50 50]);
outputView = affineOutputView(size(imOriginal),tform);

20 Deep Learning Data Preprocessing

20-46



imAugmented = imwarp(imOriginal,tform,OutputView=outputView);
imshow(imAugmented)

Scale

Create a scale transformation that resizes the input image using a scale factor selected randomly
from the range [1.2, 1.5]. This transformation resizes the image by the same factor in the horizontal
and vertical directions.

tform = randomAffine2d(Scale=[1.2,1.5]);
outputView = affineOutputView(size(imOriginal),tform);
imAugmented = imwarp(imOriginal,tform,OutputView=outputView);
imshow(imAugmented)

 Augment Images for Deep Learning Workflows

20-47



Reflection

Create a reflection transformation that flips the input image with 50% probability in each dimension.

tform = randomAffine2d(XReflection=true,YReflection=true);
outputView = affineOutputView(size(imOriginal),tform);
imAugmented = imwarp(imOriginal,tform,OutputView=outputView);
imshow(imAugmented)

20 Deep Learning Data Preprocessing

20-48



Shear

Create a horizontal shear transformation with the shear angle selected randomly from the range [-30,
30].

tform = randomAffine2d(XShear=[-30 30]); 
outputView = affineOutputView(size(imOriginal),tform); 
imAugmented = imwarp(imOriginal,tform,OutputView=outputView);
imshow(imAugmented) 

 Augment Images for Deep Learning Workflows

20-49



Control Range of Transformation Parameters Using Custom Selection Function

In the preceding transformations, the range of transformation parameters was specified by two-
element numeric vectors. For more control of the range of the transformation parameters, specify a
function handle instead of a numeric vector. The function handle takes no input arguments and yields
a valid value for each parameter.

For example, this code selects a rotation angle from a discrete set of 90 degree rotation angles.

angles = 0:90:270; 
tform = randomAffine2d(Rotation=@() angles(randi(4))); 
outputView = affineOutputView(size(imOriginal),tform); 
imAugmented = imwarp(imOriginal,tform,OutputView=outputView); 
imshow(imAugmented) 

20 Deep Learning Data Preprocessing

20-50



Control Fill Value

When you warp an image using a geometric transformation, pixels in the output image can map to a
location outside the bounds of the input image. In that case, imwarp assigns a fill value to those
pixels in the output image. By default, imwarp selects black as the fill value. You can change the fill
value by specifying the 'FillValues' name-value argument.

Create a random rotation transformation, then apply the transformation and specify a gray fill value.

tform = randomAffine2d(Rotation=[-45 45]);
outputView = affineOutputView(size(imOriginal),tform);
imAugmented = imwarp(imOriginal,tform,OutputView=outputView, ...
    FillValues=[128 128 128]);
imshow(imAugmented)

 Augment Images for Deep Learning Workflows

20-51



Cropping Transformations

To create output images of a desired size, use the randomWindow2d (Image Processing Toolbox) and
centerCropWindow2d (Image Processing Toolbox) functions. Be careful to select a window that
includes the desired content in the image.

Specify the desired size of the cropped region as a 2-element vector of the form [height, width].

targetSize = [200,100];

Crop the image to the target size from the center of the image.

win = centerCropWindow2d(size(imOriginal),targetSize); 
imCenterCrop = imcrop(imOriginal,win); 
imshow(imCenterCrop)

20 Deep Learning Data Preprocessing

20-52



Crop the image to the target size from a random location in the image.

win = randomWindow2d(size(imOriginal),targetSize);
imRandomCrop = imcrop(imOriginal,win); 
imshow(imRandomCrop)

Color Transformations

You can randomly adjust the hue, saturation, brightness, and contrast of a color image by using the
jitterColorHSV (Image Processing Toolbox) function. You can specify which color transformations
are included and the range of transformation parameters.

You can randomly adjust the brightness and contrast of grayscale images by using basic math
operations.

 Augment Images for Deep Learning Workflows

20-53



Hue Jitter

Hue specifies the shade of color, or a color's position on a color wheel. As hue varies from 0 to 1,
colors vary from red through yellow, green, cyan, blue, purple, magenta, and back to red. Hue jitter
shifts the apparent shade of colors in an image.

Adjust the hue of the input image by a small positive offset selected randomly from the range [0.05,
0.15]. Colors that were red now appear more orange or yellow, colors that were orange appear yellow
or green, and so on.

imJittered = jitterColorHSV(imOriginal,Hue=[0.05 0.15]);
montage({imOriginal,imJittered})

Saturation Jitter

Saturation is the purity of color. As saturation varies from 0 to 1, hues vary from gray (indicating a
mixture of all colors) to a single pure color. Saturation jitter shifts how dull or vibrant colors are.

Adjust the saturation of the input image by an offset selected randomly from the range [-0.4, -0.1].
The colors in the output image appear more muted, as expected when the saturation decreases.

imJittered = jitterColorHSV(imOriginal,Saturation=[-0.4 -0.1]); 
montage({imOriginal,imJittered})

20 Deep Learning Data Preprocessing

20-54



Brightness Jitter

Brightness is the amount of hue. As brightness varies from 0 to 1, colors go from black to white.
Brightness jitter shifts the darkness and lightness of an input image.

Adjust the brightness of the input image by an offset selected randomly from the range [-0.3, -0.1].
The image appears darker, as expected when the brightness decreases.

imJittered = jitterColorHSV(imOriginal,Brightness=[-0.3 -0.1]); 
montage({imOriginal,imJittered})

Contrast Jitter

Contrast jitter randomly adjusts the difference between the darkest and brightest regions in an input
image.

 Augment Images for Deep Learning Workflows

20-55



Adjust the contrast of the input image by a scale factor selected randomly from the range [1.2, 1.4].
The contrast increases, such that shadows become darker and highlights become brighter.

imJittered = jitterColorHSV(imOriginal,Contrast=[1.2 1.4]);
montage({imOriginal,imJittered})

Brightness and Contrast Jitter of Grayscale Images

You can apply randomized brightness and contrast jitter to grayscale images by using basic math
operations.

Convert the sample image to grayscale. Specify a random contrast scale factor in the range [0.8, 1]
and a random brightness offset in the range [-0.15, 0.15]. Multiply the image by the contrast scale
factor, then add the brightness offset.

imGray = im2gray(im2double(imOriginal)); 
contrastFactor = 1-0.2*rand; 
brightnessOffset = 0.3*(rand-0.5); 
imJittered = imGray.*contrastFactor + brightnessOffset;
imJittered = im2uint8(imJittered);
montage({imGray,imJittered})

20 Deep Learning Data Preprocessing

20-56



Randomized Color-to-Grayscale

One type of color augmentation randomly drops the color information from an RGB image while
preserving the number of channels expected by the network. This code shows a "random grayscale"
transformation in which an RGB image is randomly converted with 80% probability to a three channel
output image where R == G == B.

desiredProbability = 0.8;
if rand <= desiredProbability
    imJittered = repmat(rgb2gray(imOriginal),[1 1 3]);
end
imshow(imJittered) 

 Augment Images for Deep Learning Workflows

20-57



Other Image Processing Operations

Use the transform function to apply any combination of Image Processing Toolbox functions to
input images. Adding noise and blur are two common image processing operations used in deep
learning applications.

Synthetic Noise

To apply synthetic noise to an input image, use the imnoise (Image Processing Toolbox) function.
You can specify which noise model to use, such as Gaussian, Poisson, salt and pepper, and
multiplicative noise. You can also specify the strength of the noise.

imSaltAndPepperNoise = imnoise(imOriginal,"salt & pepper",0.1);
imGaussianNoise = imnoise(imOriginal,"gaussian");
montage({imSaltAndPepperNoise,imGaussianNoise}) 

20 Deep Learning Data Preprocessing

20-58



Synthetic Blur

To apply randomized Gaussian blur to an image, use the imgaussfilt (Image Processing Toolbox)
function. You can specify the amount of smoothing.

sigma = 1+5*rand; 
imBlurred = imgaussfilt(imOriginal,sigma); 
imshow(imBlurred)

 Augment Images for Deep Learning Workflows

20-59



Apply Augmentation to Image Data in Datastores

In practical deep learning problems, the image augmentation pipeline typically combines multiple
operations. Datastores are a convenient way to read and augment collections of images.

This section of the example shows how to define data augmentation pipelines that augment
datastores in the context of training image classification and image regression problems.

First, create an imageDatastore that contains unprocessed images. The image datastore in this
example contains digit images with labels.

digitDatasetPath = fullfile(matlabroot,"toolbox","nnet", ...
    "nndemos","nndatasets","DigitDataset");
imds = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true,LabelSource="foldernames");
imds.ReadSize = 6;

Image Classification

In image classification, the classifier should learn that a randomly altered version of an image still
represents the same image class. To augment data for image classification, it is sufficient to augment
the input images while leaving the corresponding categorical labels unchanged.

Augment images in the pristine image datastore with random Gaussian blur, salt and pepper noise,
and randomized scale and rotation. These operations are defined in the helper function
classificationAugmentationPipeline at the end of this example. Apply data augmentation to
the training data by using the transform function.

dsTrain = transform(imds,@classificationAugmentationPipeline, ...
    IncludeInfo=true);

Visualize a sample of the output coming from the augmented pipeline.

dataPreview = preview(dsTrain);
montage(dataPreview(:,1))
title("Augmented Images for Image Classification")

20 Deep Learning Data Preprocessing

20-60



Image Regression

Image augmentation for image-to-image regression is more complicated because you must apply
identical geometric transformations to the input and response images. Associate pairs of input and
response images by using the combine function. Transform one or both images in each pair by using
the transform function.

Combine two identical copies of the image datastore imds. When data is read from the combined
datastore, image data is returned in a two-column cell array, where the first column represents
network input images and the second column contains network responses.

dsCombined = combine(imds,imds);
montage(preview(dsCombined)',Size=[6 2])
title("Combined Input and Response Pairs Before Augmentation")

 Augment Images for Deep Learning Workflows

20-61



Augment each pair of training images with a series of image processing operations:

20 Deep Learning Data Preprocessing

20-62



• Resize the input and response image to 32-by-32 pixels.
• Add salt and pepper noise to the input image only.
• Create a transformation that has randomized scale and rotation.
• Apply the same transformation to the input and response image.

These operations are defined in the helper function imageRegressionAugmentationPipeline at
the end of this example. Apply data augmentation to the training data by using the transform
function.

dsTrain = transform(dsCombined,@imageRegressionAugmentationPipeline);
montage(preview(dsTrain)',Size=[6 2])
title("Combined Input and Response Pairs After Augmentation")

 Augment Images for Deep Learning Workflows

20-63



20 Deep Learning Data Preprocessing

20-64



For a complete example that includes training and evaluating an image-to-image regression network,
see “Prepare Datastore for Image-to-Image Regression” on page 20-90.

Supporting Functions

The classificationAugmentationPipeline helper function augments images for classification.
dataIn and dataOut are two-element cell arrays, where the first element is the network input image
and the second element is the categorical label.

function [dataOut,info] = classificationAugmentationPipeline(dataIn,info)

dataOut = cell([size(dataIn,1),2]);

for idx = 1:size(dataIn,1)
    temp = dataIn{idx};
    
    % Add randomized Gaussian blur
    temp = imgaussfilt(temp,1.5*rand);
    
    % Add salt and pepper noise
    temp = imnoise(temp,"salt & pepper");
    
    % Add randomized rotation and scale
    tform = randomAffine2d(Scale=[0.95,1.05],Rotation=[-30 30]);
    outputView = affineOutputView(size(temp),tform);
    temp = imwarp(temp,tform,OutputView=outputView);
    
    % Form second column expected by trainNetwork which is the expected response,
    % the categorical label in this case
    dataOut(idx,:) = {temp,info.Label(idx)};
end

end

The imageRegressionAugmentationPipeline helper function augments images for image-to-
image regression. dataIn and dataOut are two-element cell arrays, where the first element is the
network input image and the second element is the network response image.

function dataOut = imageRegressionAugmentationPipeline(dataIn)

dataOut = cell([size(dataIn,1),2]);
for idx = 1:size(dataIn,1)
    
    % Resize images to 32-by-32 pixels and convert to data type single
    inputImage = im2single(imresize(dataIn{idx,1},[32 32]));
    targetImage = im2single(imresize(dataIn{idx,2},[32 32]));
    
    % Add salt and pepper noise
    inputImage = imnoise(inputImage,"salt & pepper");
    
    % Add randomized rotation and scale
    tform = randomAffine2d(Scale=[0.9,1.1],Rotation=[-30 30]);
    outputView = affineOutputView(size(inputImage),tform);
    
    % Use imwarp with the same tform and outputView to augment both images
    % the same way
    inputImage = imwarp(inputImage,tform,OutputView=outputView);
    targetImage = imwarp(targetImage,tform,OutputView=outputView);

 Augment Images for Deep Learning Workflows

20-65



    
    dataOut(idx,:) = {inputImage,targetImage};
end

end

See Also
transform | combine

Related Examples
• “Prepare Datastore for Image-to-Image Regression” on page 20-90

More About
• “Preprocess Data for Domain-Specific Deep Learning Applications” on page 20-27
• “Preprocess Images for Deep Learning” on page 20-16

20 Deep Learning Data Preprocessing

20-66



Augment Pixel Labels for Semantic Segmentation

This example shows how to perform common kinds of image and pixel label augmentation as part of
semantic segmentation workflows.

Semantic segmentation training data consists of images represented by numeric matrices and pixel
label images represented by categorical matrices. When you augment training data, you must apply
identical transformations to the image and associated pixel labels. This example demonstrates three
common types of transformations:

• Resize Image and Pixel Labels on page 20-68
• Crop Image and Pixel Labels on page 20-69
• Warp Image and Pixel Labels on page 20-71

The example then shows how to apply augmentation to semantic segmentation training data in
datastores on page 20-72 using a combination of multiple types of transformations.

You can use augmented training data to train a network. For an example showing how to train a
semantic segmentation network, see “Semantic Segmentation Using Deep Learning” (Computer
Vision Toolbox).

To demonstrate the effects of the different types of augmentation, each transformation in this
example uses the same input image and pixel label image.

Read a sample image.

filenameImage = 'kobi.png';
I = imread(filenameImage);

Read the pixel label image. The image has two classes.

filenameLabels = 'kobiPixelLabeled.png';
L = imread(filenameLabels);
classes = ["floor","dog"];
ids = [1 2];

Convert the pixel label image to the categorical data type.

C = categorical(L,ids,classes);

Display the labels over the image by using the labeloverlay function. Pixels with the label "floor"
have a blue tint and pixels with the label "dog" have a cyan tint.

B = labeloverlay(I,C);
imshow(B)
title('Original Image and Pixel Labels')

 Augment Pixel Labels for Semantic Segmentation 

20-67



Resize Image and Pixel Labels

You can resize numeric and categorical images by using the imresize function. Resize the image
and the pixel label image to the same size, and display the labels over the image.

targetSize = [300 300];
resizedI = imresize(I,targetSize);
resizedC = imresize(C,targetSize);

Display the resized labels over the resized image.

B = labeloverlay(resizedI,resizedC);
imshow(B)
title('Resized Image and Pixel Labels')

20 Deep Learning Data Preprocessing

20-68



Crop Image and Pixel Labels

Cropping is a common preprocessing step to make the data match the input size of the network. To
create output images of a desired size, first specify the size and position of the crop window by using
the randomWindow2d (Image Processing Toolbox) and centerCropWindow2d (Image Processing
Toolbox) functions. Make sure you select a cropping window that includes the desired content in the
image. Then, crop the image and pixel label image to the same window by using imcrop.

Specify the desired size of the cropped region as a two-element vector of the form [height, width].

targetSize = [300 300];

Crop the image to the target size from the center of the image.

win = centerCropWindow2d(size(I),targetSize);
croppedI = imcrop(I,win);
croppedC = imcrop(C,win);

Display the cropped labels over the cropped image.

B = labeloverlay(croppedI,croppedC);
imshow(B)
title('Center Cropped Image and Pixel Labels')

 Augment Pixel Labels for Semantic Segmentation 

20-69



Crop the image to the target size from a random position in the image.

win = randomWindow2d(size(I),targetSize);
croppedI = imcrop(I,win);
croppedC = imcrop(C,win);

Display the cropped labels over the cropped image.

B = labeloverlay(croppedI,croppedC);
imshow(B)
title('Random Cropped Image and Pixel Labels')

20 Deep Learning Data Preprocessing

20-70



Warp Image and Pixel Labels

The randomAffine2d (Image Processing Toolbox) function creates a randomized 2-D affine
transformation from a combination of rotation, translation, scaling (resizing), reflection, and
shearing. Apply the transformation to images and pixel label images by using imwarp (Image
Processing Toolbox). Control the spatial bounds and resolution of the warped output by using the
affineOutputView (Image Processing Toolbox) function.

Rotate the input image and pixel label image by an angle selected randomly from the range [-50,50]
degrees.

tform = randomAffine2d("Rotation",[-50 50]);

Create an output view for the warped image and pixel label image.

rout = affineOutputView(size(I),tform);

Use imwarp to rotate the image and pixel label image.

rotatedI = imwarp(I,tform,'OutputView',rout);
rotatedC = imwarp(C,tform,'OutputView',rout);

Display the rotated labels over the rotated image.

B = labeloverlay(rotatedI,rotatedC);
imshow(B)
title('Rotated Image and Pixel Labels')

 Augment Pixel Labels for Semantic Segmentation 

20-71



Apply Augmentation to Semantic Segmentation Training Data in Datastores

Datastores are a convenient way to read and augment collections of images. Create a datastore that
stores image and pixel label image data, and augment the data with a series of multiple operations.

Create Datastores Containing Image and Pixel Label Image Data

To increase the size of the sample datastores, replicate the filenames of the image and pixel label
image.

numObservations = 4;
trainImages = repelem({filenameImage},numObservations,1);
trainLabels = repelem({filenameLabels},numObservations,1);

Create an imageDatastore from the training image files. Create a pixelLabelDatastore from
the training pixel label files. The datastores contain multiple copies of the same data.

imds = imageDatastore(trainImages);
pxds = pixelLabelDatastore(trainLabels,classes,ids);

Associate the image and pixel label pairs by combining the image datastore and pixel label datastore.

trainingData = combine(imds,pxds);

20 Deep Learning Data Preprocessing

20-72



Read the first image and its associated pixel label image from the combined datastore.

data = read(trainingData);
I = data{1};
C = data{2};

Display the image and pixel label data.

B = labeloverlay(I,C);
imshow(B)

Apply Data Augmentation

Apply data augmentation to the training data by using the transform function. This example
performs two separate augmentations to the training data.

The first augmentation jitters the color of the image and then performs identical random scaling,
horizontal reflection, and rotation on the image and pixel label image pairs. These operations are
defined in the jitterImageColorAndWarp helper function at the end of this example.

augmentedTrainingData = transform(trainingData,@jitterImageColorAndWarp);

Read all the augmented data.

 Augment Pixel Labels for Semantic Segmentation 

20-73



data = readall(augmentedTrainingData);

Display the augmented image and pixel label data.

rgb = cell(numObservations,1);
for k = 1:numObservations
    I = data{k,1};
    C = data{k,2};
    rgb{k} = labeloverlay(I,C);
end
montage(rgb)

The second augmentation center crops the image and pixel label image to a target size. These
operations are defined in the centerCropImageAndLabel helper function at the end of this
example.

targetSize = [800 800];
preprocessedTrainingData = transform(augmentedTrainingData,...
    @(data)centerCropImageAndLabel(data,targetSize));

Read all of the preprocessed data.

data = readall(preprocessedTrainingData);

20 Deep Learning Data Preprocessing

20-74



Display the preprocessed image and pixel label data.

rgb = cell(numObservations,1);
for k = 1:numObservations
    I = data{k,1};
    C = data{k,2};
    rgb{k} = labeloverlay(I,C);
end
montage(rgb)

Helper Functions for Augmentation

The jitterImageColorAndWarp helper function applies random color jitter to the image data, then
applies an identical affine transformation to the image and pixel label image data. The transformation

 Augment Pixel Labels for Semantic Segmentation 

20-75



consists of a random combination of scaling by a scale factor in the range [0.8 1.5], horizontal
reflection, and rotation in the range [-30, 30] degrees. The input data and output out are two-
element cell arrays, where the first element is the image data and the second element is the pixel
label image data.

function out = jitterImageColorAndWarp(data)
% Unpack original data.
I = data{1};
C = data{2};

% Apply random color jitter.
I = jitterColorHSV(I,"Brightness",0.3,"Contrast",0.4,"Saturation",0.2);

% Define random affine transform.
tform = randomAffine2d("Scale",[0.8 1.5],"XReflection",true,'Rotation',[-30 30]);
rout = affineOutputView(size(I),tform);

% Transform image and bounding box labels.
augmentedImage = imwarp(I,tform,"OutputView",rout);
augmentedLabel = imwarp(C,tform,"OutputView",rout);

% Return augmented data.
out = {augmentedImage,augmentedLabel};
end

The centerCropImageAndLabel helper function creates a crop window centered on the image,
then crops both the image and the pixel label image using the crop window. The input data and
output out are two-element cell arrays, where the first element is the image data and the second
element is the pixel label image data.

function out = centerCropImageAndLabel(data,targetSize)
win = centerCropWindow2d(size(data{1}),targetSize);
out{1} = imcrop(data{1},win);
out{2} = imcrop(data{2},win);
end

See Also
randomAffine2d | centerCropWindow2d | randomWindow2d

Related Examples
• “Augment Images for Deep Learning Workflows” on page 20-45
• “Semantic Segmentation Using Deep Learning” on page 8-138

More About
• “Preprocess Data for Domain-Specific Deep Learning Applications” on page 20-27
• “Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)

20 Deep Learning Data Preprocessing

20-76



Augment Bounding Boxes for Object Detection

This example shows how to perform common kinds of image and bounding box augmentation as part
of object detection workflows.

Object detector training data consists of images and associated bounding box labels. When you
augment training data, you must apply identical transformations to the image and associated
bounding boxes. This example demonstrates three common types of transformations:

• Resize Image and Bounding Box on page 20-78
• Crop Image and Bounding Box on page 20-79
• Warp Image and Bounding Box on page 20-82

The example then shows how to apply augmentation to training data in datastores on page 20-85
using a combination of multiple types of transformations.

You can use augmented training data to train a network. For an example showing how to train an
object detection network, see “Object Detection Using Faster R-CNN Deep Learning” (Computer
Vision Toolbox).

Read and display a sample image and bounding box. To compare the effects of the different types of
augmentation, each transformation in this example uses the same input image and bounding box.

filenameImage = 'kobi.png';
I = imread(filenameImage);
bbox = [4 156 1212 830];
label = "dog";

Display the image and bounding box.

annotatedImage = insertShape(I,"rectangle",bbox,"LineWidth",8);
imshow(annotatedImage)
title('Original Image and Bounding Box')

 Augment Bounding Boxes for Object Detection

20-77



Resize Image and Bounding Box

Use imresize to scale down the image by a factor of 2.

scale = 1/2;
J = imresize(I,scale);

Use bboxresize to apply the same scaling to the associated bounding box.

bboxResized = bboxresize(bbox,scale);

Display the resized image and bounding box.

annotatedImage = insertShape(J,"rectangle",bboxResized,"LineWidth",8);
imshow(annotatedImage)
title('Resized Image and Bounding Box')

20 Deep Learning Data Preprocessing

20-78



Crop Image and Bounding Box

Cropping is a common preprocessing step to make the data match the input size of the network. To
create output images of a desired size, first specify the size and position of the crop window by using
the randomWindow2d (Image Processing Toolbox) or centerCropWindow2d (Image Processing
Toolbox) function. Make sure you select a cropping window that includes the desired content in the
image. Then, crop the image and pixel label image to the same window by using imcrop.

Specify the desired size of the cropped region as a two-element vector of the form [height, width].

targetSize = [1024 1024];

Crop the image to the target size from the center of the image by using imcrop.

win = centerCropWindow2d(size(I),targetSize);
J = imcrop(I,win);

Crop the bounding boxes using the same crop window by using bboxcrop. Specify
OverlapThreshold as a value less than 1 so that the function clips the bounding boxes to the crop
window instead of discarding them when the crop window does not completely enclose the bounding
box. The overlap threshold enables you to control the amount of clipping that is tolerable for objects
in your images. For example, clipping more than half a person is not useful for training a person
detector, whereas clipping half a vehicle might be tolerable.

 Augment Bounding Boxes for Object Detection

20-79



[bboxCropped,valid] = bboxcrop(bbox,win,"OverlapThreshold",0.7);

Keep labels that are inside the cropping window.

label = label(valid);

Display the cropped image and bounding box.

annotatedImage = insertShape(J,"rectangle",bboxCropped,"LineWidth",8);
imshow(annotatedImage)
title('Cropped Image and Bounding Box')

20 Deep Learning Data Preprocessing

20-80



Crop and Resize Image and Bounding Box

Cropping and resizing are often performed together. You can use bboxcrop and bboxresize in
series to implement the commonly used "crop and resize" transformation.

Create a crop window from a random position in the image. Crop the image and bounding box to the
same crop window.

cropSize = [1024 1024];
win = randomWindow2d(size(I),cropSize);
J = imcrop(I,win);
croppedBox = bboxcrop(bbox,win,"OverlapThreshold",0.5);

Resize the image and box to a target size.

targetSize = [512 512];
J = imresize(J,targetSize);
croppedAndResizedBox = bboxresize(croppedBox,targetSize./cropSize);

Display the cropped and resized image and bounding box.

annotatedImage = insertShape(J,"rectangle",croppedAndResizedBox,"LineWidth",8);
imshow(annotatedImage)
title('Crop and Resized Image and Bounding Box')

 Augment Bounding Boxes for Object Detection

20-81



Warp Image and Bounding Box

The randomAffine2d (Image Processing Toolbox) function creates a randomized 2-D affine
transformation from a combination of rotation, translation, scaling (resizing), reflection, and
shearing. Warp an image by using imwarp (Image Processing Toolbox). Warp bounding boxes by
using bboxwarp. Control the spatial bounds and resolution of the warped output by using the
affineOutputView (Image Processing Toolbox) function.

This example demonstrates two of the randomized affine transformations: scaling and rotation.

Random Scale

Create a scale transformation that resizes the input image and bounding box using a scale factor
selected randomly from the range [1.5,1.8]. This transformation applies the same scale factor in the
horizontal and vertical directions.

20 Deep Learning Data Preprocessing

20-82



tform = randomAffine2d("Scale",[1.5 1.8]);

Create an output view for the affine transform.

rout = affineOutputView(size(I),tform);

Rescale the image using imwarp and rescale the bounding box using bboxwarp. Specify an
OverlapThreshold value of 0.5.

J = imwarp(I,tform,"OutputView",rout);
bboxScaled = bboxwarp(bbox,tform,rout,"OverlapThreshold",0.5);

Display the scaled image and bounding box.

annotatedImage = insertShape(J,"rectangle",bboxScaled,"LineWidth",8);
imshow(annotatedImage)
title('Scaled Image and Bounding Box')

Random Rotation

Create a randomized rotation transformation that rotates the image and box labels by an angle
selected randomly from the range [-15,15] degrees.

 Augment Bounding Boxes for Object Detection

20-83



tform = randomAffine2d("Rotation",[-15 15]);

Create an output view for imwarp and bboxwarp.

rout = affineOutputView(size(I),tform);

Rotate the image using imwarp and rotate the bounding box using bboxwarp. Specify an
OverlapThreshold value of 0.5.

J = imwarp(I,tform,"OutputView",rout);
bboxRotated = bboxwarp(bbox,tform,rout,"OverlapThreshold",0.5);

Display the cropped image and bounding box. Note that the bounding box returned by bboxwarp is
always aligned to the image axes. The size and aspect ratio of the bounding box changes to
accommodate the rotated object.

annotatedImage = insertShape(J,"rectangle",bboxRotated,"LineWidth",8);
imshow(annotatedImage)
title('Rotated Image and Bounding Box')

20 Deep Learning Data Preprocessing

20-84



Apply Augmentation to Training Data in Datastores

Datastores are a convenient way to read and augment collections of data. Create a datastore that
stores image and bounding box data, and augment the data using a series of multiple operations.

Create Datastores Containing Image and Bounding Box Data

To increase the size of the sample datastores, replicate the file names of the image and the bounding
box and labels.

numObservations = 4;
images = repelem({filenameImage},numObservations,1);
bboxes = repelem({bbox},numObservations,1);
labels = repelem({label},numObservations,1);

Create an imageDatastore from the training image files. Combine the bounding box and label data
in a table, then create a boxLabelDatastore from the table.

imds = imageDatastore(images);

tbl = table(bboxes,labels);
blds = boxLabelDatastore(tbl);

Associate the image and box label pairs by combining the image datastore and box label datastore.

trainingData = combine(imds,blds);

Read the first image and its associated box label from the combined datastore.

data = read(trainingData);
I = data{1};
bboxes = data{2};
labels = data{3};

Display the image and box label data.

annotatedImage = insertObjectAnnotation(I,'rectangle',bbox,labels, ...
    'LineWidth',8,'FontSize',40);
imshow(annotatedImage)

 Augment Bounding Boxes for Object Detection

20-85



Apply Data Augmentation

Apply data augmentation to the training data by using the transform function. This example
performs two separate augmentations to the training data.

The first augmentation jitters the color of the image and then performs identical random horizontal
reflection and rotation on the image and box label pairs. These operations are defined in the
jitterImageColorAndWarp helper function at the end of this example.

augmentedTrainingData = transform(trainingData,@jitterImageColorAndWarp);

Read all the augmented data.

data = readall(augmentedTrainingData);

Display the augmented image and box label data.

rgb = cell(numObservations,1);
for k = 1:numObservations
    I = data{k,1};
    bbox = data{k,2};
    labels = data{k,3};

20 Deep Learning Data Preprocessing

20-86



    rgb{k} = insertObjectAnnotation(I,'rectangle',bbox,labels,'LineWidth',8,'FontSize',40);
end
montage(rgb)

The second augmentation rescales the image and box label to a target size. These operations are
defined in the resizeImageAndLabel helper function at the end of this example.

targetSize = [300 300];
preprocessedTrainingData = transform(augmentedTrainingData,...
    @(data)resizeImageAndLabel(data,targetSize));

Read all of the preprocessed data.

data = readall(preprocessedTrainingData);

Display the preprocessed image and box label data.

rgb = cell(numObservations,1);
for k = 1:numObservations
    I = data{k,1};
    bbox = data{k,2};
    labels = data{k,3};
    rgb{k} = insertObjectAnnotation(I,'rectangle',bbox,labels, ...

 Augment Bounding Boxes for Object Detection

20-87



        'LineWidth',8,'FontSize',15);
end
montage(rgb)

Helper Functions for Augmentation

The jitterImageColorAndWarp helper function applies random color jitter to the image data, then
applies an identical affine transformation to the image and box label data. The transformation
consists of random horizontal reflection and rotation. The input data and output out are two-
element cell arrays, where the first element is the image data and the second element is the box label
data.

20 Deep Learning Data Preprocessing

20-88



function out = jitterImageColorAndWarp(data)
% Unpack original data.
I = data{1};
boxes = data{2};
labels = data{3};

% Apply random color jitter.
I = jitterColorHSV(I,"Brightness",0.3,"Contrast",0.4,"Saturation",0.2);

% Define random affine transform.
tform = randomAffine2d("XReflection",true,'Rotation',[-30 30]);
rout = affineOutputView(size(I),tform);

% Transform image and bounding box labels.
augmentedImage = imwarp(I,tform,"OutputView",rout);
[augmentedBoxes, valid] = bboxwarp(boxes,tform,rout,'OverlapThreshold',0.4);
augmentedLabels = labels(valid);

% Return augmented data.
out = {augmentedImage,augmentedBoxes,augmentedLabels};
end

The resizeImageAndLabel helper function calculates the scale factor for the image to match a
target size, then resizes the image using imresize and the box label using bboxresize. The input
and output data are two-element cell arrays, where the first element is the image data and the second
element is the box label data.

function data = resizeImageAndLabel(data,targetSize)
scale = targetSize./size(data{1},[1 2]);
data{1} = imresize(data{1},targetSize);
data{2} = bboxresize(data{2},scale);
end

See Also
bboxresize | bboxcrop | bboxwarp | imresize | imcrop | centerCropWindow2d |
randomWindow2d

Related Examples
• “Augment Images for Deep Learning Workflows” on page 20-45
• “Train Object Detector Using R-CNN Deep Learning” on page 8-202

More About
• “Preprocess Data for Domain-Specific Deep Learning Applications” on page 20-27
• “Getting Started with Object Detection Using Deep Learning” (Computer Vision Toolbox)

 Augment Bounding Boxes for Object Detection

20-89



Prepare Datastore for Image-to-Image Regression

This example shows how to prepare a datastore for training an image-to-image regression network
using the transform and combine functions of ImageDatastore.

This example shows how to preprocess data using a pipeline suitable for training a denoising
network. This example then uses the preprocessed noise data to train a simple convolutional
autoencoder network to remove image noise.

Prepare Data Using Preprocessing Pipeline

This example uses a salt and pepper noise model in which a fraction of input image pixels are set to
either 0 or 1 (black and white, respectively). Noisy images act as the network input. Pristine images
act as the expected network response. The network learns to detect and remove the salt and pepper
noise.

Load the pristine images in the digit data set as an imageDatastore. The datastore contains 10,000
synthetic images of digits from 0 to 9. The images are generated by applying random transformations
to digit images created with different fonts. Each digit image is 28-by-28 pixels. The datastore
contains an equal number of images per category.

digitDatasetPath = fullfile(matlabroot,"toolbox","nnet", ...
    "nndemos","nndatasets","DigitDataset");
imds = imageDatastore(digitDatasetPath, ...
    IncludeSubfolders=true,LabelSource="foldernames");

Specify a large read size to minimize the cost of file I/O.

imds.ReadSize = 500;

Use the shuffle function to shuffle the digit data prior to training.

imds = shuffle(imds);

Use the splitEachLabel function to divide imds into three image datastores containing pristine
images for training, validation, and testing.

[imdsTrain,imdsVal,imdsTest] = splitEachLabel(imds,0.95,0.025);

Use the transform function to create noisy versions of each input image, which will serve as the
network input. The transform function reads data from an underlying datastore and processes the
data using the operations defined in the helper function addNoise (defined at the end of this
example). The output of the transform function is a TransformedDatastore.

dsTrainNoisy = transform(imdsTrain,@addNoise);
dsValNoisy = transform(imdsVal,@addNoise);
dsTestNoisy = transform(imdsTest,@addNoise);

Use the combine function to combine the noisy images and pristine images into a single datastore
that feeds data to trainNetwork. This combined datastore reads batches of data into a two-column
cell array as expected by trainNetwork. The output of the combine function is a
CombinedDatastore.

dsTrain = combine(dsTrainNoisy,imdsTrain);
dsVal = combine(dsValNoisy,imdsVal);
dsTest = combine(dsTestNoisy,imdsTest);

20 Deep Learning Data Preprocessing

20-90



Use the transform function to perform additional preprocessing operations that are common to both
the input and response datastores. The commonPreprocessing helper function (defined at the end
of this example) resizes input and response images to 32-by-32 pixels to match the input size of the
network, and normalizes the data in each image to the range [0, 1].

dsTrain = transform(dsTrain,@commonPreprocessing);
dsVal = transform(dsVal,@commonPreprocessing);
dsTest = transform(dsTest,@commonPreprocessing);

Finally, use the transform function to add randomized augmentation to the training set. The
augmentImages helper function (defined at the end of this example) applies randomized 90 degree
rotations to the data. Identical rotations are applied to the network input and corresponding expected
responses.

dsTrain = transform(dsTrain,@augmentImages);

Augmentation reduces overfitting and adds robustness to the presence of rotations in the trained
network. Randomized augmentation is not needed for the validation or test data sets.

Preview Preprocessed Data

Since there are several preprocessing operations necessary to prepare the training data, preview the
preprocessed data to confirm it looks correct prior to training. Use the preview function to preview
the data.

Visualize examples of paired noisy and pristine images using the montage (Image Processing
Toolbox) function. The training data looks correct. Salt and pepper noise appears in the input images
in the left column. Other than the addition of noise, the input image and response image are the
same. Randomized 90 degree rotation is applied to both input and response images in the same way.

exampleData = preview(dsTrain);
inputs = exampleData(:,1);
responses = exampleData(:,2);
minibatch = cat(2,inputs,responses);
montage(minibatch',Size=[8 2])
title("Inputs (Left) and Responses (Right)")

 Prepare Datastore for Image-to-Image Regression

20-91



20 Deep Learning Data Preprocessing

20-92



Define Convolutional Autoencoder Network

Convolutional autoencoders are a common architecture for denoising images. Convolutional
autoencoders consist of two stages: an encoder and a decoder. The encoder compresses the original
input image into a latent representation that is smaller in width and height, but deeper in the sense
that there are many feature maps per spatial location than the original input image. The compressed
latent representation loses some amount of spatial resolution in its ability to recover high frequency
features in the original image, but it also learns to not include noisy artifacts in the encoding of the
original image. The decoder repeatedly upsamples the encoded signal to move it back to its original
width, height, and number of channels. Since the encoder removes noise, the decoded final image has
fewer noise artifacts.

This example defines the convolutional autoencoder network using layers from Deep Learning
Toolbox™, including:

• imageInputLayer - Image input layer
• convolution2dLayer - Convolution layer for convolutional neural networks
• reluLayer - Rectified linear unit layer
• maxPooling2dLayer - 2-D max pooling layer
• transposedConv2dLayer - Transposed convolution layer
• clippedReluLayer - Clipped rectified linear unit layer
• regressionLayer - Regression output layer

Create the image input layer. To simplify the padding concerns related to downsampling and
upsampling by factors of two, choose a 32-by-32 input size because 32 is cleanly divisible by 2, 4, and
8.

imageLayer = imageInputLayer([32,32,1]);

Create the encoding layers. Downsampling in the encoder is achieved by max pooling with a pool size
of 2 and a stride of 2.

encodingLayers = [ ...
    convolution2dLayer(3,8,Padding="same"), ...
    reluLayer, ...
    maxPooling2dLayer(2,Padding="same",Stride=2), ...
    convolution2dLayer(3,16,Padding="same"), ...
    reluLayer, ...
    maxPooling2dLayer(2,Padding="same",Stride=2), ...
    convolution2dLayer(3,32,Padding="same"), ...
    reluLayer, ...
    maxPooling2dLayer(2,Padding="same",Stride=2)];

Create the decoding layers. The decoder upsamples the encoded signal using a transposed
convolution layer with a stride of 2, which upsamples by a factor of 2. The network uses a
clippedReluLayer as the final activation layer to force outputs to be in the range [0, 1].

decodingLayers = [ ...
    transposedConv2dLayer(2,32,Stride=2), ...
    reluLayer, ...
    transposedConv2dLayer(2,16,Stride=2), ...
    reluLayer, ...
    transposedConv2dLayer(2,8,Stride=2), ...
    reluLayer, ...

 Prepare Datastore for Image-to-Image Regression

20-93



    convolution2dLayer(1,1,Padding="same"), ...
    clippedReluLayer(1.0), ...
    regressionLayer];    

Concatenate the image input layer, the encoding layers, and the decoding layers to form the
convolutional autoencoder network architecture.

layers = [imageLayer,encodingLayers,decodingLayers];

Define Training Options

Train the network using Adam optimization. Specify the hyperparameter settings by using the
trainingOptions function. Train for 50 epochs.

options = trainingOptions("adam", ...
    MaxEpochs=50, ...
    MiniBatchSize=imds.ReadSize, ...
    ValidationData=dsVal, ...
    ValidationPatience=5, ...
    Plots="training-progress", ...
    OutputNetwork="best-validation-loss", ...
    Verbose=false);

Train the Network

Now that the data source and training options are configured, train the convolutional autoencoder
network using the trainNetwork function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about 15 minutes on an NVIDIA Titan XP.

net = trainNetwork(dsTrain,layers,options);
modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
save("trainedImageToImageRegressionNet-"+modelDateTime+".mat","net");    

Evaluate the Performance of the Denoising Network

Obtain output images from the test set by using the predict function.

ypred = predict(net,dsTest);

Obtain pairs of noisy and pristine images from the test set using the preview function.

testBatch = preview(dsTest);

Visualize a sample input image and the associated predicted output from the network to get a sense
of how well denoising is working. As expected, the output image from the network has removed most
of the noise artifacts from the input image. The denoised image is slightly blurry as a result of the
encoding and decoding process.

idx = 1;
y = ypred(:,:,:,idx);
x = testBatch{idx,1};
ref = testBatch{idx,2};
montage({x,y})

20 Deep Learning Data Preprocessing

20-94



Assess the performance of the network by analyzing the peak signal-to-noise ratio (PSNR).

psnrNoisy = psnr(x,ref)

psnrNoisy = single
    19.6457

psnrDenoised = psnr(y,ref)

psnrDenoised = single
    20.6994

The PSNR of the output image is higher than the noisy input image, as expected.

Supporting Functions

The addNoise helper function adds salt and pepper noise to images by using the imnoise (Image
Processing Toolbox) function. The addNoise function requires the format of the input data to be a
cell array of image data, which matches the format of data returned by the read function of
ImageDatastore.

function dataOut = addNoise(data)

    dataOut = data;
    for idx = 1:size(data,1)
       dataOut{idx} = imnoise(data{idx},"salt & pepper");
    end

end

 Prepare Datastore for Image-to-Image Regression

20-95



The commonPreprocessing helper function defines the preprocessing that is common to the
training, validation, and test sets. The helper function performs these preprocessing steps.

1 Convert the image data to data type single.
2 Resize image data to match the size of the input layer by using the imresize function.
3 Normalize data to the range [0, 1] by using the rescale function.

The helper function requires the format of the input data to be a two-column cell array of image data,
which matches the format of data returned by the read function of CombinedDatastore.

function dataOut = commonPreprocessing(data)

    dataOut = cell(size(data));
    for col = 1:size(data,2)
        for idx = 1:size(data,1)
            temp = single(data{idx,col});
            temp = imresize(temp,[32,32]);
            temp = rescale(temp);
            dataOut{idx,col} = temp;
        end
    end
end

The augmentImages helper function adds randomized 90 degree rotations to the data by using the
rot90 function. Identical rotations are applied to the network input and corresponding expected
responses. The function requires the format of the input data to be a two-column cell array of image
data, which matches the format of data returned by the read function of CombinedDatastore.

function dataOut = augmentImages(data)

    dataOut = cell(size(data));
    for idx = 1:size(data,1)
        rot90Val = randi(4,1,1)-1;
        dataOut(idx,:) = {rot90(data{idx,1},rot90Val), ...
            rot90(data{idx,2},rot90Val)};
    end
end

See Also
trainNetwork | trainingOptions | transform | combine | imageDatastore

See Also

Related Examples
• “Deep Learning in MATLAB” on page 1-2

More About
• “Datastores for Deep Learning” on page 20-2

20 Deep Learning Data Preprocessing

20-96



Train Network Using Out-of-Memory Sequence Data

This example shows how to train a deep learning network on out-of-memory sequence data by
transforming and combining datastores.

A transformed datastore transforms or processes data read from an underlying datastore. You can
use a transformed datastore as a source of training, validation, test, and prediction data sets for deep
learning applications. Use transformed datastores to read out-of-memory data or to perform specific
preprocessing operations when reading batches of data. When you have separate datastores
containing predictors and labels, you can combine them so you can input the data into a deep
learning network.

When training the network, the software creates mini-batches of sequences of the same length by
padding, truncating, or splitting the input data. For in-memory data, the trainingOptions function
provides options to pad and truncate input sequences, however, for out-of-memory data, you must pad
and truncate the sequences manually.

Load Training Data

Load the Japanese Vowels data set as described in [1] and [2]. The zip file japaneseVowels.zip
contains sequences of varying length. The sequences are divided into two folders, Train and Test,
which contain training sequences and test sequences, respectively. In each of these folders, the
sequences are divided into subfolders, which are numbered from 1 to 9. The names of these
subfolders are the label names. A MAT file represents each sequence. Each sequence is a matrix with
12 rows, with one row for each feature, and a varying number of columns, with one column for each
time step. The number of rows is the sequence dimension and the number of columns is the sequence
length.

Unzip the sequence data.

filename = "japaneseVowels.zip";
outputFolder = fullfile(tempdir,"japaneseVowels");
unzip(filename,outputFolder);

For the training predictors, create a file datastore and specify the read function to be the load
function. The load function, loads the data from the MAT-file into a structure array. To read files from
the subfolders in the training folder, set the 'IncludeSubfolders' option to true.

folderTrain = fullfile(outputFolder,"Train");
fdsPredictorTrain = fileDatastore(folderTrain, ...
    'ReadFcn',@load, ...
    'IncludeSubfolders',true);

Preview the datastore. The returned struct contains a single sequence from the first file.

preview(fdsPredictorTrain)

ans = struct with fields:
    X: [12×20 double]

For the labels, create a file datastore and specify the read function to be the readLabel function,
defined at the end of the example. The readLabel function extracts the label from the subfolder
name.

 Train Network Using Out-of-Memory Sequence Data

20-97



classNames = string(1:9);
fdsLabelTrain = fileDatastore(folderTrain, ...
    'ReadFcn',@(filename) readLabel(filename,classNames), ...
    'IncludeSubfolders',true);

Preview the datastore. The output corresponds to the label of the first file.

preview(fdsLabelTrain)

ans = categorical
     1 

Transform and Combine Datastores

To input the sequence data from the datastore of predictors to a deep learning network, the mini-
batches of the sequences must have the same length. Transform the datastore using the
padSequence function, defined at the end of the datastore, that pads or truncates the sequences to
have length 20.

sequenceLength = 20;
tdsTrain = transform(fdsPredictorTrain,@(data) padSequence(data,sequenceLength));

Preview the transformed datastore. The output corresponds to the padded sequence from the first
file.

X = preview(tdsTrain)

X = 1×1 cell array
    {12×20 double}

To input both the predictors and labels from both datastores into a deep learning network, combine
them using the combine function.

cdsTrain = combine(tdsTrain,fdsLabelTrain);

Preview the combined datastore. The datastore returns a 1-by-2 cell array. The first element
corresponds to the predictors. The second element corresponds to the label.

preview(cdsTrain)

ans = 1×2 cell array
    {12×20 double}    {[1]}

Define LSTM Network Architecture

Define the LSTM network architecture. Specify the number of features of the input data as the input
size. Specify an LSTM layer with 100 hidden units and to output the last element of the sequence.
Finally, specify a fully connected layer with output size equal to the number of classes, followed by a
softmax layer and a classification layer.

numFeatures = 12;
numClasses = numel(classNames);
numHiddenUnits = 100;

layers = [ ...

20 Deep Learning Data Preprocessing

20-98



    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Set the solver to 'adam' and 'GradientThreshold' to 2. Set the
mini-batch size to 27 and set the maximum number of epochs to 75. The datastores do not support
shuffling, so set 'Shuffle' to 'never'.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',75, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',2, ...
    'Shuffle','never',...
    'Verbose',0, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(cdsTrain,layers,options);

 Train Network Using Out-of-Memory Sequence Data

20-99



Test the Network

Create a transformed datastore containing the held-out test data using the same steps as for the
training data.

folderTest = fullfile(outputFolder,"Test");

fdsPredictorTest = fileDatastore(folderTest, ...
    'ReadFcn',@load, ...
    'IncludeSubfolders',true);
tdsTest = transform(fdsPredictorTest,@(data) padSequence(data,sequenceLength));

Make predictions on the test data using the trained network.

YPred = classify(net,tdsTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy on the test data. To get the labels of the test set, create a file
datastore with the read function readLabel and specify to include subfolders. Specify that the
outputs are vertically concatenateable by setting the 'UniformRead' option to true.

fdsLabelTest = fileDatastore(folderTest, ...
    'ReadFcn',@(filename) readLabel(filename,classNames), ...
    'IncludeSubfolders',true, ...
    'UniformRead',true);
YTest = readall(fdsLabelTest);

accuracy = mean(YPred == YTest)

accuracy = 0.9351

Functions

The readLabel function extracts the label from the specified filename over the categories in
classNames.

function label = readLabel(filename,classNames)

filepath = fileparts(filename);
[~,label] = fileparts(filepath);

label = categorical(string(label),classNames);

end

The padSequence function pads or truncates the sequence in data.X to have the specified sequence
length and returns the result in a 1-by-1 cell.

function sequence = padSequence(data,sequenceLength)

sequence = data.X;
[C,S] = size(sequence);

if S < sequenceLength
    padding = zeros(C,sequenceLength-S);
    sequence = [sequence padding];
else
    sequence = sequence(:,1:sequenceLength);
end

20 Deep Learning Data Preprocessing

20-100



sequence = {sequence};

end

See Also
lstmLayer | trainNetwork | trainingOptions | sequenceInputLayer | combine | transform

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Train Network Using Out-of-Memory Sequence Data

20-101



Train Network Using Custom Mini-Batch Datastore for
Sequence Data

This example shows how to train a deep learning network on out-of-memory sequence data using a
custom mini-batch datastore.

A mini-batch datastore is an implementation of a datastore with support for reading data in batches.
Use mini-batch datastores to read out-of-memory data or to perform specific preprocessing
operations when reading batches of data. You can use a mini-batch datastore as a source of training,
validation, test, and prediction data sets for deep learning applications.

This example uses the custom mini-batch datastore sequenceDatastore attached to this example
as a supporting file. You can adapt this datastore to your data by customizing the datastore functions.
For an example showing how to create your own custom mini-batch datastore, see “Develop Custom
Mini-Batch Datastore” on page 20-38.

Load Training Data

Load the Japanese Vowels data set as described in [1] and [2]. The zip file japaneseVowels.zip
contains sequences of varying length. The sequences are divided into two folders, Train and Test,
which contain training sequences and test sequences, respectively. In each of these folders, the
sequences are divided into subfolders, which are numbered from 1 to 9. The names of these
subfolders are the label names. A MAT file represents each sequence. Each sequence is a matrix with
12 rows, with one row for each feature, and a varying number of columns, with one column for each
time step. The number of rows is the sequence dimension and the number of columns is the sequence
length.

Unzip the sequence data.

filename = "japaneseVowels.zip";
outputFolder = fullfile(tempdir,"japaneseVowels");
unzip(filename,outputFolder);

Create Custom Mini-Batch Datastore

Create a custom mini-batch datastore. The mini-batch datastore sequenceDatastore reads data
from a folder and gets the labels from the subfolder names.

Create a datastore containing the sequence data using sequenceDatastore.

folderTrain = fullfile(outputFolder,"Train");
dsTrain = sequenceDatastore(folderTrain)

dsTrain = 
  sequenceDatastore with properties:

            Datastore: [1×1 matlab.io.datastore.FileDatastore]
               Labels: [270×1 categorical]
           NumClasses: 9
    SequenceDimension: 12
        MiniBatchSize: 128
      NumObservations: 270

20 Deep Learning Data Preprocessing

20-102



Define LSTM Network Architecture

Define the LSTM network architecture. Specify the sequence dimension of the input data as the input
size. Specify an LSTM layer with 100 hidden units and to output the last element of the sequence.
Finally, specify a fully connected layer with output size equal to the number of classes, followed by a
softmax layer and a classification layer.

inputSize = dsTrain.SequenceDimension;
numClasses = dsTrain.NumClasses;
numHiddenUnits = 100;
layers = [
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Specify 'adam' as the solver and 'GradientThreshold' as 1. Set the
mini-batch size to 27 and set the maximum number of epochs to 75. To ensure that the datastore
creates mini-batches of the size that the trainNetwork function expects, also set the mini-batch size
of the datastore to the same value.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

miniBatchSize = 27;
options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',75, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...
    'Verbose',0, ...
    'Plots','training-progress');
dsTrain.MiniBatchSize = miniBatchSize;

Train the LSTM network with the specified training options.

net = trainNetwork(dsTrain,layers,options);

 Train Network Using Custom Mini-Batch Datastore for Sequence Data

20-103



Test the Network

Create a sequence datastore from the test data.

folderTest = fullfile(outputFolder,"Test");
dsTest = sequenceDatastore(folderTest);

Classify the test data. Specify the same mini-batch size as for the training data. To ensure that the
datastore creates mini-batches of the size that the classify function expects, also set the mini-
batch size of the datastore to the same value.

dsTest.MiniBatchSize = miniBatchSize;
YPred = classify(net,dsTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy of the predictions.

YTest = dsTest.Labels;
acc = sum(YPred == YTest)./numel(YTest)

acc = 0.9243

References
[1] Kudo, M., J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pp. 1103–1111.

[2] Kudo, M., J. Toyama, and M. Shimbo. Japanese Vowels Data Set. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

20 Deep Learning Data Preprocessing

20-104



See Also
trainNetwork | trainingOptions | lstmLayer | sequenceInputLayer

Related Examples
• “Develop Custom Mini-Batch Datastore” on page 20-38
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Sequence-to-Sequence Classification Using Deep Learning” on page 4-39
• “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44
• “Sequence-to-One Regression Using Deep Learning” on page 4-53
• “Long Short-Term Memory Neural Networks” on page 1-97
• “Deep Learning in MATLAB” on page 1-2

 Train Network Using Custom Mini-Batch Datastore for Sequence Data

20-105



Classify Out-of-Memory Text Data Using Deep Learning

This example shows how to classify out-of-memory text data with a deep learning network using a
transformed datastore.

A transformed datastore transforms or processes data read from an underlying datastore. You can
use a transformed datastore as a source of training, validation, test, and prediction data sets for deep
learning applications. Use transformed datastores to read out-of-memory data or to perform specific
preprocessing operations when reading batches of data.

When training the network, the software creates mini-batches of sequences of the same length by
padding, truncating, or splitting the input data. The trainingOptions function provides options to
pad and truncate input sequences, however, these options are not well suited for sequences of word
vectors. Furthermore, this function does not support padding data in a custom datastore. Instead, you
must pad and truncate the sequences manually. If you left-pad and truncate the sequences of word
vectors, then the training might improve.

The “Classify Text Data Using Deep Learning” (Text Analytics Toolbox) example manually truncates
and pads all the documents to the same length. This process adds lots of padding to very short
documents and discards lots of data from very long documents.

Alternatively, to prevent adding too much padding or discarding too much data, create a transformed
datastore that inputs mini-batches into the network. The datastore created in this example converts
mini-batches of documents to sequences or word indices and left-pads each mini-batch to the length
of the longest document in the mini-batch.

Load Pretrained Word Embedding

The datastore requires a word embedding to convert documents to sequences of vectors. Load a
pretrained word embedding using fastTextWordEmbedding. This function requires Text Analytics
Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If this
support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load Data

Create a tabular text datastore from the data in factoryReports.csv. Specify to read the data
from the "Description" and "Category" columns only.

filenameTrain = "factoryReports.csv";
textName = "Description";
labelName = "Category";
ttdsTrain = tabularTextDatastore(filenameTrain,'SelectedVariableNames',[textName labelName]);

View a preview of the datastore.

preview(ttdsTrain)

ans=8×2 table
                                  Description                                         Category       
    _______________________________________________________________________    ______________________

    {'Items are occasionally getting stuck in the scanner spools.'        }    {'Mechanical Failure'}
    {'Loud rattling and banging sounds are coming from assembler pistons.'}    {'Mechanical Failure'}

20 Deep Learning Data Preprocessing

20-106



    {'There are cuts to the power when starting the plant.'               }    {'Electronic Failure'}
    {'Fried capacitors in the assembler.'                                 }    {'Electronic Failure'}
    {'Mixer tripped the fuses.'                                           }    {'Electronic Failure'}
    {'Burst pipe in the constructing agent is spraying coolant.'          }    {'Leak'              }
    {'A fuse is blown in the mixer.'                                      }    {'Electronic Failure'}
    {'Things continue to tumble off of the belt.'                         }    {'Mechanical Failure'}

Transform Datastore

Create a custom transform function that converts data read from the datastore to a table containing
the predictors and the responses. The transformText function takes the data read from a
tabularTextDatastore object and returns a table of predictors and responses. The predictors are
C-by-S arrays of word vectors given by the word embedding emb, where C is the embedding
dimension and S is the sequence length. The responses are categorical labels over the classes.

To get the class names, read the labels from the training data using the readLabels function, listed
and the end of the example, and find the unique class names.

labels = readLabels(ttdsTrain,labelName);
classNames = unique(labels);
numObservations = numel(labels);

Because tabular text datastores can read multiple rows of data in a single read, you can process a full
mini-batch of data in the transform function. To ensure that the transform function processes a full
mini-batch of data, set the read size of the tabular text datastore to the mini-batch size that will be
used for training.

miniBatchSize = 64;
ttdsTrain.ReadSize = miniBatchSize;

To convert the output of the tabular text data to sequences for training, transform the datastore using
the transform function.

tdsTrain = transform(ttdsTrain, @(data) transformText(data,emb,classNames))

tdsTrain = 
  TransformedDatastore with properties:

       UnderlyingDatastore: [1×1 matlab.io.datastore.TabularTextDatastore]
    SupportedOutputFormats: ["txt"    "csv"    "xlsx"    "xls"    "parquet"    "parq"    "png"    "jpg"    "jpeg"    "tif"    "tiff"    "wav"    "flac"    "ogg"    "mp4"    "m4a"]
                Transforms: {@(data)transformText(data,emb,classNames)}
               IncludeInfo: 0

Preview of the transformed datastore. The predictors are C-by-S arrays, where S is the sequence
length and C is the number of features (the embedding dimension). The responses are the categorical
labels.

preview(tdsTrain)

ans=8×2 table
      predictors           responses     
    _______________    __________________

    {300×11 single}    Mechanical Failure
    {300×11 single}    Mechanical Failure
    {300×11 single}    Electronic Failure

 Classify Out-of-Memory Text Data Using Deep Learning

20-107



    {300×11 single}    Electronic Failure
    {300×11 single}    Electronic Failure
    {300×11 single}    Leak              
    {300×11 single}    Electronic Failure
    {300×11 single}    Mechanical Failure

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include a sequence
input layer and set the input size to the embedding dimension. Next, include an LSTM layer with 180
hidden units. To use the LSTM layer for a sequence-to-label classification problem, set the output
mode to 'last'. Finally, add a fully connected layer with output size equal to the number of classes,
a softmax layer, and a classification layer.

numFeatures = emb.Dimension;
numHiddenUnits = 180;
numClasses = numel(classNames);
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Specify the solver to be 'adam' and the gradient threshold to be 2. The
datastore does not support shuffling, so set 'Shuffle', to 'never'. Validate the network once per
epoch. To monitor the training progress, set the 'Plots' option to 'training-progress'. To
suppress verbose output, set 'Verbose' to false.

By default, trainNetwork uses a GPU if one is available. To specify the execution environment
manually, use the 'ExecutionEnvironment' name-value pair argument of trainingOptions.
Training on a CPU can take significantly longer than training on a GPU. Training using a GPU
requires Parallel Computing Toolbox™ and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('adam', ...
    'MaxEpochs',15, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',2, ...
    'Shuffle','never', ...
    'Plots','training-progress', ...
    'Verbose',false);

Train the LSTM network using the trainNetwork function.

net = trainNetwork(tdsTrain,layers,options);

20 Deep Learning Data Preprocessing

20-108



Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.

reportsNew = [ ...
    "Coolant is pooling underneath sorter."
    "Sorter blows fuses at start up."
    "There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the training documents.

documentsNew = preprocessText(reportsNew);

Convert the text data to sequences of embedding vectors using doc2sequence.

XNew = doc2sequence(emb,documentsNew);

Classify the new sequences using the trained LSTM network.

labelsNew = classify(net,XNew)

labelsNew = 3×1 categorical
     Leak 
     Electronic Failure 
     Mechanical Failure 

 Classify Out-of-Memory Text Data Using Deep Learning

20-109



Transform Text Function

The transformText function takes the data read from a tabularTextDatastore object and
returns a table of predictors and responses. The predictors are C-by-S arrays of word vectors given
by the word embedding emb, where C is the embedding dimension and S is the sequence length. The
responses are categorical labels over the classes in classNames.

function dataTransformed = transformText(data,emb,classNames)

% Preprocess documents.
textData = data{:,1};
documents = preprocessText(textData);

% Convert to sequences.
predictors = doc2sequence(emb,documents);

% Read labels.
labels = data{:,2};
responses = categorical(labels,classNames);

% Convert data to table.
dataTransformed = table(predictors,responses);

end

Preprocessing Function

The function preprocessText performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

function documents = preprocessText(textData)

documents = tokenizedDocument(textData);
documents = lower(documents);
documents = erasePunctuation(documents);

end

Read Labels Function

The readLabels function creates a copy of the tabularTextDatastore object ttds and reads the
labels from the labelName column.

function labels = readLabels(ttds,labelName)

ttdsNew = copy(ttds);
ttdsNew.SelectedVariableNames = labelName;
tbl = readall(ttdsNew);
labels = tbl.(labelName);

20 Deep Learning Data Preprocessing

20-110



end

See Also
fastTextWordEmbedding | wordEmbeddingLayer | doc2sequence | tokenizedDocument |
lstmLayer | trainNetwork | trainingOptions | sequenceInputLayer | transform

Related Examples
• “Sequence Classification Using Deep Learning” on page 4-3
• “Time Series Forecasting Using Deep Learning” on page 4-16
• “Long Short-Term Memory Neural Networks” on page 1-97
• “List of Deep Learning Layers” on page 1-43
• “Deep Learning Tips and Tricks” on page 1-87

 Classify Out-of-Memory Text Data Using Deep Learning

20-111



Classify Out-of-Memory Text Data Using Custom Mini-Batch
Datastore

This example shows how to classify out-of-memory text data with a deep learning network using a
custom mini-batch datastore.

A mini-batch datastore is an implementation of a datastore with support for reading data in batches.
You can use a mini-batch datastore as a source of training, validation, test, and prediction data sets
for deep learning applications. Use mini-batch datastores to read out-of-memory data or to perform
specific preprocessing operations when reading batches of data.

When training the network, the software creates mini-batches of sequences of the same length by
padding, truncating, or splitting the input data. The trainingOptions function provides options to
pad and truncate input sequences, however, these options are not well suited for sequences of word
vectors. Furthermore, this function does not support padding data in a custom datastore. Instead, you
must pad and truncate the sequences manually. If you left-pad and truncate the sequences of word
vectors, then the training might improve.

The “Classify Text Data Using Deep Learning” (Text Analytics Toolbox) example manually truncates
and pads all the documents to the same length. This process adds lots of padding to very short
documents and discards lots of data from very long documents.

Alternatively, to prevent adding too much padding or discarding too much data, create a custom mini-
batch datastore that inputs mini-batches into the network. The custom mini-batch datastore
textDatastore.m converts mini-batches of documents to sequences or word indices and left-pads
each mini-batch to the length of the longest document in the mini-batch. For sorted data, this
datastore can help reduce the amount of padding added to the data since documents are not padded
to a fixed length. Similarly, the datastore does not discard any data from the documents.

This example uses the custom mini-batch datastore textDatastore, attached to this example as a
supporting file. To access this file, open the example as a live script. You can adapt this datastore to
your data by customizing the functions. For an example showing how to create your own custom mini-
batch datastore, see “Develop Custom Mini-Batch Datastore” on page 20-38.

Load Pretrained Word Embedding

The datastore textDatastore requires a word embedding to convert documents to sequences of
vectors. Load a pretrained word embedding using fastTextWordEmbedding. This function requires
Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support
package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Create Mini-Batch Datastore of Documents

Create a datastore that contains the data for training. The custom mini-batch datastore
textDatastore reads predictors and labels from a CSV file. For the predictors, the datastore
converts the documents into sequences of word indices and for the responses, the datastore returns a
categorical label for each document. For more information about creating custom mini-batch
datastores, see “Develop Custom Mini-Batch Datastore” on page 20-38.

For the training data, specify the CSV file "factoryReports.csv" and that the text and labels are
in the columns "Description" and "Category" respectively.

20 Deep Learning Data Preprocessing

20-112



filenameTrain = "factoryReports.csv";
textName = "Description";
labelName = "Category";
dsTrain = textDatastore(filenameTrain,textName,labelName,emb)

dsTrain = 
  textDatastore with properties:

            ClassNames: ["Electronic Failure"    "Leak"    "Mechanical Failure"    "Software Failure"]
             Datastore: [1×1 matlab.io.datastore.TransformedDatastore]
    EmbeddingDimension: 300
             LabelName: "Category"
         MiniBatchSize: 128
            NumClasses: 4
       NumObservations: 480

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include a sequence
input layer and set the input size to the embedding dimension. Next, include an LSTM layer with 180
hidden units. To use the LSTM layer for a sequence-to-label classification problem, set the output
mode to 'last'. Finally, add a fully connected layer with output size equal to the number of classes,
a softmax layer, and a classification layer.

numFeatures = dsTrain.EmbeddingDimension;
numHiddenUnits = 180;
numClasses = dsTrain.NumClasses;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Specify the solver to be 'adam' and the gradient threshold to be 2. The
datastore textDatastore.m does not support shuffling, so set 'Shuffle', to 'never'. For an
example showing how to implement a datastore with support for shuffling, see “Develop Custom
Mini-Batch Datastore” on page 20-38. To monitor the training progress, set the 'Plots' option to
'training-progress'. To suppress verbose output, set 'Verbose' to false.

By default, trainNetwork uses a GPU if one is available. To specify the execution environment
manually, use the 'ExecutionEnvironment' name-value pair argument of trainingOptions.
Training on a CPU can take significantly longer than training on a GPU. Training using a GPU
requires Parallel Computing Toolbox™ and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

miniBatchSize = 128;
numObservations = dsTrain.NumObservations;
numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('adam', ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',2, ...
    'Shuffle','never', ...
    'Plots','training-progress', ...
    'Verbose',false);

 Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore

20-113



Train the LSTM network using the trainNetwork function.

net = trainNetwork(dsTrain,layers,options);

Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.

reportsNew = [ 
    "Coolant is pooling underneath sorter."
    "Sorter blows fuses at start up."
    "There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the datastore textDatastore.

documents = tokenizedDocument(reportsNew);
documents = lower(documents);
documents = erasePunctuation(documents);
predictors = doc2sequence(emb,documents);

Classify the new sequences using the trained LSTM network.

labelsNew = classify(net,predictors)

labelsNew = 3×1 categorical
     Leak 
     Electronic Failure 

20 Deep Learning Data Preprocessing

20-114



     Mechanical Failure 

See Also
wordEmbeddingLayer | doc2sequence | tokenizedDocument | lstmLayer | trainNetwork |
trainingOptions | sequenceInputLayer | wordcloud | extractHTMLText | findElement |
htmlTree

Related Examples
• “Generate Text Using Deep Learning” on page 4-280
• “Create Simple Text Model for Classification” (Text Analytics Toolbox)
• “Analyze Text Data Using Topic Models” (Text Analytics Toolbox)
• “Analyze Text Data Using Multiword Phrases” (Text Analytics Toolbox)
• “Train a Sentiment Classifier” (Text Analytics Toolbox)
• “Sequence Classification Using Deep Learning” on page 4-3
• “Deep Learning in MATLAB” on page 1-2

 Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore

20-115



Data Sets for Deep Learning
Use these data sets to get started with deep learning applications.

Note Some of the code used in these data set descriptions use functions attached to examples as
supporting files. To use these functions, open the examples as live scripts.

Image Data Sets
Data Set Description Task
Digits The Digits data set consists of 10,000 synthetic

grayscale images of handwritten digits. Each image is
28-by-28 pixels and has an associated label denoting
which digit the image represents (0–9). Each image has
been rotated by a certain angle. When loading the
images as arrays, you can also load the rotation angle
of the image.

Load the Digits data as in-memory numeric arrays using
the digitTrain4DArrayData and
digitTest4DArrayData functions.

[XTrain,YTrain,anglesTrain] = digitTrain4DArrayData;
[XTest,YTest,anglesTest] = digitTest4DArrayData;

For examples showing how to process this data for deep
learning, see “Monitor Deep Learning Training
Progress” on page 5-192 and “Train Convolutional
Neural Network for Regression” on page 3-49.

Image classification
and image
regression

Load the Digits data as an image datastore using the
imageDatastore function and specify the folder
containing the image data.
dataFolder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true,'LabelSource','foldernames');

For an example showing how to process this data for
deep learning, see “Create Simple Deep Learning
Neural Network for Classification” on page 3-43.

Image classification

20 Deep Learning Data Preprocessing

20-116



Data Set Description Task
MNIST

(Representative
example)

The MNIST data set consists of 70,000 handwritten
digits split into training and test partitions of 60,000
and 10,000 images, respectively. Each image is 28-
by-28 pixels and has an associated label denoting which
digit the image represents (0–9).

Download the MNIST files from http://yann.lecun.com/
exdb/mnist/ and load the data set into the workspace.
To load the data from the files as MATLAB arrays, place
the files in the working directory, then use the helper
functions processImagesMNIST and
processLabelsMNIST, which are used in the example
“Train Variational Autoencoder (VAE) to Generate
Images” on page 3-163. To access these functions, open
the example as a live script.

filenameImagesTrain = 'train-images-idx3-ubyte.gz';
filenameLabelsTrain = 'train-labels-idx1-ubyte.gz';
filenameImagesTest = 't10k-images-idx3-ubyte.gz';
filenameLabelsTest = 't10k-labels-idx1-ubyte.gz';

XTrain = processImagesMNIST(filenameImagesTrain);
YTrain = processLabelsMNIST(filenameLabelsTrain);
XTest = processImagesMNIST(filenameImagesTest);
YTest = processLabelsMNIST(filenameLabelsTest);

For an example showing how to process this data for
deep learning, see “Train Variational Autoencoder
(VAE) to Generate Images” on page 3-163.

Image classification

 Data Sets for Deep Learning

20-117

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Data Set Description Task
Omniglot The Omniglot data set contains character sets for 50

alphabets, divided into 30 sets for training and 20 sets
for testing [1]. Each alphabet contains a number of
characters, from 14 for Ojibwe (Canadian Aboriginal
syllabics) to 55 for Tifinagh. Finally, each character has
20 handwritten observations.

Download and extract the Omniglot data set from
https://github.com/brendenlake/omniglot. Set
downloadFolder to the location of the data.
downloadFolder = tempdir;

url = "https://github.com/brendenlake/omniglot/raw/master/python";
urlTrain = url + "/images_background.zip";
urlTest = url + "/images_evaluation.zip";

filenameTrain = fullfile(downloadFolder,"images_background.zip");
filenameTest = fullfile(downloadFolder,"images_evaluation.zip");

dataFolderTrain = fullfile(downloadFolder,"images_background");
dataFolderTest = fullfile(downloadFolder,"images_evaluation");

if ~exist(dataFolderTrain,"dir")
    fprintf("Downloading Omniglot training data set (4.5 MB)... ")
    websave(filenameTrain,urlTrain);
    unzip(filenameTrain,downloadFolder);
    fprintf("Done.\n")
end

if ~exist(dataFolderTest,"dir")
    fprintf("Downloading Omniglot test data (3.2 MB)... ")
    websave(filenameTest,urlTest);
    unzip(filenameTest,downloadFolder);
    fprintf("Done.\n")
end

To load the training and test data as image datastores,
use the imageDatastore function. Specify the labels
manually by extracting the labels from the file names
and setting the Labels property.

imdsTrain = imageDatastore(dataFolderTrain, ...
    'IncludeSubfolders',true, ...
    'LabelSource','none');

files = imdsTrain.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),'_');
imdsTrain.Labels = categorical(labels);

imdsTest = imageDatastore(dataFolderTest, ...
    'IncludeSubfolders',true, ...
    'LabelSource','none');

files = imdsTest.Files;
parts = split(files,filesep);
labels = join(parts(:,(end-2):(end-1)),'_');
imdsTest.Labels = categorical(labels);

Image similarity

20 Deep Learning Data Preprocessing

20-118

https://github.com/brendenlake/omniglot


Data Set Description Task
For an example showing how to process this data for
deep learning, see “Train a Siamese Network to
Compare Images” on page 3-126.

Flowers

Image credits: [3] [4]
[5] [6]

The Flowers data set contains 3670 images of flowers
belonging to five classes (daisy, dandelion, roses,
sunflowers, and tulips) [2].

Download and extract the Flowers data set from http://
download.tensorflow.org/example_images/
flower_photos.tgz. The data set is about 218 MB. Set
downloadFolder to the location of the data.

url = 'http://download.tensorflow.org/example_images/flower_photos.tgz';
downloadFolder = tempdir;
filename = fullfile(downloadFolder,'flower_dataset.tgz');

dataFolder = fullfile(downloadFolder,'flower_photos');
if ~exist(dataFolder,'dir')
    fprintf("Downloading Flowers data set (218 MB)... ")
    websave(filename,url);
    untar(filename,downloadFolder)
    fprintf("Done.\n")
end

Load the data as an image datastore using the
imageDatastore function and specify the folder
containing the image data.

imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

For an example showing how to process this data for
deep learning, see “Train Generative Adversarial
Network (GAN)” on page 3-72.

Image classification

 Data Sets for Deep Learning

20-119

http://download.tensorflow.org/example_images/flower_photos.tgz
http://download.tensorflow.org/example_images/flower_photos.tgz
http://download.tensorflow.org/example_images/flower_photos.tgz


Data Set Description Task
Example Food
Images

The Example Food Images data set contains 978
photographs of food in nine classes (caesar_salad,
caprese_salad, french_fries, greek_salad, hamburger,
hot_dog, pizza, sashimi, and sushi).

Download the Example Food Images data set using the
downloadSupportFile function and extract the
images using the unzip function. This data set is about
77 MB.
fprintf("Downloading Example Food Image data set (77 MB)... ")
filename = matlab.internal.examples.downloadSupportFile('nnet', ...
    'data/ExampleFoodImageDataset.zip');
fprintf("Done.\n")

filepath = fileparts(filename);
dataFolder = fullfile(filepath,'ExampleFoodImageDataset');
unzip(filename,dataFolder);

For an example showing how to process this data for
deep learning, see “View Network Behavior Using tsne”
on page 5-226.

Image classification

20 Deep Learning Data Preprocessing

20-120



Data Set Description Task
CIFAR-10

(Representative
example)

The CIFAR-10 data set contains 60,000 color images of
size 32-by-32 pixels, belonging to 10 classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and
truck) [7]. There are 6,000 images per class.

The data set is split into a training set with 50,000
images and a test set with 10,000 images. This data set
is one of the most widely used data sets for testing new
image classification models.

Download and extract the CIFAR-10 data set from
https://www.cs.toronto.edu/%7Ekriz/cifar-10-
matlab.tar.gz. The data set is about 175 MB. Set
downloadFolder to the location of the data.

url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';
downloadFolder = tempdir;
filename = fullfile(downloadFolder,'cifar-10-matlab.tar.gz');

dataFolder = fullfile(downloadFolder,'cifar-10-batches-mat');
if ~exist(dataFolder,'dir')
    fprintf("Downloading CIFAR-10 dataset (175 MB)... ");
    websave(filename,url);
    untar(filename,downloadFolder);
    fprintf("Done.\n")
end

Convert the data to numeric arrays using the helper
function loadCIFARData, which is used in the example
“Train Residual Network for Image Classification” on
page 3-13. To access this function, open the example as
a live script.

[XTrain,YTrain,XValidation,YValidation] = loadCIFARData(downloadFolder);

For an example showing how to process this data for
deep learning, see “Train Residual Network for Image
Classification” on page 3-13.

Image classification

 Data Sets for Deep Learning

20-121

https://www.cs.toronto.edu/%7Ekriz/cifar-10-matlab.tar.gz
https://www.cs.toronto.edu/%7Ekriz/cifar-10-matlab.tar.gz


Data Set Description Task
MathWorks Merch The MathWorks Merch data set is a small data set

containing 75 images of MathWorks merchandise,
belonging to five different classes (cap, cube, playing
cards, screwdriver, and torch). You can use this data set
to try out transfer learning and image classification
quickly.

The images are of size 227-by-227-by-3.

Extract the MathWorks Merch data set.

filename = 'MerchData.zip';

dataFolder = fullfile(tempdir,'MerchData');
if ~exist(dataFolder,'dir')
    unzip(filename,tempdir);
end

Load the data as an image datastore using the
imageDatastore function and specify the folder
containing the image data.
imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true,'LabelSource','foldernames');

For examples showing how to process this data for deep
learning, see “Get Started with Transfer Learning” and
“Train Deep Learning Network to Classify New Images”
on page 3-6.

Image classification

20 Deep Learning Data Preprocessing

20-122



Data Set Description Task
CamVid The CamVid data set is a collection of images

containing street-level views obtained from cars being
driven [8]. The data set is useful for training networks
that perform semantic segmentation of images and
provides pixel-level labels for 32 semantic classes,
including car, pedestrian, and road.

The images are of size 720-by-960-by-3.

Download and extract the CamVid data set from http://
web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/.
The data set is about 573 MB. Set downloadFolder to
the location of the data.
downloadFolder = tempdir;
url = "http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData"
urlImages = url + "/files/701_StillsRaw_full.zip";
urlLabels = url + "/data/LabeledApproved_full.zip";

dataFolder = fullfile(downloadFolder,'CamVid');
dataFolderImages = fullfile(dataFolder,'images');
dataFolderLabels = fullfile(dataFolder,'labels');

filenameLabels = fullfile(dataFolder,'labels.zip');
filenameImages = fullfile(dataFolder,'images.zip');

if ~exist(filenameLabels, 'file') || ~exist(imagesZip,'file')   
    mkdir(dataFolder)
    
    fprintf("Downloading CamVid data set images (557 MB)... ");
    websave(filenameImages, urlImages);       
    unzip(filenameImages, dataFolderImages);
    fprintf("Done.\n")
   
    fprintf("Downloading CamVid data set labels (16 MB)... ");
    websave(filenameLabels, urlLabels);
    unzip(filenameLabels, dataFolderLabels);
    fprintf("Done.\n")
end

Load the data as a pixel label datastore using the
pixelLabelDatastore function and specify the folder
containing the label data, the classes, and the label IDs.
To make training easier, group some of the original
classes to reduce the number of classes from 32 to 11.
To get the label IDs, use the helper function
camvidPixelLabelIDs, which is used in the example
“Semantic Segmentation Using Deep Learning” on page
8-138. To access this function, open the example as a
live script.
imds = imageDatastore(dataFolderImages,'IncludeSubfolders',true);

classes = ["Sky" "Building" "Pole" "Road" "Pavement" "Tree" ...
    "SignSymbol" "Fence" "Car" "Pedestrian" "Bicyclist"];

labelIDs = camvidPixelLabelIDs;

pxds = pixelLabelDatastore(dataFolderLabels,classes,labelIDs);

For an example showing how to process this data for
deep learning, see “Semantic Segmentation Using Deep
Learning” on page 8-138.

Semantic
segmentation

 Data Sets for Deep Learning

20-123

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/
http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/


Data Set Description Task
Vehicle The Vehicle data set consists of 295 images containing

one or two labeled instances of a vehicle. This small
data set is useful for exploring the YOLO-v2 training
procedure, but in practice, more labeled images are
needed to train a robust detector.

The images are of size 720-by-960-by-3.

Extract the Vehicle data set. Set dataFolder to the
location of the data.

filename = 'vehicleDatasetImages.zip';

dataFolder = fullfile(tempdir,'vehicleImages');
if ~exist(dataFolder,'dir')
    unzip(filename,tempdir);
end

Load the data set as a table of file names and bounding
boxes from the extracted MAT file and convert the file
names to absolute file paths.
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

vehicleDataset.imageFilename = fullfile(tempdir,vehicleDataset.imageFilename);

Create an image datastore containing the images and a
box label datastore containing the bounding boxes
using the imageDatastore and boxLabelDatastore
functions, respectively. Combine the resulting
datastores using the combine function.
filenamesImages = vehicleDataset.imageFilename;
tblBoxes = vehicleDataset(:,'vehicle');

imds = imageDatastore(filenamesImages);
blds = boxLabelDatastore(tblBoxes);

cds = combine(imds,blds);

For an example showing how to process this data for
deep learning, see “Object Detection Using YOLO v2
Deep Learning” on page 8-127.

Object detection

20 Deep Learning Data Preprocessing

20-124



Data Set Description Task
RIT-18 The RIT-18 data set contains image data captured by a

drone over Hamlin Beach State Park in New York state
[9]. The data contains labeled training, validation, and
test sets, with 18 object class labels including road
markings, tree, and building. The data set is about 3
GB.

Download the RIT-18 data set from https://
home.cis.rit.edu/~cnspci/other/data/rit18_data.mat. Set
downloadFolder to the location of the data.

downloadFolder = tempdir;
url = 'https://home.cis.rit.edu/~cnspci/other/data/rit18_data.mat';
filename = fullfile(downloadFolder,'rit18_data.mat');

if ~exist(filename,'file')
    fprintf("Downloading Hamlin Beach data set (3 GB)... ");
    websave(filename,url);
    fprintf("Done.\n")
end

For an example showing how to process this data for
deep learning, see “Semantic Segmentation of
Multispectral Images Using Deep Learning” on page 8-
167.

Semantic
segmentation

 Data Sets for Deep Learning

20-125

https://home.cis.rit.edu/~cnspci/other/data/rit18_data.mat
https://home.cis.rit.edu/~cnspci/other/data/rit18_data.mat


Data Set Description Task
BraTS The BraTS data set contains MRI scans of brain tumors,

namely gliomas, which are the most common primary
brain malignancies [10].

The data set contains 750 4-D volumes, each
representing a stack of 3-D images. Each 4-D volume is
of size 240-by-240-by-155-by-4, where the first three
dimensions correspond to the height, width, and depth
of a 3-D volumetric image. The fourth dimension
corresponds to different scan modalities. The data set is
divided into 484 training volumes with voxel labels and
266 test volumes. The data set is about 7 GB.

Create a directory to store the BraTS data set.

dataFolder = fullfile(tempdir,'BraTS');

if ~exist(dataFolder,'dir')
    mkdir(dataFolder);
end

Download the BraTS data from Medical Segmentation
Decathlon by clicking the "Download Data" link.
Download the "Task01_BrainTumour.tar" file.

Extract the TAR file into the directory specified by the
dataFolder variable. If the extraction is successful,
then dataFolder contains a directory named
Task01_BrainTumour that has three subdirectories:
imagesTr, imagesTs, and labelsTr.

For an example showing how to process this data for
deep learning, see “3-D Brain Tumor Segmentation
Using Deep Learning” on page 8-185.

Semantic
segmentation

20 Deep Learning Data Preprocessing

20-126

http://medicaldecathlon.com/
http://medicaldecathlon.com/


Data Set Description Task
Camelyon16 The data from the Camelyon16 challenge contains a

total of 400 whole-slide images (WSIs) of lymph nodes
from two independent sources, separated into 270
training images and 130 test images [11]. The data set
is about 451 GB.

The training data set consists of 159 WSIs of normal
lymph nodes and 111 WSIs of lymph nodes with tumor
and healthy tissue. Usually, the tumor tissue is a small
fraction of the healthy tissue. Ground truth coordinates
of the lesion boundaries accompany the tumor images.

Create directories to store the Camelyon16 data set.
dataFolderTrain = fullfile(tempdir,'Camelyon16','training');
dataFolderNormalTrain = fullfile(dataFolderTrain,'normal');
dataFolderTumorTrain = fullfile(dataFolderTrain,'tumor');
dataFolderAnnotationsTrain = fullfile(dataFolderTrain,'lesion_annotations');

if ~exist(dataFolderTrain,'dir')
    mkdir(dataFolderTrain);
    mkdir(dataFolderNormalTrain);
    mkdir(dataFolderTumorTrain);
    mkdir(dataFolderAnnotationsTrain);
end

Download the Camelyon16 data set from Camelyon17
by clicking the first "CAMELYON16 data set" link. Open
the "training" directory, then follow these steps:

• Download the "lesion_annotations.zip" file. Extract
the files to the directory specified by the
dataFolderAnnotationsTrain variable.

• Open the "normal" directory. Download the images
to the directory specified by the
dataFolderNormalTrain variable.

• Open the "tumor" directory. Download the images to
the directory specified by the
dataFolderTumorTrain variable.

For an example showing how to process this data for
deep learning, see “Preprocess Multiresolution Images
for Training Classification Network” (Image Processing
Toolbox).

Image classification
(large images)

 Data Sets for Deep Learning

20-127

https://camelyon17.grand-challenge.org/Data/


Data Set Description Task
Low Dose CT Grand
Challenge

The Low Dose CT Grand Challenge includes pairs of
regular-dose CT images and simulated low-dose CT
images for 99 head scans (labeled N for neuro), 100
chest scans (labeled C for chest), and 100 abdomen
scans (labeled L for liver) [12] [13]. The full data set is
about 1.2 TB.

Create a directory to store the chest files from the Low
Dose CT Grand Challenge data set.

dataDir = fullfile(tempdir,"LDCT","LDCT-and-Projection-data");
if ~exist(dataDir,'dir')
    mkdir(dataDir);
end

To download the data, go to The Cancer Imaging
Archive website. Download the chest files from the
"Images (DICOM, 952 GB)" data set using the NBIA
Data Retriever. Specify the dataDir variable as the
location of the downloaded data. When the data is
downloaded successfully, dataDir contains 50
subfolders with names such as "C002" and "C004",
ending with "C296".

For an example showing how to process this data for
deep learning, see “Unsupervised Medical Image
Denoising Using CycleGAN” on page 9-129.

Image-to-image
regression

20 Deep Learning Data Preprocessing

20-128

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images
https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images


Data Set Description Task
Common Objects in
Context (COCO)

(Representative
example)

The COCO 2014 train images data set consists of
82,783 images. The annotations data contains at least
five captions corresponding to each image.

Create directories to store the COCO data set.

dataFolder = fullfile(tempdir,"coco");
if ~exist(dataFolder,'dir')
    mkdir(dataFolder);
end

Download and extract the COCO 2014 train images and
captions from https://cocodataset.org/#download by
clicking the "2014 Train images" and "2014 Train/Val
annotations" links, respectively. Save the data in the
folder specified by dataFolder.

Extract the captions from the file
captions_train2014.json using the jsondecode
function.
filename = fullfile(dataFolder,"annotations_trainval2014","annotations", ...
    "captions_train2014.json");
str = fileread(filename);
data = jsondecode(str);

The annotations field of the structure contains the
data required for image captioning.

For an example showing how to process this data for
deep learning, see “Image Captioning Using Attention”
on page 4-299.

Image captioning

 Data Sets for Deep Learning

20-129

https://cocodataset.org/#download


Data Set Description Task
IAPR TC-12

(Representative
example)

The IAPR TC-12 Benchmark consists of 20,000 still
natural images [14]. The data set includes photos of
people, animals, cities, and more. The data file is about
1.8 GB.

Download the IAPR TC-12 data set.

dataDir = fullfile(tempdir,'iaprtc12');
url = 'http://www-i6.informatik.rwth-aachen.de/imageclef/resources/iaprtc12.tgz';

if ~exist(dataDir,'dir')
    fprintf('Downloading IAPR TC-12 data set (1.8 GB)...\n');
    try
        untar(url,dataDir);
    catch 
        % On some Windows machines, the untar command throws an error for .tgz
        % files. Rename to .tg and try again.
        fileName = fullfile(tempdir,'iaprtc12.tg');
        websave(fileName,url);
        untar(fileName,dataDir);
    end
    fprintf('Done.\n\n');
end

Load the data as an image datastore using the
imageDatastore function. Specify the folder
containing the image data and the image file
extensions.

imageDir = fullfile(dataDir,'images')
exts = {'.jpg','.bmp','.png'};
imds = imageDatastore(imageDir, ...
    'IncludeSubfolders',true,'FileExtensions',exts);

For an example showing how to process this data for
deep learning, see “Increase Image Resolution Using
Deep Learning” on page 9-8.

Image-to-image
regression

20 Deep Learning Data Preprocessing

20-130



Data Set Description Task
Zurich RAW to RGB The Zurich RAW to RGB data set contains 48,043

spatially registered pairs of RAW and RGB training
image patches of size 448-by-448 [15]. The data set
contains two separate test sets. One test set consists of
1,204 spatially registered pairs of RAW and RGB image
patches of size 448-by-448. The other test set consists
of unregistered full-resolution RAW and RGB images.
The data set is 22 GB.

Create a directory to store the Zurich RAW to RGB data
set.

imageDir = fullfile(tempdir,'ZurichRAWToRGB');
if ~exist(imageDir,'dir')
    mkdir(imageDir);
end 

To download the data set, request access using the
Zurich RAW to RGB dataset form. Extract the data into
the directory specified by the imageDir variable. If the
extraction is successful, then imageDir contains three
directories: full_resolution, test, and train.

For an example showing how to process this data for
deep learning, see “Develop Camera Processing
Pipeline Using Deep Learning” on page 9-51.

Image-to-image
regression

 Data Sets for Deep Learning

20-131

https://docs.google.com/forms/d/e/1FAIpQLSdH6Pqdlu0pk2vGZlazqoRYwWsxN3nsLFwYY6Zc5-RUjw3SdQ/viewform


Data Set Description Task
See-In-The-Dark
(SID)

The See-In-The-Dark (SID) data set provides registered
pairs of RAW images of the same scene [16]. In each
pair, one image has a short exposure time and is
underexposed, and the other image has a longer
exposure time and is well-exposed. The size of the Sony
camera data from the SID data set is 25 GB.

Specify dataDir as the desired location of the data.

dataDir = fullfile(tempdir,"SID");
if ~exist(dataDir,"dir")
    mkdir(dataDir);
end

To download the data set, go to this link: https://
storage.googleapis.com/isl-datasets/SID/Sony.zip.
Extract the data into the directory specified by the
dataDir variable. When extracted successfully,
dataDir contains the directory Sony with two
subdirectories: long and short. The files in the long
subdirectory have a long exposure and are well-
exposed. The files in the short subdirectory have a
short exposure and are quite underexposed and dark.

The data set also provides text files that describe how
to partition the files into training, validation, and test
data sets. Move the files "Sony_train_list.txt",
"Sony_val_list.txt", and "Sony_test_list.txt" to the
directory specified by the dataDir variable.

For an example showing how to process this data for
deep learning, see “Brighten Extremely Dark Images
Using Deep Learning” on page 9-73.

Image-to-image
regression

20 Deep Learning Data Preprocessing

20-132

https://storage.googleapis.com/isl-datasets/SID/Sony.zip
https://storage.googleapis.com/isl-datasets/SID/Sony.zip


Data Set Description Task
LIVE In the Wild The LIVE In the Wild data set consists of 1,162 photos

captured by mobile devices, with seven additional
training images [17]. Each image is rated by an average
of 175 individuals on a scale of [1, 100]. The data set
provides the mean and standard deviation of the
subjective scores for each image.

Specify imageDir as the desired location of the data.

imageDir = fullfile(tempdir,"LIVEInTheWild");
if ~exist(imageDir,'dir')
    mkdir(imageDir);
end

Download the data set by following the instructions
outlined in LIVE In the Wild Image Quality Challenge
Database. Extract the data into the directory specified
by the imageDir variable. When extracted successfully,
imageDir contains two directories: Data and Images.

For an example showing how to process this data for
deep learning, see “Quantify Image Quality Using
Neural Image Assessment” on page 9-107.

Image classification

Concrete Crack
Images for
Classification

The Concrete Crack Images for Classification data set
contains images of two classes: "Negative" images
without cracks present in the road and "Positive"
images with cracks [18] [19]. The data set provides
20,000 images of each class. The size of the data set is
235 MB.

Specify dataDir as the desired location of the data.

dataDir = fullfile(tempdir,"ConcreteCracks");
if ~exist(dataDir,"dir")
    mkdir(dataDir);
end

To download the data set, go to this link: Concrete
Crack Images for Classification. Extract the ZIP file to
obtain a RAR file, then extract the contents of the RAR
file into the directory specified by the dataDir
variable. If the extraction is successful, then dataDir
contains two subdirectories: Negative and Positive.

For an example showing how to process this data for
deep learning, see “Detect Image Anomalies Using
Pretrained ResNet-18 Feature Embeddings” on page 8-
288.

Image classification

 Data Sets for Deep Learning

20-133

https://live.ece.utexas.edu/research/ChallengeDB/index.html
https://live.ece.utexas.edu/research/ChallengeDB/index.html
https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5y9wdsg2zt-2.zip
https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5y9wdsg2zt-2.zip


Data Set Description Task
MIR WM-811K
(Wafer Defect Maps)

The Wafer Defect Map data set consists of 811,457
wafer map images, including 172,950 labeled images
[20] [21]. Each image has only three pixel values. The
value 0 indicates the background, the value 1
represents correctly behaving dies, and the value 2
represents defective dies. The labeled images have one
of nine labels based on the spatial pattern of defects.
The size of the data set is 3.5 GB.

Specify dataDir as the desired location of the data,
then download the Wafer Defect Map data set.

dataDir = fullfile(tempdir,"WaferDefects");
dataURL = "http://mirlab.org/dataSet/public/MIR-WM811K.zip";
dataMatFile = fullfile(dataDir,"MIR-WM811K","MATLAB","WM811K.mat");

if exist(dataMatFile,"file") ~= 2
    unzip(dataURL,dataDir);
end

The data is stored in a MAT file as an array of
structures. Load the data set into the workspace.

waferData = load(dataMatFile);
waferData = waferData.data;

For an example showing how to process this data for
deep learning, see Classify Anomalies on Wafer Defect
Maps Using Deep Learning on page 8-253.

Image classification

20 Deep Learning Data Preprocessing

20-134



Data Set Description Task
PCB Defect The PCB Defect data set contains 1,386 images of PCB

elements with synthesized defects [22] [23]. The data
has six types of defects: missing hole, mouse bite, open
circuit, short, spur, and spurious copper. Each image
contains multiple defects of the same category in
different locations. The data set provides bounding box
and coordinate information for every defect in every
image. The size of the data set is 1.87 GB.

Specify dataDir as the desired location of the data,
then download the PCB Defect data set.
dataDir = fullfile(tempdir,"PCBDefects");
imageDir = fullfile(dataDir,"PCB-DATASET-master");

if ~exist(imageDir,"dir")
    dataURL = "https://github.com/Ironbrotherstyle/PCB-DATASET/archive/refs/heads/master.zip";
    unzip(dataURL,dataDir);
    delete(fullfile(imageDir,"*.m"),fullfile(imageDir,"*.mlx"), ...
        fullfile(imageDir,"*.mat"),fullfile(imageDir,"*.md")); 
end

For an example showing how to process this data for
deep learning, see “Detect Defects on Printed Circuit
Boards Using YOLO v4 Network” on page 8-269.

Object detection

Pill Quality Control
(Pill QC)

The Pill QC data set contains images of three classes:
"normal" images without defects, "chip" images with
chip defects in the pills, and "dirt" images with dirt
contamination. The data set provides 149 normal
images, 43 chip images, and 138 dirt images. The size
of the data set is 3.57 MB.

Specify dataDir as the desired location of the data,
then download the Pill QC data set.
dataDir = fullfile(tempdir,"PillDefects");
imageDir = fullfile(dataDir,"pillQC-main");

if ~exist(imageDir,"dir")
    unzip("https://github.com/matlab-deep-learning/pillQC/archive/refs/heads/main.zip",dataDir); 
end

Load the data as an image datastore using the
imageDatastore function and specify the folder
containing the image data.
imageDir = fullfile(dataDir,"pillQC-main","images");
imds = imageDatastore(imageDir,IncludeSubfolders=true,LabelSource="foldernames");

For an example showing how to process this data for
deep learning, see “Detect Image Anomalies Using
Explainable FCDD Network” on page 8-275.

Image classification

 Data Sets for Deep Learning

20-135



Data Set Description Task
Breast Ultrasound
Images (BUSI)

The Breast Ultrasound Images (BUSI) data set contains
2-D breast ultrasound images [24]. The data set
contains 133 normal images, 487 images with benign
tumors, and 210 images with malignant tumors. Each
ultrasound image has a corresponding tumor mask
image for training semantic segmentation networks.
The tumor mask labels have been reviewed by clinical
radiologists. The size of the data set is approximately
197 MB.

Download the BUSI data set from the MathWorks
website.
zipFile = matlab.internal.examples.downloadSupportFile("image","data/Dataset_BUSI.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

Load the data as an image datastore using the
imageDatastore function and label each image as
normal, benign, or malignant according to the name
of its folder.
imageDir = fullfile(filepath,"Dataset_BUSI_with_GT");
imds = imageDatastore(imageDir,IncludeSubfolders=true,LabelSource="foldernames");

For an example showing how to process this data for
deep learning, see “Breast Tumor Segmentation from
Ultrasound Using Deep Learning” on page 9-173.

Semantic
segmentation

Child and Adolescent
NeuroDevelopment
Initiative (CANDI)
neuroimaging data
set

The CANDI data set (subset HC_001) contains one
brain MRI image volume and its corresponding
segmentation label image [25]. The total size of the
data set is approximately 2.5 MB.

Download the CANDI data set from the MathWorks
website.
zipFile = matlab.internal.examples.downloadSupportFile("image","data/brainSegData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataDir = fullfile(filepath,"brainSegData");

For an example showing how to load and process this
data for deep learning, see “Brain MRI Segmentation
Using Pretrained 3-D U-Net Network” on page 9-165

Semantic
segmentation

20 Deep Learning Data Preprocessing

20-136



Data Set Description Task
Sunnybrook Cardiac
Data set

The Sunnybrook Cardiac Data set contains cine MRI
images and ground truth labels of the left ventricle
[26]. The data set contains images from multiple
patients with various cardiac pathologies. The MRI
images are in the DICOM file format and the label
images are in the PNG file format.

This code downloads a subset of the original data set
from the MathWorks website. The subset contains MRI
images and label images from 45 patients. The total
download size is approximately 105 MB.
zipFile = matlab.internal.examples.downloadSupportFile("medical","CardiacMRI.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The imageDir folder contains the downloaded and
unzipped data set.

imageDir = fullfile(filepath,"Cardiac MRI");

For an example showing how to process this data for
deep learning, see “Cardiac Left Ventricle
Segmentation from Cine-MRI Images Using U-Net
Network” on page 9-181.

Semantic
segmentation

 Data Sets for Deep Learning

20-137



Time Series and Signal Data Sets
Data Description Task
Japanese Vowels The Japanese Vowels data set contains preprocessed

sequences representing utterances of Japanese vowels
from different speakers [27] [28].

XTrain and XTest are cell arrays containing
sequences of dimension 12 of varying length. YTrain
and YTest are categorical vectors of labels 1 to 9, that
correspond to the nine speakers. The entries in XTrain
are matrices with 12 rows (one row for each feature)
and varying numbers of columns (one column for each
time step). XTest is a cell array containing 370
sequences of dimension 12 of varying length.

Load the Japanese Vowels data set as in-memory cell
arrays containing numeric sequences using the
japaneseVowelsTrainData and
japaneseVowelsTestData functions.

[XTrain,YTrain] = japaneseVowelsTrainData;
[XTest,YTest] = japaneseVowelsTestData;

For an example showing how to process this data for
deep learning, see “Sequence Classification Using Deep
Learning” on page 4-3.

Sequence-to-label
classification

20 Deep Learning Data Preprocessing

20-138



Data Description Task
Chickenpox The Chickenpox data set contains a single time series,

with time steps corresponding to months and values
corresponding to the number of cases. The output is a
cell array, where each element is a single time step.

Load the Chickenpox data as a single numeric
sequences using the chickenpox_dataset function.
Reshape the data to be a row vector.

data = chickenpox_dataset;
data = [data{:}];

For an example showing how to process this data for
deep learning, see “Time Series Forecasting Using
Deep Learning” on page 4-16.

Time-series
forecasting

 Data Sets for Deep Learning

20-139



Data Description Task
Human Activity The Human Activity data set contains seven time series

of sensor data obtained from a smartphone worn on the
body. Each sequence has three features and varies in
length. The three features correspond to accelerometer
readings in three different directions.

Load the Human Activity data set.

dataTrain = load('HumanActivityTrain');
dataTest = load('HumanActivityTest');

XTrain = dataTrain.XTrain;
YTrain = dataTrain.YTrain;
XTest = dataTest.XTest;
YTest = dataTest.YTest;

For an example showing how to process this data for
deep learning, see “Sequence-to-Sequence
Classification Using Deep Learning” on page 4-39.

Sequence-to-
sequence
classification

20 Deep Learning Data Preprocessing

20-140



Data Description Task
Turbofan Engine
Degradation
Simulation

Each time series of the Turbofan Engine Degradation
Simulation data set represents a different engine [29].
Each engine starts with unknown degrees of initial
wear and manufacturing variation. The engine is
operating normally at the start of each time series, and
develops a fault at some point during the series. In the
training set, the fault grows in magnitude until system
failure.

The data contains a ZIP-compressed text files with 26
columns of numbers, separated by spaces. Each row is
a snapshot of data taken during a single operational
cycle, and each column is a different variable. The
columns correspond to the following:

• Column 1 – Unit number
• Column 2 – Time in cycles
• Columns 3–5 – Operational settings
• Columns 6–26 – Sensor measurements 1–21

Create a directory to store the Turbofan Engine
Degradation Simulation data set.

dataFolder = fullfile(tempdir,"turbofan");
if ~exist(dataFolder,'dir')
    mkdir(dataFolder);
end

Download and extract the Turbofan Engine Degradation
Simulation data set.

filename = matlab.internal.examples.downloadSupportFile( ...
    "nnet","data/TurbofanEngineDegradationSimulationData.zip");
unzip(filename,dataFolder)

Load the training and test data using the helper
functions processTurboFanDataTrain and
processTurboFanDataTest, respectively. These
functions are used in the example “Sequence-to-
Sequence Regression Using Deep Learning” on page 4-
44. To access these functions, open the example as a
live script.
filenamePredictors = fullfile(dataFolder,"train_FD001.txt");
[XTrain,YTrain] = processTurboFanDataTrain(filenamePredictors);

filenamePredictors = fullfile(dataFolder,"test_FD001.txt");
filenameResponses = fullfile(dataFolder,"RUL_FD001.txt");
[XTest,YTest] = processTurboFanDataTest(filenamePredictors,filenameResponses);

For an example showing how to process this data for
deep learning, see “Sequence-to-Sequence Regression
Using Deep Learning” on page 4-44.

Sequence-to-
sequence regression,
predictive
maintenance

 Data Sets for Deep Learning

20-141



Data Description Task
PhysioNet 2017
Challenge

The PhysioNet 2017 Challenge data set consists of a set
of electrocardiogram (ECG) recordings sampled at 300
Hz and divided by a group of experts into different
classes [31].

Download and extract the PhysioNet 2017 Challenge
data set using the ReadPhysionetData script, which
is used in the example “Classify ECG Signals Using
Long Short-Term Memory Networks” on page 13-44. To
access this function, open the example as a live script.
The data set is about 95 MB.
ReadPhysionetData
data = load('PhysionetData.mat')
signals = data.Signals;
labels = data.Labels;

For an example showing how to process this data for
deep learning, see “Classify ECG Signals Using Long
Short-Term Memory Networks” on page 13-44.

Sequence-to-label
classification

20 Deep Learning Data Preprocessing

20-142



Data Description Task
Tennessee Eastman
Process (TEP)
simulation

This data set consists of MAT files converted from the
Tennessee Eastman Process (TEP) simulation data [30].

Download the Tennessee Eastman Process (TEP)
simulation data set from the MathWorks support files
site (see disclaimer). The data set has four components:
fault-free training, fault-free testing, faulty training,
and faulty testing. Download each file separately.

The data set is 1.7 GB.
fprintf("Downloading TEP faulty training data (613 MB)... ")
filenameFaultyTrain = matlab.internal.examples.downloadSupportFile('predmaint', ...
    'chemical-process-fault-detection-data/faultytraining.mat'); 
fprintf("Done.\n")

fprintf("Downloading TEP faulty testing data (1 GB)... ")
filenameFaultyTest = matlab.internal.examples.downloadSupportFile('predmaint', ...
    'chemical-process-fault-detection-data/faultytesting.mat');
fprintf("Done.\n")

fprintf("Downloading TEP fault-free training data (36 MB)... ")
filenameFaultFreeTrain = matlab.internal.examples.downloadSupportFile('predmaint', ...
    'chemical-process-fault-detection-data/faultfreetraining.mat'); 
fprintf("Done.\n")

fprintf("Downloading TEP fault-free testing data (69 MB)... ")
filenameFaultFreeTest = matlab.internal.examples.downloadSupportFile('predmaint', ...
    'chemical-process-fault-detection-data/faultfreetesting.mat'); 
fprintf("Done.\n")

Load the downloaded files into the MATLAB workspace.

load(filenameFaultyTrain);
load(filenameFaultyTest);
load(filenameFaultFreeTrain);
load(filenameFaultFreeTest);

For an example showing how to process this data for
deep learning, see “Chemical Process Fault Detection
Using Deep Learning” on page 17-2.

Sequence-to-label
classification

 Data Sets for Deep Learning

20-143

https://www.mathworks.com/supportfiles/predmaint/chemical-process-fault-detection-data/Disclaimer.txt


Data Description Task
PhysioNet ECG
Segmentation

The PhysioNet ECG Segmentation data set consists of
roughly 15 minutes of ECG recordings from a total of
105 patients [31] [32]. To obtain each recording, the
examiners placed two electrodes on different locations
on a patient's chest, resulting in a two-channel signal.
The database provides signal region labels generated
by an automated expert system.

Download the PhysioNet ECG Segmentation data set
from the https://github.com/mathworks/
physionet_ECG_segmentation by downloading the ZIP
file QT_Database-master.zip. The data set is 72
MB. Set downloadFolder to the location of the data.
downloadFolder = tempdir;

url = "https://github.com/mathworks/physionet_ECG_segmentation/raw/master/QT_Database-master.zip";
filename = fullfile(downloadFolder,"QT_Database-master.zip");

dataFolder = fullfile(downloadFolder,"QT_Database-master");

if ~exist(dataFolder,"dir")
    fprintf("Downloading Physionet ECG Segmentation data set (72 MB)... ")
    websave(filename,url);
    unzip(filename,downloadFolder);
    fprintf("Done.\n")
end

Unzipping creates the folder QT_Database-master in
your temporary directory. This folder contains the text
file README.md and the following files:

• QTData.mat
• Modified_physionet_data.txt
• License.txt

QTData.mat contains the PhysioNet ECG
Segmentation data. The file
Modified_physionet_data.txt provides the source
attributions for the data and a description of the
operations applied to each raw ECG recording. Load
the PhysioNet ECG Segmentation data from the MAT
file.

load(fullfile(dataFolder,'QTData.mat'))

For an example showing how to process this data for
deep learning, see “Waveform Segmentation Using
Deep Learning” on page 13-24.

Sequence-to-label
classification,
waveform
segmentation

20 Deep Learning Data Preprocessing

20-144

https://github.com/mathworks/physionet_ECG_segmentation
https://github.com/mathworks/physionet_ECG_segmentation


Data Description Task
Synthetic pedestrian,
car, and bicyclist
backscattering

Generate a synthetic pedestrian, car, and bicyclist
backscattering data set using the helper functions
helperBackScatterSignals and
helperDopplerSignatures, which are used in the
example “Pedestrian and Bicyclist Classification Using
Deep Learning” (Radar Toolbox).

The helper function helperBackScatterSignals
generates a specified number of pedestrian, bicyclist,
and car radar returns. For each realization, the return
signals have dimensions Nfast-by-Nslow, where Nfast is
the number of fast-time samples and Nslow is the
number of slow-time samples.

The helper function helperDopplerSignatures
computes the short-time Fourier transform (STFT) of a
radar return to generate the micro-Doppler signature.
To obtain the micro-Doppler signatures, use the helper
functions to apply the STFT and a preprocessing
method to each signal.

To access these functions, open the example as a live
script.

numPed = 1; % Number of pedestrian realizations
numBic = 1; % Number of bicyclist realizations
numCar = 1; % Number of car realizations
[xPedRec,xBicRec,xCarRec,Tsamp] = helperBackScatterSignals(numPed,numBic,numCar);

[SPed,T,F] = helperDopplerSignatures(xPedRec,Tsamp);
[SBic,~,~] = helperDopplerSignatures(xBicRec,Tsamp);
[SCar,~,~] = helperDopplerSignatures(xCarRec,Tsamp);

For an example showing how to process this data for
deep learning, see “Pedestrian and Bicyclist
Classification Using Deep Learning” (Radar Toolbox).

Sequence-to-label
classification

 Data Sets for Deep Learning

20-145



Data Description Task
Generated
waveforms

Generate rectangular, linear FM, and phase coded
waveforms using the helper function
helperGenerateRadarWaveforms, which is used in
the example “Radar and Communications Waveform
Classification Using Deep Learning” (Radar Toolbox).

The helper function
helperGenerateRadarWaveforms generates 3000
signals with a sample rate of 100 MHz for each
modulation type using
phased.RectangularWaveform for rectangular
pulses, phased.LinearFMWaveform for linear FM,
and phased.PhaseCodedWaveform for phase-coded
pulses with Barker code.

To access these functions, open the example as a live
script.

[wav, modType] = helperGenerateRadarWaveforms;

For an example showing how to process this data for
deep learning, see “Radar and Communications
Waveform Classification Using Deep Learning” (Radar
Toolbox).

Sequence-to-label
classification

20 Deep Learning Data Preprocessing

20-146



Video Data Sets
Data Description Task
HMDB: a large
human motion
database

(Representative
example)

The HMBD51 data set contains about 2 GB of video
data for 7000 clips from 51 classes, such as drink, run,
and pushup.

Download and extract the HMBD51 data set from
HMDB: a large human motion database. The data set is
about 2 GB.

After you extract the RAR files, get the file names and
the labels of the videos by using the helper function
hmdb51Files, which used in the example “Classify
Videos Using Deep Learning” on page 4-87. Set
dataFolder to the location of the data. To access this
function, open the example as a live script.

dataFolder = fullfile(tempdir,"hmdb51_org");
[files,labels] = hmdb51Files(dataFolder);

For an example showing how to process this data for
deep learning, see “Classify Videos Using Deep
Learning” on page 4-87.

Video classification

 Data Sets for Deep Learning

20-147

https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/


Text Data Sets
Data Description Task
Factory Reports The Factory Reports data set is a table containing

approximately 500 reports with various attributes
including a plain text description in the variable
Description and a categorical label in the variable
Category.

Read the Factory Reports data from the file
"factoryReports.csv". Extract the text data and
the labels from the Description and Category
columns, respectively.

filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');

textData = data.Description;
labels = data.Category;

For an example showing how to process this data for
deep learning, see “Classify Text Data Using Deep
Learning” on page 4-195.

Text classification,
topic modeling

20 Deep Learning Data Preprocessing

20-148



Data Description Task
Shakespeare's
Sonnets

The file sonnets.txt contains all of Shakespeare's
sonnets in a single text file.

Read the Shakespeare's Sonnets data from the file
"sonnets.txt".

filename = "sonnets.txt";
textData = fileread(filename);

The sonnets are indented by two whitespace characters
and are separated by two newline characters. Remove
the indentations using replace and split the text into
separate sonnets using split. Remove the main title
from the first three elements and the sonnet titles,
which appear before each sonnet.

textData = replace(textData,"  ","");
textData = split(textData,[newline newline]);
textData = textData(5:2:end);

For an example showing how to process this data for
deep learning, see “Generate Text Using Deep
Learning” on page 4-280.

Topic modeling, text
generation

 Data Sets for Deep Learning

20-149



Data Description Task
ArXiv Metadata The ArXiv API allows you to access the metadata of

scientific e-prints submitted to https://arxiv.org
including the abstract and subject areas. For more
information, see https://arxiv.org/help/api.

Import a set of abstracts and category labels from math
papers using the arXiV API.

url = "https://export.arxiv.org/oai2?verb=ListRecords" + ...
    "&set=math" + ...
    "&metadataPrefix=arXiv";
options = weboptions('Timeout',160);
code = webread(url,options);

For an example showing how to parse the returned
XML code and import more records, see “Multilabel
Text Classification Using Deep Learning” on page 4-
210.

Text classification,
topic modeling

20 Deep Learning Data Preprocessing

20-150

https://arxiv.org
https://arxiv.org/help/api


Data Description Task
Books from Project
Gutenberg

You can download many books from Project Gutenberg.
For example, download the text from Alice's Adventures
in Wonderland by Lewis Carroll from https://
www.gutenberg.org/files/11/11-h/11-h.htm using the
webread function.

url = "https://www.gutenberg.org/files/11/11-h/11-h.htm";
code = webread(url);

The HTML code contains the relevant text inside <p>
(paragraph) elements. Extract the relevant text by
parsing the HTML code using the htmlTree function
and then finding all the elements with the element
name "p".

tree = htmlTree(code);
selector = "p";
subtrees = findElement(tree,selector);

Extract the text data from the HTML subtrees using the
extractHTMLText function and remove the empty
elements.
textData = extractHTMLText(subtrees);
textData(textData == "") = [];

For an example showing how to process this data for
deep learning, see “Word-By-Word Text Generation
Using Deep Learning” on page 4-292.

Topic modeling, text
generation

 Data Sets for Deep Learning

20-151

https://www.gutenberg.org/files/11/11-h/11-h.htm
https://www.gutenberg.org/files/11/11-h/11-h.htm


Data Description Task
Weekend updates The file weekendUpdates.xlsx contains example

social media status updates containing the hashtags
"#weekend" and "#vacation". This data set requires
Text Analytics Toolbox.

Extract the text data from the file
weekendUpdates.xlsx using the readtable function
and extract the text data from the variable TextData.

filename = "weekendUpdates.xlsx";
tbl = readtable(filename,'TextType','string');
textData = tbl.TextData;

For an example showing how to process this data, see
“Analyze Sentiment in Text” (Text Analytics Toolbox).

Sentiment analysis

Roman Numerals The CSV file "romanNumerals.csv" contains the
decimal numbers 1–1000 in the first column and the
corresponding Roman numerals in the second column.

Load the decimal-Roman numeral pairs from the CSV
file "romanNumerals.csv".
filename = fullfile("romanNumerals.csv");

options = detectImportOptions(filename, ...
    'TextType','string', ...
    'ReadVariableNames',false);
options.VariableNames = ["Source" "Target"];
options.VariableTypes = ["string" "string"];

data = readtable(filename,options);

For an example showing how to process this data for
deep learning, see “Sequence-to-Sequence Translation
Using Attention” on page 4-266.

Sequence-to-
sequence translation

20 Deep Learning Data Preprocessing

20-152



Data Description Task
Finance Reports The Securities and Exchange Commission (SEC) allows

you to access financial reports via the Electronic Data
Gathering, Analysis, and Retrieval (EDGAR) API. For
more information, see https://www.sec.gov/os/
accessing-edgar-data.

To download this data, use the function
financeReports attached to the example “Generate
Domain Specific Sentiment Lexicon” (Text Analytics
Toolbox) as a supporting file. To access this function,
open the example as a Live Script.

year = 2019;
qtr = 4;
maxLength = 2e6;
textData = financeReports(year,qtr,maxLength);

For an example showing how to process this data, see
“Generate Domain Specific Sentiment Lexicon” (Text
Analytics Toolbox).

Sentiment analysis

 Data Sets for Deep Learning

20-153

https://www.sec.gov/os/accessing-edgar-data
https://www.sec.gov/os/accessing-edgar-data


Audio Data Sets
Data Description Task
Speech Commands The Speech Commands data set consists of

approximately 65,000 audio files labeled with 1 of 12
classes including yes, no, on, and off, as well as classes
corresponding to unknown commands and background
noise [33].

Download and extract the Speech Commands data set
from https://storage.googleapis.com/
download.tensorflow.org/data/
speech_commands_v0.01.tar.gz. The data set is about
1.4 GB.

Set dataFolder to the location of the data. Use
audioDatastore to create a datastore that contains
the file names and the corresponding labels.

dataFolder = tempdir;
ads = audioDatastore(dataFolder, ...
    'IncludeSubfolders',true, ...
    'FileExtensions','.wav', ...
    'LabelSource','foldernames');

For an example showing how to process this data for
deep learning, see “Train Speech Command
Recognition Model Using Deep Learning” on page 4-27.

Audio classification,
speech recognition

20 Deep Learning Data Preprocessing

20-154

https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz


Data Description Task
Mozilla Common
Voice

The Mozilla Common Voice data set consists of audio
recordings of speech and corresponding text files. The
data also includes demographic metadata such as age
and accent.

Download and extract the Mozilla Common Voice data
set data set from https://voice.mozilla.org/. The data set
is an open data set, which means that it can grow over
time. As of October 2019, the data set is about 28 GB.
Set dataFolder to the location of the data. Use
audioDatastore to create a datastore that contains
the file names and the corresponding labels.

dataFolder = tempdir;
ads = audioDatastore(fullfile(dataFolder,"clips"));

Audio classification,
speech recognition.

 Data Sets for Deep Learning

20-155

https://voice.mozilla.org/


Data Description Task
Free Spoken Digit
Dataset

The Free Spoken Digit Dataset, as of January 29, 2019,
consists of 2000 recordings of the English digits 0
through 9 obtained from four speakers. Two of the
speakers in this version are native speakers of
American English and two speakers are nonnative
speakers of English with a Belgium French and German
accent respectively. The data is sampled at 8000 Hz.

Download the Free Spoken Digit Dataset (FSDD)
recordings from https://github.com/Jakobovski/free-
spoken-digit-dataset.

Set dataFolder to the location of the data. Use
audioDatastore to create a datastore that contains
the file names and the corresponding labels.

dataFolder = fullfile(tempdir,'free-spoken-digit-dataset','recordings');
ads = audioDatastore(dataFolder);

For an example showing how to process this data for
deep learning, see “Spoken Digit Recognition with
Wavelet Scattering and Deep Learning” on page 15-
213.

Audio classification,
speech recognition.

20 Deep Learning Data Preprocessing

20-156

https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset


Data Description Task
Berlin Database of
Emotional Speech

The Berlin Database of Emotional Speech contains 535
utterances spoken by 10 actors intended to convey one
of the following emotions: anger, boredom, disgust,
anxiety/fear, happiness, sadness, or neutral [34]. The
emotions are text independent.

The file names are codes indicating the speaker ID, text
spoken, emotion, and version. The website contains a
key for interpreting the code and additional information
about the speakers such as age.

Download the Berlin Database of Emotional Speech
from http://emodb.bilderbar.info/index-1280.html. The
data set is about 40 MB.

Set dataFolder to the location of the data. Use
audioDatastore to create a datastore that contains
the file names and the corresponding labels.

dataFolder = tempdir;
ads = audioDatastore(fullfile(dataFolder,"wav"));

For an example showing how to process this data for
deep learning, see “Speech Emotion Recognition” on
page 15-200.

Audio classification,
speech recognition.

 Data Sets for Deep Learning

20-157

http://emodb.bilderbar.info/index-1280.html


Data Description Task
TUT Acoustic Scenes
2017

The TUT Acoustic Scenes 2017 data set consists of 10-
second audio segments from 15 acoustic scenes
including bus, car, and library.

Download and extract the TUT Acoustic Scenes 2017
data set from TUT Acoustic scenes 2017, Development
dataset and TUT Acoustic scenes 2017, Evaluation
dataset [35].

For an example showing how to process this data for
deep learning, see “Acoustic Scene Recognition Using
Late Fusion” on page 15-158.

Acoustic scene
classification

20 Deep Learning Data Preprocessing

20-158

https://zenodo.org/record/400515
https://zenodo.org/record/400515
https://zenodo.org/record/1040168
https://zenodo.org/record/1040168


Point Cloud Data Sets
Data Description Task
WPI Lidar Data The WPI Lidar data is collected using an Ouster OS1 sensor. It

contains organized lidar point cloud scans of highway scenes and
corresponding ground truth labels for car and truck objects.

The data set has 1617 point clouds stored as pointCloud objects in
a cell array. The size of the data file is approximately 760 MB.

Execute this code to download the data set.
url = 'https://www.mathworks.com/supportfiles/lidar/data/WPI_LidarData.tar.gz';

outputFolder = fullfile(tempdir,'WPI');
lidarDataTarFile = fullfile(outputFolder,'WPI_LidarData.tar.gz');

if ~exist(lidarDataTarFile, 'file') 
    mkdir(outputFolder);
    
    disp('Downloading WPI Lidar driving data (760 MB)...');
    websave(lidarDataTarFile, url);
    untar(lidarDataTarFile,outputFolder); 
end

lidarData = load(fullfile(outputFolder, 'WPI_LidarData.mat'));

Depending on your internet connection, the download process can
take some time. Alternatively, you can download the data set directly
to your local disk from your web browser using the URL, and extract
the WPI_LidarData folder. If you do so, change the outputFolder
variable in the code to the location of the downloaded file.

For an example showing how to process this data for deep learning,
see “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep
Learning Network” on page 12-41.

Semant
ic
segmen
tation

 Data Sets for Deep Learning

20-159



Data Description Task
PandaSet Data PandaSet contains 2560 organized lidar point cloud scans of various

city scenes captured using the Pandar 64 sensor. The data set
provides semantic segmentation labels for 12 different classes and 3-
D bounding box information for three classes, which are car, truck,
and pedestrian. The size of the data set is 5.2 GB.

Execute this code to download the data set.
url = 'https://ssd.mathworks.com/supportfiles/lidar/data/Pandaset_LidarData.tar.gz';
outputFolder = fullfile(tempdir,'Pandaset');
lidarDataTarFile = fullfile(outputFolder,'Pandaset_LidarData.tar.gz');
if ~exist(lidarDataTarFile, 'file')
    mkdir(outputFolder);
    disp('Downloading Pandaset Lidar driving data (5.2 GB)...');
    websave(lidarDataTarFile, url);
    untar(lidarDataTarFile,outputFolder);
end

lidarData =  fullfile(outputFolder,'Lidar');
labelsFolder = fullfile(outputFolder,'semanticLabels');

Depending on your internet connection, the download process can
take some time. Alternatively, you can download the data set to your
local disk from your web browser using the URL, and then extract
the Pandaset_LidarData folder. If you do so, change the
outputFolder variable in the code to the location of the
downloaded file.

For examples showing how to process this data for deep learning,
see “Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2
Deep Learning Network” on page 12-52 and “Lidar 3-D Object
Detection Using PointPillars Deep Learning” on page 12-68.

Object
detectio
n,
Semant
ic
segmen
tation

References
[1] Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-Level Concept

Learning through Probabilistic Program Induction.” Science 350, no. 6266 (December 11,
2015): 1332–38. https://doi.org/10.1126/science.aab3050.

[2] The TensorFlow Team. "Flowers" https://www.tensorflow.org/datasets/catalog/tf_flowers.

[3] Kat, Tulips, image, https://www.flickr.com/photos/swimparallel/3455026124. Creative Commons
License (CC BY).

[4] Rob Bertholf, Sunflowers, image, https://www.flickr.com/photos/robbertholf/20777358950.
Creative Commons 2.0 Generic License.

[5] Parvin, Roses, image, https://www.flickr.com/photos/55948751@N00. Creative Commons 2.0
Generic License.

[6] John Haslam, Dandelions, image, https://www.flickr.com/photos/foxypar4/645330051. Creative
Commons 2.0 Generic License.

20 Deep Learning Data Preprocessing

20-160

https://www.tensorflow.org/datasets/catalog/tf_flowers
https://www.flickr.com/photos/swimparallel/3455026124
https://www.flickr.com/photos/robbertholf/20777358950
https://www.flickr.com/photos/55948751@N00
https://www.flickr.com/photos/foxypar4/645330051


[7] Krizhevsky, Alex. "Learning Multiple Layers of Features from Tiny Images." MSc thesis, University
of Toronto, 2009. https://www.cs.toronto.edu/%7Ekriz/learning-features-2009-TR.pdf.

[8] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. “Semantic Object Classes in Video: A
High-Definition Ground Truth Database.” Pattern Recognition Letters 30, no. 2 (January
2009): 88–97. https://doi.org/10.1016/j.patrec.2008.04.005.

[9] Kemker, Ronald, Carl Salvaggio, and Christopher Kanan. “High-Resolution Multispectral Dataset
for Semantic Segmentation.” ArXiv:1703.01918 [Cs], March 6, 2017. https://arxiv.org/abs/
1703.01918.

[10] Isensee, Fabian, Philipp Kickingereder, Wolfgang Wick, Martin Bendszus, and Klaus H. Maier-
Hein. “Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the
BRATS 2017 Challenge.” In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries, edited by Alessandro Crimi, Spyridon Bakas, Hugo Kuijf, Bjoern Menze, and
Mauricio Reyes, 10670: 287–97. Cham, Switzerland: Springer International Publishing, 2018.
https://doi.org/10.1007/978-3-319-75238-9_25.

[11] Ehteshami Bejnordi, Babak, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico
Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, et al. “Diagnostic Assessment of
Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast
Cancer.” JAMA 318, no. 22 (December 12, 2017): 2199. https://doi.org/10.1001/
jama.2017.14585.

[12] McCollough, C.H., Chen, B., Holmes, D., III, Duan, X., Yu, Z., Yu, L., Leng, S., Fletcher, J. (2020).
Data from Low Dose CT Image and Projection Data [Data set]. The Cancer Imaging Archive.
https://doi.org/10.7937/9npb-2637.

[13] Grants EB017095 and EB017185 (Cynthia McCollough, PI) from the National Institute of
Biomedical Imaging and Bioengineering.

[14] Grubinger, Michael, Paul Clough, Henning Müller, and Thomas Deselaers. "The IAPR TC-12
Benchmark: A New Evaluation Resource for Visual Information Systems." Proceedings of the
OntoImage 2006 Language Resources For Content-Based Image Retrieval. Genoa, Italy. Vol.
5, May 2006, p. 10.

[15] Ignatov, Andrey, Luc Van Gool, and Radu Timofte. “Replacing Mobile Camera ISP with a Single
Deep Learning Model.” ArXiv:2002.05509 [Cs, Eess], February 13, 2020. https://arxiv.org/abs/
2002.05509. Project Website.

[16] Chen, Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. “Learning to See in the Dark.”
ArXiv:1805.01934 [Cs], May 4, 2018. https://arxiv.org/abs/1805.01934.

[17] LIVE: Laboratory for Image and Video Engineering. https://live.ece.utexas.edu/research/
ChallengeDB/index.html.

[18] Özgenel, Ç. F., and Arzu Gönenç Sorguç. “Performance Comparison of Pretrained Convolutional
Neural Networks on Crack Detection in Buildings.” Taipei, Taiwan, 2018. https://doi.org/
10.22260/ISARC2018/0094.

[19] Zhang, Lei, Fan Yang, Yimin Daniel Zhang, and Ying Julie Zhu. “Road Crack Detection Using
Deep Convolutional Neural Network.” In 2016 IEEE International Conference on Image
Processing (ICIP), 3708–12. Phoenix, AZ, USA: IEEE, 2016. https://doi.org/10.1109/
ICIP.2016.7533052.

 Data Sets for Deep Learning

20-161

https://www.cs.toronto.edu/%7Ekriz/learning-features-2009-TR.pdf
https://doi.org/10.1016/j.patrec.2008.04.005
https://arxiv.org/abs/1703.01918
https://arxiv.org/abs/1703.01918
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1001/jama.2017.14585
https://people.ee.ethz.ch/~ihnatova/pynet.html
https://arxiv.org/abs/1805.01934
https://live.ece.utexas.edu/research/ChallengeDB/index.html
https://live.ece.utexas.edu/research/ChallengeDB/index.html
https://doi.org/10.22260/ISARC2018/0094
https://doi.org/10.22260/ISARC2018/0094
https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1109/ICIP.2016.7533052


[20] Wu, Ming-Ju, Jyh-Shing R. Jang, and Jui-Long Chen. “Wafer Map Failure Pattern Recognition and
Similarity Ranking for Large-Scale Data Sets.” IEEE Transactions on Semiconductor
Manufacturing 28, no. 1 (February 2015): 1–12. https://doi.org/10.1109/TSM.2014.2364237.

[21] Jang, Roger. "MIR Corpora." http://mirlab.org/dataset/public/.

[22] Huang, Weibo, and Peng Wei. "A PCB dataset for defects detection and classification." arXiv
preprint arXiv:1901.08204 (2019). https://arxiv.org/abs/1901.08204.

[23] Synthetic PCB Dataset. https://github.com/Ironbrotherstyle/PCB-DATASET.

[24] Al-Dhabyani, Walid, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. “Dataset of Breast
Ultrasound Images.” Data in Brief 28 (February 2020): 104863. https://doi.org/10.1016/
j.dib.2019.104863.

[25] Frazier, J. A., S. M. Hodge, J. L. Breeze, A. J. Giuliano, J. E. Terry, C. M. Moore, D. N. Kennedy, et
al. “Diagnostic and Sex Effects on Limbic Volumes in Early-Onset Bipolar Disorder and
Schizophrenia.” Schizophrenia Bulletin 34, no. 1 (October 27, 2007): 37–46. https://doi.org/
10.1093/schbul/sbm120.

[26] Radau, Perry, Yingli Lu, Kim Connelly, Gideon Paul, Alexander J Dick, and Graham A Wright.
“Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI.” The MIDAS
Journal, July 9, 2009. https://doi.org/10.54294/g80ruo.

[27] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. "Multidimensional Curve Classification Using
Passing-through Regions." Pattern Recognition Letters 20, no. 11–13 (November 1999): 1103–
11. https://doi.org/10.1016/S0167-8655(99)00077-X.

[28] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. Japanese Vowels Data Set. Distributed by UCI
Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels

[29] Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. "Damage propagation modeling for
aircraft engine run-to-failure simulation." In Prognostics and Health Management, 2008. PHM
2008. International Conference on, pp. 1-9. IEEE, 2008.

[30] Rieth, Cory A., Ben D. Amsel, Randy Tran, and Maia B. Cook. "Additional Tennessee Eastman
Process Simulation Data for Anomaly Detection Evaluation." Harvard Dataverse, Version 1,
2017. https://doi.org/10.7910/DVN/6C3JR1.

[31] Goldberger, Ary L., Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov,
Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene
Stanley. "PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource
for Complex Physiologic Signals." Circulation 101, No. 23, 2000, pp. e215–e220. https://
www.ahajournals.org/doi/full/10.1161/01.cir.101.23.e215.

[32] Laguna, Pablo, Roger G. Mark, Ary L. Goldberger, and George B. Moody. "A Database for
Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG."
Computers in Cardiology 24, 1997, pp. 673–676.

[33] Warden, Pete. "Speech Commands: A public dataset for single-word speech recognition", 2017.
Available from http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz. Copyright
Google 2017. The Speech Commands Dataset is licensed under the Creative Commons
Attribution 4.0 license, available here: https://creativecommons.org/licenses/by/4.0/legalcode.

20 Deep Learning Data Preprocessing

20-162

https://doi.org/10.1109/TSM.2014.2364237
https://arxiv.org/abs/1901.08204
https://github.com/Ironbrotherstyle/PCB-DATASET
https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.1093/schbul/sbm120
https://doi.org/10.1093/schbul/sbm120
https://doi.org/10.54294/g80ruo
https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels
https://doi.org/10.7910/DVN/6C3JR1
https://www.ahajournals.org/doi/full/10.1161/01.cir.101.23.e215
https://www.ahajournals.org/doi/full/10.1161/01.cir.101.23.e215
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://creativecommons.org/licenses/by/4.0/legalcode


[34] Burkhardt, Felix, Astrid Paeschke, Melissa A. Rolfes, Walter F. Sendlmeier, and Benjamin Weiss.
"A Database of German Emotional Speech." Proceedings of Interspeech 2005. Lisbon,
Portugal: International Speech Communication Association, 2005.

[35] Mesaros, Annamaria, Toni Heittola, and Tuomas Virtanen. "Acoustic scene classification: an
overview of DCASE 2017 challenge entries." In 2018 16th International Workshop on Acoustic
Signal Enhancement (IWAENC), pp. 411-415. IEEE, 2018.

[36] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset

See Also
trainingOptions | trainNetwork

More About
• Deep Network Designer
• “Pretrained Deep Neural Networks” on page 1-11
• “Create Simple Deep Learning Neural Network for Classification” on page 3-43
• “Train Deep Learning Network to Classify New Images” on page 3-6
• “Preprocess Data for Domain-Specific Deep Learning Applications” on page 20-27
• “Deep Learning in MATLAB” on page 1-2

 Data Sets for Deep Learning

20-163

https://scale.com/open-datasets/pandaset


Choose an App to Label Ground Truth Data
You can use Computer Vision Toolbox, Automated Driving Toolbox, Lidar Toolbox, Audio Toolbox,
Signal Processing Toolbox, and Medical Imaging Toolbox™ apps to label ground truth data. Use this
labeled data to validate or train algorithms such as image classifiers, object detectors, semantic
segmentation networks, instance segmentation networks, and deep learning applications. The choice
of labeling app depends on several factors, including the supported data sources, labels, and types of
automation.

One key consideration is the type of data that you want to label.

• If your data is an image collection, use the Image Labeler app. An image collection is an
unordered set of images that can vary in size. For example, you can use the app to label images of
books for training a classifier. The Image Labeler can also handle very large images (at least one
dimension >8K).

• If your data is a single video or image sequence, use the Video Labeler app. An image sequence
is an ordered set of images that resembles a video. For example, you can use this app to label a
video or image sequence of cars driving on a highway for training an object detector.

• If your data includes multiple time-overlapped signals, such as videos, image sequences, or lidar
signals, use the Ground Truth Labeler app. For example, you can label data for a single scene
captured by multiple sensors mounted on a vehicle.

• If your data is only a lidar signal, use the Lidar Labeler. For example, you can use this app to
label data captured from a point cloud sensor.

• If your data consists of single-channel or multichannel one-dimensional signals, use the Signal
Labeler. For example, you can label biomedical, speech, communications, or vibration data. You
can also use Signal Labeler to perform audio-specific tasks, such as speech detection and
speech-to-text transcription.

• If your data is a 2-D medical image or image series, or a 3-D medical image volume, use the
Medical Image Labeler. For example, you can label computed tomography (CT) image volumes
of the chest to train a semantic segmentation network.

This table summarizes the key features of the labeling apps.

Labeling App Data Sources Label Support Automation Additional
Features

Image Labeler • Image
collections

• Very large
images (at least
one dimension
>8K)

• Rectangle
regions of
interest (ROIs)

• Projected
cuboid (ROIs)

• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Point ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms

• Custom
automation
algorithms

• Blocked image
automation
algorithms

• View visual
summary of
labeled data

20 Deep Learning Data Preprocessing

20-164



Labeling App Data Sources Label Support Automation Additional
Features

Video Labeler • Videos
• Image

sequences
• Custom image

data sources

• Rectangle ROIs
• Projected

cuboid (ROIs)
• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Point ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View visual
summary of
labeled data

Ground Truth
Labeler

• Videos
• Image

sequences
• Custom image

data sources
• Point cloud

sequences (PCD
or PLY files)

• Velodyne® lidar
files

• Rosbags
(requires ROS
Toolbox)

• Rectangle ROIs
• Projected

cuboid (ROIs)
• Cuboid ROIs
• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Point ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms,
including
vehicle and
lane detection
algorithms and
a point cloud
temporal
interpolation
algorithm

• Custom
automation
algorithms

• Temporal
automation
algorithms

• Multisignal
automation

• View visual
summary of
labeled data

• Connect
external tool to
app for
displaying time-
synchronized
signals, such as
lidar or CAN
bus data

• Customize
loading
interface to
support
additional data
sources

 Choose an App to Label Ground Truth Data

20-165



Labeling App Data Sources Label Support Automation Additional
Features

Lidar Labeler • Point cloud
sequences (PCD
or PLY files)

• Velodyne lidar
files

• LAS/LAZ file
sequences

• Rosbags
(requires ROS
Toolbox)

• Cuboid ROIs
• Attributes
• Scenes

• Built-in
automation
algorithms,
including a
lidar object
tracker and
point cloud
temporal
interpolator

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View the cuboid
labels in top,
side, and front
views

• Save and reuse
custom camera
views

• Connect to
external tool to
display time-
synchronized
signals for ease
of labeling,
such as videos,
to use as a
reference while
labeling

Signal Labeler • Numeric
arrays,
MATLAB
timetables, and
labeledSigna
lSet objects in
the MATLAB
workspace

• MAT-files and
CSV files

• Audio files
(WAVE, OGG,
FLAC, AU, AIFF,
AIFC, MP3,
MPEG-4 AAC)

• Time-based
ROIs

• Time-based ROI
features

• Time-based
points

• Attributes
• Attribute

features
• File-level labels
• Sublabels

• Built-in peak
labeling

• Built-in feature
extraction

• Custom
automation
algorithms

• Speech
detection

• Speech-to-text
transcription
(requires Audio
Toolbox
extended
functionality for
speech2text)

• Expand,
collapse, and
browse details
of labeled data

• View signal
spectra and
spectrograms

• Label ROIs and
points using the
spectrogram

• Label signals in
bulk

• Use Label
Viewer to view
and compare
labels

• Audio playback
• Inspect audio
file information

• Export
extracted
features to
Classification
Learner

20 Deep Learning Data Preprocessing

20-166



Labeling App Data Sources Label Support Automation Additional
Features

Medical Image
Labeler

• 2-D medical
images and
image series
(DICOM or
NIfTI files)

• 3-D medical
image volume
(DICOM, NIfTI,
or NRRD files)

• Pixel ROIs • Built-in
automation
algorithms

• Custom
automation
algorithms

• View 3-D
medical images
in the coronal,
sagittal, and
transverse
anatomical
planes

• View 3-D
medical images
using
customizable
volume
rendering

• Label multiple
related images
or image
volumes in one
app session

See Also

More About
• “Get Started with the Image Labeler” (Computer Vision Toolbox)
• “Get Started with the Video Labeler” (Computer Vision Toolbox)
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Get Started with the Lidar Labeler” (Lidar Toolbox)
• “Using Signal Labeler App” (Signal Processing Toolbox)
• “Label Spoken Words in Audio Signals” (Signal Processing Toolbox)
• “Get Started with Medical Image Labeler” (Medical Imaging Toolbox)

 Choose an App to Label Ground Truth Data

20-167





Deep Learning Code Generation

• “Code Generation for Deep Learning Networks” on page 21-3
• “Code Generation for Semantic Segmentation Network” on page 21-10
• “Lane Detection Optimized with GPU Coder” on page 21-14
• “Code Generation for a Sequence-to-Sequence LSTM Network” on page 21-21
• “Deep Learning Prediction on ARM Mali GPU” on page 21-27
• “Code Generation for Object Detection by Using YOLO v2” on page 21-30
• “Code Generation for Object Detection Using YOLO v3 Deep Learning Network” on page 21-34
• “Code Generation for Object Detection Using YOLO v4 Deep Learning” on page 21-38
• “Deep Learning Prediction with NVIDIA TensorRT Library” on page 21-43
• “Traffic Sign Detection and Recognition” on page 21-49
• “Logo Recognition Network” on page 21-57
• “Code Generation for Denoising Deep Neural Network” on page 21-62
• “Train and Deploy Fully Convolutional Networks for Semantic Segmentation” on page 21-66
• “Code Generation for Semantic Segmentation Network That Uses U-net” on page 21-78
• “Code Generation for Deep Learning on ARM Targets” on page 21-84
• “Deep Learning Prediction with ARM Compute Using codegen” on page 21-89
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” on page 21-94
• “Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN” on page 21-103
• “Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi” on page 21-106
• “Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net”

on page 21-110
• “Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net”

on page 21-119
• “Code Generation for LSTM Network on Raspberry Pi” on page 21-128
• “Code Generation for LSTM Network That Uses Intel MKL-DNN” on page 21-136
• “Cross Compile Deep Learning Code for ARM Neon Targets” on page 21-140
• “Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning”

on page 21-146
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code”

on page 21-157
• “Quantize Layers in Object Detectors and Generate CUDA Code” on page 21-165
• “Explore Quantized Semantic Segmentation Network Using Grad-CAM ” on page 21-176
• “Quantize Semantic Segmentation Network and Generate CUDA Code” on page 21-189
• “Parameter Pruning and Quantization of Image Classification Network” on page 21-206
• “Prune Image Classification Network Using Taylor Scores” on page 21-223
• “Quantization Workflow Prerequisites” on page 21-237

21



• “Prepare Data for Quantizing Networks” on page 21-240
• “Quantization of Deep Neural Networks” on page 21-243
• “Prune Filters in a Detection Network Using Taylor Scores” on page 21-251
• “Compress Neural Network Using Projection” on page 21-279
• “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295
• “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi” on page 21-298
• “Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and

Raspberry Pi” on page 21-302
• “Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite) Model on Host and

Raspberry Pi” on page 21-307
• “Deploy Semantic Segmentation Application Using TensorFlow Lite Model on Host and Raspberry

Pi” on page 21-316
• “Deploy Classification Application Using Mobilenet-V3 TensorFlow Lite Model on Host and

Raspberry Pi” on page 21-324
• “Compress Image Classification Network for Deployment to Resource-Constrained Embedded

Devices” on page 21-330

21 Deep Learning Code Generation

21-2



Code Generation for Deep Learning Networks

This example shows how to perform code generation for an image classification application that uses
deep learning. It uses the codegen command to generate a MEX function that runs prediction by
using image classification networks such as MobileNet-v2, ResNet, and GoogLeNet.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

mobilenetv2_predict Entry-Point Function

MobileNet-v2 is a convolutional neural network that is trained on more than a million images from
the ImageNet database. The network is 155 layers deep and can classify images into 1000 object
categories, such as keyboard, mouse, pencil, and many animals. The network has an image input size
of 224-by-224. Use the analyzeNetwork function to display an interactive visualization of the deep
learning network architecture.

net = mobilenetv2();
analyzeNetwork(net);

The mobilenetv2_predict.m entry-point function takes an image input and runs prediction on the
image using the pretrained MobileNet-v2 convolutional neural network. The function uses a
persistent object mynet to load the series network object and reuses the persistent object for
prediction on subsequent calls.

type('mobilenetv2_predict.m')

% Copyright 2017-2019 The MathWorks, Inc.

 Code Generation for Deep Learning Networks

21-3



function out = mobilenetv2_predict(in) 
%#codegen

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('mobilenetv2','mobilenetv2');
end

% pass in input   
out = mynet.predict(in);

Run MEX Code Generation

To generate CUDA code for the mobilenetv2_predict entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command and specify an input size of [224,224,3]. This value corresponds to the
input layer size of the MobileNet-v2 network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg mobilenetv2_predict -args {ones(224,224,3)} -report

Code generation successful: View report

Generated Code Description

The series network is generated as a C++ class containing an array of 155 layer classes and
functions to set up, call predict, and clean up the network.

class b_mobilenetv2_0
{
   .... 
   public:
     b_mobilenetv2_0();
     void setup();
     void predict();
     void cleanup();
     ~b_mobilenetv2_0();
};

The setup() method of the class sets up handles and allocates memory for each layer of the network
object. The predict() method performs prediction for each of the 155 layers in the network.

The entry-point function mobilenetv2_predict() in the generated code file
mobilenetv2_predict.cu constructs a static object of b_mobilenetv2 class type and invokes setup
and predict on this network object.

static b_mobilenetv2_0 mynet;
static boolean_T mynet_not_empty;

/* Function Definitions */
void mobilenetv2_predict(const real_T in[150528], real32_T out[1000])
{
  if (!mynet_not_empty) {

21 Deep Learning Code Generation

21-4



    DeepLearningNetwork_setup(&mynet);
    mynet_not_empty = true;
  }

   /*  pass in input    */
   DeepLearningNetwork_predict(&mynet, in, out);
 }

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_mobilenetv2_conv*_w and cnn_mobilenetv2_conv*_b correspond
to weights and bias parameters for the convolution layers in the network. To see a list of the
generated files, use:

dir(fullfile(pwd, 'codegen', 'mex', 'mobilenetv2_predict'))

Run Generated MEX

Load an input image.

im = imread('peppers.png');
imshow(im);

Call mobilenetv2_predict_mex on the input image.

im = imresize(im, [224,224]);
predict_scores = mobilenetv2_predict_mex(double(im));

 Code Generation for Deep Learning Networks

21-5



Get the top five prediction scores and their labels.

[scores,indx] = sort(predict_scores, 'descend');
classNames = net.Layers(end).ClassNames;
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top Five Predictions That Use MobileNet-v2')

Clear the static network object that was loaded in memory.

clear mex;

Classification of Images by Using ResNet-50 network

You can also use the DAG network ResNet-50 for image classification. A pretrained ResNet-50 model
for MATLAB is available in the ResNet-50 support package of Deep Learning Toolbox. To download
and install the support package, use the Add-On Explorer. To learn more about finding and installing
add-ons, see “Get and Manage Add-Ons”.

net = resnet50;
disp(net)

  DAGNetwork with properties:

         Layers: [177×1 nnet.cnn.layer.Layer]
    Connections: [192×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_fc1000'}

21 Deep Learning Code Generation

21-6



Run MEX Code Generation

To generate CUDA code for the resnet_predict.m entry-point function,create a GPU code
configuration object for a MEX target and set the target language to C++. This entry-point function
calls the resnet50 function to load the network and perform prediction on the input image.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg resnet_predict -args {ones(224,224,3)} -report

Code generation successful: View report

Call resnet_predict_mex on the input image.

predict_scores = resnet_predict_mex(double(im));

Get the top five prediction scores and their labels.

[scores,indx] = sort(predict_scores, 'descend');
classNames = net.Layers(end).ClassNames;
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top Five Predictions That Use ResNet-50')

Clear the static network object that was loaded in memory.

clear mex;

 Code Generation for Deep Learning Networks

21-7



Classification of Images by Using GoogLeNet (Inception) network

A pretrained GoogLeNet model for MATLAB is available in the GoogLeNet support package of Deep
Learning Toolbox. To download and install the support package, use the Add-On Explorer. To learn
more about finding and installing add-ons, see “Get and Manage Add-Ons”.

net = googlenet;
disp(net)

  DAGNetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]
     InputNames: {'data'}
    OutputNames: {'output'}

Run MEX Code Generation

Generate CUDA code for the googlenet_predict.m entry-point function. This entry-point function
calls the googlenet function to load the network and perform prediction on the input image. To
generate code for this entry-point function, create a GPU configuration object for MEX target.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg googlenet_predict -args {ones(224,224,3)} -report

Code generation successful: View report

Call googlenet_predict_mex on the input image.

im = imresize(im, [224,224]);
predict_scores = googlenet_predict_mex(double(im));

Get the top five prediction scores and their labels.

[scores,indx] = sort(predict_scores, 'descend');
classNames = net.Layers(end).ClassNames;
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top Five Predictions That Use GoogLeNet')

21 Deep Learning Code Generation

21-8



Clear the static network object that was loaded in memory.

clear mex;

See Also

Related Examples
• “Deep Learning in MATLAB” on page 1-2

 Code Generation for Deep Learning Networks

21-9



Code Generation for Semantic Segmentation Network

This example shows code generation for an image segmentation application that uses deep learning.
It uses the codegen command to generate a MEX function that performs prediction on a DAG
Network object for SegNet [1], a deep learning network for image segmentation.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Segmentation Network

SegNet [1] is a type of convolutional neural network (CNN) designed for semantic image
segmentation. It is a deep encoder-decoder multi-class pixel-wise segmentation network trained on
the CamVid [2] dataset and imported into MATLAB® for inference. The SegNet [1] is trained to
segment pixels belonging to 11 classes that include Sky, Building, Pole, Road, Pavement, Tree,
SignSymbol, Fence, Car, Pedestrian, and Bicyclist.

For information regarding training a semantic segmentation network in MATLAB by using the
CamVid [2] dataset, see “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox).

The segnet_predict Entry-Point Function

The segnet_predict.m entry-point function takes an image input and performs prediction on the
image by using the deep learning network saved in the SegNet.mat file. The function loads the
network object from the SegNet.mat file into a persistent variable mynet and reuses the persistent
variable on subsequent prediction calls.

type('segnet_predict.m')

21 Deep Learning Code Generation

21-10



function out = segnet_predict(in)
%#codegen
% Copyright 2018-2021 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('SegNet.mat');
end

% pass in input
out = predict(mynet,in);

Get Pretrained SegNet DAG Network Object

net = getSegNet();

The DAG network contains 91 layers including convolution, batch normalization, pooling, unpooling,
and the pixel classification output layers. Use the analyzeNetwork function to display an interactive
visualization of the deep learning network architecture.

analyzeNetwork(net);

Run MEX Code Generation

To generate CUDA code for the segnet_predict.m entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command specifying an input size of [360,480,3]. This value corresponds to the
input layer size of SegNet.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg segnet_predict -args {ones(360,480,3,'uint8')} -report

Code generation successful: View report

Run Generated MEX

Load and display an input image. Call segnet_predict_mex on the input image.

im = imread('gpucoder_segnet_image.png');
imshow(im);

 Code Generation for Semantic Segmentation Network

21-11



predict_scores = segnet_predict_mex(im);

The predict_scores variable is a three-dimensional matrix that has 11 channels corresponding to the
pixel-wise prediction scores for every class. Compute the channel by using the maximum prediction
score to get pixel-wise labels.

[~,argmax] = max(predict_scores,[],3);

Overlay the segmented labels on the input image and display the segmented region.

classes = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];

cmap = camvidColorMap();

21 Deep Learning Code Generation

21-12



SegmentedImage = labeloverlay(im,argmax,'ColorMap',cmap);
figure
imshow(SegmentedImage);
pixelLabelColorbar(cmap,classes);

References

[1] Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla. "SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation." arXiv preprint arXiv:1511.00561, 2015.

[2] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic object classes in video: A
high-definition ground truth database." Pattern Recognition Letters Vol 30, Issue 2, 2009, pp 88-97.

See Also

Related Examples
• “Deep Learning in MATLAB” on page 1-2

 Code Generation for Semantic Segmentation Network

21-13



Lane Detection Optimized with GPU Coder

This example shows how to develop a deep learning lane detection application that runs on NVIDIA®
GPUs.

The pretrained lane detection network can detect and output lane marker boundaries from an image
and is based on the AlexNet network. The last few layers of the AlexNet network are replaced by a
smaller fully connected layer and regression output layer. The example generates a CUDA executable
that runs on a CUDA-enabled GPU on the host machine.

Prerequisites

• CUDA enabled NVIDIA GPU.
• NVIDIA CUDA toolkit and driver.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Third-Party Hardware” (GPU Coder). For setting up the
environment variables, see “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get Pretrained Lane Detection Network

This example uses the trainedLaneNet MAT-file containing the pretrained lane detection network.
This file is approximately 143 MB size. Download the file from the MathWorks website.

laneNetFile = matlab.internal.examples.downloadSupportFile('gpucoder/cnn_models/lane_detection', ...
    'trainedLaneNet.mat');

This network takes an image as an input and outputs two lane boundaries that correspond to the left
and right lanes of the ego vehicle. Each lane boundary is represented by the parabolic equation:
y = ax2 + bx + c, where y is the lateral offset and x is the longitudinal distance from the vehicle. The
network outputs the three parameters a, b, and c per lane. The network architecture is similar to
AlexNet except that the last few layers are replaced by a smaller fully connected layer and
regression output layer.

load(laneNetFile);
disp(laneNet)

  SeriesNetwork with properties:

         Layers: [23×1 nnet.cnn.layer.Layer]
     InputNames: {'data'}
    OutputNames: {'output'}

21 Deep Learning Code Generation

21-14



To view the network architecture, use the analyzeNetwork function.

analyzeNetwork(laneNet)

Download Test Video

To test the model, the example uses the a video file from the Caltech lanes dataset. The file is
approximately 8 MB in size. Download the file from the MathWorks website.

videoFile = matlab.internal.examples.downloadSupportFile('gpucoder/media','caltech_cordova1.avi');

Main Entry-Point Function

The detectLanesInVideo.m file is the main entry-point function for code generation. The
detectLanesInVideo function uses the vision.VideoFileReader (Computer Vision Toolbox)
system object to read frames from the input video, calls the predict method of the LaneNet network
object, and draws the detected lanes on the input video. A vision.DeployableVideoPlayer
(Computer Vision Toolbox) system object is used to display the lane detected video output.

type detectLanesInVideo.m

function detectLanesInVideo(videoFile,net,laneCoeffMeans,laneCoeffsStds)
% detectLanesInVideo Entry-point function for the Lane Detection Optimized
% with GPU Coder example
%  
% detectLanesInVideo(videoFile,net,laneCoeffMeans,laneCoeffsStds) uses the
% VideoFileReader system object to read frames from the input video, calls
% the predict method of the LaneNet network object, and draws the detected
% lanes on the input video. A DeployableVideoPlayer system object is used
% to display the lane detected video output.

%   Copyright 2022 The MathWorks, Inc.

%#codegen

%% Create Video Reader and Video Player Object 
videoFReader   = vision.VideoFileReader(videoFile);
depVideoPlayer = vision.DeployableVideoPlayer(Name='Lane Detection on GPU');

%% Video Frame Processing Loop
while ~isDone(videoFReader)
    videoFrame = videoFReader();
    scaledFrame = 255.*(imresize(videoFrame,[227 227]));

    [laneFound,ltPts,rtPts] = laneNetPredict(net,scaledFrame, ...
        laneCoeffMeans,laneCoeffsStds);
    if(laneFound)
        pts = [reshape(ltPts',1,[]);reshape(rtPts',1,[])];
        videoFrame = insertShape(videoFrame, 'Line', pts, 'LineWidth', 4);
    end
    depVideoPlayer(videoFrame);
end
end

LaneNet Predict Function

The laneNetPredict function computes the right and left lane positions in a single video frame.
The laneNet network computes parameters a, b, and c that describe the parabolic equation for the

 Lane Detection Optimized with GPU Coder

21-15



left and right lane boundaries. From these parameters, compute the x and y coordinates
corresponding to the lane positions. The coordinates must be mapped to image coordinates.

type laneNetPredict.m

function [laneFound,ltPts,rtPts] = laneNetPredict(net,frame,means,stds) 
% laneNetPredict Predict lane markers on the input image frame using the
% lane detection network
%

%   Copyright 2017-2022 The MathWorks, Inc.

%#codegen

% A persistent object lanenet is used to load the network object. At the
% first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.
persistent lanenet;
if isempty(lanenet)
    lanenet = coder.loadDeepLearningNetwork(net, 'lanenet');
end

lanecoeffsNetworkOutput = predict(lanenet,frame);

% Recover original coeffs by reversing the normalization steps.
params = lanecoeffsNetworkOutput .* stds + means;

% 'c' should be more than 0.5 for it to be a lane.
isRightLaneFound = abs(params(6)) > 0.5;
isLeftLaneFound =  abs(params(3)) > 0.5;

% From the networks output, compute left and right lane points in the image
% coordinates.
vehicleXPoints = 3:30;
ltPts = coder.nullcopy(zeros(28,2,'single'));
rtPts = coder.nullcopy(zeros(28,2,'single'));

if isRightLaneFound && isLeftLaneFound
    rtBoundary = params(4:6);
    rt_y = computeBoundaryModel(rtBoundary, vehicleXPoints);
    
    ltBoundary = params(1:3);
    lt_y = computeBoundaryModel(ltBoundary, vehicleXPoints);

    % Visualize lane boundaries of the ego vehicle.
    tform = get_tformToImage;

    % Map vehicle to image coordinates.
    ltPts =  tform.transformPointsInverse([vehicleXPoints', lt_y']);
    rtPts =  tform.transformPointsInverse([vehicleXPoints', rt_y']);
    laneFound = true;
else
    laneFound = false;
end
end

21 Deep Learning Code Generation

21-16



%% Helper Functions

% Compute boundary model.
function yWorld = computeBoundaryModel(model, xWorld)
yWorld = polyval(model, xWorld);
end

% Compute extrinsics.
function tform = get_tformToImage

%The camera coordinates are described by the caltech mono
% camera model.
yaw = 0;
pitch = 14; % Pitch of the camera in degrees
roll = 0;

translation = translationVector(yaw, pitch, roll);
rotation    = rotationMatrix(yaw, pitch, roll);

% Construct a camera matrix.
focalLength    = [309.4362, 344.2161];
principalPoint = [318.9034, 257.5352];
Skew = 0;

camMatrix = [rotation; translation] * intrinsicMatrix(focalLength, ...
    Skew, principalPoint);

% Turn camMatrix into 2-D homography.
tform2D = [camMatrix(1,:); camMatrix(2,:); camMatrix(4,:)]; % drop Z

tform = projective2d(tform2D);
tform = tform.invert();
end

% Translate to image co-ordinates.
function translation = translationVector(yaw, pitch, roll)
SensorLocation = [0 0];
Height = 2.1798;    % mounting height in meters from the ground
rotationMatrix = (...
    rotZ(yaw)*... % last rotation
    rotX(90-pitch)*...
    rotZ(roll)... % first rotation
    );

% Adjust for the SensorLocation by adding a translation.
sl = SensorLocation;

translationInWorldUnits = [sl(2), sl(1), Height];
translation = translationInWorldUnits*rotationMatrix;
end

% Rotation around X-axis.
function R = rotX(a)
a = deg2rad(a);
R = [...
    1   0        0;
    0   cos(a)  -sin(a);

 Lane Detection Optimized with GPU Coder

21-17



    0   sin(a)   cos(a)];

end

% Rotation around Y-axis.
function R = rotY(a)
a = deg2rad(a);
R = [...
    cos(a)  0 sin(a);
    0       1 0;
    -sin(a) 0 cos(a)];

end

% Rotation around Z-axis.
function R = rotZ(a)
a = deg2rad(a);
R = [...
    cos(a) -sin(a) 0;
    sin(a)  cos(a) 0;
    0       0      1];
end

% Given the Yaw, Pitch, and Roll, determine the appropriate Euler angles
% and the sequence in which they are applied to align the camera's
% coordinate system with the vehicle coordinate system. The resulting
% matrix is a Rotation matrix that together with the Translation vector
% defines the extrinsic parameters of the camera.
function rotation = rotationMatrix(yaw, pitch, roll)
rotation = (...
    rotY(180)*...            % last rotation: point Z up
    rotZ(-90)*...            % X-Y swap
    rotZ(yaw)*...            % point the camera forward
    rotX(90-pitch)*...       % "un-pitch"
    rotZ(roll)...            % 1st rotation: "un-roll"
    );
end

% Intrinsic matrix computation.
function intrinsicMat = intrinsicMatrix(FocalLength, Skew, PrincipalPoint)
intrinsicMat = ...
    [FocalLength(1)  , 0                     , 0; ...
    Skew             , FocalLength(2)   , 0; ...
    PrincipalPoint(1), PrincipalPoint(2), 1];
end

Generate CUDA Executable

To generate a standalone CUDA executable for the detectLanesInVideo entry-point function,
create a GPU code configuration object for 'exe' target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.

cfg = coder.gpuConfig('exe');
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.GenerateReport = true;
cfg.GenerateExampleMain = "GenerateCodeAndCompile";
cfg.TargetLang = 'C++';

21 Deep Learning Code Generation

21-18



inputs = {coder.Constant(videoFile),coder.Constant(laneNetFile), ...
    coder.Constant(laneCoeffMeans),coder.Constant(laneCoeffsStds)};

Run the codegen command.

codegen -args inputs -config cfg detectLanesInVideo

Code generation successful: View report

Generated Code Description

The series network is generated as a C++ class containing an array of 18 layer classes (after layer
fusion optimization). The setup() method of the class sets up handles and allocates memory for each
layer object. The predict() method invokes prediction for each of the 18 layers in the network.

class lanenet0_0 {
public:
  lanenet0_0();
  void setSize();
  void resetState();
  void setup();
  void predict();
  void cleanup();
  float *getLayerOutput(int layerIndex, int portIndex);
  int getLayerOutputSize(int layerIndex, int portIndex);
  float *getInputDataPointer(int b_index);
  float *getInputDataPointer();
  float *getOutputDataPointer(int b_index);
  float *getOutputDataPointer();
  int getBatchSize();
  ~lanenet0_0();

private:
  void allocate();
  void postsetup();
  void deallocate();

public:
  boolean_T isInitialized;
  boolean_T matlabCodegenIsDeleted;

private:
  int numLayers;
  MWTensorBase *inputTensors[1];
  MWTensorBase *outputTensors[1];
  MWCNNLayer *layers[18];
  MWCudnnTarget::MWTargetNetworkImpl *targetImpl;
};

The cnn_lanenet*_conv*_w and cnn_lanenet*_conv*_b files are the binary weights and bias file for
convolution layer in the network. The cnn_lanenet*_fc*_w and cnn_lanenet*_fc*_b files are the binary
weights and bias file for fully connected layer in the network.

codegendir = fullfile('codegen', 'exe', 'detectLanesInVideo');
dir([codegendir,filesep,'*.bin'])

cnn_lanenet0_0_conv1_b.bin        cnn_lanenet0_0_conv3_b.bin        cnn_lanenet0_0_conv5_b.bin        cnn_lanenet0_0_fc6_b.bin          cnn_lanenet0_0_fcLane2_b.bin      
cnn_lanenet0_0_conv1_w.bin        cnn_lanenet0_0_conv3_w.bin        cnn_lanenet0_0_conv5_w.bin        cnn_lanenet0_0_fc6_w.bin          cnn_lanenet0_0_fcLane2_w.bin      

 Lane Detection Optimized with GPU Coder

21-19



cnn_lanenet0_0_conv2_b.bin        cnn_lanenet0_0_conv4_b.bin        cnn_lanenet0_0_data_offset.bin    cnn_lanenet0_0_fcLane1_b.bin      networkParamsInfo_lanenet0_0.bin  
cnn_lanenet0_0_conv2_w.bin        cnn_lanenet0_0_conv4_w.bin        cnn_lanenet0_0_data_scale.bin     cnn_lanenet0_0_fcLane1_w.bin      

Run the Executable

To run the executable, uncomment the following lines of code.

if ispc
    [status,cmdout] = system("detectLanesInVideo.exe");
else
    [status,cmdout] = system("./detectLanesInVideo");
end

See Also

Related Examples
• “Deep Learning in MATLAB” on page 1-2

21 Deep Learning Code Generation

21-20



Code Generation for a Sequence-to-Sequence LSTM Network

This example demonstrates how to generate CUDA® code for a long short-term memory (LSTM)
network. The example generates a MEX application that makes predictions at each step of an input
timeseries. Two methods are demonstrated: a method using a standard LSTM network, and a method
leveraging the stateful behavior of the same LSTM network. This example uses accelerometer sensor
data from a smartphone carried on the body and makes predictions on the activity of the wearer. User
movements are classified into one of five categories, namely dancing, running, sitting, standing, and
walking. The example uses a pretrained LSTM network. For more information on training, see the
“Sequence Classification Using Deep Learning” on page 4-3 example from Deep Learning Toolbox™.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

The lstmnet_predict Entry-Point Function

A sequence-to-sequence LSTM network enables you to make different predictions for each individual
time step of a data sequence. The lstmnet_predict.m entry-point function takes an input sequence
and passes it to a trained LSTM network for prediction. Specifically, the function uses the LSTM
network trained in the Sequence to Sequence Classification Using Deep Learning example. The
function loads the network object from the lstmnet_predict.mat file into a persistent variable and
reuses the persistent object on subsequent prediction calls.

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork function.

type('lstmnet_predict.m')

 Code Generation for a Sequence-to-Sequence LSTM Network

21-21



function out = lstmnet_predict(in) %#codegen

% Copyright 2019-2021 The MathWorks, Inc. 

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('lstmnet.mat');
end

% pass in input   
out = predict(mynet,in); 

Generate CUDA MEX

To generate CUDA MEX for the lstmnet_predict.m entry-point function, create a GPU
configuration object and specify the target to be MEX. Set the target language to C++. Create a deep
learning configuration object that specifies the target library as cuDNN. Attach this deep learning
configuration object to the GPU configuration object.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

At compile time, GPU Coder™ must know the data types of all the inputs to the entry-point function.
Specify the type and size of the input argument to the codegen (MATLAB Coder) command by using
the coder.typeof (MATLAB Coder) function. For this example, the input is of double data type with
a feature dimension value of three and a variable sequence length. Specifying the sequence length as
variable-sized enables us to perform prediction on an input sequence of any length.

matrixInput = coder.typeof(double(0),[3 Inf],[false true]);

Run the codegen command.

codegen -config cfg lstmnet_predict -args {matrixInput} -report

Code generation successful: View report

Run Generated MEX on Test Data

Load the HumanActivityValidate MAT-file. This MAT-file stores the variable XValidate that
contains sample timeseries of sensor readings on which you can test the generated code. Call
lstmnet_predict_mex on the first observation.

load HumanActivityValidate
YPred1 = lstmnet_predict_mex(XValidate{1});

YPred1 is a 5-by-53888 numeric matrix containing the probabilities of the five classes for each of the
53888 time steps. For each time step, find the predicted class by calculating the index of the
maximum probability.

[~, maxIndex] = max(YPred1, [], 1);

Associate the indices of max probability to the corresponding label. Display the first ten labels. From
the results, you can see that the network predicted the human to be sitting for the first ten time
steps.

21 Deep Learning Code Generation

21-22



labels = categorical({'Dancing', 'Running', 'Sitting', 'Standing', 'Walking'});
predictedLabels1 = labels(maxIndex);
disp(predictedLabels1(1:10)')

     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 

Compare Predictions with Test Data

Use a plot to compare the MEX output data with the test data.

figure
plot(predictedLabels1,'.-');
hold on
plot(YValidate{1});
hold off

xlabel("Time Step")
ylabel("Activity")
title("Predicted Activities")
legend(["Predicted" "Test Data"])

 Code Generation for a Sequence-to-Sequence LSTM Network

21-23



Call Generated MEX on an Observation with a Different Sequence Length

Call lstmnet_predict_mex on the second observation with a different sequence length. In this
example, XValidate{2} has a sequence length of 64480 whereas XValidate{1} had a sequence
length of 53888. The generated code handles prediction correctly because we specified the sequence
length dimension to be variable-size.

YPred2 = lstmnet_predict_mex(XValidate{2});
[~, maxIndex] = max(YPred2, [], 1);
predictedLabels2 = labels(maxIndex);
disp(predictedLabels2(1:10)')

     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 
     Sitting 

Generate MEX that takes in Multiple Observations

If you want to perform prediction on many observations at once, you can group the observations
together in a cell array and pass the cell array for prediction. The cell array must be a column cell

21 Deep Learning Code Generation

21-24



array, and each cell must contain one observation. Each observation must have the same feature
dimension, but the sequence lengths may vary. In this example, XValidate contains five
observations. To generate a MEX that can take XValidate as input, specify the input type to be a 5-
by-1 cell array. Further, specify that each cell be of the same type as matrixInput, the type you
specified for the single observation in the previous codegen command.

matrixInput = coder.typeof(double(0),[3 Inf],[false true]);
cellInput = coder.typeof({matrixInput}, [5 1]);

codegen -config cfg lstmnet_predict -args {cellInput} -report

Code generation successful: View report

YPred3 = lstmnet_predict_mex(XValidate);

The output is a 5-by-1 cell array of predictions for the five observations passed in.

disp(YPred3)

    {5×53888 single}
    {5×64480 single}
    {5×53696 single}
    {5×56416 single}
    {5×50688 single}

Generate MEX with Stateful LSTM

Instead of passing the entire timeseries to predict in one step, we can run prediction on an input by
streaming in one timestep at a time, making use of the function predictAndUpdateState This
function takes in an input, produces an output prediction, and updates the internal state of the
network so that future predictions take this initial input into account.

The entry-point function lstmnet_predict_and_update.m takes in a single-timestep input and
processes the input using the predictAndUpdateState function. predictAndUpdateState
outputs a prediction for the input timestep and updates the network so that subsequent inputs are
treated as subsequent timesteps of the same sample. After passing in all timesteps one at a time, the
resulting output is the same as if all timesteps were passed in as a single input.

type('lstmnet_predict_and_update.m')

function out = lstmnet_predict_and_update(in) %#codegen

% Copyright 2019-2021 The MathWorks, Inc. 

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('lstmnet.mat');
end

% pass in input
[mynet, out] = predictAndUpdateState(mynet,in);

Run codegen on this new design file. Since we are taking in a single timestep each call, we specify
matrixInput to have a fixed sequence dimension of 1 instead of a variable sequence length.

 Code Generation for a Sequence-to-Sequence LSTM Network

21-25



matrixInput = coder.typeof(double(0),[3 1]);
codegen -config cfg lstmnet_predict_and_update -args {matrixInput} -report

Code generation successful: View report

Run the generated MEX on the first validation sample's first timestep.

firstSample = XValidate{1};
firstTimestep = firstSample(:,1);
YPredStateful = lstmnet_predict_and_update_mex(firstTimestep);
[~, maxIndex] = max(YPredStateful, [], 1);
predictedLabelsStateful1 = labels(maxIndex)

predictedLabelsStateful1 = categorical
     Sitting 

Compare the output label with the ground truth.

YValidate{1}(1)

ans = categorical
     Sitting 

21 Deep Learning Code Generation

21-26



Deep Learning Prediction on ARM Mali GPU

This example shows how to use the cnncodegen function to generate code for an image classification
application that uses deep learning on ARM® Mali GPUs. The example uses the MobileNet-v2 DAG
network to perform image classification. The generated code takes advantage of the ARM Compute
library for computer vision and machine learning.

Prerequisites

• ARM Mali GPU based hardware. For example, HiKey960 is one of the target platforms that
contains a Mali GPU.

• ARM Compute Library on the target ARM hardware built for the Mali GPU.
• Open source Computer Vision Library (OpenCV v2.4.9) on the target ARM hardware.
• Environment variables for the compilers and libraries. Ensure that the ARM_COMPUTE and the

LD_LIBRARY_PATH variables are set on the target platform. For information on the supported
versions of the compilers and libraries, see “Third-Party Hardware” (GPU Coder). For setting up
the environment variables, see “Setting Up the Prerequisite Products” (GPU Coder).

Get Pretrained DAGNetwork

Load the pretrained MobileNet-v2 network available in the Deep Learning Toolbox Model
for MobileNet-v2 Network.

net = mobilenetv2

net = 
  DAGNetwork with properties:

         Layers: [154×1 nnet.cnn.layer.Layer]
    Connections: [163×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_Logits'}

The network contains 155 layers including convolution, batch normalization, softmax, and the
classification output layers. The analyzeNetwork() function displays an interactive plot of the
network architecture and a table containing information about the network layers.

analyzeNetwork(net);

Generate Code

For deep learning on ARM targets, you generate code on the host development computer. To build
and run the executable program, move the generated code to the ARM target platform. The target
platform must have an ARM Mali GPU. For example, HiKey960 is one of the target platforms on which
you can execute the code generated in this example.

Call the cnncodegen function, specifying the target library as arm-compute-mali.

cnncodegen(net,'targetlib','arm-compute-mali');

 Deep Learning Prediction on ARM Mali GPU

21-27



Copy Generated Files to the Target

Move the generated codegen folder and other required files from the host development computer to
the target platform by using your preferred SCP (Secure Copy Protocol) or Secure Shell File Transfer
Protocol (SSH) client.

For example, on the Linux® platform, to transfer the files to the HiKey960, use the scp command
with the format:

system('sshpass -p [password] scp (sourcefile) [username]@[targetname]:~/');

system('sshpass -p password scp main_mobilenet_arm_generic.cpp username@targetname:~/');
system('sshpass -p password scp peppers_mobilenet.png username@targetname:~/');
system('sshpass -p password scp makefile_mobilenet_arm_generic.mk username@targetname:~/');
system('sshpass -p password scp synsetWords.txt username@targetname:~/');
system('sshpass -p password scp -r codegen username@targetname:~/');

On the Windows® platform, you can use the pscp tool that comes with a PuTTY installation. For
example:

system('pscp -pw password-r codegen username@targetname:/home/username');

PSCP utilities must be either on your PATH or in your current folder.

Build Executable

To build the library on the target platform, use the generated makefile cnnbuild_rtw.mk.

For example, to build the library on the HiKey960:

system('sshpass -p password ssh username@targetname' ...
' "make -C /home/username/codegen -f cnnbuild_rtw.mk"');

On the Windows platform, you can use the putty command with -ssh argument to log in and run the
make command. For example:

system('putty -ssh username@targetname -pw password');

To build and run the executable on the target platform, use the command with the format: make -
C /home/$(username) and ./execfile -f makefile_mobilenet_arm_generic.mk

For example, on the HiKey960:

make -C /home/usrname arm_mobilenet -f makefile_mobilenet_arm_generic.mk

Run the executable on the ARM platform specifying an input image file.

./mobilenet_exe peppers_mobilenet.png

The top five predictions for the input image file are:

21 Deep Learning Code Generation

21-28



 Deep Learning Prediction on ARM Mali GPU

21-29



Code Generation for Object Detection by Using YOLO v2

This example shows how to generate CUDA® MEX for a you only look once (YOLO) v2 object
detector. A YOLO v2 object detection network is composed of two subnetworks. A feature extraction
network followed by a detection network. This example generates code for the network trained in the
Object Detection Using YOLO v2 Deep Learning example from Computer Vision Toolbox™. For more
information, see “Object Detection Using YOLO v2 Deep Learning” (Computer Vision Toolbox). You
can modify this example to generate CUDA® MEX for the network imported in the Import Pretrained
ONNX YOLO v2 Object Detector example from Computer Vision Toolbox™. For more information, see
“Import Pretrained ONNX YOLO v2 Object Detector” (Computer Vision Toolbox).

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Get Pretrained DAGNetwork

This example uses the yolov2ResNet50VehicleExample MAT-file containing the pretrained
network. The file is approximately 98MB in size. Download the file from the MathWorks website.

matFile = matlab.internal.examples.downloadSupportFile('vision/data','yolov2ResNet50VehicleExample.mat');
vehicleDetector = load(matFile);
net = vehicleDetector.detector.Network

net = 
  DAGNetwork with properties:

         Layers: [150×1 nnet.cnn.layer.Layer]
    Connections: [162×2 table]

21 Deep Learning Code Generation

21-30



     InputNames: {'input_1'}
    OutputNames: {'yolov2OutputLayer'}

The DAG network contains 150 layers including convolution, ReLU, and batch normalization layers
and the YOLO v2 transform and YOLO v2 output layers. To display an interactive visualization of the
deep learning network architecture, use the analyzeNetwork function.

analyzeNetwork(net);

The yolov2_detect Entry-Point Function

The yolov2_detect.m entry-point function takes an image input and runs the detector on the image
using the deep learning network saved in the yolov2ResNet50VehicleExample.mat file. The
function loads the network object from the yolov2ResNet50VehicleExample.mat file into a
persistent variable yolov2Obj and reuses the persistent object on subsequent detection calls.

type('yolov2_detect.m')

function outImg = yolov2_detect(in,matFile)

%   Copyright 2018-2021 The MathWorks, Inc.

persistent yolov2Obj;

if isempty(yolov2Obj)
    yolov2Obj = coder.loadDeepLearningNetwork(matFile);
end

% Call to detect method
[bboxes,~,labels] = yolov2Obj.detect(in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors
labels = cellstr(labels);

% Annotate detections in the image.
outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);

Run MEX Code Generation

To generate CUDA code for the entry-point function, create a GPU code configuration object for a
MEX target and set the target language to C++. Use the coder.DeepLearningConfig (GPU
Coder) function to create a CuDNN deep learning configuration object and assign it to the
DeepLearningConfig property of the GPU code configuration object. Run the codegen command
specifying an input size of 224-by-224-by-3. This value corresponds to the input layer size of YOLOv2.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.GenerateReport = true;
inputArgs = {ones(224,224,3,'uint8'),coder.Constant(matFile)};

codegen -config cfg yolov2_detect -args inputArgs

Code generation successful: View report

 Code Generation for Object Detection by Using YOLO v2

21-31



Run Generated MEX

Set up the video file reader and read the input video. Create a video player to display the video and
the output detections.

videoFile = 'highway_lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
depVideoPlayer = vision.DeployableVideoPlayer('Size','Custom','CustomSize',[640 480]);

Read the video input frame-by-frame and detect the vehicles in the video using the detector.

cont = ~isDone(videoFreader);
while cont
    I = step(videoFreader);
    in = imresize(I,[224,224]);
    out = yolov2_detect_mex(in,matFile);
    step(depVideoPlayer, out);
    % Exit the loop if the video player figure window is closed
    cont = ~isDone(videoFreader) && isOpen(depVideoPlayer); 
end

21 Deep Learning Code Generation

21-32



References

[1] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

Copyright 2017-2021The MathWorks, Inc.

 Code Generation for Object Detection by Using YOLO v2

21-33



Code Generation for Object Detection Using YOLO v3 Deep
Learning Network

This example shows how to generate CUDA® MEX for a you only look once (YOLO) v3 object
detector. YOLO v3 improves upon YOLO v2 by adding detection at multiple scales to help detect
smaller objects. The loss function used for training is separated into mean squared error for bounding
box regression and binary cross-entropy for object classification to help improve detection accuracy.
The YOLO v3 network in this example was trained on the COCO dataset. The tiny YOLO v3 network
reduces large number of convolution layers of the YOLO v3 network. It is more suitable for real-time
object detection as it requires less computing power requirements. For more information, see
“Getting Started with YOLO v3” (Computer Vision Toolbox) and “Object Detection Using YOLO v3
Deep Learning” (Computer Vision Toolbox).

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Pretrained YOLO v3 Network

This example uses a pretrained YOLO v3 object detection network trained on the COCO dataset. The
object detector can detect 80 different objects, including person, bicycle, car and so on. To use the
YOLO v3 network, download and install the Computer Vision Toolbox Model for YOLO v3 Object
Detection from Add-On Explorer. For more information about installing add-ons, see “Get and Manage
Add-Ons”.

Specify a name for the network and save the yolov3ObjectDetector object to a MAT-file. Save the
yolov3ObjectDetector object to a MAT-file and proceed.

name = "tiny-yolov3-coco";
vehicleDetector =  yolov3ObjectDetector(name);

21 Deep Learning Code Generation

21-34

https://www.mathworks.com/matlabcentral/fileexchange/87959-computer-vision-toolbox-model-for-yolo-v3-object-detection
https://www.mathworks.com/matlabcentral/fileexchange/87959-computer-vision-toolbox-model-for-yolo-v3-object-detection


matFile = 'tinyyolov3coco.mat';
save(matFile,'vehicleDetector');
net = vehicleDetector.Network;
inputLayerSize = net.Layers(1).InputSize;
disp(vehicleDetector.ClassNames(1:5))

     person 
     bicycle 
     car 
     motorbike 
     aeroplane 

The tinyyolov3Detect Entry-Point Function

The tinyyolov3Detect entry-point function takes an image input and runs the detector on the
image. The function loads the network object from the tinyyolov3coco.mat file into a persistent
variable yolov3Obj and reuses the persistent object during subsequent detection calls.

type('yolov3Detect.m')

Generate CUDA MEX

To generate CUDA code for the entry-point function, create a GPU code configuration object for a
MEX target and set the target language to C++. Use the coder.DeepLearningConfig (GPU
Coder) function to create a CuDNN deep learning configuration object and assign it to the
DeepLearningConfig property of the GPU code configuration object. Run the codegen command
specifying an input size of 416-by-416-by-3. This value corresponds to the input layer size of the
YOLO v3 network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {coder.typeof(uint8(0),inputLayerSize),coder.Constant(matFile)};

codegen -config cfg yolov3Detect -args inputArgs -report

Code generation successful: View report

Test the Generated MEX on an Image

Load an input image. Call tinyyolov3cocoDetect_mex on the input image and display the
detection results.

im = imread('highway.png');
im = preprocess(vehicleDetector,im);
outputImage = yolov3Detect_mex(im,matFile);
imshow(outputImage);

 Code Generation for Object Detection Using YOLO v3 Deep Learning Network

21-35



Test the Generated MEX on a Video

Set up the video file reader and read the input video. Create a video player to display the video and
the output detections.

videoFile = 'highway_lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
depVideoPlayer = vision.DeployableVideoPlayer('Size','Custom','CustomSize',[640 480]);

Read the video input frame-by-frame and detect the vehicles in the video using the detector.

cont = ~isDone(videoFreader);
while cont
    I = step(videoFreader);
    in = imresize(I,inputLayerSize(1:2));
    out = yolov3Detect_mex(in,matFile);
    step(depVideoPlayer, out);
    % Exit the loop if the video player figure window is closed
    cont = ~isDone(videoFreader) && isOpen(depVideoPlayer); 
end

21 Deep Learning Code Generation

21-36



References

1. Redmon, Joseph, and Ali Farhadi. “YOLOv3: An Incremental Improvement.” arXiv, April 8, 2018.
http://arxiv.org/abs/1804.02767.

2. Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. “Microsoft COCO: Common Objects in Context.” In Computer Vision
– ECCV 2014, edited by David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, 8693:740–55.
Cham: Springer International Publishing, 2014. https://doi.org/10.1007/978-3-319-10602-1_48.

 Code Generation for Object Detection Using YOLO v3 Deep Learning Network

21-37



Code Generation for Object Detection Using YOLO v4 Deep
Learning

This example shows how to generate standalone CUDA® executable for a You Only Look Once v4
(YOLO v4) object detector. This example uses a lightweight version of the YOLO v4 network with
fewer network layers. It uses a feature pyramid network as the neck and has two YOLO v4 detection
heads. The network was trained on the COCO dataset. For more information about the YOLO v4
object detection network, see “Getting Started with YOLO v4” (Computer Vision Toolbox) and
yolov4ObjectDetector (Computer Vision Toolbox).

Third-Party Prerequisites

Required

• CUDA enabled NVIDIA® GPU and compatible driver

For non-MEX builds, such as static, dynamic libraries or executables, this example additionally
requires:

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries for this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load Pretrained Network

This example uses a pretrained YOLO v4 object detection network trained on the COCO dataset. The
object detector can detect and identify 80 different objects. To use this network, download and install
the Computer Vision Toolbox Model for YOLO v4 Object Detection from Add-On Explorer. For more
information about installing add-ons, see “Get and Manage Add-Ons”.

Specify the name for the network and save the network to a MAT-file.

name = "tiny-yolov4-coco";
vehicleDetector =  yolov4ObjectDetector(name);
save('tinyyolov4coco.mat','vehicleDetector');
net = vehicleDetector.Network;
disp(vehicleDetector)

  yolov4ObjectDetector with properties:

        Network: [1×1 dlnetwork]
    AnchorBoxes: {2×1 cell}

21 Deep Learning Code Generation

21-38

https://www.mathworks.com/matlabcentral/fileexchange/107969-computer-vision-toolbox-model-for-yolo-v4-object-detection


     ClassNames: {80×1 cell}
      InputSize: [416 416 3]
      ModelName: 'tiny-yolov4-coco'

Download Test Traffic Video

To test the model, download the video file from the MathWorks website. The file is approximately 40
MB in size.

if ~exist('./downtown_short.mp4', 'file')
    url = 'https://www.mathworks.com/supportfiles/gpucoder/media/downtown_short.mp4';
    websave('downtown_short.mp4', url);
end

The tinyyolov4cocoDetect Entry-Point Function

The tinyyolov4Detect entry-point function runs the detector on the video file by using the deep
learning network in the tinyyolov4coco.mat file. The function loads the network object from the
tinyyolov4coco.mat file into a persistent variable yolov4Obj and reuses the persistent object
during subsequent detection calls. Then it sets up the video file reader to read the input video and
creates a video player to display the video and the output detections.

type('tinyyolov4cocoDetect.m')

function tinyyolov4cocoDetect()
%#codegen

%   Copyright 2022 The MathWorks, Inc.

persistent yolov4Obj;

if isempty(yolov4Obj)
    yolov4Obj = coder.loadDeepLearningNetwork('tinyyolov4coco.mat');
end

% Read the input video and create a video player
videoFile = 'downtown_short.mp4';

videoFreader = vision.VideoFileReader(videoFile, 'VideoOutputDataType', 'uint8');
depVideoPlayer = vision.DeployableVideoPlayer();

cont = ~isDone(videoFreader);
while cont
    I = step(videoFreader);
    in = imresize(I, [416,416]);
    % Call to detect method
    [bboxes, ~, labels] = detect(yolov4Obj, in, Threshold = 0.3);
    
    % Convert categorical labels to cell array of charactor vectors
    labels = cellstr(labels);
    
    % Annotate detections in the image.
    outImg = insertObjectAnnotation(in, 'rectangle', bboxes, labels);

    step(depVideoPlayer, outImg); % display video
    cont = ~isDone(videoFreader); 
%     pause(0.05); % adjust frame rate
end

 Code Generation for Object Detection Using YOLO v4 Deep Learning

21-39



Generate Executable

To generate CUDA executable code for the entry-point function, create a GPU code configuration
object and set the target language to C++. Use the coder.DeepLearningConfig (GPU Coder)
function to create a CuDNN deep learning configuration object and assign it to the
DeepLearningConfig property of the GPU code configuration object. Then run the codegen
command.

cfg = coder.gpuConfig('exe');
cfg.GenerateExampleMain = 'GenerateCodeAndCompile';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

codegen -config cfg tinyyolov4cocoDetect -report

Code generation successful: View report

Execute Standalone Code

When you run the generated standalone executable, it displays the detection results frame-by-frame.

21 Deep Learning Code Generation

21-40



References

[1] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed and
Accuracy of Object Detection.” arXiv, April 22, 2020. http://arxiv.org/abs/2004.10934.

[2] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You Only Look Once: Unified,
Real-Time Object Detection.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 779–88. Las Vegas, NV, USA: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.91.

 Code Generation for Object Detection Using YOLO v4 Deep Learning

21-41



[3] Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. “Microsoft COCO: Common Objects in Context.” In Computer Vision
– ECCV 2014, edited by David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, 740–55.
Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014. https://doi.org/
10.1007/978-3-319-10602-1_48.

See Also
Functions
coder.checkGpuInstall | codegen | coder.DeepLearningConfig |
coder.loadDeepLearningNetwork

Objects
coder.gpuConfig | coder.gpuEnvConfig | coder.CuDNNConfig | vision.VideoFileReader |
vision.DeployableVideoPlayer | yolov4ObjectDetector

Related Examples
• “Object Detection Using YOLO v4 Deep Learning” (Computer Vision Toolbox)
• “Code Generation for Object Detection by Using YOLO v2” (GPU Coder)
• “Code Generation for Object Detection Using YOLO v3 Deep Learning Network” (GPU Coder)

More About
• “Getting Started with YOLO v4” (Computer Vision Toolbox)

21 Deep Learning Code Generation

21-42



Deep Learning Prediction with NVIDIA TensorRT Library

This example shows how to generate code for a deep learning application by using the NVIDIA®
TensorRT™ library. This example uses the codegen command to generate a MEX file that performs
prediction with a Logo Recognition classification network by using TensorRT. The example also
demonstrates how to use codegen command to generate a MEX file that performs 8-bit integer and
16-bit floating point prediction.

Third-Party Prerequisites

Required

This example generates CUDA® MEX and requires a CUDA-enabled NVIDIA GPU and compatible
driver. You must have specific GPU compute capability for 8-bit integer and 16-bit floating point
precision modes, see “Third-Party Hardware” (GPU Coder).

Optional

For non-MEX builds such as static, dynamic libraries or executables, you must also have:

• NVIDIA toolkit.
• NVIDIA cuDNN and the TensorRT library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'tensorrt';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Download and Load Pretrained Network

This example uses a pretrained logo recognition network to classify logos in images. Download the
pretrained LogoNet network from MathWorks website and load the file. The network was developed
in MATLAB and is approximately 42 MB in size. This network can recognize 32 logos under various
lighting conditions and camera angles. For information on training the logo recognition network, see
“Logo Recognition Network” (GPU Coder).

net = getLogonet;

The logonet_predict Entry-Point Function

The logonet_predict.m entry-point function takes an image input and performs prediction on the
image by using the deep learning network saved in the LogoNet.mat file. The function loads the
network object from LogoNet.mat into a persistent variable logonet and reuses the persistent
variable during subsequent prediction calls.

type('logonet_predict.m')

 Deep Learning Prediction with NVIDIA TensorRT Library

21-43



function out = logonet_predict(in)
%#codegen

% Copyright 2017-2022 The MathWorks, Inc.

% A persistent object logonet is used to load the network object. At the
% first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.
persistent logonet;

if isempty(logonet)
    
    logonet = coder.loadDeepLearningNetwork('LogoNet.mat','logonet');

end

out = logonet.predict(in);

end

Run MEX Code Generation

To generate CUDA code for the logonet_predict entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a TensorRT deep learning
configuration object and assign it to the DeepLearningConfig property of the GPU code
configuration object. Run the codegen command by specifying an input size of 227-by-227-by-3. This
value corresponds to the input layer size of the Logo Recognition network. By default, generating
TensorRT code runs inference in 32-bit floats.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
codegen -config cfg logonet_predict -args {coder.typeof(single(0),[227 227 3])} -report

Code generation successful: View report

Perform Prediction on Test Image

Load an input image. Call logonet_predict_mex on the input image.

im = imread('gpucoder_tensorrt_test.png');
im = imresize(im, [227,227]);
predict_scores = logonet_predict_mex(single(im));

% get top 5 probability scores and their labels
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
classnames = net.Layers(end).ClassNames;
top5labels = classnames(indx(1:5));

Display the top five classification labels.

outputImage = zeros(227,400,3, 'uint8');
for k = 1:3
    outputImage(:,174:end,k) = im(:,:,k);

21 Deep Learning Code Generation

21-44



end

scol = 1;
srow = 20;

for k = 1:5
    outputImage = insertText(outputImage, [scol, srow],...
        [char(top5labels(k)),' ',num2str(scores(k),'%2.2f'),'%'],...
        'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 20;
end

 imshow(outputImage);

Free the GPU memory by removing the loaded MEX function.

clear mex;

Generate TensorRT Code for 8-Bit Integer Prediction

Generate TensorRT code that runs inference in int8 precision.

Code generation by using the NVIDIA TensorRT Library with inference computation in 8-bit integer
precision supports these additional networks:

• Object detector networks, such as YOLOv2 and SSD
• Regression and semantic segmentation networks

TensorRT requires a calibration data set to calibrate a network that is trained in floating-point to
compute inference in 8-bit integer precision. Set the data type to int8 and the path to the calibration
data set by using the DeepLearningConfig. logos_dataset is a subfolder that contains images
grouped by their classification labels. For int8 support, the GPU compute capability must be 6.1, 7.0,
or higher.

 Deep Learning Prediction with NVIDIA TensorRT Library

21-45



Note that for semantic segmentation networks, the calibration data images must be of a format
supported by the imread function.

unzip('logos_dataset.zip');
cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.GpuConfig.ComputeCapability = '6.1';
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
cfg.DeepLearningConfig.DataType = 'int8';
cfg.DeepLearningConfig.DataPath = 'logos_dataset';
cfg.DeepLearningConfig.NumCalibrationBatches = 50;
codegen -config cfg logonet_predict -args {coder.typeof(int8(0),[227 227 3])} -report

Code generation successful: View report

Run INT8 Prediction on Test Image

Load an input image. Call logonet_predict_mex on the input image.

im = imread('gpucoder_tensorrt_test.png');
im = imresize(im, [227,227]);    
predict_scores = logonet_predict_mex(int8(im));

% get top 5 probability scores and their labels
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
classnames = net.Layers(end).ClassNames;
top5labels = classnames(indx(1:5));

Display the top five classification labels.

outputImage = zeros(227,400,3, 'uint8');
for k = 1:3
    outputImage(:,174:end,k) = im(:,:,k);
end

scol = 1;
srow = 20;

for k = 1:5
    outputImage = insertText(outputImage, [scol, srow],...
        [char(top5labels(k)),' ',num2str(scores(k),'%2.2f'),'%'],...
        'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 20;
end

 imshow(outputImage);

21 Deep Learning Code Generation

21-46



Free the GPU memory by removing the loaded MEX function.

clear mex;

Generate TensorRT Code for 16-bit Floating Point Prediction

Generate TensorRT code that runs inference in fp16 precision. For fp16 support, the GPU compute
capability must be 5.3, 6.0, 6.2 or higher.

Note that quantization error occurs when accumulating operations in single precision and converting
them to half precision. For more information, see “Quantization of Deep Neural Networks” (GPU
Coder).

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.GpuConfig.ComputeCapability = '5.3';
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
cfg.DeepLearningConfig.DataType = 'fp16';
codegen -config cfg logonet_predict -args {coder.typeof(half(0),[227 227 3])} -report

Code generation successful: View report

Run FP16 Prediction on Test Image

Load an input image. Call logonet_predict_mex on the input image.

im = imread('gpucoder_tensorrt_test.png');

im = imresize(im, [227,227]);    
predict_scores = logonet_predict_mex(half(im));

% get top 5 probability scores and their labels
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;

 Deep Learning Prediction with NVIDIA TensorRT Library

21-47



classnames = net.Layers(end).ClassNames;
top5labels = classnames(indx(1:5));

Display the top five classification labels.

outputImage = zeros(227,400,3, 'uint8');
for k = 1:3
    outputImage(:,174:end,k) = im(:,:,k);
end

scol = 1;
srow = 20;

for k = 1:5
    outputImage = insertText(outputImage, [scol, srow],...
        [char(top5labels(k)),' ',num2str(scores(k),'%2.2f'),'%'],...
        'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 20;
end

 imshow(outputImage);

Free the GPU memory by removing the loaded MEX function.

clear mex;

21 Deep Learning Code Generation

21-48



Traffic Sign Detection and Recognition

This example shows how to generate CUDA® MEX code for a traffic sign detection and recognition
application that uses deep learning. Traffic sign detection and recognition is an important application
for driver assistance systems, aiding and providing information to the driver about road signs.

In this traffic sign detection and recognition example you perform three steps - detection, Non-
Maximal Suppression (NMS), and recognition. First, the example detects the traffic signs on an input
image by using an object detection network that is a variant of the You Only Look Once (YOLO)
network. Then, overlapping detections are suppressed by using the NMS algorithm. Finally, the
recognition network classifies the detected traffic signs.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;

 Traffic Sign Detection and Recognition

21-49



envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Detection and Recognition Networks

The detection network is trained in the Darknet framework and imported into MATLAB® for
inference. Because the size of the traffic sign is relatively small with respect to that of the image and
the number of training samples per class are fewer in the training data, all the traffic signs are
considered as a single class for training the detection network.

The detection network divides the input image into a 7-by-7 grid. Each grid cell detects a traffic sign
if the center of the traffic sign falls within the grid cell. Each cell predicts two bounding boxes and
confidence scores for these bounding boxes. Confidence scores indicate whether the box contains an
object or not. Each cell predicts on probability for finding the traffic sign in the grid cell. The final
score is product of the preceding scores. You apply a threshold of 0.2 on this final score to select the
detections.

The recognition network is trained on the same images by using MATLAB.

The trainRecognitionnet.m helper script shows the recognition network training.

Get the Pretrained Detector and Recognition Networks

This example uses the yolo_tsr and RecognitionNet MAT-files containing the pretrained
networks. The files are approximately 6MB and 992MB in size, respectively. Download the files from
the MathWorks website.

detectorNet = matlab.internal.examples.downloadSupportFile('gpucoder/cnn_models/traffic_sign_detection/v001','yolo_tsr.mat');
recognitionNet = matlab.internal.examples.downloadSupportFile('gpucoder/cnn_models/traffic_sign_detection/v001','RecognitionNet.mat');

The detection network contains 58 layers including convolution, leaky ReLU, and fully connected
layers.

load(detectorNet);
yolo

yolo = 
  SeriesNetwork with properties:

         Layers: [58×1 nnet.cnn.layer.Layer]
     InputNames: {'input'}
    OutputNames: {'classoutput'}

To view the network architecture, use the analyzeNetwork function.

analyzeNetwork(yolo)

The recognition network contains 14 layers including convolution, fully connected, and the
classification output layers.

load(recognitionNet);
convnet

convnet = 
  SeriesNetwork with properties:

21 Deep Learning Code Generation

21-50



         Layers: [14×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

The tsdr_predict Entry-Point Function

The tsdr_predict.m entry-point function takes an image input and detects the traffic signs in the
image by using the detection network. The function suppresses the overlapping detections (NMS) by
using selectStrongestBbox and recognizes the traffic sign by using the recognition network. The
function loads the network objects from yolo_tsr.mat into a persistent variable detectionnet and
the RecognitionNet.mat into a persistent variable recognitionnet. The function reuses the
persistent objects on subsequent calls.

type('tsdr_predict.m')

function [selectedBbox,idx] = tsdr_predict(img,detectorMATFile,recogMATFile)
%#codegen

coder.gpu.kernelfun;

% resize the image
img_rz = imresize(img,[448,448]);

% Converting into BGR format
img_rz = img_rz(:,:,3:-1:1);
img_rz = im2single(img_rz);

%% TSD
persistent detectionnet;
if isempty(detectionnet)   
    detectionnet = coder.loadDeepLearningNetwork(detectorMATFile,'Detection');
end

predictions = detectionnet.activations(img_rz,56,'OutputAs','channels');

%% Convert predictions to bounding box attributes
classes = 1;
num = 2;
side = 7;
thresh = 0.2;
[h,w,~] = size(img);

boxes = single(zeros(0,4));    
probs = single(zeros(0,1));    
for i = 0:(side*side)-1
    for n = 0:num-1
        p_index = side*side*classes + i*num + n + 1;
        scale = predictions(p_index);       
        prob = zeros(1,classes+1);
        for j = 0:classes
            class_index = i*classes + 1;
            tempProb = scale*predictions(class_index+j);
            if tempProb > thresh
                
                row = floor(i / side);

 Traffic Sign Detection and Recognition

21-51



                col = mod(i,side);
                
                box_index = side*side*(classes + num) + (i*num + n)*4 + 1;
                bxX = (predictions(box_index + 0) + col) / side;
                bxY = (predictions(box_index + 1) + row) / side;
                
                bxW = (predictions(box_index + 2)^2);
                bxH = (predictions(box_index + 3)^2);
                
                prob(j+1) = tempProb;
                probs = [probs;tempProb];
                                
                boxX = (bxX-bxW/2)*w+1;
                boxY = (bxY-bxH/2)*h+1;
                boxW = bxW*w;
                boxH = bxH*h;
                boxes = [boxes; boxX,boxY,boxW,boxH];
            end
        end
    end
end

%% Run Non-Maximal Suppression on the detected bounding boxess
coder.varsize('selectedBbox',[98, 4],[1 0]);
[selectedBbox,~] = selectStrongestBbox(round(boxes),probs);

%% Recognition

persistent recognitionnet;
if isempty(recognitionnet) 
    recognitionnet = coder.loadDeepLearningNetwork(recogMATFile,'Recognition');
end

idx = zeros(size(selectedBbox,1),1);
inpImg = coder.nullcopy(zeros(48,48,3,size(selectedBbox,1)));
for i = 1:size(selectedBbox,1)
    
    ymin = selectedBbox(i,2);
    ymax = ymin+selectedBbox(i,4);
    xmin = selectedBbox(i,1);
    xmax = xmin+selectedBbox(i,3);

    
    % Resize Image
    inpImg(:,:,:,i) = imresize(img(ymin:ymax,xmin:xmax,:),[48,48]);
end

for i = 1:size(selectedBbox,1)
    output = recognitionnet.predict(inpImg(:,:,:,i));
    [~,idx(i)]=max(output);
end

% Copyright 2017-2022 The MathWorks, Inc.

Generate CUDA MEX for the tsdr_predict Function

Create a GPU configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration

21 Deep Learning Code Generation

21-52



object and assign it to the DeepLearningConfig property of the GPU code configuration object. To
generate CUDA MEX, use the codegen command and specify the input to be of size [480,704,3]. This
value corresponds to the input image size of the tsdr_predict function.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(480,704,3,'uint8'),coder.Constant(detectorNet),...
    coder.Constant(recognitionNet)};
codegen -config cfg tsdr_predict -args inputArgs -report

Code generation successful: View report

To generate code by using TensorRT, pass coder.DeepLearningConfig('tensorrt') as an
option to the coder configuration object instead of 'cudnn'.

Run Generated MEX

Load an input image.

im = imread('stop.jpg');
imshow(im);

Call tsdr_predict_mex on the input image.

im = imresize(im, [480,704]);
[bboxes,classes] = tsdr_predict_mex(im,detectorNet,recognitionNet);

 Traffic Sign Detection and Recognition

21-53



Map the class numbers to traffic sign names in the class dictionary.

classNames = {...
    'addedLane','slow','dip','speedLimit25','speedLimit35','speedLimit40',...
    'speedLimit45','speedLimit50','speedLimit55','speedLimit65',...
    'speedLimitUrdbl','doNotPass','intersection','keepRight','laneEnds',...
    'merge','noLeftTurn','noRightTurn','stop','pedestrianCrossing',...
    'stopAhead','rampSpeedAdvisory20','rampSpeedAdvisory45',...
    'truckSpeedLimit55','rampSpeedAdvisory50','turnLeft',...
    'rampSpeedAdvisoryUrdbl','turnRight','rightLaneMustTurn','yield',...
    'yieldAhead','school','schoolSpeedLimit25','zoneAhead45','signalAhead'};

classRec = classNames(classes);

Display the detected traffic signs.

outputImage = insertShape(im,'Rectangle',bboxes,'LineWidth',3);

for i = 1:size(bboxes,1)
    outputImage = insertText(outputImage,[bboxes(i,1)+ ...
        bboxes(i,3) bboxes(i,2)-20],classRec{i},'FontSize',20,...
        'TextColor','red');
end

imshow(outputImage);

21 Deep Learning Code Generation

21-54



Traffic Sign Detection and Recognition on a Video

The included helper file tsdr_testVideo.m grabs frames from the test video, performs traffic sign
detection and recognition, and plots the results on each frame of the test video.

type tsdr_testVideo

function tsdr_testVideo

% Copyright 2017-2022 The MathWorks, Inc.

% Input video
v = VideoReader('stop.avi');

%% Generate Code for Traffic Sign Detection and Recognition
% Create a GPU Configuration object for MEX target setting target language
% to C++. Run the |codegen| command specifying an input of input video
% frame size. This corresponds to the input image size of tsdr_predict
% function.
cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(480,704,3,'uint8'),coder.constant(detectorNet),...
    coder.Constant(recognitionNet)};
codegen -config cfg tsdr_predict -args inputArgs -report

fps = 0;

while hasFrame(v)
    % Take a frame
    picture = readFrame(v);
    picture = imresize(picture,[480,704]);
    % Call MEX function for Traffic Sign Detection and Recognition
    tic;
    [bboxes,clases] = tsdr_predict_mex(picture,detectorNet,recognitionNet);
    newt = toc;
    
    % fps
    fps = .9*fps + .1*(1/newt);
    
    % display
   
        diplayDetections(picture,bboxes,clases,fps);
end

end

function diplayDetections(im,boundingBoxes,classIndices,fps)
% Function for inserting the detected bounding boxes and recognized classes
% and displaying the result
%
% Inputs :
%
% im            : Input test image
% boundingBoxes : Detected bounding boxes
% classIndices  : Corresponding classes

 Traffic Sign Detection and Recognition

21-55



%

% Traffic Signs (35)
classNames = {'addedLane','slow','dip','speedLimit25','speedLimit35',...
    'speedLimit40','speedLimit45','speedLimit50','speedLimit55',...
    'speedLimit65','speedLimitUrdbl','doNotPass','intersection',...
    'keepRight','laneEnds','merge','noLeftTurn','noRightTurn','stop',...
    'pedestrianCrossing','stopAhead','rampSpeedAdvisory20',...
    'rampSpeedAdvisory45','truckSpeedLimit55','rampSpeedAdvisory50',...
    'turnLeft','rampSpeedAdvisoryUrdbl','turnRight','rightLaneMustTurn',...
    'yield','yieldAhead','school','schoolSpeedLimit25','zoneAhead45',...
    'signalAhead'};

outputImage = insertShape(im,'Rectangle',boundingBoxes,'LineWidth',3);

for i = 1:size(boundingBoxes,1)
    
     ymin = boundingBoxes(i,2);
     xmin = boundingBoxes(i,1);
     xmax = xmin+boundingBoxes(i,3);
    
    % inserting class as text at YOLO detection
    classRec = classNames{classIndices(i)};
    outputImage = insertText(outputImage,[xmax ymin-20],classRec,...
        'FontSize',20,'TextColor','red');
    
end
outputImage = insertText(outputImage,...
    round(([size(outputImage,1) 40]/2)-20),...
    ['Frame Rate: ',num2str(fps)],'FontSize',20,'TextColor','red');
imshow(outputImage);
end

See Also

Related Examples
• “Deep Learning in MATLAB” on page 1-2

21 Deep Learning Code Generation

21-56



Logo Recognition Network

This example shows code generation for a logo classification application that uses deep learning. It
uses a pretrained network called LogoNet and classifies an input image into 32 logo categories. This
example also describes how to train the network by using preprocessed training data set. Finally, this
example uses the codegen command to generate a MEX function and performs the prediction.

This example illustrates the following concepts:

• Preprocess the training images by extracting the logos and resizing to 227-by-227-by-3.
Subsequently, use image augmentation to increase training data size.

• Train the network by using the stochastic gradient descent with momentum (SGDM) optimizer.
• Generate a CUDA® MEX and run the MEX.

Third-Party Prerequisites

Required

This example generates CUDA MEX and requires CUDA-enabled NVIDIA® GPU and compatible
driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Logo Recognition Network

Logos assist users in brand identification and recognition. Many companies incorporate their logos in
advertising, documentation materials, and promotions. The logo recognition network was developed
in MATLAB® and contains 22 layers. The network contains four sets of convolutional max pooling
layers, three fully connected layers, and dropout layers that reduce computational expense. The
network takes an input image of size 227-by-227-by-3 and classifies it into 32 logo categories.
Because this network focuses on recognition, you can use it in applications where localization is not
required. The network was trained in MATLAB by using the Flickr32Logos[1] and Flickr32 Plus[2]
training data set. The two data sets contain around 200 images for each logo. The network was
trained by using the stochastic gradient descent with momentum (SGDM) optimizer, a learning rate of

 Logo Recognition Network

21-57



0.0001, 40 epochs, and a mini-batch size of 45. By default, the example uses a pretrained logo
recognition network. The pretrained network enables you to run the entire example without having to
wait for training to complete.

To train the network, set the doTraining variable in the following code to true. You must also
download the Logos-32plus data set from Deep Learning for Logo Recognition and provide the
location of the downloaded Logos-32plus_v1.0.1.zip file to logozipPath. The size of Logos-32plus
data set is 1.95 GB. Depending on your internet connection, the download process can take time. The
data set has 32 image subfolders containing a total of 7830 logo images from various brands. The
groundtruth MAT-file provides the bounding box information of the logo in each image.

The preprocessLogoData function preprocesses the data for network training. The images in the
Logos-32plus data set are of varying size. You must resize the images to input layer size of the
network (227-by-227-by-3). The images also contain background information that you must remove.
The preprocessLogoData.m performs these steps by using the bounding box information to extract
the logos and creates a imageDatastore object that you can use for network training. The
trainLogonet function creates logo recognition layers and trains the network by using specified
training options. The network is trained using data that contains at least 110 images for each logo.

You can also increase the number of training samples by using data augmentation. Data
augmentation helps prevent the network from overfitting and memorizing the exact details of the
training images. To increase the training data, four types of data augmentation are provided: random
flipping, Gaussian blur, shearing, and contrast normalization. To use data augmentation, set the
doAugmentation variable in the following code to true.

doTraining = false;

if ~doTraining
    getLogonet;
else
    logozipPath  = '';% provide path of the downloaded zip file
    zipData = fullfile(logozipPath,'Logos-32plus_v1.0.1.zip');
    unpackedData = fullfile(logozipPath,'Logos32plus');
    
    if ~exist(unpackedData,'dir')
        unzip(zipData,unpackedData);
    end

    doAugmentation = false;
    logoData = preprocessLogoData(unpackedData,doAugmentation);
    trainLogonet(logoData);
end

load('LogoNet.mat');
convnet

convnet = 
  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

To view the network architecture, use the analyzeNetwork function.

analyzeNetwork(convnet)

21 Deep Learning Code Generation

21-58

http://www.ivl.disco.unimib.it/activities/logo-recognition/


The logonet_predict Entry-Point Function

The logonet_predict.m entry-point function takes an image input and performs prediction on the
image by using the deep learning network saved in the LogoNet.mat file. The function loads the
network object from LogoNet.mat into a persistent variable logonet and reuses the persistent
variable on subsequent prediction calls.

type('logonet_predict.m')

function out = logonet_predict(in)
%#codegen

% Copyright 2017-2022 The MathWorks, Inc.

% A persistent object logonet is used to load the network object. At the
% first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.
persistent logonet;

if isempty(logonet)
    
    logonet = coder.loadDeepLearningNetwork('LogoNet.mat','logonet');
end

out = logonet.predict(in);

end

Generate CUDA MEX for the logonet_predict Function

Create a GPU configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object. Assign it to the DeepLearningConfig property of the GPU code configuration object. To
generate CUDA MEX, use the codegen command and specify the input to be of size [227,227,3]. This
value corresponds to the input layer size of the logonet network.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg logonet_predict -args {ones(227,227,3,'uint8')} -report

Code generation successful: View report

Run Generated MEX

Load an input image. Call logonet_predict_mex on the input image.

im = imread('test.png');
imshow(im);

 Logo Recognition Network

21-59



im = imresize(im, [227,227]);
predict_scores = logonet_predict_mex(im);

Map the top five prediction scores to words in the Wordnet dictionary synset (logos).

synsetOut = convnet.Layers(end).Classes;

[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
top5labels = synsetOut(indx(1:5));

Display the top five classification labels.

outputImage = zeros(227,400,3, 'uint8');
for k = 1:3
    outputImage(:,174:end,k) = im(:,:,k);
end

scol = 1;
srow = 20;

for k = 1:5
    outputImage = insertText(outputImage, [scol, srow],...
        [char(top5labels(k)),' ',num2str(scores(k),'%2.2f'),'%'],...
        'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 20;
end

 imshow(outputImage);

21 Deep Learning Code Generation

21-60



Clear the static network object that was loaded in memory.

clear mex;

References

[1] Romberg, Stefan, Lluis Garcia Pueyo, Rainer Lienhart, and Roelof van Zwol. "Scalable Logo
Recognition in Real-World Images." ACM International Conference on Multimedia Retrieval 2011
(ICMR11): 1-8. https://doi.org/10.1145/1991996.1992021

[2] Bianco, Simone, Marco Buzzelli, Davide Mazzini, and Raimondo Schettini. "Deep Learning for
Logo Recognition." Neurocomputing 245 (2017): 23-30. https://doi.org/10.1016/
j.neucom.2017.03.051.

See Also

Related Examples
• “Deep Learning in MATLAB” on page 1-2

 Logo Recognition Network

21-61



Code Generation for Denoising Deep Neural Network

This example shows how to generate CUDA® MEX from MATLAB® code and denoise grayscale
images by using the denoising convolutional neural network (DnCNN [1]). You can use the denoising
network to estimate noise in a noisy image, and then remove it to obtain a denoised image.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load Noisy Image

Load a noisy grayscale image into the workspace and display the image.

noisyI = imread('noisy_cameraman.png');
figure
imshow(noisyI);
title('Noisy Image');

21 Deep Learning Code Generation

21-62



Get Pretrained Denoising Network

Call the getDenoisingNetwork helper function to get a pretrained image denoising deep neural
network.

net = getDenoisingNetwork;

The getDenoisingNetwork function returns a pretrained DnCNN [1] that you can use to detect
additive white Gaussian noise (AWGN) that has unknown levels. The network is a feed-forward
denoising convolutional network that implements a residual learning technique to predict a residual
image. In other words, DnCNN [1] computes the difference between a noisy image and the latent
clean image.

The network contains 59 layers including convolution, batch normalization, and regression output
layers. To display an interactive visualization of the deep learning network architecture, use the
analyzeNetwork function.

analyzeNetwork(net);

The denoisenet_predict Function

The denoisenet_predict entry-point function takes a noisy image input and returns a denoised
image by using a pretrained denoising network.

The function loads the network object returned by getDenoisingNetwork into a persistent variable
mynet and reuses the persistent object on subsequent prediction calls.

type denoisenet_predict

function I = denoisenet_predict(in)
%#codegen
% Copyright 2018-2021 The MathWorks, Inc.

 Code Generation for Denoising Deep Neural Network

21-63



persistent mynet;

if isempty(mynet)   
    mynet = coder.loadDeepLearningNetwork('getDenoisingNetwork', 'DnCNN');
end

% The activations methods extracts the output from the last layer. The
% 'OutputAs' 'channels' name-value pair argument is used inorder to call
% activations on an image whose input dimensions are greater than or equal
% to the network's imageInputLayer.InputSize.

res = mynet.activations(in, 59,'OutputAs','channels');

% Once the noise is estimated, we subtract the noise from the original
% image to obtain a denoised image.

I = in - res;
  

Here, the activations method is called with the layer numeric index as 59 to extract the
activations from the final layer of the network. The 'OutputAs' 'channels' name-value pair
argument computes activations on images larger than the imageInputLayer.InputSize of the
network.

The activations method returns an estimate of the noise in the input image by using the
pretrained denoising image.

Once the noise is estimated, subtract the noise from the original image to obtain a denoised image.

Run MEX Code Generation

To generate CUDA code for the denoisenet_predict.m entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command specifying an input size of [256,256]. This value corresponds to the size
of the noisy image that you intend to denoise.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg denoisenet_predict -args {ones(256,256,'single')} -report

Code generation successful: View report

Run Generated MEX

The DnCNN [1] is trained on input images having an input range [0,1]. Call the im2single (Image
Processing Toolbox) function on noisyI to rescale the values from [0,255] to [0,1].

Call denoisenet_predict_predict on the rescaled input image.

denoisedI = denoisenet_predict_mex(im2single(noisyI));

21 Deep Learning Code Generation

21-64



View Denoised Image

figure
imshowpair(noisyI,denoisedI,'montage');
title('Noisy Image (left) and Denoised Image (right)');

References

[1] Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. "Beyond a Gaussian Denoiser: Residual
Learning of Deep CNN for Image Denoising." IEEE Transactions on Image Processing. Vol. 26,
Number 7, Feb. 2017, pp. 3142-3155.

See Also

Related Examples
• “Deep Learning in MATLAB” on page 1-2

 Code Generation for Denoising Deep Neural Network

21-65



Train and Deploy Fully Convolutional Networks for Semantic
Segmentation

This example shows how to train and deploy a fully convolutional semantic segmentation network on
an NVIDIA® GPU by using GPU Coder™.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see “Getting
Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox).

To illustrate the training procedure, this example trains FCN-8s [1], one type of convolutional neural
network (CNN) designed for semantic image segmentation. Other types of networks for semantic
segmentation include fully convolutional networks, such as SegNet and U-Net. You can apply this
training procedure to those networks too.

This example uses the CamVid dataset [2] from the University of Cambridge for training. This data
set is a collection of images containing street-level views obtained while driving. The data set
provides pixel-level labels for 32 semantic classes including car, pedestrian, and road.

Third-party Prerequisites

Required

• CUDA® enabled NVIDIA GPU and compatible driver.

Optional

• NVIDIA CUDA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Third-Party Hardware” (GPU Coder). For setting up the
environment variables, see “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Setup

This example creates the fully convolutional semantic segmentation network with weights initialized
from the VGG-16 network. The vgg16 function checks for the existence of the Deep Learning Toolbox
Model for VGG-16 Network support package and returns a pretrained VGG-16 model.

vgg16();

21 Deep Learning Code Generation

21-66

http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/


Download a pretrained version of FCN. This pretrained model enables you to run the entire example
without waiting for the training to complete. The doTraining flag controls whether the example uses
the trained network of the example or the pretrained FCN network for code generation.

doTraining = false;
if ~doTraining
    pretrainedURL = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/fcn/FCN8sCamVid.mat';
    disp('Downloading pretrained FCN (448 MB)...');
    websave('FCN8sCamVid.mat',pretrainedURL);
end

Downloading pretrained FCN (448 MB)...

Download CamVid Dataset

Download the CamVid dataset from these URLs.

imageURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_StillsRaw_full.zip';
labelURL = 'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApproved_full.zip';

outputFolder = fullfile(pwd,'CamVid');

if ~exist(outputFolder, 'dir')
   
    mkdir(outputFolder)
    labelsZip = fullfile(outputFolder,'labels.zip');
    imagesZip = fullfile(outputFolder,'images.zip');   
    
    disp('Downloading 16 MB CamVid dataset labels...'); 
    websave(labelsZip, labelURL);
    unzip(labelsZip, fullfile(outputFolder,'labels'));
    
    disp('Downloading 557 MB CamVid dataset images...');  
    websave(imagesZip, imageURL);       
    unzip(imagesZip, fullfile(outputFolder,'images'));    
end

The data download time depends on your Internet connection. The example execution does not
proceed until the download operation is complete. Alternatively, use your web browser to first
download the data set to your local disk. Then, use the outputFolder variable to point to the location
of the downloaded file.

Load CamVid Images

Use imageDatastore to load CamVid images. The imageDatastore enables you to efficiently load a
large collection of images onto a disk.

imgDir = fullfile(outputFolder,'images','701_StillsRaw_full');
imds = imageDatastore(imgDir);

Display one of the images.

I = readimage(imds,25);
I = histeq(I);
imshow(I)

 Train and Deploy Fully Convolutional Networks for Semantic Segmentation

21-67



Load CamVid Pixel-Labeled Images

Use pixelLabelDatastore (Computer Vision Toolbox) to load CamVid pixel label image data. A
pixelLabelDatastore encapsulates the pixel label data and the label ID to a class name mapping.

Following the training method described in the SegNet paper [3], group the 32 original classes in
CamVid to 11 classes. Specify these classes.

classes = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];

21 Deep Learning Code Generation

21-68



To reduce 32 classes into 11 classes, multiple classes from the original data set are grouped together.
For example, "Car" is a combination of "Car", "SUVPickupTruck", "Truck_Bus", "Train", and
"OtherMoving". Return the grouped label IDs by using the camvidPixelLabelIDs supporting
function.

labelIDs = camvidPixelLabelIDs();

Use the classes and label IDs to create the pixelLabelDatastore.

labelDir = fullfile(outputFolder,'labels');
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);

Read and display one of the pixel-labeled images by overlaying it on top of an image.

C = readimage(pxds,25);
cmap = camvidColorMap;
B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
pixelLabelColorbar(cmap,classes);

Areas with no color overlay do not have pixel labels and are not used during training.

 Train and Deploy Fully Convolutional Networks for Semantic Segmentation

21-69



Analyze Data Set Statistics

To see the distribution of class labels in the CamVid dataset, use countEachLabel (Computer Vision
Toolbox). This function counts the number of pixels by class label.

tbl = countEachLabel(pxds)

tbl=11×3 table
         Name         PixelCount    ImagePixelCount
    ______________    __________    _______________

    {'Sky'       }    7.6801e+07      4.8315e+08   
    {'Building'  }    1.1737e+08      4.8315e+08   
    {'Pole'      }    4.7987e+06      4.8315e+08   
    {'Road'      }    1.4054e+08      4.8453e+08   
    {'Pavement'  }    3.3614e+07      4.7209e+08   
    {'Tree'      }    5.4259e+07       4.479e+08   
    {'SignSymbol'}    5.2242e+06      4.6863e+08   
    {'Fence'     }    6.9211e+06       2.516e+08   
    {'Car'       }    2.4437e+07      4.8315e+08   
    {'Pedestrian'}    3.4029e+06      4.4444e+08   
    {'Bicyclist' }    2.5912e+06      2.6196e+08   

Visualize the pixel counts by class.

frequency = tbl.PixelCount/sum(tbl.PixelCount);

bar(1:numel(classes),frequency)
xticks(1:numel(classes)) 
xticklabels(tbl.Name)
xtickangle(45)
ylabel('Frequency')

21 Deep Learning Code Generation

21-70



Ideally, all classes have an equal number of observations. The classes in CamVid are imbalanced,
which is a common issue in automotive data sets of street scenes. Such scenes have more sky,
building, and road pixels than pedestrian and bicyclist pixels because sky, buildings, and roads cover
more area in the image. If not handled correctly, this imbalance can be detrimental to the learning
process because the learning is biased in favor of the dominant classes. Later on in this example, you
use class weighting to handle this issue.

Resize CamVid Data

The images in the CamVid data set are 720-by-960. To reduce training time and memory usage, resize
the images and pixel label images to 360-by-480 by using the resizeCamVidImages and
resizeCamVidPixelLabels supporting functions.

imageFolder = fullfile(outputFolder,'imagesResized',filesep);
imds = resizeCamVidImages(imds,imageFolder);

labelFolder = fullfile(outputFolder,'labelsResized',filesep);
pxds = resizeCamVidPixelLabels(pxds,labelFolder);

 Train and Deploy Fully Convolutional Networks for Semantic Segmentation

21-71



Prepare Training and Test Sets

SegNet is trained by using 60% of the images from the dataset. The rest of the images are used for
testing. The following code randomly splits the image and pixel label data into a training set and a
test set.

[imdsTrain,imdsTest,pxdsTrain,pxdsTest] = partitionCamVidData(imds,pxds);

The 60/40 split results in the following number of training and test images:

numTrainingImages = numel(imdsTrain.Files)

numTrainingImages = 421

numTestingImages = numel(imdsTest.Files)

numTestingImages = 280

Create Network

Use fcnLayers (Computer Vision Toolbox) to create fully convolutional network layers initialized by
using VGG-16 weights. The fcnLayers function performs the network transformations to transfer
the weights from VGG-16 and adds the additional layers required for semantic segmentation. The
output of the fcnLayers function is a LayerGraph object representing FCN. A LayerGraph object
encapsulates the network layers and the connections between the layers.

imageSize = [360 480];
numClasses = numel(classes);
lgraph = fcnLayers(imageSize,numClasses);

The image size is selected based on the size of the images in the dataset. The number of classes is
selected based on the classes in CamVid.

Balance Classes by Using Class Weighting

The classes in CamVid are not balanced. To improve training, you can use the pixel label counts
computed earlier by the countEachLabel (Computer Vision Toolbox) function and calculate the
median frequency class weights [3].

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq;

Specify the class weights by using a pixelClassificationLayer (Computer Vision Toolbox).

pxLayer = pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights',classWeights)

pxLayer = 
  PixelClassificationLayer with properties:

            Name: 'labels'
         Classes: [11×1 categorical]
    ClassWeights: [11×1 double]
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

21 Deep Learning Code Generation

21-72



Update the SegNet network that has the new pixelClassificationLayer by removing the current
pixelClassificationLayer and adding the new layer. The current pixelClassificationLayer is named
'pixelLabels'. Remove it by using the removeLayers function, add the new one by using the
addLayers function, and connect the new layer to the rest of the network by using the
connectLayers function.

lgraph = removeLayers(lgraph,'pixelLabels');
lgraph = addLayers(lgraph, pxLayer);
lgraph = connectLayers(lgraph,'softmax','labels');

Select Training Options

The optimization algorithm for training is Adam, which is derived from adaptive moment estimation.
Use the trainingOptions function to specify the hyperparameters used for Adam.

options = trainingOptions('adam', ...
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',100, ...  
    'MiniBatchSize',4, ...
    'Shuffle','every-epoch', ...
    'CheckpointPath', tempdir, ...
    'VerboseFrequency',2);

A 'MiniBatchSize' of four reduces memory usage while training. You can increase or decrease this
value based on the amount of GPU memory in your system.

'CheckpointPath' is set to a temporary location. This name-value pair enables the saving of network
checkpoints at the end of every training epoch. If training is interrupted due to a system failure or
power outage, you can resume training from the saved checkpoint. Make sure that the location
specified by 'CheckpointPath' has enough space to store the network checkpoints.

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
increasing the number of labeled training samples. To apply the same random transformation to both
image and pixel label data use datastore combine and transform. First, combine imdsTrain and
pxdsTrain.

dsTrain = combine(imdsTrain, pxdsTrain);

Next, use datastore transform to apply the desired data augmentation defined in the supporting
function augmentImageAndLabel. Here, random left/right reflection and random X/Y translation of
+/- 10 pixels is used for data augmentation.

xTrans = [-10 10];
yTrans = [-10 10];
dsTrain = transform(dsTrain, @(data)augmentImageAndLabel(data,xTrans,yTrans));

Note that data augmentation is not applied to the test and validation data. Ideally, test and validation
data should be representative of the original data and is left unmodified for unbiased evaluation.

Start Training

Start training using trainNetwork if the doTraining flag is true. Otherwise, load a pretrained
network.

 Train and Deploy Fully Convolutional Networks for Semantic Segmentation

21-73



The training was verified on an NVIDIA™ Titan Xp with 12 GB of GPU memory. If your GPU has less
memory, you might run out of memory. If you do not have enough memory in your system, try
lowering the MiniBatchSize property in trainingOptions to 1. Training this network takes about
5 hours or longer depending on your GPU hardware.

doTraining = false;
if doTraining    
    [net, info] = trainNetwork(dsTrain,lgraph,options);
    save('FCN8sCamVid.mat','net');
end

Save the DAG network object as a MAT-file named FCN8sCamVid.mat. This MAT-file is used during
code generation.

Perform MEX Code-generation

The fcn_predict function takes an image input and performs prediction on the image by using the
deep learning network saved in FCN8sCamVid.mat file. The function loads the network object from
FCN8sCamVid.mat into a persistent variable mynet and reuses the persistent object on subsequent
prediction calls.

type('fcn_predict.m')

function out = fcn_predict(in)
%#codegen
% Copyright 2018-2019 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('FCN8sCamVid.mat');
end

% pass in input
out = predict(mynet,in);

Generate a GPU Configuration object for MEX target setting target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a cuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen (MATLAB Coder) command specifying an input size [360, 480, 3]. This size
corresponds to the input layer of FCN.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg fcn_predict -args {ones(360,480,3,'uint8')} -report

Code generation successful: View report

Run Generated MEX

Load and display an input image.

im = imread('testImage.png');
imshow(im);

21 Deep Learning Code Generation

21-74



Run prediction by calling fcn_predict_mex on the input image.

predict_scores = fcn_predict_mex(im);

The predict_scores variable is a three-dimensional matrix having 11 channels corresponding to
the pixel-wise prediction scores for every class. Compute the channel by using the maximum
prediction score to get pixel-wise labels.

[~,argmax] = max(predict_scores,[],3);

Overlay the segmented labels on the input image and display the segmented region.

classes = [
    "Sky"
    "Building"
    "Pole"
    "Road"
    "Pavement"
    "Tree"
    "SignSymbol"
    "Fence"
    "Car"
    "Pedestrian"
    "Bicyclist"
    ];

 Train and Deploy Fully Convolutional Networks for Semantic Segmentation

21-75



cmap = camvidColorMap();
SegmentedImage = labeloverlay(im,argmax,'ColorMap',cmap);
figure
imshow(SegmentedImage);
pixelLabelColorbar(cmap,classes);

Cleanup

Clear the static network object that was loaded in memory.

clear mex;

Supporting Functions

function data = augmentImageAndLabel(data, xTrans, yTrans)
% Augment images and pixel label images using random reflection and
% translation.

for i = 1:size(data,1)
    
    tform = randomAffine2d(...
        'XReflection',true,...
        'XTranslation', xTrans, ...
        'YTranslation', yTrans);
    

21 Deep Learning Code Generation

21-76



    % Center the view at the center of image in the output space while
    % allowing translation to move the output image out of view.
    rout = affineOutputView(size(data{i,1}), tform, 'BoundsStyle', 'centerOutput');
    
    % Warp the image and pixel labels using the same transform.
    data{i,1} = imwarp(data{i,1}, tform, 'OutputView', rout);
    data{i,2} = imwarp(data{i,2}, tform, 'OutputView', rout);
    
end
end

References

[1] Long, J., E. Shelhamer, and T. Darrell. "Fully Convolutional Networks for Semantic Segmentation."
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–
3440.

[2] Brostow, G. J., J. Fauqueur, and R. Cipolla. "Semantic object classes in video: A high-definition
ground truth database." Pattern Recognition Letters. Vol. 30, Issue 2, 2009, pp 88-97.

[3] Badrinarayanan, V., A. Kendall, and R. Cipolla. "SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation." arXiv preprint arXiv:1511.00561, 2015.

 Train and Deploy Fully Convolutional Networks for Semantic Segmentation

21-77



Code Generation for Semantic Segmentation Network That
Uses U-net

This example shows code generation for an image segmentation application that uses deep learning.
It uses the codegen command to generate a MEX function that performs prediction on a DAG
Network object for U-Net, a deep learning network for image segmentation.

For a similar example covering segmentation of images by using U-Net without the codegen
command, see “Semantic Segmentation of Multispectral Images Using Deep Learning” (Image
Processing Toolbox).

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA® enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• NVIDIA cuDNN library.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

Use the coder.checkGpuInstall (GPU Coder) function to verify that the compilers and libraries
necessary for running this example are set up correctly.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Segmentation Network

U-Net [1] is a type of convolutional neural network (CNN) designed for semantic image segmentation.
In U-Net, the initial series of convolutional layers are interspersed with max pooling layers,
successively decreasing the resolution of the input image. These layers are followed by a series of
convolutional layers interspersed with upsampling operators, successively increasing the resolution
of the input image. Combining these two series paths forms a U-shaped graph. The network was
originally trained for and used to perform prediction on biomedical image segmentation applications.
This example demonstrates the ability of the network to track changes in forest cover over time.
Environmental agencies track deforestation to assess and qualify the environmental and ecological
health of a region.

Deep-learning-based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One challenge is differentiating classes that have similar

21 Deep Learning Code Generation

21-78



visual characteristics, such as trying to classify a green pixel as grass, shrubbery, or tree. To increase
classification accuracy, some data sets contain multispectral images that provide additional
information about each pixel. For example, the Hamlin Beach State Park data set supplements the
color images with near-infrared channels that provide a clearer separation of the classes.

This example uses the Hamlin Beach State Park Data [2] along with a pretrained U-Net network in
order to correctly classify each pixel.

The U-Net used is trained to segment pixels belonging to 18 classes which includes:

0. Other Class/Image Border      7. Picnic Table         14. Grass
1. Road Markings                 8. Black Wood Panel     15. Sand
2. Tree                          9. White Wood Panel     16. Water (Lake)
3. Building                     10. Orange Landing Pad   17. Water (Pond)
4. Vehicle (Car, Truck, or Bus) 11. Water Buoy           18. Asphalt (Parking Lot/Walkway)
5. Person                       12. Rocks
6. Lifeguard Chair              13. Other Vegetation

The segmentImageUnet Entry-Point Function

The segmentImageUnet.m entry-point function performs patchwise semantic segmentation on the
input image by using the multispectralUnet network found in the multispectralUnet.mat file. The
function loads the network object from the multispectralUnet.mat file into a persistent variable
mynet and reuses the persistent variable on subsequent prediction calls.

type('segmentImageUnet.m')

Get Pretrained U-Net Network

This example uses the multispectralUnet MAT-file containing the pretrained U-Net network. This
file is approximately 117 MB in size. Download the file from the MathWorks website.

trainedUnetFile = matlab.internal.examples.downloadSupportFile('vision/data','multispectralUnet.mat');

U-Net is a DAG network that contains 58 layers including convolution, max pooling, depth
concatenation, and the pixel classification output layers.

load(trainedUnetFile);
disp(net)

  DAGNetwork with properties:

         Layers: [58×1 nnet.cnn.layer.Layer]
    Connections: [61×2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'Segmentation-Layer'}

To view the network architecture, use the analyzeNetwork function.

analyzeNetwork(net);

Prepare Data

This example uses the high-resolution multispectral data from [2]. The image set was captured using
a drone over the Hamlin Beach State Park, NY. The data contains labeled training, validation, and test
sets, with 18 object class labels. The size of the data file is ~3.0 GB.

 Code Generation for Semantic Segmentation Network That Uses U-net

21-79



Download the MAT-file version of the data set using the downloadHamlinBeachMSIData helper
function. This function is attached to the example as a supporting file.

if ~exist(fullfile(pwd,'data'),'dir')
    url = 'https://home.cis.rit.edu/~cnspci/other/data/rit18_data.mat';
    downloadHamlinBeachMSIData(url,pwd+"/data/");
end

Downloading Hamlin Beach dataset...
This will take several minutes to download...
done.

Load and examine the data in MATLAB.

load(fullfile(pwd,'data','rit18_data','rit18_data.mat'));

% Examine data
whos test_data

  Name           Size                         Bytes  Class     Attributes

  test_data      7x12446x7654            1333663576  uint16              

The image has seven channels. The RGB color channels are the third, second, and first image
channels. The next three channels correspond to the near-infrared bands and highlight different
components of the image based on their heat signatures. Channel 7 is a mask that indicates the valid
segmentation region.

The multispectral image data is arranged as numChannels-by-width-by-height arrays. In MATLAB,
multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape the data so
that the channels are in the third dimension, use the helper function,
switchChannelsToThirdPlane.

test_data  = switchChannelsToThirdPlane(test_data);

% Confirm data has the correct structure (channels last).
whos test_data

  Name               Size                     Bytes  Class     Attributes

  test_data      12446x7654x7            1333663576  uint16              

Run MEX Code Generation

To generate CUDA code for the segmentImageUnet.m entry-point function, create a GPU
Configuration object for a MEX target setting the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command specifying an input size of 12446-by-7654-by-7 and a patch size of 1024-
by-1024. These values correspond to the entire test_data size. The smaller patch sizes speed up
inference. To see how the patches are calculated, see the segmentImageUnet entry-point function.

cfg = coder.gpuConfig('mex');
cfg.ConstantInputs = 'Remove';
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
inputArgs = {ones(size(test_data),'uint16'),...
    coder.Constant([1024 1024]),coder.Constant(trainedUnetFile)};

21 Deep Learning Code Generation

21-80



codegen -config cfg segmentImageUnet -args inputArgs -report

Code generation successful: View report

Run Generated MEX to Predict Results for test_data

This segmentImageUnet function takes in the data to test (test_data) and a vector containing the
dimensions of the patch size to use. Take patches of the image, predict the pixels in a particular
patch, then combine all the patches together. Due to the size of test data (12446-by-7654-by-7), it is
easier to process such a large image in patches.

segmentedImage = segmentImageUnet_mex(test_data);

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the test data.

segmentedImage = uint8(test_data(:,:,7)~=0) .* segmentedImage;

Because the output of the semantic segmentation is noisy, remove the noise and stray pixels by using
the medfilt2 function.

segmentedImage = medfilt2(segmentedImage,[5,5]);

Display U-Net Segmented test_data

The following line of code creates a vector of the class names.

classNames = [ "RoadMarkings","Tree","Building","Vehicle","Person", ...
               "LifeguardChair","PicnicTable","BlackWoodPanel",...
               "WhiteWoodPanel","OrangeLandingPad","Buoy","Rocks",...
               "LowLevelVegetation","Grass_Lawn","Sand_Beach",...
               "Water_Lake","Water_Pond","Asphalt"];

Overlay the labels on the segmented RGB test image and add a color bar to the segmentation image.

cmap = jet(numel(classNames));
B = labeloverlay(imadjust(test_data(:,:,[3,2,1]),[0 0.6],[0.1 0.9],0.55),...
    segmentedImage,'Transparency',0.8,'Colormap',cmap);
figure
imshow(B)

N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,...
    'TickLabelInterpreter','none');
colormap(cmap)
title('Segmented Image');

 Code Generation for Semantic Segmentation Network That Uses U-net

21-81



21 Deep Learning Code Generation

21-82



References

[1] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for
Biomedical Image Segmentation." arXiv preprint arXiv:1505.04597, 2015.

[2] Kemker, R., C. Salvaggio, and C. Kanan. "High-Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918, 2017.

[3] Kemker, Ronald, Carl Salvaggio, and Christopher Kanan. "Algorithms for Semantic Segmentation
of Multispectral Remote Sensing Imagery Using Deep Learning." ISPRS Journal of Photogrammetry
and Remote Sensing, Deep Learning RS Data, 145 (November 1, 2018): 60-77. https://doi.org/
10.1016/j.isprsjprs.2018.04.014.

 Code Generation for Semantic Segmentation Network That Uses U-net

21-83



Code Generation for Deep Learning on ARM Targets

This example shows how to generate and deploy code for prediction on an ARM®-based device
without using a hardware support package.

When you generate code for prediction using the ARM Compute Library and a hardware support
package, codegen generates code on the host computer, copies the generated files to the target
hardware, and builds the executable on the target hardware. Without a hardware support package,
codegen generates code on the host computer. You must run commands to copy the files and build
the executable program on the target hardware.

This example uses the packNGo function to package all relevant files into a compressed zip file. Use
this example to learn how to deploy the generated code on ARM Neon targets that do not have a
hardware support package by using packNGo.

Prerequisites

• ARM processor that supports the NEON extension
• ARM Compute Library (on the target ARM hardware)
• Open Source Computer Vision Library(Open CV)
• Environment variables for the compilers and libraries
• MATLAB® Coder™
• The support package MATLAB Coder Interface for Deep Learning
• Deep Learning Toolbox™

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For supported versions of libraries and for information about setting up
environment variables, see “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

This example is not supported for MATLAB Online.

squeezenet_predict Function

This example uses the DAG network SqueezeNet to show image classification with the ARM Compute
Library. A pretrained SqueezeNet for MATLAB is available in the Deep Learning Toolbox. The
squeezenet_predict function loads the SqueezeNet network into a persistent network object. On
subsequent calls to the function, the persistent object is reused.

type squeezenet_predict

% Copyright 2018 The MathWorks, Inc.

function out = squeezenet_predict(in) 
%#codegen

% A persistent object mynet is used to load the DAG network object.
% At the first call to this function, the persistent object is constructed and
% set up. When the function is called subsequent times, the same object is reused 
% to call predict on inputs, avoiding reconstructing and reloading the
% network object.

21 Deep Learning Code Generation

21-84



persistent mynet;
if isempty(mynet)
       mynet = coder.loadDeepLearningNetwork('squeezenet','squeezenet');
end

out = mynet.predict(in);

Set Up a Code Generation Configuration Object for a Static Library

When you generate code targeting an ARM-based device and do not use a hardware support package,
create a configuration object for a library. Do not create a configuration object for an executable
program.

Set up the configuration object for generation of C++ code and generation of code only.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.GenCodeOnly = true;

Set Up a Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the library version and the architecture of the
target ARM processor. For example, suppose that the target board is a HiKey/Rock960 board with
ARMv8 architecture and ARM Compute Library version 20.02.1.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '20.02.1';
dlcfg.ArmArchitecture = 'armv8';

Attach the Deep Learning Configuration Object to the Code Generation Configuration
Object

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object.

cfg.DeepLearningConfig = dlcfg;

Generate Source C++ Code by Using codegen

codegen -config cfg squeezenet_predict -args {ones(227, 227, 3, 'single')} -d arm_compute

The code is generated in the arm_compute folder in the current working folder on the host computer.

Generate the Zip File using packNGo function

The packNGo function packages all relevant files in a compressed zip file.

zipFileName = 'arm_compute.zip';
bInfo = load(fullfile('arm_compute','buildInfo.mat'));
packNGo(bInfo.buildInfo, {'fileName', zipFileName,'minimalHeaders', false, 'ignoreFileMissing',true});

The code is generated as zip file.

Copy the Generated Zip file to the Target Hardware

Copy the Zip file and extract into folder and remove the Zip file in the hardware

In the following commands, replace:

 Code Generation for Deep Learning on ARM Targets

21-85



• password with your password
• username with your user name
• targetname with the name of your device
• targetloc with the destination folder for the files

Perform the steps below to copy and extract zip file from Linux.

if isunix, system(['sshpass -p password scp -r '  fullfile(pwd,zipFileName) ' username@targetname:targetloc/']), end
if isunix, system('sshpass -p password ssh username@targetname "if [ -d targetloc/arm_compute ]; then rm -rf targetloc/arm_compute; fi"'), end
if isunix, system(['sshpass -p password ssh username@targetname "unzip targetloc/' zipFileName ' -d targetloc/arm_compute"']), end
if isunix, system(['sshpass -p password ssh username@targetname "rm -rf  targetloc' zipFileName '"']), end

Perform the steps below to copy and extract zip file from Windows.

if ispc, system(['pscp.exe -pw password -r '  fullfile(pwd,zipFileName) ' username@targetname:targetloc/']), end
if ispc, system('plink.exe -l username -pw password targetname "if [ -d targetloc/arm_compute ]; then rm -rf targetloc/arm_compute; fi"'), end
if ispc, system(['plink.exe -l username -pw password targetname "unzip targetloc/' zipFileName ' -d targetloc/arm_compute"']), end
if ispc, system(['plink.exe -l username -pw password targetname "rm -rf  targetloc' zipFileName '"']), end

Copy Example Files to the Target Hardware

Copy these supporting files from the host computer to the target hardware:

• Input image, coffeemug.png
• Makefile for generating the library, squeezenet_predict_rtw.mk
• Makefile for building the executable program, makefile_squeezenet_arm_generic.mk
• Synset dictionary, synsetWords.txt

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetloc with the destination folder for the files

Perform the steps below to copy all the required files when running from Linux

if isunix, system('sshpass -p password scp squeezenet_predict_rtw.mk username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp coffeemug.png username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp makefile_squeezenet_arm_generic.mk username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp synsetWords.txt username@targetname:targetloc/arm_compute/'), end

Perform the steps below to copy all the required files when running from Windows

if ispc, system('pscp.exe -pw password squeezenet_predict_rtw.mk username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password coffeemug.png username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password makefile_squeezenet_arm_generic.mk username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password synsetWords.txt username@targetname:targetloc/arm_compute/'), end

Build the Library on the Target Hardware

To build the library on the target hardware, execute the generated makefile on the ARM hardware.

Make sure that you set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
target hardware. See “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

21 Deep Learning Code Generation

21-86



ARM_ARCH variable is used in Makefile to pass compiler flags based on Arm Architecture. ARM_VER
variable is used in Makefile to compile the code based on Arm Compute Version. Replace the
hardware credentials and paths in similar to above steps.

Perform the below steps to build the library from Linux.

if isunix, system('sshpass -p password scp main_squeezenet_arm_generic.cpp username@targetname:targetloc/arm_compute/'), end
if isunix, system(['sshpass -p password ssh username@targetname "make -C targetloc/arm_compute/ -f squeezenet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Perform the below steps to build the library from windows.

if ispc, system('pscp.exe -pw password main_squeezenet_arm_generic.cpp username@targetname:targetloc/arm_compute/'), end
if ispc, system(['plink.exe -l username -pw password targetname "make -C targetloc/arm_compute/ -f squeezenet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Create Executable from the Library on the Target Hardware

Build the library with the source main wrapper file to create the executable.
main_squeezenet_arm_generic.cpp is the C++ main wrapper file which invokes
squeezenet_predict function to create the executable.

Run the below command to create the executable from Linux.

if isunix, system('sshpass -p password ssh username@targetname "make -C targetloc/arm_compute/ -f makefile_squeezenet_arm_generic.mk targetDirName=targetloc/arm_compute"'), end

Run the below command to create the executable from Windows.

if ispc, system('plink.exe -l username -pw password targetname "make -C targetloc/arm_compute/ -f makefile_squeezenet_arm_generic.mk targetDirName=targetloc/arm_compute"'), end

Run the Executable on the Target Hardware

Run the executable from Linux using below command.

if isunix, system('sshpass -p password ssh username@targetname "cd targetloc/arm_compute/; ./squeezenet coffeemug.png"'), end

Run the executable from Windows using below command.

if ispc, system('plink.exe -l username -pw password targetname "cd targetloc/arm_compute/; ./squeezenet coffeemug.png"'), end

Top 5 Predictions:
-----------------------------
88.299% coffee mug
7.309% cup
1.098% candle
0.634% paper towel
0.591% water jug

 Code Generation for Deep Learning on ARM Targets

21-87



21 Deep Learning Code Generation

21-88



Deep Learning Prediction with ARM Compute Using codegen

This example shows how to use codegen to generate code for a Logo classification application that
uses deep learning on ARM® processors. The logo classification application uses the LogoNet series
network to perform logo recognition from images. The generated code takes advantage of the ARM
Compute library for computer vision and machine learning.

Prerequisites

• ARM processor that supports the NEON extension
• Open Source Computer Vision Library (OpenCV) v3.1
• Environment variables for ARM Compute and OpenCV libraries
• MATLAB® Coder™ for C++ code generation
• The support package MATLAB Coder Interface for Deep Learning
• Deep Learning Toolbox™ for using the SeriesNetwork object

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For supported versions of libraries and for information about setting up
environment variables, see “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

This example is supported on Linux® and Windows® platforms and not supported for MATLAB
Online.

Get the Pretrained SeriesNetwork

Download the pretrained LogoNet network and save it as logonet.mat, if it does not exist. The
network was developed in MATLAB® and its architecture is similar to that of AlexNet. This network
can recognize 32 logos under various lighting conditions and camera angles.

net = getLogonet();

The network contains 22 layers including convolution, fully connected, and the classification output
layers.

net.Layers

ans = 

  22×1 Layer array with layers:

     1   'imageinput'    Image Input             227×227×3 images with 'zerocenter' normalization and 'randfliplr' augmentations
     2   'conv_1'        2-D Convolution         96 5×5×3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_1'        ReLU                    ReLU
     4   'maxpool_1'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]
     5   'conv_2'        2-D Convolution         128 3×3×96 convolutions with stride [1  1] and padding [0  0  0  0]
     6   'relu_2'        ReLU                    ReLU
     7   'maxpool_2'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]
     8   'conv_3'        2-D Convolution         384 3×3×128 convolutions with stride [1  1] and padding [0  0  0  0]
     9   'relu_3'        ReLU                    ReLU
    10   'maxpool_3'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]
    11   'conv_4'        2-D Convolution         128 3×3×384 convolutions with stride [2  2] and padding [0  0  0  0]
    12   'relu_4'        ReLU                    ReLU

 Deep Learning Prediction with ARM Compute Using codegen

21-89



    13   'maxpool_4'     2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0]
    14   'fc_1'          Fully Connected         2048 fully connected layer
    15   'relu_5'        ReLU                    ReLU
    16   'dropout_1'     Dropout                 50% dropout
    17   'fc_2'          Fully Connected         2048 fully connected layer
    18   'relu_6'        ReLU                    ReLU
    19   'dropout_2'     Dropout                 50% dropout
    20   'fc_3'          Fully Connected         32 fully connected layer
    21   'softmax'       Softmax                 softmax
    22   'classoutput'   Classification Output   crossentropyex with 'adidas' and 31 other classes

Set Environment Variables

On the ARM target hardware, make sure that ARM_COMPUTELIB is set and that LD_LIBRARY_PATH
contains the path to the ARM Compute Library folder.

See “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

logonet_predict Function

The logonet_predict.m entry-point function takes an image input and performs prediction on the
image using the deep learning network saved in the LogoNet MAT-file. The function loads the
network object from LogoNet.mat into a persistent network variable logonet. On subsequent calls to
the function, the persistent object is reused.

type logonet_predict

function out = logonet_predict(in)
%#codegen

% Copyright 2017-2022 The MathWorks, Inc.

% A persistent object logonet is used to load the network object. At the
% first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, thus avoiding reconstructing and
% reloading the network object.
persistent logonet;

if isempty(logonet)
    
    logonet = coder.loadDeepLearningNetwork('LogoNet.mat','logonet');

end

out = logonet.predict(in);

end

Set Up a Code Generation Configuration Object for a Static Library

When you generate code targeting an ARM-based device and do not use a hardware support package,
create a configuration object for a library. Do not create a configuration object for an executable
program.

Set up the configuration object for generation of C++ code and generation of code only.

21 Deep Learning Code Generation

21-90



cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.GenCodeOnly = true;

Set Up a Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the library version and the architecture of the
target ARM processor. For example, suppose that the target board is a HiKey/Rock960 board with
ARMv8 architecture and ARM Compute Library version 20.02.1.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '20.02.1';
dlcfg.ArmArchitecture = 'armv8';

Attach the Deep Learning Configuration Object to the Code Generation Configuration
Object

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object.

cfg.DeepLearningConfig = dlcfg;

Generate Source C++ Code by Using codegen

codegen -config cfg logonet_predict -args {ones(227, 227, 3, 'single')} -d arm_compute

The code is generated in the arm_compute folder in the current working folder on the host computer.

Generate the Zip File Using the packNGo function

The packNGo function packages all relevant files in a compressed zip file.

zipFileName = 'arm_compute.zip';
bInfo = load(fullfile('arm_compute','buildInfo.mat'));
packNGo(bInfo.buildInfo, {'fileName', zipFileName,'minimalHeaders', false, 'ignoreFileMissing',true});

Copy the Generated Zip File to the Target Hardware

Copy the Zip file and extract into a folder. Remove the Zip file from the target hardware.

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetloc with the destination folder for the files

Run these commands to copy and extract zip file from Linux.

if isunix, system(['sshpass -p password scp -r '  fullfile(pwd,zipFileName) ' username@targetname:targetloc/']), end
if isunix, system('sshpass -p password ssh username@targetname "if [ -d targetloc/arm_compute ]; then rm -rf targetloc/arm_compute; fi"'), end
if isunix, system(['sshpass -p password ssh username@targetname "unzip targetloc/' zipFileName ' -d targetloc/arm_compute"']), end
if isunix, system(['sshpass -p password ssh username@targetname "rm -rf  targetloc' zipFileName '"']), end

Run these commands to copy and extract zip file from Windows.

if ispc, system(['pscp.exe -pw password -r '  fullfile(pwd,zipFileName) ' username@targetname:targetloc/']), end
if ispc, system('plink.exe -l username -pw password targetname "if [ -d targetloc/arm_compute ]; then rm -rf targetloc/arm_compute; fi"'), end

 Deep Learning Prediction with ARM Compute Using codegen

21-91



if ispc, system(['plink.exe -l username -pw password targetname "unzip targetloc/' zipFileName ' -d targetloc/arm_compute"']), end
if ispc, system(['plink.exe -l username -pw password targetname "rm -rf  targetloc' zipFileName '"']), end

Copy Example Files to the Target Hardware

Copy these supporting files from the host computer to the target hardware:

• Input image, coderdemo_google.png
• Makefile for generating the library, logonet_predict_rtw.mk
• Makefile for building the executable program, makefile_arm_logo.mk
• Synset dictionary, synsetWordsLogoDet.txt

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetloc with the destination folder for the files

Perform the steps below to copy all the required files when running from Linux

if isunix, system('sshpass -p password scp logonet_predict_rtw.mk username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp coderdemo_google.png username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp makefile_arm_logo.mk username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp synsetWordsLogoDet.txt username@targetname:targetloc/arm_compute/'), end

Perform the steps below to copy all the required files when running from Windows

if ispc, system('pscp.exe -pw password logonet_predict_rtw.mk username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password coderdemo_google.png username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password makefile_arm_logo.mk username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password synsetWordsLogoDet.txt username@targetname:targetloc/arm_compute/'), end

Build the Library on the Target Hardware

To build the library on the target hardware, execute the generated makefile on the ARM hardware.

Make sure that you set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
target hardware. See “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder). The
ARM_ARCH variable is used in the Makefile to pass compiler flags based on Arm Architecture.
ARM_VER variable is used in the Makefile to compile the code based on Arm Compute Version.
Replace the hardware credentials and paths in these commands similar to previous section.

Perform the below steps to build the library from Linux.

if isunix, system('sshpass -p password scp main_arm_logo.cpp username@targetname:targetloc/arm_compute/'), end
if isunix, system(['sshpass -p password ssh username@targetname "make -C targetloc/arm_compute/ -f logonet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Perform the below steps to build the library from windows.

if ispc, system('pscp.exe -pw password main_arm_logo.cpp username@targetname:targetloc/arm_compute/'), end
if ispc, system(['plink.exe -l username -pw password targetname "make -C targetloc/arm_compute/ -f logonet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

21 Deep Learning Code Generation

21-92



Create Executable from the Library on the Target Hardware

Build the library with the source main wrapper file to create the executable. main_arm_logo.cpp is
the C++ main wrapper file which invokes the logonet_predict function.

Run the below command to create the executable from Linux.

if isunix, system('sshpass -p password ssh username@targetname "make -C targetloc/arm_compute/ -f makefile_arm_logo.mk targetDirName=targetloc/arm_compute"'), end

Run the below command to create the executable from Windows.

if ispc, system('plink.exe -l username -pw password targetname "make -C targetloc/arm_compute/ -f makefile_arm_logo.mk targetDirName=targetloc/arm_compute"'), end

Run the Executable on the Target Hardware

Run the executable from Linux using below command.

if isunix, system('sshpass -p password ssh username@targetname "cd targetloc/arm_compute/; ./logonet coderdemo_google.png"'), end

Run the executable from Windows using below command.

if ispc, system('plink.exe -l username -pw password targetname "cd targetloc/arm_compute/; ./logonet coderdemo_google.png"'), end

Top 5 Predictions:
-----------------------------
99.992% google
0.003% corona
0.003% singha
0.001% esso
0.000% fedex

 Deep Learning Prediction with ARM Compute Using codegen

21-93



Deep Learning Code Generation on Intel Targets for Different
Batch Sizes

This example shows how to use the codegen command to generate code for an image classification
application that uses deep learning on Intel® processors. The generated code uses the Intel Math
Kernel Library for Deep Neural Networks (MKL-DNN). This example consists of two parts:

• The first part shows how to generate a MEX function that accepts a batch of images as input.
• The second part shows how to generate an executable that accepts a batch of images as input.

Prerequisites

• Intel processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2) instructions
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Environment variables for the compilers and libraries. For information on the supported versions

of compilers, see Supported Compilers. For setting up the environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

This example is supported on Linux® , Windows® and Mac® platforms and not supported for
MATLAB Online.

Download input video File

Download a sample video file.

   if ~exist('./object_class.avi', 'file')
       url = 'https://www.mathworks.com/supportfiles/gpucoder/media/object_class.avi.zip';
       websave('object_class.avi.zip',url);
       unzip('object_class.avi.zip');
   end

Define the resnet_predict Function

This example uses the DAG network ResNet-50 to show image classification on Intel desktops. A
pretrained ResNet-50 model for MATLAB is available as part of the support package Deep Learning
Toolbox Model for ResNet-50 Network.

The resnet_predict function loads the ResNet-50 network into a persistent network object and
then performs prediction on the input. Subsequent calls to the function reuse the persistent network
object.

type resnet_predict

% Copyright 2020 The MathWorks, Inc.

function out = resnet_predict(in) 
%#codegen

% A persistent object mynet is used to load the series network object. At
% the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is
% reused to call predict on inputs, avoiding reconstructing and reloading

21 Deep Learning Code Generation

21-94

https://www.mathworks.com/support/requirements/supported-compilers.html


% the network object.

persistent mynet;

if isempty(mynet)
    % Call the function resnet50 that returns a DAG network
    % for ResNet-50 model.
    mynet = coder.loadDeepLearningNetwork('resnet50','resnet');
end

% pass in input   
out = mynet.predict(in);

Generate MEX for resnet_predict

To generate a MEX function for the resnet_predict function, use codegen with a deep learning
configuration object for the MKL-DNN library. Attach the deep learning configuration object to the
MEX code generation configuration object that you pass to codegen. Run the codegen command
and specify the input as a 4D matrix of size [224,224,3,|batchSize|]. This value corresponds to the
input layer size of the ResNet-50 network.

    batchSize = 5;
    cfg = coder.config('mex');
    cfg.TargetLang = 'C++';
    cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
    codegen -config cfg resnet_predict -args {ones(224,224,3,batchSize,'single')} -report

Code generation successful: To view the report, open('codegen\mex\resnet_predict\html\report.mldatx')

Perform Prediction on a Batch of Images

Presuming the Object_class.avi video file is already downloaded. Create the videoReader object and
read five frames using videoReader read function.Since batchSize is set to 5 read 5 images .Resize
the batch of input images to size needed by resnet50 size expected by ResNet50 network.

   videoReader = VideoReader('Object_class.avi');
   imBatch = read(videoReader,[1 5]);
   imBatch = imresize(imBatch, [224,224]);

Call the generated resnet_predict_mex function which outputs classification results for the inputs
that you provide.

   predict_scores = resnet_predict_mex(single(imBatch));

Get top 5 probability scores and their labels for each image in the batch.

   [val,indx] = sort(transpose(predict_scores), 'descend');
   scores = val(1:5,:)*100;
   net = resnet50;
   classnames = net.Layers(end).ClassNames;
   for i = 1:batchSize
       labels = classnames(indx(1:5,i));
       disp(['Top 5 predictions on image, ', num2str(i)]);
       for j=1:5
           disp([labels{j},' ',num2str(scores(j,i), '%2.2f'),'%'])
       end
   end

 Deep Learning Code Generation on Intel Targets for Different Batch Sizes

21-95



For predictions on the first image, map the top five prediction scores to words in the synset
dictionary.

   fid = fopen('synsetWords.txt');
   synsetOut = textscan(fid,'%s', 'delimiter', '\n');
   synsetOut = synsetOut{1};
   fclose(fid);
   [val,indx] = sort(transpose(predict_scores), 'descend');
   scores = val(1:5,1)*100;
   top5labels = synsetOut(indx(1:5,1));

Display the top five classification labels on the image.

   outputImage = zeros(224,400,3, 'uint8');
   for k = 1:3
       outputImage(:,177:end,k) = imBatch(:,:,k,1);
   end

   scol = 1;
   srow = 1;
   outputImage = insertText(outputImage, [scol, srow], 'Classification with ResNet-50', 'TextColor', 'w','FontSize',20, 'BoxColor', 'black');
   srow = srow + 30;
   for k = 1:5
       outputImage = insertText(outputImage, [scol, srow], [top5labels{k},' ',num2str(scores(k), '%2.2f'),'%'], 'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
       srow = srow + 25;
   end

   imshow(outputImage);

Clear the persistent network object from memory.

clear mex;

21 Deep Learning Code Generation

21-96



Define the resnet_predict_exe Entry-Point Function

To generate an executable from MATLAB code, define a new entry-point function
resnet_predict_exe. This function is similar to the previous entry-point function
resent_predict but, in addition, includes code for preprocessing and postprocessing. The API that
resnet_predict_exe uses is platform independent. This function accepts a video and the batch
size as input arguments. These arguments are compile-time constants.

type resnet_predict_exe

% Copyright 2020 The MathWorks, Inc.

function resnet_predict_exe(inputVideo,batchSize) 
%#codegen

    % A persistent object mynet is used to load the series network object.
    % At the first call to this function, the persistent object is constructed and
    % setup. When the function is called subsequent times, the same object is reused 
    % to call predict on inputs, avoiding reconstructing and reloading the
    % network object.
    persistent mynet;

    if isempty(mynet)
        % Call the function resnet50 that returns a DAG network
        % for ResNet-50 model.
        mynet = coder.loadDeepLearningNetwork('resnet50','resnet');
    end

    % Create video reader and video player objects %
    videoReader = VideoReader(inputVideo);
    depVideoPlayer = vision.DeployableVideoPlayer;

    % Read the classification label names %
    synsetOut = readImageClassLabels('synsetWords.txt');

    i=1;
    % Read frames until end of video file %
    while ~(i+batchSize > (videoReader.NumFrames+1))
        % Read and resize batch of frames as specified by input argument%
        reSizedImagesBatch = readImageInputBatch(videoReader,batchSize,i);

        % run predict on resized input images %
        predict_scores = mynet.predict(reSizedImagesBatch);

        % overlay the prediction scores on images and display %
        overlayResultsOnImages(predict_scores,synsetOut,reSizedImagesBatch,batchSize,depVideoPlayer)

        i = i+ batchSize; 
    end
    release(depVideoPlayer);
end

function synsetOut = readImageClassLabels(classLabelsFile)
% Read the classification label names from the file 
%

 Deep Learning Code Generation on Intel Targets for Different Batch Sizes

21-97



% Inputs : 
% classLabelsFile - supplied by user
%
% Outputs : 
% synsetOut       - cell array filled with 1000 image class labels

    synsetOut = cell(1000,1);
    fid = fopen(classLabelsFile);
    for i = 1:1000
        synsetOut{i} = fgetl(fid);
    end
    fclose(fid);
end

function reSizedImagesBatch = readImageInputBatch(videoReader,batchSize,i)
% Read and resize batch of frames as specified by input argument%
%
% Inputs : 
% videoReader - Object used for reading the images from video file
% batchSize   - Number of images in batch to process. Supplied by user
% i           - index to track frames read from video file
%
% Outputs : 
% reSizedImagesBatch - Batch of images resized to 224x224x3xbatchsize

    img = read(videoReader,[i (i+batchSize-1)]);
    reSizedImagesBatch = coder.nullcopy(ones(224,224,3,batchSize,'like',img));
    resizeTo  = coder.const([224,224]);
    reSizedImagesBatch(:,:,:,:) = imresize(img,resizeTo);
end

function overlayResultsOnImages(predict_scores,synsetOut,reSizedImagesBatch,batchSize,depVideoPlayer)
% Read and resize batch of frames as specified by input argument%
%
% Inputs : 
% predict_scores  - classification results for given network
% synsetOut       - cell array filled with 1000 image class labels
% reSizedImagesBatch - Batch of images resized to 224x224x3xbatchsize
% batchSize       - Number of images in batch to process. Supplied by user
% depVideoPlayer  - Object for displaying results
%
% Outputs : 
% Predicted results overlayed on input images

    % sort the predicted scores  %
    [val,indx] = sort(transpose(predict_scores), 'descend');

    for j = 1:batchSize
        scores = val(1:5,j)*100;
        outputImage = zeros(224,400,3, 'uint8');
        for k = 1:3
            outputImage(:,177:end,k) = reSizedImagesBatch(:,:,k,j);
        end

        % Overlay the results on image %
        scol = 1;
        srow = 1;

21 Deep Learning Code Generation

21-98



        outputImage = insertText(outputImage, [scol, srow], 'Classification with ResNet-50', 'TextColor', [255 255 255],'FontSize',20, 'BoxColor', [0 0 0]);
        srow = srow + 30;
        for k = 1:5
            scoreStr = sprintf('%2.2f',scores(k));
            outputImage = insertText(outputImage, [scol, srow], [synsetOut{indx(k,j)},' ',scoreStr,'%'], 'TextColor', [255 255 255],'FontSize',15, 'BoxColor', [0 0 0]);
            srow = srow + 25;
        end
    
        depVideoPlayer(outputImage);
    end
end

Structure of the resnet_predict_exe Function

The function resnet_predict_exe contains four subsections that perform these actions:

• Read the classification labels from supplied input text file
• Read the input batch of images and resize them as needed by the network
• Run inference on input image batch
• Overlay the results on the images

For more information each of these steps, see the subsequent sections.

The readImageClassLabels Function

This function accepts the synsetWords.txt file as an input argument. It reads the classification
labels and populates a cell array.

       function synsetOut = readImageClassLabels(classLabelsFile)
       % Read the classification label names from the file
       %
       % Inputs :
       % classLabelsFile - supplied by user
       %
       % Outputs :
       % synsetOut       - cell array filled with 1000 image class labels

           synsetOut = cell(1000,1);
           fid = fopen(classLabelsFile);
           for i = 1:1000
               synsetOut{i} = fgetl(fid);
           end
           fclose(fid);
       end

The readImageInputBatch Function

This function reads and resizes the images from the video input file that is passed to the function as
an input argument. It reads the specified input images and resizes them to 224x224x3 which is the
size the resnet50 network expects.

       function reSizedImagesBatch = readImageInputBatch(videoReader,batchSize,i)
       % Read and resize batch of frames as specified by input argument%
       %
       % Inputs :

 Deep Learning Code Generation on Intel Targets for Different Batch Sizes

21-99



       % videoReader - Object used for reading the images from video file
       % batchSize   - Number of images in batch to process. Supplied by user
       % i           - index to track frames read from video file
       %
       % Outputs :
       % reSizedImagesBatch - Batch of images resized to 224x224x3xbatchsize

           img = read(videoReader,[i (i+batchSize-1)]);
           reSizedImagesBatch = coder.nullcopy(ones(224,224,3,batchSize,'like',img));
           resizeTo  = coder.const([224,224]);
           reSizedImagesBatch(:,:,:,:) = imresize(img,resizeTo);
       end

The mynet.predict Function

This function accepts the resized batch of images as input and returns the prediction results.

      % run predict on resized input images %
      predict_scores = mynet.predict(reSizedImagesBatch);

The overlayResultsOnImages Function

This function accepts the prediction results and sorts them in descending order. It overlays these
results on the input images and displays them.

       function overlayResultsOnImages(predict_scores,synsetOut,reSizedImagesBatch,batchSize,depVideoPlayer)
       % Read and resize batch of frames as specified by input argument%
       %
       % Inputs :
       % predict_scores  - classification results for given network
       % synsetOut       - cell array filled with 1000 image class labels
       % reSizedImagesBatch - Batch of images resized to 224x224x3xbatchsize
       % batchSize       - Number of images in batch to process. Supplied by user
       % depVideoPlayer  - Object for displaying results
       %
       % Outputs :
       % Predicted results overlayed on input images

           % sort the predicted scores  %
           [val,indx] = sort(transpose(predict_scores), 'descend');

           for j = 1:batchSize
               scores = val(1:5,j)*100;
               outputImage = zeros(224,400,3, 'uint8');
               for k = 1:3
                   outputImage(:,177:end,k) = reSizedImagesBatch(:,:,k,j);
               end

               % Overlay the results on image %
               scol = 1;
               srow = 1;
               outputImage = insertText(outputImage, [scol, srow], 'Classification with ResNet-50', 'TextColor', [255 255 255],'FontSize',20, 'BoxColor', [0 0 0]);
               srow = srow + 30;
               for k = 1:5
                   scoreStr = sprintf('%2.2f',scores(k));
                   outputImage = insertText(outputImage, [scol, srow], [synsetOut{indx(k,j)},' ',scoreStr,'%'], 'TextColor', [255 255 255],'FontSize',15, 'BoxColor', [0 0 0]);
                   srow = srow + 25;
               end

21 Deep Learning Code Generation

21-100



               depVideoPlayer(outputImage);
           end
       end

Build and Run Executable

Create a code configuration object for generating an executable. Attach a deep learning configuration
object to it. Set the batchSize and inputVideoFile variables.

If you do not intend to create a custom C++ main function and use the generated example C++ main
instead, set the GenerateExampleMain parameter to 'GenerateCodeAndCompile'. Also, disable
cfg.EnableOpenMP to make sure there are no openmp library dependencies when you run your
executable from the desktop terminal.

       cfg = coder.config('exe');
       cfg.TargetLang = 'C++';
       cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
       batchSize = 5;
       inputVideoFile = 'object_class.avi';
       cfg.GenerateExampleMain = 'GenerateCodeAndCompile';
       cfg.EnableOpenMP = 0;

Run the codegen command to build the executable. Run the generated executable
resnet_predict_exe either at the MATLAB command line or at the desktop terminal.

       codegen -config cfg resnet_predict_exe -args {coder.Constant(inputVideoFile), coder.Constant(batchSize)} -report
       system('./resnet_predict_exe')

 Deep Learning Code Generation on Intel Targets for Different Batch Sizes

21-101



See Also

Related Examples
• “Deep Learning in MATLAB” on page 1-2

21 Deep Learning Code Generation

21-102



Generate C++ Code for Object Detection Using YOLO v2 and
Intel MKL-DNN

This example shows how to generate C++ code for the YOLO v2 Object detection network on an
Intel® processor. The generated code uses the Intel Math Kernel Library for Deep Neural Networks
(MKL-DNN).

For more information, see “Object Detection Using YOLO v2 Deep Learning” (Computer Vision
Toolbox).

Prerequisites

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Refer MKLDNN CPU Support to know the list of processors that supports MKL-DNN library
• MATLAB® Coder™ for C++ code generation
• MATLAB Coder Interface for Deep Learning support package
• Deep Learning Toolbox™ for using the DAGNetwork object
• Computer Vision Toolbox™ for video I/O operations

For more information on the supported versions of the compilers and libraries, see “Generate Code
That Uses Third-Party Libraries” (MATLAB Coder).

This example is supported on Linux®, Windows®, and macOS platforms and not supported for
MATLAB Online.

Get the Pretrained DAGNetwork Object

The DAG network contains 150 layers including convolution, ReLU, and batch normalization layers
and the YOLO v2 transform and YOLO v2 output layers.

net = getYOLOv2();

Downloading pretrained detector (98 MB)...

Use the command net.Layers to see all the layers of the network.

net.Layers

Code Generation for yolov2_detection Function

The yolov2_detection function attached with the example takes an image input and runs the
detector on the image using the network saved in yolov2ResNet50VehicleExample.mat. The
function loads the network object from yolov2ResNet50VehicleExample.mat into a persistent
variable yolov2Obj. Subsequent calls to the function reuse the persistent object for detection.

type('yolov2_detection.m')

function outImg = yolov2_detection(in)

%   Copyright 2018-2019 The MathWorks, Inc.

% A persistent object yolov2Obj is used to load the YOLOv2ObjectDetector object.

 Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN

21-103

https://github.com/intel/mkl-dnn#cpu-support


% At the first call to this function, the persistent object is constructed and
% set up. Subsequent calls to the function reuse the same object to call detection 
% on inputs, thus avoiding having to reconstruct and reload the
% network object.
persistent yolov2Obj;

if isempty(yolov2Obj)
    yolov2Obj = coder.loadDeepLearningNetwork('yolov2ResNet50VehicleExample.mat');
end

% pass in input
[bboxes,~,labels] = yolov2Obj.detect(in,'Threshold',0.5);
outImg = in;

% convert categorical labels to cell array of character vectors 
labels = cellstr(labels);

if ~(isempty(bboxes) && isempty(labels))
% Annotate detections in the image.
    outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);
end

To generate code, create a code configuration object for a MEX target and set the target language to
C++. Use the coder.DeepLearningConfig function to create a MKL-DNN deep learning
configuration object. Assign this object to the DeepLearningConfig property of the code
configuration object. Specify the input size as an argument to the codegen command. In this
example, the input layer size of the YOLO v2 network is [224,224,3].

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
codegen -config cfg yolov2_detection -args {ones(224,224,3,'uint8')} -report

Code generation successful: To view the report, open('codegen/mex/yolov2_detection/html/report.mldatx').

Run the Generated MEX Function on Example Input

Set up a video file reader and read the example input video highway_lanechange.mp4. Create a
video player to display the video and the output detections.

videoFile = 'highway_lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
depVideoPlayer = vision.DeployableVideoPlayer('Size','Custom','CustomSize',[640 480]);

Read the video input frame by frame and detect the vehicles in the video by using the detector.

cont = ~isDone(videoFreader);
while cont
    I = step(videoFreader);
    in = imresize(I,[224,224]);
    out = yolov2_detection_mex(in);
    depVideoPlayer(out);
    cont = ~isDone(videoFreader) && isOpen(depVideoPlayer); % Exit the loop if the video player figure window is closed
end

21 Deep Learning Code Generation

21-104



References

[1] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017.

See Also
coder.DeepLearningConfig | coder.hardware

More About
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” (MATLAB Coder)
• “Workflow for Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder)

 Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN

21-105



Code Generation and Deployment of MobileNet-v2 Network to
Raspberry Pi

This example shows how to generate and deploy C++ code that uses the MobileNet-v2 pretrained
network for object prediction.

Prerequisites

• ARM processor that supports the NEON extension
• ARM Compute Library (on the target ARM hardware)
• Open Source Computer Vision Library(OpenCV) v2.4 (on the target ARM hardware)
• Environment variables for the compilers and libraries
• MATLAB® Coder™
• MATLAB Coder Interface for Deep Learning support package
• Deep Learning Toolbox™
• Deep Learning Toolbox Model for MobileNet-v2 Network support package
• Image Processing Toolbox™
• MATLAB Support Package for Raspberry Pi Hardware

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For supported versions of libraries and for information about setting up
environment variables, see “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

This example is not supported for MATLAB online.

This example uses the DAG network MobileNet-v2 to perform image classification with the ARM®
Compute Library. The pretrained MobileNet-v2 network for MATLAB is available in the Deep
Learning Toolbox Model for MobileNet-v2 Network support package.

When you generate code that uses the ARM Compute Library and a hardware support package,
codegen generates code on the host computer, copies the generated files to the target hardware, and
builds the executable on the target hardware.

Configure Code Generation for the mobilenet_predict Function

The mobilenet_predict function calls the predict method of the MobileNet-v2 network object on
an input image and returns the prediction score output. The function calls
coder.updateBuildInfo to specify linking options for the generated makefile.

type mobilenet_predict

function out = mobilenet_predict(in)

persistent net;
opencv_linkflags = '`pkg-config --cflags --libs opencv`';
coder.updateBuildInfo('addLinkFlags',opencv_linkflags);
if isempty(net)
    net = coder.loadDeepLearningNetwork('mobilenetv2', 'mobilenet');
end

21 Deep Learning Code Generation

21-106



out = net.predict(in);

end

Create a C++ code generation configuration object.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Specify Use of the ARM Compute Library. The ARM Compute Library provides optimized functionality
for the Raspberry Pi hardware. To generate code that uses the ARM Compute Library, create a
coder.ARMNEONConfig object. Specify the version of the ARM Compute Library installed on your
Raspberry Pi and the architecture of the Raspberry Pi. Attach the deep learning configuration object
to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('arm-compute');
supportedVersions = dlcfg.getARMComputeSupportedVersions;
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '20.02.1';
cfg.DeepLearningConfig = dlcfg;

Create a Connection to the Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Hardware function raspi to create a connection
to the Raspberry Pi. In this code, replace:

• raspiname with the host name of your Raspberry Pi
• username with your user name
• password with your password

r = raspi('raspiname','username','password');

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.Hardware object for the Raspberry Pi and attach it to the code generation
configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify a build folder on the Raspberry Pi:

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;

Provide a C++ Main File

Specify the main file main_mobilenet.cpp in the code generation configuration object. The file
calls the generated C++ code for the mobilenet_predict function. The file reads the input image,
passes the data to the generated function calls, retrieves the predictions on the image, and prints the
prediction scores to a file.

cfg.CustomSource = 'main_mobilenet.cpp';

 Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi

21-107



Generate the Executable Program on the Raspberry Pi

Generate C++ code. When you use codegen with the MATLAB Support Package for Raspberry PI
Hardware, the executable is built on the Raspberry Pi.

For code generation, you must set the “Environment Variables” (MATLAB Coder) ARM_COMPUTELIB
and LD_LIBRARY_PATH on the Raspberry Pi.

codegen -config cfg mobilenet_predict -args {ones(224, 224, 3,'single')} -report

Fetch the Generated Executable Folder

To test the generated code on the Raspberry Pi, copy the input image to the generated code folder.
You can find this folder manually or by using the raspi.utils.getRemoteBuildDirectory API.
This function lists the folders of the binary files that are generated by using codegen. Assuming that
the binary is found in only one folder, enter:

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName','mobilenet_predict');
targetDirPath = applicationDirPaths{1}.directory;

Copy Example Files to the Raspberry Pi

To copy files required to run the executable program, use putFile.

r.putFile('peppers_raspi_mobilenet.png',targetDirPath);

Run the Executable Program on the Raspberry Pi

Run the executable program on the Raspberry Pi from MATLAB and direct the output back to
MATLAB.

exeName = 'mobilenet_predict.elf';
argsforexe = ' peppers_raspi_mobilenet.png '; % Provide the input image;
command = ['cd ' targetDirPath ';sudo ./' exeName argsforexe];
output = system(r,command);

Get the Prediction Scores for the 1000 Output Classes of the Network

outputfile = [targetDirPath, '/output.txt'];
r.getFile(outputfile);

Map the Prediction Scores to Labels and Display Output

Map the top five prediction scores to the corresponding labels in the trained network, and display the
output.

type mapPredictedScores_mobilenet

%% Map the Prediction Scores to Labels and Display Output
net = mobilenetv2;
ClassNames = net.Layers(end).ClassNames;

%% Read the classification
fid = fopen('output.txt') ;
S = textscan(fid,'%s');
fclose(fid) ;
S = S{1} ;

21 Deep Learning Code Generation

21-108



predict_scores = cellfun(@(x)str2double(x), S);

%% Remove NaN values that were strings
predict_scores(isnan(predict_scores))=[];
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
top5labels = ClassNames(indx(1:5));

%% Display classification labels on the image
im = imread('peppers_raspi_mobilenet.png');
im = imresize(im, [224 224]);
outputImage = zeros(224,400,3, 'uint8');
for k = 1:3
    outputImage(:,177:end,k) = im(:,:,k);
end
scol = 1;
srow = 1;
outputImage = insertText(outputImage, [scol, srow], 'Classification with MobileNetv2', 'TextColor', 'w','FontSize',20, 'BoxColor', 'black');
srow = srow + 30;
for k = 1:5
    outputImage = insertText(outputImage, [scol, srow], [top5labels{k},' ',num2str(scores(k), '%2.2f'),'%'], 'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
    srow = srow + 25;
end
imshow(outputImage);

See Also
coder.ARMNEONConfig | coder.DeepLearningConfig | coder.hardware

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” (MATLAB Coder)
• “Code Generation for Deep Learning on ARM Targets” (MATLAB Coder)

 Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi

21-109



Code Generation for Semantic Segmentation Application on
Intel CPUs That Uses U-Net

This example demonstrates code generation for an image segmentation application that uses deep
learning. It uses the codegen command to generate a MEX function that performs prediction by
using the deep learning network U-Net for image segmentation.

For a similar example that demonstrates segmentation of images by using U-Net but does not use the
codegen command, see “Semantic Segmentation of Multispectral Images Using Deep Learning”
(Image Processing Toolbox).

Third-Party Prerequisites

• Xeon processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2) instructions

This example is supported on Linux®, Windows®, and macOS platforms.

This example uses the Intel MKL-DNN library that ships with MATLAB and generates a MEX function
for semantic segmentation.

This example is not supported in MATLAB Online.

Overview of U-Net

U-Net [1] is a type of convolutional neural network (CNN)that is designed for semantic image
segmentation. In U-Net, the initial series of convolutional layers are interspersed with max pooling
layers, successively decreasing the resolution of the input image. These layers are followed by a
series of convolutional layers interspersed with upsampling operators, successively increasing the
resolution of the input image. The combination of these two series paths forms a U-shaped graph. The
network was originally trained to perform prediction for biomedical image segmentation applications.
This example demonstrates the ability of the network to track changes in forest cover over time.
Environmental agencies track deforestation to assess and qualify the environmental and ecological
health of a region.

Deep-learning-based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One of the challenges is differentiating classes that have
similar visual characteristics, such as trying to classify a green pixel as grass, shrubbery, or tree. To
increase classification accuracy, some data sets contain multispectral images that provide additional
information about each pixel. For example, the Hamlin Beach State Park data set supplements the
color images with near-infrared channels that provide a clearer separation of the classes.

This example uses the Hamlin Beach State Park Data [2] along with a pretrained U-Net network in
order to correctly classify each pixel.

The U-Net this example uses is trained to segment pixels belonging to 18 classes which includes:

0. Other Class/Image Border      7. Picnic Table         14. Grass
1. Road Markings                 8. Black Wood Panel     15. Sand
2. Tree                          9. White Wood Panel     16. Water (Lake)
3. Building                     10. Orange Landing Pad   17. Water (Pond)
4. Vehicle (Car, Truck, or Bus) 11. Water Buoy           18. Asphalt (Parking Lot/Walkway)
5. Person                       12. Rocks
6. Lifeguard Chair              13. Other Vegetation

21 Deep Learning Code Generation

21-110



Get Pretrained U-Net DAG Network Object

trainedUnet_url = 'https://www.mathworks.com/supportfiles/vision/data/multispectralUnet.mat';
downloadTrainedUnet(trainedUnet_url,pwd);

Downloading Pre-trained U-net for Hamlin Beach dataset...
This will take several minutes to download...
done.

trainedUnetFile = "trainedUnet/multispectralUnet.mat";
ld = load("trainedUnet/multispectralUnet.mat");
net = ld.net;

The DAG network contains 58 layers including convolution, max pooling, depth concatenation, and
pixel classification output layers. To display an interactive visualization of the deep learning network
architecture, use the analyzeNetwork function.

%   analyzeNetwork(net);

The segmentImageUnet Entry-Point Function

The segmentImageUnet entry-point function performs semantic segmentation on the input image
for each patch of a fixed size by using the multispectralUnet network contained in the
multispectralUnet.mat file. This function loads the network object from the
multispectralUnet.mat file into a persistent variable mynet. The function reuses this persistent
variable in subsequent prediction calls.

type('segmentImageUnet.m')

function out = segmentImageUnet(im,patchSize,trainedNet)  
%  OUT = segmentImageUnet(IM,patchSize,trainedNet) returns a semantically
%  segmented image, segmented using the multi-spectral Unet specified in
%  trainedNet. The segmentation is performed over each patch of size
%  patchSize.
%
% Copyright 2019-2022 The MathWorks, Inc.

%#codegen
persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork(trainedNet);
end

[height, width, nChannel] = size(im);
patch = coder.nullcopy(zeros([patchSize, nChannel-1]));

% Pad image to have dimensions as multiples of patchSize
padSize = zeros(1,2);
padSize(1) = patchSize(1) - mod(height, patchSize(1));
padSize(2) = patchSize(2) - mod(width, patchSize(2));

im_pad = padarray (im, padSize, 0, 'post');
[height_pad, width_pad, ~] = size(im_pad);

out = zeros([size(im_pad,1), size(im_pad,2)], 'uint8');

 Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net

21-111



for i = 1:patchSize(1):height_pad    
    for j =1:patchSize(2):width_pad        
        for p = 1:nChannel-1              
            patch(:,:,p) = squeeze( im_pad( i:i+patchSize(1)-1,...
                                            j:j+patchSize(2)-1,...
                                            p));            
        end
         
        % Pass in input
        segmentedLabels = activations(mynet, patch, 'Segmentation-Layer');
        
        % Takes the max of each channel (6 total at this point)
        [~,L] = max(segmentedLabels,[],3);
        patch_seg = uint8(L);
        
        % Populate section of output
        out(i:i+patchSize(1)-1, j:j+patchSize(2)-1) = patch_seg;
       
    end
end

% Remove the padding
out = out(1:height, 1:width);

Prepare Data

Download the Hamlin Beach State Park data.

if ~exist(fullfile(pwd,'data'),'dir')
    url = 'https://home.cis.rit.edu/~cnspci/other/data/rit18_data.mat';
    downloadHamlinBeachMSIData(url,pwd+"/data/");
end

Downloading Hamlin Beach dataset...
This will take several minutes to download...
done.

Load and examine the data in MATLAB.

load(fullfile(pwd,'data','rit18_data','rit18_data.mat'));

% Examine data
whos test_data

  Name           Size                         Bytes  Class     Attributes

  test_data      7x12446x7654            1333663576  uint16              

The image has seven channels. The RGB color channels are the fourth, fifth, and sixth image
channels. The first three channels correspond to the near-infrared bands and highlight different
components of the image based on their heat signatures. Channel 7 is a mask that indicates the valid
segmentation region.

The multispectral image data is arranged as numChannels-by-width-by-height arrays. In MATLAB,
multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape the data so

21 Deep Learning Code Generation

21-112



that the channels are in the third dimension, use the helper function,
switchChannelsToThirdPlane.

test_data  = switchChannelsToThirdPlane(test_data);

Confirm data has the correct structure (channels last).

whos test_data

  Name               Size                     Bytes  Class     Attributes

  test_data      12446x7654x7            1333663576  uint16              

This example uses a cropped version of the full Hamlin Beach State Park dataset that the test_data
variable contains. Crop the height and width of test_data to create the variable input_data that
this example uses.

test_datacropRGB = imcrop(test_data(:,:,1:3),[2600, 3000, 2000, 2000]);
test_datacropInfrared = imcrop(test_data(:,:,4:6),[2600, 3000, 2000, 2000]);
test_datacropMask = imcrop(test_data(:,:,7),[2600, 3000, 2000, 2000]);
input_data(:,:,1:3) = test_datacropRGB;
input_data(:,:,4:6) = test_datacropInfrared;
input_data(:,:,7) = test_datacropMask;

Examine the input_data variable.

whos('input_data');

  Name               Size                   Bytes  Class     Attributes

  input_data      2001x2001x7            56056014  uint16              

Generate MEX

To generate a MEX function for the segmentImageUnet.m entry-point function, create a code
configuration object cfg for MEX code generation. Set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create an MKL-DNN deep learning
configuration object and assign it to the DeepLearningConfig property of cfg. Run the codegen
command specifying an input size of [12446,7654,7] and a patch size of [1024,1024]. These values
correspond to the size of the entire input_data variable. The smaller patch sizes speed up
inference. To see how the patches are calculated, see the segmentImageUnet entry-point function.

cfg = coder.config('mex');
cfg.ConstantInputs = 'Remove';
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
codegen -config cfg segmentImageUnet -args {ones(size(input_data),'uint16'),coder.Constant([1024 1024]),coder.Constant(trainedUnetFile)} -report

Code generation successful: To view the report, open('codegen\mex\segmentImageUnet\html\report.mldatx')

Run Generated MEX to Predict Results for input_data

The segmentImageUnet function accepts input_data and a vector containing the dimensions of
the patch size as inputs. The function divides the image into patches, predicts the pixels in a

 Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net

21-113



particular patch, and finally combines all the patches. Because of the large size of input_data
(12446x7654x7), it is easier to process the image in patches.

segmentedImage = segmentImageUnet_mex(input_data);

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the test data.

segmentedImage = uint8(input_data(:,:,7)~=0) .* segmentedImage;

Remove the noise and stray pixels by using the medfilt2 function.

segmentedImage = medfilt2(segmentedImage,[5,5]);

Display U-Net Segmented input_data

This line of code creates a vector of the class names:

classNames = net.Layers(end).Classes;

Overlay the labels on the segmented RGB test image and add a color bar to the segmentation image.

% Display input data

figure(1);
imshow(histeq(input_data(:,:,1:3)));
title('Input Image');
cmap = jet(numel(classNames));
segmentedImageOut = labeloverlay(imadjust(input_data(:,:,4:6),[0 0.6],[0.1 0.9],0.55),segmentedImage,'Transparency',0,'Colormap',cmap);

% Display segmented data

figure(2);
imshow(segmentedImageOut);
title('Segmented Image Output');
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,'TickLabelInterpreter','none');
colormap(cmap)
title('Segmented Image using Mkldnn');
segmentedImageOverlay = labeloverlay(imadjust(input_data(:,:,4:6),[0 0.6],[0.1 0.9],0.55),segmentedImage,'Transparency',0.7,'Colormap',cmap);
figure(3);
imshow(segmentedImageOverlay);
title('Segmented Overlay Image');

21 Deep Learning Code Generation

21-114



 Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net

21-115



21 Deep Learning Code Generation

21-116



References

[1] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for
Biomedical Image Segmentation." arXiv preprint arXiv:1505.04597, 2015.

[2] Kemker, R., C. Salvaggio, and C. Kanan. "High-Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918, 2017.

[3] Kemker, Ronald, Carl Salvaggio, and Christopher Kanan. "Algorithms for Semantic Segmentation
of Multispectral Remote Sensing Imagery Using Deep Learning." ISPRS Journal of Photogrammetry
and Remote Sensing, Deep Learning RS Data, 145 (November 1, 2018): 60-77. https://doi.org/
10.1016/j.isprsjprs.2018.04.014.

See Also
coder.DeepLearningConfig | coder.hardware | analyzeNetwork

 Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net

21-117

https://doi.org/10.1016/j.isprsjprs.2018.04.014
https://doi.org/10.1016/j.isprsjprs.2018.04.014


More About
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” (MATLAB Coder)
• “Workflow for Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder)
• “Semantic Segmentation of Multispectral Images Using Deep Learning” (Image Processing

Toolbox)

21 Deep Learning Code Generation

21-118



Code Generation for Semantic Segmentation Application on
ARM Neon Targets That Uses U-Net

This example shows how to generate code for an image segmentation application that uses deep
learning. It uses the codegen command to generate a static library that performs prediction on a
DAG Network object for U-Net. U-Net is a deep learning network for image segmentation.

For a similar example that uses U-Net for image segmentation but does not use the codegen
command, see “Semantic Segmentation of Multispectral Images Using Deep Learning” (Image
Processing Toolbox).

Prerequisites

• ARM® processor that supports the NEON extension and has a RAM of at least 3GB
• ARM Compute Library (on the target ARM hardware)
• Environment variables for the compilers and libraries
• MATLAB® Coder™
• MATLAB Coder Interface for Deep Learning support package
• Deep Learning Toolbox™

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For information about supported versions of libraries and about environment
variables, see “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

This example is not supported in MATLAB Online.

Overview of U-Net

U-Net [1] is a type of convolutional neural network (CNN) designed for semantic image segmentation.
In U-Net, the initial series of convolutional layers are interspersed with max pooling layers,
successively decreasing the resolution of the input image. These layers are followed by a series of
convolutional layers interspersed with upsampling operators, successively increasing the resolution
of the input image. The combination of these two series paths forms a U-shaped graph. The U-Net
network was originally trained to perform prediction on biomedical image segmentation applications.
This example demonstrates the ability of the network to track changes in forest cover over time.
Environmental agencies track deforestation to assess and qualify the environmental and ecological
health of a region.

Deep learning based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One of the challenges of such computation is to
differentiating classes that have similar visual characteristics, such as classifying a green pixel as
grass, shrubbery, or tree. To increase classification accuracy, some data sets contain multispectral
images that provide additional information about each pixel. For example, the Hamlin Beach State
Park data set supplements the color images with near-infrared channels that provide a clearer
separation of the classes.

This example uses the Hamlin Beach State Park Data [2] along with a pretrained U-Net network to
correctly classify each pixel.

The U-Net that this example uses is trained to segment pixels belonging to a set of 18 classes which
includes:

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

21-119



0. Other Class/Image Border      7. Picnic Table         14. Grass
1. Road Markings                 8. Black Wood Panel     15. Sand
2. Tree                          9. White Wood Panel     16. Water (Lake)
3. Building                     10. Orange Landing Pad   17. Water (Pond)
4. Vehicle (Car, Truck, or Bus) 11. Water Buoy           18. Asphalt (Parking Lot/Walkway)
5. Person                       12. Rocks
6. Lifeguard Chair              13. Other Vegetation

The segmentationUnetARM Entry-Point Function

The segmentationUnetARM entry-point function performs patchwise semantic segmentation on the
input image by using the multispectralUnet network contained in the multispectralUnet.mat file.
The function loads the network object from the multispectralUnet.mat file into a persistent
variable mynet and reuses the persistent variable on subsequent prediction calls.

type('segmentationUnetARM.m')

%  OUT = segmentationUnetARM(IM) returns a semantically segmented
%  image, which is segmented using the network multispectralUnet. This segmentation
%  is performed on the input image patchwise on patches of size 256,256.
%
% Copyright 2019-2020 The MathWorks, Inc.
function out = segmentationUnetARM(im)

%#codegen

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('trainedUnet/multispectralUnet.mat');
end

% The input data has to be padded to the size compatible
% with the network Input Size. This input_data is padded inorder to
% perform semantic segmentation on each patch of size (Network Input Size)
[height, width, nChannel] = size(im);
patch = coder.nullcopy(zeros([256, 256, nChannel-1]));
% 
padSize = zeros(1,2);
padSize(1) = 256 - mod(height, 256);
padSize(2) = 256 - mod(width, 256);
% 
% Pad image must have have dimensions as multiples of network input dimensions
im_pad = padarray (im, padSize, 0, 'post');
[height_pad, width_pad, ~] = size(im_pad);
% 
out = zeros([size(im_pad,1), size(im_pad,2)], 'uint8');

for i = 1:256:height_pad    
    for j =1:256:width_pad        
        for p = 1:nChannel -1             
            patch(:,:,p) = squeeze( im( i:i+255,...
                                            j:j+255,...
                                            p));            
        end
         
        % pass in input
        segmentedLabels = activations(mynet, patch, 'Segmentation-Layer');

21 Deep Learning Code Generation

21-120



        
        % Takes the max of each channel (6 total at this point)
        [~,L] = max(segmentedLabels,[],3);
        patch_seg = uint8(L);
        
        % populate section of output
        out(i:i+255, j:j+255) = patch_seg;
       
    end
end

% Remove the padding
out = out(1:height, 1:width);

Get Pretrained U-Net DAG Network Object

Download the multispectralUnet.mat file and load the U-Net DAG network object.

if ~exist('trainedUnet/multispectralUnet.mat','file')
    trainedUnet_url = 'https://www.mathworks.com/supportfiles/vision/data/multispectralUnet.mat';
    downloadUNet(trainedUnet_url,pwd);
end

ld = load("trainedUnet/multispectralUnet.mat");
net = ld.net;

The DAG network contains 58 layers that include convolution, max pooling, depth concatenation, and
pixel classification output layers. To display an interactive visualization of the deep learning network
architecture, use the analyzeNetwork function.

analyzeNetwork(net);

Prepare Input Data

Download the Hamlin Beach State Park data.

if ~exist(fullfile(pwd,'data'),'dir')
    url = 'http://home.cis.rit.edu/~cnspci/other/data/rit18_data.mat';
    downloadHamlinBeachMSIData(url,pwd+"/data/");
end

Load and examine the data in MATLAB.

load(fullfile(pwd,'data','rit18_data','rit18_data.mat'));

Examine data

whos test_data

The image has seven channels. The RGB color channels are the fourth, fifth, and sixth image
channels. The first three channels correspond to the near-infrared bands and highlight different
components of the image based on their heat signatures. Channel 7 is a mask that indicates the valid
segmentation region.

The multispectral image data is arranged as numChannels-by-width-by-height arrays. In MATLAB,
multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape the data so
that the channels are in the third dimension, use the helper function,
switchChannelsToThirdPlane.

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

21-121



test_data = switchChannelsToThirdPlane(test_data);

Confirm data has the correct structure (channels last).

whos test_data

This example uses a cropped version of the full Hamlin Beach State Park dataset that the test_data
variable contains. Crop the height and width of test_data to create the variable input_data that
this example uses.

test_datacropRGB = imcrop(test_data(:,:,1:3),[2600, 3000, 2000, 2000]);
test_datacropInfrared = imcrop(test_data(:,:,4:6),[2600, 3000, 2000, 2000]);
test_datacropMask = imcrop(test_data(:,:,7),[2600, 3000, 2000, 2000]);

input_data(:,:,1:3) = test_datacropRGB;
input_data(:,:,4:6) = test_datacropInfrared;
input_data(:,:,7) = test_datacropMask;

Examine the input_data variable.

whos('input_data');

Write the input data into a text file that is passed as input to the generated executable.

WriteInputDatatoTxt(input_data);
[height, width, channels] = size(input_data);

Set Up a Code Generation Configuration Object for a Static Library

To generate code that targets an ARM-based device, create a configuration object for a library. Do not
create a configuration object for an executable program. Set up the configuration object for
generation of C++ source code only.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.GenCodeOnly = true;

Set Up a Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the library version and the architecture of the
target ARM processor. For example, suppose that the target board is a HiKey/Rock960 board with
ARMv8 architecture and ARM Compute Library version 20.02.1.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '20.02.1';
dlcfg.ArmArchitecture = 'armv8';

Assign the DeepLearningConfig property of the code generation configuration object cfg to the
deep learning configuration object dlcfg.

cfg.DeepLearningConfig = dlcfg;

Generate C++ Source Code by Using codegen

codegen -config cfg segmentationUnetARM -args {ones(size(input_data),'uint16')} -d unet_predict -report

The code gets generated in the unet_predict folder that is located in the current working directory
on the host computer.

21 Deep Learning Code Generation

21-122



Generate Zip File by Using packNGo

The packNGo function packages all relevant files into a compressed zip file.

zipFileName = 'unet_predict.zip'; 
bInfo = load(fullfile('unet_predict','buildInfo.mat'));
packNGo(bInfo.buildInfo, {'fileName', zipFileName,'minimalHeaders', false, 'ignoreFileMissing',true});

The name of the generated zip file is unet_predict.zip.

Copy Generated Zip file to the Target Hardware

Copy the zip file into the target hardware board. Extract the contents of the zip file into a folder and
delete the zip file from the hardware.

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetDir with the destination folder for the files

On the Linux® platform, to transfer and extract the zip file on the target hardware, run these
commands:

if isunix, system(['sshpass -p password scp -r '  fullfile(pwd,zipFileName) ' username@targetname:targetDir/']), end
if isunix, system('sshpass -p password ssh username@targetname "if [ -d targetDir/unet_predict ]; then rm -rf targetDir/unet_predict; fi"'), end
if isunix, system(['sshpass -p password ssh username@targetname "unzip targetDir/' zipFileName ' -d targetDir/unet_predict"']), end
if isunix, system(['sshpass -p password ssh username@targetname "rm -rf  targetDir/' zipFileName '"']), end

On the Windows® platform, to transfer and extract the zip file on the target hardware, run these
commands:

if ispc, system(['pscp.exe -pw password -r '  fullfile(pwd,zipFileName) ' username@targetname:targetDir/']), end
if ispc, system('plink.exe -l username -pw password targetname "if [ -d targetDir/unet_predict ]; then rm -rf targetDir/unet_predict; fi"'), end
if ispc, system(['plink.exe -l username -pw password targetname "unzip targetDir/' zipFileName ' -d targetDir/unet_predict"']), end
if ispc, system(['plink.exe -l username -pw password targetname "rm -rf  targetDir/' zipFileName '"']), end

Copy Supporting Files to the Target Hardware

Copy these files from the host computer to the target hardware:

• Input data, input_data.txt
• Makefile for creating the library, unet_predict_rtw.mk
• Makefile for building the executable program, makefile_unet_arm_generic.mk

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetDir with the destination folder for the files

On the Linux® platform, to transfer the supporting files to the target hardware, run these commands:

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

21-123



if isunix, system('sshpass -p password scp unet_predict_rtw.mk username@targetname:targetDir/unet_predict/'), end
if isunix, system('sshpass -p password scp input_data.txt username@targetname:targetDir/unet_predict/'), end
if isunix, system('sshpass -p password scp makefile_unet_arm_generic.mk username@targetname:targetDir/unet_predict/'), end

On the Windows® platform, to transfer the supporting files to the target hardware, run these
commands:

if ispc, system('pscp.exe -pw password unet_predict_rtw.mk username@targetname:targetDir/unet_predict/'), end
if ispc, system('pscp.exe -pw password input_data.txt username@targetname:targetDir/unet_predict/'), end
if ispc, system('pscp.exe -pw password makefile_unet_arm_generic.mk username@targetname:targetDir/unet_predict/'), end

Build the Library on the Target Hardware

To build the library on the target hardware, execute the generated makefile on the ARM hardware.

Make sure that you set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
target hardware. See “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder). The
ARM_ARCH variable is used in Makefile to pass compiler flags based on the ARM Architecture. The
ARM_VER variable is used in Makefile to compile the code based on the version of the ARM Compute
library.

On the Linux host platform, run this command to build the library:

if isunix, system(['sshpass -p password ssh username@targetname "make -C targetDir/unet_predict/ -f unet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

On the Windows host platform, run this command to build the library:

if ispc, system(['plink.exe -l username -pw password targetname "make -C targetDir/unet_predict/ -f unet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Create Executable on the Target

In these commands, replace targetDir with the destination folder where the library is generated.
The variables height, width, and channels represent the dimensions of the input data.

main_unet_arm_generic.cpp is the C++ main wrapper file which invokes the
segmentationUnetARM function and passes the input image to it. Build the library with the wrapper
file to create the executable.

On the Linux host platform, to create the executable, run these commands:

if isunix, system('sshpass -p password scp main_unet_arm_generic.cpp username@targetname:targetDir/unet_predict/'), end
if isunix, system(['sshpass -p password ssh username@targetname "make -C targetDir/unet_predict/ IM_H=' num2str(height) ' IM_W=' num2str(width) ' IM_C=' num2str(channels) ' -f makefile_unet_arm_generic.mk"']), end

On the Windows host platform, to create the executable, run these commands:

if ispc, system('pscp.exe -pw password main_unet_arm_generic.cpp username@targetname:targetDir/unet_predict/'), end
if ispc, system(['plink.exe -l username -pw password targetname "make -C targetDir/unet_predict/ IM_H=' num2str(height) ' IM_W=' num2str(width) ' IM_C=' num2str(channels) ' -f makefile_unet_arm_generic.mk"']), end

Run the Executable on the Target Hardware

Run the Executable on the target hardware with the input image file input_data.txt.

On the Linux host platform, run this command:

if isunix, system('sshpass -p password ssh username@targetname "cd targetDir/unet_predict/; ./unet input_data.txt output_data.txt"'), end

On the Windows host platform, run this command:

21 Deep Learning Code Generation

21-124



if ispc, system('plink.exe -l username -pw password targetname "cd targetDir/unet_predict/; ./unet input_data.txt output_data.txt"'), end

The unet executable accepts the input data. Because of the large size of input_data
(2001x2001x7), it is easier to process the input image in patches. The executable splits the input
image into multiple patches, each corresponding to network input size. The executable performs
prediction on the pixels in one particular patch at a time and then combines all the patches together.

Transfer the Output from Target Hardware to MATLAB

Copy the generated output file output_data.txt back to the current MATLAB session. On the
Linux platform, run:

if isunix, system('sshpass -p password scp username@targetname:targetDir/unet_predict/output_data.txt ./'), end

To perform the same action on the Windows platform, run:

if ispc, system('pscp.exe -pw password username@targetname:targetDir/unet_predict/output_data.txt ./'), end

Store the output data in the variable segmentedImage:

segmentedImage = uint8(importdata('output_data.txt'));
segmentedImage = reshape(segmentedImage,[height,width]);

To extract only the valid portion of the segmented image, multiply it by the mask channel of the input
data.

segmentedImage = uint8(input_data(:,:,7)~=0) .* segmentedImage;

Remove the noise and stray pixels by using the medfilt2 function.

segmentedImageCodegen = medfilt2(segmentedImage,[5,5]);

Display U-Net Segmented data

This line of code creates a vector of the class names.

classNames = net.Layers(end).Classes;
disp(classNames);

Overlay the labels on the segmented RGB test image and add a color bar to the segmented image.

Display input data

figure(1);
imshow(histeq(input_data(:,:,1:3)));
title('Input Image');

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

21-125



cmap = jet(numel(classNames));
segmentedImageOut = labeloverlay(imadjust(input_data(:,:,4:6),[0 0.6],[0.1 0.9],0.55),segmentedImage,'Transparency',0,'Colormap',cmap);
figure(2);
imshow(segmentedImageOut);

Display segmented data

title('Segmented Image using Codegen on ARM');
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,'TickLabelInterpreter','none');
colormap(cmap)

Display segmented overlay Image

segmentedImageOverlay = labeloverlay(imadjust(input_data(:,:,4:6),[0 0.6],[0.1 0.9],0.55),segmentedImage,'Transparency',0.7,'Colormap',cmap);
figure(3);
imshow(segmentedImageOverlay);
title('Segmented Overlayed Image');

21 Deep Learning Code Generation

21-126



References

[1] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for
Biomedical Image Segmentation." arXiv preprint arXiv:1505.04597, 2015.

[2] Kemker, R., C. Salvaggio, and C. Kanan. "High-Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918, 2017.

[3] Reference Input Data used is part of the Hamlin Beach State Park data. The following steps can be
used to download the data for further evaluation.

if ~exist(fullfile(pwd,'data'))
    url = 'http://home.cis.rit.edu/~cnspci/other/data/rit18_data.mat';
    downloadHamlinBeachMSIData(url,pwd+"/data/");
end

[4] Kemker, Ronald, Carl Salvaggio, and Christopher Kanan. "Algorithms for Semantic Segmentation
of Multispectral Remote Sensing Imagery Using Deep Learning." ISPRS Journal of Photogrammetry
and Remote Sensing, Deep Learning RS Data, 145 (November 1, 2018): 60-77. https://doi.org/
10.1016/j.isprsjprs.2018.04.014.

See Also
coder.ARMNEONConfig | coder.DeepLearningConfig | coder.hardware | packNGo

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” (MATLAB Coder)
• “Code Generation for Deep Learning on ARM Targets” (MATLAB Coder)
• “Semantic Segmentation of Multispectral Images Using Deep Learning” (Image Processing

Toolbox)

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

21-127



Code Generation for LSTM Network on Raspberry Pi

This example shows how to generate code for a pretrained long short-term memory (LSTM) network
that uses the ARM® Compute Library and deploy the code on a Raspberry Pi™ target. In this
example, the LSTM network predicts the Remaining Useful Life (RUL) of a machine. The network
takes as input time series data sets that represent various sensors in the engine. The network returns
the Remaining Useful Life of an engine, measured in cycles, as its output.

This example uses the Turbofan Engine Degradation Simulation Data Set as described in [1]. This
data set contains 100 training observations and 100 test observations. The training data contains
simulated time series data for 100 engines. Each sequence has 17 features, varies in length, and
corresponds to a full run to failure (RTF) instance. The test data contains 100 partial sequences and
corresponding values of the Remaining Useful Life at the end of each sequence.

This example uses a pretrained LSTM network. For more information on how to train an LSTM
network, see the example “Sequence Classification Using Deep Learning” on page 4-3.

This example demonstrates two different approaches for performing prediction by using an LSTM
network:

• The first approach uses a standard LSTM network and runs inference on a set of time series data.
• The second approach leverages the stateful behavior of the same LSTM network. In this method,

you pass a single timestep of data at a time, and have the network update its state at each time
step.

This example uses the PIL based workflow to generate a MEX function, which in turn calls the
executable generated in the target hardware from MATLAB.

Notes:

• Some of the code lines in this example are commented out. Uncomment them before you run the
example.

• The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For information on the supported versions of the compilers and libraries, see
“Generate Code That Uses Third-Party Libraries” (MATLAB Coder).

• This example is not supported in MATLAB Online.

Prerequisites

• MATLAB® Coder™
• Embedded Coder®
• Deep Learning Toolbox™
• MATLAB Coder Interface for Deep Learning. To install this support package, use the Add-On

Explorer.
• MATLAB Support Package for Raspberry Pi Hardware. To install this support package, use the

Add-On Explorer.
• Raspberry Pi hardware
• ARM Compute Library (on the target ARM hardware)
• Environment variables for the compilers and libraries. For setting up the environment variables,

see “Environment Variables” (MATLAB Coder).

21 Deep Learning Code Generation

21-128



Download and Prepare Test Data

This section summarizes the steps to download and prepare the test data that this example uses. For
more information on the Turbofan Engine Degradation Simulation data set and the preprocessing
steps, see the example “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44.

Download Data Set

Create a directory to store the Turbofan Engine Degradation Simulation data set.

dataFolder = fullfile(tempdir,"turbofan");
if ~exist(dataFolder,'dir')
    mkdir(dataFolder);
end

Download and extract the Turbofan Engine Degradation Simulation data set.

filename = matlab.internal.examples.downloadSupportFile("nnet","data/TurbofanEngineDegradationSimulationData.zip");
unzip(filename,dataFolder)

Calculate Mean and Standard Deviation of Training Data

In the following step, you normalize the test predictors using the mean and standard deviation of the
training data. So, you must first use the training data to calculate these normalization parameters.

Load the training data, each column is one observation, each row is one feature. Remove the features
that have constant values.

filenamePredictors = fullfile(dataFolder,"train_FD001.txt");
[XTrain] = processTurboFanDataTrain(filenamePredictors);

m = min([XTrain{:}],[],2);
M = max([XTrain{:}],[],2);
idxConstant = M == m;

for i = 1:numel(XTrain)
    XTrain{i}(idxConstant,:) = [];
end

Calculate the mean and standard deviation over all observations.

mu = mean([XTrain{:}],2);
sig = std([XTrain{:}],0,2);

Prepare Test Data

Prepare the test data using the function processTurboFanDataTest attached to this example. The
function processTurboFanDataTest extracts the data from filenamePredictors and
filenameResponses and returns the cell arrays XTest and YTest, which contain the test predictor
and response sequences, respectively.

filenamePredictors = fullfile(dataFolder,"test_FD001.txt");
filenameResponses = fullfile(dataFolder,"RUL_FD001.txt");
[XTest,YTest] = processTurboFanDataTest(filenamePredictors,filenameResponses);

Remove features with constant values using idxConstant calculated from the training data.
Normalize the test predictors using the parameters mu and sig calculated from the training data.

 Code Generation for LSTM Network on Raspberry Pi

21-129



Clip the test responses at the threshold 150. This same clipping threshold was used on the training
data while training the network.

thr = 150;
for i = 1:numel(XTest)
    XTest{i}(idxConstant,:) = [];
    XTest{i} = (XTest{i} -  mu) ./ sig;
    YTest{i}(YTest{i} > thr) = thr;
end

Set Up a Code Generation Configuration Object for a Static Library

To generate a PIL MEX function for a specified entry-point function, create a code configuration
object for a static library and set the verification mode to 'PIL'. Set the target language to C++.

% cfg = coder.config('lib', 'ecoder', true);
% cfg.VerificationMode = 'PIL';
% cfg.TargetLang = 'C++';

Set Up a Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the Compute Library version and arm architecture.
For this example, suppose that the ARM Compute Library in the Raspberry Pi hardware is version
20.02.1.

% dlcfg = coder.DeepLearningConfig('arm-compute');
% dlcfg.ArmComputeVersion = '20.02.1';
% dlcfg.ArmArchitecture = 'armv7';

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object.

% cfg.DeepLearningConfig = dlcfg;

Create a Connection to the Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Support Package function, raspi, to create a
connection to the Raspberry Pi. In the following code, replace:

• raspiname with the name of your Raspberry Pi
• username with your user name
• password with your password

% r = raspi('raspiname','username','password');

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.Hardware object for Raspberry Pi and attach it to the code generation configuration
object.

% hw = coder.hardware('Raspberry Pi');
% cfg.Hardware = hw;

First Approach: Generate PIL MEX Function for LSTM Network

In this approach, you generate code for the entry-point function rul_lstmnet_predict.

21 Deep Learning Code Generation

21-130



The rul_lstmnet_predict entry-point function takes an entire time series data set as an input and
passes it to the network for prediction. Specifically, the function uses the LSTM network that is
trained in the example “Sequence Classification Using Deep Learning” on page 4-3. The function
loads the network object from the rul_lstmnet.mat file into a persistent variable and reuses this
persistent object in subsequent prediction calls. A sequence-to-sequence LSTM network enables you
to make different predictions for each individual time step of a data sequence.

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork function.

type('rul_lstmnet_predict.m')

function out =  rul_lstmnet_predict(in) %#codegen

% Copyright 2019 The MathWorks, Inc. 

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('rul_lstmnet.mat');
end

out = mynet.predict(in); 

To generate code by using the codegen (MATLAB Coder) command, use the coder.typeof
(MATLAB Coder) function to specify the type and size of the input argument to the entry-point
function. In this example, the input is of double data type with a feature dimension value of 17 and a
variable sequence length. Specify the sequence length as variable-size to perform prediction on an
input sequence of any length.

% matrixInput = coder.typeof(double(0),[17 Inf],[false true]);

Run the codegen command to generate a PIL based mex function rul_lstmnet_predict_pil on
the host platform.

% codegen -config cfg rul_lstmnet_predict -args {matrixInput} -report

Run Generated PIL MEX Function on Test Data

The XTest variable contains 100 input observations. Each observation has 17 features with varying
sequence length.

XTest(1:5)

ans=5×1 cell array
    {17×31  double}
    {17×49  double}
    {17×126 double}
    {17×106 double}
    {17×98  double}

The YTest variable contains 100 output observations that correspond to the XTest input variable.
Each output observation is a Remaining Useful Life (RUI) value, measured in cycles, for each time
step data in entire sequence.

YTest(1:5)

 Code Generation for LSTM Network on Raspberry Pi

21-131



ans=5×1 cell array
    {[                                                                                                                                                                                                                                                                                                                                                             142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112]}
    {[                                                                                                                                                                                                                                                                                       146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98]}
    {[150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69]}
    {[                                                                   150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82]}
    {[                                                                                          150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91]}

Run the generated MEX function rul_lstmnet_predict_pil on a random test data set.

% idx = randperm(numel(XTest), 1);
% inputData = XTest{idx};

% YPred1 = rul_lstmnet_predict_pil(inputData);

Compare Predictions with Test Data

Use a plot to compare the MEX output data with the test data.

% figure('Name', 'Standard LSTM', 'NumberTitle', 'off');
%     
% plot(YTest{idx},'--')
% hold on
% plot(YPred1,'.-')
% hold off
% 
% ylim([0 175])
% title("Test Observation " + idx)
% xlabel("Time Step")
% ylabel("RUL measured in cycles")

21 Deep Learning Code Generation

21-132



Clear PIL

% clear rul_lstmnet_predict_pil;

Second Approach: Generate PIL MEX Function for Stateful LSTM Network

Instead of passing the entire timeseries data all at once to predict, you can run prediction by
streaming the input data segment-wise by using the predictAndUpdateState function.

The entry-point function rul_lstmnet_predict_and_update accepts a single-timestep input and
processes it by using the predictAndUpdateState function. predictAndUpdateState returns a
prediction for the input timestep and updates the network so that subsequent parts of the input are
treated as subsequent timesteps of the same sample.

type('rul_lstmnet_predict_and_update.m')

function out = rul_lstmnet_predict_and_update(in) %#codegen

% Copyright 2019 The MathWorks, Inc. 

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('rul_lstmnet.mat');
end

[mynet, out] = predictAndUpdateState(mynet, in);

 Code Generation for LSTM Network on Raspberry Pi

21-133



end

Create the input type for the codegen command. Because rul_lstmnet_predict_and_update
accepts a single timestep data in each call, specify the input type matrixInput to have a fixed
sequence length of 1 instead of a variable sequence length.

% matrixInput = coder.typeof(double(0),[17 1]);

Run the codegen command to generate PIL based mex function
rul_lstmnet_predict_and_update_pil on the host platform.

% codegen -config cfg rul_lstmnet_predict_and_update -args {matrixInput} -report

Run Generated PIL MEX Function on Test Data

% Run generated MEX function(|rul_lstmnet_predict_and_update_pil|) for each
% time step data in the inputData sequence.

% sequenceLength = size(inputData,2);
% YPred2 = zeros(1, sequenceLength);
% for i=1:sequenceLength
%     inTimeStep = inputData(:,i);
%     YPred2(:, i) = rul_lstmnet_predict_and_update_pil(inTimeStep);
% end

After you pass all timesteps, one at a time, to the rul_lstmnet_predict_and_update function,
the resulting output is the same as that in the first approach in which you passed all inputs at once.

Compare Predictions with Test Data

Use a plot to compare the MEX output data with the test data.

% figure('Name', 'Statefull LSTM', 'NumberTitle', 'off');
% 
% 
% plot(YTest{idx},'--')
% hold on
% plot(YPred2,'.-')
% hold off
% 
% ylim([0 175])
% title("Test Observation " + idx)
% xlabel("Time Step")
% ylabel("RUL measured in cycles")

21 Deep Learning Code Generation

21-134



Clear PIL

% clear rul_lstmnet_predict_and_update_pil;

References

[1] Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. "Damage propagation modeling for
aircraft engine run-to-failure simulation." In Prognostics and Health Management, 2008. PHM 2008.
International Conference on, pp. 1-9. IEEE, 2008.

See Also
coder.ARMNEONConfig | coder.DeepLearningConfig | coder.hardware |
predictAndUpdateState

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” (MATLAB Coder)
• “Code Generation for Deep Learning on ARM Targets” (MATLAB Coder)
• “Sequence Classification Using Deep Learning” on page 4-3

 Code Generation for LSTM Network on Raspberry Pi

21-135



Code Generation for LSTM Network That Uses Intel MKL-DNN

This example shows how to generate code for a pretrained long short-term memory (LSTM) network
that uses the Intel Math Kernel Library for Deep Neural Networks (MKL-DNN).This example
generates a MEX function that makes predictions for each step of an input timeseries. The example
demonstrates two approaches. The first approach uses a standard LSTM network. The second
approach leverages the stateful behavior of the same LSTM network. This example uses textual
descriptions of factory events that can be classified into one of these four categories: Electronic
Failure, Leak, Mechanical Failure, and Software Failure. The example uses a pretrained LSTM
network. For more information on training a network, see the “Classify Text Data Using Deep
Learning” (Text Analytics Toolbox).

Third-Party Prerequisites

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• For a list of processors that support the MKL-DNN library, see MKLDNN CPU Support
• For more information on the supported versions of the compilers and libraries, see “Prerequisites

for Deep Learning with MATLAB Coder” (MATLAB Coder)

This example is supported on Mac®, Linux® and Windows® platforms and not supported for
MATLAB Online.

Prepare Input

Load the wordEncoding MAT-file. This MAT-file stores the words encoded as numerical indices. This
encoding was performed during the training of the network. For more information, see “Classify Text
Data Using Deep Learning” (Text Analytics Toolbox).

load("wordEncoding.mat");

Create a string array containing the new reports to classify the event type.

reportsNew = [ ...
    "Coolant is pooling underneath sorter."
    "Sorter blows fuses at start up."
    "There are some very loud rattling sounds coming from the assembler."
    "At times mechanical arrangement software freezes."
    "Mixer output is stuck."];

Tokenize the input string by using the preprocessText function.

documentsNew = preprocessText(reportsNew);

Use the doc2sequence (Text Analytics Toolbox) function to convert documents to sequences.

XNew = doc2sequence(enc,documentsNew);
labels = categorical({'Electronic Failure', 'Leak', 'Mechanical Failure', 'Software Failure'});

The lstm_predict Entry-Point Function

A sequence-to-sequence LSTM network enables you to make different predictions for each individual
time step of a data sequence. The lstm_predict.m entry-point function takes an input sequence
and passes it to a trained LSTM network for prediction. Specifically, the function uses the LSTM
network that is trained in the example “Classify Text Data Using Deep Learning” (Text Analytics

21 Deep Learning Code Generation

21-136

https://github.com/intel/mkl-dnn#cpu-support


Toolbox). The function loads the network object from the textClassifierNetwork.mat file into a
persistent variable and then performs prediction. On subsequent calls, the function reuses the
persistent object.

type('lstm_predict.m')

function out = lstm_predict(in)
%#codegen

%   Copyright 2020 The MathWorks, Inc.

    persistent mynet;

    if isempty(mynet)
        mynet = coder.loadDeepLearningNetwork('textClassifierNetwork.mat');
    end

    out = predict(mynet, in);
end

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork function.

Generate MEX

To generate code, create a code configuration object for a MEX target and set the target language to
C++. Use the coder.DeepLearningConfig function to create a MKL-DNN deep learning
configuration object. Assign it to the DeepLearningConfig property of the code configuration
object.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');

Use the coder.typeof (MATLAB Coder) function to specify the type and size of the input argument
to the entry-point function. In this example, the input is of double data type with a feature dimension
value of 1 and a variable sequence length.

matrixInput = coder.typeof(double(0),[1 Inf],[false true]);

Generate a MEX function by running the codegen (MATLAB Coder) command.

codegen -config cfg lstm_predict -args {matrixInput} -report

Code generation successful: View report

Run Generated MEX

Call lstm_predict_mex on the first observation.

YPred1 = lstm_predict_mex(XNew{1});

YPred1 contains the probabilities for the four classes. Find the predicted class by calculating the
index of the maximum probability.

[~, maxIndex] = max(YPred1);

Associate the indices of max probability to the corresponding label. Display the classification. From
the results, you can see that the network predicted the first event to be a Leak.

 Code Generation for LSTM Network That Uses Intel MKL-DNN

21-137



predictedLabels1 = labels(maxIndex);
disp(predictedLabels1)

     Leak 

Generate MEX that Accepts Multiple Observations

If you want to perform prediction on many observations at once, you can group the observations
together in a cell array and pass the cell array for prediction. The cell array must be a column cell
array, and each cell must contain one observation. The sequence lengths of the inputs might vary. In
this example, XNew contains five observations. To generate a MEX function that can accept XNew as
input, specify the input type to be a 5-by-1 cell array. Specify that each cell be of the same type as
matrixInput.

matrixInput = coder.typeof(double(0),[1 Inf],[false true]);
cellInput = coder.typeof({matrixInput}, [5 1]);
codegen -config cfg lstm_predict -args {cellInput} -report

Code generation successful: View report

Run the generated MEX function with XNew as input.

YPred2 = lstm_predict_mex(XNew);

YPred2 is 5-by-4 cell array. Find the indices that have maximum probability for each of the five inputs
and classify them.

[~, maxIndex] = max(YPred2, [], 2);
predictedLabels2 = labels(maxIndex);
disp(predictedLabels2)

     Leak      Mechanical Failure      Mechanical Failure      Software Failure      Electronic Failure 

Generate MEX with Stateful LSTM

Instead of passing the entire timeseries to predict in a single step, you can run prediction on an
input by streaming in one timestep at a time and using the function predictAndUpdateState. This
function accepts an input, produces an output prediction, and updates the internal state of the
network so that future predictions take this initial input into account.

The entry-point function lstm_predict_and_update.m accepts a single-timestep input and
processes the input using the predictAndUpdateState function. The predictAndUpdateState
function returns a prediction for the input timestep and updates the network so that subsequent
inputs are treated as subsequent timesteps of the same sample. After passing in all timesteps, one at
a time, the resulting output is identical to the case where all timesteps were passed in as a single
input.

type('lstm_predict_and_update.m')

function out = lstm_predict_and_update(in)
%#codegen

%   Copyright 2020 The MathWorks, Inc.

    persistent mynet;

    if isempty(mynet)
        mynet = coder.loadDeepLearningNetwork('textClassifierNetwork.mat');

21 Deep Learning Code Generation

21-138



    end

    [mynet, out] = predictAndUpdateState(mynet,in);
end

Generate code for lstm_predict_and_update. Because this function accepts a single timestep at
each call, specify matrixInput to have a fixed sequence dimension of 1 instead of a variable
sequence length.

matrixInput = coder.typeof(double(0),[1 1]);
codegen -config cfg lstm_predict_and_update -args {matrixInput} -report

Code generation successful: View report

Run the generated MEX on the first observation.

sequenceLength = size(XNew{1},2);
for i=1:sequenceLength
    inTimeStep = XNew{1}(:,i);
    YPred3 = lstm_predict_and_update_mex(inTimeStep);
end
clear mex;

Find the index that has the highest probability and map it to the labels.

[~, maxIndex] = max(YPred3);
predictedLabels3 = labels(maxIndex);
disp(predictedLabels3)

     Leak 

See Also
coder.DeepLearningConfig | doc2sequence | coder.typeof | codegen

More About
• “Classify Text Data Using Deep Learning” (Text Analytics Toolbox)
• “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder)

 Code Generation for LSTM Network That Uses Intel MKL-DNN

21-139



Cross Compile Deep Learning Code for ARM Neon Targets

This example shows how to cross-compile the generated deep learning code to create a library or an
executable, and then deploy the library or executable on an ARM® target such as Hikey 960 or Rock
960. This example uses the codegen command.

Cross compiling the deep learning code for ARM® targets involves these steps:

• Configure the installed cross-compiler toolchain to perform compilation on the host MATLAB®.
The compilation happens when you run the codegen command in MATLAB in the host computer.

• Use the codegen command to build the generated code and create a library or an executable on
the host computer.

• Copy the generated library or executable and other supporting files to the target hardware. If you
generate a library on the host computer, compile the copied makefile on the target to create an
executable.

• Run the generated executable on the target ARM hardware.

You can use this workflow for any ARM Neon target that supportes the Neon|SIMD instruction set.
This example is supported only for host Linux® platforms.

Prerequisites

• ARM processor that supports the Neon|SIMD extension
• ARM Compute Library (on the host computer)
• MATLAB® Coder™
• The support package MATLAB Coder Interface for Deep Learning
• Deep Learning Toolbox™
• The support package Deep Learning Toolbox Model for Inception-v3 Network
• Image Processing Toolbox™
• For deployment on armv7 (32 bit Arm Architecture) target, GNU/GCC g++-arm-linux-

gnueabihf toolchain
• For deployment on armv8 (64 bit Arm Architecture) target, GNU/GCC g++-aarch64-linux-gnu

toolchain
• Environment variables for the cross compilers and libraries

For information about how to install the cross-compiler toolchain and set up the associated
environment variable, see “Cross-Compile Deep Learning Code That Uses ARM Compute Library”
(MATLAB Coder).

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For information about supported versions of libraries and about environment
variables, see “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

The code lines in this example are commented out. Uncomment them before you run the example.

This example in not supported in MATLAB Online.

21 Deep Learning Code Generation

21-140



The inception_predict_arm Entry-Point Function

This example uses the Inception-V3 image classification network. A pretrained Inception-V3 network
for MATLAB is available in the support package Deep Learning Toolbox Model for Inception-V3
Network. The inception_predict_arm entry-point function loads the Inception-V3 network into a
persistent network object. On subsequent calls to the function, the persistent object is reused.

type inception_predict_arm

function out = inception_predict_arm(in)

persistent net;
if isempty(net)
    net = coder.loadDeepLearningNetwork('inceptionv3','inceptionv3');
end

out = net.predict(in);

end

Set up a Deep Learning Configuration Object

Create a coder.ARMNEONConfig object. Specify the version of the ARM Compute library and arm
architecture.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '20.02.1';
% dlcfg.ArmArchitecture = 'armv7'; % or 'armv8'

For classifying the input image peppers.png, convert the image to a text file.

% generateImagetoTxt('peppers.png');

First Approach: Create Static Library for Entry-Point Function on Host

In this approach, you first cross-compile the generated code to create a static library on the host
computer. You then transfer the generated static library, the ARM Compute library files, the makefile,
and other supporting files to the target hardware. You run the makefile on the target hardware to
generate the executable. Finally, you run the executable on the target hardware.

Set Up a Code Generation Configuration Object

Create a code generation configuration object for a static library. Specify the target language as C++.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';

Attach the deep learning configuration object to the code generation configuration object.

cfg.DeepLearningConfig = dlcfg;

Configure the Cross-Compiler Toolchain

Configure the cross-compiler toolchain based on the ARM Architecture of the target device.

 Cross Compile Deep Learning Code for ARM Neon Targets

21-141



%   cfg.Toolchain =  'Linaro AArch64 Linux v6.3.1';% When the Arm Architecture is armv8

%   cfg.Toolchain =  'Linaro AArch32 Linux v6.3.1';% When the Arm Architecture is armv7

Generate Static Library on Host Computer by Using codegen

Use the codegen command to generate code for the entry-point function, build the generated code,
and create static library for the target ARM architecture.

% codegen -config cfg inception_predict_arm -args {ones(299,299,3,'single')} -d arm_compute_cc_lib -report

Copy the Generated Cross-Compiled Static Library to Target hardware

Copy the static library, the bin files, and the header files from the generated folder
arm_compute_cc_lib to the target ARM hardware. In this code line and other code lines that
follow, replace:

• password with your password
• username with your username
• hostname with the name of your device
• targetDir with the destination folder for the files

% system('sshpass -p password scp -r arm_compute_cc_lib/*.bin arm_compute_cc_lib/*.lib arm_compute_cc_lib/*.h arm_compute_cc_lib/*.hpp username@hostname:targetDir/');

Copy the ARM Compute Library Files to Target Hardware

The executable uses the ARM Compute library files during runtime. The target board does not need
header files while generating the executable and running the executable. Copy the library to the
desired path.

% system(['sshpass -p password scp -r ' fullfile(getenv('ARM_COMPUTELIB'),'lib') ' username@hostname:targetDir/']);

Copy Supporting Files to Target Hardware

Copy these files to the target ARM hardware:

• Makefile Makefile_Inceptionv3 to generate executable from static library.
• Input Image inputimage.txt that you want to classify.
• The text file synsetWords.txt that contains the ClassNames returned by

net.Layers(end).Classes
• The main wrapper file main_inception_arm.cpp that calls the code generated for the

inception_predict_arm function.

% system('sshpass -p password scp synsetWords.txt ./Makefile_Inceptionv3 ./inputimage.txt ./main_inception_arm.cpp username@hostname:targetDir/');

Create the Executable on the Target

Compile the makefile on the target to generate the executable from the static library. This makefile
links the static library with the main wrapper file main_inception_arm.cpp and generates the
executable.

% system('sshpass -p password ssh username@hostname "make -C targetDir -f Makefile_Inceptionv3 arm_inceptionv3 "');

21 Deep Learning Code Generation

21-142



Run the Executable on the Target

Run the generated executable on the target. Make sure to export LD_LIBRARY_PATH that points to
the ARM Compute library files while running executable.

% system('sshpass -p password ssh username@hostname "export LD_LIBRARY_PATH=targetDir/lib; cd targetDir;./inception_predict_arm.elf inputimage.txt out.txt"');

Second Approach: Create Executable for Entry-Point function on Host

In this approach, you first cross-compile the generated code to create an executable on the host
computer. You then transfer the generated executable, the ARM Compute library files, and other
supporting files to the target hardware. Finally, you run the executable on the target hardware.

Set Up a Code Generation Configuration Object

Create a code generation configuration object for an generating an executable. Set the target
language as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Attach the deep learning configuration object to the code generation configuration object.

cfg.DeepLearningConfig = dlcfg;

Declare the main wrapper file main_inception_arm.cpp as the custom source file.

cfg.CustomSource = 'main_inception_arm.cpp';

Configure the Cross-Compiler Toolchain

Configure the cross-compiler toolchain based on the ARM Architecture of the target device.

%   cfg.Toolchain =  'Linaro AArch64 Linux v6.3.1'; % When the Arm Architecture is armv8,

%   cfg.Toolchain =  'Linaro AArch32 Linux v6.3.1';% When the Arm Architecture is armv7,

Generate Executable on the Host Computer by Using codegen

Use the codegen command to generate code for the entry-point function, build the generated code,
and create an executablle for the target ARM architecture.

% codegen -config cfg inception_predict_arm -args {ones(299,299,3,'single')} -d arm_compute_cc_exe -report

Copy the Generated Executable to the Target Hardware

Copy the generated executable and the bin files to the target ARM hardware. In this code line and
other code lines that follow, replace:

• password with your password
• username with your username
• hostname with the name of your device
• targetDir with the destination folder for the files

% system('sshpass -p password scp -r arm_compute_cc_exe/*.bin username@hostname:targetDir/');
% system('sshpass -p password scp inception_predict_arm.elf username@hostname:targetDir/');

 Cross Compile Deep Learning Code for ARM Neon Targets

21-143



Copy the ARM Compute Library Files to the Target Hardware

The executable uses the ARM Compute library files during runtime. It does not use header files at
runtime. Copy the library files to the desired path.

% system(['sshpass -p password scp -r ' fullfile(getenv('ARM_COMPUTELIB'),'lib') ' username@hostname:targetDir/']);

Copy Supporting Files to the Target Hardware

Copy these files to the target ARM hardware:

• Input Image inputimage.txt that you want to classify.
• The text file synsetWords.txt that contains the ClassNames returned by

net.Layers(end).Classes
• The main wrapper file main_inception_arm.cpp that calls the code generated for the

inception_predict_arm function.

% system('sshpass -p password scp synsetWords.txt ./inputimage.txt ./main_inception_arm.cpp username@hostname:targetDir/');

Run the Executable on the Target Hardware

Run the generated executable on the target. Make sure to export LD_LIBRARY_PATH that points to
the ARM Compute library files while running executable.

% system('sshpass -p password ssh username@hostname "export LD_LIBRARY_PATH=targetDir/lib; cd targetDir;./inception_predict_arm.elf inputimage.txt out.txt"');

Transfer the Output Data from Target to MATLAB

Copy the generated output back to the current MATLAB session on the host computer.

% system('sshpass -p password scp username@hostname:targetDir/out.txt ./');

Map Prediction Scores to Labels

Map the top five prediction scores to corresponding labels in the trained network.

% outputImage = mapPredictionScores;

% Display the overlayed Image with Classification Scores.  

% imshow(outputImage);

21 Deep Learning Code Generation

21-144



See Also
coder.ARMNEONConfig | coder.DeepLearningConfig | coder.hardware

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” (MATLAB Coder)
• “Code Generation for Deep Learning on ARM Targets” (MATLAB Coder)
• “Cross-Compile Deep Learning Code That Uses ARM Compute Library” (MATLAB Coder)

 Cross Compile Deep Learning Code for ARM Neon Targets

21-145



Generate Generic C/C++ Code for Sequence-to-Sequence
Regression That Uses Deep Learning

This example demonstrates how to generate plain C/C++ code that does not depend on any third-
party deep learning libraries for a long short-term memory (LSTM) network. You generate a MEX
function that accepts time series data representing various sensors in an engine. The MEX function
then makes predictions for each step of the input timeseries to predict the remaining useful life (RUL)
of the engine measured in cycles.

This example uses the Turbofan Engine Degradation Simulation Data Set as described in [1] and a
pretrained LSTM network to predict the remaining useful life of an engine. The network was trained
on simulated time series sequence data for 100 engines and corresponding values of the remaining
useful life at the end of each sequence. Each sequence in this training data has a different length and
corresponds to a full run to failure (RTF) instance. For more information on training the network, see
the example “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44.

Define Entry-Point Function rulPredict

The rulPredict entry-point function takes an input sequence and passes it to a trained sequence-to-
sequence LSTM network for prediction. The function loads the network object from the
rulNetwork.mat file into a persistent variable and reuses the persistent object on subsequent
prediction calls. The LSTM network makes predictions on the partial sequence one time step at a
time. At each time step, the network predicts using the value at this time step, and the network state
calculated from the previous time steps only. The network updates its state between each prediction.
The predict function returns a sequence of these predictions. The last element of the prediction
corresponds to the predicted RUL for the partial sequence.

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork function.

type rulPredict.m

function out = rulPredict(in)
%#codegen

% Copyright 2020 The MathWorks, Inc. 

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('rulNetwork.mat');
end

% pass in input to predict method
% To prevent the function from adding padding to the data, specify the mini-batch size 1. 
out = predict(mynet,in,'MiniBatchSize',1);

Download and Prepare Test Data

This section summarizes the steps to download and prepare the test data that this example uses. For
more information on the Turbofan Engine Degradation Simulation data set and the preprocessing
steps, see the example “Sequence-to-Sequence Regression Using Deep Learning” on page 4-44.

21 Deep Learning Code Generation

21-146



Download Data Set

Create a directory to store the Turbofan Engine Degradation Simulation data set.

dataFolder = fullfile(tempdir,"turbofan");
if ~exist(dataFolder,'dir')
    mkdir(dataFolder);
end

Download and extract the Turbofan Engine Degradation Simulation data set.

filename = matlab.internal.examples.downloadSupportFile("nnet","data/TurbofanEngineDegradationSimulationData.zip");
unzip(filename,dataFolder)

Calculate Mean and Standard Deviation of Training Data

In the following step, you normalize the test predictors using the mean and standard deviation of the
training data. So, you must first use the training data to calculate these normalization parameters.

Load the training data, each column is one observation, each row is one feature. Remove the features
that have constant values.

filenamePredictors = fullfile(dataFolder,"train_FD001.txt");
[XTrain] = processTurboFanDataTrain(filenamePredictors);

m = min([XTrain{:}],[],2);
M = max([XTrain{:}],[],2);
idxConstant = M == m;

for i = 1:numel(XTrain)
    XTrain{i}(idxConstant,:) = [];
end

Calculate the mean and standard deviation over all observations.

mu = mean([XTrain{:}],2);
sig = std([XTrain{:}],0,2);

Prepare Test Data

Prepare the test data using the function processTurboFanDataTest attached to this example. The
function processTurboFanDataTest extracts the data from filenamePredictors and
filenameResponses and returns the cell arrays XValidate and YValidate, which contain the
test predictor and response sequences, respectively.

filenamePredictors = fullfile(dataFolder,"test_FD001.txt");
filenameResponses = fullfile(dataFolder,"RUL_FD001.txt");
[XValidate,YValidate] = processTurboFanDataTest(filenamePredictors,filenameResponses);

Remove features with constant values using idxConstant calculated from the training data.
Normalize the test predictors using the parameters mu and sig calculated from the training data.
Clip the test responses at the threshold 150. This same clipping threshold was used on the training
data while training the network.

thr = 150;
for i = 1:numel(XValidate)
    XValidate{i}(idxConstant,:) = [];
    XValidate{i} = (XValidate{i} -  mu) ./ sig;

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

21-147



    YValidate{i}(YValidate{i} > thr) = thr;
end

Run rulPredict on Test Data

The variable XValidate contains sample timeseries data for sensor readings the you use to test the
entry-point function in MATLAB. Make predictions on the test data by calling the rulPredict
method.

YPred = rulPredict(XValidate);

Visualize some of the predictions in a plot.

idx = randperm(numel(YPred),4);
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    
    plot(YValidate{idx(i)},'--')
    hold on
    plot(YPred{idx(i)},'.-')
    hold off
    
    ylim([0 175])
    title("Test Observation " + idx(i))
    xlabel("Time Step")
    ylabel("RUL")
end
legend(["Test Data" "Predicted"],'Location','southeast')

21 Deep Learning Code Generation

21-148



For a given partial sequence, the predicted current RUL is the last element of the predicted
sequences. Calculate the root-mean-square error (RMSE) of the predictions, and visualize the
prediction error in a histogram.

YValidateLast = zeros(1, numel(YValidate));
YPredLast = zeros(1, numel(YValidate));
for i = 1:numel(YValidate)
    YValidateLast(i) = YValidate{i}(end);
    YPredLast(i) = YPred{i}(end);
end
figure
rmse = sqrt(mean((YPredLast - YValidateLast).^2))

rmse = 19.0286

histogram(YPredLast - YValidateLast)
title("RMSE = " + rmse)
ylabel("Frequency")
xlabel("Error")

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

21-149



Generate MEX function for rulPredict

To generate a MEX function for the rulPredict entry-point function, create a code generation
configuration object cfg for MEX code generation. Create a deep learning configuration object that
specifies that no target library is required and attach this deep learning configuration object to cfg.

cfg = coder.config('mex');
cfg.DeepLearningConfig = coder.DeepLearningConfig('TargetLibrary','none');

By default, the target language is set to C. If you want to generate C++ code, explicitly set the target
language to C++.

Use the coder.typeof function to create the input type for the entry-point function rulPredict
that you use with the -args option in the codegen command.

The data XValidate contains 100 observations where each observation is of double data type with a
feature dimension value of 17 and a variable sequence length. In order to perform prediction on
several such observations in a single function call, you can group the observations together in a cell
array and pass the cell array for prediction. The cell array must be a column cell array, and each cell
must contain one observation. Each observation must have the same feature dimension, but the
sequence lengths might vary as is the case for XValidate. Specifying the sequence length as
variable-size enables us to perform prediction on an input sequence of any length.

matrixInput = coder.typeof(0, [17 Inf],[false true]); % input type for a single observation
cellInput = coder.typeof({matrixInput}, [100 1]); % input type for multiple observations 

Run the codegen command. Specify the input type to be cellInput.

21 Deep Learning Code Generation

21-150



codegen -config cfg rulPredict -args {cellInput} -report

Code generation successful: View report

By default for MEX code generation, the generated code calls into BLAS library for matrix operations
and uses OpenMP library (if the compiler supports OpenMP) so that the any parallelizable for loops in
the MEX can run on multiple threads leading to better execution performance. While OpenMP is
enabled by default for standalone code generation, you will have to provide a custom BLAS callback
to indicate to MATLAB Coder ™ that you want to generate BLAS calls for matrix operations following
the steps mentioned in “Speed Up Matrix Operations in Generated Standalone Code by Using BLAS
Calls” (MATLAB Coder).

Run Generated MEX Function on Test Data

Make predictions on the test data by calling the generated MEX function rulPredict_mex.

YPredMex = rulPredict_mex(XValidate);

You can visualize the same predictions as before in a plot.

figure
for i = 1:numel(idx)
    subplot(2,2,i)
    
    plot(YValidate{idx(i)},'--')
    hold on
    plot(YPredMex{idx(i)},'.-')
    hold off
    
    ylim([0 175])
    title("Test Observation " + idx(i))
    xlabel("Time Step")
    ylabel("RUL")
end
legend(["Test Data" "Predicted MEX"],'Location','southeast')

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

21-151



Calculate the root-mean-square error (RMSE) of the predictions, and visualize the prediction error in
a histogram.

YPredLastMex = zeros(1, numel(YValidate));
for i = 1:numel(YValidate)
    YPredLastMex(i) = YPredMex{i}(end);
end
figure
rmse = sqrt(mean((YPredLastMex - YValidateLast).^2))

rmse = 19.0286

histogram(YPredLastMex - YValidateLast)
title("RMSE = " + rmse)
ylabel("Frequency")
xlabel("Error")

21 Deep Learning Code Generation

21-152



Generate MEX function with Stateful LSTM

Instead of passing the entire timeseries to predict in one step, you can make predictions one time
step at a time by using predictAndUpdateState. This is useful when you have the values of the
time steps arriving in a stream. The predictAndUpdateState function takes in an input, produces
an output prediction, and updates the internal state of the network so that future predictions take
this initial input into account. Usually, it is faster to make predictions on full sequences when
compared to making predictions one time step at a time.

The entry-point function rulPredictAndUpdate takes in a single-timestep input and processes the
input using the predictAndUpdateState function. predictAndUpdateState outputs a prediction
for the input timestep and updates the network so that subsequent inputs are treated as subsequent
timesteps of the same sample. After passing in all timesteps one at a time, the resulting output is the
same as if all timesteps were passed in as a single input.

type rulPredictAndUpdate.m

function out = rulPredictAndUpdate(in)
%#codegen

% Copyright 2020 The MathWorks, Inc. 

persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork('rulNetwork.mat');
end

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

21-153



% pass in input to predictAndUpdateState method
[mynet, out] = predictAndUpdateState(mynet, in);

Run codegen on this new entry-point function. Since we are taking in a single timestep each call, we
specify matrixInput to have a fixed sequence dimension of 1 instead of a variable sequence length.

matrixInput = coder.typeof(double(0),[17 1]);
codegen -config cfg rulPredictAndUpdate -args {matrixInput} -report

Code generation successful: View report

Make predictions on the test data by calling the rulPredictAndUpdate function in MATLAB and
the generated MEX function rulPredictAndUpdate_mex.

YPredStatefulMex = cell(numel(idx), 1);
for iSample = 1:numel(idx)
    sample = XValidate{idx(iSample)};
    numTimeStepsTest = size(sample, 2);
    for iStep = 1:numTimeStepsTest
        YPredStatefulMex{iSample}(1, iStep) = rulPredictAndUpdate_mex(sample(:, iStep));
    end
end

Once again you can visualize the predictions for stateful MEX as before in a plot.

figure
for i = 1:numel(idx)
    subplot(2,2,i)
    
    plot(YValidate{idx(i)},'--')
    hold on
    plot(YPredStatefulMex{i},'.-')
    hold off
    
    ylim([0 175])
    title("Test Observation " + idx(i))
    xlabel("Time Step")
    ylabel("RUL")
end
legend(["Test Data" "Predicted MEX Stateful LSTM"],'Location','southeast')

21 Deep Learning Code Generation

21-154



Finally you can also visualize the results for the two different MEX functions along with the MATLAB
prediction in a plot for any particular sample.

figure()
sampleIdx = idx(1);
plot(YValidate{sampleIdx},'--')
hold on
plot(YPred{sampleIdx},'o-')
plot(YPredMex{sampleIdx},'^-')
plot(YPredStatefulMex{1},'x-')
hold off

ylim([0 175])
title("Test Observation " + idx(i))
xlabel("Time Step")
ylabel("RUL")
legend(["Test Data" "Predicted in MATLAB" "Predicted MEX" "Predicted MEX with Stateful LSTM"],'Location','southeast')

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

21-155



References

1 Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. "Damage propagation modeling for
aircraft engine run-to-failure simulation." In Prognostics and Health Management, 2008. PHM
2008. International Conference on, pp. 1-9. IEEE, 2008.

See Also
coder.DeepLearningConfig | codegen | coder.config

More About
• “Generate Generic C/C++ Code for Deep Learning Networks” (MATLAB Coder)

21 Deep Learning Code Generation

21-156



Quantize Residual Network Trained for Image Classification
and Generate CUDA Code

This example shows how to quantize the learnable parameters in the convolution layers of a deep
learning neural network that has residual connections and has been trained for image classification
with CIFAR-10 data.

Neural networks use memory to store input data, parameters (weights), and activations from each
layer as the input propagates through the network. Most neural networks that you create and train
using Deep Learning Toolbox™ use single-precision floating point data types. Even small networks
require a considerable amount of memory and hardware to perform these floating-point arithmetic
operations. These restrictions can inhibit deployment of deep learning models to devices that have
low computational power and less memory resources. By using a lower precision to store the weights
and activations, you can reduce the memory requirements of the network.

In this example, you use the Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model
Quantization Library support package to reduce the memory footprint of a deep neural network by
quantizing the weights, biases, and activations of convolution layers to 8-bit scaled integer data
types.

The network in this example has been trained for image classification with CIFAR-10 data.

Residual connections are a popular element in convolutional neural network architectures. A residual
network is a type of DAG network that has residual (or shortcut) connections that bypass the main
network layers. Residual connections enable the parameter gradients to propagate more easily from
the output layer to the earlier layers of the network, which makes it possible to train deeper
networks. This increased network depth can result in higher accuracies on more difficult tasks. For
information on the network architecture and training, see “Train Residual Network for Image
Classification” on page 3-13.

To run this example, you must have the products required to quantize and deploy a deep learning
network to a GPU environment. For information on these products, see “Quantization Workflow
Prerequisites” on page 21-237.

Load Pretrained Network

Load the pretrained network. For information on creating and training a network with residual
connections for image classification yourself, see the Train Residual Network for Image Classification
example.

load('CIFARNet-20-16.mat','trainedNet');
net = trainedNet;

You can use analyzeNetwork to analyze the deep learning network architecture.

analyzeNetwork(net)

 Quantize Residual Network Trained for Image Classification and Generate CUDA Code

21-157



Load Data

Download the CIFAR-10 data set [1] by executing the code below. The data set contains 60,000
images. Each image is 32-by-32 in size and has three color channels (RGB). The size of the data set is
175 MB. Depending on your internet connection, the download process can take some time.

datadir = tempdir;
downloadCIFARData(datadir);

Downloading CIFAR-10 dataset (175 MB). This can take a while...done.

Prepare Data for Calibration and Validation

Load the CIFAR-10 training and test images as 4-D arrays. The training set contains 50,000 images
and the test set contains 10,000 images. Use the CIFAR-10 test images for network validation.

[XTrain,YTrain,XValidation,YValidation] = loadCIFARData(datadir);

You can display a random sample of the training images using the following code.

figure;
idx = randperm(size(XTrain,4),20);
im = imtile(XTrain(:,:,:,idx),'ThumbnailSize',[96,96]);
imshow(im)

21 Deep Learning Code Generation

21-158



Create an augmentedImageDatastore object to use for calibration and validation. Use 200 random
images for calibration and 50 random images for validation.

inputSize = net.Layers(1).InputSize;

augimdsTrain = augmentedImageDatastore(inputSize,XTrain,YTrain);
augimdsCalibration = shuffle(augimdsTrain).subset(1:200);

augimdsValidation = augmentedImageDatastore(inputSize,XValidation,YValidation);
augimdsValidation = shuffle(augimdsValidation).subset(1:50);

Quantize the Network for GPU Deployment Using the Deep Network Quantizer App

This example uses a GPU execution environment. To learn about the products required to quantize
and deploy the deep learning network to a GPU environment, see “Quantization Workflow
Prerequisites” on page 21-237.

In the MATLAB® Command Window, open the Deep Network Quantizer app.

deepNetworkQuantizer

Select New > Quantize a network. The app automatically verifies your execution environment.

In the dialog, select the execution environment and the network to quantize from the base
workspace. For this example, select a GPU execution environment and the DAG network net.

In the Calibrate section of the toolstrip, under Calibration Data, select the
augmentedImageDatastore object from the base workspace containing the calibration data
augimdsCalibration.

Click Calibrate.

Deep Network Quantizer uses the calibration data to exercise the network and collect range
information for the learnable parameters in the network layers.

When the calibration is complete, the app displays a table containing the weights and biases in the
convolution, as well as fully connected layers of the network and the dynamic ranges of the
activations in all layers of the network with their minimum and maximum values during the
calibration. To the right of the table, the app displays histograms of the dynamic ranges of the
parameters. The gray regions of the histograms indicate data that cannot be represented by the
quantized representation. For more information on how to interpret these histograms, see
“Quantization of Deep Neural Networks” on page 21-243.

 Quantize Residual Network Trained for Image Classification and Generate CUDA Code

21-159



In the Quantize Layer column of the table, indicate whether to quantize the learnable parameters in
the layer. Layers that are not convolution layers cannot be quantized, and therefore cannot be
selected. Layers that are not quantized remain in single precision after quantization.

In the Validate section of the toolstrip, under Validation Data, select the
augmentedImageDatastore object from the base workspace containing the validation data,
augimdsValidation.

In the Validate section of the toolstrip, under Quantization Options, select the metric function to
use for validation. The app determines a default metric function to use for validation based on the
type of network that you quantize. You can also add additional custom metric functions to use for
validation. For this example, enter the name of the custom metric function hComputeAccuracy.
Select Add to add hComputeAccuracy to the list of metric functions available in the app. Select
hComputeAccuracy as the metric function to use for validation. This custom metric function
compares the predicted label to the ground truth and returns the top-1 accuracy. The custom metric
function must be on the path.

21 Deep Learning Code Generation

21-160



Click Quantize and Validate.

The app quantizes the network and displays a summary of the validation results. For this set of
calibration and validation images, quantization of the network results in a 2% decrease in accuracy
with a 73% reduction in learnable parameter memory for the set of 50 validation images.

 Quantize Residual Network Trained for Image Classification and Generate CUDA Code

21-161



After quantizing and validating the network, you can export the network or generate code. To export
the network, select Export > Export Quantizer to create a dlquantizer object in the base
workspace. To open the GPU Coder app and generate GPU code from the optimized neural network,
select Export > Generate Code. To learn how to generate CUDA code for an optimized deep
convolutional neural network using GPU Coder, see “Generate INT8 Code for Deep Learning
Networks” (GPU Coder).

Validate the Performance of the Network Using Multiple Metric Functions

You can use multiple metric functions to evaluate the performance of the network simultaneously by
using the dlquantizer function.

To begin, load the pretrained network and data, and prepare the data for calibration and validation,
as described above.

Create a dlquantizer object. Specify the network to quantize and the execution environment to
use. Use the calibrate function to exercise the network with sample inputs from
augimdsCalibration and collect range information.

dq = dlquantizer(net,'ExecutionEnvironment','GPU');
calResults = calibrate(dq,augimdsCalibration)

Specify the metric functions in a dlquantizationOptions object. Use the validate function to
quantize the learnable parameters in the convolution layers of the network and exercise the network.
The validate function uses the metric functions defined in the dlquantizationOptions object to
compare the results of the network before and after quantization. For this example, use the top-1
accuracy and top-5 accuracy metrics are used to evaluate the performance of the network.

dqOpts = dlquantizationOptions('MetricFcn',...
    {@(x)hComputeAccuracy(x,net,augimdsValidation), ...
    @(x)hComputeTop_5(x,net,augimdsValidation)});

validationResults = validate(dq,augimdsValidation,dqOpts)

validationResults = struct with fields:
       NumSamples: 50
    MetricResults: [1×2 struct]
       Statistics: [2×2 table]

Examine the MetricResults.Result field of the validation output to see the performance of the
optimized network as measured by each metric function used.

validationResults.MetricResults.Result
validationResults.Statistics

To visualize the calibration statistics, first save the dlquantizer object dq.

save('dlquantObj.mat','dq')

Then import the dlquantizer object dq in the Deep Network Quantizer app by selecting New >
Import dlquantizer object.

Generate CUDA Code

Generate CUDA® code for a optimized deep convolutional neural network.

21 Deep Learning Code Generation

21-162



Create Entry-Point Function

Write an entry-point function in MATLAB® that:

1 Uses the coder.loadDeepLearningNetwork (GPU Coder) function to load a deep learning
model and to construct and set up a CNN class. For more information, see “Load Pretrained
Networks for Code Generation” (GPU Coder).

2 Calls predict to predict the responses.

type('mynet_predict.m');

function out = mynet_predict(netFile, im)
    persistent net; 
    if isempty(net)
        net = coder.loadDeepLearningNetwork(netFile);
    end
    out = net.predict(im);
end

A persistent object mynet loads the DAGNetwork object. The first call to the entry-point function
constructs and sets up the persistent object. Subsequent calls to the function reuse the same object
to call predict on inputs, avoiding reconstructing and reloading the network object.

Code Generation by Using codegen

To configure build settings such as the output file name, location, and type, you create coder
configuration objects. To create the objects, use the coder.gpuConfig function. For example, when
generating CUDA MEX using the codegen command, use cfg = coder.gpuConfig('mex').

To specify code generation parameters for cuDNN, set the DeepLearningConfig property to a
coder.CuDNNConfig object that you create by using coder.DeepLearningConfig.

Specify the location of the MAT file containing the calibration data.

Specify the precision of the inference computations in supported layers by using the DataType
property. For 8-bit integers, use 'int8'. Int8 precision requires a CUDA GPU with compute
capability of 6.1, 6.3, or higher. Use the ComputeCapability property of the GPU code
configuration object to set the appropriate compute capability value.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
cfg.DeepLearningConfig.DataType = 'int8';
cfg.DeepLearningConfig.CalibrationResultFile = 'dlquantObj.mat';
netFile = 'mynet.mat';
save(netFile,'net');

Run the codegen command. The codegen command generates CUDA code from the
mynet_predict.m entry-point function.

codegen -config cfg mynet_predict -args {coder.Constant(netFile), ones(inputSize, 'single')} -report

When code generation is successful, you can view the resulting code generation report by clicking
View Report in the MATLAB Command Window. The report is displayed in the Report Viewer window.
If the code generator detects errors or warnings during code generation, the report describes the
issues and provides links to the problematic MATLAB code. See “Code Generation Reports” (MATLAB
Coder).

 Quantize Residual Network Trained for Image Classification and Generate CUDA Code

21-163



References

[1] Krizhevsky, Alex. 2009. "Learning Multiple Layers of Features from Tiny Images." https://
www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | dlquantizationOptions | calibrate | validate

Related Examples
• “Quantization Workflow Prerequisites” on page 21-237
• “Train Residual Network for Image Classification” on page 3-13
• “Generate INT8 Code for Deep Learning Networks” (GPU Coder)
• “Explore Quantized Semantic Segmentation Network Using Grad-CAM” on page 21-176

21 Deep Learning Code Generation

21-164

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


Quantize Layers in Object Detectors and Generate CUDA Code

This example was previously named 'Quantize Object Detectors and Generate CUDA Code' but
renamed in R2022a to avoid confusion with quantized network objects created by the quantize
function. Code generation does not support quantized deep neural networks produced by the
quantize function.

This example shows how to generate CUDA® code for an SSD vehicle detector and a YOLO v2
vehicle detector that performs inference computations in 8-bit integers for the convolutional layers.

Deep learning is a powerful machine learning technique in which you train a network to learn image
features and perform detection tasks. There are several techniques for object detection using deep
learning, such as Faster R-CNN, You Only Look Once (YOLO v2), and SSD. For more information, see
“Object Detection Using YOLO v2 Deep Learning” (Computer Vision Toolbox) and “Object Detection
Using SSD Deep Learning” (Computer Vision Toolbox).

Neural network architectures used for deep learning applications contain many processing layers,
including convolutional layers. Deep learning models typically work on large sets of labeled data.
Performing inference on these models is computationally intensive, consuming significant amounts of
memory. Neural networks use memory to store input data, parameters (weights), and activations from
each layer as the input propagates through the network. Deep neural networks trained in MATLAB
use single-precision floating point data types. Even networks that are small in size require a
considerable amount of memory and hardware to perform these floating-point arithmetic operations.
These restrictions can inhibit deployment of deep learning models to devices that have low
computational power and smaller memory resources. By using a lower precision to store the weights
and activations, you can reduce the memory requirements of the network.

You can use Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model Quantization
Library support package to reduce the memory footprint of a deep neural network by quantizing the
weights, biases, and activations of convolution layers to 8-bit scaled integer data types. Then, you can
use GPU Coder™ to generate CUDA code for the optimized network.

Download Pretrained Network

Download a pretrained object detector to avoid having to wait for training to complete.

detectorType = 

detectorType = 2

switch detectorType
    case 1
        if ~exist('ssdResNet50VehicleExample_20a.mat','file')
            disp('Downloading pretrained detector...');
            pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/ssdResNet50VehicleExample_20a.mat';
            websave('ssdResNet50VehicleExample_20a.mat',pretrainedURL);
        end
    case 2
        if ~exist('yolov2ResNet50VehicleExample_19b.mat','file')    
            disp('Downloading pretrained detector...');
            pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/yolov2ResNet50VehicleExample_19b.mat';
            websave('yolov2ResNet50VehicleExample_19b.mat',pretrainedURL);
        end
end

 Quantize Layers in Object Detectors and Generate CUDA Code

21-165



Load Data

This example uses a small vehicle data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission.
Each image contains one or two labeled instances of a vehicle. A small data set is useful for exploring
the training procedure, but in practice, more labeled images are needed to train a robust detector.
Extract the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

Prepare Data for Training, Calibration, and Validation

The training data is stored in a table. The first column contains the path to the image files. The
remaining columns contain the ROI labels for vehicles. Display the first few rows of the data.

vehicleDataset(1:4,:)

Split the data set into training, validation, and test sets. Select 60% of the data for training, 10% for
calibration, and the remainder for validating the trained detector.

rng(0);
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices) );

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

calibrationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) );
calibrationDataTbl = vehicleDataset(shuffledIndices(calibrationIdx),:);

validationIdx = calibrationIdx(end)+1 : length(shuffledIndices);
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsCalibration = imageDatastore(calibrationDataTbl{:,'imageFilename'});
bldsCalibration = boxLabelDatastore(calibrationDataTbl(:,'vehicle'));

imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(validationDataTbl(:,'vehicle'));

Combine the image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
calibrationData = combine(imdsCalibration,bldsCalibration);
validationData = combine(imdsValidation,bldsValidation);

Display one of the training images and box labels.

data = read(calibrationData);
I = data{1};
bbox = data{2};

21 Deep Learning Code Generation

21-166



annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

Define Network Parameters

To reduce the computational cost of running the example, specify a network input size that
corresponds to the minimum size required to run the network.

inputSize = []; 
switch detectorType 
    case 1
        inputSize = [300 300 3]; % Minimum size for SSD
    case 2
        inputSize = [224 224 3]; % Minimum size for YOLO v2
end

Define the number of object classes to detect.

numClasses = width(vehicleDataset)-1;

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transformations to augment the training data by:

• Randomly flipping the image and associated box labels horizontally.
• Randomly scaling the image and associated box labels.
• Jitter the image color.

Note that data augmentation is not applied to the test data. Ideally, test data is representative of the
original data and left unmodified for unbiased evaluation.

augmentedCalibrationData = transform(calibrationData,@augmentVehicleData);

Visualize augmented training data by reading the same image multiple times.

augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedCalibrationData);
    augmentedData{k} = insertShape(data{1},'Rectangle',data{2});
    reset(augmentedCalibrationData);
end

figure
montage(augmentedData,'BorderSize',10)

 Quantize Layers in Object Detectors and Generate CUDA Code

21-167



21 Deep Learning Code Generation

21-168



Preprocess Calibration Data

Preprocess the augmented calibration data to prepare for calibration of the network.

preprocessedCalibrationData = transform(augmentedCalibrationData,@(data)preprocessVehicleData(data,inputSize));

Read the preprocessed calibration data.

data = read(preprocessedCalibrationData);

Display the image and bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Quantize Layers in Object Detectors and Generate CUDA Code

21-169



Load and Test Pretrained Detector

Load the pretrained detector.

switch detectorType
    case 1
        % Load pretrained SSD detector for the example.
        pretrained = load('ssdResNet50VehicleExample_20a.mat');
        detector = pretrained.detector;
    case 2 
        % Load pretrained YOLO v2 detector for the example.
        pretrained = load('yolov2ResNet50VehicleExample_19b.mat');
        detector = pretrained.detector;
end

As a quick test, run the detector on one test image.

data = read(calibrationData);
I = data{1,1};

21 Deep Learning Code Generation

21-170



I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I, 'Threshold', 0.4);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

Validate Floating-Point Network

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides functions to measure common object detector metrics, such as average
precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all
relevant objects (recall).

Apply the same preprocessing transform to the test data as for the training data. Note that data
augmentation is not applied to the test data. Ideally, test data is representative of the original data
and left unmodified for unbiased evaluation.

preprocessedValidationData = transform(validationData,@(data)preprocessVehicleData(data,inputSize));

Run the detector on all the test images.

detectionResults = detect(detector, preprocessedValidationData,'Threshold',0.4);

Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults,preprocessedValidationData);

 Quantize Layers in Object Detectors and Generate CUDA Code

21-171



The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. Ideally,
the precision is 1 at all recall levels. Using more data can help improve the average precision, but
might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f',ap))

Generate Calibration Result File for the Network

Create a dlquantizer object and specify the detector to quantize. By default, the execution
environment is set to GPU. To learn about the products required to quantize and deploy the detector
to a GPU environment, see “Quantization Workflow Prerequisites” on page 21-237.

quantObj = dlquantizer(detector)

quantObj = 
  dlquantizer with properties:

           NetworkObject: [1×1 yolov2ObjectDetector]
    ExecutionEnvironment: 'GPU'

Specify the metric function in a dlquantizationOptions object.

21 Deep Learning Code Generation

21-172



quantOpts = dlquantizationOptions;
quantOpts = dlquantizationOptions('MetricFcn', ...
    {@(x)hVerifyDetectionResults(x, detector.Network, preprocessedValidationData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network, as well as the
dynamic ranges of the activations in all layers of the network. The function returns a table. Each row
of the table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj,preprocessedCalibrationData)

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

Examine the MetricResults.Result field of the validation output to see the performance of the
optimized network. The first row in the results table contains the information for the original,
floating-point implementation. The second row contains the information for the quantized
implementation. The output of the metric function is displayed in the MetricOutput column.

valResults = validate(quantObj,preprocessedValidationData,quantOpts)

 Quantize Layers in Object Detectors and Generate CUDA Code

21-173



valResults = struct with fields:
       NumSamples: 88
    MetricResults: [1×1 struct]
       Statistics: [2×2 table]

valResults.MetricResults.Result

The metrics show that quantization reduces the required memory by approximately 75% and the
network accuracy by approximately 3%.

To visualize the calibration statistics, use the Deep Network Quantizer app. First, save the
dlquantizer object.

save('dlquantObj.mat','quantObj')

In the MATLAB® Command Window, open the Deep Network Quantizer app.

deepNetworkQuantizer

Then import the dlquantizer object dq in the Deep Network Quantizer app by selecting New >
Import dlquantizer object.

Generate CUDA Code

After you train and evaluate the detector, you can generate code for the ssdObjectDetector or
yolov2ObjectDetector using GPU Coder™. For more details, see “Code Generation for Object

21 Deep Learning Code Generation

21-174



Detection by Using Single Shot Multibox Detector” (Computer Vision Toolbox) and “Code Generation
for Object Detection by Using YOLO v2” (GPU Coder).

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';

% Check compute capability of GPU
gpuInfo = gpuDevice;
cc = gpuInfo.ComputeCapability;

% Create deep learning code generation configuration object
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

% INT8 precision requires a CUDA GPU with minimum compute capability of
% 6.1, 6.3, or higher
cfg.GpuConfig.ComputeCapability = cc;
cfg.DeepLearningConfig.DataType = 'int8';
cfg.DeepLearningConfig.CalibrationResultFile = 'dlquantObj.mat';

Run the codegen command to generate CUDA code.

codegen -config cfg mynet_detect -args {coder.Constant(detectorType), ones(inputSize, 'single')} -report

When code generation is successful, you can view the resulting code generation report by clicking
View Report in the MATLAB Command Window. The report is displayed in the Report Viewer window.
If the code generator detects errors or warnings during code generation, the report describes the
issues and provides links to the problematic MATLAB code. See “Code Generation Reports” (MATLAB
Coder).

References

[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang Fu, and
Alexander C. Berg. "SSD: Single Shot Multibox Detector." In Computer Vision - ECCV 2016, edited by
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, 9905:21-37. Cham: Springer International
Publishing, 2016. https://doi.org/10.1007/978-3-319-46448-0_2

[2] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517-25. Honolulu, HI: IEEE, 2017. https://
doi.org/10.1109/CVPR.2017.690

 Quantize Layers in Object Detectors and Generate CUDA Code

21-175

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690


Explore Quantized Semantic Segmentation Network Using
Grad-CAM

Compare the predictions of a quantized semantic segmentation network to the original network using
the gradient-weighted class activation mapping (Grad-CAM) interpretability method.

To run this example, you must have the licenses for the software required to quantize a deep learning
network. For information about this software, see “Quantization Workflow Prerequisites” on page 21-
237. This example also requires Medical Imaging Toolbox™.

Semantic segmentation involves assigning a class to each pixel in a 2-D image. In this example, you
load a network that is trained to perform breast tumor segmentation using the DeepLab v3+
architecture. For more information about how to train this type of network, see “Breast Tumor
Segmentation from Ultrasound Using Deep Learning” on page 9-173. You can then use the Deep
Learning Toolbox Model Quantization Library support package to reduce the memory footprint of the
network by quantizing the weights, biases, and activations of the convolution layers to 8-bit scaled
integer values.

To verify that quantizing of the network does not substantially change its behavior, you can use Grad-
CAM, a deep learning interpretability technique. With this technique, you can determine which
regions of an image differ in the pixel classification decision between the original, floating-point
network and the quantized network.

This figure shows Grad-CAM maps for the original network and the quantized network.

21 Deep Learning Code Generation

21-176



Download Pretrained Network

Download the pretrained DeepLab v3+ network and a test image by using the
downloadTrainedNetwork helper function. The helper function is attached to this example as a
supporting file. You can use the pretrained network to run the example without training the network.
To learn more about how to train this network, see “Breast Tumor Segmentation from Ultrasound
Using Deep Learning” on page 9-173.

dataDir = fullfile(tempdir,"BreastSegmentation");
if ~exist(dataDir,"dir")   
    mkdir(dataDir)
end
pretrainedNetwork_url = "https://www.mathworks.com/supportfiles/"+ ...
    "image/data/breastTumorDeepLabV3.tar.gz";
downloadTrainedNetwork(pretrainedNetwork_url,dataDir);

Downloading pretrained network.
This can take several minutes to download...
Done.

Unzip the TAR GZ file. Load the pretrained network.

 Explore Quantized Semantic Segmentation Network Using Grad-CAM 

21-177



gunzip(fullfile(dataDir,"breastTumorDeepLabV3.tar.gz"),dataDir);
untar(fullfile(dataDir,"breastTumorDeepLabV3.tar"),dataDir);
exampleDir = fullfile(dataDir,"breastTumorDeepLabV3");
load(fullfile(exampleDir,"breast_seg_deepLabV3.mat"));

Perform Semantic Segmentation

Before you analyze the network predictions, use the pretrained network to segment a test image.
Read the test ultrasound image and resize the image to the input size of the pretrained network.

inputSize = trainedNet.Layers(1).InputSize(1:2);

imTest = imread(fullfile(exampleDir,"breastUltrasoundImg.png"));
imTest = imresize(imTest,inputSize);

Predict the tumor segmentation mask for the test image.

segmentedImg = semanticseg(imTest,trainedNet);

Display the test image and the test image with the predicted tumor label overlay as a montage.

overlayImg = labeloverlay(imTest,segmentedImg, ...
    Transparency=0.7, ...
    IncludedLabels="tumor", ...
    Colormap="hsv");
montage({imTest,overlayImg});

Download Data Set

To quantize and test the network, this example uses the Breast Ultrasound Images (BUSI) data set [2
on page 21-187]. The BUSI data set contains 2-D ultrasound images in the PNG file format. The total
size of the data set is 197 MB. The data set contains 133 normal scans, 487 scans with benign
tumors, and 210 scans with malignant tumors. This example uses images from the tumor groups only.

21 Deep Learning Code Generation

21-178



Each ultrasound image has a corresponding tumor mask image. The tumor mask labels have been
reviewed by clinical radiologists [2 on page 21-187].

Run this code to download the dataset from the MathWorks® website and unzip the downloaded
folder.

zipFile = matlab.internal.examples.downloadSupportFile("image","data/Dataset_BUSI.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The imageDir folder contains the downloaded and unzipped dataset.

imageDir = fullfile(filepath,"Dataset_BUSI_with_GT");

Load Data

Import and process the data using the same steps as in the “Breast Tumor Segmentation from
Ultrasound Using Deep Learning” on page 9-173 example.

Create an imageDatastore object to read and manage the ultrasound image data. Label each image
as normal, benign, or malignant according to the name of its folder.

imds = imageDatastore(imageDir, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

Remove files whose names contain "mask" to remove label images from the datastore. The image
datastore now contains only the grayscale ultrasound images.

imds = subset(imds,find(~contains(imds.Files,"mask")));

Create a pixelLabelDatastore (Computer Vision Toolbox) object to store the labels.

classNames = ["tumor","background"];
labelIDs = [1 0];
numClasses = numel(classNames);
pxds = pixelLabelDatastore(imageDir,classNames,labelIDs,IncludeSubfolders=true);

Include only the subset of files whose names contain "_mask.png" in the datastore. The pixel label
datastore now contains only the tumor mask images.

pxds = subset(pxds,contains(pxds.Files,"_mask.png"));

Combine the image datastore and the pixel label datastore to create a CombinedDatastore object.

dsCombined = combine(imds,pxds);

Preview one image with a tumor mask overlay.

testImage  = preview(imds);
mask = preview(pxds);

B = labeloverlay(testImage,mask, ...
    Transparency=0.7, ...
    IncludedLabels="tumor", ...
    Colormap="hsv");
imshow(B)
title("Labeled Test Ultrasound Image")

 Explore Quantized Semantic Segmentation Network Using Grad-CAM 

21-179



Prepare Data for Calibration and Validation

Partition Data into Training, Validation, and Test Sets

Split the combined datastore into data sets for training, validation, and testing. Allocate 80% of the
data for training, 10% for validation, and the remaining 10% for testing. Determine which indices to
include in each set by using the splitlabels (Computer Vision Toolbox) function. To exclude
images in the normal class without tumor images, use the image datastore labels as input and set
the Exclude name-value argument to "normal".

idxSet = splitlabels(imds.Labels,[0.8 0.1],"randomized",Exclude="normal");

Use the validation data to calibrate the quantized network. Use the test data to assess the
performance of the original and quantized networks.

dsVal = subset(dsCombined,idxSet{2});
dsTest = subset(dsCombined,idxSet{3});

21 Deep Learning Code Generation

21-180



Augment Validation Data

Augment the validation data using the transform function with custom preprocessing operations
defined in the transformBreastTumorImageAndLabels helper function. The helper function is
attached to the example as a supporting file. The transformBreastTumorImageAndLabels
function performs these operations:

1 Convert the ultrasound images from RGB to grayscale.
2 Augment the intensity of the grayscale images by using the jitterIntensity (Medical Imaging

Toolbox) function.
3 Resize the images to 256-by-256 pixels.

dsVal = transform(dsVal,@transformBreastTumorImageAndLabels,IncludeInfo=true);

Preprocess Test Data

Prepare the test data by using the transform function with custom preprocessing operations
specified by the transformBreastTumorImageResize helper function. This helper function is
attached to the example as a supporting file. The transformBreastTumorImageResize function
converts images from RGB to grayscale and resizes the images to 256-by-256 pixels.

dsTest = transform(dsTest,@transformBreastTumorImageResize,IncludeInfo=true);

Quantize Network

Deep neural networks trained in MATLAB® use single-precision floating point values. Even small
networks require a lot of memory and hardware resources to perform floating-point arithmetic
operations. These restrictions can inhibit deployment of deep learning models that have low
computational power and memory resources. Using a lower precision to store the weights and
activations reduces the memory requirements of the network. You can use Deep Learning Toolbox™
software with the Deep Learning Toolbox™ Model Quantization Library support package to reduce
the memory footprint of a deep neural network by quantizing the weights, biases, and activations of
the convolution layers to 8-bit scaled integer values.

Create a dlquantizer object and specify the network to quantize. Set the execution environment for
the quantized network to GPU.

quantObj = dlquantizer(trainedNet,ExecutionEnvironment="GPU")

quantObj = 
  dlquantizer with properties:

           NetworkObject: [1×1 DAGNetwork]
    ExecutionEnvironment: "GPU"

Use the calibrate function to exercise the network with sample inputs and collect range
information.

calResults = calibrate(quantObj,dsVal); 

Use the quantize function to quantize the network object for simulation.

qNet = quantize(quantObj); 

 Explore Quantized Semantic Segmentation Network Using Grad-CAM 

21-181



Test Quantized Network

Use the original network and the quantized network for semantic segmentation of the test data set.

pxdsResults = semanticseg(dsTest,trainedNet, ...
    NamePrefix="pixelLabel_original");

Running semantic segmentation network
-------------------------------------
* Processed 65 images.

pxdsResultsQ = semanticseg(dsTest,qNet, ...
    NamePrefix="pixelLabel_quantized");

Running semantic segmentation network
-------------------------------------
* Processed 65 images.

Compare Segmentation Accuracy

Evaluate the predicted segmentation results against the ground truth pixel label tumor masks for the
original and quantized networks.

metrics = evaluateSemanticSegmentation(pxdsResults,dsTest);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 65 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.93925          0.89078       0.73802      0.90067        0.54716  

metricsQ = evaluateSemanticSegmentation(pxdsResultsQ,dsTest);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 65 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.93793          0.89224       0.73536      0.89901        0.53383  

Plot a comparison of the results. Across all metrics, the quantized network achieves a similar
performance to the original network.

figure
bar([metrics.DataSetMetrics{:,:};metricsQ.DataSetMetrics{:,:}]')

set(gca,'xticklabel',metrics.DataSetMetrics.Properties.VariableNames)
legend(["Original" "Quantized"])

21 Deep Learning Code Generation

21-182



Measure the segmentation accuracy using the evaluateBreastTumorDiceAccuracy helper
function. This helper function computes the Dice index between the predicted and ground truth
segmentations using the dice (Image Processing Toolbox) function. The helper function is attached
to the example as a supporting file.

[diceTumor,diceBackground,numTestImgs] = evaluateBreastTumorDiceAccuracy(pxdsResults,dsTest);
[diceTumorQ,diceBackgroundQ,numTestImgsQ] = evaluateBreastTumorDiceAccuracy(pxdsResultsQ,dsTest);

Visualize statistics about the Dice scores as a box chart. The middle blue line in the plot shows the
median Dice index. The upper and lower bounds of the blue box indicate the 25th and 75th
percentiles, respectively. Black whiskers extend to the most extreme data points that are not outliers.

figure
diceResult = [diceTumor diceTumorQ diceBackground diceBackgroundQ];
boxchart(diceResult)
title("Test Set Dice Accuracy")
xticklabels(["tumor (original)" "tumor (quantized)" ...
    "background (original)" "background (quantized)"])
ylabel("Dice Coefficient")

 Explore Quantized Semantic Segmentation Network Using Grad-CAM 

21-183



Investigate Behavior of Quantized Network

By using interpretability methods like Grad-CAM, you can see which parts of an input a network uses
to make its predictions. You can use Grad-CAM to compare the behavior of the original network and
the quantized network.

To use Grad-CAM for semantic segmentation, you must select a feature layer from which to extract
the feature map and a reduction layer from which to extract the output activations. Use
analyzeNetwork to determine which layers to use with Grad-CAM. In this example, you use the final
ReLU layer as the feature layer and the softmax layer as the reduction layer.

analyzeNetwork(qNet)
featureLayer = "dec_relu4";
reductionlayer = "softmax-out";
classes = classNames; 

Find the Grad-CAM maps for a test image. Resize the image to the size expected by the network.

testImage = preview(imds);
testImage = imresize(testImage,inputSize);
testImageGray = rgb2gray(testImage);

Segment the image using the quantized network.

21 Deep Learning Code Generation

21-184



segmentedImg = semanticseg(testImage,qNet);
overlayImg = labeloverlay(testImage,segmentedImg, ...
    Transparency=0.7, ...
    IncludedLabels="tumor", ...
    Colormap="hsv");

Find the Grad-CAM maps for the original and quantized networks using the gradCAM function. For
each network, the function returns a map for each class showing which part of the image the network
looks at for that class.

map = gradCAM(trainedNet,testImageGray,classes, ...
    ReductionLayer=reductionlayer, ...
    FeatureLayer=featureLayer); 

qMap = gradCAM(qNet,testImageGray,classes, ...
    ReductionLayer=reductionlayer, ...
    FeatureLayer=featureLayer); 

Plot the Grad-CAM maps for the tumor class.

figure
tiledlayout("flow",TileSpacing="compact")
nexttile
imshow(testImage)
title("Test Image")

nexttile
imshow(overlayImg)
title("Segmented Image")

nexttile
imshow(testImage)
hold on
imagesc(map(:,:,1),AlphaData=0.5)
title({"Grad-CAM for Original Model","Class: Tumor"})
hold off 

nexttile
imshow(testImage) 
hold on
imagesc(qMap(:,:,1),AlphaData=0.5) 
title({"Grad-CAM for Quantized Model","Class: Tumor"})
hold off

 Explore Quantized Semantic Segmentation Network Using Grad-CAM 

21-185



Plot the Grad-CAM maps for the background class. The Grad-CAM maps and semantic segmentation
maps show similar highlighting for both classes. The Grad-CAM map for the tumor class shows that
the border around the tumor is important for the classification decision of the network. Both
networks might misclassify areas near the tumor boundary as part of the tumor class.

figure
tiledlayout("flow",TileSpacing="compact")
nexttile
imshow(testImage)
title("Test Image")

nexttile
imshow(overlayImg)
title("Segmented Image")

nexttile
imshow(testImage)
hold on
imagesc(map(:,:,2),AlphaData=0.5)
title(["Grad-CAM for Original Model","Class: Background"])
hold off 

nexttile
imshow(testImage)

21 Deep Learning Code Generation

21-186



hold on
imagesc(qMap(:,:,2),AlphaData=0.5)
title(["Grad-CAM for Quantized Model","Class: Background"])
hold off

References

[1] Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. “Tversky Loss Function for
Image Segmentation Using 3D Fully Convolutional Deep Networks.” In Machine Learning in Medical
Imaging, edited by Qian Wang, Yinghuan Shi, Heung-Il Suk, and Kenji Suzuki, 10541:379–87. Cham:
Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-67389-9_44.

[2] Al-Dhabyani, Walid, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. “Dataset of Breast
Ultrasound Images.” Data in Brief 28 (February 2020): 104863. https://doi.org/10.1016/
j.dib.2019.104863.

See Also
gradCAM | quantize | dlquantizer | calibrate

 Explore Quantized Semantic Segmentation Network Using Grad-CAM 

21-187

https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.1016/j.dib.2019.104863


Related Examples
• “Breast Tumor Segmentation from Ultrasound Using Deep Learning” (Medical Imaging Toolbox)
• “Quantization of Deep Neural Networks” on page 21-243
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code” on

page 21-157
• “Explore Semantic Segmentation Network Using Grad-CAM” on page 5-81
• “Grad-CAM Reveals the Why Behind Deep Learning Decisions” on page 5-22

21 Deep Learning Code Generation

21-188



Quantize Semantic Segmentation Network and Generate CUDA
Code

This example shows how to quantize a pretrained network for semantic segmentation and generate
CUDA® code for deploying the network to a GPU environment.

Semantic segmentation involves labeling each pixel in an image with a class. One application of
semantic segmentation is tracking deforestation, which is the change in forest cover over time.
Environmental agencies track deforestation to assess and quantify the environmental and ecological
health of a region.

Deep learning based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One challenge is differentiating classes with similar visual
characteristics, such as trying to classify a green pixel as grass, shrubbery, or tree. To increase
classification accuracy, some data sets contain multispectral images that provide additional
information about each pixel. For example, the Hamlin Beach State Park data set supplements the
color images with three near-infrared channels that provide a clearer separation of the classes.

Neural networks use memory to store input data, parameters (weights), and activations from each
layer as the input propagates through the network. Most neural networks that you create and train
using Deep Learning Toolbox™ use single-precision floating-point data types. Even small networks
require a considerable amount of memory and hardware to perform these floating-point arithmetic
operations. These restrictions can inhibit deployment of deep learning models to devices that have
low computational power and less memory resources. By using a lower precision to store the weights
and activations, you can reduce the memory requirements of the network.

 Quantize Semantic Segmentation Network and Generate CUDA Code

21-189



In this example, you use the Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model
Quantization Library support package to reduce the memory footprint of a deep neural network by
quantizing the weights, biases, and activations of convolution layers to 8-bit scaled integer data
types. You then quantize the network in MATLAB® and test its performance by simulating quantized
inference behavior. Then, you can optionally use GPU Coder™ to generate CUDA code for the
optimized network. The generated code takes advantage of NVIDIA® CUDA deep neural network
library (cuDNN) or the TensorRT™ high performance inference library. The generated code can be
integrated into your project as source code, static or dynamic libraries, or executables that you can
deploy to a variety of NVIDIA GPU platforms.

The network in this example is a U-Net, trained to perform semantic segmentation of a multispectral
image with seven channels. For more information about semantic segmentation using U-Net, see
“Semantic Segmentation of Multispectral Images Using Deep Learning” (Image Processing Toolbox).

Download Data Set and Trained Network

This example uses the RIT-18 data set which contains high-resolution multispectral image data
captured using a drone over the Hamlin Beach State Park, NY [1 on page 21-203]. The data contains
labeled training, validation, and test sets, with 18 object class labels. The size of the data set is 3.0
GB.

Download the data set as a MAT file using the downloadHamlinBeachMSIData function. This
function is attached to the example as a supporting file. To access this file, open the example as a live
script. Specify destination as the desired location of the data.

destination = fullfile(pwd);
url = "https://home.cis.rit.edu/~cnspci/other/data/rit18_data.mat";
downloadHamlinBeachMSIData(url,destination);

The multispectral image data is arranged as numChannels-by-width-by-height arrays. However, in
MATLAB®, multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape
the data so that the channels are in the third dimension, use the switchChannelsToThirdPlane
function. This function is attached to the example as a supporting file. Load the data set and reshape
the images.

load(fullfile(destination,"rit18_data","rit18_data.mat"));

train_data = switchChannelsToThirdPlane(train_data);
val_data   = switchChannelsToThirdPlane(val_data);
test_data = switchChannelsToThirdPlane(test_data);

whos train_data val_data test_data

  Name                Size                     Bytes  Class     Attributes

  test_data       12446x7654x7            1333663576  uint16              
  train_data       9393x5642x7             741934284  uint16              
  val_data         8833x6918x7             855493716  uint16              

Create a vector of class names.

classNames = [ "RoadMarkings","Tree","Building","Vehicle","Person", ...
               "LifeguardChair","PicnicTable","BlackWoodPanel",...
               "WhiteWoodPanel","OrangeLandingPad","Buoy","Rocks",...
               "LowLevelVegetation","Grass_Lawn","Sand_Beach",...
               "Water_Lake","Water_Pond","Asphalt"]; 

21 Deep Learning Code Generation

21-190



Save the training image data and validation image data as MAT files and the training labels as a PNG
file. This facilitates loading the data using imageDatastore and pixelLabelDatastore objects.

save("train_data.mat","train_data");
save("val_data.mat","val_data")
imwrite(train_labels,"train_labels.png");

Download a pretrained U-Net network and inspect some of its layers. The network was trained using
single-precision floating-point data.

trainedUnet_url = "https://www.mathworks.com/supportfiles/vision/data/multispectralUnet.mat";
downloadTrainedUnet(trainedUnet_url,destination);
load(fullfile(destination,"trainedUnet","multispectralUnet.mat"));
net.Layers(1:10)

ans = 
  10×1 Layer array with layers:

     1   'ImageInputLayer'             Image Input       256×256×6 images with 'zerocenter' normalization
     2   'Encoder-Section-1-Conv-1'    2-D Convolution   64 3×3×6 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'Encoder-Section-1-ReLU-1'    ReLU              ReLU
     4   'Encoder-Section-1-Conv-2'    2-D Convolution   64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
     5   'Encoder-Section-1-ReLU-2'    ReLU              ReLU
     6   'Encoder-Section-1-MaxPool'   2-D Max Pooling   2×2 max pooling with stride [2  2] and padding [0  0  0  0]
     7   'Encoder-Section-2-Conv-1'    2-D Convolution   128 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1]
     8   'Encoder-Section-2-ReLU-1'    ReLU              ReLU
     9   'Encoder-Section-2-Conv-2'    2-D Convolution   128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'Encoder-Section-2-ReLU-2'    ReLU              ReLU

The network contains 58 layers in total, 19 of which are 2-D convolution layers.

Use Pretrained Network

This example uses a variation of the U-Net network. In U-Net, the initial series of convolutional layers
are interspersed with max pooling layers, successively decreasing the resolution of the input image.
These layers are followed by a series of convolutional layers interspersed with upsampling operators,
successively increasing the resolution of the input image [2 on page 21-203]. The name U-Net comes
from the fact that the network can be drawn with a symmetric shape like the letter U.

Before quantizing the network, segment the image using the pretrained U-Net network. The
pretrained network was trained using patches of the training image. A supporting function
segmentImage is provided at the end of this example and preprocesses the image data to create
patches before using those patches for prediction, then assembles the predicted labels from each
patch before returning the predicted labels for the entire input image. Use the segmentImage
function to segment the validation image using the pretrained network.

origPredictedSegmentedImage = segmentImage(val_data,net);

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the validation data.

origPredictedSegmentedImage = uint8(val_data(:,:,7)~=0) .* origPredictedSegmentedImage;

Show the predicted labels overlaid on the validation image.

cmap = jet(numel(classNames));
B = labeloverlay(histeq(val_data(:,:,[3 2 1])),origPredictedSegmentedImage,Transparency=0.5,Colormap=cmap);

 Quantize Semantic Segmentation Network and Generate CUDA Code

21-191



figure
imshow(B)
title("Labeled Segmented Image")
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar(TickLabels=cellstr(classNames),Ticks=ticks,TickLength=0,TickLabelInterpreter="none");
colormap(cmap)

21 Deep Learning Code Generation

21-192



 Quantize Semantic Segmentation Network and Generate CUDA Code

21-193



Save the segmented image and ground truth labels as PNG files. The example uses these files to
calculate accuracy metrics.

imwrite(origPredictedSegmentedImage,"resultsOrig.png");
imwrite(val_labels,"gtruth.png");

Load the segmentation results and ground truth using pixelLabelDatastore (Computer Vision
Toolbox) objects.

pixelLabelIds = 1:18;
pxdsResultsOrig = pixelLabelDatastore("resultsOrig.png",classNames,pixelLabelIds);
pxdsTruth = pixelLabelDatastore("gtruth.png",classNames,pixelLabelIds);

Generate Calibration Result File for the Network

Create a calibration datastore using the training data. Because the MAT file format is a nonstandard
image format, you must use a MAT file reader to enable reading the image data. You can use the
helper MAT file reader, matReader, that extracts the first six channels from the training data and
omits the last channel containing the mask. This function is attached to the example as a supporting
file. To access this file, open the example as a live script.

trainImds = imageDatastore("train_data.mat",FileExtensions=".mat",ReadFcn=@matReader);
pxdsTrain = pixelLabelDatastore("train_labels.png",classNames,pixelLabelIds);
calDS = pixelLabelImageDatastore(trainImds,pxdsTrain);

Create a validation datastore.

valImds = imageDatastore("val_data.mat",FileExtensions=".mat",ReadFcn=@matReader);
valDS = pixelLabelImageDatastore(valImds,pxdsTruth);

Create a dlquantizer object for the pretrained network, specifying the ExecutionEnvironment
property as GPU.

dq = dlquantizer(net,ExecutionEnvironment="GPU");

Collect the dynamic ranges of the weights and biases of the pretrained network using the calibration
datastore.

calibrationStatistics = calibrate(dq,calDS)

calibrationStatistics=105×5 table
            Optimized Layer Name                 Network Layer Name         Learnables / Activations    MinValue     MaxValue 
    ____________________________________    ____________________________    ________________________    _________    _________

    {'Encoder-Section-1-Conv-1_Weights'}    {'Encoder-Section-1-Conv-1'}           "Weights"            -0.078472     0.083924
    {'Encoder-Section-1-Conv-1_Bias'   }    {'Encoder-Section-1-Conv-1'}           "Bias"                  0.7125       1.1249
    {'Encoder-Section-1-Conv-2_Weights'}    {'Encoder-Section-1-Conv-2'}           "Weights"             -0.23892      0.24892
    {'Encoder-Section-1-Conv-2_Bias'   }    {'Encoder-Section-1-Conv-2'}           "Bias"                 0.70602        1.381
    {'Encoder-Section-2-Conv-1_Weights'}    {'Encoder-Section-2-Conv-1'}           "Weights"            -0.048319     0.075386
    {'Encoder-Section-2-Conv-1_Bias'   }    {'Encoder-Section-2-Conv-1'}           "Bias"                 0.93696        1.049
    {'Encoder-Section-2-Conv-2_Weights'}    {'Encoder-Section-2-Conv-2'}           "Weights"             -0.18248      0.19105
    {'Encoder-Section-2-Conv-2_Bias'   }    {'Encoder-Section-2-Conv-2'}           "Bias"                 0.85737       1.0482
    {'Encoder-Section-3-Conv-1_Weights'}    {'Encoder-Section-3-Conv-1'}           "Weights"            -0.012313     0.027855
    {'Encoder-Section-3-Conv-1_Bias'   }    {'Encoder-Section-3-Conv-1'}           "Bias"                  0.9723       1.0495
    {'Encoder-Section-3-Conv-2_Weights'}    {'Encoder-Section-3-Conv-2'}           "Weights"             -0.14617      0.13171
    {'Encoder-Section-3-Conv-2_Bias'   }    {'Encoder-Section-3-Conv-2'}           "Bias"                 0.96037       1.0234
    {'Encoder-Section-4-Conv-1_Weights'}    {'Encoder-Section-4-Conv-1'}           "Weights"            -0.006589    0.0069637
    {'Encoder-Section-4-Conv-1_Bias'   }    {'Encoder-Section-4-Conv-1'}           "Bias"                  0.9854       1.0057

21 Deep Learning Code Generation

21-194



    {'Encoder-Section-4-Conv-2_Weights'}    {'Encoder-Section-4-Conv-2'}           "Weights"             -0.10257       0.1018
    {'Encoder-Section-4-Conv-2_Bias'   }    {'Encoder-Section-4-Conv-2'}           "Bias"                 0.99395       1.0025
      ⋮

You can optionally use the validate function to quantize the learnable parameters in the
convolution layers of the network, exercise the network, and determine the reduction in learnable
parameter memory used. However, the metrics calculated by the validate function differ from those
calculated by the evaluateSemanticSegmentation function, as the validate function does not
perform patch-wise semantic segmentation by default. To use different metrics for validation, pass a
dlquantizationOptions specifying one or more metric functions to the validate function.

validationResults = validate(dq,valDS);

Quantize Network for Simulated Inference in MATLAB

Use the quantize method to quantize the network object and return a simulatable quantized
network.

qNet = quantize(dq);

Use the quantizationDetails method to see that the network is now quantized and inspect
quantization details.

qDetails = quantizationDetails(qNet)

qDetails = struct with fields:
            IsQuantized: 1
          TargetLibrary: "cudnn"
    QuantizedLayerNames: [41×1 string]
    QuantizedLearnables: [32×3 table]

qDetails.QuantizedLayerNames(1:5)

ans = 5×1 string
    "Encoder-Section-1-Conv-1"
    "Encoder-Section-1-ReLU-1"
    "Encoder-Section-1-Conv-2"
    "Encoder-Section-1-ReLU-2"
    "Encoder-Section-1-MaxPool"

qDetails.QuantizedLearnables

ans=32×3 table
              Layer               Parameter            Value        
    __________________________    _________    _____________________

    "Encoder-Section-1-Conv-1"    "Weights"    {3×3×6×64     int8  }
    "Encoder-Section-1-Conv-1"    "Bias"       {1×1×64       single}
    "Encoder-Section-1-Conv-2"    "Weights"    {3×3×64×64    int8  }
    "Encoder-Section-1-Conv-2"    "Bias"       {1×1×64       single}
    "Encoder-Section-2-Conv-1"    "Weights"    {3×3×64×128   int8  }
    "Encoder-Section-2-Conv-1"    "Bias"       {1×1×128      single}
    "Encoder-Section-2-Conv-2"    "Weights"    {3×3×128×128  int8  }
    "Encoder-Section-2-Conv-2"    "Bias"       {1×1×128      single}
    "Encoder-Section-3-Conv-1"    "Weights"    {3×3×128×256  int8  }
    "Encoder-Section-3-Conv-1"    "Bias"       {1×1×256      single}

 Quantize Semantic Segmentation Network and Generate CUDA Code

21-195



    "Encoder-Section-3-Conv-2"    "Weights"    {3×3×256×256  int8  }
    "Encoder-Section-3-Conv-2"    "Bias"       {1×1×256      single}
    "Encoder-Section-4-Conv-1"    "Weights"    {3×3×256×512  int8  }
    "Encoder-Section-4-Conv-1"    "Bias"       {1×1×512      single}
    "Encoder-Section-4-Conv-2"    "Weights"    {3×3×512×512  int8  }
    "Mid-Conv-1"                  "Weights"    {3×3×512×1024 int8  }
      ⋮

You can use the quantized network to emulate how a network quantized for GPU target hardware
would perform a semantic segmentation task.

Make predictions using the quantized INT8 network.

predictedSegmentedImage = segmentImage(val_data,qNet);

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the validation data.

predictedSegmentedImage = uint8(val_data(:,:,7)~=0) .* predictedSegmentedImage;

Show the predicted labels overlaid on the validation image.

B = labeloverlay(histeq(val_data(:,:,[3 2 1])),predictedSegmentedImage,Transparency=0.5,Colormap=cmap);
figure
imshow(B)
title("Labeled Segmented Image")
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar(TickLabels=cellstr(classNames),Ticks=ticks,TickLength=0,TickLabelInterpreter="none");
colormap(cmap)

21 Deep Learning Code Generation

21-196



 Quantize Semantic Segmentation Network and Generate CUDA Code

21-197



Evaluate the performance of the quantized network, and compare it to the original network. The
compareNetworks function is provided at the end of this example, and calculates the global
accuracies of the segmented images and plots the global accuracy alongside the size of the original
and quantized networks.

imwrite(predictedSegmentedImage,"resultsQuantized.png");
pxdsResultsQuantized = pixelLabelDatastore("resultsQuantized.png",classNames,pixelLabelIds);

metrics = compareNetworks(dq,pxdsResultsOrig,pxdsResultsQuantized,pxdsTruth,valDS);

You can alternatively calibrate and quantize the network using the Deep Network Quantizer app. For
an example showing how to quantize a network using the Deep Network Quantizer App, see
“Quantize Residual Network Trained for Image Classification and Generate CUDA Code” on page 21-
157.

21 Deep Learning Code Generation

21-198



Generate CUDA Code

Generate CUDA code based on the quantized network (optional).

Create an Entry-Point Function for Code Generation

An entry-point function is a top-level MATLAB function from which you generate code. Write an entry-
point function in MATLAB that:

• Uses the coder.loadDeepLearningNetwork function to load a deep learning model and to
construct and set up a CNN class. For more information, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

• Calls the activations function to predict the responses.

The entry-point function segnet_predictor is provided as a supporting file with this example. To
access this file, open the example as a live script.

Generate Code

Save the dlquantizer object and add the folder containing the trained network to the MATLAB
path.

 Quantize Semantic Segmentation Network and Generate CUDA Code

21-199



save("dq_afterVal.mat","dq")
addpath(fullfile(destination,"trainedUnet"))

To configure build settings such as output file name, location, and type, create a coder configuration
object. To create the object, use the coder.gpuConfig function and specify that a MEX file is output
from generated CUDA code.

cfg = coder.gpuConfig("mex");

Set the language to use in the generated code to C++.

cfg.TargetLang = "C++";

To specify code generation parameters for cuDNN, set the DeepLearningConfig property to a
coder.CuDNNConfig object using coder.DeepLearningConfig.

cfg.DeepLearningConfig = coder.DeepLearningConfig("cudnn");

Set the inference computation precision to 8-bit integer.

cfg.DeepLearningConfig.DataType = "int8";

Use the dlquantizer object to generate the quantized network using the design file
segnet_predictor.m. The generated segnet_predictor_mex function returns the predicted
labels of the input patch data using the quantized network.

cfg.DeepLearningConfig.CalibrationResultFile = "dq_afterVal.mat";
codegen -config cfg segnet_predictor -args {ones(256,256,6,"uint16")} -report

Code generation successful: View report

You can view the resulting code generation report by clicking View Report in the MATLAB Command
Window. The report is displayed in the Report Viewer window. If the code generator detects errors or
warnings during code generation, the report describes the issues and provides links to the
problematic MATLAB code.

Run the Generated MEX Code

To perform sematic segmentation using the generated MEX code, call the segmentImage function
and pass the generated MEX function as a function handle.

predictedSegmentedImageCodegen = segmentImage(val_data,@(x) segnet_predictor_mex(x));

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the validation data.

predictedSegmentedImageCodegen = uint8(val_data(:,:,7)~=0) .* predictedSegmentedImageCodegen;

Show the predicted labels overlaid on the validation image.

B = labeloverlay(histeq(val_data(:,:,[3 2 1])),predictedSegmentedImageCodegen,Transparency=0.5,Colormap=cmap);
figure
imshow(B)
title("Labeled Segmented Image")
N = numel(classNames);
ticks = 1/(N*2):1/N:1;

21 Deep Learning Code Generation

21-200



colorbar(TickLabels=cellstr(classNames),Ticks=ticks,TickLength=0,TickLabelInterpreter="none");
colormap(cmap)

 Quantize Semantic Segmentation Network and Generate CUDA Code

21-201



Compute the performance metrics of the predicted labels.

21 Deep Learning Code Generation

21-202



imwrite(predictedSegmentedImageCodegen,"resultsQuantizedCodegen.png");
pxdsResultsQuantizedCodegen = pixelLabelDatastore("resultsQuantizedCodegen.png",classNames,pixelLabelIds);

ssmQuantizedCodegen = evaluateSemanticSegmentation(pxdsResultsQuantizedCodegen,pxdsTruth,Metrics="global-accuracy");

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy.
* Processed 1 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy
    ______________

       0.87697    

References

[1] Kemker, R., C. Salvaggio, and C. Kanan. "High-Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918. 2017.

[2] Ronneberger, O., P. Fischer, and T. Brox. "U-Net: Convolutional Networks for Biomedical Image
Segmentation." CoRR, abs/1505.04597. 2015.

Supporting Functions

segmentImage

The segmentImage function performs patch-wise sematic segmentation on an input multispectral
image im using a network net. The network net can be a DAGNetwork object or a function handle.
The function performs sematic segmentation using the activations function.

function out = segmentImage(im,net)

% Set patch size and preallocate array of patches.
patchSize = [256,256];
[height,width,nChannel] = size(im);
patch = zeros([patchSize,nChannel-1],like=im);

% Pad image to have dimensions that are multiples of patch size.
padSize = zeros(1,2);
padSize(1) = patchSize(1) - mod(height,patchSize(1));
padSize(2) = patchSize(2) - mod(width,patchSize(2));
im_pad = padarray(im,padSize,0,"post");
[height_pad,width_pad,~] = size(im_pad);

% Preallocate output array.
out = zeros([size(im_pad,1),size(im_pad,2)],"uint8");

for i = 1:patchSize(1):height_pad

    for j =1:patchSize(2):width_pad

 Quantize Semantic Segmentation Network and Generate CUDA Code

21-203



        % Extract patch from padded image.
        for p = 1:nChannel-1
            patch(:,:,p) = squeeze(im_pad(i:i+patchSize(1)-1, ...
                j:j+patchSize(2)-1, ...
                p));
        end
        Iroi = patch;

        % Perform semantic segmentation.
        if isa(net,"function_handle")
            fcnPredict = net;
            allScores = fcnPredict(Iroi);
        else
            layerName = "Segmentation-Layer";
            allScores = activations(net,Iroi,layerName, ...
                OutputAs="channels");
        end

        [~, L] = max(allScores,[],3);
        Lroi = uint8(L);

        % Remove singleton channel dimension.
        patch_seg = squeeze(Lroi);
        
        % Add predictions to output.
        out(i:i+patchSize(1)-1,j:j+patchSize(2)-1) = patch_seg;

    end
end

% Remove the padding.
out = out(1:height,1:width);
end

evaluateNetworks

The evaluateNetworks function calculates the global accuracy of the segmented images by using
the evaluateSemanticSegmentation (Computer Vision Toolbox) function to compare them against
the ground truth. The global accuracy is the ratio of correctly classified pixels, regardless of class, to
the total number of pixels.

function metrics = compareNetworks(dq,pxdsResultsOrig,pxdsResultsQuantized,pxdsTruth,valDS)

% Compute global accuracy.
ssmOrig = evaluateSemanticSegmentation(pxdsResultsOrig,pxdsTruth,Metrics="global-accuracy",Verbose=false);
ssmQuantized = evaluateSemanticSegmentation(pxdsResultsQuantized,pxdsTruth,Metrics="global-accuracy",Verbose=false);

% Store the results in a struct.
metrics.OriginalNetwork.GlobalAccuracy = ssmOrig.ImageMetrics.GlobalAccuracy;
metrics.QuantizedNetwork.GlobalAccuracy = ssmQuantized.ImageMetrics.GlobalAccuracy;

% Compute the size of the network before and after quantization.
% As the performance of the network has already been calculated, skip calculating metrics by setting the metric function to [].
quantOpts = dlquantizationOptions(MetricFcn=@(x) []);
validationResults = validate(dq,valDS,quantOpts);

% Store the results in a struct.

21 Deep Learning Code Generation

21-204



metrics.OriginalNetwork.Sizekb = validationResults.Statistics{1,2};
metrics.QuantizedNetwork.Sizekb = validationResults.Statistics{2,2};

% Plot the size in memory and the global accuracy of the networks.
figure
tiledlayout(1,2)

nexttile
bar(categorical(["Original Network","Quantized Network"]),[metrics.OriginalNetwork.Sizekb/1e6,metrics.QuantizedNetwork.Sizekb/1e6])
ylabel("Network Size (MB)")
xtickangle(20)

nexttile
bar(categorical(["Original Network","Quantized Network"]), ...
    [metrics.OriginalNetwork.GlobalAccuracy,metrics.QuantizedNetwork.GlobalAccuracy])
ylabel("Network Accuracy (%)")
ylim([0 1])
xtickangle(20)

end

See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | dlquantizationOptions | calibrate | validate

Related Examples
• “Quantization Workflow Prerequisites” on page 21-237
• “Train Residual Network for Image Classification” on page 3-13
• “Generate INT8 Code for Deep Learning Networks” (GPU Coder)

 Quantize Semantic Segmentation Network and Generate CUDA Code

21-205



Parameter Pruning and Quantization of Image Classification
Network

This example shows how to prune the parameters of a trained neural network using two parameter
score metrics: The Magnitude score [1] and Synaptic Flow score [2].

In many applications where transfer learning is used to retrain an image classification network for a
new task or where a new network is trained from scratch, the optimal network architecture is not
known, and the network might be overparameterized. An overparameterized network has redundant
connections. Structured pruning, also known as sparsification, is a compression technique that aims
to identify redundant, unnecessary connections you can remove without affecting the network
accuracy. When you use pruning in combination with network quantization, you can reduce the
inference time and memory footprint of the network making it easier to deploy.

This example shows how to:

• Perform post-training, iterative, unstructured pruning without the need for training data
• Evaluate the performance of two different pruning algorithms
• Investigate the layer-wise sparsity induced after pruning
• Evaluate the impact of pruning on classification accuracy
• Evaluate the impact of quantization on the classification accuracy of the pruned network

This example uses a simple convolutional neural network to classify handwritten digits from 0 to 9.
For more information on setting up the data used for training and validation, see “Create Simple
Deep Learning Neural Network for Classification” on page 3-43.

Load Pretrained Network and Data

Load the training and validation data. Train a convolutional neural network for the classification task.

[imdsTrain, imdsValidation] = loadDigitDataset;
net = trainDigitDataNetwork(imdsTrain, imdsValidation);
trueLabels = imdsValidation.Labels;
classes = categories(trueLabels);

Create a minibatchqueue object containing the validation data. Set executionEnvironment to
auto to evaluate the network on a GPU, if one is available. By default, the minibatchqueue object
converts each output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

executionEnvironment = ;
miniBatchSize = 128;
imdsValidation.ReadSize = miniBatchSize;
mbqValidation = minibatchqueue(imdsValidation,1,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFormat','SSCB',...
    'MiniBatchFcn',@preprocessMiniBatch,...
    'OutputEnvironment',executionEnvironment);

21 Deep Learning Code Generation

21-206



Neural Network Pruning

The goal of neural network pruning is to identify and remove unimportant connections to reduce the
size of the network without affecting network accuracy. In the following figure, on the left, the
network has connections that map each neuron to the neuron of the next layer. After pruning, the
network has fewer connections than the original network.

A pruning algorithm assigns a score to each parameter in the network. The score ranks the
importance of each connection in the network. You can use one of two pruning approaches to achieve
a target sparsity:

 Parameter Pruning and Quantization of Image Classification Network

21-207



• One-shot pruning - Remove a specified percentage of connections based on their score in one step.
This method is prone to layer collapse when you specify a high sparsity value.

• Iterative pruning - Achieve the target sparsity in a series of iterative steps. You can use this
method when evaluated scores are sensitive to network structure. Scores are reevaluated at every
iteration, so using a series of steps allows the network to move toward sparsity incrementally.

This example uses the iterative pruning method to achieve a target sparsity.

Iterative Pruning

Convert to dlnetwork Object

In this example, you use the Synaptic Flow algorithm, which requires that you create a custom cost
function and evaluate the gradients with respect to the cost function to calculate the parameter
score. To create a custom cost function, first convert the pretrained network to a dlnetwork.

Convert the network to a layer graph and remove the layers used for classification using
removeLayers.

lgraph = layerGraph(net.Layers);
lgraph = removeLayers(lgraph,["softmax","classoutput"]);
dlnet = dlnetwork(lgraph);

Use analyzeNetwork to analyze the network architecture and learnable parameters.

21 Deep Learning Code Generation

21-208



analyzeNetwork(dlnet)

Evaluate the accuracy of the network before pruning.

accuracyOriginalNet = evaluateAccuracy(dlnet,mbqValidation,classes,trueLabels)

accuracyOriginalNet = 0.9908

The layers with learnable parameters are the 3 convolutional layers and one fully connected layer.
The network initially consists of total 21578 learnable parameters.

numTotalParams = sum(cellfun(@numel,dlnet.Learnables.Value))

numTotalParams = 21578

numNonZeroPerParam = cellfun(@(w)nnz(extractdata(w)),dlnet.Learnables.Value)

numNonZeroPerParam = 8×1

          72
           8
        1152
          16
        4608
          32
       15680
          10

Sparsity is defined as the percentage of parameters in the network with a value of zero. Check the
sparsity of the network.

initialSparsity = 1-(sum(numNonZeroPerParam)/numTotalParams)

initialSparsity = 0

Before pruning, the network has a sparsity of zero.

Create Iteration Scheme

To define an iterative pruning scheme, specify the target sparsity and number of iterations. For this
example, use linearly spaced iterations to achieve the target sparsity.

numIterations = 10; 
targetSparsity = 0.90;
iterationScheme = linspace(0,targetSparsity,numIterations); 

Pruning Loop

For each iteration, the custom pruning loop in this example performs the following steps:

• Calculate the score for each connection.
• Rank the scores for all connections in the network based on the selected pruning algorithm.
• Determine the threshold for removing connections with the lowest scores.
• Create the pruning mask using the threshold.
• Apply the pruning mask to learnable parameters of the network.

 Parameter Pruning and Quantization of Image Classification Network

21-209



Network Mask

Instead of setting entries in the weight arrays directly to zero, the pruning algorithm creates a binary
mask for each learnable parameter that specifies whether a connection is pruned. The mask allows
you to explore the behavior of the pruned network and try different pruning schemes without
changing the underlying network structure.

For example, consider the following weights.

testWeight = [10.4 5.6 0.8 9];

Create a binary mask for each parameter in testWeight.

testMask = [1 0 1 0];

Apply the mask to testWeight to get the pruned weights.

testWeightsPruned = testWeight.*testMask

testWeightsPruned = 1×4

   10.4000         0    0.8000         0

In iterative pruning, you create a binary mask for each iteration that contains pruning information.
Applying the mask to the weights array does not change either the size of the array or the structure
of the neural network. Therefore, the pruning step does not directly result in any speedup during
inference or compression of the network size on disk.

Initialize a plot that compares the accuracy of the pruned network to the original network.

figure
plot(100*iterationScheme([1,end]),100*accuracyOriginalNet*[1 1],'*-b','LineWidth',2,"Color","b")
ylim([0 100])
xlim(100*iterationScheme([1,end]))
xlabel("Sparsity (%)")
ylabel("Accuracy (%)")
legend("Original Accuracy","Location","southwest")
title("Pruning Accuracy")    
grid on

Magnitude Pruning

Magnitude pruning [1] assigns a score to each parameter equal to its absolute value. It is assumed
that the absolute value of a parameter corresponds to its relative importance to the accuracy of the
trained network.

Initialize the mask. For the first iteration, you do not prune any parameters and the sparsity is 0%.

pruningMaskMagnitude = cell(1,numIterations); 
pruningMaskMagnitude{1} = dlupdate(@(p)true(size(p)), dlnet.Learnables);

Below is an implementation of magnitude pruning. The network is pruned to various target sparsities
in a loop to provide the flexibility to choose a pruned network based on its accuracy.

lineAccuracyPruningMagnitude = animatedline('Color','g','Marker','o','LineWidth',1.5);
legend("Original Accuracy","Magnitude Pruning Accuracy","Location","southwest")

21 Deep Learning Code Generation

21-210



% Compute magnitude scores
scoresMagnitude = calculateMagnitudeScore(dlnet);

for idx = 1:numel(iterationScheme)

    prunedNetMagnitude = dlnet;
    
    % Update the pruning mask
    pruningMaskMagnitude{idx} = calculateMask(scoresMagnitude,iterationScheme(idx));
    
    % Check the number of zero entries in the pruning mask
    numPrunedParams = sum(cellfun(@(m)nnz(~extractdata(m)),pruningMaskMagnitude{idx}.Value));
    sparsity = numPrunedParams/numTotalParams;
    
    % Apply pruning mask to network parameters
    prunedNetMagnitude.Learnables = dlupdate(@(W,M)W.*M, prunedNetMagnitude.Learnables, pruningMaskMagnitude{idx});
    
    % Compute validation accuracy on pruned network
    accuracyMagnitude = evaluateAccuracy(prunedNetMagnitude,mbqValidation,classes,trueLabels);
    
    % Display the pruning progress
    addpoints(lineAccuracyPruningMagnitude,100*sparsity,100*accuracyMagnitude)
    drawnow
end

 Parameter Pruning and Quantization of Image Classification Network

21-211



SynFlow Pruning

Synaptic flow conservation (SynFlow) [2] scores are used for pruning. You can use this method to
prune networks that use linear activation functions such as ReLU.

Initialize the mask. For the first iteration, no parameters are pruned, and the sparsity is 0%.

pruningMaskSynFlow = cell(1,numIterations); 
pruningMaskSynFlow{1} = dlupdate(@(p)true(size(p)),dlnet.Learnables);

The input data you use to compute the scores is a single image containing ones. If you are using a
GPU, convert the data to a gpuArray.

dlX = dlarray(ones(net.Layers(1).InputSize),'SSC');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    dlX = gpuArray(dlX);
end

The below loop implements iterative synaptic flow score for pruning [2] where a custom cost function
evaluates the SynFlow score for each parameter used for network pruning.

lineAccuracyPruningSynflow = animatedline('Color','r','Marker','o','LineWidth',1.5);
legend("Original Accuracy","Magnitude Pruning Accuracy","Synaptic Flow Accuracy","Location","southwest")

prunedNetSynFlow = dlnet;

% Iteratively increase sparsity
for idx = 1:numel(iterationScheme)
    % Compute SynFlow scores
    scoresSynFlow = calculateSynFlowScore(prunedNetSynFlow,dlX);
    
    % Update the pruning mask
    pruningMaskSynFlow{idx} = calculateMask(scoresSynFlow,iterationScheme(idx));
    
    % Check the number of zero entries in the pruning mask
    numPrunedParams = sum(cellfun(@(m)nnz(~extractdata(m)),pruningMaskSynFlow{idx}.Value));
    sparsity = numPrunedParams/numTotalParams;
    
    % Apply pruning mask to network parameters
    prunedNetSynFlow.Learnables = dlupdate(@(W,M)W.*M, prunedNetSynFlow.Learnables, pruningMaskSynFlow{idx});
    
    % Compute validation accuracy on pruned network
    accuracySynFlow = evaluateAccuracy(prunedNetSynFlow,mbqValidation,classes,trueLabels);
     
    % Display the pruning progress
    addpoints(lineAccuracyPruningSynflow,100*sparsity,100*accuracySynFlow)
    drawnow
end

21 Deep Learning Code Generation

21-212



Investigate Structure of Pruned Network

Choosing how much to prune a network is a trade-off between accuracy and sparsity. Use the sparsity
versus accuracy plot to select the iteration with the desired sparsity level and acceptable accuracy.

pruningMethod = ;

selectedIteration = ;

prunedDLNet = createPrunedNet(dlnet,selectedIteration,pruningMaskSynFlow,pruningMaskMagnitude,pruningMethod);

[sparsityPerLayer,prunedChannelsPerLayer,numOutChannelsPerLayer,layerNames] = pruningStatistics(prunedDLNet);

Earlier convolutional layers are typically pruned less since they contain more relevant information
about the core low-level structure of the image (e.g. edges and corners) which are essential for
interpreting the image.

Plot the sparsity per layer for the selected pruning method and iteration.

figure
bar(sparsityPerLayer*100)
title("Sparsity per layer")
xlabel("Layer")
ylabel("Sparsity (%)")
xticks(1:numel(sparsityPerLayer))
xticklabels(layerNames)

 Parameter Pruning and Quantization of Image Classification Network

21-213



xtickangle(45)
set(gca,'TickLabelInterpreter','none')

The pruning algorithm prunes single connections when you specify a low target sparsity. When you
specify a high target sparsity, the pruning algorithm can prune whole filters and neurons in
convolutional or fully connected layers.

figure
bar([prunedChannelsPerLayer,numOutChannelsPerLayer-prunedChannelsPerLayer],"stacked")
xlabel("Layer")
ylabel("Number of filters")
title("Number of filters per layer")
xticks(1:(numel(layerNames)))
xticklabels(layerNames)
xtickangle(45)
legend("Pruned number of channels/neurons" , "Original number of channels/neurons","Location","southoutside")
set(gca,'TickLabelInterpreter','none')

21 Deep Learning Code Generation

21-214



Evaluate Network Accuracy

Compare the accuracy of the network before and after pruning.

YPredOriginal = modelPredictions(dlnet,mbqValidation,classes);
accOriginal = mean(YPredOriginal == trueLabels)

accOriginal = 0.9908

YPredPruned = modelPredictions(prunedDLNet,mbqValidation,classes);
accPruned = mean(YPredPruned == trueLabels)

accPruned = 0.9328

Create a confusion matrix chart to explore the true class labels to the predicted class labels for the
original and pruned network.

figure
confusionchart(trueLabels,YPredOriginal);
title("Original Network")

 Parameter Pruning and Quantization of Image Classification Network

21-215



The validation set of the digits data contains 250 images for each class, so if a network predicts the
class of each image perfectly, all scores on the diagonal equal 250 and no values are outside of the
diagonal.

confusionchart(trueLabels,YPredPruned);
title("Pruned Network")

21 Deep Learning Code Generation

21-216



When pruning a network, compare the confusion chart of the original network and the pruned
network to check how the accuracy for each class label changes for the selected sparsity level. If all
numbers on the diagonal decrease roughly equally, no bias is present. However, if the decreases are
not equal, you might need to choose a pruned network from an earlier iteration by reducing the value
of the variable selectedIteration.

Quantize Pruned Network

Deep neural networks trained in MATLAB use single-precision floating point data types. Even
networks that are small require a considerable amount of memory and hardware to perform floating-
point arithmetic operations. These restrictions can inhibit deployment of deep learning models that
have low computational power and less memory resources. By using a lower precision to store the
weights and activations, you can reduce the memory requirements of the network. You can use Deep
Learning Toolbox in tandem with the Deep Learning Model Quantization Library support package to
reduce the memory footprint of a deep neural network by quantizing the weights, biases, and
activations of the convolution layers to 8-bit scaled integer data types.

Pruning a network impacts the range statistics of parameters and activations at each layer, so the
accuracy of the quantized network can change. To explore this difference, quantize the pruned
network and use the quantized network to perform inference.

Split the data into calibration and validation data sets.

calibrationDataStore = splitEachLabel(imdsTrain,0.1,'randomize');
validationDataStore = imdsValidation;

Create a dlquantizer object and specify the pruned network as the network to quantize.

 Parameter Pruning and Quantization of Image Classification Network

21-217



prunedNet  = assembleNetwork([prunedDLNet.Layers ; net.Layers(end-1:end)]);

quantObjPrunedNetwork = dlquantizer(prunedNet,'ExecutionEnvironment','GPU'); 

Use the calibrate function to exercise the network with the calibration data and collect range
statistics for the weights, biases, and activations at each layer.

calResults = calibrate(quantObjPrunedNetwork, calibrationDataStore)

Use the validate function to compare the results of the network before and after quantization using
the validation data set.

valResults = validate(quantObjPrunedNetwork, validationDataStore);

Examine the MetricResults.Result field of the validation output to see the accuracy of the
quantized network.

valResults.MetricResults.Result
valResults.Statistics

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors by extracting the
image data from the input cell array and concatenate into a numeric array. For grayscale input,
concatenating the data over the fourth dimension adds a third dimension to each image to use as a
singleton channel dimension.

function X = preprocessMiniBatch(XCell)
% Extract image data from cell and concatenate.
X = cat(4,XCell{:});
end

Model Accuracy Function

Evaluate the classification accuracy of the dlnetwork. Accuracy is the percentage of labels correctly
classified by the network.

function accuracy = evaluateAccuracy(dlnet,mbqValidation,classes,trueLabels)
YPred = modelPredictions(dlnet,mbqValidation,classes);
accuracy = mean(YPred == trueLabels);
end

SynFlow Score Function

The calculateSynFlowScore function calculates Synaptic Flow (SynFlow) scores. Synaptic
saliency [2] is described as the class of gradient-based scores defined by the product of gradient of
loss multiplied by the parameter value:

synFlowScore = d loss
dθ *θ

The SynFlow score is a synaptic saliency score that uses the sum of all network outputs as a loss
function:

loss = ∑ f abs θ , X

f  is the function represented by the neural network

21 Deep Learning Code Generation

21-218



θ are the parameters of the network

X is the input array to the network

To compute parameter gradients with respect to this loss function, use dlfeval and a model
gradients function.

function score = calculateSynFlowScore(dlnet,dlX)
dlnet.Learnables = dlupdate(@abs, dlnet.Learnables);
gradients = dlfeval(@modelGradients,dlnet,dlX);
score = dlupdate(@(g,w)g.*w, gradients, dlnet.Learnables);
end

Model Gradients for SynFlow Score

function gradients = modelGradients(dlNet,inputArray)
% Evaluate the gradients on a given input to the dlnetwork
dlYPred = predict(dlNet,inputArray);
pseudoloss = sum(dlYPred,'all');
gradients = dlgradient(pseudoloss,dlNet.Learnables);
end

Magnitude Score Function

The calculateMagnitudeScore function returns the magnitude score, defined as the element-wise
absolute value of the parameters.

function score = calculateMagnitudeScore(dlnet)
score = dlupdate(@abs, dlnet.Learnables);
end

Mask Generation Function

The calculateMask function returns a binary mask for the network parameters based on the given
scores and the target sparsity.

function mask = calculateMask(scoresMagnitude,sparsity)
% Compute a binary mask based on the parameter-wise scores such that the mask contains a percentage of zeros as specified by sparsity.

% Flatten the cell array of scores into one long score vector
flattenedScores = cell2mat(cellfun(@(S)extractdata(gather(S(:))),scoresMagnitude.Value,'UniformOutput',false));
% Rank the scores and determine the threshold for removing connections for the
% given sparsity
flattenedScores = sort(flattenedScores);
k = round(sparsity*numel(flattenedScores));
if k==0
    thresh = 0;
else
    thresh = flattenedScores(k);
end
% Create a binary mask 
mask = dlupdate( @(S)S>thresh, scoresMagnitude);
end

Model Predictions Function

The modelPredictions function takes as input a dlnetwork object dlnet, a minibatchqueue of
input data mbq, and the network classes, and computes the model predictions by iterating over all

 Parameter Pruning and Quantization of Image Classification Network

21-219



data in the minibatchqueue object. The function uses the onehotdecode function to find the
predicted class with the highest score.

function predictions = modelPredictions(dlnet,mbq,classes)
predictions = [];
while hasdata(mbq)
    dlXTest = next(mbq);
    dlYPred = softmax(predict(dlnet,dlXTest));
    YPred = onehotdecode(dlYPred,classes,1)';
    predictions = [predictions; YPred];
end
reset(mbq)
end

Apply Pruning Function

The createPrunedNet function returns the pruned dlnetwork for the specified pruning algorithm
and iteration.

function prunedNet = createPrunedNet(dlnet,selectedIteration,pruningMaskSynFlow,pruningMaskMagnitude,pruningMethod)
switch pruningMethod
    case "Magnitude"
        prunedNet = dlupdate(@(W,M)W.*M, dlnet, pruningMaskMagnitude{selectedIteration});
    case "SynFlow"
        prunedNet = dlupdate(@(W,M)W.*M, dlnet, pruningMaskSynFlow{selectedIteration});
end
end

Pruning Statistics Function

The pruningStatistics function extracts detailed layer-level pruning statistics such as the layer-
level sparsity and the number of filters or neurons being pruned.

sparsityPerLayer - percentage of parameters pruned in each layer

prunedChannelsPerLayer - number of channels/neurons in each layer that can be removed as a result
of pruning

numOutChannelsPerLayer - number of channels/neurons in each layer

function [sparsityPerLayer,prunedChannelsPerLayer,numOutChannelsPerLayer,layerNames] = pruningStatistics(dlnet)

layerNames = unique(dlnet.Learnables.Layer,'stable');
numLayers = numel(layerNames);
layerIDs = zeros(numLayers,1);
for idx = 1:numel(layerNames)
    layerIDs(idx) = find(layerNames(idx)=={dlnet.Layers.Name});
end

sparsityPerLayer = zeros(numLayers,1);
prunedChannelsPerLayer = zeros(numLayers,1);
numOutChannelsPerLayer = zeros(numLayers,1);

numParams = zeros(numLayers,1);
numPrunedParams = zeros(numLayers,1);
for idx = 1:numLayers
    layer = dlnet.Layers(layerIDs(idx));
    

21 Deep Learning Code Generation

21-220



    % Calculate the sparsity
    paramIDs = strcmp(dlnet.Learnables.Layer,layerNames(idx));
    paramValue = dlnet.Learnables.Value(paramIDs);
    for p = 1:numel(paramValue)
        numParams(idx) = numParams(idx) + numel(paramValue{p});
        numPrunedParams(idx) = numPrunedParams(idx) + nnz(extractdata(paramValue{p})==0);
    end

    % Calculate channel statistics
    sparsityPerLayer(idx) = numPrunedParams(idx)/numParams(idx);
    switch class(layer)
        case "nnet.cnn.layer.FullyConnectedLayer"
            numOutChannelsPerLayer(idx) = layer.OutputSize;
            prunedChannelsPerLayer(idx) = nnz(all(layer.Weights==0,2)&layer.Bias(:)==0);
        case "nnet.cnn.layer.Convolution2DLayer"
            numOutChannelsPerLayer(idx) = layer.NumFilters;
            prunedChannelsPerLayer(idx) = nnz(reshape(all(layer.Weights==0,[1,2,3]),[],1)&layer.Bias(:)==0);
        case "nnet.cnn.layer.GroupedConvolution2DLayer"
            numOutChannelsPerLayer(idx) = layer.NumGroups*layer.NumFiltersPerGroup;
            prunedChannelsPerLayer(idx) = nnz(reshape(all(layer.Weights==0,[1,2,3]),[],1)&layer.Bias(:)==0);
        otherwise
            error("Unknown layer: "+class(layer))
    end
end
end

Load Digits Data set Function

The loadDigitDataset function loads the Digits data set and splits the data into training and
validation data.

function [imdsTrain, imdsValidation] = loadDigitDataset()
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true,'LabelSource','foldernames');
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.75,"randomized");
end

Train Digit Recognition Network Function

The trainDigitDataNetwork function trains a convolutional neural network to classify digits in
grayscale images.

function net = trainDigitDataNetwork(imdsTrain,imdsValidation)
layers = [
    imageInputLayer([28 28 1],"Normalization","rescale-zero-one")
    convolution2dLayer(3,8,'Padding','same')
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    reluLayer
    

 Parameter Pruning and Quantization of Image Classification Network

21-221



    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

% Specify the training options
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',10, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','none',"ExecutionEnvironment","auto");

% Train network
net = trainNetwork(imdsTrain,layers,options);
end

References

[1] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. "Learning Both Weights and
Connections for Efficient Neural Networks." Advances in Neural Information Processing Systems 28
(NIPS 2015): 1135–1143.

[2] Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli 2020. "Pruning Neural
Networks Without Any Data by Iteratively Conserving Synaptic Flow." 34th Conference on Neural
Information Processing Systems (NeurlPS 2020)

See Also
Functions
dlarray | dlquantizer | predict | dlnetwork

More About
• “Prune Image Classification Network Using Taylor Scores” on page 21-223
• “Prune Filters in a Detection Network Using Taylor Scores” on page 21-251

21 Deep Learning Code Generation

21-222



Prune Image Classification Network Using Taylor Scores

This example shows how to reduce the size of a deep neural network using Taylor pruning. By using
the taylorPrunableNetwork function to remove convolution layer filters, you can reduce the
overall network size and increase the inference speed.

Network pruning is a powerful model compression tool that helps identify redundancies that can be
removed with little impact on the final network output. Pruning is particularly useful in transfer
learning, where the network is often overparameterized.

This example uses a residual network trained on the CIFAR-10 data set. For more information, see
Train Residual Network for Image Classification.

Load Pretrained Network and Data

Download the CIFAR-10 data set [1] using the downloadCIFARData function, attached to this
example as a supporting file. To access this file, open the example as a live script. The data set
contains 60,000 images. Each image is 32-by-32 in size and has three color channels (RGB). The size
of the data set is 175 MB. Depending on your internet connection, the download process can take
time.

datadir = tempdir;
downloadCIFARData(datadir);

Load the trained network for pruning.

load("CIFARNet-20-16.mat","trainedNet");

Load the CIFAR-10 training and test images as 4-D arrays. The training set contains 50,000 images
and the test set contains 10,000 images. Convert the images to an augmentedImageDatastore for
training and validation.

[XTrain,TTrain,XTest,TTest] = loadCIFARData(datadir);
inputSize = trainedNet.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize,XTrain,TTrain);
augimdsTest  = augmentedImageDatastore(inputSize,XTest,TTest);
classes = categories(TTest);

Calculate the accuracy of the trained network on the test data.

YTest = classify(trainedNet,augimdsTest);
accuracyOfTrainedNet = mean(YTest == TTest)*100

accuracyOfTrainedNet = 90.2400

To implement a custom pruning loop, convert the network to a dlnetwork object.

layerG = layerGraph(trainedNet);
layerG = removeLayers(layerG,layerG.OutputNames);
net = dlnetwork(layerG);

Analyze the network. As the network diagram shows, conversion removes the classification layer of
the network. The deep network analyzer shows the total number of learnable parameters in the
network.

analyzeNetwork(net)

 Prune Image Classification Network Using Taylor Scores

21-223

https://www.mathworks.com/help/deeplearning/ug/train-residual-network-for-image-classification.html


Prune Network

Prune the network using the taylorPrunableNetwork function. The network computes an
importance score for each convolution filter in the network based on Taylor expansion [2][3]. Pruning
is iterative: each time the loop runs, until a stopping criterion is met, the function removes a small
number of the least important convolution filters and updates the network architecture.

Specify Pruning and Fine-Tuning Options

Set the pruning options.

• maxPruningIterations sets the maximum number of iterations to be used for pruning process
• maxToPrune is set as the maximum number of filters to be pruned in each iteration of the pruning

cycle

maxPruningIterations = 30;
maxToPrune = 8;

Set the fine-tuning options.

learnRate = 1e-2;
momentum = 0.9;
miniBatchSize = 256;
numMinibatchUpdates  = 50;
validationFrequency = 1;

Prune Network using Custom Pruning Loop

Create a Taylor prunable network from the original network.

prunableNet = taylorPrunableNetwork(net);
maxPrunableFilters = prunableNet.NumPrunables;

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbqTrain = minibatchqueue(augimdsTrain, ...
    MiniBatchSize = miniBatchSize, ...
    MiniBatchFcn = @preprocessMiniBatchTraining, ...
    OutputAsDlarray = [1 1], ...
    OutputEnvironment = ["auto","auto"], ...
    PartialMiniBatch = "return", ...
    MiniBatchFormat = ["SSCB",""]);
mbqTest = minibatchqueue(augimdsTest,...
    MiniBatchSize = miniBatchSize,...
    MiniBatchFcn = @preprocessMiniBatchTraining, ...

21 Deep Learning Code Generation

21-224



    OutputAsDlarray = [1 1], ...
    OutputEnvironment = ["auto","auto"], ...
    PartialMiniBatch = "return", ...
    MiniBatchFormat = ["SSCB",""]);

Initialize the training progress plots.

figure("Position",[10,10,700,700])
tl = tiledlayout(3,1);
lossAx = nexttile;
lineLossFinetune = animatedline(Color=[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Fine-Tuning Iteration")
ylabel("Loss")
grid on
title("Mini-Batch Loss During Pruning")
xTickPos = [];

accuracyAx = nexttile;
lineAccuracyPruning = animatedline(Color=[0.098 0.325 0.85],LineWidth=2,Marker="o");
ylim([50 100])
xlabel("Pruning Iteration")
ylabel("Accuracy")
grid on
addpoints(lineAccuracyPruning,0,accuracyOfTrainedNet)
title("Validation Accuracy After Pruning")

numPrunablesAx = nexttile;
lineNumPrunables = animatedline(Color=[0.4660 0.6740 0.1880],LineWidth=2,Marker="^");
ylim([200 700])
xlabel("Pruning Iteration")
ylabel("Prunable Filters")
grid on
addpoints(lineNumPrunables,0,double(maxPrunableFilters))
title("Number of Prunable Convolution Filters After Pruning")

Prune the network by repeatedly fine-tuning the network and removing the low scoring filters.

For each pruning iteration. The following steps are used:

• Fine-tune network and accumulate Taylor scores for convolution filters for
numMinibatchUpdates

• Prune the network using the updatePrunables function to remove maxToPrune number of
convolution filters

• Compute validation accuracy

To fine tune the network, loop over the mini-batches of the training data. For each mini-batch in the
fine-tuning iteration the following steps are used:

• Evaluate the pruning loss, gradients of the pruning activations, pruning activations, model
gradients and the state using the dlfeval and modelLossPruning functions.

• Update the network state.
• Update the network parameters using the sgdmupdate function.
• Update the Taylor scores of the prunable network using the updateScore function.

 Prune Image Classification Network Using Taylor Scores

21-225



• Display the training progress.

start = tic;
iteration = 0;

for pruningIteration = 1:maxPruningIterations

    % Shuffle data.
    shuffle(mbqTrain);

    % Reset the velocity parameter for the SGDM solver in every pruning
    % iteration.
    velocity = [];

    % Loop over mini-batches.
    fineTuningIteration = 0;
    while hasdata(mbqTrain)
        iteration = iteration + 1;
        fineTuningIteration = fineTuningIteration + 1;

        % Read mini-batch of data.
        [X, T] = next(mbqTrain);

        % Evaluate the pruning activations, gradients of the pruning
        % activations, model gradients, state, and loss using the dlfeval and
        % modelLossPruning functions.
        [loss,pruningActivations, pruningGradients, netGradients, state] = ...
            dlfeval(@modelLossPruning, prunableNet, X, T);

        % Update the network state.
        prunableNet.State = state;

        % Update the network parameters using the SGDM optimizer.
        [prunableNet, velocity] = sgdmupdate(prunableNet, netGradients, velocity, learnRate, momentum);

        % Compute first-order Taylor scores and accumulate the score across
        % previous mini-batches of data.
        prunableNet = updateScore(prunableNet, pruningActivations, pruningGradients);

        % Display the training progress.
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        addpoints(lineLossFinetune, iteration, double(loss))
        title(tl,"Processing Pruning Iteration: " + pruningIteration + " of " + maxPruningIterations + ...
            ", Elapsed Time: " + string(D))
        % Synchronize the x-axis of the accuracy and numPrunables plots with the loss plot.
        xlim(accuracyAx,lossAx.XLim)
        xlim(numPrunablesAx,lossAx.XLim)
        drawnow

        % Stop the fine-tuning loop when numMinibatchUpdates is reached.
        if (fineTuningIteration > numMinibatchUpdates)
            break
        end
    end

    % Prune filters based on previously computed Taylor scores.
    prunableNet = updatePrunables(prunableNet, MaxToPrune = maxToPrune);

21 Deep Learning Code Generation

21-226



    % Show results on the validation data set in a subset of pruning iterations.
    isLastPruningIteration = pruningIteration == maxPruningIterations;
    if (mod(pruningIteration, validationFrequency) == 0 || isLastPruningIteration)
        accuracy = modelAccuracy(prunableNet, mbqTest, classes, augimdsTest.NumObservations);
        addpoints(lineAccuracyPruning, iteration, accuracy)
        addpoints(lineNumPrunables,iteration,double(prunableNet.NumPrunables))
    end

    % Set x-axis tick values at the end of each pruning iteration.
    xTickPos = [xTickPos, iteration]; %#ok<AGROW>
    xticks(lossAx,xTickPos)
    xticks(accuracyAx,[0,xTickPos])
    xticks(numPrunablesAx,[0,xTickPos])
    xticklabels(accuracyAx,["Unpruned",string(1:pruningIteration)])
    xticklabels(numPrunablesAx,["Unpruned",string(1:pruningIteration)])
    drawnow
end

 Prune Image Classification Network Using Taylor Scores

21-227



In contrast to typical training where the loss decreases with each iteration, pruning may increase the
loss and reduce the validation accuracy due to the change of network structure when convolution
filters are pruned. To further improve the accuracy of the network, you can retrain the network.

Once pruning is complete, convert the taylorPrunableNetwork back to a dlnetwork for
retraining.

prunedNet = dlnetwork(prunableNet);

21 Deep Learning Code Generation

21-228



Retrain Network After Pruning

Retrain the network after pruning to regain any loss in accuracy. To retrain the network using the
trainNetwork function, convert the pruned network from a dlnetwork to a layerGraph. You can
also use a custom training loop to train the network. For more information, see Train Network using
Custom Training Loop.

• Extract the layerGraph from the dlnetwork.
• Add the removed classification layer from the original network to the layerGraph of the pruned

network.
• Train the layerGraph network.

prunedLayerGraph = layerGraph(prunedNet);
outputLayerName = string(trainedNet.OutputNames{1});
outputLayerIdx = {trainedNet.Layers.Name} == outputLayerName;
prunedLayerGraph = addLayers(prunedLayerGraph,trainedNet.Layers(outputLayerIdx));
prunedLayerGraph = connectLayers(prunedLayerGraph,prunedNet.OutputNames{1},outputLayerName);

Set the options to the default settings for stochastic gradient descent with momentum. Set the
maximum number of retraining epochs at 10 and start the training with an initial learning rate of
0.01.

options = trainingOptions("sgdm", ...
    MaxEpochs = 10, ...
    MiniBatchSize = 256, ...
    InitialLearnRate = 1e-2, ...
    LearnRateSchedule = "piecewise", ...
    LearnRateDropFactor = 0.1, ...
    LearnRateDropPeriod = 2, ...
    L2Regularization = 0.02, ...
    ValidationData = augimdsTest, ...
    ValidationFrequency = 200, ...
    Verbose = false, ...
    Shuffle = "every-epoch", ...
    Plots = "training-progress");

Train the network.

prunedDAGNet = trainNetwork(augimdsTrain,prunedLayerGraph,options);

 Prune Image Classification Network Using Taylor Scores

21-229

https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html
https://uk.mathworks.com/help/deeplearning/ug/train-network-using-custom-training-loop.html
https://uk.mathworks.com/help/deeplearning/ug/train-network-using-custom-training-loop.html


Compare Original Network and Pruned Network

Determine the impact of pruning on each layer.

[originalNetFilters,layerNames] = numConvLayerFilters(trainedNet);
prunedNetFilters = numConvLayerFilters(prunedDAGNet);

Visualize the number of filters in the original network and in the pruned network.

figure("Position",[10,10,900,900])
bar([originalNetFilters,prunedNetFilters])
xlabel("Layer")
ylabel("Number of Filters")
title("Number of Filters Per Layer")
xticks(1:(numel(layerNames)))
xticklabels(layerNames)
xtickangle(90)
ax = gca;
ax.TickLabelInterpreter = "none";
legend("Original Network Filters","Pruned Network Filters","Location","southoutside")

21 Deep Learning Code Generation

21-230



Large differences between the number of filters of the two networks indicate where many of the less
important filters have been pruned.

Next, compare the accuracy of the original network and the pruned network.

YPredOriginal = classify(trainedNet,augimdsTest);
accuOriginal = mean(YPredOriginal == TTest)

accuOriginal = 0.9024

 Prune Image Classification Network Using Taylor Scores

21-231



YPredPruned = classify(prunedDAGNet,augimdsTest);
accuPruned = mean(YPredPruned == TTest)

accuPruned = 0.8736

Pruning can unequally affect the classification of different classes and introduce bias into the model,
which might not be apparent from the accuracy value. To assess the impact of pruning at a class
level, use a confusion matrix chart.

figure
confusionchart(TTest,YPredOriginal,Normalization = "row-normalized");
title("Original Network")

figure
confusionchart(TTest,YPredPruned,Normalization = "row-normalized");
title("Pruned Network")

21 Deep Learning Code Generation

21-232



Next, estimate the model parameters for the original network and the pruned network to understand
the impact of pruning on the overall network learnables and size.

analyzeNetworkMetrics(trainedNet,prunedDAGNet,accuOriginal,accuPruned)

ans=3×3 table
                         Network Learnables    Approx. Network Memory (MB)    Accuracy
                         __________________    ___________________________    ________
    Original Network         2.7169e+05                   1.0364               0.9024 
    Pruned Network           1.2128e+05                  0.46266               0.8736 
    Percentage Change            -55.36                   -55.36              -3.1915 

This table compares the size and classification accuracy of the original and the pruned network. A
decrease in network memory and similar accuracy values indicate a good pruning operation. For an
example showing how to further reduce the size of the network for deployment using quantization,
see Quantize Residual Network Trained for Image Classification and Generate CUDA Code.

Helper Functions

Evaluate Model Accuracy

The modelAccuracy function takes as input the network(dlnetwork), minibatchque object, the
classes and the number of observations and returns the accuracy.

function accuracy = modelAccuracy(net, mbq, classes, numObservations)
% This function computes the model accuracy of a net(dlnetwork) on the minibatchque 'mbq'.

 Prune Image Classification Network Using Taylor Scores

21-233

https://www.mathworks.com/help/deeplearning/ug/quantize-a-residual-network-trained-for-image-classification-and-generate-cuda-code.html


totalCorrect = 0;

classes = int32(categorical(classes));

reset(mbq);

while hasdata(mbq)
    [dlX, Y] = next(mbq);

    dlYPred = extractdata(predict(net, dlX));

    YPred = onehotdecode(dlYPred,classes,1)';
    YReal = onehotdecode(Y,classes,1)';

    miniBatchCorrect = nnz(YPred == YReal);

    totalCorrect = totalCorrect + miniBatchCorrect;
end

accuracy = totalCorrect / numObservations * 100;
end

Model Gradients Function for Fine-Tuning and Pruning

The modelLossPruning function takes as input a deep.prune.TaylorPrunableNetwork object
prunableNet, a mini-batch of input data X with corresponding labels T and returns the loss,
gradients of the loss with respect to the pruning activations, pruning activations, gradients of the loss
with respect to the learnable parameters in prunableNet and the network state. To compute the
gradients automatically, use the dlgradient function.

function [loss,pruningGradient,pruningActivations,netGradients,state] = modelLossPruning(prunableNet, X, T)

[dlYPred,state,pruningActivations] = forward(prunableNet,X);

loss = crossentropy(dlYPred,T);
[pruningGradient,netGradients] = dlgradient(loss,pruningActivations,prunableNet.Learnables);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatchTraining function preprocesses a mini-batch of predictors and labels
for loss computation during training.

function [X,T] = preprocessMiniBatchTraining(XCell,TCell)
% Concatenate.
X = cat(4,XCell{1:end});

% Extract label data from cell and concatenate.
T = cat(2,TCell{1:end});

% One-hot encode labels.
T = onehotencode(T,1);
end

21 Deep Learning Code Generation

21-234



Evaluate Number of Filters in Convolution Layers

The numConvLayerFilters function returns the number of filters in each convolution layer.

function [nFilters, convNames] = numConvLayerFilters(net)
numLayers = numel(net.Layers);
convNames = [];
nFilters = [];
% Check for convolution layers and extract the number of filters.
for cnt = 1:numLayers
    if isa(net.Layers(cnt),"nnet.cnn.layer.Convolution2DLayer")
        sizeW = size(net.Layers(cnt).Weights);
        nFilters = [nFilters; sizeW(end)];
        convNames = [convNames; string(net.Layers(cnt).Name)];
    end
end
end

Evaluate the network statistics of original network and pruned network

The analyzeNetworkMetrics function takes input as the original network, pruned network,
accuracy of original network and the accuracy of the pruned network and returns the different
statistics like network learnables, network memory and the accuracy on the test data in form of a
table.

function [statistics] = analyzeNetworkMetrics(originalNet,prunedNet,accuracyOriginal,accuracyPruned)

originalNetMetrics = estimateNetworkMetrics(originalNet);
prunedNetMetrics = estimateNetworkMetrics(prunedNet);

% Accuracy of original network and pruned network
perChangeAccu = 100*(accuracyPruned - accuracyOriginal)/accuracyOriginal;
AccuracyForNetworks = [accuracyOriginal;accuracyPruned;perChangeAccu];

% Total learnables in both networks
originalNetLearnables = sum(originalNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
prunedNetLearnables = sum(prunedNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
percentageChangeLearnables = 100*(prunedNetLearnables - originalNetLearnables)/originalNetLearnables;
LearnablesForNetwork = [originalNetLearnables;prunedNetLearnables;percentageChangeLearnables];

% Approximate parameter memory
approxOriginalMemory = sum(originalNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
approxPrunedMemory = sum(prunedNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
percentageChangeMemory = 100*(approxPrunedMemory - approxOriginalMemory)/approxOriginalMemory;
NetworkMemory = [ approxOriginalMemory; approxPrunedMemory; percentageChangeMemory];

% Create the summary table
statistics = table(LearnablesForNetwork,NetworkMemory,AccuracyForNetworks, ...
    'VariableNames',["Network Learnables","Approx. Network Memory (MB)","Accuracy"], ...
    'RowNames',{'Original Network','Pruned Network','Percentage Change'});

end

References

[1] Krizhevsky, Alex. 2009. "Learning Multiple Layers of Features from Tiny Images." https://
www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

 Prune Image Classification Network Using Taylor Scores

21-235

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


[2] Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. “Pruning Convolutional
Neural Networks for Resource Efficient Inference.” Preprint, submitted June 8, 2017. https://
arxiv.org/abs/1611.06440.

[3] Molchanov, Pavlo, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. “Importance Estimation
for Neural Network Pruning.” In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 11256–64. Long Beach, CA, USA: IEEE, 2019. https://doi.org/10.1109/
CVPR.2019.01152.

See Also
Functions
dlarray | forward | predict | updatePrunables | updateScore | TaylorPrunableNetwork |
dlnetwork

More About
• “Parameter Pruning and Quantization of Image Classification Network” on page 21-206
• “Prune Filters in a Detection Network Using Taylor Scores” on page 21-251

21 Deep Learning Code Generation

21-236



Quantization Workflow Prerequisites

This page describes the products required to quantize, simulate, and deploy deep learning networks
using Deep Learning Toolbox Model Quantization Library. The prerequisites required depend on your
selections at each stage of the quantization workflow.

Prerequisites for All Quantization Workflows
The following requirements apply to all stages of the quantization workflow.

• Deep Learning Toolbox
• Deep Learning Toolbox Model Quantization Library

Supported Networks and Layers
The following links describe the networks and layers supported for each execution environment.

• GPU — “Supported Networks, Layers, and Classes” (GPU Coder)
• FPGA — “Supported Networks, Layers, Boards, and Tools” (Deep Learning HDL Toolbox)
• CPU — “Networks and Layers Supported for Code Generation” (MATLAB Coder)
• MATLAB — “Networks and Layers Supported for Code Generation” (MATLAB Coder)

Note When the Execution Environment is set to MATLAB, only the layers for the Intel MKL-DNN
deep learning library are supported.

Prerequisites for Calibration
The prerequisites for calibration depend on your selection of calibration environment.

• Calibrate on host GPU (default) —

• Parallel Computing Toolbox
• GPU Coder Interface for Deep Learning
• CUDA enabled NVIDIA GPU with compute capability 3.2 or higher.

• Calibrate on host CPU —

• MATLAB Coder Interface for Deep Learning

On Windows, the MinGW C/C++ compiler is not supported. Use Microsoft Visual C++ 2019,
Microsoft Visual C++ 2017, or Microsoft Visual C++ 2015.

On Linux®, use a GCC C/C++ compiler.

For a list of supported compilers, see Supported and Compatible Compilers.

 Quantization Workflow Prerequisites

21-237

https://www.mathworks.com/matlabcentral/fileexchange/74614-deep-learning-toolbox-model-quantization-library
https://www.mathworks.com/matlabcentral/fileexchange/74614-deep-learning-toolbox-model-quantization-library
https://www.mathworks.com/support/requirements/supported-compilers.html


Prerequisites for Quantization
To quantize your network for simulation in MATLAB using the quantize function or the Export >
Export Quantized Network option in the Deep Network Quantize app, no additional prerequisites
are required.

Prerequisites for Validation
The following are required to validate your quantized network for deployment using the validate
function or the Quantize and Validate button in the Deep Network Quantizer app.

Execution Environment Prerequisites for Validation
GPU • Parallel Computing Toolbox

• GPU Coder Interface for Deep Learning
• CUDA enabled NVIDIA GPU with compute

capability 6.1, 6.3 or higher.
• “Setting Up the Prerequisite Products” (GPU

Coder)
FPGA • MATLAB Coder Interface for Deep Learning

• Deep Learning HDL Toolbox™
• Deep Learning HDL Toolbox Support Package

for Xilinx FPGA and SoC Devices
• Deep Learning HDL Toolbox Support Package

for Intel FPGA and SoC Devices
• hdlsetuptoolpath (HDL Coder)

CPU • MATLAB Coder Interface for Deep Learning
• MATLAB Coder
• Embedded Coder
• ARM Compute Library. For more information,

see “Prerequisites for Deep Learning with
MATLAB Coder” (MATLAB Coder)

MATLAB • N/A

For the FPGA execution environment, you can choose to validate your quantized network using
simulation when you set the Simulate property of dlquantizer to 'on'. This option requires only
Deep Learning HDL Toolbox.

For CPU and GPU deployment, the software generates code for a convolutional deep neural network
by quantizing the weights, biases, and activations of the convolution layers to 8-bit scaled integer
data types. The quantization is performed by providing the calibration result file produced by the
calibrate function to the codegen command.

Code generation does not support quantized deep neural networks produced by the quantize
function.

21 Deep Learning Code Generation

21-238



See Also

Related Examples
• “Quantization of Deep Neural Networks” on page 21-243
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code” on

page 21-157
• “Quantize Network for FPGA Deployment” (Deep Learning HDL Toolbox)
• “Generate int8 Code for Deep Learning Networks” (MATLAB Coder)

 Quantization Workflow Prerequisites

21-239



Prepare Data for Quantizing Networks
Quantizing a deep neural network in MATLAB requires calibration by exercising the network to
determine the dynamic ranges of its weights, biases, and activations. After calibrating, you can
validate the performance of the quantized network and inspect the reduction in size and performance
(if any) of the network. However, not all data formats supported for training and prediction are
supported for quantization workflows.

Datastores
The calibrate and validate functions require the calibration data and validation data to be
passed as a datastore object. Many built-in datastores are supported for quantization workflows.
The supported datastores for particular networks are detailed below. Passing data as a numeric array
or table is not supported.

For more information on using datastore objects for training and prediction, see “Datastores for
Deep Learning” on page 20-2.

Choose a Built-In Datastore
The following table describes which built-in datastores are supported for quantization of different
network types.

Network Type Supported Datastores
Image classification or regression • imageDatastore

• augmentedImageDatastore
• TransformedDatastore

Object detection • CombinedDatastore
• TransformedDatastore

Semantic segmentation • pixelLabelDatastore
• CombinedDatastore

Sequence and numeric feature classification and
regression

• CombinedDatastore
• TransformedDatastore

Calibration and Validation
To be a valid input for validation, the read function of a datastore must return data either as a cell
array or a table with the responses as the second column.

As calibration exercises the network and collects the dynamic range statistics, the calibration data
does not require responses.

The format of the predictors used for calibration and validation depends on the type of input.

21 Deep Learning Code Generation

21-240



Data Format of Predictors
2-D image h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
image, respectively.

Vector sequence c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length.
Each sequence must have the same length.

2-D image sequence h-by-w-by-c-by-s array, where h, w, and c
correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

Features 1-by-c column vector, where c is the number of
features.

For data returned in tables, the elements must contain a 1-by-1 cell array containing a numeric array.

For validation, the datastore must return responses. The format of the responses depend on the type
of task.

Task Format of Responses
Classification Categorical scalar
Regression • Scalar

• Numeric vector
• 3-D numeric array representing an image

Segmentation The default format returned by reading from a
pixelLabelDatastore

Object detection Categorical array

Transform and Combine Datastores
Deep learning frequently requires data to be preprocessed and augmented before data is in an
appropriate form to input to a network. The transform and combine functions of datastores are
useful in preparing data to be fed into a network.

Transform Datastores

A transformed datastore applies a particular data transformation to an underlying datastore when
reading data. To create a transformed datastore, use the transform function and specify the
underlying datastore and the transformation.

For validation, reading from a transformed datastore must return a cell array with the predictors as
the first column and the responses as the third column.

 Prepare Data for Quantizing Networks

21-241



Combine Datastores

The combine function combines data from multiple datastores. Operating on the resulting
CombinedDatastore, such as resetting the datastore, performs the same operation on all of the
underlying datastores.

The calibrate and validate functions support only CombinedDatastore objects with two
underlying datastores. The first datastore must be an imageDatastore,
augmentedImageDatastore, or arrayDatastore and the second datastore must be a
pixelLabelDatastore or arrayDatastore.

See Also
calibrate | validate | datastore | read | dlquantizer | quantize

Related Examples
• “Quantization Workflow Prerequisites” on page 21-237
• “Quantization of Deep Neural Networks” on page 21-243
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code” on

page 21-157
• “Quantize Network for FPGA Deployment” (Deep Learning HDL Toolbox)
• “Generate int8 Code for Deep Learning Networks” (MATLAB Coder)

21 Deep Learning Code Generation

21-242



Quantization of Deep Neural Networks

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). The data type defines how hardware components or software functions interpret
this sequence of 1's and 0's. Numbers are represented as either scaled integer (usually referred to as
fixed-point) or floating-point data types.

Most pretrained neural networks and neural networks trained using Deep Learning Toolbox use
single-precision floating point data types. Even small trained neural networks require a considerable
amount of memory, and require hardware that can perform floating-point arithmetic. These
restrictions can inhibit deployment of deep learning capabilities to low-power microcontrollers and
FPGAs.

Using the Deep Learning Toolbox Model Quantization Library support package, you can quantize a
network to use 8-bit scaled integer data types.

To learn about the products required to quantize and deploy the deep learning network to a GPU,
FPGA, or CPU environment, see “Quantization Workflow Prerequisites” on page 21-237.

Precision and Range
Scaled 8-bit integer data types have limited precision and range when compared to single-precision
floating point data types. There are several numerical considerations when casting a number from a
larger floating-point data type to a smaller data type of fixed length.

• Precision loss: Precision loss is a rounding error. When precision loss occurs, the value is rounded
to the nearest number that is representable by the data type. In the case of a tie it rounds:

• Positive numbers to the closest representable value in the direction of positive infinity.
• Negative numbers to the closest representable value in the direction of negative infinity.

In MATLAB you can perform this type of rounding using the round function.
• Underflow: Underflow is a type of precision loss. Underflows occur when the value is smaller than

the smallest value representable by the data type. When this occurs, the value saturates to zero.
• Overflow: When a value is larger than the largest value that a data type can represent, an
overflow occurs. When an overflow occurs, the value saturates to the largest value representable
by the data type.

Histograms of Dynamic Ranges
Use the Deep Network Quantizer app to collect and visualize the dynamic ranges of the weights
and biases of the convolution layers and fully connected layers of a network, and the activations of all
layers in the network. The app assigns a scaled 8-bit integer data type for the weights, biases, and
activations of the convolution layers of the network. The app displays a histogram of the dynamic
range for each of these parameters. The following steps describe how these histograms are produced.

1 Consider the following values logged for a parameter while exercising a network.

 Quantization of Deep Neural Networks

21-243



2 Find the ideal binary representation of each logged value of the parameter.

The most significant bit (MSB) is the left-most bit of the binary word. This bit contributes most to
the value of the number. The MSB for each value is highlighted in yellow.

21 Deep Learning Code Generation

21-244



3 By aligning the binary words, you can see the distribution of bits used by the logged values of a
parameter. The sum of MSB's in each column, highlighted in green, give an aggregate view of the
logged values.

 Quantization of Deep Neural Networks

21-245



4 The MSB counts of each bit location are displayed as a heat map. In this heat map, darker blue
regions correspond to a larger number of MSB's in the bit location.

21 Deep Learning Code Generation

21-246



5 The Deep Network Quantizer app assigns a data type that can avoid overflow, cover the range,
and allow underflow. An additional sign bit is required to represent the signedness of the value.

The figure below shows an example of a data type that represents bits from 23 to 2-3, including
the sign bit.

6 After assigning the data type, any bits outside of that data type are removed. Due to the
assignment of a smaller data type of fixed length, precision loss, overflow, and underflow can
occur for values that are not representable by the data type.

 Quantization of Deep Neural Networks

21-247



In this example, the value 0.03125, suffers from an underflow, so the quantized value is 0. The
value 2.1 suffers some precision loss, so the quantized value is 2.125. The value 16.250 is larger
than the largest representable value of the data type, so this value overflows and the quantized
value saturates to 15.874.

21 Deep Learning Code Generation

21-248



7 The Deep Network Quantizer app displays this heat map histogram for each learnable
parameter in the convolution layers and fully connected layers of the network. The gray regions
of the histogram show the bits that cannot be represented by the data type.

 Quantization of Deep Neural Networks

21-249



See Also
Apps
Deep Network Quantizer

Functions
calibrate | validate | dlquantizer | dlquantizationOptions

21 Deep Learning Code Generation

21-250



Prune Filters in a Detection Network Using Taylor Scores

This example shows how to reduce network size and increase inference speed by pruning
convolutional filters in a you only look once (YOLO) v3 object detection network.

Filter pruning is a compression technique that uses some criterion to identify and remove the least
important filters in a network, reducing the overall memory footprint of the network without
significant reduction in the network accuracy. The pruning algorithm used in this example is gradient-
based and uses first-order Taylor expansion [1][2] to evaluate the importance of convolutional filters
in a network. This example also shows how to generate code for the pruned network and deploy a
processor-in-the-loop (PIL) executable to a Raspberry Pi™ embedded target.

This example uses YOLO v3 detector trained on the Caltech Cars data set. For more information, see
“Object Detection Using YOLO v3 Deep Learning” (Computer Vision Toolbox).

Load Network for Pruning

Load the trained network for pruning. The pretrained YOLO v3 detector in this example is based on
SqueezeNet, and uses the feature extraction network in SqueezeNet with the addition of two
detection heads at the end. The second detection head is twice the size of the first detection head, so
it is better able to detect small objects.

For information on network training, see “Object Detection Using YOLO v3 Deep Learning”
(Computer Vision Toolbox).

Download the yolov3SqueezeNetVehicleExample_21a.zip file containing the pretrained YOLO
v3 network. This file is approximately 23MB in size. Download the file from the MathWorks website,
then unzip the file.

fileName = matlab.internal.examples.downloadSupportFile("vision/data/","yolov3SqueezeNetVehicleExample_21aSPKG.zip");
unzip(fileName);
matFile = "yolov3SqueezeNetVehicleExample_21aSPKG.mat";
pretrained = load(matFile);
yolov3Detector = pretrained.detector;
net = yolov3Detector.Network

net = 
  dlnetwork with properties:

         Layers: [75×1 nnet.cnn.layer.Layer]
    Connections: [84×2 table]
     Learnables: [66×3 table]
          State: [6×3 table]
     InputNames: {'data'}
    OutputNames: {'customOutputConv1'  'customOutputConv2'}
    Initialized: 1

Load and Prepare Vehicle Data

Load the training and validation data that will be used for pruning, fine-tuning, and retraining. This
example uses a small labeled data set that contains 295 images. Many of these images come from the
Caltech Cars 1999 and 2001 data sets, created by Pietro Perona and used with permission. Each
image contains one or two labeled instances of a vehicle.

 Prune Filters in a Detection Network Using Taylor Scores

21-251



Unzip the vehicle images and load the vehicle ground truth data.

unzip("vehicleDatasetImages.zip");
data = load("vehicleDatasetGroundTruth.mat");
vehicleDataset = data.vehicleDataset;

Add the full path to the local vehicle data folder.

vehicleDataset.imageFilename = fullfile(pwd, vehicleDataset.imageFilename);

Split the data set into a training set for training the network, and a test set for evaluating the
network. Use 60% of the data for training set and the rest for the test set.

shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices));
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx), :);
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end), :);

Create image and box label datastores.

imdsTrain = imageDatastore(trainingDataTbl.imageFilename);
imdsTest = imageDatastore(testDataTbl.imageFilename);
bldsTrain = boxLabelDatastore(trainingDataTbl(:, 2:end));
bldsTest = boxLabelDatastore(testDataTbl(:, 2:end));
trainingData = combine(imdsTrain, bldsTrain);
testData = combine(imdsTest, bldsTest);

Use validateInputData to detect invalid images, bounding boxes or labels. Any invalid samples
must either be discarded or fixed for proper training.

validateInputData(trainingData);
validateInputData(testData);

Use transform function to apply custom data augmentations to the training data. The augmentData
helper function, listed at the end of the example, applies the following augmentations to the input
data.

• Color jitter augmentation in HSV space
• Random horizontal flip
• Random scaling by 10 percent

augmentedTrainingData = transform(trainingData, @augmentData);

Use transform to preprocess the training data for computing the anchor boxes, as the training
images used in this example are bigger than 227-by-227 and vary in size. Then, use the
estimateAnchorBoxes function to estimate the anchor boxes. Specify the number of anchors as 6
to achieve a good tradeoff between number of anchors and mean IoU. To prevent the estimated
anchor boxes from changing while tuning other hyperparameters set the random seed prior to
estimation using rng.

networkInputSize = [227 227 3];
trainingDataForEstimation = transform(trainingData, @(data)preprocessData(data, networkInputSize));
numAnchors = 6;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors);

Specify anchorBoxes to use in both the detection heads. Select anchorBoxes for each detection
head based on the feature map size. Use larger anchors at lower scale and smaller anchors at

21 Deep Learning Code Generation

21-252



higher scale. To do so, sort the anchors with the larger anchor boxes first and assign the first three
to the first detection head and the next three to the second detection head.

area = anchorBoxes(:, 1).*anchorBoxes(:, 2);
[~, idx] = sort(area, 'descend');
anchorBoxes = anchorBoxes(idx, :);
anchorBoxMasks = {[1,2,3] [4,5,6]};
classNames = trainingDataTbl.Properties.VariableNames(2:end);

Preprocess the augmented training data to prepare for training. The preprocessData helper function
(defined at the end of this example) resizes the images to the network input size by maintaining the
aspect ratio and scales the image pixels to the range [0 1].

augimdsTrain = transform(augmentedTrainingData, @(data)preprocessData(data, networkInputSize));
augimdsTest = transform(testData, @(data)preprocessData(data, networkInputSize));

Evaluate Detector Network Before Pruning

Use the evaluateDetectionPrecision function to measure the average precision of the trained
network before pruning. The average precision provides a single number that incorporates the ability
of the detector to make correct classifications (precision) and the ability of the detector to find all
relevant objects (recall).

results = detect(yolov3Detector,testData,MiniBatchSize=16);
[apTrainedNet, recallTrainedNet, precisionTrainedNet] = evaluateDetectionPrecision(results,testData);
accuracyTrainedNet = mean(apTrainedNet)*100

accuracyTrainedNet = 88.8968

The precision-recall (PR) curve shows how precise a detector is at varying levels of recall. Ideally, the
precision is 1 at all recall levels.

figure
plot(recallTrainedNet,precisionTrainedNet)
xlabel("Recall")
ylabel("Precision")
grid on
title("Average Precision = " + apTrainedNet)

 Prune Filters in a Detection Network Using Taylor Scores

21-253



Prune Network

Create a prunable object based on first-order Taylor approximation by using
taylorPrunableNetwork. A taylorPrunableNetwork has similar properties and methods as a
dlnetwork in addition to pruning specific properties and methods. The prunable object can be
substituted for a dlnetwork in the custom training loop. Pruning is iterative; each time the loop
runs, until a stopping criterion is met, the function removes a small number of the least important
convolution filters and updates the network architecture.

prunableNet = taylorPrunableNetwork(net)

prunableNet = 
  TaylorPrunableNetwork with properties:

      Learnables: [66×3 table]
           State: [6×3 table]
      InputNames: {'data'}
     OutputNames: {'customOutputConv1'  'customOutputConv2'}
    NumPrunables: 3496

maxPrunableFilters = prunableNet.NumPrunables;

Specify Pruning Options

Set the pruning options.

21 Deep Learning Code Generation

21-254



• maxPruningIterations defines the maximum number of iterations to be used in the pruning
loop.

• maxToPrune is the maximum number of filters to be pruned in each iteration of the pruning loop.
• validationFrequency is the number of iterations to wait before validating the pruned network

using the test data.

maxPruningIterations = 20;
maxToPrune = 64;
validationFrequency = 5;

Set the fine-tuning options.

• Fine-tune the network via a custom training loop for 40 mini-batches in every pruning iteration.
• Specify the options for SGDM optimization. Specify an initial learn rate of 0.00001 and momentum

of 0.9. Set the L2 regularization factor to 0.0005. Initialize the velocity of gradient as []. This is
used by SGDM to store the velocity of gradients.

• Specify the penalty threshold as 0.5. Detections that overlap less than 0.5 with the ground truth
are penalized.

• Specify a mini-batch size of 16 to fine-tune the network.

numMinibatchUpdates = 40;
learnRate = 1e-5;
momentum = 0.9;
l2Regularization = 0.0005;
penaltyThreshold = 0.5;
miniBatchSize = 16;

Create the minibatchqueue

Use a minibatchqueue object to process and manage the mini-batches of images. For each mini-
batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) which returns the batched images and bounding boxes combined with the
respective class IDs.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). Do not
add a format to the bounding boxes.

• Specify the data type of the bounding boxes.

mbq = minibatchqueue(augimdsTrain, 2,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@(images, boxes, labels) preprocessMiniBatch(images, boxes, labels, classNames), ...
    MiniBatchFormat=["SSCB", ""],...
    OutputCast=["", "double"]);

Prune Network Using Custom Pruning Loop

Initialize the training progress plots.

figure("Position",[10,10,700,700])
tl = tiledlayout(3,1);
lossAx = nexttile;
lineLossFinetune = animatedline(Color=[0.85 0.325 0.098]);
ylim([0 inf])

 Prune Filters in a Detection Network Using Taylor Scores

21-255



xlabel("Fine-Tuning Iteration")
ylabel("Loss")
grid on
title("Mini-Batch Loss during Pruning")
xTickPos = [];

accuracyAx = nexttile;
lineAccuracyPruning = animatedline(Color=[0.098 0.325 0.85]);
ylim([50 100])
xlabel("Pruning Iteration")
ylabel("Accuracy")
grid on
addpoints(lineAccuracyPruning, 0, accuracyTrainedNet)
title("Validation Accuracy After Pruning")

numPrunablesAx = nexttile;
lineNumPrunables = animatedline(Color=[0.4660 0.6470 0.1880]);
ylim([200 3600])
xlabel("Pruning Iteration")
ylabel("Prunable Filters")
grid on
addpoints(lineNumPrunables, 0, double(maxPrunableFilters))
title("Number of Prunable Convolution Filters After Pruning")

Prune the network. For each mini-batch in the pruning iteration, the following steps are used:

• Evaluate the pruning activations, gradients of the pruning activations, model gradients, state, and
loss using dlfeval and modelLossPruning functions.

• Update the network state.
• Apply a weight decay factor to the gradients to regularization for more robust training.
• Update the network learnable parameters using the stochastic gradient descent with momentum

(SGDM) algorithm.
• Compute first-order Taylor scores and accumulate the score across previous minibatches of data.
• Display the progress.

In a loop, alternate between fine-tuning and pruning.

start = tic;
iteration = 0;

for pruningIteration = 1:maxPruningIterations

    % Shuffle the data in the minibatch.
    shuffle(mbq);

    % Reset the velocity parameter for the SGDM solver in every pruning
    % iteration.
    velocity = [];

    % Loop over mini-batches.
    fineTuningIteration = 0;
    while hasdata(mbq)
        iteration = iteration + 1;
        fineTuningIteration = fineTuningIteration + 1;

        % Read mini-batch of data.

21 Deep Learning Code Generation

21-256



        [X, T] = next(mbq);

        % Evaluate the pruning activations, gradients of the pruning
        % activations, model gradients, state, and loss using dlfeval and
        % modelLossPruning functions.
        [loss, pruningGradients, netGradients, pruningActivations, state] = ...
            dlfeval(@modelLossPruning, prunableNet, X, T, anchorBoxes, ...
            anchorBoxMasks, penaltyThreshold);

        % Update the network state.
        prunableNet.State = state;

        % Apply L2 regularization.
        netGradients = dlupdate(@(g,w) g + l2Regularization*w, ...
            netGradients, prunableNet.Learnables);

        % Update the network parameters using the SGDM optimizer.
        [prunableNet, velocity] = sgdmupdate(prunableNet, ...
            netGradients, velocity, learnRate, momentum);

        % Compute first-order Taylor scores and accumulate the score across
        % previous mini-batches of data.
        prunableNet = updateScore(prunableNet, pruningActivations, pruningGradients);

        % Display the training progress.
        D = duration(0,0,toc(start),'Format','hh:mm:ss');
        addpoints(lineLossFinetune, iteration, double(loss.totalLoss))
        title(tl,"Processing Pruning Iteration: " + pruningIteration + " of " + maxPruningIterations + ...
            ", Elapsed Time: " + string(D))
        % Synchronize the x-axis of the accuracy plot with the loss plot.
        xlim(accuracyAx,lossAx.XLim)
        xlim(numPrunablesAx,lossAx.XLim)
        drawnow
        
        % Stop the fine-tuning loop when numMinibatchUpdates is reached.
        if (fineTuningIteration > numMinibatchUpdates)
            break
        end

    end

    % Prune filters based on previously computed Taylor scores.
    prunableNet = updatePrunables(prunableNet, MaxToPrune = maxToPrune);

    % Show results on validation data set in a subset of pruning
    % iterations.
    isLastPruningIteration = pruningIteration == maxPruningIterations;
    if (mod(pruningIteration, validationFrequency) == 0 || isLastPruningIteration)
        [ap,~,~] = modelAccuracy(prunableNet, augimdsTest, anchorBoxes, anchorBoxMasks, classNames, 16);
        accuracy = mean(ap)*100;
        addpoints(lineAccuracyPruning, iteration, accuracy)
        addpoints(lineNumPrunables,iteration,double(prunableNet.NumPrunables))
    end

    % Set x-axis tick values at the end of each pruning iteration.
    xTickPos = [xTickPos, iteration]; %#ok<AGROW>
    xticks(lossAx,xTickPos)
    xticks(accuracyAx,[0,xTickPos])

 Prune Filters in a Detection Network Using Taylor Scores

21-257



    xticks(numPrunablesAx,[0,xTickPos])
    xticklabels(accuracyAx,["Unpruned",string(1:pruningIteration)])
    xticklabels(numPrunablesAx,["Unpruned",string(1:pruningIteration)])
    drawnow
end

During each pruning iteration, the validation accuracy may reduce because of changes in the network
structure when the convolutional filters are pruned. To minimize loss accuracy, it is recommended to
retrain the network after pruning.

21 Deep Learning Code Generation

21-258



Once pruning is complete, convert the deep.prune.TaylorPrunableNetwork object back to a
dlnetwork for retraining and further analysis.

prunedNet = dlnetwork(prunableNet);
save("prunedNet","prunedNet");

Retrain Pruned Network

The pruning process can cause the prediction accuracy to decrease. Try to improve the prediction
accuracy by retraining the network using a custom training loop.

Specify Training Options

Specify the options to use during retraining.

• Specify the options for SGDM optimization. Specify an initial learn rate of 0.00001 and momentum
of 0.9. Set the L2 regularization factor to 0.0005. Initialize the velocity of gradient as []. This is
used by SGDM to store the velocity of gradients.

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) which returns the batched images and bounding boxes combined with the
respective class IDs.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). Do not
add a format to the bounding boxes.

• Specify the data type of the bounding boxes.

velocity = [];
momentum = 0.9;
numEpochs = 10;
l2Regularization = 0.0005;
mbq = minibatchqueue(augimdsTrain, 2,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@(images, boxes, labels) preprocessMiniBatch(images, boxes, labels, classNames), ...
    MiniBatchFormat=["SSCB", ""],...
    OutputCast=["", "double"]);

Train Network Using Custom Training Loop

Initialize the training progress plot.

figure
lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

For each epoch, loop over mini-batches while data is still available in the minibatchqueue. Update
the network parameters using the SGDM algorithm.

iteration = 0;
start = tic;
prunedDetectorNet = prunedNet;

for i = 1:numEpochs
    % Shuffle the data in the minibatch.
    shuffle(mbq);

 Prune Filters in a Detection Network Using Taylor Scores

21-259



    % Loop over mini-batches.
    while hasdata(mbq)
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X, T] = next(mbq);

        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelGradients function and update the network state.
        [loss, gradients, state] = dlfeval(@modelLossTraining, prunedDetectorNet,...
            X, T, anchorBoxes, anchorBoxMasks, penaltyThreshold);

        % Update the network state.
        prunedDetectorNet.State = state;

        % Apply L2 regularization.
        gradients = dlupdate(@(g,w) g + l2Regularization*w, gradients, prunedNet.Learnables);

        % Update the network parameters using the SGDM optimizer.
        [prunedDetectorNet, velocity] = sgdmupdate(prunedDetectorNet, gradients, velocity, learnRate, momentum);

        % Display the training progress.
        D = duration(0,0,toc(start),'Format','hh:mm:ss');
        addpoints(lineLossTrain,iteration,double(loss.totalLoss))
        title("Retraining After Pruning" + newline + "Epoch: " + numEpochs + ", Elapsed: " + string(D))
        drawnow
    end
end

21 Deep Learning Code Generation

21-260



prunedyolov3ObjectDetector = yolov3ObjectDetector(prunedDetectorNet,classNames,yolov3Detector.AnchorBoxes);
save("prunedyolov3","prunedyolov3ObjectDetector");

Compare Original Network and Pruned Network

Determine the impact of pruning on each layer.

originalNetFilters = numConvLayerFilters(net);
prunedNetFilters = numConvLayerFilters(prunedDetectorNet);
convFilters = join(originalNetFilters,prunedNetFilters,Keys="Row");

Visualize the number of filters in the original network and in the pruned network.

figure("Position",[10,10,900,900])
bar([convFilters.(1),convFilters.(2)])
xlabel("Layer")
ylabel("Number of Filters")
title("Number of Filters Per Layer")
xticks(1:(numel(convFilters.Row)))
xticklabels(convFilters.Row)
xtickangle(90)
ax = gca;
ax.TickLabelInterpreter = "none";
legend("Original Network Filters","Pruned Network Filters","Location","southoutside")

 Prune Filters in a Detection Network Using Taylor Scores

21-261



Next, compare the accuracy of the original network and the pruned network. The average precision
provides a single number that incorporates the ability of the detector to make correct classifications
(precision) and the ability of the detector to find all relevant objects (recall).

[apPrunedNet,recallPrunedNet,precisionPrunedNet] = modelAccuracy(prunedDetectorNet, augimdsTest, anchorBoxes, anchorBoxMasks, classNames, 16);
accuracyPrunedNet = mean(apPrunedNet)*100

accuracyPrunedNet = 73.2348

21 Deep Learning Code Generation

21-262



The precision-recall (PR) curve is a good way to evaluate the performance of the object detector.
Ideally the precision is 1 for all levels of recall. The pruned object detector has lost some precision
but can still be considered good as its precision stays high when the recall increases.

figure
plot(recallTrainedNet,precisionTrainedNet,recallPrunedNet,precisionPrunedNet)
xlabel("Recall")
ylabel("Precision")
grid on
title("Precision Comparison of Original and Pruned Network")
legend("Original Network","Pruned Network");

Next, estimate the model parameters for the original network and the pruned network to understand
the impact of pruning on the overall network learnables and size.

analyzeNetworkMetrics(net,prunedDetectorNet,accuracyTrainedNet,accuracyPrunedNet)

ans=3×3 table
                         Network Learnables    Approx. Network Memory (MB)    Accuracy
                         __________________    ___________________________    ________

    Original Network         6.4158e+06                   24.475               88.897 
    Pruned Network           1.8201e+06                    6.943               73.235 
    Percentage Change           -71.632                  -71.632              -17.618 

 Prune Filters in a Detection Network Using Taylor Scores

21-263



Deploy Pruned YOLOv3 Network to Raspberry Pi

Optionally, you can use MATLAB Coder™ to generate C++ code for the pruned network taking
advantage of the ARM® Compute Library. The generated code can be integrated into your project as
source code, static or dynamic libraries, or an executable that you can deploy to a variety of ARM
CPU platforms such as Raspberry Pi. This example uses the PIL based workflow to generate a MEX
function, which in turn calls the executable generated on a Raspberry pi from MATLAB.

Third-Party Prerequisites

• Raspberry Pi hardware
• ARM Compute Library (on the target ARM hardware)
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Generate Code That Uses Third-Party Libraries” (MATLAB
Coder). For setting up the environment variables, see “Environment Variables” (MATLAB Coder).

PIL MEX Function

In this example, you generate code for the entry-point function yolov3Raspi. This function uses the
coder.loadDeepLearningNetwork function to load a deep learning model and to construct and set up a
CNN class. Then the entry-point function detects vehicles in the input and returns an output image
displaying the detections.

type yolov3Raspi.m

function outImg = yolov3Raspi(in,matFile)

%   Copyright 2022 The MathWorks, Inc.

persistent yolov3Obj;

if isempty(yolov3Obj)
    yolov3Obj = coder.loadDeepLearningNetwork(matFile);
end

% Call to detect method.
[bboxes,~,labels] = detect(yolov3Obj,in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors.
labels = cellstr(labels);

% Annotate detections in the image.
outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);

To generate a PIL MEX function, create a code configuration object for a static library and set the
verification mode to 'PIL'. Set the target language to C++.

cfg = coder.config("lib",ecoder=true);
cfg.VerificationMode = "PIL";
cfg.TargetLang = "C++";

Create a deep learning configuration object for the ARM Compute library. Specify the library version
and arm architecture. For this example, suppose that the ARM Compute Library in the Raspberry Pi
hardware is version 20.02.1.

21 Deep Learning Code Generation

21-264



dlcfg = coder.DeepLearningConfig("arm-compute");
dlcfg.ArmComputeVersion = "20.02.1";
dlcfg.ArmArchitecture = "armv7";

Set the DeepLearningConfig property of cfg to dlcfg.

cfg.DeepLearningConfig = dlcfg;

Use the MATLAB Support Package for Raspberry Pi function, raspi, to create a connection to the
Raspberry Pi. In the following code, replace:

• raspiname with the name of your Raspberry Pi
• username with your user name
• password with your password

r = raspi("raspiname","username","password");

Then, create a coder.Hardware object for Raspberry Pi and attach it to the code generation
configuration object.

hw = coder.hardware("Raspberry Pi");
cfg.Hardware = hw;

Generate a PIL MEX function for the original network in
yolov3SqueezeNetVehicleExample_21aSPKG.mat by using the codegen command.

codegen -config cfg yolov3Raspi -args {ones(227,227,3,'single'),coder.Constant("yolov3SqueezeNetVehicleExample_21aSPKG.mat")}

Read a sample image and call the generated PIL MEX function yolov3Raspi_pil. The PIL MEX
function launches the yolov3Raspi.elf executable on the Raspberry Pi and returns the results of
the execution to MATLAB.

data = read(augimdsTest);
I = data{1};
tic;
detectedImage = yolov3Raspi_pil(I,"yolov3SqueezeNetVehicleExample_21aSPKG.mat");
execTimeOriginalNet = toc;
clear yolov3Raspi_pil;
imshow(detectedImage);
title("Execution Time of Original Network = "+execTimeOriginalNet+"s");
saveas(gcf,"DetectionResultsOriginalNet.png");
close(gcf);

imshow("DetectionResultsOriginalNet.png");

 Prune Filters in a Detection Network Using Taylor Scores

21-265



Then, generate a PIL MEX function for the pruned network in prunedyolov3.mat by using the
codegen command.

codegen -config cfg yolov3Raspi -args {ones(227,227,3,'single'),coder.Constant("prunedyolov3.mat")}

Run the generated PIL MEX.

tic;
detectedImage = yolov3Raspi_pil(I,"prunedyolov3.mat");
execTimeOriginalNet = toc;
clear yolov3Raspi_pil
imshow(detectedImage);
title("Execution Time of Pruned Network = "+execTimeOriginalNet+"s");
saveas(gcf,"DetectionResultsPrunedNet.png");
close(gcf);

imshow("DetectionResultsPrunedNet.png");

21 Deep Learning Code Generation

21-266



Helper Functions

Model Gradients Function for Fine-Tuning and Pruning

The function modelLossPruning takes as input a deep.prune.TaylorPrunableNetwork object
prunableNet, a mini-batch of input data X with corresponding ground truth boxes T, anchor boxes,
masks, penalty threshold and returns the loss, the gradients of the loss with respect to the pruning
activations, gradients of loss with respect to the learnable parameters in prunableNet, pruning
activations, and the network state.

function [loss, pruningGradients, netGradients, pruningActivations, state] = modelLossPruning(prunableNet, X, T, anchors, mask, penaltyThreshold)

inputImageSize = size(X,1:2);

% Gather the ground truths for post processing.
YTrain = gather(extractdata(T));

% Extract the predictions from the network.
[YPredCell, state, pruningActivations] = yolov3ForwardGate(prunableNet, X, mask);

% Gather the activations for post processing and extract dlarray data.
gatheredPredictions = cellfun(@ gather, YPredCell(:,1:6),'UniformOutput',false);
gatheredPredictions = cellfun(@ extractdata, gatheredPredictions, 'UniformOutput', false);

 Prune Filters in a Detection Network Using Taylor Scores

21-267



% Convert predictions from grid cell coordinates to box coordinates.
tiledAnchors = generateTiledAnchors(gatheredPredictions(:,2:5),anchors,mask);
gatheredPredictions(:,2:5) = applyAnchorBoxOffsets(tiledAnchors, gatheredPredictions(:,2:5), inputImageSize);

% Generate target for predictions from the ground truth data.
[boxTarget, objectnessTarget, classTarget, objectMaskTarget, boxErrorScale] = generateTargets(gatheredPredictions, YTrain, inputImageSize, anchors, mask, penaltyThreshold);

% Compute the loss.
boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 7 8]),boxTarget,objectMaskTarget,boxErrorScale);
objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
clsLoss = classConfidenceLoss(YPredCell(:,6),classTarget,objectMaskTarget);
totalLoss = boxLoss + objLoss + clsLoss;

loss.boxLoss = boxLoss;
loss.objLoss = objLoss;
loss.clsLoss = clsLoss;
loss.totalLoss = totalLoss;

% Differentiate loss w.r.t learnables and activations
[netGradients, pruningGradients] = dlgradient(totalLoss, prunableNet.Learnables, pruningActivations);

end

Model Gradients Function for Retraining

The function modelLossTraining takes as input a dlNetwork object net, a mini-batch of input
data X with corresponding ground truth boxes T, anchor boxes, masks, penalty threshold and returns
the loss, gradients of loss with respect to the learnable parameters in net, and the network state.

function [loss, gradients, state] = modelLossTraining(net, X, T, anchors, mask, penaltyThreshold)

inputImageSize = size(X,1:2);

% Gather the ground truths for post processing.
YTrain = gather(extractdata(T));

% Extract the predictions from the network.
[YPredCell, state] = yolov3Forward(net,X,mask);

% Gather the activations for post processing and extract dlarray data.
gatheredPredictions = cellfun(@ gather, YPredCell(:,1:6),'UniformOutput',false);
gatheredPredictions = cellfun(@ extractdata, gatheredPredictions, 'UniformOutput', false);

% Convert predictions from grid cell coordinates to box coordinates.
tiledAnchors = generateTiledAnchors(gatheredPredictions(:,2:5),anchors,mask);
gatheredPredictions(:,2:5) = applyAnchorBoxOffsets(tiledAnchors, gatheredPredictions(:,2:5), inputImageSize);

% Generate target for predictions from the ground truth data.
[boxTarget, objectnessTarget, classTarget, objectMaskTarget, boxErrorScale] = generateTargets(gatheredPredictions, YTrain, inputImageSize, anchors, mask, penaltyThreshold);

% Compute the loss.
boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 7 8]),boxTarget,objectMaskTarget,boxErrorScale);
objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
clsLoss = classConfidenceLoss(YPredCell(:,6),classTarget,objectMaskTarget);
totalLoss = boxLoss + objLoss + clsLoss;

loss.boxLoss = boxLoss;

21 Deep Learning Code Generation

21-268



loss.objLoss = objLoss;
loss.clsLoss = clsLoss;
loss.totalLoss = totalLoss;

% Differentiate loss w.r.t learnables
gradients = dlgradient(totalLoss, net.Learnables);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of data and returns the batched images
and bounding boxes combined with the respective class IDs.

function [X, T] = preprocessMiniBatch(data, groundTruthBoxes, groundTruthClasses, classNames)
% Returns images combined along the batch dimension in XTrain and
% normalized bounding boxes concatenated with classIDs in YTrain.

% Concatenate images along the batch dimension.
X = cat(4, data{:,1});

% Get class IDs from the class names.
classNames = repmat({categorical(classNames')}, size(groundTruthClasses));
[~, classIndices] = cellfun(@(a,b)ismember(a,b), groundTruthClasses, classNames, 'UniformOutput', false);

% Append the label indexes and training image size to scaled bounding boxes
% and create a single cell array of responses.
combinedResponses = cellfun(@(bbox, classid)[bbox, classid], groundTruthBoxes, classIndices, 'UniformOutput', false);
len = max( cellfun(@(x)size(x,1), combinedResponses ) );
paddedBBoxes = cellfun( @(v) padarray(v,[len-size(v,1),0],0,'post'), combinedResponses, 'UniformOutput',false);
T = cat(4, paddedBBoxes{:,1});
end

Evaluate Model Accuracy

The modelAccuracy computes the accuracy of the network on the data set.

function [ap, recall, precision] = modelAccuracy(net, augimds, anchorBoxes, anchorBoxMasks, classNames, miniBatchSize)
% EVALUATE computes model accuracy on the dataset 'augimds'.
% Create a table to hold the bounding boxes, scores, and labels returned by
% the detector.
results = table('Size', [0 3], ...
    'VariableTypes', {'cell','cell','cell'}, ...
    'VariableNames', {'Boxes','Scores','Labels'});
mbqTest = minibatchqueue(augimds, 1, ...
    "MiniBatchSize", miniBatchSize, ...
    "MiniBatchFormat", "SSCB");

% Run detector on images in the test set and collect results.
while hasdata(mbqTest)
    % Read the datastore and get the image.
    XTest = next(mbqTest);

    % Run the detector.
    [bboxes, scores, labels] = yolov3Detect(net, XTest, net.OutputNames', anchorBoxes, anchorBoxMasks, 0.5, 0.5, classNames);

    % Collect the results.
    tbl = table(bboxes, scores, labels, 'VariableNames', {'Boxes','Scores','Labels'});

 Prune Filters in a Detection Network Using Taylor Scores

21-269



    results = [results; tbl];%#ok<AGROW>
end

% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, augimds);
end

Evaluate Number of Filters in Convolution Layers

The numConvLayerFilters function returns the number of filters in each convolution layer.

function convFilters = numConvLayerFilters(net)
numLayers = numel(net.Layers);
convNames = [];
numFilters = [];
% Check for convolution layers and extract the number of filters.
for cnt = 1:numLayers
    if isa(net.Layers(cnt),"nnet.cnn.layer.Convolution2DLayer")
        sizeW = size(net.Layers(cnt).Weights);
        numFilters = [numFilters; sizeW(end)];%#ok<AGROW>
        convNames = [convNames; string(net.Layers(cnt).Name)];%#ok<AGROW>
    end
end
convFilters = table(numFilters,RowNames=convNames);
end

Evaluate the network statistics of original network and pruned network

The analyzeNetworkMetrics function takes input as the original network, pruned network, accuracy
of original network and the accuracy of the pruned network and returns the different statistics like
network learnables, network memory and the accuracy on the test data in form of a table.

function [statistics] = analyzeNetworkMetrics(originalNet,prunedNet,accuracyOriginal,accuracyPruned)

originalNetMetrics = estimateNetworkMetrics(originalNet);
prunedNetMetrics = estimateNetworkMetrics(prunedNet);

% Accuracy of original network and pruned network
perChangeAccu = 100*(accuracyPruned - accuracyOriginal)/accuracyOriginal;
AccuracyForNetworks = [accuracyOriginal;accuracyPruned;perChangeAccu];

% Total learnables in both networks
originalNetLearnables = sum(originalNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
prunedNetLearnables = sum(prunedNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
percentageChangeLearnables = 100*(prunedNetLearnables - originalNetLearnables)/originalNetLearnables;
LearnablesForNetwork = [originalNetLearnables;prunedNetLearnables;percentageChangeLearnables];

% Approximate parameter memory
approxOriginalMemory = sum(originalNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
approxPrunedMemory = sum(prunedNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
percentageChangeMemory = 100*(approxPrunedMemory - approxOriginalMemory)/approxOriginalMemory;
NetworkMemory = [ approxOriginalMemory; approxPrunedMemory; percentageChangeMemory];

% Create the summary table
statistics = table(LearnablesForNetwork,NetworkMemory,AccuracyForNetworks, ...
    'VariableNames',["Network Learnables","Approx. Network Memory (MB)","Accuracy"], ...
    'RowNames',{'Original Network','Pruned Network','Percentage Change'});

end

21 Deep Learning Code Generation

21-270



Augmentation and Data Processing Functions

function data = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.
data = cell(size(A));
for ii = 1:size(A,1)
    I = A{ii,1};
    bboxes = A{ii,2};
    labels = A{ii,3};
    sz = size(I);

    if numel(sz) == 3 && sz(3) == 3
        I = jitterColorHSV(I,...
            'Contrast',0.0,...
            'Hue',0.1,...
            'Saturation',0.2,...
            'Brightness',0.2);
    end

    % Randomly flip image.
    tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
    rout = affineOutputView(sz,tform,'BoundsStyle','centerOutput');
    I = imwarp(I,tform,'OutputView',rout);

    % Apply same transform to boxes.
    [bboxes,indices] = bboxwarp(bboxes,tform,rout,'OverlapThreshold',0.25);
    bboxes = round(bboxes);
    labels = labels(indices);

    % Return original data only when all boxes are removed by warping.
    if isempty(indices)
        data(ii,:) = A(ii,:);
    else
        data(ii,:) = {I, bboxes, labels};
    end
end
end

function data = preprocessData(data, targetSize)
% Resize the images and scale the pixels to between 0 and 1. Also scale the
% corresponding bounding boxes.
for ii = 1:size(data,1)
    I = data{ii,1};
    imgSize = size(I);

    % Convert an input image with single channel to 3 channels.
    if numel(imgSize) < 3
        I = repmat(I,1,1,3);
    end
    bboxes = data{ii,2};

    I = im2single(imresize(I,targetSize(1:2)));
    scale = targetSize(1:2)./imgSize(1:2);
    bboxes = bboxresize(bboxes,scale);

    data(ii, 1:2) = {I, bboxes};

 Prune Filters in a Detection Network Using Taylor Scores

21-271



end
end

Utility Functions

function YPredCell = applyActivations(YPredCell)
% Apply activation functions on YOLOv3 outputs.
YPredCell(:,1:3) = cellfun(@ sigmoid, YPredCell(:,1:3), 'UniformOutput', false);
YPredCell(:,4:5) = cellfun(@ exp, YPredCell(:,4:5), 'UniformOutput', false);
YPredCell(:,6) = cellfun(@ sigmoid, YPredCell(:,6), 'UniformOutput', false);
end

function tiledAnchors = applyAnchorBoxOffsets(tiledAnchors,YPredCell,inputImageSize)
% Convert grid cell coordinates to box coordinates.
for i=1:size(YPredCell,1)
    [h,w,~,~] = size(YPredCell{i,1});
    tiledAnchors{i,1} = (tiledAnchors{i,1}+YPredCell{i,1})./w;
    tiledAnchors{i,2} = (tiledAnchors{i,2}+YPredCell{i,2})./h;
    tiledAnchors{i,3} = (tiledAnchors{i,3}.*YPredCell{i,3})./inputImageSize(2);
    tiledAnchors{i,4} = (tiledAnchors{i,4}.*YPredCell{i,4})./inputImageSize(1);
end
end

function boxLoss = bboxOffsetLoss(boxPredCell, boxDeltaTarget, boxMaskTarget, boxErrorScaleTarget)
% Mean squared error for bounding box position.
lossX = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,1),boxDeltaTarget(:,1),boxMaskTarget(:,1),boxErrorScaleTarget));
lossY = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,2),boxDeltaTarget(:,2),boxMaskTarget(:,1),boxErrorScaleTarget));
lossW = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,3),boxDeltaTarget(:,3),boxMaskTarget(:,1),boxErrorScaleTarget));
lossH = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,4),boxDeltaTarget(:,4),boxMaskTarget(:,1),boxErrorScaleTarget));
boxLoss = lossX+lossY+lossW+lossH;
end

function clsLoss = classConfidenceLoss(classPredCell, classTarget, boxMaskTarget)
% Binary cross-entropy loss for class confidence score.
clsLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),classPredCell,classTarget,boxMaskTarget(:,3)));
end

function predictions = extractPredictions(YPredictions, anchorBoxMask)
% Function extractPrediction extracts and rearranges the prediction outputs
% from YOLOv3 network.

predictions = cell(size(YPredictions, 1),6);
for ii = 1:size(YPredictions, 1)
    % Get the required info on feature size.
    numChannelsPred = size(YPredictions{ii},3);
    numAnchors = size(anchorBoxMask{ii},2);
    numPredElemsPerAnchors = numChannelsPred/numAnchors;
    allIds = (1:numChannelsPred);

    stride = numPredElemsPerAnchors;
    endIdx = numChannelsPred;

    % X positions.
    startIdx = 1;
    predictions{ii,2} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
    xIds = startIdx:stride:endIdx;

    % Y positions.

21 Deep Learning Code Generation

21-272



    startIdx = 2;
    predictions{ii,3} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
    yIds = startIdx:stride:endIdx;

    % Width.
    startIdx = 3;
    predictions{ii,4} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
    wIds = startIdx:stride:endIdx;

    % Height.
    startIdx = 4;
    predictions{ii,5} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
    hIds = startIdx:stride:endIdx;

    % Confidence scores.
    startIdx = 5;
    predictions{ii,1} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
    confIds = startIdx:stride:endIdx;

    % Accummulate all the non-class indexes
    nonClassIds = [xIds yIds wIds hIds confIds];

    % Class probabilities. Get the indexes which do not belong to the
    % nonClassIds
    classIdx = setdiff(allIds,nonClassIds);
    predictions{ii,6} = YPredictions{ii}(:,:,classIdx,:);
end
end

function [boxDeltaTarget, objectnessTarget, classTarget, maskTarget, boxErrorScaleTarget] = generateTargets(YPredCellGathered, groundTruth, inputImageSize, anchorBoxes, anchorBoxMask, penaltyThreshold)
% generateTargets creates target array for every prediction element
% x, y, width, height, confidence scores and class probabilities.
boxDeltaTarget = cell(size(YPredCellGathered,1),4);
objectnessTarget = cell(size(YPredCellGathered,1),1);
classTarget = cell(size(YPredCellGathered,1),1);
maskTarget = cell(size(YPredCellGathered,1),3);
boxErrorScaleTarget = cell(size(YPredCellGathered,1),1);

% Normalize the ground truth boxes w.r.t image input size.
gtScale = [inputImageSize(2) inputImageSize(1) inputImageSize(2) inputImageSize(1)];
groundTruth(:,1:4,:,:) = groundTruth(:,1:4,:,:)./gtScale;

for numPred = 1:size(YPredCellGathered,1)
    
    % Select anchor boxes based on anchor box mask indices.
    anchors = anchorBoxes(anchorBoxMask{numPred},:);

    bx = YPredCellGathered{numPred,2};
    by = YPredCellGathered{numPred,3};
    bw = YPredCellGathered{numPred,4};
    bh = YPredCellGathered{numPred,5};
    predClasses = YPredCellGathered{numPred,6};
    
    gridSize = size(bx);
    if numel(gridSize)== 3
        gridSize(4) = 1;
    end
    numClasses = size(predClasses,3)/size(anchors,1);

 Prune Filters in a Detection Network Using Taylor Scores

21-273



    
    % Initialize the required variables.
    mask = single(zeros(size(bx)));
    confMask = single(ones(size(bx)));
    classMask = single(zeros(size(predClasses)));
    tx = single(zeros(size(bx)));
    ty = single(zeros(size(by)));
    tw = single(zeros(size(bw)));
    th = single(zeros(size(bh)));
    tconf = single(zeros(size(bx)));
    tclass = single(zeros(size(predClasses)));
    boxErrorScale = single(ones(size(bx)));
    
    % Get the IOU of predictions with groundtruth.
    iou = getMaxIOUPredictedWithGroundTruth(bx,by,bw,bh,groundTruth);
    
    % Donot penalize the predictions which has iou greater than penalty
    % threshold.
    confMask(iou > penaltyThreshold) = 0;
    
    for batch = 1:gridSize(4)
        truthBatch = groundTruth(:,1:5,:,batch);
        truthBatch = truthBatch(all(truthBatch,2),:);
        
        % Get boxes with center as 0.
        gtPred = [0-truthBatch(:,3)/2,0-truthBatch(:,4)/2,truthBatch(:,3),truthBatch(:,4)];
        anchorPrior = [0-anchorBoxes(:,2)/(2*inputImageSize(2)),0-anchorBoxes(:,1)/(2*inputImageSize(1)),anchorBoxes(:,2)/inputImageSize(2),anchorBoxes(:,1)/inputImageSize(1)];
        
        % Get the iou of best matching anchor box.
        overLap = bboxOverlapRatio(gtPred,anchorPrior);
        [~,bestAnchorIdx] = max(overLap,[],2);
        
        % Select gt that are within the mask.
        index = ismember(bestAnchorIdx,anchorBoxMask{numPred});
        truthBatch = truthBatch(index,:);
        bestAnchorIdx = bestAnchorIdx(index,:);
        bestAnchorIdx = bestAnchorIdx - anchorBoxMask{numPred}(1,1) + 1;
        
        if ~isempty(truthBatch)
            % Convert top left position of ground-truth to centre coordinates.
            truthBatch = [truthBatch(:,1)+truthBatch(:,3)./2,truthBatch(:,2)+truthBatch(:,4)./2,truthBatch(:,3),truthBatch(:,4),truthBatch(:,5)];
            
            errorScale = 2 - truthBatch(:,3).*truthBatch(:,4);
            truthBatch = [truthBatch(:,1)*gridSize(2),truthBatch(:,2)*gridSize(1),truthBatch(:,3)*inputImageSize(2),truthBatch(:,4)*inputImageSize(1),truthBatch(:,5)];
            for t = 1:size(truthBatch,1)
                
                % Get the position of ground-truth box in the grid.
                colIdx = ceil(truthBatch(t,1));
                colIdx(colIdx<1) = 1;
                colIdx(colIdx>gridSize(2)) = gridSize(2);
                rowIdx = ceil(truthBatch(t,2));
                rowIdx(rowIdx<1) = 1;
                rowIdx(rowIdx>gridSize(1)) = gridSize(1);
                pos = [rowIdx,colIdx];
                anchorIdx = bestAnchorIdx(t,1);
                
                mask(pos(1,1),pos(1,2),anchorIdx,batch) = 1;
                confMask(pos(1,1),pos(1,2),anchorIdx,batch) = 1;

21 Deep Learning Code Generation

21-274



                
                % Calculate the shift in ground-truth boxes.
                tShiftX = truthBatch(t,1)-pos(1,2)+1;
                tShiftY = truthBatch(t,2)-pos(1,1)+1;
                tShiftW = log(truthBatch(t,3)/anchors(anchorIdx,2));
                tShiftH = log(truthBatch(t,4)/anchors(anchorIdx,1));
                
                % Update the target box.
                tx(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftX;
                ty(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftY;
                tw(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftW;
                th(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftH;
                boxErrorScale(pos(1,1),pos(1,2),anchorIdx,batch) = errorScale(t);
                tconf(rowIdx,colIdx,anchorIdx,batch) = 1;
                classIdx = (numClasses*(anchorIdx-1))+truthBatch(t,5);
                tclass(rowIdx,colIdx,classIdx,batch) = 1;
                classMask(rowIdx,colIdx,(numClasses*(anchorIdx-1))+(1:numClasses),batch) = 1;
            end
        end
    end
    boxDeltaTarget(numPred,:) = [{tx} {ty} {tw} {th}];
    objectnessTarget{numPred,1} = tconf;
    classTarget{numPred,1} = tclass;
    maskTarget(numPred,:) = [{mask} {confMask} {classMask}];
    boxErrorScaleTarget{numPred,:} = boxErrorScale;
end
end

function iou = getMaxIOUPredictedWithGroundTruth(predx,predy,predw,predh,truth)
% getMaxIOUPredictedWithGroundTruth computes the maximum intersection over
%  union scores for every pair of predictions and ground-truth boxes.

[h,w,c,n] = size(predx);
iou = zeros([h w c n],'like',predx);

% For each batch prepare the predictions and ground-truth.
for batchSize = 1:n
    truthBatch = truth(:,1:4,1,batchSize);
    truthBatch = truthBatch(all(truthBatch,2),:);
    predxb = predx(:,:,:,batchSize);
    predyb = predy(:,:,:,batchSize);
    predwb = predw(:,:,:,batchSize);
    predhb = predh(:,:,:,batchSize);
    predb = [predxb(:),predyb(:),predwb(:),predhb(:)];
    
    % Convert from center xy coordinate to topleft xy coordinate.
    predb = [predb(:,1)-predb(:,3)./2, predb(:,2)-predb(:,4)./2, predb(:,3), predb(:,4)];
    
    % Compute and extract the maximum IOU of predictions with ground-truth.
    try 
        overlap = bboxOverlapRatio(predb, truthBatch);
    catch me
        if(any(isnan(predb(:))|isinf(predb(:))))
            error(me.message + " NaN/Inf has been detected during training. Try reducing the learning rate.");
        elseif(any(predb(:,3)<=0 | predb(:,4)<=0))
            error(me.message + " Invalid predictions during training. Try reducing the learning rate.");
        else
            error(me.message + " Invalid groundtruth. Check that your ground truth boxes are not empty and finite, are fully contained within the image boundary, and have positive width and height.");

 Prune Filters in a Detection Network Using Taylor Scores

21-275



        end
    end
    
    maxOverlap = max(overlap,[],2);
    iou(:,:,:,batchSize) = reshape(maxOverlap,h,w,c);
end
end

function tiledAnchors = generateTiledAnchors(YPredCell,anchorBoxes,anchorBoxMask)
% Generate tiled anchor offset.
tiledAnchors = cell(size(YPredCell));
for i=1:size(YPredCell,1)
    anchors = anchorBoxes(anchorBoxMask{i}, :);
    [h,w,~,n] = size(YPredCell{i,1});
    [tiledAnchors{i,2}, tiledAnchors{i,1}] = ndgrid(0:h-1,0:w-1,1:size(anchors,1),1:n);
    [~,~,tiledAnchors{i,3}] = ndgrid(0:h-1,0:w-1,anchors(:,2),1:n);
    [~,~,tiledAnchors{i,4}] = ndgrid(0:h-1,0:w-1,anchors(:,1),1:n);
end
end

function objLoss = objectnessLoss(objectnessPredCell, objectnessDeltaTarget, boxMaskTarget)
% Binary cross-entropy loss for objectness score.
objLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),objectnessPredCell,objectnessDeltaTarget,boxMaskTarget(:,2)));
end

function [bboxes,scores,labels] = yolov3Detect(net, XTest, networkOutputs, anchors, anchorBoxMask, confidenceThreshold, overlapThreshold, classes)
% The yolov3Detect function detects the bounding boxes, scores, and labels
% in an image.
imageSize = size(XTest, [1,2]);

% To retain 'networkInputSize' in memory and avoid recalculating it,
% declare it as persistent.
persistent networkInputSize

if isempty(networkInputSize)
    networkInputSize = [227 227 3];
end

% Predict and filter the detections based on confidence threshold.
predictions = yolov3Predict(net,XTest,networkOutputs,anchorBoxMask);
predictions = cellfun(@ gather, predictions,'UniformOutput',false);
predictions = cellfun(@ extractdata, predictions, 'UniformOutput', false);
tiledAnchors = generateTiledAnchors(predictions(:,2:5),anchors,anchorBoxMask);
predictions(:,2:5) = applyAnchorBoxOffsets(tiledAnchors, predictions(:,2:5), networkInputSize);

numMiniBatch = size(XTest, 4);

bboxes = cell(numMiniBatch, 1);
scores = cell(numMiniBatch, 1);
labels = cell(numMiniBatch, 1);

for ii = 1:numMiniBatch
    fmap = cellfun(@(x) x(:,:,:,ii), predictions, 'UniformOutput', false);
    [bboxes{ii}, scores{ii}, labels{ii}] = ...
        generateYOLOv3Detections(fmap, confidenceThreshold, overlapThreshold, imageSize, classes);
end

21 Deep Learning Code Generation

21-276



end

function YPredCell = yolov3Predict(net,XTrain,networkOutputs,anchorBoxMask)
% Predict the output of network and extract the confidence, x, y, width,
% height, and class.
YPredictions = cell(size(networkOutputs));
[YPredictions{:}] = predict(net, XTrain);
YPredCell = extractPredictions(YPredictions, anchorBoxMask);

% Apply activation to the predicted cell array.
YPredCell = applyActivations(YPredCell);
end

function [YPredCell, state] = yolov3Forward(net, X,  anchorBoxMask)
% Predict the output of network.
numNetOutputs = numel(net.OutputNames);
networkOuts = cell(numNetOutputs, 1);

% retrieve pruning activations and network outputs
[networkOuts{:}, state] = forward(net, X);

YPredCell = extractPredictions(networkOuts, anchorBoxMask);

% Append predicted width and height to the end as they are required for
% computing the loss.
YPredCell(:,7:8) = YPredCell(:,4:5);

% Apply sigmoid and exponential activation.
YPredCell(:,1:6) = applyActivations(YPredCell(:,1:6));
end

function [YPredCell, state, activations] = yolov3ForwardGate(prunableNet, X,  anchorBoxMask)
% Predict the output of network.
numNetOutputs = numel(prunableNet.OutputNames);
networkOuts = cell(numNetOutputs, 1);

% retrieve outputs of activations and network outputs
[networkOuts{:}, state, activations] = forward(prunableNet, X);

YPredCell = extractPredictions(networkOuts, anchorBoxMask);

% Append predicted width and height to the end as they are required for
% computing the loss.
YPredCell(:,7:8) = YPredCell(:,4:5);

% Apply sigmoid and exponential activation.
YPredCell(:,1:6) = applyActivations(YPredCell(:,1:6));
end

References

[1] Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. "Pruning Convolutional
Neural Networks for Resource Efficient Inference." Preprint, submitted June 8, 2017. https://
arxiv.org/abs/1611.06440.

[2] Molchanov, Pavlo, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. "Importance Estimation
for Neural Network Pruning." In 2019 IEEE/CVF Conference on Computer Vision and Pattern

 Prune Filters in a Detection Network Using Taylor Scores

21-277



Recognition (CVPR), 11256??64. Long Beach, CA, USA: IEEE, 2019. https://doi.org/10.1109/
CVPR.2019.01152.

[3] Redmon, Joseph, and Ali Farhadi. "YOLOv3: An Incremental Improvement." Preprint, submitted
April 8, 2018. https://arxiv.org/abs/1804.02767.

See Also
Functions
forward | predict | updatePrunables | updateScore | TaylorPrunableNetwork | dlnetwork

More About
• “Parameter Pruning and Quantization of Image Classification Network” on page 21-206
• “Prune Image Classification Network Using Taylor Scores” on page 21-223

21 Deep Learning Code Generation

21-278

https://arxiv.org/abs/1804.02767


Compress Neural Network Using Projection

This example shows how to compress a neural network using projection and principal component
analysis.

To compress a deep learning network, you can use projected layers. The layer introduces learnable
projector matrices Q, replaces multiplications of the form Wx, where W is a learnable matrix, with
the multiplication WQQ⊤x, and stores Q and W ′ = WQ instead of storing W. Projecting x into a lower
dimensional space using Q typically requires less memory to store the learnable parameters and can
have similarly strong prediction accuracy. A projected deep neural network can also exhibit faster
forward passes when run on the CPU or deployed to embedded hardware using library-free C or C++
code generation.

The compressNetworkUsingProjection function compresses a network by projecting layers into
smaller parameter subspaces. For optimal initialization of the projected network, the function
projects the learnable parameters of projectable layers into a subspace that maintains the highest
variance in neuron activations. After you compress a neural network using projection, you can then
fine-tune the network to increase the accuracy.

This chart shows the effect of projection and fine tuning on a trained network. In this case, the
projected network has significantly fewer learnable parameters at the cost of classification accuracy.
The fine-tuned projected network yields similar classification accuracy to the original network.

 Compress Neural Network Using Projection

21-279



Load Pretrained Network

Load the pretrained network in dlnetJapaneseVowels.

load dlnetJapaneseVowels

View the network layers. The network is a LSTM network with a single LSTM layer with 100 hidden
units.

net.Layers

ans = 
  4×1 Layer array with layers:

     1   'sequenceinput'   Sequence Input    Sequence input with 12 dimensions
     2   'lstm'            LSTM              LSTM with 100 hidden units
     3   'fc'              Fully Connected   9 fully connected layer
     4   'softmax'         Softmax           softmax

View the class names of the network.

classNames

classNames = 9×1 string
    "1"
    "2"
    "3"
    "4"
    "5"
    "6"
    "7"
    "8"
    "9"

This example trains several networks. For comparison, create a copy of the original network.

netOriginal = net;

Load Training Data

Load the Japanese Vowels data set described in [1 on page 21-294] and [2 on page 21-294]. XTrain is
a cell array containing 270 sequences of varying length with 12 features corresponding to LPC
cepstrum coefficients. TTrain is a categorical vector of labels 1, 2, ..., 9. The entries in XTrain are
matrices with 12 rows (one row for each feature) and a varying number of columns (one column for
each time step).

[XTrain,TTrain] = japaneseVowelsTrainData;

Analyze Neuron Activations for Compression Using Projection

The compressNetworkUsingProjection function uses principal component analysis (PCA) to
identify the subspace of learnable parameters that result in the highest variance in neuron activations
by analyzing the network activations using a data set of training data. This analysis requires only the
predictors of the training data to compute the network activations. It does not require the training
targets.

21 Deep Learning Code Generation

21-280



The PCA step can be computationally intensive. If you expect to compress the same network multiple
times (for example, when exploring different levels of compression), then perform the PCA step first
and reuse the resulting neuronPCA object.

Create a mini-batch queue containing the training data. To create a mini-batch queue from in-memory
data, convert the sequences to an array datastore.

adsXTrain = arrayDatastore(XTrain,OutputType="same");

Create the minibatchqueue object.

• Specify a mini-batch size of 16.
• Preprocess the mini-batches using the preprocessMiniBatchPredictors function, listed in the

Mini-Batch Predictors Preprocessing Function on page 21-292 section of the example.
• Specify that the output data has format "CTB" (channel, time, batch).

Note: Do not pad sequence data when doing the PCA step for projection as this can negatively impact
the analysis. Instead, truncate mini-batches of data to have the same length or use mini-batches of
size 1.

miniBatchSize = 16;

mbqTrain = minibatchqueue(adsXTrain, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="CTB");

Create the neuronPCA object. To view information about the steps of the neuron PCA algorithm, set
the VerbosityLevel option to "steps".

npca = neuronPCA(netOriginal,mbqTrain,VerbosityLevel="steps");

Computing layer activations and covariance matrices...
Computing eigenvalues and eigenvectors...
neuronPCA analyzed 1 layers: "lstm"

View the properties of the neuronPCA object.

npca

npca = 
  neuronPCA with properties:

            LayerNames: "lstm"
      InputEigenvalues: {[12×1 double]}
     InputEigenvectors: {[12×12 double]}
     OutputEigenvalues: {[100×1 double]}
    OutputEigenvectors: {[100×100 double]}

Project Network

Compress the network using the neuron PCA object.

netProjected = compressNetworkUsingProjection(netOriginal,npca);

Compressed network has 82.4% fewer learnable parameters.
Projected layers explain on average 96.6% of layer activation variance.

 Compress Neural Network Using Projection

21-281



Test Projected Network

Load the Japanese Vowels test data set.

[XTest,TTest] = japaneseVowelsTestData;

Create a mini-batch queue using the same steps as the training data.

adsTest = arrayDatastore(XTest,OutputType="same");

mbqTest = minibatchqueue(adsTest, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="CTB");

For comparison, calculate the classification accuracy of the original network using the test data and
the modelPredictions function, listed in the Model Predictions Function on page 21-294 section of
the example.

YTest = modelPredictions(netOriginal,mbqTest,classNames);
accOriginal = mean(YTest == TTest)

accOriginal = 0.9135

Calculate the classification accuracy of the projected network using the test data and the
modelPredictions function, listed in the Model Predictions Function on page 21-294 section of the
example.

YTest = modelPredictions(netProjected,mbqTest,classNames);
accProjected = mean(YTest == TTest)

accProjected = 0.4784

Compare the accuracy and the number of learnables of each network in a bar chart. To calculate the
number of learnables of each network, use the numLearnables function, listed in the Number of
Learnables Function on page 21-293 section of the example.

figure
tiledlayout("flow")

nexttile
bar([accOriginal accProjected])
xticklabels(["Original" "Projected"])
title("Accuracy")
ylabel("Accuracy")

nexttile
bar([numLearnables(netOriginal) numLearnables(netProjected)])
xticklabels(["Original" "Projected"])
ylabel("Number of Learnables")
title("Number of Learnables")

21 Deep Learning Code Generation

21-282



The projected network yields worse classification accuracy and has significantly fewer learnable
parameters.

Compress for Memory Requirement

If you want to compress a network so that it meets specific hardware memory requirements, then you
can manually calculate the learnable reduction value such that the compressed network is of the
desired size.

Specify a target memory requirement of 64 kilobytes (64 × 1024 bytes).

targetMemorySize = 64*1024

targetMemorySize = 65536

Calculate the memory size of the original network using the parameterMemory function, listed in the
Parameter Memory Function on page 21-293 section of the example.

memorySizeOriginal = parameterMemory(netOriginal)

memorySizeOriginal = 184436

Calculate the factor to reduce the learnables by such that the resulting network meets the memory
requirements.

 Compress Neural Network Using Projection

21-283



reductionGoal = 1 - (targetMemorySize/memorySizeOriginal);

Project the network using the compressNetworkUsingProjection function and set the
LearnablesReductionGoal option to the calculated reduction factor.

netProjected = compressNetworkUsingProjection(netOriginal,npca, ...
    LearnablesReductionGoal=reductionGoal);

Compressed network has 64.6% fewer learnable parameters.
Projected layers explain on average 99.7% of layer activation variance.

Calculate the memory size of the projected network using the parameterMemory function, listed in
the Parameter Memory Function on page 21-293 section of the example.

memorySizeProjected = parameterMemory(netProjected)

memorySizeProjected = 65364

Calculate the classification accuracy of the projected network using the test data and the
modelPredictions function, listed in the Model Predictions Function on page 21-294 section of the
example.

YTest = modelPredictions(netProjected,mbqTest,classNames);
accProjected = mean(YTest == TTest)

accProjected = 0.8649

Compare the accuracy and the memory size of each network in a bar chart.

figure
tiledlayout("flow")

nexttile
bar([accOriginal accProjected])
xticklabels(["Original" "Projected"])
ylabel("Accuracy")
title("Accuracy")

nexttile
bar([memorySizeOriginal memorySizeProjected])
xticklabels(["Original" "Projected"])
yline(targetMemorySize,"r--","Memory Requirement")
ylabel("Memory (bytes)")
title("Memory Size")

21 Deep Learning Code Generation

21-284



The projected network yields similar classification accuracy and has memory size that meets the
memory requirements.

Explore Compression Levels

There is a trade-off between the amount of compression and the network accuracy. In particular,
reducing the number of learnable parameters typically reduces the network accuracy.

The explained variance of a network details how well the space of network activations can capture
the underlying features of the data. To explore different amounts of compression, you can iterate over
different values of the ExplainedVarianceGoal option of the
compressNetworkUsingProjection function and compare the results.

Loop over different values of the explained variance goal. Iterate over 20 logarithmically spaced
values between 0.999 and 0.

For each value:

• Compress the network using projection with the specified explained variance goal using the
compressNetworkUsingProjection function. Suppress verbose output by setting the
VerbosityLevel option to "off".

• Record the actual explained variance and learnables reduction of the projected network.

 Compress Neural Network Using Projection

21-285



• Calculate the classification accuracy of the projected network using the test data and the
modelPredictions function, listed in the Model Predictions Function on page 21-294 section of
the example.

numValues = 20;
explainedVarGoal = 1 - logspace(-3,0,numValues);

for i = 1:numel(explainedVarGoal)
    varianceGoal = explainedVarGoal(i);

    [netProjected,info] = compressNetworkUsingProjection(netOriginal,npca, ...
        ExplainedVarianceGoal=varianceGoal, ...
        VerbosityLevel="off");

    explainedVariance(i) = info.ExplainedVariance;
    learnablesReduction(i) = info.LearnablesReduction;

    YTest = modelPredictions(netProjected,mbqTest,classNames);
    accuracy(i) = mean(YTest==TTest);
end

Visualize the effect of the different settings of the explained variance goal in a plot.

figure
tiledlayout("flow")

nexttile
plot(learnablesReduction,accuracy,'+-')
ylabel("Accuracy")
title("Effect of Explained Variance Goal")

nexttile
plot(learnablesReduction,explainedVariance,'+-')
ylim([0 inf])
ylabel("Explained Variance")
xlabel("Learnable Reduction")

21 Deep Learning Code Generation

21-286



The graphs show that an increase in learnable reduction has a corresponding decrease in the
explained variance and accuracy. A learnable reduction value of around 85% shows a very slight
decrease in explained variance and a small decrease in accuracy.

Compress the network using projection with a learnable reduction goal of 85% using the
compressNetworkUsingProjection function. Suppress verbose output by setting the
VerbosityLevel option to "off".

netProjected = compressNetworkUsingProjection(netOriginal,npca, ...
    LearnablesReduction=0.85, ...
    VerbosityLevel="off");

Calculate the classification accuracy of the projected network using the test data and the
modelPredictions function, listed in the Model Predictions Function on page 21-294 section of the
example.

YTest = modelPredictions(netProjected,mbqTest,classNames);
accProjected = mean(YTest == TTest)

accProjected = 0.4270

Compare the accuracy and the number of learnables of each network in a bar chart. To calculate the
number of learnables of each network, use the numLearnables function, listed in the Number of
Learnables Function on page 21-293 section of the example.

 Compress Neural Network Using Projection

21-287



figure
tiledlayout("flow")

nexttile
bar([accOriginal accProjected])
xticklabels(["Original" "Projected"])
ylabel("Accuracy")
title("Accuracy")

nexttile
bar([numLearnables(netOriginal) numLearnables(netProjected)])
xticklabels(["Original" "Projected"])
ylabel("Number of Learnables")
title("Number of Learnables")

The projected network yields worse classification accuracy and has significantly fewer learnable
parameters. You can improve the network accuracy by fine tuning the network.

Fine-Tune Compressed Network

Compressing a network using projection typically reduces the network accuracy. You can improve the
accuracy by retraining the network also known as fine tuning the network.

Specify the options for fine-tuning. Train for 30 epochs with a learning rate of 0.0005.

numEpochs = 30;
learnRate = 0.0005;

21 Deep Learning Code Generation

21-288



The projection steps of the workflow required the training predictors only. Retraining the network
requires both the predictors and the labels. Create a mini-batch object that outputs both the
predictors and the labels.

Create a combined datastore that outputs the training predictors and the labels by combining the
array datastore of predictors with an array datastore of the labels.

adsTTrain = arrayDatastore(TTrain,IterationDimension=1);
cdsTrain = combine(adsXTrain,adsTTrain);

Create a mini-batch queue that outputs mini-batches of predictors and labels:

• Specify that the mini-batch queue has two outputs.
• Specify the same a mini-batch size of 16.
• Preprocess the mini-batches using the preprocessMiniBatch function, listed in the Mini-Batch

Preprocessing Function on page 21-293 section of the example.
• Specify that the predictors have formats "CTB" (channel, time, batch) and that the preprocessed

labels have format "CB" (channel, batch).

miniBatchSize = 16;

mbqTrain = minibatchqueue(cdsTrain,2, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["CTB" "CB"]);

Initialize the parameters for Adam optimization.

averageGrad = [];
averageSqGrad = [];

For comparison, create a copy of the network object to train.

netFineTuned = netProjected;

Calculate the total number of iterations for the training progress monitor.

numObservationsTrain = size(XTrain,1);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor( ...
    Metrics="Loss", ...
    Info=["Epoch","LearnRate"], ...
    XLabel="Iteration");

Fine tune the network using a custom training loop. For each epoch, shuffle the data and loop over
mini-batches of data. For each mini-batch:

• Evaluate the model loss and gradients using the modelLoss function, listed in the Model Loss
Function on page 21-293 section of the example.

• Update the network parameters using the adamupdate function.

 Compress Neural Network Using Projection

21-289



• Update the loss, learn rate, and epoch values in the training progress monitor.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop

    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbqTrain);

    % Loop over mini-batches.
    while hasdata(mbqTrain) && ~monitor.Stop
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(mbqTrain);

        % Evaluate the model gradients and loss using dlfeval and the
        % modelLoss function.
        [loss,gradients] = dlfeval(@modelLoss,netFineTuned,X,T);

        % Update the network parameters using the ADAM optimizer.
        [netFineTuned,averageGrad,averageSqGrad] = adamupdate(netFineTuned,gradients, ...
            averageGrad,averageSqGrad,iteration,learnRate);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch,LearnRate=learnRate);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

21 Deep Learning Code Generation

21-290



Test Fine-Tuned Network

Calculate the classification accuracy of the fine-tuned network using the test data and the
modelPredictions function, listed in the Model Predictions Function on page 21-294 section of the
example.

YTest = modelPredictions(netFineTuned,mbqTest,classNames);
accFineTuned = mean(YTest == TTest)

accFineTuned = 0.9081

Compare the accuracy and the number of learnables of each network in a bar chart. To calculate the
number of learnables of each network, use the numLearnables function, listed in the Number of
Learnables Function on page 21-293 section of the example.

figure
tiledlayout("flow")
nexttile
bar([accOriginal accProjected accFineTuned])
xticklabels(["Original" "Projected" "Fine-Tuned Projected"])
title("Accuracy")
ylabel("Accuracy")

nexttile
bar([numLearnables(netOriginal) numLearnables(netProjected) numLearnables(netFineTuned)])
xticklabels(["Original" "Projected" "Fine-Tuned Projected"])
ylabel("Number of Learnables")
title("Number of Learnables")

 Compress Neural Network Using Projection

21-291



The projected network has significantly fewer learnable parameters at the cost of classification
accuracy. The fine-tuned projected network yields similar classification accuracy to the original
network.

Supporting Functions

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the sequence data from the input cell array and truncating them along the second
dimension so that they have the same length.

Note: Do not pad sequence data when doing the PCA step for projection as this can negatively impact
the analysis. Instead, truncate mini-batches of data to have the same length or use mini-batches of
size 1.

function X = preprocessMiniBatchPredictors(dataX)

X = padsequences(dataX,2,Length="shortest");

end

21 Deep Learning Code Generation

21-292



Preprocess Mini-Batch Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the sequences using the preprocessMiniBatchPredictors function.
2 Extract the label data and concatenate into a categorical array along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

X = preprocessMiniBatchPredictors(dataX);

dataT = cat(2,dataT{:});
T = onehotencode(dataT,1);

end

Number of Learnables Function

The numLearnables function returns the total number of learnables in a network.

function N = numLearnables(net)

N = 0;
for i = 1:size(net.Learnables,1)
    N = N + numel(net.Learnables.Value{i});
end

end

Parameter Memory Function

The parameterMemory function returns the size in bytes of the learnable parameters of a network,
where the learnable parameters are in single precision (4 bytes per learnable).

function numBytes = parameterMemory(net)

numBytes = 4*numLearnables(net);

end

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding targets T and returns the loss and the gradients of the loss with respect to the
learnable parameters in net.

function [loss,gradients] = modelLoss(net,X,T)

Y = forward(net,X);

loss = crossentropy(Y,T);

gradients = dlgradient(loss,net.Learnables);

end

 Compress Neural Network Using Projection

21-293



Model Predictions Function

The modelPredictions function takes a dlnetwork object net, a minibatchqueue of input data
mbq, and the network classes, and computes the model predictions by iterating over all data in the
minibatchqueue object. The function uses the onehotdecode function to find the predicted class
with the highest score.

function Y = modelPredictions(net,mbq,classNames)

Y = [];
reset(mbq)

while hasdata(mbq)
    X = next(mbq);

    scores = predict(net,X);

    labels = onehotdecode(scores,classNames,1)';

    Y = [Y; labels];
end

end

Bibliography

1 M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-
Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

2 UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

21 Deep Learning Code Generation

21-294

https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels
https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels


Prerequisites for Deep Learning with TensorFlow Lite Models

MathWorks Products
To perform inference with TensorFlow Lite models in MATLAB execution, or by using MATLAB
Function blocks in Simulink models, you must install:

• Deep Learning Toolbox
• Deep Learning Toolbox Interface for TensorFlow Lite

In addition, to generate code for TensorFlow Lite models, you must also install MATLAB Coder.

Third-Party Hardware and Software
Deployment Platform MATLAB host computer or ARM processor
Software Libraries TensorFlow Lite version 2.8.0 on host computer or target. For

information on building the library, see this post in MATLAB
Answers™: https://www.mathworks.com/matlabcentral/answers/
1631265.

Supported models include:

• Classification and object detection networks
• Recurrent neural networks
• Multi-output networks

Models with these input and output data types are supported: fp32,
uint8, int8.

Multi-input networks are not supported.

TensorFlow Lite models are forward and backward compatible. So,
if your model was created using a different version of the library but
contains layers that are available in version 2.8.0, you can still
generate code and deploy your model.

Operating System Support Windows and Linux only. CentOS and Red Hat® Linux distributions
are not supported.

 Prerequisites for Deep Learning with TensorFlow Lite Models

21-295

https://www.mathworks.com/matlabcentral/fileexchange/106215-deep-learning-toolbox-interface-for-tensorflow-lite
https://www.mathworks.com/matlabcentral/answers/1631265
https://www.mathworks.com/matlabcentral/answers/1631265


Supported Compilers MATLAB Coder locates and uses a supported installed compiler.

For generating MEX on Windows platform, use one of these
compilers:

• Microsoft Visual C++® 2017
• Microsoft Visual C++ 2019
• Microsoft Visual C++ 2022
• Intel oneAPI 2021 for C++ with Microsoft Visual Studio® 2017
• Intel oneAPI 2021 for C++ with Microsoft Visual Studio 2019

For the list of supported compilers on Linux platform, see
Supported and Compatible Compilers on the MathWorks website.

You can use mex -setup to change the default compiler. See
“Change Default Compiler”.

The C++ compiler must support C++11.

Environment Variables
MATLAB Coder uses environment variables to locate the libraries required to generate code for deep
learning networks.

For deployment on the MATLAB host computer set these environment variables on the host:

• TFLITE_PATH: Location of the TensorFlow Lite library directory.
• LD_LIBRARY_PATH: Location of the run-time shared library. For example, TFLITE_PATH/lib/

tensorflow/lite. (For Linux platform.)
• PATH: Location of the run-time shared library. For example, TFLITE_PATH\lib\tensorflow

\lite. (For Windows platform.)

For deployment on ARM processor, set these environment variables on the target hardware board:

• TFLITE_PATH: Location of the TensorFlow Lite library directory.
• LD_LIBRARY_PATH: Location of the run-time shared library. For example, TFLITE_PATH/lib/

tensorflow/lite.
• TFLITE_MODEL_PATH: :Location of the TensorFlow Lite model that you intend to deploy.

See Also
loadTFLiteModel | predict | TFLiteModel

Related Examples
• “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi” on page 21-

298
• “Deploy Classification Application Using Mobilenet-V3 TensorFlow Lite Model on Host and

Raspberry Pi” on page 21-324
• “Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite) Model on Host and

Raspberry Pi” on page 21-307

21 Deep Learning Code Generation

21-296

https://www.mathworks.com/support/requirements/supported-compilers.html


• “Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and
Raspberry Pi” on page 21-302

External Websites
• https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-

simulink-1657531069125.html

 Prerequisites for Deep Learning with TensorFlow Lite Models

21-297

https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html
https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html


Generate Code for TensorFlow Lite (TFLite) Model and Deploy
on Raspberry Pi

This example shows how to generate code that performs inference by using a Tensorflow™ Lite model
and deploy the code on Raspberry Pi™ hardware. This example uses a pretrained TensorFlow Lite
model for the image classification network Mobilenet-V1 that is available on the TensorFlow webpage
for Hosted models. In example, you use the codegen (MATLAB Coder) command to generate a PIL
MEX function that runs the generated executable on the target hardware. This workflow can be used
for both int8 and float TensorFlow Lite models.

This example is supported for host Windows® and Linux® platforms.

Third-Party Prerequisites

• Raspberry Pi hardware
• TensorFlow Lite library (on the target ARM® hardware)
• Pretrained TensorFlow Lite Model

Download Model

Run this script to download the image classification network Mobilenet-V1 from the URL mentioned
below.

if ~exist("model.tgz","file")
    disp('Downloading 5 MB Mobilenet-V1 model file...');
    url = "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_0.5_224.tgz";
    websave("model.tgz",url);
    untar("model.tgz");
end

The tflite_predict Entry-Point Function

The loadTFLiteModel function loads the Mobilenet-V1 model into a TFLiteModel object. The
properties of this object contain information about the model such as the number and size of inputs
and outputs of the model.

net = loadTFLiteModel('mobilenet_v1_0.5_224.tflite');
disp(net);

  TFLiteModel with properties:

            ModelName: 'mobilenet_v1_0.5_224.tflite'
            NumInputs: 1
           NumOutputs: 1
            InputSize: {[224 224 3]}
           OutputSize: {[1001 1]}
           NumThreads: 8
                 Mean: 127.5000
    StandardDeviation: 127.5000

In this example, you generate code for the entry-point function tflite_predict.m. This function
loads the Mobilenet-V1 model into a persistent network object by using the loadTFLiteModel
function. To optimize performance, after creating the network object, set the NumThreads property
based on the number of threads available on your hardware board.

21 Deep Learning Code Generation

21-298

https://www.tensorflow.org/lite/guide/hosted_models


The tflite_predict function performs prediction by passing the network object to the predict
function. Subsequent calls to this function reuse this persistent object.

type tflite_predict.m

function out = tflite_predict(in)
persistent net;
if isempty(net)
    net = loadTFLiteModel('mobilenet_v1_0.5_224.tflite');
    % To optimize performance, set NumThreads property based on the number 
    % of threads available on the hardware board
    net.NumThreads = 4;
end
out = net.predict(in);
end

On the Raspberry Pi hardware, set the environment variable TFLITE_PATH to the location of the
TensorFlow Lite library. For more information on how to build the TensorFlow Lite library and set the
environment variables, see “Prerequisites for Deep Learning with TensorFlow Lite Models” on page
21-295.

Generate PIL MEX Function

Create Code Configuration Object

To generate a PIL MEX function for a specified entry-point function, create a code configuration
object for a static library and set the verification mode to 'PIL'. Set the target language to C++.

cfg = coder.config('lib', 'ecoder', true);
cfg.TargetLang = 'C++';
cfg.VerificationMode = 'PIL';

Set Up Connection with Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Hardware function raspi to create a connection
to the Raspberry Pi.

In the following code, replace:

• raspiname with the name of your Raspberry Pi board
• username with your user name
• password with your password

r = raspi('raspiname','username','password');

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Copy TensorFlow Lite model to Target Hardware

Copy the TensorFlow Lite model to the Raspberry Pi board. On the hardware board, set the
environment variable TFLITE_MODEL_PATH to the the location of the TensorFlow Lite model. For

 Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi

21-299



more information on setting environment variables, see “Prerequisites for Deep Learning with
TensorFlow Lite Models” on page 21-295.

In the following command, replace targetDir with the destination folder of TensorFlow Lite model
on the Raspberry Pi board.

r.putFile('mobilenet_v1_0.5_224.tflite',targetDir)

Generate PIL MEX

On the host platform, run the codegen command to generate a PIL MEX function
tflite_predict_pil.

codegen -config cfg tflite_predict -args ones(224,224,3,'single')

Run Generated PIL MEX

Read the input image by using imread. Resize the input to reqired input size of the network.

I = imread('peppers.png');
I1 = single(imresize(I,[224,224]));

Run the generated PIL MEX by passing the resized input.

predictionScores = tflite_predict_pil(I1);

Map the prediction scores onto the image.

DisplayPredsonImage(predictionScores, I);

See Also
loadTFLiteModel | predict | TFLiteModel | codegen

Related Examples
• “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295

21 Deep Learning Code Generation

21-300



External Websites
• https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-

simulink-1657531069125.html

 Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi

21-301

https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html
https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html


Deploy Super Resolution Application That Uses TensorFlow Lite
(TFLite) Model on Host and Raspberry Pi

This example shows simulation and code generation for a super resolution application by using a
Tensorflow Lite model. The task of recovering a high resolution (HR) image from its low resolution
counterpart is commonly referred to as Single Image Super Resolution (SISR). In this example, you
use TFLite to run inference on a pretrained ESRGAN (ESRGAN: Enhanced Super-Resolution
Generative Adversarial Networks) model.

The TFLite model used in this example upsamples a 50x50 low resolution image to a 200x200 high
resolution image (scale factor=4).

This example is supported for host Windows® and Linux® platforms.

Download Model

This example uses TFLite to run inference on a pretrained ESRGAN model.

Run these commands to download the ESRGAN network from the URL mentioned below.

if ~exist("esrgan-tf2.tflite","file")
    disp('Downloading 5 MB ESRGAN model file...');
    url = "https://tfhub.dev/captain-pool/lite-model/esrgan-tf2/1?lite-format=tflite";
    websave("esrgan-tf2.tflite",url);
end

You can use any other super resolution model test this workflow by following the steps mentioned
below. If you have only a TensorFlow model for your network, use these steps to convert the
TensorFlow model to a TFLite model.

Download Image

Run these commands to download the image from the URL mentioned below.

if ~exist("inputsuperresolution","file")
    disp('Downloading input file...');
    url = "https://raw.githubusercontent.com/tensorflow/examples/master/lite/examples/super_resolution/android/app/src/main/assets/lr-1.jpg";
    websave("inputsuperresolution.jpg",url);
end

Downloading input file...

Read the input image and display it.

I = imread('inputsuperresolution.jpg');
imshow(I);
title('Original Image');

21 Deep Learning Code Generation

21-302

https://www.tensorflow.org/lite/models/convert/convert_models#python_api


The super_resolution_predict Entry-Point Function

In this example, you generate code for the entry-point function super_resolution_predict.m.
This function loads the ESRGAN model into a persistent network object by using the
loadTFLiteModel function. Then the function performs prediction by passing the network object to
the predict function. Subsequent calls to this function reuse this persistent object.

type super_resolution_predict.m

function out = super_resolution_predict(in)

persistent net;

if isempty(net)
    net = loadTFLiteModel('esrgan-tf2.tflite');
    net.Mean = 0;
    net.StandardDeviation = 1;
    % Set number of threads based on max number of threads in host / hardware
    % net.NumThreads = 4;
end
out = net.predict(in);

%% Post processing Output

% Cast output to uint8
out = uint8(out);

end

The loadTFLiteModel function creates a TFLiteModel object. The properties of this object contain
information about the model such as the number and size of inputs and outputs of the model.

net = loadTFLiteModel('esrgan-tf2.tflite');
% Display Input Size
disp(net.InputSize);

    {[50 50 3]}

% Display Output Size
disp(net.OutputSize); 

    {[200 200 3]}

Resize Image Based on TFLite Model Input Shape

Use imresize to resize the input image based on TFLite model input shape.

 Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and Raspberry Pi

21-303



I = imresize(I,net.InputSize{1}(1:2));

To perform inference by using the loaded TFLite model, use any of the following workflows.

Workflow 1: Perform Super Resolution by Using Simulation on Host

Run the simulation by passing the input image I to the entry-point function.

predictionScores = super_resolution_predict(I);

  TFLiteModel with properties:

            ModelName: 'esrgan-tf2.tflite'
            NumInputs: 1
           NumOutputs: 1
            InputSize: {[50 50 3]}
           OutputSize: {[200 200 3]}
           InputScale: 1
       InputZeroPoint: 0
          OutputScale: 1
      OutputZeroPoint: 0
            InputType: {["FP32"]}
           OutputType: {["FP32"]}
           NumThreads: 6
                 Mean: 0
    StandardDeviation: 1

Workflow 2: Perform Super Resolution by Running Generated MEX on Host

Additional Prerequisites

• MATLAB® Coder™

This example uses the codegen (MATLAB Coder) command to generate a MEX function that runs on
the host platform.

Generate MEX Function

To generate a MEX function for a specified entry-point function, create a code configuration object for
a MEX. Set the target language to C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Run the codegen command to generate the MEX function super_resolution_predict_mex on
the host platform.

codegen -config cfg super_resolution_predict -args ones(50,50,3,'uint8')

Run Generated MEX

Run the generated MEX by passing the input image I.

predictionScores = super_resolution_predict_mex(I);

21 Deep Learning Code Generation

21-304



Workflow 3: Generate Code for Super Resolution Application, Deploy and Run on Raspberry
Pi

Additional Prerequisites

• MATLAB® Coder™
• Embedded® Coder™
• MATLAB Support Package for Raspberry Pi Hardware. To install this support package, use the

Add-On Explorer.

Third-Party Prerequisites

• Raspberry Pi hardware
• TFLite library (on the target ARM® hardware)

On the Raspberry Pi hardware, set the environment variable TFLITE_PATH to the location of the
TFLite library. For more information on how to build the TFLite library and set the environment
variables, see “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295.

Set Up Connection with Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Hardware function raspi to create a connection
to the Raspberry Pi.

In the following code, replace:

• raspiname with the name of your Raspberry Pi board
• username with your user name
• password with your password

r = raspi('raspiname','username','password');

Copy TFLite model to Target Hardware

Copy the TFLite model to the Raspberry Pi board. On the hardware board, set the environment
variable TFLITE_MODEL_PATH to the the location of the TFLite model. For more information on
setting environment variables, see “Prerequisites for Deep Learning with TensorFlow Lite Models” on
page 21-295.

In the following commands, replace:

• targetDir with the destination folder of TFLite model on the Raspberry Pi board.

r.putFile('esrgan-tf2.tflite',targetDir)

Generate PIL MEX Function

To generate a PIL MEX function for a specified entry-point function, create a code configuration
object for a static library and set the verification mode to 'PIL'. Set the target language to C++.

cfg = coder.config('lib','ecoder',true);
cfg.TargetLang = 'C++';
cfg.VerificationMode = 'PIL';

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

 Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and Raspberry Pi

21-305



hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

On the host platform, run the codegen command to generate a PIL MEX function
super_resolution_predict_pil.

codegen -config cfg super_resolution_predict -args ones(50,50,3,'uint8')

Run Generated PIL MEX

Run the generated PIL executable by passing the input image I.

predictionScores = super_resolution_predict_pil(I);

Display the Super Resolution Image

subplot(1,2,1);
imshow(I);
title('Image');
subplot(1,2,2); 
imshow(predictionScores);
title('HR Image');

See Also
loadTFLiteModel | predict | TFLiteModel | codegen

Related Examples
• “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295
• “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi” on page 21-

298

External Websites
• https://www.tensorflow.org/lite/models/convert/convert_models#python_api
• https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-

simulink-1657531069125.html

21 Deep Learning Code Generation

21-306

https://www.tensorflow.org/lite/models/convert/convert_models#python_api
https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html
https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html


Deploy Pose Estimation Application Using TensorFlow Lite
Model (TFLite) Model on Host and Raspberry Pi

This example shows simulation and code generation of a TensorFlow Lite model for 2D human pose
estimation.

Human pose estimation is the task of predicting the pose of a human subject in an image or a video
frame by estimating the spatial locations of joints such as elbows, knees, or wrists (keypoints). This
example uses the MoveNet TensorFlow Lite pose estimation model from TensorFlow hub.

The pose estimation models takes a processed camera image as the input and outputs information
about keypoints. The keypoints detected are indexed by a part ID, with a confidence score between
0.0 and 1.0. The confidence score indicates the probability that a keypoint exists in that position. This
example can be used to estimate 17 keypoints.

Third-Party Prerequisites

• Raspberry Pi hardware
• TFLite library on the target ARM® hardware
• Environment variables on the target for the compilers and libraries. For more information on how

to build the TFLite library and set the environment variables, see “Prerequisites for Deep
Learning with TensorFlow Lite Models” on page 21-295.

Download Model

This example uses MoveNet; a state-of-the-art pose estimation model. Download the model file from
the TFLite website. The model file is approximately 9.4 MB in size.

if ~exist("Movenet.tflite","file")
    disp('Downloading MoveNet lightning model file...');
    url = "https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/" + ...
        "3?lite-format=tflite";
    websave("Movenet.tflite",url);
end

Downloading MoveNet lightning model file...

To load the TensorFlow Lite model, use the loadTFLiteModel function. The properties of the
TFLiteModel object contains information such as the size and number of inputs and outputs in the
model. For more information, see loadTFLiteModel and TFLiteModel.

net = loadTFLiteModel('Movenet.tflite');

Inspect the TFLiteModel object.

disp(net)

  TFLiteModel with properties:

            ModelName: 'Movenet.tflite'
            NumInputs: 1
           NumOutputs: 1
            InputSize: {[192 192 3]}
           OutputSize: {[1 17 3]}

 Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite) Model on Host and Raspberry Pi

21-307



           InputScale: 1
       InputZeroPoint: 0
          OutputScale: 1
      OutputZeroPoint: 0
            InputType: {["SINGLE"]}
           OutputType: {["SINGLE"]}
           NumThreads: 6
                 Mean: 127.5000
    StandardDeviation: 127.5000

The input to the model is a frame of video or an image of size 192-by-192-by-3. The output is of size 1-
by-17-by-3. The first two channels of the last dimension is the yx coordinates of the 17 keypoints. The
third channel of the last dimension represents the accuracy of the prediction for each keypoint.

Load Keypoints data

Use importdata to load keypoints data. A keypoints data encapsulates the keypoints of human body.

labelsFile = importdata('keypoints.txt');

Display the keypoints.

disp(labelsFile)

    {'nose'          }
    {'left_eye'      }
    {'right_eye'     }
    {'left_ear'      }
    {'right_ear'     }
    {'left_shoulder' }
    {'right_shoulder'}
    {'left_elbow'    }
    {'right_elbow'   }
    {'left_wrist'    }
    {'right_wrist'   }
    {'left_hip'      }
    {'right_hip'     }
    {'left_knee'     }
    {'right_knee'    }
    {'left_ankle'    }
    {'right_ankle'   }

Display the test image

Read image on which pose estimation has to be done.

I = imread('poseEstimationTestImage.png');
I1 = imresize(I,[192 192]);
% Pose estimation will be displayed on High Resolution Image
I2 = imresize(I,[450 450]);
imshow(I2);
axis on;
hold on;

21 Deep Learning Code Generation

21-308



The tflite_pose_estimation_predict Entry-Point Function

The tflite_pose_estimation_predict entry-point function loads the MoveNet model into a
persistent TFLiteModel object by using the loadTFLiteModel function.

type tflite_pose_estimation_predict.m

function out = tflite_pose_estimation_predict(in)

%   Copyright 2022-2023 The MathWorks, Inc.

persistent net;
if isempty(net)
    net = loadTFLiteModel('Movenet.tflite');
    % Set Number of Threads based on number of threads in hardware
    % net.NumThreads = 4;
end

net.Mean = 0;
net.StandardDeviation = 1;

 Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite) Model on Host and Raspberry Pi

21-309



out = net.predict(in);
end

Run MATLAB Simulation on Host

Run the simulation by passing the input image I1 to the entry-point function. This output is further
processed in post processing block.

output = tflite_pose_estimation_predict(I1);

Plot the Keypoints of the Image

Set threshold Value while drawing lines to connect keypoints.

threshold = 0.29;

Get the X and Y coordinates of the keypoints. In output, First channel represents Y coordinates,
Second channel represents X coordinates, Third channel represents accuracy of the keypoints.

[KeyPointXi,KeyPointYi,KeyPointAccuracy] = getKeyPointValues(net,output, ...
    size(I2));

Plot the keypoints which are more than threshold value. Calling PlotKeyPoints without the
threshold argument will plot all the keypoints of the image.

PlotKeyPointsImage(net,KeyPointXi,KeyPointYi,KeyPointAccuracy,threshold);

Connect keypoints of the Image. Calling ConnectKeyPoints without the threshold argument will
connect all keypoints

ConnectKeyPointsImage(KeyPointXi,KeyPointYi,KeyPointAccuracy,threshold);

21 Deep Learning Code Generation

21-310



Generate MEX Function for Pose Estimation

To generate a MEX function for a specified entry-point function, create a code configuration object for
a MEX. Set the target language to C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Run the codegen command to generate the MEX function
tflite_pose_estimation_predict_mex on the host platform.

codegen -config cfg tflite_pose_estimation_predict -args ones(192,192,3,'single')

Code generation successful.

Run Generated MEX

Run the generated MEX by passing the input image I1. This output is further processed in post
processing block.

 Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite) Model on Host and Raspberry Pi

21-311



output = tflite_pose_estimation_predict_mex(single(I1));

Plot the Keypoints of the Image
threshold = 0.29;
[KeyPointXi,KeyPointYi,KeyPointAccuracy] = getKeyPointValues(net,output, ...
    size(I2));
PlotKeyPointsImage(net,KeyPointXi,KeyPointYi,KeyPointAccuracy,threshold);
ConnectKeyPointsImage(KeyPointXi,KeyPointYi,KeyPointAccuracy,threshold);

Deploy Pose Estimation Application to Raspberry Pi

Set Up Connection with Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Hardware function raspi to create a connection
to the Raspberry Pi.

The raspi function reuses these settings from the most recent successful connection to the
Raspberry Pi hardware. This example establishes an SSH connection to the Raspberry Pi hardware
using the settings stored in memory.

21 Deep Learning Code Generation

21-312



r = raspi;

If this is the first time connecting to a Raspberry Pi board or if you want to connect to a different
board, use the following line of code:

r = raspi('raspiname','username','password');

Replace raspiname with the name of your Raspberry Pi board, username with your user name, and
password with your password

Copy TFLite Model to Target Hardware

Copy TFLite Model to the Raspberry Pi board. On the hardware board, set the environment variable
TFLITE_MODEL_PATH to the location of the TFLite model. For more information on setting
environment variables, see “Prerequisites for Deep Learning with TensorFlow Lite Models” on page
21-295.

In the following commands, replace targetDir with the destination folder of TFLite model on the
Raspberry Pi board.

r.putFile('Movenet.tflite','/home/pi');

Generate PIL MEX Function

To generate a PIL MEX function for a specified entry-point function, create a code configuration
object for a static library and set the verification mode to 'PIL'. Set the target language to C++.

cfg = coder.config('lib','ecoder',true);
cfg.TargetLang = 'C++';
cfg.VerificationMode = 'PIL';

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Run the codegen command to generate a PIL MEX function
tflite_pose_estimation_predict_pil.

codegen -config cfg tflite_pose_estimation_predict -args ones(192,192,3,'single')

### Connectivity configuration for function 'tflite_pose_estimation_predict': 'Raspberry Pi'
Location of the generated elf : /home/pi/MATLAB_ws/R2023a/home/lnarasim/Documents/MATLAB/ExampleManager/lnarasim.BR2023ad.j2182215/deeplearning_shared-ex29026693/codegen/lib/tflite_pose_estimation_predict/pil
Code generation successful.

Run Generated PIL

Run the generated MEX by passing the input image I1. This output is further processed in post
processing block.

output = tflite_pose_estimation_predict_pil(single(I1));

### Starting application: 'codegen/lib/tflite_pose_estimation_predict/pil/tflite_pose_estimation_predict.elf'
    To terminate execution: clear tflite_pose_estimation_predict_pil
### Launching application tflite_pose_estimation_predict.elf...

 Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite) Model on Host and Raspberry Pi

21-313



Plot the Keypoints of the Image

threshold = 0.29;
[KeyPointXi,KeyPointYi,KeyPointAccuracy] = getKeyPointValues(net,output, ...
    size(I2));
PlotKeyPointsImage(net,KeyPointXi,KeyPointYi,KeyPointAccuracy,threshold);
ConnectKeyPointsImage(KeyPointXi,KeyPointYi,KeyPointAccuracy,threshold);

See Also
loadTFLiteModel | predict | TFLiteModel | codegen

Related Examples
• “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295
• “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi” on page 21-

298

21 Deep Learning Code Generation

21-314



External Websites
• https://www.tensorflow.org/lite/models/convert/convert_models#python_api
• https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-

simulink-1657531069125.html

 Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite) Model on Host and Raspberry Pi

21-315

https://www.tensorflow.org/lite/models/convert/convert_models#python_api
https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html
https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html


Deploy Semantic Segmentation Application Using TensorFlow
Lite Model on Host and Raspberry Pi

This example shows how to simulate and generate code for an image segmentation application that
uses a Tensorflow Lite(TFLite) model. This example uses DeepLab V3 TensorFlow Lite model from the
TensorFlow hub. This model can segment each pixel of the input image into 21 classes, such as
background, dog, and plant.

Third-Party Prerequisites

• Raspberry Pi hardware
• TFLite library on the target ARM® hardware

Download Model

This example uses TFLites to run inference on a pretrained DeepLab V3 model.

Run these commands to download the DeepLab V3 model.The model file is approximately 2.7 MB in
size.

if ~exist("deeplabv3.tflite","file")
    disp('Downloading Deeplabv3 model file...');
    url = "https://tfhub.dev/tensorflow/lite-model/deeplabv3/1/metadata/2?lite-format=tflite";
    websave("deeplabv3.tflite",url);
end

The Entry-Point Function

The tflite_semantic_predict entry-point function loads the DeepLab V3 model into a persistent
network object using the loadTFLiteModel function. Then, the function performs prediction by
passing the network object to the predict function.

type tflite_semantic_predict.m

function output = tflite_semantic_predict(in)

    persistent net;
    if isempty(net)
        net = loadTFLiteModel('deeplabv3.tflite');
    end
    output= net.predict(in);
end

The loadTFLiteModel function creates a TFLiteModel object. TFLiteModel object has properties
that contain information about the model, such as the number and size of inputs and outputs of the
model. For more information on loadTFLiteModel and loadTFLiteModel.

net = loadTFLiteModel('deeplabv3.tflite');
disp(net);

  TFLiteModel with properties:

            ModelName: 'deeplabv3.tflite'
            NumInputs: 1
           NumOutputs: 1

21 Deep Learning Code Generation

21-316



            InputSize: {[257 257 3]}
           OutputSize: {[257 257 21]}
           InputScale: 1
       InputZeroPoint: 0
          OutputScale: 1
      OutputZeroPoint: 0
            InputType: {["FP32"]}
           OutputType: {["FP32"]}
           NumThreads: 6
                 Mean: 127.5000
    StandardDeviation: 127.5000

Read Labels Map 

Read the labels file associated with TFLite Model.

labelsFile = importdata('labelmap_segmentation.txt');

Perform Semantic Segmentation by Using Simulation on Host

Load an input image and call tflite_semantic_predict on the input image.

I = imread("testMultilabelImage2.png");
I1 = imresize(I,[257 257]);
I2 = imresize(I,[1024,1280]);
imshow(I2);

 Deploy Semantic Segmentation Application Using TensorFlow Lite Model on Host and Raspberry Pi

21-317



output = tflite_semantic_predict(I1);

  TFLiteModel with properties:

            ModelName: 'deeplabv3.tflite'
            NumInputs: 1
           NumOutputs: 1
            InputSize: {[257 257 3]}
           OutputSize: {[257 257 21]}
           InputScale: 1
       InputZeroPoint: 0
          OutputScale: 1
      OutputZeroPoint: 0
            InputType: {["FP32"]}
           OutputType: {["FP32"]}
           NumThreads: 6
                 Mean: 127.5000
    StandardDeviation: 127.5000

21 Deep Learning Code Generation

21-318



Generate MEX for the tflite_semantic_predict Function

Use the codegen (MATLAB Coder) command to generate a MEX function that runs on the host
platform.

Create a code configuration object for a MEX function and set the target language to C++. To
generate MEX, use the codegen command and specify the input size as [257,257,3]. This value
corresponds to the input layer size of the network.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
codegen -config cfg tflite_semantic_predict -args ones(257,257,3,'single')

Code generation successful.

Call tflite_semantic_predict_mex on the input image I1.

output = tflite_semantic_predict_mex(single(I1));

Generate, Deploy and Run Code on Raspberry Pi

On the Raspberry Pi hardware, set the environment variable TFLITE_PATH to the location of the
TFLite library. For more information on how to build the TFLite library and set the environment
variables, see “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295.

Set Up Connection with Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Hardware function raspi to create a connection
to the Raspberry Pi.

In the following code, replace:

• raspiname with the name of your Raspberry Pi board
• username with your username
• password with your password

r = raspi('raspiname','username','password');

Copy TFLite model to Target Hardware

Copy the TFLite model to the Raspberry Pi board. On the hardware board, set the environment
variable TFLITE_MODEL_PATH to the the location of the TFLite model. For more information on
setting environment variables, see “Prerequisites for Deep Learning with TensorFlow Lite Models” on
page 21-295.

In this command, replace targetDir with the destination folder of TFLite model on the Raspberry Pi
board.

r.putFile('deeplabv3.tflite',targetDir);

Generate PIL MEX Function

To generate a PIL MEX function for a specified entry-point function, create a code configuration
object for a static library and set the verification mode to 'PIL'. Set the target language to C++.

 Deploy Semantic Segmentation Application Using TensorFlow Lite Model on Host and Raspberry Pi

21-319



cfg = coder.config('lib','ecoder',true);
cfg.TargetLang = 'C++';
cfg.VerificationMode = 'PIL';

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

In MATLAB, run the codegen command to generate a PIL MEX function called
tflite_semantic_predict_pil.

codegen -config cfg tflite_semantic_predict -args ones(257,257,3,'single')

Run Generated PIL

Run the generated PIL by passing the input image I1.

output = tflite_semantic_predict_pil(single(I1));

Display the Segmented Image

Each pixel has an associated class. Get the max indices from each channel.

[~, PredictionIndices] = max(output,[],3);

Get the class for each pixel.

classes = string(labelsFile);
ClassesForEachPixel = getClassesForEachPixel(net, PredictionIndices, classes);
disp(ClassesForEachPixel(23,45)); % Viewing classes for pixel height, width dimensions are 23,45

     background 

Display all the unique classes in the image.

UniqueClassesInImage = unique(ClassesForEachPixel);
disp(UniqueClassesInImage);

     background 
     potted plant 
     dog 

Display Overlayed Image

Overlay image with labeled pixels on top of the input image.

[cmapNormalized, ~, cmap] = getColorMap();

B = labeloverlay(I1,ClassesForEachPixel,'ColorMap',cmapNormalized);
imshow(imresize(B,[1024, 1280])); 
DrawPixelLabelColorbar(cmapNormalized,classes);

21 Deep Learning Code Generation

21-320



Display the input image and segmented image with a color bar.

SegmentedImage = getSegmentedImage(net, PredictionIndices, cmap);

figure(1);
subplot(2,2,1);
imshow(I2);
title('Original Image');
subplot(2,2,2); 
imshow(imresize(SegmentedImage,[1024,1280]));
title('Segmented Image');
subplot(2,2,[3,4]);
Ibar = imread('LabelColorBar.png');
imshow(Ibar);
title('Color bar');

 Deploy Semantic Segmentation Application Using TensorFlow Lite Model on Host and Raspberry Pi

21-321



References

[1] Chen, Liang-Chieh, George Papandreou, Florian Schroff, and Hartwig Adam. “Rethinking Atrous
Convolution for Semantic Image Segmentation.” arXiv, December 5, 2017. https://doi.org/10.48550/
arXiv.1706.05587

See Also
Functions
codegen | predict | loadTFLiteModel | TFLiteModel

Related Examples
• “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295
• “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi” on page 21-

298
• “Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and

Raspberry Pi” on page 21-302

21 Deep Learning Code Generation

21-322



External Websites
• https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-

simulink-1657531069125.html

 Deploy Semantic Segmentation Application Using TensorFlow Lite Model on Host and Raspberry Pi

21-323

https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html
https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html


Deploy Classification Application Using Mobilenet-V3
TensorFlow Lite Model on Host and Raspberry Pi

This example shows how to simulate and generate code for a classification application that performs
inference using a TensorFlow™ Lite model. This example uses a pretrained TensorFlow Lite model for
the image classification network Mobilenet-V3 that is available on the TensorFlow webpage for
Hosted models. This workflow can be used for both int8 and float TensorFlow Lite models.

This example also shows how to import data from Python®.

This example is supported for host Windows® and Linux® platforms.

Download Model

Run this script to download the image classification network Mobilenet-V3 from the URL mentioned
below.

if ~exist("mobilenetv3.tflite","file")
    disp('Downloading MobilenetV3 model file...');
    url = "https://tfhub.dev/google/lite-model/imagenet/mobilenet_v3_small_100_224/classification/5/metadata/1?lite-format=tflite";
    websave("mobilenetv3.tflite",url);
end

Downloading MobilenetV3 model file...

The tflite_classification_predict Entry-Point Function

The loadTFLiteModel function loads the Mobilenet-V3 model into a TFLiteModel object. The
properties of this object contain information about the model such as the number and size of inputs
and outputs of the model.

net = loadTFLiteModel('mobilenetv3.tflite');
disp(net.InputSize);

In this example, you generate code for the entry-point function
tflite_classification_predict.m. This function loads the Mobilenet-V3 model into a
persistent network object by using the loadTFLiteModel function.

To optimize performance, after creating the network object, set the NumThreads property based on
the number of threads available on your target hardware.

The tflite_classification_predict function performs prediction by passing the network
object to the predict function. Subsequent calls to this function reuse this persistent object.

type tflite_classification_predict.m

function out = tflite_classification_predict(in)
persistent net;
if isempty(net)
    net = loadTFLiteModel('mobilenetv3.tflite');
    % To optimize performance, set NumThreads property based on the number 
    % of threads available on the hardware board
    net.NumThreads = 4;

21 Deep Learning Code Generation

21-324

https://www.tensorflow.org/lite/guide/hosted_models


end
net.Mean = 0;
net.StandardDeviation = 255;
out = net.predict(in);
end

Read Labels Map 

Read the labels file associated with TFLite Model.

labelsFile = importdata('labels.txt');

Read and Preprocess Input Image

Read the image that you intend to classify.

I = imread('peppers.png');
imshow(I);

Alternatively, you can import the input data from Python. In the supporting files for this example, a
Python input image is saved as the pythoninputImage.mat file.

 Deploy Classification Application Using Mobilenet-V3 TensorFlow Lite Model on Host and Raspberry Pi

21-325



Python only supports TFlite models that are in the NHWC format (for non-RNN models), or in the
NTC and NC formats (for RNN models). By contrast, MATLAB accepts the format HWCN for non-
RNN models, and CNT and CN for RNN models. Here, N - Batch size, H - Height, W - Width, C -
Channels, T - Sequence length.

So, if you import the input from Python, you must convert it to the shape that MATLAB accepts.

Load input shape read by Python from the pythoninputImage.mat file. This input is stored in the
pythoninputformat variable.

load('pythoninputImage.mat'); % The input size is [1,224,224,3]

The python input has the shape NHWC and its size is [1 224 224 3]. Convert the input to the
shape HWCN that MATLAB accepts.

I1 = ConvertPythonTFLiteInput(net, pythoninputformatInput);

If the input image is not imported from python, reshape it based on the input shape of the TFLite
model.

I1 = imresize(I,[224 224]);

Workflow 1: Perform Classification by Using Simulation on Host

Run the simulation by passing the input image I1 to the entry-point function.

output = tflite_classification_predict(I1);

Workflow 2: Perform Classification by Running Generated MEX on Host

Additional Prerequisites

• MATLAB® Coder™

This example uses the codegen (MATLAB Coder) command to generate a MEX function that runs on
the host platform.

Generate MEX Function

To generate a MEX function for a specified entry-point function, create a code configuration object for
a MEX. Set the target language to C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Run the codegen command to generate the MEX function
tflite_classification_predict_mex on the host platform.

codegen -config cfg tflite_classification_predict -args ones(224,224,3,'single')

Run Generated MEX

Run the generated MEX by passing the input image I1.

output = tflite_classification_predict_mex(single(I1));

21 Deep Learning Code Generation

21-326



Workflow 3: Generate Code for Classification Application, Deploy and Run on Raspberry Pi

Additional Prerequisites

• MATLAB® Coder™
• Embedded® Coder™
• MATLAB Support Package for Raspberry Pi Hardware. To install this support package, use the

Add-On Explorer.

Third-Party Prerequisites

• Raspberry Pi hardware
• TFLite library (on the target ARM® hardware)

On the Raspberry Pi hardware, set the environment variable TFLITE_PATH to the location of the
TFLite library. For more information on how to build the TFLite library and set the environment
variables, see “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295.

Set Up Connection with Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Hardware function raspi to create a connection
to the Raspberry Pi.

In the following code, replace:

• raspiname with the name of your Raspberry Pi board
• username with your user name
• password with your password

r = raspi('raspiname','username','password');

Copy TFLite model to Target Hardware

Copy the TFLite model to the Raspberry Pi board. On the hardware board, set the environment
variable TFLITE_MODEL_PATH to the the location of the TFLite model. For more information on
setting environment variables, see “Prerequisites for Deep Learning with TensorFlow Lite Models” on
page 21-295.

In the following commands, replace targetDir with the destination folder of TFLite model on the
Raspberry Pi board.

r.putFile('mobilenetv3.tflite',targetDir)

Generate PIL MEX Function

To generate a PIL MEX function for a specified entry-point function, create a code configuration
object for a static library and set the verification mode to 'PIL'. Set the target language to C++.

cfg = coder.config('lib','ecoder',true);
cfg.TargetLang = 'C++';
cfg.VerificationMode = 'PIL';

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

 Deploy Classification Application Using Mobilenet-V3 TensorFlow Lite Model on Host and Raspberry Pi

21-327



hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

On the MATLAB, run the codegen command to generate a PIL MEX function
tflite_classification_predict_pil.

codegen -config cfg tflite_classification_predict -args ones(224,224,3,'single')

Run Generated PIL

Run the generated MEX by passing the input image I1.

output = tflite_classification_predict_pil(single(I1));

Get Top Five Labels 

[~, top5] = maxk(output,5);
disp(labelsFile(top5));

    {'bell pepper'     }
    {'cucumber'        }
    {'spaghetti squash'}
    {'grocery store'   }
    {'acorn squash'    }

Get Prediction Scores 

This network does not contain a softmax layer. So, run the softmax function to get the accuracy
values. If your network has a softmax layer, you can skip this step.

% If network does not have softmax
predictionScores = softmax(output);
% If network has softmax
% predictionScores = output;

Display Prediction Scores On Image.

DisplayPredictionsOnImage(predictionScores, I);

21 Deep Learning Code Generation

21-328



See Also
Functions
codegen | predict | loadTFLiteModel | TFLiteModel

Related Examples
• “Prerequisites for Deep Learning with TensorFlow Lite Models” on page 21-295
• “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi” on page 21-

298
• “Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and

Raspberry Pi” on page 21-302

External Websites
• https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-

simulink-1657531069125.html

 Deploy Classification Application Using Mobilenet-V3 TensorFlow Lite Model on Host and Raspberry Pi

21-329

https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html
https://www.mathworks.com/videos/run-tensorflow-lite-models-with-matlab-and-simulink-1657531069125.html


Compress Image Classification Network for Deployment to
Resource-Constrained Embedded Devices

This example shows how to reduce the memory footprint and computation requirements of an image
classification network for deployment on resource constrained embedded devices such as the
Raspberry Pi™.

In many applications where transfer learning is used to retrain an image classification network for a
new task or where a new network is trained from scratch, the optimal network architecture is not
known, and the network might be overparameterized. An overparameterized network has
redundancies. Network pruning is a powerful model compression tool that helps identify
redundancies that can be removed with little impact on the final network output. When you use
pruning in combination with network quantization, you can reduce the inference time and memory
footprint of the network making it easier to deploy to ARM® CPU platforms such as the Raspberry Pi.

This example shows how to:

• Use transfer learning to retrain SqueezeNet, a pretrained convolutional neural network to
classify a new set of images from the CIFAR-10 data set.

• Prune filters from the convolutional layers of the network by using first-order Taylor
approximation.

• Retrain the network after pruning to regain any loss in accuracy.
• Evaluate the impact of pruning on classification accuracy.
• Quantize the weights, biases, and activations of the convolution layers to 8-bit scaled integer data

type.
• Generate and deploy optimized C++ code to a Raspberry Pi.
• Evaluate the impact of quantization on the classification accuracy of the pruned network.

Third-Party Prerequisites

• Raspberry Pi hardware
• ARM Compute Library (on the target ARM hardware)
• Environment variables for the compilers and libraries. See “Prerequisites for Deep Learning with

MATLAB Coder” (MATLAB Coder).

Prepare Data

Download the CIFAR-10 data set [1]. The data set contains 60,000 images. Each image is 32-by-32
pixels in size and has three color channels (RGB). The size of the data set is 175 MB. Depending on
your internet connection, the download process can take time.

datadir = tempdir; 
downloadCIFARData(datadir);

Load the CIFAR-10 training and test images as 4-D arrays. The training set contains 50,000 images
and the test set contains 10,000 images. Use the CIFAR-10 test images for network validation.

[XTrain,TTrain,XValidation,TValidation] = loadCIFARData(datadir);

You can display a random sample of the training images using the following code.

21 Deep Learning Code Generation

21-330



figure;
idx = randperm(size(XTrain,4),20);
im = imtile(XTrain(:,:,:,idx),ThumbnailSize=[96,96]);
imshow(im)

Create an augmentedImageDatastore object to use for network training. During training, the
datastore randomly flips the training images along the vertical axis and randomly translates them up
to four pixels horizontally and vertically. Data augmentation helps prevent the network from
overfitting and memorizing the exact details of the training images.

imageSize = [32,32,3];
pixelRange = [-4,4];
imageAugmenter = imageDataAugmenter( ...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);
augimdsTrain = augmentedImageDatastore(imageSize,XTrain,TTrain, ...
    DataAugmentation=imageAugmenter,OutputSizeMode="randcrop");
augimdsValidation = augmentedImageDatastore(imageSize,XValidation, ...
    TValidation,DataAugmentation=imageAugmenter);
classes = categories(TTrain);

Retrain Network on CIFAR-10 Data Using Transfer Learning

SqueezeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The pretrained SqueezeNet
network is fine-tuned by using transfer learning. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch.

Retrain Network

Training the network on a good GPU takes considerable amount of time. If you do not have a GPU,
then training takes much longer. Training on a GPU or in parallel requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

To save time while running this example, load a pretrained network by setting doTraining to
false. To train the network yourself, set doTraining to true.

doTraining = false;
if doTraining

    net = squeezenet;  %#ok<UNRCH> 
    lgraph = layerGraph(net);
    larray = [imageInputLayer(imageSize,'Name','data')];
    lgraph = replaceLayer(lgraph,'data',larray);
    [learnableLayer,classLayer] = findLayersToReplace(lgraph);
    numClasses = 10;
    newFirstConvLayer = convolution2dLayer([3,3], 64,'WeightLearnRateFactor', ...
        10,'BiasLearnRateFactor',10,"Name",'new_firstconv');
    lgraph = replaceLayer(lgraph,'conv1',newFirstConvLayer);
    newConvLayer =  convolution2dLayer([1,1],numClasses, ...
        'WeightLearnRateFactor',10,'BiasLearnRateFactor',10,"Name",'new_conv');
    lgraph = replaceLayer(lgraph,'conv10',newConvLayer);
    newClassificatonLayer = classificationLayer('Name','new_classoutput');
    lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassificatonLayer);

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-331



    options = trainingOptions('adam', ...
        'MiniBatchSize',100, ...
        'MaxEpochs',15, ...
        'InitialLearnRate',2e-4/3, ...
        'Shuffle','every-epoch', ...
        'ValidationData',augimdsValidation, ...
        'ValidationFrequency',25, ...
        'ValidationPatience',5, ...
        'Verbose',false, ...
        'Plots','training-progress');

    transferNet = trainNetwork(augimdsTrain,lgraph,options);
else
    load('transferNet.mat','transferNet');
end

Save the trained network.

save('transferNet.mat','transferNet');

Evaluate Trained Network

Calculate the final accuracy of the network on the validation set (without data augmentation).

[YValPred,probs] = classify(transferNet,XValidation);
accuracyOfTrainedNet = mean(YValPred == TValidation) * 100;
disp("Validation accuracy of trained network: " + accuracyOfTrainedNet + "%")

Validation accuracy of trained network: 60.48%

Prune Network

Prune the network using the taylorPrunableNetwork function. The network computes an
importance score for each convolution filter in the network based on Taylor expansion [2][3]. Pruning
is iterative; each time the loop runs, until a stopping criterion is met, the function removes a small
number of the least important convolution filters and updates the network architecture.

Specify Pruning and Fine-Tuning Options

Set the pruning options.

• maxPruningIterations sets the maximum number of iterations to be used for pruning process.
• maxToPrune is set as the maximum number of filters to be pruned in each iteration of the pruning

cycle.

maxPruningIterations = 30;
maxToPrune = 32;

Set the fine-tuning options.

learnRate = 1e-2/3;
momentum = 0.9;
miniBatchSize = 256;
numMinibatchUpdates  = 50;
validationFrequency = 1;

21 Deep Learning Code Generation

21-332



Prune Network using Custom Pruning Loop

To implement a custom pruning loop, convert the network to a dlnetwork object.

layerG = layerGraph(transferNet);
layerG = removeLayers(layerG,layerG.OutputNames);
net = dlnetwork(layerG);

Print a summary of the dlnetwork object. The summary shows whether the network is initialized,
the total number of learnable parameters, and information about the network inputs.

summary(net)

   Initialized: true

   Number of learnables: 727.6k

   Inputs:
      1   'data'   32×32×3 images

Create a Taylor prunable network from the original network.

prunableNet = taylorPrunableNetwork(net);
maxPrunableFilters = prunableNet.NumPrunables;

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available.

mbqTrain = minibatchqueue(augimdsTrain, ...
    MiniBatchSize = miniBatchSize, ...
    MiniBatchFcn = @preprocessMiniBatchTraining, ...
    OutputAsDlarray = [1 1], ...
    OutputEnvironment = ["auto","auto"], ...
    PartialMiniBatch = "return", ...
    MiniBatchFormat = ["SSCB",""]);

mbqTest = minibatchqueue(augimdsValidation,...
    MiniBatchSize = miniBatchSize,...
    MiniBatchFcn = @preprocessMiniBatchTraining, ...
    OutputAsDlarray = [1 1], ...
    OutputEnvironment = ["auto","auto"], ...
    PartialMiniBatch = "return", ...
    MiniBatchFormat = ["SSCB",""]);

Initialize the training progress plots.

figure("Position",[10,10,700,700])
tl = tiledlayout(3,1);
lossAx = nexttile;

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-333



lineLossFinetune = animatedline(Color=[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Fine-Tuning Iteration")
ylabel("Loss")
grid on
title("Mini-Batch Loss During Pruning")
xTickPos = [];

accuracyAx = nexttile;
lineAccuracyPruning = animatedline(Color=[0.098 0.325 0.85],LineWidth=2,Marker="o");
ylim([0 100])
xlabel("Pruning Iteration")
ylabel("Accuracy")
grid on
addpoints(lineAccuracyPruning,0,accuracyOfTrainedNet)
title("Validation Accuracy After Pruning")

numPrunablesAx = nexttile;
lineNumPrunables = animatedline(Color=[0.4660 0.6740 0.1880],LineWidth=2,Marker="^");
ylim([200 3000])
xlabel("Pruning Iteration")
ylabel("Prunable Filters")
grid on
addpoints(lineNumPrunables,0,double(maxPrunableFilters))
title("Number of Prunable Convolution Filters After Pruning")

Prune the network by repeatedly fine-tuning the network and removing the low scoring filters.

For each pruning iteration. The following steps are used:

• Fine-tune network and accumulate Taylor scores for convolution filters for
numMinibatchUpdates

• Prune the network using the updatePrunables function to remove maxToPrune number of
convolution filters

• Compute validation accuracy

To fine tune the network, loop over the mini-batches of the training data. For each mini-batch in the
fine-tuning iteration the following steps are used:

• Evaluate the pruning loss, gradients of the pruning activations, pruning activations, model
gradients and the state using the dlfeval and modelLossPruning functions.

• Update the network state.
• Update the network parameters using the sgdmupdate function.
• Update the Taylor scores of the prunable network using the updateScore function.
• Display the training progress.

start = tic;
iteration = 0;

for pruningIteration = 1:maxPruningIterations

    shuffle(mbqTrain);
    velocity = [];

    % Loop over mini-batches.

21 Deep Learning Code Generation

21-334



    fineTuningIteration = 0;
    while hasdata(mbqTrain)
        iteration = iteration + 1;
        fineTuningIteration = fineTuningIteration + 1;

        [X, T] = next(mbqTrain);
        [loss,pruningActivations, pruningGradients, netGradients, state] = ...
            dlfeval(@modelLossPruning, prunableNet, X, T);
        prunableNet.State = state;
        [prunableNet, velocity] = sgdmupdate(prunableNet, netGradients, velocity, learnRate, momentum);
        prunableNet = updateScore(prunableNet, pruningActivations, pruningGradients);

        % Display the training progress.
        D = duration(0,0,toc(start),Format="hh:mm:ss");
        addpoints(lineLossFinetune, iteration, double(loss))
        title(tl,"Processing Pruning Iteration: " + pruningIteration + " of " + maxPruningIterations + ...
            ", Elapsed Time: " + string(D))
        % Synchronize the x-axis of the accuracy and numPrunables plots with the loss plot.
        xlim(accuracyAx,lossAx.XLim)
        xlim(numPrunablesAx,lossAx.XLim)
        drawnow

        % Stop the fine-tuning loop when numMinibatchUpdates is reached.
        if (fineTuningIteration > numMinibatchUpdates)
            break
        end
    end

    % Prune filters based on previously computed Taylor scores.
    prunableNet = updatePrunables(prunableNet, MaxToPrune = maxToPrune);

    % Show results on the validation data set in a subset of pruning iterations.
    isLastPruningIteration = pruningIteration == maxPruningIterations;
    if (mod(pruningIteration, validationFrequency) == 0 || isLastPruningIteration)
        accuracy = modelAccuracy(prunableNet, mbqTest, classes, augimdsValidation.NumObservations);
        addpoints(lineAccuracyPruning, iteration, accuracy)
        addpoints(lineNumPrunables,iteration,double(prunableNet.NumPrunables))
    end

    xTickPos = [xTickPos, iteration]; %#ok<AGROW>
    xticks(lossAx,xTickPos)
    xticks(accuracyAx,[0,xTickPos])
    xticks(numPrunablesAx,[0,xTickPos])
    xticklabels(accuracyAx,["Unpruned",string(1:pruningIteration)])
    xticklabels(numPrunablesAx,["Unpruned",string(1:pruningIteration)])
    drawnow

end

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-335



In contrast to typical training where the loss decreases with each iteration, pruning may increase the
loss and reduce the validation accuracy due to the change of network structure when convolution
filters are pruned. To further improve the accuracy of the network, you can retrain the network.

Once pruning is complete, convert the taylorPrunableNetwork back to a dlnetwork for
retraining.

prunedNet = dlnetwork(prunableNet);

21 Deep Learning Code Generation

21-336



Retrain Network After Pruning

Retrain the network after pruning to regain any loss in accuracy. To retrain the network using the
trainNetwork function,

• Extract the layerGraph from the dlnetwork.
• Add the removed classification layer from the original network to the layerGraph of the pruned

network.
• Train the layerGraph network.

prunedLayerGraph = layerGraph(prunedNet);
outputLayerName = string(transferNet.OutputNames{1});
outputLayerIdx = {transferNet.Layers.Name} == outputLayerName;
prunedLayerGraph = addLayers(prunedLayerGraph,transferNet.Layers(outputLayerIdx));
prunedLayerGraph = connectLayers(prunedLayerGraph,prunedNet.OutputNames{1},outputLayerName);

Set the options to the default settings for stochastic gradient descent with momentum. Set the
maximum number of retraining epochs at 10 and start the training with an initial learning rate of
0.01.

options = trainingOptions("adam", ...
    MaxEpochs = 10, ...
    MiniBatchSize = 100, ...
    InitialLearnRate = 2e-4/3, ...
    LearnRateSchedule = "piecewise", ...
    LearnRateDropFactor = 0.1, ...
    LearnRateDropPeriod = 2, ...
    L2Regularization = 0.02, ...
    ValidationData = augimdsValidation, ...
    ValidationPatience=5,...
    ValidationFrequency = 25, ...
    Verbose = false, ...
    Shuffle = "every-epoch", ...
    Plots = "training-progress");

Train the network.

prunedDAGNet = trainNetwork(augimdsTrain,prunedLayerGraph,options);

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-337



Save the pruned network.

save('prunedDAGNet.mat','prunedDAGNet');

Compare Original Network and Pruned Network

Determine the impact of pruning on each layer.

[originalNetFilters,layerNames] = numConvLayerFilters(transferNet);
prunedNetFilters = numConvLayerFilters(prunedDAGNet);

Visualize the number of filters in the original network and in the pruned network.

figure("Position",[10,10,900,900])
bar([originalNetFilters,prunedNetFilters])
xlabel("Layer")
ylabel("Number of Filters")
title("Number of Filters Per Layer")
xticks(1:(numel(layerNames)))
xticklabels(layerNames)
xtickangle(90)
ax = gca;
ax.TickLabelInterpreter = "none";
legend("Original Network Filters","Pruned Network Filters","Location","southoutside")

21 Deep Learning Code Generation

21-338



Large differences between the number of filters of the two networks indicate where many of the less
important filters have been pruned.

Next, compare the accuracy of the original network and the pruned network.

tic
YPredOriginal = classify(transferNet,XValidation);
toc

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-339



Elapsed time is 1.435466 seconds.

accuOriginal = mean(YPredOriginal == TValidation)

accuOriginal = 0.6048

tic
YPredPruned = classify(prunedDAGNet,XValidation);
toc

Elapsed time is 2.194408 seconds.

accuPruned = mean(YPredPruned == TValidation)

accuPruned = 0.7843

Pruning can unequally affect the classification of different classes and introduce bias into the model,
which might not be apparent from the accuracy value. To assess the impact of pruning at a class
level, use a confusion matrix chart.

figure
confusionchart(TValidation,YPredOriginal,Normalization = "row-normalized");
title("Original Network")

figure
confusionchart(TValidation,YPredPruned,Normalization = "row-normalized");
title("Pruned Network")

21 Deep Learning Code Generation

21-340



Next, estimate the model parameters for the original network and the pruned network to understand
the impact of pruning on the overall network learnables and size.

analyzeNetworkMetrics(transferNet,prunedDAGNet,accuOriginal,accuPruned)

ans=3×3 table
                         Network Learnables    Approx. Network Memory (MB)    Accuracy
                         __________________    ___________________________    ________

    Original Network         7.2763e+05                   2.7757               0.6048 
    Pruned Network           3.8997e+05                   1.4876               0.7843 
    Percentage Change           -46.406                  -46.406               29.679 

This table compares the size and classification accuracy of the original and the pruned network. A
decrease in network memory and improves accuracy values indicate a successful pruning operation.

Quantize the Pruned Network

To quantize the pruned network using the dlquantizer function, specify the network you want to
calibrate and the execution environment, and then calibrate with calibration data.

clear r
r = raspi;
quantOpts = dlquantizationOptions('Target',r);
quantObj = dlquantizer(prunedDAGNet,'ExecutionEnvironment','CPU'); 

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-341



Use the calibrate function to exercise the network with the calibration data and collect range
statistics for the weights, biases, and activations at each layer.

calResults = calibrate(quantObj,augimdsTrain,'UseGPU','off')

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

calResults=122×5 table
        Optimized Layer Name         Network Layer Name     Learnables / Activations    MinValue     MaxValue
    ____________________________    ____________________    ________________________    _________    ________

    {'new_firstconv_Weights'   }    {'new_firstconv'   }           "Weights"             -0.53081    0.50032 
    {'new_firstconv_Bias'      }    {'new_firstconv'   }           "Bias"                -0.13664     0.2061 
    {'fire2-squeeze1x1_Weights'}    {'fire2-squeeze1x1'}           "Weights"              -1.3348     1.1903 
    {'fire2-squeeze1x1_Bias'   }    {'fire2-squeeze1x1'}           "Bias"                -0.12888    0.25519 
    {'fire2-expand1x1_Weights' }    {'fire2-expand1x1' }           "Weights"             -0.71728    0.87709 
    {'fire2-expand1x1_Bias'    }    {'fire2-expand1x1' }           "Bias"               -0.065638    0.14888 
    {'fire2-expand3x3_Weights' }    {'fire2-expand3x3' }           "Weights"             -0.71899     0.6452 
    {'fire2-expand3x3_Bias'    }    {'fire2-expand3x3' }           "Bias"               -0.062058    0.08805 
    {'fire3-squeeze1x1_Weights'}    {'fire3-squeeze1x1'}           "Weights"             -0.72677    0.67948 
    {'fire3-squeeze1x1_Bias'   }    {'fire3-squeeze1x1'}           "Bias"                -0.11343    0.33745 
    {'fire3-expand1x1_Weights' }    {'fire3-expand1x1' }           "Weights"             -0.68734    0.93931 
    {'fire3-expand1x1_Bias'    }    {'fire3-expand1x1' }           "Bias"               -0.075568    0.31345 
    {'fire3-expand3x3_Weights' }    {'fire3-expand3x3' }           "Weights"              -0.5874    0.72577 
    {'fire3-expand3x3_Bias'    }    {'fire3-expand3x3' }           "Bias"               -0.066463    0.12058 
    {'fire4-squeeze1x1_Weights'}    {'fire4-squeeze1x1'}           "Weights"             -0.70607     1.0569 
    {'fire4-squeeze1x1_Bias'   }    {'fire4-squeeze1x1'}           "Bias"                -0.11843    0.14643 
      ⋮

Save the dlquantizer object containing the network to quantize.

save('squeezenetCalResults.mat','calResults');
save('squeezenetQuantObj.mat','quantObj');

We can use the Deep Network Quantizer app to further visualize the dynamic ranges of the calibrated
layers:

21 Deep Learning Code Generation

21-342



Use the validate function to compare the results of the network before and after quantization using
the validation data set. Examine the MetricResults.Result field of the validation output to see
the accuracy of the quantized network.

validationMetricsC = validate(quantObj,augimdsValidation,quantOpts);

### Starting application: 'codegen/lib/validate_predict_int8/pil/validate_predict_int8.elf'
    To terminate execution: clear validate_predict_int8_pil
### Launching application validate_predict_int8.elf...
### Host application produced the following standard output (stdout) and standard error (stderr) messages:

quantObj.ValidationMetrics.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}          0.765   
     {'Quantized'     }         0.7641   

Generate and Deploy INT8 C++ Code to Raspberry Pi

The predictResponses.m entry-point function takes an image input and runs prediction on the
image using the specified network. The function uses a persistent object mynet to load the network
object and reuses the persistent object for prediction on subsequent calls.

type predictResponses.m

function out = predictResponses(net,in)

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-343



persistent mynet;

if isempty(mynet)
    mynet = coder.loadDeepLearningNetwork(net);
end

out = predict(mynet, in);

end

To generate a PIL MEX function, create a code configuration object for a static library and set the
verification mode to 'PIL'. Set the target language to C++. Create a coder.Hardware object for
Raspberry Pi and attach it to the code generation configuration object.

cfg = coder.config('lib', 'ecoder', true);
cfg.VerificationMode = 'PIL';
cfg.TargetLang = 'C++';
cfg.Hardware = coder.hardware('Raspberry Pi');

Create a deep learning configuration object for the ARM Compute library. Specify the library version
and arm architecture. For this example, suppose that the ARM Compute Library in the Raspberry Pi
hardware is version 20.02.1.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '20.02.1';
dlcfg.ArmArchitecture = 'armv7';

Set the properties of dlcfg to generate code for INT8 inference.

dlcfg.CalibrationResultFile = 'squeezenetQuantObj.mat'; 
dlcfg.DataType = 'int8';
cfg.DeepLearningConfig = dlcfg;    
inputs = {coder.Constant('prunedDAGNet.mat'),ones(32,32,3,'uint8')};

Generate a PIL MEX function by using the codegen command.

codegen -config cfg predictResponses -args inputs

 Deploying code. This may take a few minutes. 
### Connectivity configuration for function 'predictResponses': 'Raspberry Pi'
Location of the generated elf : /home/pi/MATLAB_ws/R2023a/home/lnarasim/Documents/MATLAB/ExampleManager/lnarasim.Bdoc23a.j2174901/deeplearning_shared-ex40890309/codegen/lib/predictResponses/pil
Code generation successful.

Compare Classification Accuracy of the Transfer Learned, Pruned, and Quantized Networks

Evaluate the impact of quantization on the classification accuracy of the pruned network.

testImages = read(augimdsValidation);
testImage = table2array(testImages(4,1));
predictScores(:,1) = predictResponses('transferNet.mat', testImage{1}); 
predictScores(:,2) = predictResponses('prunedDAGNet.mat', testImage{1});
predictScores(:,3) = predictResponses_pil('prunedDAGNet.mat',testImage{1}); 

### Starting application: 'codegen/lib/predictResponses/pil/predictResponses.elf'
    To terminate execution: clear predictResponses_pil
### Launching application predictResponses.elf...

barh(predictScores)

21 Deep Learning Code Generation

21-344



xlabel('Probability')
yticklabels(classes)
XLim = [0 1.1];
YAxisLocation = 'left';
legend('Trained Network (Single)','Pruned Network (Single)','ARM-Compute (8-bit integer)');
sgtitle('Network Predictions')

Helper Functions

Download CIFAR-10 Dataset

The downloadCIFARData function downloads the CIFAR-10 dataset from the external website. The
download is approximately 175MB in size.

function downloadCIFARData(destination)

url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';

unpackedData = fullfile(destination,'cifar-10-batches-mat');
if ~exist(unpackedData,'dir')
    fprintf('Downloading CIFAR-10 dataset (175 MB). This can take a while...');
    untar(url,destination);
    fprintf('done.\n\n');
end

end

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-345



Process CIFAR-10 Dataset

Load the CIFAR-10 training and test images as 4-D arrays. The training set contains 50,000 images
and the test set contains 10,000 images. Use the CIFAR-10 test images for network validation.

function [XTrain,YTrain,XTest,YTest] = loadCIFARData(location)

location = fullfile(location,'cifar-10-batches-mat');

[XTrain1,YTrain1] = loadBatchAsFourDimensionalArray(location,'data_batch_1.mat');
[XTrain2,YTrain2] = loadBatchAsFourDimensionalArray(location,'data_batch_2.mat');
[XTrain3,YTrain3] = loadBatchAsFourDimensionalArray(location,'data_batch_3.mat');
[XTrain4,YTrain4] = loadBatchAsFourDimensionalArray(location,'data_batch_4.mat');
[XTrain5,YTrain5] = loadBatchAsFourDimensionalArray(location,'data_batch_5.mat');
XTrain = cat(4,XTrain1,XTrain2,XTrain3,XTrain4,XTrain5);
YTrain = [YTrain1;YTrain2;YTrain3;YTrain4;YTrain5];

[XTest,YTest] = loadBatchAsFourDimensionalArray(location,'test_batch.mat');
end

function [XBatch,YBatch] = loadBatchAsFourDimensionalArray(location,batchFileName)
s = load(fullfile(location,batchFileName));
XBatch = s.data';
XBatch = reshape(XBatch,32,32,3,[]);
XBatch = permute(XBatch,[2 1 3 4]);
YBatch = convertLabelsToCategorical(location,s.labels);
end

function categoricalLabels = convertLabelsToCategorical(location,integerLabels)
s = load(fullfile(location,'batches.meta.mat'));
categoricalLabels = categorical(integerLabels,0:9,s.label_names);
end

Mini-Batch Preprocessing Function

The preprocessMiniBatchTraining function preprocesses a mini-batch of predictors and labels
for loss computation during training.

function [X,T] = preprocessMiniBatchTraining(XCell,TCell)
% Concatenate.
X = cat(4,XCell{1:end});

% Extract label data from cell and concatenate.
T = cat(2,TCell{1:end});

% One-hot encode labels.
T = onehotencode(T,1);
end

Model Gradients Function for Fine-Tuning and Pruning

The modelLossPruning function takes as input a deep.prune.TaylorPrunableNetwork object
prunableNet, a mini-batch of input data X with corresponding labels T and returns the loss,
gradients of the loss with respect to the pruning activations, pruning activations, gradients of the loss
with respect to the learnable parameters in prunableNet and the network state. To compute the
gradients automatically, use the dlgradient function.

21 Deep Learning Code Generation

21-346



function [loss,pruningGradient,pruningActivations,netGradients,state] = modelLossPruning(prunableNet, X, T)

[dlYPred,state,pruningActivations] = forward(prunableNet,X);
dlYPred = squeeze(dlYPred);

loss = crossentropy(dlYPred,T);
[pruningGradient,netGradients] = dlgradient(loss,pruningActivations,prunableNet.Learnables);

end

Evaluate Model Accuracy

The modelAccuracy function takes as input the network(dlnetwork), minibatchque object, the
classes and the number of observations and returns the accuracy.

function accuracy = modelAccuracy(net, mbq, classes, numObservations)
% This function computes the model accuracy of a net(dlnetwork) on the minibatchque 'mbq'.

totalCorrect = 0;

classes = int32(categorical(classes));

reset(mbq);

while hasdata(mbq)
    [dlX, Y] = next(mbq);

    dlYPred = extractdata(predict(net, dlX));
    dlYPred = squeeze(dlYPred);

    YPred = onehotdecode(dlYPred,classes,1)';
    YReal = onehotdecode(Y,classes,1)';

    miniBatchCorrect = nnz(YPred == YReal);

    totalCorrect = totalCorrect + miniBatchCorrect;
end

accuracy = totalCorrect / numObservations * 100;
end

Evaluate Number of Filters in Convolution Layers

The numConvLayerFilters function returns the number of filters in each convolution layer.

function [nFilters, convNames] = numConvLayerFilters(net)
numLayers = numel(net.Layers);
convNames = [];
nFilters = [];
% Check for convolution layers and extract the number of filters.
for cnt = 1:numLayers
    if isa(net.Layers(cnt),"nnet.cnn.layer.Convolution2DLayer")
        sizeW = size(net.Layers(cnt).Weights);
        nFilters = [nFilters; sizeW(end)]; %#ok<AGROW>
        convNames = [convNames; string(net.Layers(cnt).Name)]; %#ok<AGROW>
    end
end
end

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-347



Evaluate the network statistics of original network and pruned network

The analyzeNetworkMetrics function takes input as the original network, pruned network,
accuracy of original network and the accuracy of the pruned network and returns the different
statistics like network learnables, network memory and the accuracy on the test data in form of a
table.

function [statistics] = analyzeNetworkMetrics(originalNet,prunedNet,accuracyOriginal,accuracyPruned)

originalNetMetrics = estimateNetworkMetrics(originalNet);
prunedNetMetrics = estimateNetworkMetrics(prunedNet);

% Accuracy of original network and pruned network
perChangeAccu = 100*(accuracyPruned - accuracyOriginal)/accuracyOriginal;
AccuracyForNetworks = [accuracyOriginal;accuracyPruned;perChangeAccu];

% Total learnables in both networks
originalNetLearnables = sum(originalNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
prunedNetLearnables = sum(prunedNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
percentageChangeLearnables = 100*(prunedNetLearnables - originalNetLearnables)/originalNetLearnables;
LearnablesForNetwork = [originalNetLearnables;prunedNetLearnables;percentageChangeLearnables];

% Approximate parameter memory
approxOriginalMemory = sum(originalNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
approxPrunedMemory = sum(prunedNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
percentageChangeMemory = 100*(approxPrunedMemory - approxOriginalMemory)/approxOriginalMemory;
NetworkMemory = [ approxOriginalMemory; approxPrunedMemory; percentageChangeMemory];

% Create the summary table
statistics = table(LearnablesForNetwork,NetworkMemory,AccuracyForNetworks, ...
    'VariableNames',["Network Learnables","Approx. Network Memory (MB)","Accuracy"], ...
    'RowNames',{'Original Network','Pruned Network','Percentage Change'});

end

function [statistics] = analyzeQuantizedNetworkMetrics(originalNet,quantizedNet)

originalNetMetrics = estimateNetworkMetrics(originalNet);
quantizedNetMetrics = estimateNetworkMetrics(quantizedNet);

% Total learnables in both networks
originalNetLearnables = sum(originalNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
quantizedNetLearnables = sum(quantizedNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
percentageChangeLearnables = 100*(quantizedNetLearnables - originalNetLearnables)/originalNetLearnables;
LearnablesForNetwork = [originalNetLearnables;quantizedNetLearnables;percentageChangeLearnables];

% Approximate parameter memory
approxOriginalMemory = sum(originalNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
approxQuantizedMemory = sum(quantizedNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
percentageChangeMemory = 100*(approxQuantizedMemory - approxOriginalMemory)/approxOriginalMemory;
NetworkMemory = [ approxOriginalMemory; approxQuantizedMemory; percentageChangeMemory];

% Create the summary table
statistics = table(LearnablesForNetwork,NetworkMemory, ...
    'VariableNames',["Network Learnables","Approx. Network Memory (MB)"], ...
    'RowNames',{'Original Network', 'Pruned & Quantized Network','Percentage Change'});

end

21 Deep Learning Code Generation

21-348



References

[1] Krizhevsky, Alex. "Learning multiple layers of features from tiny images" (2009). https://
www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778. 2016.

[3] Molchanov, Pavlo, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. “Importance Estimation
for Neural Network Pruning.” In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 11256–64. Long Beach, CA, USA: IEEE, 2019. https://doi.org/10.1109/
CVPR.2019.01152.

See Also
Functions
forward | predict | updatePrunables | updateScore | TaylorPrunableNetwork | dlnetwork

More About
• “Prune Image Classification Network Using Taylor Scores” on page 21-223
• “Prune Filters in a Detection Network Using Taylor Scores” on page 21-251

 Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

21-349





Neural Network Objects, Data, and
Training Styles

• “Workflow for Neural Network Design” on page 22-2
• “Four Levels of Neural Network Design” on page 22-3
• “Neuron Model” on page 22-4
• “Neural Network Architectures” on page 22-8
• “Create Neural Network Object” on page 22-13
• “Configure Shallow Neural Network Inputs and Outputs” on page 22-16
• “Understanding Shallow Network Data Structures” on page 22-18
• “Neural Network Training Concepts” on page 22-22

22



Workflow for Neural Network Design
The work flow for the neural network design process has seven primary steps. Referenced topics
discuss the basic ideas behind steps 2, 3, and 5.

1 Collect data
2 Create the network — “Create Neural Network Object” on page 22-13
3 Configure the network — “Configure Shallow Neural Network Inputs and Outputs” on page 22-

16
4 Initialize the weights and biases
5 Train the network — “Neural Network Training Concepts” on page 22-22
6 Validate the network
7 Use the network

Data collection in step 1 generally occurs outside the framework of Deep Learning Toolbox software,
but it is discussed in general terms in “Multilayer Shallow Neural Networks and Backpropagation
Training” on page 23-2. Details of the other steps and discussions of steps 4, 6, and 7, are
discussed in topics specific to the type of network.

The Deep Learning Toolbox software uses the network object to store all of the information that
defines a neural network. This topic describes the basic components of a neural network and shows
how they are created and stored in the network object.

After a neural network has been created, it needs to be configured and then trained. Configuration
involves arranging the network so that it is compatible with the problem you want to solve, as defined
by sample data. After the network has been configured, the adjustable network parameters (called
weights and biases) need to be tuned, so that the network performance is optimized. This tuning
process is referred to as training the network. Configuration and training require that the network be
provided with example data. This topic shows how to format the data for presentation to the network.
It also explains network configuration and the two forms of network training: incremental training
and batch training.

See Also

More About
• “Four Levels of Neural Network Design” on page 22-3
• “Neuron Model” on page 22-4
• “Neural Network Architectures” on page 22-8
• “Understanding Shallow Network Data Structures” on page 22-18

22 Neural Network Objects, Data, and Training Styles

22-2



Four Levels of Neural Network Design
There are four different levels at which the neural network software can be used. The first level is
represented by the GUIs that are described in “Get Started with Deep Learning Toolbox”. These
provide a quick way to access the power of the toolbox for many problems of function fitting, pattern
recognition, clustering and time series analysis.

The second level of toolbox use is through basic command-line operations. The command-line
functions use simple argument lists with intelligent default settings for function parameters. (You can
override all of the default settings, for increased functionality.) This topic, and the ones that follow,
concentrate on command-line operations.

The GUIs described in Getting Started can automatically generate MATLAB code files with the
command-line implementation of the GUI operations. This provides a nice introduction to the use of
the command-line functionality.

A third level of toolbox use is customization of the toolbox. This advanced capability allows you to
create your own custom neural networks, while still having access to the full functionality of the
toolbox.

The fourth level of toolbox usage is the ability to modify any of the code files contained in the toolbox.
Every computational component is written in MATLAB code and is fully accessible.

The first level of toolbox use (through the GUIs) is described in Getting Started which also introduces
command-line operations. The following topics will discuss the command-line operations in more
detail. The customization of the toolbox is described in “Define Shallow Neural Network
Architectures”.

See Also

More About
• “Workflow for Neural Network Design” on page 22-2

 Four Levels of Neural Network Design

22-3



Neuron Model

In this section...
“Simple Neuron” on page 22-4
“Transfer Functions” on page 22-5
“Neuron with Vector Input” on page 22-5

Simple Neuron
The fundamental building block for neural networks is the single-input neuron, such as this example.

There are three distinct functional operations that take place in this example neuron. First, the scalar
input p is multiplied by the scalar weight w to form the product wp, again a scalar. Second, the
weighted input wp is added to the scalar bias b to form the net input n. (In this case, you can view the
bias as shifting the function f to the left by an amount b. The bias is much like a weight, except that it
has a constant input of 1.) Finally, the net input is passed through the transfer function f, which
produces the scalar output a. The names given to these three processes are: the weight function, the
net input function and the transfer function.

For many types of neural networks, the weight function is a product of a weight times the input, but
other weight functions (e.g., the distance between the weight and the input, |w − p|) are sometimes
used. (For a list of weight functions, type help nnweight.) The most common net input function is
the summation of the weighted inputs with the bias, but other operations, such as multiplication, can
be used. (For a list of net input functions, type help nnnetinput.) “Introduction to Radial Basis
Neural Networks” on page 26-2 discusses how distance can be used as the weight function and
multiplication can be used as the net input function. There are also many types of transfer functions.
Examples of various transfer functions are in “Transfer Functions” on page 22-5. (For a list of
transfer functions, type help nntransfer.)

Note that w and b are both adjustable scalar parameters of the neuron. The central idea of neural
networks is that such parameters can be adjusted so that the network exhibits some desired or
interesting behavior. Thus, you can train the network to do a particular job by adjusting the weight or
bias parameters.

All the neurons in the Deep Learning Toolbox software have provision for a bias, and a bias is used in
many of the examples and is assumed in most of this toolbox. However, you can omit a bias in a
neuron if you want.

22 Neural Network Objects, Data, and Training Styles

22-4



Transfer Functions
Many transfer functions are included in the Deep Learning Toolbox software.

Two of the most commonly used functions are shown below.

The following figure illustrates the linear transfer function.

Neurons of this type are used in the final layer of multilayer networks that are used as function
approximators. This is shown in “Multilayer Shallow Neural Networks and Backpropagation Training”
on page 23-2.

The sigmoid transfer function shown below takes the input, which can have any value between plus
and minus infinity, and squashes the output into the range 0 to 1.

This transfer function is commonly used in the hidden layers of multilayer networks, in part because
it is differentiable.

The symbol in the square to the right of each transfer function graph shown above represents the
associated transfer function. These icons replace the general f in the network diagram blocks to show
the particular transfer function being used.

For a complete list of transfer functions, type help nntransfer. You can also specify your own
transfer functions.

You can experiment with a simple neuron and various transfer functions by running the example
program nnd2n1.

Neuron with Vector Input
The simple neuron can be extended to handle inputs that are vectors. A neuron with a single R-
element input vector is shown below. Here the individual input elements

p1, p2, …pR

 Neuron Model

22-5



are multiplied by weights

w1, 1, w1, 2, …w1, R

and the weighted values are fed to the summing junction. Their sum is simply Wp, the dot product of
the (single row) matrix W and the vector p. (There are other weight functions, in addition to the dot
product, such as the distance between the row of the weight matrix and the input vector, as in
“Introduction to Radial Basis Neural Networks” on page 26-2.)

The neuron has a bias b, which is summed with the weighted inputs to form the net input n. (In
addition to the summation, other net input functions can be used, such as the multiplication that is
used in “Introduction to Radial Basis Neural Networks” on page 26-2.) The net input n is the
argument of the transfer function f.

n = w1, 1p1 + w1, 2p2 + … + w1, RpR + b

This expression can, of course, be written in MATLAB code as

n = W*p + b

However, you will seldom be writing code at this level, for such code is already built into functions to
define and simulate entire networks.

Abbreviated Notation

The figure of a single neuron shown above contains a lot of detail. When you consider networks with
many neurons, and perhaps layers of many neurons, there is so much detail that the main thoughts
tend to be lost. Thus, the authors have devised an abbreviated notation for an individual neuron. This
notation, which is used later in circuits of multiple neurons, is shown here.

Here the input vector p is represented by the solid dark vertical bar at the left. The dimensions of p
are shown below the symbol p in the figure as R × 1. (Note that a capital letter, such as R in the

22 Neural Network Objects, Data, and Training Styles

22-6



previous sentence, is used when referring to the size of a vector.) Thus, p is a vector of R input
elements. These inputs postmultiply the single-row, R-column matrix W. As before, a constant 1
enters the neuron as an input and is multiplied by a scalar bias b. The net input to the transfer
function f is n, the sum of the bias b and the product Wp. This sum is passed to the transfer function f
to get the neuron's output a, which in this case is a scalar. Note that if there were more than one
neuron, the network output would be a vector.

A layer of a network is defined in the previous figure. A layer includes the weights, the multiplication
and summing operations (here realized as a vector product Wp), the bias b, and the transfer function
f. The array of inputs, vector p, is not included in or called a layer.

As with the “Simple Neuron” on page 22-4, there are three operations that take place in the layer: the
weight function (matrix multiplication, or dot product, in this case), the net input function
(summation, in this case), and the transfer function.

Each time this abbreviated network notation is used, the sizes of the matrices are shown just below
their matrix variable names. This notation will allow you to understand the architectures and follow
the matrix mathematics associated with them.

As discussed in “Transfer Functions” on page 22-5, when a specific transfer function is to be used in a
figure, the symbol for that transfer function replaces the f shown above. Here are some examples.

You can experiment with a two-element neuron by running the example program nnd2n2.

See Also

More About
• “Neural Network Architectures” on page 22-8
• “Workflow for Neural Network Design” on page 22-2

 Neuron Model

22-7



Neural Network Architectures
In this section...
“One Layer of Neurons” on page 22-8
“Multiple Layers of Neurons” on page 22-10
“Input and Output Processing Functions” on page 22-11

Two or more of the neurons shown earlier can be combined in a layer, and a particular network could
contain one or more such layers. First consider a single layer of neurons.

One Layer of Neurons
A one-layer network with R input elements and S neurons follows.

In this network, each element of the input vector p is connected to each neuron input through the
weight matrix W. The ith neuron has a summer that gathers its weighted inputs and bias to form its
own scalar output n(i). The various n(i) taken together form an S-element net input vector n. Finally,
the neuron layer outputs form a column vector a. The expression for a is shown at the bottom of the
figure.

Note that it is common for the number of inputs to a layer to be different from the number of neurons
(i.e., R is not necessarily equal to S). A layer is not constrained to have the number of its inputs equal
to the number of its neurons.

You can create a single (composite) layer of neurons having different transfer functions simply by
putting two of the networks shown earlier in parallel. Both networks would have the same inputs, and
each network would create some of the outputs.

The input vector elements enter the network through the weight matrix W.

W =

w1, 1 w1, 2 … w1, R
w2, 1 w2, 2 … w2, R

wS, 1 wS, 2 … wS, R

22 Neural Network Objects, Data, and Training Styles

22-8



Note that the row indices on the elements of matrix W indicate the destination neuron of the weight,
and the column indices indicate which source is the input for that weight. Thus, the indices in w1,2 say
that the strength of the signal from the second input element to the first (and only) neuron is w1,2.

The S neuron R-input one-layer network also can be drawn in abbreviated notation.

Here p is an R-length input vector, W is an S × R matrix, a and b are S-length vectors. As defined
previously, the neuron layer includes the weight matrix, the multiplication operations, the bias vector
b, the summer, and the transfer function blocks.

Inputs and Layers

To describe networks having multiple layers, the notation must be extended. Specifically, it needs to
make a distinction between weight matrices that are connected to inputs and weight matrices that
are connected between layers. It also needs to identify the source and destination for the weight
matrices.

We will call weight matrices connected to inputs input weights; we will call weight matrices
connected to layer outputs layer weights. Further, superscripts are used to identify the source
(second index) and the destination (first index) for the various weights and other elements of the
network. To illustrate, the one-layer multiple input network shown earlier is redrawn in abbreviated
form here.

As you can see, the weight matrix connected to the input vector p is labeled as an input weight matrix
(IW1,1) having a source 1 (second index) and a destination 1 (first index). Elements of layer 1, such as
its bias, net input, and output have a superscript 1 to say that they are associated with the first layer.

“Multiple Layers of Neurons” on page 22-10 uses layer weight (LW) matrices as well as input weight
(IW) matrices.

 Neural Network Architectures

22-9



Multiple Layers of Neurons
A network can have several layers. Each layer has a weight matrix W, a bias vector b, and an output
vector a. To distinguish between the weight matrices, output vectors, etc., for each of these layers in
the figures, the number of the layer is appended as a superscript to the variable of interest. You can
see the use of this layer notation in the three-layer network shown next, and in the equations at the
bottom of the figure.

The network shown above has R1 inputs, S1 neurons in the first layer, S2 neurons in the second layer,
etc. It is common for different layers to have different numbers of neurons. A constant input 1 is fed
to the bias for each neuron.

Note that the outputs of each intermediate layer are the inputs to the following layer. Thus layer 2
can be analyzed as a one-layer network with S1 inputs, S2 neurons, and an S2 × S1 weight matrix W2.
The input to layer 2 is a1; the output is a2. Now that all the vectors and matrices of layer 2 have been
identified, it can be treated as a single-layer network on its own. This approach can be taken with any
layer of the network.

The layers of a multilayer network play different roles. A layer that produces the network output is
called an output layer. All other layers are called hidden layers. The three-layer network shown
earlier has one output layer (layer 3) and two hidden layers (layer 1 and layer 2). Some authors refer
to the inputs as a fourth layer. This toolbox does not use that designation.

The architecture of a multilayer network with a single input vector can be specified with the notation
R − S1 − S2 −...− SM, where the number of elements of the input vector and the number of neurons in
each layer are specified.

The same three-layer network can also be drawn using abbreviated notation.

22 Neural Network Objects, Data, and Training Styles

22-10



Multiple-layer networks are quite powerful. For instance, a network of two layers, where the first
layer is sigmoid and the second layer is linear, can be trained to approximate any function (with a
finite number of discontinuities) arbitrarily well. This kind of two-layer network is used extensively in
“Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2.

Here it is assumed that the output of the third layer, a3, is the network output of interest, and this
output is labeled as y. This notation is used to specify the output of multilayer networks.

Input and Output Processing Functions
Network inputs might have associated processing functions. Processing functions transform user
input data to a form that is easier or more efficient for a network.

For instance, mapminmax transforms input data so that all values fall into the interval [−1, 1]. This
can speed up learning for many networks. removeconstantrows removes the rows of the input
vector that correspond to input elements that always have the same value, because these input
elements are not providing any useful information to the network. The third common processing
function is fixunknowns, which recodes unknown data (represented in the user's data with NaN
values) into a numerical form for the network. fixunknowns preserves information about which
values are known and which are unknown.

Similarly, network outputs can also have associated processing functions. Output processing
functions are used to transform user-provided target vectors for network use. Then, network outputs
are reverse-processed using the same functions to produce output data with the same characteristics
as the original user-provided targets.

Both mapminmax and removeconstantrows are often associated with network outputs. However,
fixunknowns is not. Unknown values in targets (represented by NaN values) do not need to be
altered for network use.

Processing functions are described in more detail in “Choose Neural Network Input-Output
Processing Functions” on page 23-7.

See Also

More About
• “Neuron Model” on page 22-4

 Neural Network Architectures

22-11



• “Workflow for Neural Network Design” on page 22-2

22 Neural Network Objects, Data, and Training Styles

22-12



Create Neural Network Object
This topic is part of the design workflow described in “Workflow for Neural Network Design” on page
22-2.

The easiest way to create a neural network is to use one of the network creation functions. To
investigate how this is done, you can create a simple, two-layer feedforward network, using the
command feedforwardnet:

net = feedforwardnet

net =

Neural Network

              name: 'Feed-Forward Neural Network'
          userdata: (your custom info)

    dimensions:

         numInputs: 1
         numLayers: 2
        numOutputs: 1
    numInputDelays: 0
    numLayerDelays: 0
 numFeedbackDelays: 0
 numWeightElements: 10
        sampleTime: 1

    connections:

       biasConnect: [1; 1]
      inputConnect: [1; 0]
      layerConnect: [0 0; 1 0]
     outputConnect: [0 1]

    subobjects:

            inputs: {1x1 cell array of 1 input}
            layers: {2x1 cell array of 2 layers}
           outputs: {1x2 cell array of 1 output}
            biases: {2x1 cell array of 2 biases}
      inputWeights: {2x1 cell array of 1 weight}
      layerWeights: {2x2 cell array of 1 weight}

    functions:

          adaptFcn: 'adaptwb'
        adaptParam: (none)
          derivFcn: 'defaultderiv'
         divideFcn: 'dividerand'
       divideParam: .trainRatio, .valRatio, .testRatio
        divideMode: 'sample'
           initFcn: 'initlay'
        performFcn: 'mse'
      performParam: .regularization, .normalization
          plotFcns: {'plotperform', plottrainstate, ploterrhist,

 Create Neural Network Object

22-13



                    plotregression}
        plotParams: {1x4 cell array of 4 params}
          trainFcn: 'trainlm'
        trainParam: .showWindow, .showCommandLine, .show, .epochs,
                    .time, .goal, .min_grad, .max_fail, .mu, .mu_dec,
                    .mu_inc, .mu_max

    weight and bias values:

                IW: {2x1 cell} containing 1 input weight matrix
                LW: {2x2 cell} containing 1 layer weight matrix
                 b: {2x1 cell} containing 2 bias vectors

    methods:

             adapt: Learn while in continuous use
         configure: Configure inputs & outputs
            gensim: Generate Simulink model
              init: Initialize weights & biases
           perform: Calculate performance
               sim: Evaluate network outputs given inputs
             train: Train network with examples
              view: View diagram
       unconfigure: Unconfigure inputs & outputs

    evaluate:       outputs = net(inputs)

This display is an overview of the network object, which is used to store all of the information that
defines a neural network. There is a lot of detail here, but there are a few key sections that can help
you to see how the network object is organized.

The dimensions section stores the overall structure of the network. Here you can see that there is one
input to the network (although the one input can be a vector containing many elements), one network
output, and two layers.

The connections section stores the connections between components of the network. For example,
there is a bias connected to each layer, the input is connected to layer 1, and the output comes from
layer 2. You can also see that layer 1 is connected to layer 2. (The rows of net.layerConnect
represent the destination layer, and the columns represent the source layer. A one in this matrix
indicates a connection, and a zero indicates no connection. For this example, there is a single one in
element 2,1 of the matrix.)

The key subobjects of the network object are inputs, layers, outputs, biases, inputWeights,
and layerWeights. View the layers subobject for the first layer with the command

net.layers{1}

Neural Network Layer

              name: 'Hidden'
        dimensions: 10
       distanceFcn: (none)
     distanceParam: (none)
         distances: []
           initFcn: 'initnw'
       netInputFcn: 'netsum'
     netInputParam: (none)

22 Neural Network Objects, Data, and Training Styles

22-14



         positions: []
             range: [10x2 double]
              size: 10
       topologyFcn: (none)
       transferFcn: 'tansig'
     transferParam: (none)
          userdata: (your custom info)

The number of neurons in a layer is given by its size property. In this case, the layer has 10 neurons,
which is the default size for the feedforwardnet command. The net input function is netsum
(summation) and the transfer function is the tansig. If you wanted to change the transfer function to
logsig, for example, you could execute the command:

net.layers{1}.transferFcn = 'logsig';

To view the layerWeights subobject for the weight between layer 1 and layer 2, use the command:

net.layerWeights{2,1}

Neural Network Weight

            delays: 0
           initFcn: (none)
        initConfig: .inputSize
             learn: true
          learnFcn: 'learngdm'
        learnParam: .lr, .mc
              size: [0 10]
         weightFcn: 'dotprod'
       weightParam: (none)
          userdata: (your custom info)

The weight function is dotprod, which represents standard matrix multiplication (dot product). Note
that the size of this layer weight is 0-by-10. The reason that we have zero rows is because the
network has not yet been configured for a particular data set. The number of output neurons is equal
to the number of rows in your target vector. During the configuration process, you will provide the
network with example inputs and targets, and then the number of output neurons can be assigned.

This gives you some idea of how the network object is organized. For many applications, you will not
need to be concerned about making changes directly to the network object, since that is taken care of
by the network creation functions. It is usually only when you want to override the system defaults
that it is necessary to access the network object directly. Other topics will show how this is done for
particular networks and training methods.

To investigate the network object in more detail, you might find that the object listings, such as the
one shown above, contain links to help on each subobject. Click the links, and you can selectively
investigate those parts of the object that are of interest to you.

 Create Neural Network Object

22-15



Configure Shallow Neural Network Inputs and Outputs
This topic is part of the design workflow described in “Workflow for Neural Network Design” on page
22-2.

After a neural network has been created, it must be configured. The configuration step consists of
examining input and target data, setting the network's input and output sizes to match the data, and
choosing settings for processing inputs and outputs that will enable best network performance. The
configuration step is normally done automatically, when the training function is called. However, it
can be done manually, by using the configuration function. For example, to configure the network you
created previously to approximate a sine function, issue the following commands:

p = -2:.1:2;
t = sin(pi*p/2);
net1 = configure(net,p,t);

You have provided the network with an example set of inputs and targets (desired network outputs).
With this information, the configure function can set the network input and output sizes to match
the data.

After the configuration, if you look again at the weight between layer 1 and layer 2, you can see that
the dimension of the weight is 1 by 20. This is because the target for this network is a scalar.

net1.layerWeights{2,1}

    Neural Network Weight

            delays: 0
           initFcn: (none)
        initConfig: .inputSize
             learn: true
          learnFcn: 'learngdm'
        learnParam: .lr, .mc
              size: [1 10]
         weightFcn: 'dotprod'
       weightParam: (none)
          userdata: (your custom info)

In addition to setting the appropriate dimensions for the weights, the configuration step also defines
the settings for the processing of inputs and outputs. The input processing can be located in the
inputs subobject:

net1.inputs{1}

    Neural Network Input

              name: 'Input'
    feedbackOutput: []
       processFcns: {'removeconstantrows', mapminmax}
     processParams: {1x2 cell array of 2 params}
   processSettings: {1x2 cell array of 2 settings}
    processedRange: [1x2 double]
     processedSize: 1
             range: [1x2 double]
              size: 1
          userdata: (your custom info)

22 Neural Network Objects, Data, and Training Styles

22-16



Before the input is applied to the network, it will be processed by two functions:
removeconstantrows and mapminmax. These are discussed fully in “Multilayer Shallow Neural
Networks and Backpropagation Training” on page 23-2 so we won't address the particulars here.
These processing functions may have some processing parameters, which are contained in the
subobject net1.inputs{1}.processParam. These have default values that you can override. The
processing functions can also have configuration settings that are dependent on the sample data.
These are contained in net1.inputs{1}.processSettings and are set during the configuration
process. For example, the mapminmax processing function normalizes the data so that all inputs fall
in the range [−1, 1]. Its configuration settings include the minimum and maximum values in the
sample data, which it needs to perform the correct normalization. This will be discussed in much
more depth in “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2.

As a general rule, we use the term “parameter,” as in process parameters, training parameters, etc.,
to denote constants that have default values that are assigned by the software when the network is
created (and which you can override). We use the term “configuration setting,” as in process
configuration setting, to denote constants that are assigned by the software from an analysis of
sample data. These settings do not have default values, and should not generally be overridden.

For more information, see also “Understanding Shallow Network Data Structures” on page 22-18.

 Configure Shallow Neural Network Inputs and Outputs

22-17



Understanding Shallow Network Data Structures
In this section...
“Simulation with Concurrent Inputs in a Static Network” on page 22-18
“Simulation with Sequential Inputs in a Dynamic Network” on page 22-19
“Simulation with Concurrent Inputs in a Dynamic Network” on page 22-20

This topic discusses how the format of input data structures affects the simulation of networks. It
starts with static networks, and then continues with dynamic networks. The following section
describes how the format of the data structures affects network training.

There are two basic types of input vectors: those that occur concurrently (at the same time, or in no
particular time sequence), and those that occur sequentially in time. For concurrent vectors, the
order is not important, and if there were a number of networks running in parallel, you could present
one input vector to each of the networks. For sequential vectors, the order in which the vectors
appear is important.

Simulation with Concurrent Inputs in a Static Network
The simplest situation for simulating a network occurs when the network to be simulated is static
(has no feedback or delays). In this case, you need not be concerned about whether or not the input
vectors occur in a particular time sequence, so you can treat the inputs as concurrent. In addition,
the problem is made even simpler by assuming that the network has only one input vector. Use the
following network as an example.

To set up this linear feedforward network, use the following commands:

net = linearlayer;
net.inputs{1}.size = 2;
net.layers{1}.dimensions = 1;

For simplicity, assign the weight matrix and bias to be W = [1 2] and b = [0].

The commands for these assignments are

net.IW{1,1} = [1 2];
net.b{1} = 0;

Suppose that the network simulation data set consists of Q = 4 concurrent vectors:

p1 =
1
2

, p2 =
2
1

, p3 =
2
3

, p4 =
3
1

22 Neural Network Objects, Data, and Training Styles

22-18



Concurrent vectors are presented to the network as a single matrix:

P = [1 2 2 3; 2 1 3 1];

You can now simulate the network:

A = net(P)
A =
     5     4     8     5

A single matrix of concurrent vectors is presented to the network, and the network produces a single
matrix of concurrent vectors as output. The result would be the same if there were four networks
operating in parallel and each network received one of the input vectors and produced one of the
outputs. The ordering of the input vectors is not important, because they do not interact with each
other.

Simulation with Sequential Inputs in a Dynamic Network
When a network contains delays, the input to the network would normally be a sequence of input
vectors that occur in a certain time order. To illustrate this case, the next figure shows a simple
network that contains one delay.

The following commands create this network:

net = linearlayer([0 1]);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;

Assign the weight matrix to be W = [1 2].

The command is:

net.IW{1,1} = [1 2];

Suppose that the input sequence is:

p1 = 1 , p2 = 2 , p3 = 3 , p4 = 4

Sequential inputs are presented to the network as elements of a cell array:

P = {1 2 3 4};

You can now simulate the network:

 Understanding Shallow Network Data Structures

22-19



A = net(P)
A = 
    [1]    [4]    [7]    [10]

You input a cell array containing a sequence of inputs, and the network produces a cell array
containing a sequence of outputs. The order of the inputs is important when they are presented as a
sequence. In this case, the current output is obtained by multiplying the current input by 1 and the
preceding input by 2 and summing the result. If you were to change the order of the inputs, the
numbers obtained in the output would change.

Simulation with Concurrent Inputs in a Dynamic Network
If you were to apply the same inputs as a set of concurrent inputs instead of a sequence of inputs, you
would obtain a completely different response. (However, it is not clear why you would want to do this
with a dynamic network.) It would be as if each input were applied concurrently to a separate parallel
network. For the previous example, “Simulation with Sequential Inputs in a Dynamic Network” on
page 22-19, if you use a concurrent set of inputs you have

p1 = 1 , p2 = 2 , p3 = 3 , p4 = 4

which can be created with the following code:

P = [1 2 3 4];

When you simulate with concurrent inputs, you obtain

A = net(P)
A =
     1     2     3     4

The result is the same as if you had concurrently applied each one of the inputs to a separate network
and computed one output. Note that because you did not assign any initial conditions to the network
delays, they were assumed to be 0. For this case the output is simply 1 times the input, because the
weight that multiplies the current input is 1.

In certain special cases, you might want to simulate the network response to several different
sequences at the same time. In this case, you would want to present the network with a concurrent
set of sequences. For example, suppose you wanted to present the following two sequences to the
network:

p1(1) = 1 , p1(2) = 2 , p1(3) = 3 , p1(4) = 4
p2(1) = 4 , p2(2) = 3 , p2(3) = 2 , p2(4) = 1

The input P should be a cell array, where each element of the array contains the two elements of the
two sequences that occur at the same time:

P = {[1 4] [2 3] [3 2] [4 1]};

You can now simulate the network:

A = net(P);

The resulting network output would be

A = {[1 4] [4 11] [7 8] [10 5]}

22 Neural Network Objects, Data, and Training Styles

22-20



As you can see, the first column of each matrix makes up the output sequence produced by the first
input sequence, which was the one used in an earlier example. The second column of each matrix
makes up the output sequence produced by the second input sequence. There is no interaction
between the two concurrent sequences. It is as if they were each applied to separate networks
running in parallel.

The following diagram shows the general format for the network input P when there are Q concurrent
sequences of TS time steps. It covers all cases where there is a single input vector. Each element of
the cell array is a matrix of concurrent vectors that correspond to the same point in time for each
sequence. If there are multiple input vectors, there will be multiple rows of matrices in the cell array.

In this topic, you apply sequential and concurrent inputs to dynamic networks. In “Simulation with
Concurrent Inputs in a Static Network” on page 22-18, you applied concurrent inputs to static
networks. It is also possible to apply sequential inputs to static networks. It does not change the
simulated response of the network, but it can affect the way in which the network is trained. This will
become clear in “Neural Network Training Concepts” on page 22-22.

See also “Configure Shallow Neural Network Inputs and Outputs” on page 22-16.

 Understanding Shallow Network Data Structures

22-21



Neural Network Training Concepts
In this section...
“Incremental Training with adapt” on page 22-22
“Batch Training” on page 22-24
“Training Feedback” on page 22-26

This topic is part of the design workflow described in “Workflow for Neural Network Design” on page
22-2.

This topic describes two different styles of training. In incremental training the weights and biases of
the network are updated each time an input is presented to the network. In batch training the
weights and biases are only updated after all the inputs are presented. The batch training methods
are generally more efficient in the MATLAB environment, and they are emphasized in the Deep
Learning Toolbox software, but there some applications where incremental training can be useful, so
that paradigm is implemented as well.

Incremental Training with adapt
Incremental training can be applied to both static and dynamic networks, although it is more
commonly used with dynamic networks, such as adaptive filters. This section illustrates how
incremental training is performed on both static and dynamic networks.

Incremental Training of Static Networks

Consider again the static network used for the first example. You want to train it incrementally, so
that the weights and biases are updated after each input is presented. In this case you use the
function adapt, and the inputs and targets are presented as sequences.

Suppose you want to train the network to create the linear function:

t = 2p1 + p2

Then for the previous inputs,

p1 =
1
2

, p2 =
2
1

, p3 =
2
3

, p4 =
3
1

the targets would be

t1 = 4 , t2 = 5 , t3 = 7 , t4 = 7

For incremental training, you present the inputs and targets as sequences:

P = {[1;2] [2;1] [2;3] [3;1]};
T = {4 5 7 7};

First, set up the network with zero initial weights and biases. Also, set the initial learning rate to zero
to show the effect of incremental training.

net = linearlayer(0,0);
net = configure(net,P,T);

22 Neural Network Objects, Data, and Training Styles

22-22



net.IW{1,1} = [0 0];
net.b{1} = 0;

Recall from “Simulation with Concurrent Inputs in a Static Network” on page 22-18 that, for a static
network, the simulation of the network produces the same outputs whether the inputs are presented
as a matrix of concurrent vectors or as a cell array of sequential vectors. However, this is not true
when training the network. When you use the adapt function, if the inputs are presented as a cell
array of sequential vectors, then the weights are updated as each input is presented (incremental
mode). As shown in the next section, if the inputs are presented as a matrix of concurrent vectors,
then the weights are updated only after all inputs are presented (batch mode).

You are now ready to train the network incrementally.

[net,a,e,pf] = adapt(net,P,T);

The network outputs remain zero, because the learning rate is zero, and the weights are not updated.
The errors are equal to the targets:

a = [0]    [0]    [0]    [0]
e = [4]    [5]    [7]    [7]

If you now set the learning rate to 0.1 you can see how the network is adjusted as each input is
presented:

net.inputWeights{1,1}.learnParam.lr = 0.1;
net.biases{1,1}.learnParam.lr = 0.1;
[net,a,e,pf] = adapt(net,P,T);
a = [0]    [2]    [6]    [5.8]
e = [4]    [3]    [1]    [1.2]

The first output is the same as it was with zero learning rate, because no update is made until the
first input is presented. The second output is different, because the weights have been updated. The
weights continue to be modified as each error is computed. If the network is capable and the learning
rate is set correctly, the error is eventually driven to zero.

Incremental Training with Dynamic Networks

You can also train dynamic networks incrementally. In fact, this would be the most common situation.

To train the network incrementally, present the inputs and targets as elements of cell arrays. Here
are the initial input Pi and the inputs P and targets T as elements of cell arrays.

Pi = {1};
P = {2 3 4};
T = {3 5 7};

Take the linear network with one delay at the input, as used in a previous example. Initialize the
weights to zero and set the learning rate to 0.1.

net = linearlayer([0 1],0.1);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.biasConnect = 0;

You want to train the network to create the current output by summing the current and the previous
inputs. This is the same input sequence you used in the previous example with the exception that you

 Neural Network Training Concepts

22-23



assign the first term in the sequence as the initial condition for the delay. You can now sequentially
train the network using adapt.

[net,a,e,pf] = adapt(net,P,T,Pi);
a = [0] [2.4] [7.98]
e = [3] [2.6] [-0.98]

The first output is zero, because the weights have not yet been updated. The weights change at each
subsequent time step.

Batch Training
Batch training, in which weights and biases are only updated after all the inputs and targets are
presented, can be applied to both static and dynamic networks. Both types of networks are discussed
in this section.

Batch Training with Static Networks

Batch training can be done using either adapt or train, although train is generally the best
option, because it typically has access to more efficient training algorithms. Incremental training is
usually done with adapt; batch training is usually done with train.

For batch training of a static network with adapt, the input vectors must be placed in one matrix of
concurrent vectors.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

Begin with the static network used in previous examples. The learning rate is set to 0.01.

net = linearlayer(0,0.01);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.b{1} = 0;

When you call adapt, it invokes trains (the default adaption function for the linear network) and
learnwh (the default learning function for the weights and biases). trains uses Widrow-Hoff
learning.

[net,a,e,pf] = adapt(net,P,T);
a = 0 0 0 0
e = 4 5 7 7

Note that the outputs of the network are all zero, because the weights are not updated until all the
training set has been presented. If you display the weights, you find

net.IW{1,1}
  ans = 0.4900 0.4100
net.b{1}
  ans =
    0.2300

This is different from the result after one pass of adapt with incremental updating.

Now perform the same batch training using train. Because the Widrow-Hoff rule can be used in
incremental or batch mode, it can be invoked by adapt or train. (There are several algorithms that

22 Neural Network Objects, Data, and Training Styles

22-24



can only be used in batch mode (e.g., Levenberg-Marquardt), so these algorithms can only be invoked
by train.)

For this case, the input vectors can be in a matrix of concurrent vectors or in a cell array of
sequential vectors. Because the network is static and because train always operates in batch mode,
train converts any cell array of sequential vectors to a matrix of concurrent vectors. Concurrent
mode operation is used whenever possible because it has a more efficient implementation in MATLAB
code:

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

The network is set up in the same way.

net = linearlayer(0,0.01);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.b{1} = 0;

Now you are ready to train the network. Train it for only one epoch, because you used only one pass
of adapt. The default training function for the linear network is trainb, and the default learning
function for the weights and biases is learnwh, so you should get the same results obtained using
adapt in the previous example, where the default adaption function was trains.

net.trainParam.epochs = 1;
net = train(net,P,T);

If you display the weights after one epoch of training, you find

net.IW{1,1}
  ans = 0.4900 0.4100
net.b{1}
  ans =
    0.2300

This is the same result as the batch mode training in adapt. With static networks, the adapt function
can implement incremental or batch training, depending on the format of the input data. If the data is
presented as a matrix of concurrent vectors, batch training occurs. If the data is presented as a
sequence, incremental training occurs. This is not true for train, which always performs batch
training, regardless of the format of the input.

Batch Training with Dynamic Networks

Training static networks is relatively straightforward. If you use train the network is trained in
batch mode and the inputs are converted to concurrent vectors (columns of a matrix), even if they are
originally passed as a sequence (elements of a cell array). If you use adapt, the format of the input
determines the method of training. If the inputs are passed as a sequence, then the network is
trained in incremental mode. If the inputs are passed as concurrent vectors, then batch mode training
is used.

With dynamic networks, batch mode training is typically done with train only, especially if only one
training sequence exists. To illustrate this, consider again the linear network with a delay. Use a
learning rate of 0.02 for the training. (When using a gradient descent algorithm, you typically use a
smaller learning rate for batch mode training than incremental training, because all the individual
gradients are summed before determining the step change to the weights.)

 Neural Network Training Concepts

22-25



net = linearlayer([0 1],0.02);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.IW{1,1} = [0 0];
net.biasConnect = 0;
net.trainParam.epochs = 1;
Pi = {1};
P = {2 3 4};
T = {3 5 6};

You want to train the network with the same sequence used for the incremental training earlier, but
this time you want to update the weights only after all the inputs are applied (batch mode). The
network is simulated in sequential mode, because the input is a sequence, but the weights are
updated in batch mode.

net = train(net,P,T,Pi);

The weights after one epoch of training are

net.IW{1,1}
ans = 0.9000    0.6200

These are different weights than you would obtain using incremental training, where the weights
would be updated three times during one pass through the training set. For batch training the
weights are only updated once in each epoch.

Training Feedback
The showWindow parameter allows you to specify whether a training window is visible when you
train. The training window appears by default. Two other parameters, showCommandLine and show,
determine whether command-line output is generated and the number of epochs between command-
line feedback during training. For instance, this code turns off the training window and gives you
training status information every 35 epochs when the network is later trained with train:

net.trainParam.showWindow = false;
net.trainParam.showCommandLine = true;
net.trainParam.show= 35;

Sometimes it is convenient to disable all training displays. To do that, turn off both the training
window and command-line feedback:

net.trainParam.showWindow = false;
net.trainParam.showCommandLine = false;

The training window appears automatically when you train.

22 Neural Network Objects, Data, and Training Styles

22-26



Multilayer Shallow Neural Networks and
Backpropagation Training

• “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2
• “Multilayer Shallow Neural Network Architecture” on page 23-3
• “Prepare Data for Multilayer Shallow Neural Networks” on page 23-6
• “Choose Neural Network Input-Output Processing Functions” on page 23-7
• “Divide Data for Optimal Neural Network Training” on page 23-9
• “Create, Configure, and Initialize Multilayer Shallow Neural Networks” on page 23-11
• “Train and Apply Multilayer Shallow Neural Networks” on page 23-13
• “Analyze Shallow Neural Network Performance After Training” on page 23-19
• “Limitations and Cautions” on page 23-23

23



Multilayer Shallow Neural Networks and Backpropagation
Training

The shallow multilayer feedforward neural network can be used for both function fitting and pattern
recognition problems. With the addition of a tapped delay line, it can also be used for prediction
problems, as discussed in “Design Time Series Time-Delay Neural Networks” on page 24-12. This
topic shows how you can use a multilayer network. It also illustrates the basic procedures for
designing any neural network.

Note The training functions described in this topic are not limited to multilayer networks. They can
be used to train arbitrary architectures (even custom networks), as long as their components are
differentiable.

The work flow for the general neural network design process has seven primary steps:

1 Collect data
2 Create the network
3 Configure the network
4 Initialize the weights and biases
5 Train the network
6 Validate the network (post-training analysis)
7 Use the network

Step 1 might happen outside the framework of Deep Learning Toolbox software, but this step is
critical to the success of the design process.

Details of this workflow are discussed in these sections:

• “Multilayer Shallow Neural Network Architecture” on page 23-3
• “Prepare Data for Multilayer Shallow Neural Networks” on page 23-6
• “Create, Configure, and Initialize Multilayer Shallow Neural Networks” on page 23-11
• “Train and Apply Multilayer Shallow Neural Networks” on page 23-13
• “Analyze Shallow Neural Network Performance After Training” on page 23-19
• “Use the Network” on page 23-17
• “Limitations and Cautions” on page 23-23

Optional workflow steps are discussed in these sections:

• “Choose Neural Network Input-Output Processing Functions” on page 23-7
• “Divide Data for Optimal Neural Network Training” on page 23-9
• “Shallow Neural Networks with Parallel and GPU Computing” on page 29-2

For time series, dynamic modeling, and prediction, see this section:

• “How Dynamic Neural Networks Work” on page 24-3

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-2



Multilayer Shallow Neural Network Architecture
In this section...
“Neuron Model (logsig, tansig, purelin)” on page 23-3
“Feedforward Neural Network” on page 23-4

This topic presents part of a typical multilayer shallow network workflow. For more information and
other steps, see “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2.

Neuron Model (logsig, tansig, purelin)
An elementary neuron with R inputs is shown below. Each input is weighted with an appropriate w.
The sum of the weighted inputs and the bias forms the input to the transfer function f. Neurons can
use any differentiable transfer function f to generate their output.

Multilayer networks often use the log-sigmoid transfer function logsig.

The function logsig generates outputs between 0 and 1 as the neuron's net input goes from
negative to positive infinity.

Alternatively, multilayer networks can use the tan-sigmoid transfer function tansig.

 Multilayer Shallow Neural Network Architecture

23-3



Sigmoid output neurons are often used for pattern recognition problems, while linear output neurons
are used for function fitting problems. The linear transfer function purelin is shown below.

The three transfer functions described here are the most commonly used transfer functions for
multilayer networks, but other differentiable transfer functions can be created and used if desired.

Feedforward Neural Network
A single-layer network of S logsig neurons having R inputs is shown below in full detail on the left
and with a layer diagram on the right.

Feedforward networks often have one or more hidden layers of sigmoid neurons followed by an
output layer of linear neurons. Multiple layers of neurons with nonlinear transfer functions allow the
network to learn nonlinear relationships between input and output vectors. The linear output layer is
most often used for function fitting (or nonlinear regression) problems.

On the other hand, if you want to constrain the outputs of a network (such as between 0 and 1), then
the output layer should use a sigmoid transfer function (such as logsig). This is the case when the
network is used for pattern recognition problems (in which a decision is being made by the network).

For multiple-layer networks the layer number determines the superscript on the weight matrix. The
appropriate notation is used in the two-layer tansig/purelin network shown next.

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-4



This network can be used as a general function approximator. It can approximate any function with a
finite number of discontinuities arbitrarily well, given sufficient neurons in the hidden layer.

Now that the architecture of the multilayer network has been defined, the design process is described
in the following sections.

 Multilayer Shallow Neural Network Architecture

23-5



Prepare Data for Multilayer Shallow Neural Networks

Tip To learn how to prepare image data for deep learning networks, see “Preprocess Images for
Deep Learning” on page 20-16.

This topic presents part of a typical multilayer network workflow. For more information and other
steps, see “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2.

Before beginning the network design process, you first collect and prepare sample data. It is
generally difficult to incorporate prior knowledge into a neural network, therefore the network can
only be as accurate as the data that are used to train the network.

It is important that the data cover the range of inputs for which the network will be used. Multilayer
networks can be trained to generalize well within the range of inputs for which they have been
trained. However, they do not have the ability to accurately extrapolate beyond this range, so it is
important that the training data span the full range of the input space.

After the data have been collected, there are two steps that need to be performed before the data are
used to train the network: the data need to be preprocessed, and they need to be divided into
subsets.

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-6



Choose Neural Network Input-Output Processing Functions
This topic presents part of a typical multilayer network workflow. For more information and other
steps, see “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2.

Neural network training can be more efficient if you perform certain preprocessing steps on the
network inputs and targets. This section describes several preprocessing routines that you can use.
(The most common of these are provided automatically when you create a network, and they become
part of the network object, so that whenever the network is used, the data coming into the network is
preprocessed in the same way.)

For example, in multilayer networks, sigmoid transfer functions are generally used in the hidden
layers. These functions become essentially saturated when the net input is greater than three (exp
(−3) ≅ 0.05). If this happens at the beginning of the training process, the gradients will be very small,
and the network training will be very slow. In the first layer of the network, the net input is a product
of the input times the weight plus the bias. If the input is very large, then the weight must be very
small in order to prevent the transfer function from becoming saturated. It is standard practice to
normalize the inputs before applying them to the network.

Generally, the normalization step is applied to both the input vectors and the target vectors in the
data set. In this way, the network output always falls into a normalized range. The network output can
then be reverse transformed back into the units of the original target data when the network is put to
use in the field.

It is easiest to think of the neural network as having a preprocessing block that appears between the
input and the first layer of the network and a postprocessing block that appears between the last
layer of the network and the output, as shown in the following figure.

Most of the network creation functions in the toolbox, including the multilayer network creation
functions, such as feedforwardnet, automatically assign processing functions to your network
inputs and outputs. These functions transform the input and target values you provide into values
that are better suited for network training.

You can override the default input and output processing functions by adjusting network properties
after you create the network.

To see a cell array list of processing functions assigned to the input of a network, access this
property:

net.inputs{1}.processFcns

where the index 1 refers to the first input vector. (There is only one input vector for the feedforward
network.) To view the processing functions returned by the output of a two-layer network, access this
network property:

 Choose Neural Network Input-Output Processing Functions

23-7



net.outputs{2}.processFcns

where the index 2 refers to the output vector coming from the second layer. (For the feedforward
network, there is only one output vector, and it comes from the final layer.) You can use these
properties to change the processing functions that you want your network to apply to the inputs and
outputs. However, the defaults usually provide excellent performance.

Several processing functions have parameters that customize their operation. You can access or
change the parameters of the ith input processing function for the network input as follows:

net.inputs{1}.processParams{i}

You can access or change the parameters of the ith output processing function for the network output
associated with the second layer, as follows:

net.outputs{2}.processParams{i}

For multilayer network creation functions, such as feedforwardnet, the default input processing
functions are removeconstantrows and mapminmax. For outputs, the default processing functions
are also removeconstantrows and mapminmax.

The following table lists the most common preprocessing and postprocessing functions. In most
cases, you will not need to use them directly, since the preprocessing steps become part of the
network object. When you simulate or train the network, the preprocessing and postprocessing will
be done automatically.

Function Algorithm
mapminmax Normalize inputs/targets to fall in the range [−1, 1]
mapstd Normalize inputs/targets to have zero mean and unity

variance
processpca Extract principal components from the input vector
fixunknowns Process unknown inputs
removeconstantrows Remove inputs/targets that are constant

Representing Unknown or Don't-Care Targets
Unknown or “don't care” targets can be represented with NaN values. We do not want unknown
target values to have an impact on training, but if a network has several outputs, some elements of
any target vector may be known while others are unknown. One solution would be to remove the
partially unknown target vector and its associated input vector from the training set, but that involves
the loss of the good target values. A better solution is to represent those unknown targets with NaN
values. All the performance functions of the toolbox will ignore those targets for purposes of
calculating performance and derivatives of performance.

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-8



Divide Data for Optimal Neural Network Training
This topic presents part of a typical multilayer network workflow. For more information and other
steps, see “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2.

When training multilayer networks, the general practice is to first divide the data into three subsets.
The first subset is the training set, which is used for computing the gradient and updating the
network weights and biases. The second subset is the validation set. The error on the validation set is
monitored during the training process. The validation error normally decreases during the initial
phase of training, as does the training set error. However, when the network begins to overfit the
data, the error on the validation set typically begins to rise. The network weights and biases are
saved at the minimum of the validation set error. This technique is discussed in more detail in
“Improve Shallow Neural Network Generalization and Avoid Overfitting” on page 29-25.

The test set error is not used during training, but it is used to compare different models. It is also
useful to plot the test set error during the training process. If the error on the test set reaches a
minimum at a significantly different iteration number than the validation set error, this might indicate
a poor division of the data set.

There are four functions provided for dividing data into training, validation and test sets. They are
dividerand (the default), divideblock, divideint, and divideind. The data division is
normally performed automatically when you train the network.

Function Algorithm
dividerand Divide the data randomly (default)
divideblock Divide the data into contiguous blocks
divideint Divide the data using an interleaved selection
divideind Divide the data by index

You can access or change the division function for your network with this property:

net.divideFcn

Each of the division functions takes parameters that customize its behavior. These values are stored
and can be changed with the following network property:

net.divideParam

The divide function is accessed automatically whenever the network is trained, and is used to divide
the data into training, validation and testing subsets. If net.divideFcn is set to 'dividerand'
(the default), then the data is randomly divided into the three subsets using the division parameters
net.divideParam.trainRatio, net.divideParam.valRatio, and
net.divideParam.testRatio. The fraction of data that is placed in the training set is
trainRatio/(trainRatio+valRatio+testRatio), with a similar formula for the other two sets.
The default ratios for training, testing and validation are 0.7, 0.15 and 0.15, respectively.

If net.divideFcn is set to 'divideblock', then the data is divided into three subsets using three
contiguous blocks of the original data set (training taking the first block, validation the second and
testing the third). The fraction of the original data that goes into each subset is determined by the
same three division parameters used for dividerand.

If net.divideFcn is set to 'divideint', then the data is divided by an interleaved method, as in
dealing a deck of cards. It is done so that different percentages of data go into the three subsets. The

 Divide Data for Optimal Neural Network Training

23-9



fraction of the original data that goes into each subset is determined by the same three division
parameters used for dividerand.

When net.divideFcn is set to 'divideind', the data is divided by index. The indices for the three
subsets are defined by the division parameters net.divideParam.trainInd,
net.divideParam.valInd and net.divideParam.testInd. The default assignment for these
indices is the null array, so you must set the indices when using this option.

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-10



Create, Configure, and Initialize Multilayer Shallow Neural
Networks

In this section...
“Other Related Architectures” on page 23-11
“Initializing Weights (init)” on page 23-12

This topic presents part of a typical multilayer shallow network workflow. For more information and
other steps, see “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2.

After the data has been collected, the next step in training a network is to create the network object.
The function feedforwardnet creates a multilayer feedforward network. If this function is invoked
with no input arguments, then a default network object is created that has not been configured. The
resulting network can then be configured with the configure command.

As an example, the file bodyfat_dataset.mat contains a predefined set of input and target vectors.
The input vectors define data regarding physical attributes of people and the target values define
percentage body fat of the people. Load the data using the following command:

load bodyfat_dataset

Loading this file creates two variables. The input matrix bodyfatInputs consists of 252 column
vectors of 13 physical attribute variables for 252 different people. The target matrix
bodyfatTargets consists of the corresponding 252 body fat percentages.

The next step is to create the network. The following call to feedforwardnet creates a two-layer
network with 10 neurons in the hidden layer. (During the configuration step, the number of neurons
in the output layer is set to one, which is the number of elements in each vector of targets.)

net = feedforwardnet;
net = configure(net, bodyfatInputs, bodyfatTargets);

Optional arguments can be provided to feedforwardnet. For instance, the first argument is an
array containing the number of neurons in each hidden layer. (The default setting is 10, which means
one hidden layer with 10 neurons. One hidden layer generally produces excellent results, but you
may want to try two hidden layers, if the results with one are not adequate. Increasing the number of
neurons in the hidden layer increases the power of the network, but requires more computation and
is more likely to produce overfitting.) The second argument contains the name of the training
function to be used. If no arguments are supplied, the default number of layers is 2, the default
number of neurons in the hidden layer is 10, and the default training function is trainlm. The
default transfer function for hidden layers is tansig and the default for the output layer is purelin.

The configure command configures the network object and also initializes the weights and biases of
the network; therefore the network is ready for training. There are times when you might want to
reinitialize the weights, or to perform a custom initialization. “Initializing Weights (init)” on page 23-
12 explains the details of the initialization process. You can also skip the configuration step and go
directly to training the network. The train command will automatically configure the network and
initialize the weights.

Other Related Architectures
While two-layer feedforward networks can potentially learn virtually any input-output relationship,
feedforward networks with more layers might learn complex relationships more quickly. For most

 Create, Configure, and Initialize Multilayer Shallow Neural Networks

23-11



problems, it is best to start with two layers, and then increase to three layers, if the performance with
two layers is not satisfactory.

The function cascadeforwardnet creates cascade-forward networks. These are similar to
feedforward networks, but include a weight connection from the input to each layer, and from each
layer to the successive layers. For example, a three-layer network has connections from layer 1 to
layer 2, layer 2 to layer 3, and layer 1 to layer 3. The three-layer network also has connections from
the input to all three layers. The additional connections might improve the speed at which the
network learns the desired relationship.

The function patternnet creates a network that is very similar to feedforwardnet, except that it
uses the tansig transfer function in the last layer. This network is generally used for pattern
recognition. Other networks can learn dynamic or time-series relationships.

Initializing Weights (init)
Before training a feedforward network, you must initialize the weights and biases. The configure
command automatically initializes the weights, but you might want to reinitialize them. You do this
with the init command. This function takes a network object as input and returns a network object
with all weights and biases initialized. Here is how a network is initialized (or reinitialized):

net = init(net);

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-12



Train and Apply Multilayer Shallow Neural Networks
In this section...
“Training Algorithms” on page 23-13
“Training Example” on page 23-15
“Use the Network” on page 23-17

Tip To train a deep learning network, use trainNetwork.

This topic presents part of a typical multilayer shallow network workflow. For more information and
other steps, see “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2.

When the network weights and biases are initialized, the network is ready for training. The multilayer
feedforward network can be trained for function approximation (nonlinear regression) or pattern
recognition. The training process requires a set of examples of proper network behavior—network
inputs p and target outputs t.

The process of training a neural network involves tuning the values of the weights and biases of the
network to optimize network performance, as defined by the network performance function
net.performFcn. The default performance function for feedforward networks is mean square error
mse—the average squared error between the network outputs a and the target outputs t. It is
defined as follows:

F = mse = 1
N ∑i = 1

N
(ei)2 = 1

N ∑i = 1

N
(ti− ai)2

(Individual squared errors can also be weighted. See “Train Neural Networks with Error Weights” on
page 24-41.) There are two different ways in which training can be implemented: incremental mode
and batch mode. In incremental mode, the gradient is computed and the weights are updated after
each input is applied to the network. In batch mode, all the inputs in the training set are applied to
the network before the weights are updated. This topic describes batch mode training with the train
command. Incremental training with the adapt command is discussed in “Incremental Training with
adapt” on page 22-22. For most problems, when using the Deep Learning Toolbox software, batch
training is significantly faster and produces smaller errors than incremental training.

For training multilayer feedforward networks, any standard numerical optimization algorithm can be
used to optimize the performance function, but there are a few key ones that have shown excellent
performance for neural network training. These optimization methods use either the gradient of the
network performance with respect to the network weights, or the Jacobian of the network errors with
respect to the weights.

The gradient and the Jacobian are calculated using a technique called the backpropagation algorithm,
which involves performing computations backward through the network. The backpropagation
computation is derived using the chain rule of calculus and is described in Chapters 11 (for the
gradient) and 12 (for the Jacobian) of [HDB96 on page 33-2].

Training Algorithms
As an illustration of how the training works, consider the simplest optimization algorithm — gradient
descent. It updates the network weights and biases in the direction in which the performance

 Train and Apply Multilayer Shallow Neural Networks

23-13



function decreases most rapidly, the negative of the gradient. One iteration of this algorithm can be
written as

xk + 1 = xk− αkgk

where xk is a vector of current weights and biases, gk is the current gradient, and αk is the learning
rate. This equation is iterated until the network converges.

A list of the training algorithms that are available in the Deep Learning Toolbox software and that use
gradient- or Jacobian-based methods, is shown in the following table.

For a detailed description of several of these techniques, see also Hagan, M.T., H.B. Demuth, and
M.H. Beale, Neural Network Design, Boston, MA: PWS Publishing, 1996, Chapters 11 and 12.

Function Algorithm
trainlm Levenberg-Marquardt
trainbr Bayesian Regularization
trainbfg BFGS Quasi-Newton
trainrp Resilient Backpropagation
trainscg Scaled Conjugate Gradient
traincgb Conjugate Gradient with Powell/Beale Restarts
traincgf Fletcher-Powell Conjugate Gradient
traincgp Polak-Ribiére Conjugate Gradient
trainoss One Step Secant
traingdx Variable Learning Rate Gradient Descent
traingdm Gradient Descent with Momentum
traingd Gradient Descent

The fastest training function is generally trainlm, and it is the default training function for
feedforwardnet. The quasi-Newton method, trainbfg, is also quite fast. Both of these methods
tend to be less efficient for large networks (with thousands of weights), since they require more
memory and more computation time for these cases. Also, trainlm performs better on function
fitting (nonlinear regression) problems than on pattern recognition problems.

When training large networks, and when training pattern recognition networks, trainscg and
trainrp are good choices. Their memory requirements are relatively small, and yet they are much
faster than standard gradient descent algorithms.

See “Choose a Multilayer Neural Network Training Function” on page 29-14 for a full comparison of
the performances of the training algorithms shown in the table above.

As a note on terminology, the term “backpropagation” is sometimes used to refer specifically to the
gradient descent algorithm, when applied to neural network training. That terminology is not used
here, since the process of computing the gradient and Jacobian by performing calculations backward
through the network is applied in all of the training functions listed above. It is clearer to use the
name of the specific optimization algorithm that is being used, rather than to use the term
backpropagation alone.

Also, the multilayer network is sometimes referred to as a backpropagation network. However, the
backpropagation technique that is used to compute gradients and Jacobians in a multilayer network

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-14



can also be applied to many different network architectures. In fact, the gradients and Jacobians for
any network that has differentiable transfer functions, weight functions and net input functions can
be computed using the Deep Learning Toolbox software through a backpropagation process. You can
even create your own custom networks and then train them using any of the training functions in the
table above. The gradients and Jacobians will be automatically computed for you.

Training Example
To illustrate the training process, execute the following commands:

load bodyfat_dataset
net = feedforwardnet(20);
[net,tr] = train(net,bodyfatInputs,bodyfatTargets);

 Train and Apply Multilayer Shallow Neural Networks

23-15



Notice that you did not need to issue the configure command, because the configuration is done
automatically by the train function. The training window will appear during training, as shown in
the following figure. (If you do not want to have this window displayed during training, you can set
the parameter net.trainParam.showWindow to false. If you want training information displayed
in the command line, you can set the parameter net.trainParam.showCommandLine to true.)

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-16



This window shows that the data has been divided using the dividerand function, and the
Levenberg-Marquardt (trainlm) training method has been used with the mean square error
performance function. Recall that these are the default settings for feedforwardnet.

During training, the progress is constantly updated in the training window. Of most interest are the
performance, the magnitude of the gradient of performance and the number of validation checks. The
magnitude of the gradient and the number of validation checks are used to terminate the training.
The gradient will become very small as the training reaches a minimum of the performance. If the
magnitude of the gradient is less than 1e-5, the training will stop. This limit can be adjusted by
setting the parameter net.trainParam.min_grad. The number of validation checks represents the
number of successive iterations that the validation performance fails to decrease. If this number
reaches 6 (the default value), the training will stop. In this run, you can see that the training did stop
because of the number of validation checks. You can change this criterion by setting the parameter
net.trainParam.max_fail. (Note that your results may be different than those shown in the
training figure, because of the random setting of the initial weights and biases.)

There are other criteria that can be used to stop network training. They are listed in the following
table.

Parameter Stopping Criteria
min_grad Minimum Gradient Magnitude
max_fail Maximum Number of Validation Increases
time Maximum Training Time
goal Minimum Performance Value
epochs Maximum Number of Training Epochs (Iterations)

The training will also stop if you click the stop button in the training window. You might want to do
this if the performance function fails to decrease significantly over many iterations. It is always
possible to continue the training by reissuing the train command shown above. It will continue to
train the network from the completion of the previous run.

From the training window, you can access four plots: performance, training state, error histogram,
and regression. The performance plot shows the value of the performance function versus the
iteration number. It plots training, validation, and test performances. The training state plot shows
the progress of other training variables, such as the gradient magnitude, the number of validation
checks, etc. The error histogram plot shows the distribution of the network errors. The regression
plot shows a regression between network outputs and network targets. You can use the histogram
and regression plots to validate network performance, as is discussed in “Analyze Shallow Neural
Network Performance After Training” on page 23-19.

Use the Network
After the network is trained and validated, the network object can be used to calculate the network
response to any input. For example, if you want to find the network response to the fifth input vector
in the building data set, you can use the following

a = net(bodyfatInputs(:,5))

a =

   27.3740

 Train and Apply Multilayer Shallow Neural Networks

23-17



If you try this command, your output might be different, depending on the state of your random
number generator when the network was initialized. Below, the network object is called to calculate
the outputs for a concurrent set of all the input vectors in the body fat data set. This is the batch
mode form of simulation, in which all the input vectors are placed in one matrix. This is much more
efficient than presenting the vectors one at a time.

a = net(bodyfatInputs);

Each time a neural network is trained, can result in a different solution due to different initial weight
and bias values and different divisions of data into training, validation, and test sets. As a result,
different neural networks trained on the same problem can give different outputs for the same input.
To ensure that a neural network of good accuracy has been found, retrain several times.

There are several other techniques for improving upon initial solutions if higher accuracy is desired.
For more information, see “Improve Shallow Neural Network Generalization and Avoid Overfitting”
on page 29-25.

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-18



Analyze Shallow Neural Network Performance After Training
This topic presents part of a typical shallow neural network workflow. For more information and other
steps, see “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2. To
learn about how to monitor deep learning training progress, see “Monitor Deep Learning Training
Progress” on page 5-192.

When the training in “Train and Apply Multilayer Shallow Neural Networks” on page 23-13 is
complete, you can check the network performance and determine if any changes need to be made to
the training process, the network architecture, or the data sets. First check the training record, tr,
which was the second argument returned from the training function.

tr

tr = struct with fields:
        trainFcn: 'trainlm'
      trainParam: [1x1 struct]
      performFcn: 'mse'
    performParam: [1x1 struct]
        derivFcn: 'defaultderiv'
       divideFcn: 'dividerand'
      divideMode: 'sample'
     divideParam: [1x1 struct]
        trainInd: [2 3 5 6 9 10 11 13 14 15 18 19 20 22 23 24 25 29 30 31 33 35 36 38 39 40 41 44 45 46 47 48 49 50 51 52 54 55 56 57 58 59 62 64 65 66 68 70 73 76 77 79 80 81 84 85 86 88 90 91 92 93 94 95 96 97 98 99 100 101 102 103 107 108 109 ... ]
          valInd: [1 8 17 21 27 28 34 43 63 71 72 74 75 83 106 124 125 134 140 155 157 158 162 165 166 175 177 181 187 191 196 201 205 212 233 243 245 250]
         testInd: [4 7 12 16 26 32 37 42 53 60 61 67 69 78 82 87 89 104 105 110 111 112 133 135 149 151 153 163 170 189 203 216 217 222 226 235 246 247]
            stop: 'Training finished: Met validation criterion'
      num_epochs: 9
       trainMask: {[NaN 1 1 NaN 1 1 NaN NaN 1 1 1 NaN 1 1 1 NaN NaN 1 1 1 NaN 1 1 1 1 NaN NaN NaN 1 1 1 NaN 1 NaN 1 1 NaN 1 1 1 1 NaN NaN 1 1 1 1 1 1 1 1 1 NaN 1 1 1 1 1 1 NaN NaN 1 NaN 1 1 1 NaN 1 NaN 1 NaN NaN 1 NaN NaN 1 1 NaN 1 1 1 NaN NaN 1 1 ... ]}
         valMask: {[1 NaN NaN NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN NaN NaN 1 NaN NaN NaN 1 NaN NaN NaN NaN NaN 1 1 NaN NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... ]}
        testMask: {[NaN NaN NaN 1 NaN NaN 1 NaN NaN NaN NaN 1 NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN 1 NaN NaN NaN NaN 1 NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN 1 1 NaN ... ]}
      best_epoch: 3
            goal: 0
          states: {'epoch'  'time'  'perf'  'vperf'  'tperf'  'mu'  'gradient'  'val_fail'}
           epoch: [0 1 2 3 4 5 6 7 8 9]
            time: [3.2070 3.3690 3.3800 3.3940 3.4060 3.4170 3.4270 3.4370 3.4480 3.4590]
            perf: [672.2031 94.8128 43.7489 12.3078 9.7063 8.9212 8.0412 7.3500 6.7890 6.3064]
           vperf: [675.3788 76.9621 74.0752 16.6857 19.9424 23.4096 26.6791 29.1562 31.1592 32.9227]
           tperf: [599.2224 97.7009 79.1240 24.1796 31.6290 38.4484 42.7637 44.4194 44.8848 44.3171]
              mu: [1.0000e-03 0.0100 0.0100 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000]
        gradient: [2.4114e+03 867.8889 301.7333 142.1049 12.4011 85.0504 49.4147 17.4011 15.7749 14.6346]
        val_fail: [0 0 0 0 1 2 3 4 5 6]
       best_perf: 12.3078
      best_vperf: 16.6857
      best_tperf: 24.1796

This structure contains all of the information concerning the training of the network. For example,
tr.trainInd, tr.valInd and tr.testInd contain the indices of the data points that were used in
the training, validation and test sets, respectively. If you want to retrain the network using the same
division of data, you can set net.divideFcn to 'divideInd', net.divideParam.trainInd to
tr.trainInd, net.divideParam.valInd to tr.valInd, net.divideParam.testInd to
tr.testInd.

The tr structure also keeps track of several variables during the course of training, such as the value
of the performance function, the magnitude of the gradient, etc. You can use the training record to
plot the performance progress by using the plotperf command:

 Analyze Shallow Neural Network Performance After Training

23-19



plotperf(tr)

The property tr.best_epoch indicates the iteration at which the validation performance reached a
minimum. The training continued for 6 more iterations before the training stopped.

This figure does not indicate any major problems with the training. The validation and test curves are
very similar. If the test curve had increased significantly before the validation curve increased, then it
is possible that some overfitting might have occurred.

The next step in validating the network is to create a regression plot, which shows the relationship
between the outputs of the network and the targets. If the training were perfect, the network outputs
and the targets would be exactly equal, but the relationship is rarely perfect in practice. For the body
fat example, we can create a regression plot with the following commands. The first command
calculates the trained network response to all of the inputs in the data set. The following six
commands extract the outputs and targets that belong to the training, validation and test subsets.
The final command creates three regression plots for training, testing and validation.

bodyfatOutputs = net(bodyfatInputs);
trOut = bodyfatOutputs(tr.trainInd);
vOut = bodyfatOutputs(tr.valInd);
tsOut = bodyfatOutputs(tr.testInd);
trTarg = bodyfatTargets(tr.trainInd);
vTarg = bodyfatTargets(tr.valInd);
tsTarg = bodyfatTargets(tr.testInd);
plotregression(trTarg, trOut, 'Train', vTarg, vOut, 'Validation', tsTarg, tsOut, 'Testing')

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-20



The three plots represent the training, validation, and testing data. The dashed line in each plot
represents the perfect result – outputs = targets. The solid line represents the best fit linear
regression line between outputs and targets. The R value is an indication of the relationship between
the outputs and targets. If R = 1, this indicates that there is an exact linear relationship between
outputs and targets. If R is close to zero, then there is no linear relationship between outputs and
targets.

 Analyze Shallow Neural Network Performance After Training

23-21



For this example, the training data indicates a good fit. The validation and test results also show large
R values. The scatter plot is helpful in showing that certain data points have poor fits. For example,
there is a data point in the test set whose network output is close to 35, while the corresponding
target value is about 12. The next step would be to investigate this data point to determine if it
represents extrapolation (i.e., is it outside of the training data set). If so, then it should be included in
the training set, and additional data should be collected to be used in the test set.

Improving Results
If the network is not sufficiently accurate, you can try initializing the network and the training again.
Each time your initialize a feedforward network, the network parameters are different and might
produce different solutions.

net = init(net);
net = train(net, bodyfatInputs, bodyfatTargets);

As a second approach, you can increase the number of hidden neurons above 20. Larger numbers of
neurons in the hidden layer give the network more flexibility because the network has more
parameters it can optimize. (Increase the layer size gradually. If you make the hidden layer too large,
you might cause the problem to be under-characterized and the network must optimize more
parameters than there are data vectors to constrain these parameters.)

A third option is to try a different training function. Bayesian regularization training with trainbr,
for example, can sometimes produce better generalization capability than using early stopping.

Finally, try using additional training data. Providing additional data for the network is more likely to
produce a network that generalizes well to new data.

23 Multilayer Shallow Neural Networks and Backpropagation Training

23-22



Limitations and Cautions
You would normally use Levenberg-Marquardt training for small and medium size networks, if you
have enough memory available. If memory is a problem, then there are a variety of other fast
algorithms available. For large networks you will probably want to use trainscg or trainrp.

Multilayer networks are capable of performing just about any linear or nonlinear computation, and
they can approximate any reasonable function arbitrarily well. However, while the network being
trained might theoretically be capable of performing correctly, backpropagation and its variations
might not always find a solution. See page 12-8 of [HDB96 on page 33-2] for a discussion of
convergence to local minimum points.

The error surface of a nonlinear network is more complex than the error surface of a linear network.
To understand this complexity, see the figures on pages 12-5 to 12-7 of [HDB96 on page 33-2],
which show three different error surfaces for a multilayer network. The problem is that nonlinear
transfer functions in multilayer networks introduce many local minima in the error surface. As
gradient descent is performed on the error surface, depending on the initial starting conditions, it is
possible for the network solution to become trapped in one of these local minima. Settling in a local
minimum can be good or bad depending on how close the local minimum is to the global minimum
and how low an error is required. In any case, be cautioned that although a multilayer
backpropagation network with enough neurons can implement just about any function,
backpropagation does not always find the correct weights for the optimum solution. You might want
to reinitialize the network and retrain several times to guarantee that you have the best solution.

Networks are also sensitive to the number of neurons in their hidden layers. Too few neurons can
lead to underfitting. Too many neurons can contribute to overfitting, in which all training points are
well fitted, but the fitting curve oscillates wildly between these points. Ways of dealing with various of
these issues are discussed in “Improve Shallow Neural Network Generalization and Avoid
Overfitting” on page 29-25. This topic is also discussed starting on page 11-21 of [HDB96 on page
33-2].

For more information about the workflow with multilayer networks, see “Multilayer Shallow Neural
Networks and Backpropagation Training” on page 23-2.

 Limitations and Cautions

23-23





Dynamic Neural Networks

• “Introduction to Dynamic Neural Networks” on page 24-2
• “How Dynamic Neural Networks Work” on page 24-3
• “Design Time Series Time-Delay Neural Networks” on page 24-12
• “Design Time Series Distributed Delay Neural Networks” on page 24-16
• “Design Time Series NARX Feedback Neural Networks” on page 24-18
• “Design Layer-Recurrent Neural Networks” on page 24-26
• “Create Reference Model Controller with MATLAB Script” on page 24-29
• “Multiple Sequences with Dynamic Neural Networks” on page 24-38
• “Neural Network Time-Series Utilities” on page 24-39
• “Train Neural Networks with Error Weights” on page 24-41
• “Normalize Errors of Multiple Outputs” on page 24-45
• “Multistep Neural Network Prediction” on page 24-52

24



Introduction to Dynamic Neural Networks
Neural networks can be classified into dynamic and static categories. Static (feedforward) networks
have no feedback elements and contain no delays; the output is calculated directly from the input
through feedforward connections. In dynamic networks, the output depends not only on the current
input to the network, but also on the current or previous inputs, outputs, or states of the network.

Details of this workflow are discussed in the following sections:

• “Design Time Series Time-Delay Neural Networks” on page 24-12
• “Prepare Input and Layer Delay States” on page 24-15
• “Design Time Series Distributed Delay Neural Networks” on page 24-16
• “Design Time Series NARX Feedback Neural Networks” on page 24-18
• “Design Layer-Recurrent Neural Networks” on page 24-26

Optional workflow steps are discussed in these sections:

• “Choose Neural Network Input-Output Processing Functions” on page 23-7
• “Divide Data for Optimal Neural Network Training” on page 23-9
• “Train Neural Networks with Error Weights” on page 24-41

24 Dynamic Neural Networks

24-2



How Dynamic Neural Networks Work
In this section...
“Feedforward and Recurrent Neural Networks” on page 24-3
“Applications of Dynamic Networks” on page 24-9
“Dynamic Network Structures” on page 24-10
“Dynamic Network Training” on page 24-11

Feedforward and Recurrent Neural Networks
Dynamic networks can be divided into two categories: those that have only feedforward connections,
and those that have feedback, or recurrent, connections. To understand the differences between
static, feedforward-dynamic, and recurrent-dynamic networks, create some networks and see how
they respond to an input sequence. (First, you might want to review “Simulation with Sequential
Inputs in a Dynamic Network” on page 22-19.)

The following commands create a pulse input sequence and plot it:

p = {0 0 1 1 1 1 0 0 0 0 0 0};
stem(cell2mat(p))

Now create a static network and find the network response to the pulse sequence. The following
commands create a simple linear network with one layer, one neuron, no bias, and a weight of 2:

 How Dynamic Neural Networks Work

24-3



net = linearlayer;
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;
net.IW{1,1} = 2;

view(net)

You can now simulate the network response to the pulse input and plot it:

a = net(p);
stem(cell2mat(a))

24 Dynamic Neural Networks

24-4



Note that the response of the static network lasts just as long as the input pulse. The response of the
static network at any time point depends only on the value of the input sequence at that same time
point.

Now create a dynamic network, but one that does not have any feedback connections (a nonrecurrent
network). You can use the same network used in “Simulation with Concurrent Inputs in a Dynamic
Network” on page 22-20, which was a linear network with a tapped delay line on the input:

net = linearlayer([0 1]);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;
net.IW{1,1} = [1 1];

view(net)

 How Dynamic Neural Networks Work

24-5



You can again simulate the network response to the pulse input and plot it:

a = net(p);
stem(cell2mat(a))

24 Dynamic Neural Networks

24-6



The response of the dynamic network lasts longer than the input pulse. The dynamic network has
memory. Its response at any given time depends not only on the current input, but also on the history
of the input sequence. If the network does not have any feedback connections, then only a finite
amount of history will affect the response. In this figure you can see that the response to the pulse
lasts one time step beyond the pulse duration. That is because the tapped delay line on the input has
a maximum delay of 1.

Now consider a simple recurrent-dynamic network, shown in the following figure.

You can create the network, view it and simulate it with the following commands. The narxnet
command is discussed in “Design Time Series NARX Feedback Neural Networks” on page 24-18.

net = narxnet(0,1,[],'closed');
net.inputs{1}.size = 1;

 How Dynamic Neural Networks Work

24-7



net.layers{1}.dimensions = 1;
net.biasConnect = 0;
net.LW{1} = .5;
net.IW{1} = 1;
view(net)

The following commands plot the network response.

a = net(p);
stem(cell2mat(a))

24 Dynamic Neural Networks

24-8



Notice that recurrent-dynamic networks typically have a longer response than feedforward-dynamic
networks. For linear networks, feedforward-dynamic networks are called finite impulse response
(FIR), because the response to an impulse input will become zero after a finite amount of time. Linear
recurrent-dynamic networks are called infinite impulse response (IIR), because the response to an
impulse can decay to zero (for a stable network), but it will never become exactly equal to zero. An
impulse response for a nonlinear network cannot be defined, but the ideas of finite and infinite
responses do carry over.

Applications of Dynamic Networks
Dynamic networks are generally more powerful than static networks (although somewhat more
difficult to train). Because dynamic networks have memory, they can be trained to learn sequential or
time-varying patterns. This has applications in such disparate areas as prediction in financial markets
[RoJa96 on page 33-2], channel equalization in communication systems [FeTs03 on page 33-2],
phase detection in power systems [KaGr96 on page 33-2], sorting [JaRa04 on page 33-2], fault
detection [ChDa99 on page 33-2], speech recognition [Robin94 on page 33-2], and even the
prediction of protein structure in genetics [GiPr02 on page 33-2]. You can find a discussion of many
more dynamic network applications in [MeJa00 on page 33-2].

One principal application of dynamic neural networks is in control systems. This application is
discussed in detail in “Neural Network Control Systems”. Dynamic networks are also well suited for
filtering. You will see the use of some linear dynamic networks for filtering in and some of those ideas
are extended in this topic, using nonlinear dynamic networks.

 How Dynamic Neural Networks Work

24-9



Dynamic Network Structures
The Deep Learning Toolbox software is designed to train a class of network called the Layered Digital
Dynamic Network (LDDN). Any network that can be arranged in the form of an LDDN can be trained
with the toolbox. Here is a basic description of the LDDN.

Each layer in the LDDN is made up of the following parts:

• Set of weight matrices that come into that layer (which can connect from other layers or from
external inputs), associated weight function rule used to combine the weight matrix with its input
(normally standard matrix multiplication, dotprod), and associated tapped delay line

• Bias vector
• Net input function rule that is used to combine the outputs of the various weight functions with

the bias to produce the net input (normally a summing junction, netprod)
• Transfer function

The network has inputs that are connected to special weights, called input weights, and denoted by
IWi,j (net.IW{i,j} in the code), where j denotes the number of the input vector that enters the
weight, and i denotes the number of the layer to which the weight is connected. The weights
connecting one layer to another are called layer weights and are denoted by LWi,j (net.LW{i,j} in
the code), where j denotes the number of the layer coming into the weight and i denotes the number
of the layer at the output of the weight.

The following figure is an example of a three-layer LDDN. The first layer has three weights associated
with it: one input weight, a layer weight from layer 1, and a layer weight from layer 3. The two layer
weights have tapped delay lines associated with them.

The Deep Learning Toolbox software can be used to train any LDDN, so long as the weight functions,
net input functions, and transfer functions have derivatives. Most well-known dynamic network
architectures can be represented in LDDN form. In the remainder of this topic you will see how to
use some simple commands to create and train several very powerful dynamic networks. Other LDDN
networks not covered in this topic can be created using the generic network command, as explained
in “Define Shallow Neural Network Architectures”.

24 Dynamic Neural Networks

24-10



Dynamic Network Training
Dynamic networks are trained in the Deep Learning Toolbox software using the same gradient-based
algorithms that were described in “Multilayer Shallow Neural Networks and Backpropagation
Training” on page 23-2. You can select from any of the training functions that were presented in that
topic. Examples are provided in the following sections.

Although dynamic networks can be trained using the same gradient-based algorithms that are used
for static networks, the performance of the algorithms on dynamic networks can be quite different,
and the gradient must be computed in a more complex way. Consider again the simple recurrent
network shown in this figure.

The weights have two different effects on the network output. The first is the direct effect, because a
change in the weight causes an immediate change in the output at the current time step. (This first
effect can be computed using standard backpropagation.) The second is an indirect effect, because
some of the inputs to the layer, such as a(t − 1), are also functions of the weights. To account for this
indirect effect, you must use dynamic backpropagation to compute the gradients, which is more
computationally intensive. (See [DeHa01a on page 33-2], [DeHa01b on page 33-2] and [DeHa07
on page 33-2].) Expect dynamic backpropagation to take more time to train, in part for this reason.
In addition, the error surfaces for dynamic networks can be more complex than those for static
networks. Training is more likely to be trapped in local minima. This suggests that you might need to
train the network several times to achieve an optimal result. See [DHH01 on page 33-2] and
[HDH09 on page 33-2] for some discussion on the training of dynamic networks.

The remaining sections of this topic show how to create, train, and apply certain dynamic networks to
modeling, detection, and forecasting problems. Some of the networks require dynamic
backpropagation for computing the gradients and others do not. As a user, you do not need to decide
whether or not dynamic backpropagation is needed. This is determined automatically by the software,
which also decides on the best form of dynamic backpropagation to use. You just need to create the
network and then invoke the standard train command.

 How Dynamic Neural Networks Work

24-11



Design Time Series Time-Delay Neural Networks

Begin with the most straightforward dynamic network, which consists of a feedforward network with
a tapped delay line at the input. This is called the focused time-delay neural network (FTDNN). This is
part of a general class of dynamic networks, called focused networks, in which the dynamics appear
only at the input layer of a static multilayer feedforward network. The following figure illustrates a
two-layer FTDNN.

This network is well suited to time-series prediction. The following example the use of the FTDNN for
predicting a classic time series.

The following figure is a plot of normalized intensity data recorded from a Far-Infrared-Laser in a
chaotic state. This is a part of one of several sets of data used for the Santa Fe Time Series
Competition [WeGe94 on page 33-2]. In the competition, the objective was to use the first 1000
points of the time series to predict the next 100 points. Because our objective is simply to illustrate
how to use the FTDNN for prediction, the network is trained here to perform one-step-ahead
predictions. (You can use the resulting network for multistep-ahead predictions by feeding the
predictions back to the input of the network and continuing to iterate.)

The first step is to load the data, normalize it, and convert it to a time sequence (represented by a cell
array):

y = laser_dataset;
y = y(1:600);

24 Dynamic Neural Networks

24-12



Now create the FTDNN network, using the timedelaynet command. This command is similar to the
feedforwardnet command, with the additional input of the tapped delay line vector (the first input).
For this example, use a tapped delay line with delays from 1 to 8, and use ten neurons in the hidden
layer:

ftdnn_net = timedelaynet([1:8],10);
ftdnn_net.trainParam.epochs = 1000;
ftdnn_net.divideFcn = '';

Arrange the network inputs and targets for training. Because the network has a tapped delay line
with a maximum delay of 8, begin by predicting the ninth value of the time series. You also need to
load the tapped delay line with the eight initial values of the time series (contained in the variable
Pi):

p = y(9:end);
t = y(9:end);
Pi=y(1:8);
ftdnn_net = train(ftdnn_net,p,t,Pi);

Notice that the input to the network is the same as the target. Because the network has a minimum
delay of one time step, this means that you are performing a one-step-ahead prediction.

During training, the following training window appears.

Training stopped because the maximum epoch was reached. From this window, you can display the
response of the network by clicking Time-Series Response. The following figure appears.

 Design Time Series Time-Delay Neural Networks

24-13



Now simulate the network and determine the prediction error.

yp = ftdnn_net(p,Pi);
e = gsubtract(yp,t);
rmse = sqrt(mse(e))

rmse =
    0.9740

(Note that gsubtract is a general subtraction function that can operate on cell arrays.) This result is
much better than you could have obtained using a linear predictor. You can verify this with the
following commands, which design a linear filter with the same tapped delay line input as the
previous FTDNN.

lin_net = linearlayer([1:8]);
lin_net.trainFcn='trainlm';
[lin_net,tr] = train(lin_net,p,t,Pi);
lin_yp = lin_net(p,Pi);
lin_e = gsubtract(lin_yp,t);
lin_rmse = sqrt(mse(lin_e))

lin_rmse =
    21.1386

The rms error is 21.1386 for the linear predictor, but 0.9740 for the nonlinear FTDNN predictor.

One nice feature of the FTDNN is that it does not require dynamic backpropagation to compute the
network gradient. This is because the tapped delay line appears only at the input of the network, and
contains no feedback loops or adjustable parameters. For this reason, you will find that this network
trains faster than other dynamic networks.

24 Dynamic Neural Networks

24-14



If you have an application for a dynamic network, try the linear network first (linearlayer) and
then the FTDNN (timedelaynet). If neither network is satisfactory, try one of the more complex
dynamic networks discussed in the remainder of this topic.

Each time a neural network is trained, can result in a different solution due to different initial weight
and bias values and different divisions of data into training, validation, and test sets. As a result,
different neural networks trained on the same problem can give different outputs for the same input.
To ensure that a neural network of good accuracy has been found, retrain several times.

There are several other techniques for improving upon initial solutions if higher accuracy is desired.
For more information, see “Improve Shallow Neural Network Generalization and Avoid Overfitting”
on page 29-25.

Prepare Input and Layer Delay States
You will notice in the last section that for dynamic networks there is a significant amount of data
preparation that is required before training or simulating the network. This is because the tapped
delay lines in the network need to be filled with initial conditions, which requires that part of the
original data set be removed and shifted. There is a toolbox function that facilitates the data
preparation for dynamic (time series) networks - preparets. For example, the following lines:

p = y(9:end);
t = y(9:end);
Pi = y(1:8);

can be replaced with

[p,Pi,Ai,t] = preparets(ftdnn_net,y,y);

The preparets function uses the network object to determine how to fill the tapped delay lines with
initial conditions, and how to shift the data to create the correct inputs and targets to use in training
or simulating the network. The general form for invoking preparets is

[X,Xi,Ai,T,EW,shift] = preparets(net,inputs,targets,feedback,EW)

The input arguments for preparets are the network object (net), the external (non-feedback) input
to the network (inputs), the non-feedback target (targets), the feedback target (feedback), and
the error weights (EW) (see “Train Neural Networks with Error Weights” on page 24-41). The
difference between external and feedback signals will become clearer when the NARX network is
described in “Design Time Series NARX Feedback Neural Networks” on page 24-18. For the FTDNN
network, there is no feedback signal.

The return arguments for preparets are the time shift between network inputs and outputs
(shift), the network input for training and simulation (X), the initial inputs (Xi) for loading the
tapped delay lines for input weights, the initial layer outputs (Ai) for loading the tapped delay lines
for layer weights, the training targets (T), and the error weights (EW).

Using preparets eliminates the need to manually shift inputs and targets and load tapped delay lines.
This is especially useful for more complex networks.

 Design Time Series Time-Delay Neural Networks

24-15



Design Time Series Distributed Delay Neural Networks

The FTDNN had the tapped delay line memory only at the input to the first layer of the static
feedforward network. You can also distribute the tapped delay lines throughout the network. The
distributed TDNN was first introduced in [WaHa89 on page 33-2] for phoneme recognition. The
original architecture was very specialized for that particular problem. The following figure shows a
general two-layer distributed TDNN.

This network can be used for a simplified problem that is similar to phoneme recognition. The
network will attempt to recognize the frequency content of an input signal. The following figure
shows a signal in which one of two frequencies is present at any given time.

The following code creates this signal and a target network output. The target output is 1 when the
input is at the low frequency and -1 when the input is at the high frequency.

time = 0:99;
y1 = sin(2*pi*time/10);
y2 = sin(2*pi*time/5);
y = [y1 y2 y1 y2];
t1 = ones(1,100);
t2 = -ones(1,100);
t = [t1 t2 t1 t2];

Now create the distributed TDNN network with the distdelaynet function. The only difference
between the distdelaynet function and the timedelaynet function is that the first input

24 Dynamic Neural Networks

24-16



argument is a cell array that contains the tapped delays to be used in each layer. In the next example,
delays of zero to four are used in layer 1 and zero to three are used in layer 2. (To add some variety,
the training function trainbr is used in this example instead of the default, which is trainlm. You
can use any training function discussed in “Multilayer Shallow Neural Networks and
Backpropagation Training” on page 23-2.)

d1 = 0:4;
d2 = 0:3;
p = con2seq(y);
t = con2seq(t);
dtdnn_net = distdelaynet({d1,d2},5);
dtdnn_net.trainFcn = 'trainbr';
dtdnn_net.divideFcn = '';
dtdnn_net.trainParam.epochs = 100;
dtdnn_net = train(dtdnn_net,p,t);
yp = sim(dtdnn_net,p);
plotresponse(t,yp)

The network is able to accurately distinguish the two “phonemes.”

You will notice that the training is generally slower for the distributed TDNN network than for the
FTDNN. This is because the distributed TDNN must use dynamic backpropagation.

 Design Time Series Distributed Delay Neural Networks

24-17



Design Time Series NARX Feedback Neural Networks

To see examples of using NARX networks being applied in open-loop form, closed-loop form and open/
closed-loop multistep prediction see “Multistep Neural Network Prediction” on page 24-52.

All the specific dynamic networks discussed so far have either been focused networks, with the
dynamics only at the input layer, or feedforward networks. The nonlinear autoregressive network
with exogenous inputs (NARX) is a recurrent dynamic network, with feedback connections enclosing
several layers of the network. The NARX model is based on the linear ARX model, which is commonly
used in time-series modeling.

The defining equation for the NARX model is

y(t) = f (y(t − 1), y(t − 2), …, y(t − ny), u(t − 1), u(t − 2), …, u(t − nu))

where the next value of the dependent output signal y(t) is regressed on previous values of the output
signal and previous values of an independent (exogenous) input signal. You can implement the NARX
model by using a feedforward neural network to approximate the function f. A diagram of the
resulting network is shown below, where a two-layer feedforward network is used for the
approximation. This implementation also allows for a vector ARX model, where the input and output
can be multidimensional.

There are many applications for the NARX network. It can be used as a predictor, to predict the next
value of the input signal. It can also be used for nonlinear filtering, in which the target output is a
noise-free version of the input signal. The use of the NARX network is shown in another important
application, the modeling of nonlinear dynamic systems.

Before showing the training of the NARX network, an important configuration that is useful in
training needs explanation. You can consider the output of the NARX network to be an estimate of the
output of some nonlinear dynamic system that you are trying to model. The output is fed back to the
input of the feedforward neural network as part of the standard NARX architecture, as shown in the
left figure below. Because the true output is available during the training of the network, you could
create a series-parallel architecture (see [NaPa91 on page 33-2]), in which the true output is used
instead of feeding back the estimated output, as shown in the right figure below. This has two
advantages. The first is that the input to the feedforward network is more accurate. The second is
that the resulting network has a purely feedforward architecture, and static backpropagation can be
used for training.

24 Dynamic Neural Networks

24-18



The following shows the use of the series-parallel architecture for training a NARX network to model
a dynamic system.

The example of the NARX network is the magnetic levitation system described beginning in “Use the
NARMA-L2 Controller Block” on page 25-15. The bottom graph in the following figure shows the
voltage applied to the electromagnet, and the top graph shows the position of the permanent magnet.
The data was collected at a sampling interval of 0.01 seconds to form two time series.

The goal is to develop a NARX model for this magnetic levitation system.

First, load the training data. Use tapped delay lines with two delays for both the input and the output,
so training begins with the third data point. There are two inputs to the series-parallel network, the
u(t) sequence and the y(t) sequence.

load magdata
y = con2seq(y);
u = con2seq(u);

Create the series-parallel NARX network using the function narxnet. Use 10 neurons in the hidden
layer and use trainlm for the training function, and then prepare the data with preparets:

d1 = [1:2];
d2 = [1:2];
narx_net = narxnet(d1,d2,10);
narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u,{},y);

 Design Time Series NARX Feedback Neural Networks

24-19



(Notice that the y sequence is considered a feedback signal, which is an input that is also an output
(target). Later, when you close the loop, the appropriate output will be connected to the appropriate
input.) Now you are ready to train the network.

narx_net = train(narx_net,p,t,Pi);

You can now simulate the network and plot the resulting errors for the series-parallel
implementation.

24 Dynamic Neural Networks

24-20



yp = sim(narx_net,p,Pi);
e = cell2mat(yp)-cell2mat(t);
plot(e)

You can see that the errors are very small. However, because of the series-parallel configuration,
these are errors for only a one-step-ahead prediction. A more stringent test would be to rearrange the
network into the original parallel form (closed loop) and then to perform an iterated prediction over
many time steps. Now the parallel operation is shown.

There is a toolbox function (closeloop) for converting NARX (and other) networks from the series-
parallel configuration (open loop), which is useful for training, to the parallel configuration (closed
loop), which is useful for multi-step-ahead prediction. The following command illustrates how to
convert the network that you just trained to parallel form:

narx_net_closed = closeloop(narx_net);

To see the differences between the two networks, you can use the view command:

view(narx_net)

 Design Time Series NARX Feedback Neural Networks

24-21



view(narx_net_closed)

24 Dynamic Neural Networks

24-22



All of the training is done in open loop (also called series-parallel architecture), including the
validation and testing steps. The typical workflow is to fully create the network in open loop, and only
when it has been trained (which includes validation and testing steps) is it transformed to closed loop
for multistep-ahead prediction. Likewise, the R values in the GUI are computed based on the open-
loop training results.

You can now use the closed-loop (parallel) configuration to perform an iterated prediction of 900 time
steps. In this network you need to load the two initial inputs and the two initial outputs as initial
conditions. You can use the preparets function to prepare the data. It will use the network structure
to determine how to divide and shift the data appropriately.

y1 = y(1700:2600);
u1 = u(1700:2600);
[p1,Pi1,Ai1,t1] = preparets(narx_net_closed,u1,{},y1);
yp1 = narx_net_closed(p1,Pi1,Ai1);
TS = size(t1,2);
plot(1:TS,cell2mat(t1),'b',1:TS,cell2mat(yp1),'r')

 Design Time Series NARX Feedback Neural Networks

24-23



The figure illustrates the iterated prediction. The blue line is the actual position of the magnet, and
the red line is the position predicted by the NARX neural network. Even though the network is
predicting 900 time steps ahead, the prediction is very accurate.

In order for the parallel response (iterated prediction) to be accurate, it is important that the network
be trained so that the errors in the series-parallel configuration (one-step-ahead prediction) are very
small.

You can also create a parallel (closed loop) NARX network, using the narxnet command with the
fourth input argument set to 'closed', and train that network directly. Generally, the training takes
longer, and the resulting performance is not as good as that obtained with series-parallel training.

Each time a neural network is trained, can result in a different solution due to different initial weight
and bias values and different divisions of data into training, validation, and test sets. As a result,
different neural networks trained on the same problem can give different outputs for the same input.
To ensure that a neural network of good accuracy has been found, retrain several times.

There are several other techniques for improving upon initial solutions if higher accuracy is desired.
For more information, see “Improve Shallow Neural Network Generalization and Avoid Overfitting”
on page 29-25.

Multiple External Variables
The maglev example showed how to model a time series with a single external input value over time.
But the NARX network will work for problems with multiple external input elements and predict

24 Dynamic Neural Networks

24-24



series with multiple elements. In these cases, the input and target consist of row cell arrays
representing time, but with each cell element being an N-by-1 vector for the N elements of the input
or target signal.

For example, here is a dataset which consists of 2-element external variables predicting a 1-element
series.

[X,T] = ph_dataset;

The external inputs X are formatted as a row cell array of 2-element vectors, with each vector
representing acid and base solution flow. The targets represent the resulting pH of the solution over
time.

You can reformat your own multi-element series data from matrix form to neural network time-series
form with the function con2seq.

The process for training a network proceeds as it did above for the maglev problem.

net = narxnet(10);
[x,xi,ai,t] = preparets(net,X,{},T);
net = train(net,x,t,xi,ai);
y = net(x,xi,ai);
e = gsubtract(t,y); 

To see examples of using NARX networks being applied in open-loop form, closed-loop form and open/
closed-loop multistep prediction see “Multistep Neural Network Prediction” on page 24-52.

 Design Time Series NARX Feedback Neural Networks

24-25



Design Layer-Recurrent Neural Networks

The next dynamic network to be introduced is the Layer-Recurrent Network (LRN). An earlier
simplified version of this network was introduced by Elman [Elma90 on page 33-2]. In the LRN,
there is a feedback loop, with a single delay, around each layer of the network except for the last
layer. The original Elman network had only two layers, and used a tansig transfer function for the
hidden layer and a purelin transfer function for the output layer. The original Elman network was
trained using an approximation to the backpropagation algorithm. The layrecnet command
generalizes the Elman network to have an arbitrary number of layers and to have arbitrary transfer
functions in each layer. The toolbox trains the LRN using exact versions of the gradient-based
algorithms discussed in “Multilayer Shallow Neural Networks and Backpropagation Training” on
page 23-2. The following figure illustrates a two-layer LRN.

The LRN configurations are used in many filtering and modeling applications discussed already. To
show its operation, this example uses the “phoneme” detection problem discussed in “Design Time
Series Distributed Delay Neural Networks” on page 24-16. Here is the code to load the data and to
create and train the network:

load phoneme
p = con2seq(y);
t = con2seq(t);
lrn_net = layrecnet(1,8);
lrn_net.trainFcn = 'trainbr';
lrn_net.trainParam.show = 5;
lrn_net.trainParam.epochs = 50;
lrn_net = train(lrn_net,p,t);

24 Dynamic Neural Networks

24-26



After training, you can plot the response using the following code:

y = lrn_net(p);
plot(cell2mat(y))

 Design Layer-Recurrent Neural Networks

24-27



The plot shows that the network was able to detect the “phonemes.” The response is very similar to
the one obtained using the TDNN.

Each time a neural network is trained, can result in a different solution due to different initial weight
and bias values and different divisions of data into training, validation, and test sets. As a result,
different neural networks trained on the same problem can give different outputs for the same input.
To ensure that a neural network of good accuracy has been found, retrain several times.

There are several other techniques for improving upon initial solutions if higher accuracy is desired.
For more information, see “Improve Shallow Neural Network Generalization and Avoid Overfitting”
on page 29-25.

24 Dynamic Neural Networks

24-28



Create Reference Model Controller with MATLAB Script
So far, this topic has described the training procedures for several specific dynamic network
architectures. However, any network that can be created in the toolbox can be trained using the
training functions described in “Multilayer Shallow Neural Networks and Backpropagation Training”
on page 23-2 so long as the components of the network are differentiable. This section gives an
example of how to create and train a custom architecture. The custom architecture you will use is the
model reference adaptive control (MRAC) system that is described in detail in “Design Model-
Reference Neural Controller in Simulink” on page 25-19.

As you can see in “Design Model-Reference Neural Controller in Simulink” on page 25-19, the model
reference control architecture has two subnetworks. One subnetwork is the model of the plant that
you want to control. The other subnetwork is the controller. You will begin by training a NARX
network that will become the plant model subnetwork. For this example, you will use the robot arm to
represent the plant, as described in “Design Model-Reference Neural Controller in Simulink” on page
25-19. The following code will load data collected from the robot arm and create and train a NARX
network. For this simple problem, you do not need to preprocess the data, and all of the data can be
used for training, so no data division is needed.

[u,y] = robotarm_dataset;
d1 = [1:2];
d2 = [1:2];
S1 = 5;
narx_net = narxnet(d1,d2,S1);
narx_net.divideFcn = '';
narx_net.inputs{1}.processFcns = {};
narx_net.inputs{2}.processFcns = {};
narx_net.outputs{2}.processFcns = {};
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u,{},y);
narx_net = train(narx_net,p,t,Pi);
narx_net_closed = closeloop(narx_net);
view(narx_net_closed)

 Create Reference Model Controller with MATLAB Script

24-29



24 Dynamic Neural Networks

24-30



The resulting network is shown in the figure.

Now that the NARX plant model is trained, you can create the total MRAC system and insert the
NARX model inside. Begin with a feedforward network, and then add the feedback connections. Also,
turn off learning in the plant model subnetwork, since it has already been trained. The next stage of
training will train only the controller subnetwork.

 Create Reference Model Controller with MATLAB Script

24-31



mrac_net = feedforwardnet([S1 1 S1]);
mrac_net.layerConnect = [0 1 0 1;1 0 0 0;0 1 0 1;0 0 1 0];
mrac_net.outputs{4}.feedbackMode = 'closed';
mrac_net.layers{2}.transferFcn = 'purelin';
mrac_net.layerWeights{3,4}.delays = 1:2;
mrac_net.layerWeights{3,2}.delays = 1:2;
mrac_net.layerWeights{3,2}.learn = 0;
mrac_net.layerWeights{3,4}.learn = 0;
mrac_net.layerWeights{4,3}.learn = 0;
mrac_net.biases{3}.learn = 0;
mrac_net.biases{4}.learn = 0;

The following code turns off data division and preprocessing, which are not needed for this example
problem. It also sets the delays needed for certain layers and names the network.

mrac_net.divideFcn = '';
mrac_net.inputs{1}.processFcns = {};
mrac_net.outputs{4}.processFcns = {};
mrac_net.name = 'Model Reference Adaptive Control Network';
mrac_net.layerWeights{1,2}.delays = 1:2;
mrac_net.layerWeights{1,4}.delays = 1:2;
mrac_net.inputWeights{1}.delays = 1:2;

To configure the network, you need some sample training data. The following code loads and plots the
training data, and configures the network:

[refin,refout] = refmodel_dataset;
ind = 1:length(refin);
plot(ind,cell2mat(refin),ind,cell2mat(refout))
mrac_net = configure(mrac_net,refin,refout);

24 Dynamic Neural Networks

24-32



You want the closed-loop MRAC system to respond in the same way as the reference model that was
used to generate this data. (See “Use the Model Reference Controller Block” on page 25-20 for a
description of the reference model.)

Now insert the weights from the trained plant model network into the appropriate location of the
MRAC system.

mrac_net.LW{3,2} = narx_net_closed.IW{1};
mrac_net.LW{3,4} = narx_net_closed.LW{1,2};
mrac_net.b{3} = narx_net_closed.b{1};
mrac_net.LW{4,3} = narx_net_closed.LW{2,1};
mrac_net.b{4} = narx_net_closed.b{2};

You can set the output weights of the controller network to zero, which will give the plant an initial
input of zero.

mrac_net.LW{2,1} = zeros(size(mrac_net.LW{2,1}));
mrac_net.b{2} = 0;

You can also associate any plots and training function that you desire to the network.

mrac_net.plotFcns = {'plotperform','plottrainstate',...
    'ploterrhist','plotregression','plotresponse'};
mrac_net.trainFcn = 'trainlm';

The final MRAC network can be viewed with the following command:

view(mrac_net)

 Create Reference Model Controller with MATLAB Script

24-33



Layer 3 and layer 4 (output) make up the plant model subnetwork. Layer 1 and layer 2 make up the
controller.

You can now prepare the training data and train the network.

[x_tot,xi_tot,ai_tot,t_tot] = ...
            preparets(mrac_net,refin,{},refout);
mrac_net.trainParam.epochs = 50;
mrac_net.trainParam.min_grad = 1e-10;
[mrac_net,tr] = train(mrac_net,x_tot,t_tot,xi_tot,ai_tot);

24 Dynamic Neural Networks

24-34



Note Notice that you are using the trainlm training function here, but any of the training functions
discussed in “Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2 could
be used as well. Any network that you can create in the toolbox can be trained with any of those
training functions. The only limitation is that all of the parts of the network must be differentiable.

 Create Reference Model Controller with MATLAB Script

24-35



You will find that the training of the MRAC system takes much longer that the training of the NARX
plant model. This is because the network is recurrent and dynamic backpropagation must be used.
This is determined automatically by the toolbox software and does not require any user intervention.
There are several implementations of dynamic backpropagation (see [DeHa07 on page 33-2]), and
the toolbox software automatically determines the most efficient one for the selected network
architecture and training algorithm.

After the network has been trained, you can test the operation by applying a test input to the MRAC
network. The following code creates a skyline input function, which is a series of steps of random
height and width, and applies it to the trained MRAC network.

testin = skyline(1000,50,200,-.7,.7);
testinseq = con2seq(testin);
testoutseq = mrac_net(testinseq);
testout = cell2mat(testoutseq);
figure
plot([testin' testout'])

From the figure, you can see that the plant model output does follow the reference input with the
correct critically damped response, even though the input sequence was not the same as the input
sequence in the training data. The steady state response is not perfect for each step, but this could be
improved with a larger training set and perhaps more hidden neurons.

The purpose of this example was to show that you can create your own custom dynamic network and
train it using the standard toolbox training functions without any modifications. Any network that you

24 Dynamic Neural Networks

24-36



can create in the toolbox can be trained with the standard training functions, as long as each
component of the network has a defined derivative.

It should be noted that recurrent networks are generally more difficult to train than feedforward
networks. See [HDH09 on page 33-2] for some discussion of these training difficulties.

 Create Reference Model Controller with MATLAB Script

24-37



Multiple Sequences with Dynamic Neural Networks
There are times when time-series data is not available in one long sequence, but rather as several
shorter sequences. When dealing with static networks and concurrent batches of static data, you can
simply append data sets together to form one large concurrent batch. However, you would not
generally want to append time sequences together, since that would cause a discontinuity in the
sequence. For these cases, you can create a concurrent set of sequences, as described in
“Understanding Shallow Network Data Structures” on page 22-18.

When training a network with a concurrent set of sequences, it is required that each sequence be of
the same length. If this is not the case, then the shorter sequence inputs and targets should be
padded with NaNs, in order to make all sequences the same length. The targets that are assigned
values of NaN will be ignored during the calculation of network performance.

The following code illustrates the use of the function catsamples to combine several sequences
together to form a concurrent set of sequences, while at the same time padding the shorter
sequences.

load magmulseq
y_mul = catsamples(y1,y2,y3,'pad');
u_mul = catsamples(u1,u2,u3,'pad');
d1 = [1:2];
d2 = [1:2];
narx_net = narxnet(d1,d2,10);
narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u_mul,{},y_mul);
narx_net = train(narx_net,p,t,Pi);

24 Dynamic Neural Networks

24-38



Neural Network Time-Series Utilities
There are other utility functions that are useful when manipulating neural network data, which can
consist of time sequences, concurrent batches or combinations of both. It can also include multiple
signals (as in multiple input, output or target vectors). The following diagram illustrates the structure
of a general neural network data object. For this example there are three time steps of a batch of four
samples (four sequences) of two signals. One signal has two elements, and the other signal has three
elements.

The following table lists some of the more useful toolbox utility functions for neural network data.
They allow you to do things like add, subtract, multiply, divide, etc. (Addition and subtraction of cell
arrays do not have standard definitions, but for neural network data these operations are well defined
and are implemented in the following functions.)

Function Operation
gadd Add neural network (nn) data.
gdivide Divide nn data.
getelements Select indicated elements from nn data.
getsamples Select indicated samples from nn data.
getsignals Select indicated signals from nn data.
gettimesteps Select indicated time steps from nn data.
gmultiply Multiply nn data.
gnegate Take the negative of nn data.
gsubtract Subtract nn data.
nndata Create an nn data object of specified size, where values

are assigned randomly or to a constant.
nnsize Return number of elements, samples, time steps and

signals in an nn data object.
numelements Return the number of elements in nn data.
numsamples Return the number of samples in nn data.
numsignals Return the number of signals in nn data.
numtimesteps Return the number of time steps in nn data.
setelements Set specified elements of nn data.
setsamples Set specified samples of nn data.

 Neural Network Time-Series Utilities

24-39



Function Operation
setsignals Set specified signals of nn data.
settimesteps Set specified time steps of nn data.

There are also some useful plotting and analysis functions for dynamic networks that are listed in the
following table. There are examples of using these functions in the “Get Started with Deep Learning
Toolbox”.

Function Operation
ploterrcorr Plot the autocorrelation function of the error.
plotinerrcorr Plot the crosscorrelation between the error and the input.
plotresponse Plot network output and target versus time.

24 Dynamic Neural Networks

24-40



Train Neural Networks with Error Weights
In the default mean square error performance function (see “Train and Apply Multilayer Shallow
Neural Networks” on page 23-13), each squared error contributes the same amount to the
performance function as follows:

F = mse = 1
N ∑i = 1

N
(ei)2 = 1

N ∑i = 1

N
(ti− ai)2

However, the toolbox allows you to weight each squared error individually as follows:

F = mse = 1
N ∑i = 1

N
wi

e(ei)2 = 1
N ∑i = 1

N
wi

e(ti− ai)2

The error weighting object needs to have the same dimensions as the target data. In this way, errors
can be weighted according to time step, sample number, signal number or element number. The
following is an example of weighting the errors at the end of a time sequence more heavily than
errors at the beginning of a time sequence. The error weighting object is passed as the last argument
in the call to train.

y = laser_dataset;
y = y(1:600);
ind = 1:600;
ew = 0.99.^(600-ind);
figure
plot(ew)

 Train Neural Networks with Error Weights

24-41



ew = con2seq(ew);
ftdnn_net = timedelaynet([1:8],10);
ftdnn_net.trainParam.epochs = 1000;
ftdnn_net.divideFcn = '';
[p,Pi,Ai,t,ew1] = preparets(ftdnn_net,y,y,{},ew);
[ftdnn_net1,tr] = train(ftdnn_net,p,t,Pi,Ai,ew1);

24 Dynamic Neural Networks

24-42



The figure illustrates the error weighting for this example. There are 600 time steps in the training
data, and the errors are weighted exponentially, with the last squared error having a weight of 1, and
the squared error at the first time step having a weighting of 0.0024.

The response of the trained network is shown in the following figure. If you compare this response to
the response of the network that was trained without exponential weighting on the squared errors, as
shown in “Design Time Series Time-Delay Neural Networks” on page 24-12, you can see that the

 Train Neural Networks with Error Weights

24-43



errors late in the sequence are smaller than the errors earlier in the sequence. The errors that
occurred later are smaller because they contributed more to the weighted performance index than
earlier errors.

24 Dynamic Neural Networks

24-44



Normalize Errors of Multiple Outputs
The most common performance function used to train neural networks is mean squared error (mse).
However, with multiple outputs that have different ranges of values, training with mean squared
error tends to optimize accuracy on the output element with the wider range of values relative to the
output element with a smaller range.

For instance, here two target elements have very different ranges:

x = -1:0.01:1;
t1 = 100*sin(x);
t2 = 0.01*cos(x);
t = [t1; t2];

The range of t1 is 200 (from a minimum of -100 to a maximum of 100), while the range of t2 is only
0.02 (from -0.01 to 0.01). The range of t1 is 10,000 times greater than the range of t2.

If you create and train a neural network on this to minimize mean squared error, training favors the
relative accuracy of the first output element over the second.

net = feedforwardnet(5);
net1 = train(net,x,t);

 Normalize Errors of Multiple Outputs

24-45



y = net1(x);

Here you can see that the network has learned to fit the first output element very well.

figure(1)
plot(x,y(1,:),x,t(1,:))

24 Dynamic Neural Networks

24-46



However, the second element’s function is not fit nearly as well.

figure(2)
plot(x,y(2,:),x,t(2,:))

 Normalize Errors of Multiple Outputs

24-47



To fit both output elements equally well in a relative sense, set the normalization performance
parameter to 'standard'. This then calculates errors for performance measures as if each output
element has a range of 2 (i.e., as if each output element’s values range from -1 to 1, instead of their
differing ranges).

net.performParam.normalization = 'standard';
net2 = train(net,x,t);

24 Dynamic Neural Networks

24-48



y = net2(x);

Now the two output elements both fit well.

figure(3)
plot(x,y(1,:),x,t(1,:))

 Normalize Errors of Multiple Outputs

24-49



figure(4)
plot(x,y(2,:),x,t(2,:))

24 Dynamic Neural Networks

24-50



 Normalize Errors of Multiple Outputs

24-51



Multistep Neural Network Prediction
In this section...
“Set Up in Open-Loop Mode” on page 24-52
“Multistep Closed-Loop Prediction From Initial Conditions” on page 24-53
“Multistep Closed-Loop Prediction Following Known Sequence” on page 24-54
“Following Closed-Loop Simulation with Open-Loop Simulation” on page 24-55

Set Up in Open-Loop Mode
Dynamic networks with feedback, such as narxnet and narnet neural networks, can be transformed
between open-loop and closed-loop modes with the functions openloop and closeloop. Closed-loop
networks make multistep predictions. In other words they continue to predict when external feedback
is missing, by using internal feedback.

Here a neural network is trained to model the magnetic levitation system and simulated in the default
open-loop mode.

[X,T] = maglev_dataset;
net = narxnet(1:2,1:2,10);
[x,xi,ai,t] = preparets(net,X,{},T);
net = train(net,x,t,xi,ai);
y = net(x,xi,ai);
view(net)

24 Dynamic Neural Networks

24-52



Multistep Closed-Loop Prediction From Initial Conditions
A neural network can also be simulated only in closed-loop form, so that given an external input
series and initial conditions, the neural network performs as many predictions as the input series has
time steps.

 Multistep Neural Network Prediction

24-53



netc = closeloop(net);
view(netc)

Here the training data is used to define the inputs x, and the initial input and layer delay states, xi
and ai, but they can be defined to make multiple predictions for any input series and initial states.

[x,xi,ai,t] = preparets(netc,X,{},T);
yc = netc(x,xi,ai);

Multistep Closed-Loop Prediction Following Known Sequence
It can also be useful to simulate a trained neural network up the present with all the known values of
a time-series in open-loop mode, then switch to closed-loop mode to continue the simulation for as
many predictions into the future as are desired.

Just as openloop and closeloop can be used to transform between open- and closed-loop neural
networks, they can convert the state of open- and closed-loop networks. Here are the full interfaces
for these functions.

[open_net,open_xi,open_ai] = openloop(closed_net,closed_xi,closed_ai);
[closed_net,closed_xi,closed_ai] = closeloop(open_net,open_xi,open_ai);

Consider the case where you might have a record of the Maglev’s behavior for 20 time steps, and you
want to predict ahead for 20 more time steps.

First, define the first 20 steps of inputs and targets, representing the 20 time steps where the known
output is defined by the targets t. With the next 20 time steps of the input are defined, use the
network to predict the 20 outputs using each of its predictions feedback to help the network perform
the next prediction.

24 Dynamic Neural Networks

24-54



x1 = x(1:20);
t1 = t(1:20);
x2 = x(21:40);

The open-loop neural network is then simulated on this data.

[x,xi,ai,t] = preparets(net,x1,{},t1);
[y1,xf,af] = net(x,xi,ai);

Now the final input and layer states returned by the network are converted to closed-loop form along
with the network. The final input states xf and layer states af of the open-loop network become the
initial input states xi and layer states ai of the closed-loop network.

[netc,xi,ai] = closeloop(net,xf,af);

Typically use preparets to define initial input and layer states. Since these have already been
obtained from the end of the open-loop simulation, you do not need preparets to continue with the
20 step predictions of the closed-loop network.

[y2,xf,af] = netc(x2,xi,ai);

Note that you can set x2 to different sequences of inputs to test different scenarios for however many
time steps you would like to make predictions. For example, to predict the magnetic levitation
system’s behavior if 10 random inputs are used:

x2 = num2cell(rand(1,10));
[y2,xf,af] = netc(x2,xi,ai);

Following Closed-Loop Simulation with Open-Loop Simulation
If after simulating the network in closed-loop form, you can continue the simulation from there in
open-loop form. Here the closed-loop state is converted back to open-loop state. (You do not have to
convert the network back to open-loop form as you already have the original open-loop network.)

[~,xi,ai] = openloop(netc,xf,af);

Now you can define continuations of the external input and open-loop feedback, and simulate the
open-loop network.

x3 = num2cell(rand(2,10));
y3 = net(x3,xi,ai);

In this way, you can switch simulation between open-loop and closed-loop manners. One application
for this is making time-series predictions of a sensor, where the last sensor value is usually known,
allowing open-loop prediction of the next step. But on some occasions the sensor reading is not
available, or known to be erroneous, requiring a closed-loop prediction step. The predictions can
alternate between open-loop and closed-loop form, depending on the availability of the last step’s
sensor reading.

 Multistep Neural Network Prediction

24-55





Control Systems

• “Introduction to Neural Network Control Systems” on page 25-2
• “Design Neural Network Predictive Controller in Simulink” on page 25-4
• “Design NARMA-L2 Neural Controller in Simulink” on page 25-13
• “Design Model-Reference Neural Controller in Simulink” on page 25-19
• “Import-Export Neural Network Simulink Control Systems” on page 25-26

25



Introduction to Neural Network Control Systems
Neural networks have been applied successfully in the identification and control of dynamic systems.
The universal approximation capabilities of the multilayer perceptron make it a popular choice for
modeling nonlinear systems and for implementing general-purpose nonlinear controllers [HaDe99 on
page 33-2]. This topic introduces three popular neural network architectures for prediction and
control that have been implemented in the Deep Learning Toolbox software, and presents brief
descriptions of each of these architectures and shows how you can use them:

• Model Predictive Control
• NARMA-L2 (or Feedback Linearization) Control
• Model Reference Control

There are typically two steps involved when using neural networks for control:

1 System identification
2 Control design

In the system identification stage, you develop a neural network model of the plant that you want to
control. In the control design stage, you use the neural network plant model to design (or train) the
controller. In each of the three control architectures described in this topic, the system identification
stage is identical. The control design stage, however, is different for each architecture:

• For model predictive control, the plant model is used to predict future behavior of the plant, and
an optimization algorithm is used to select the control input that optimizes future performance.

• For NARMA-L2 control, the controller is simply a rearrangement of the plant model.
• For model reference control, the controller is a neural network that is trained to control a plant so

that it follows a reference model. The neural network plant model is used to assist in the
controller training.

The next three sections discuss model predictive control, NARMA-L2 control, and model reference
control. Each section consists of a brief description of the control concept, followed by an example of
the use of the appropriate Deep Learning Toolbox function. These three controllers are implemented
as Simulink blocks, which are contained in the Deep Learning Toolbox blockset.

To assist you in determining the best controller for your application, the following list summarizes the
key controller features. Each controller has its own strengths and weaknesses. No single controller is
appropriate for every application.

• Model Predictive Control — This controller uses a neural network model to predict future plant
responses to potential control signals. An optimization algorithm then computes the control
signals that optimize future plant performance. The neural network plant model is trained offline,
in batch form. (This is true for all three control architectures.) The controller, however, requires a
significant amount of online computation, because an optimization algorithm is performed at each
sample time to compute the optimal control input.

• NARMA-L2 Control — This controller requires the least computation of these three
architectures. The controller is simply a rearrangement of the neural network plant model, which
is trained offline, in batch form. The only online computation is a forward pass through the neural
network controller. The drawback of this method is that the plant must either be in companion
form, or be capable of approximation by a companion form model. (“Identification of the NARMA-
L2 Model” on page 25-13 describes the companion form model.)

25 Control Systems

25-2



• Model Reference Control — The online computation of this controller, like NARMA-L2, is
minimal. However, unlike NARMA-L2, the model reference architecture requires that a separate
neural network controller be trained offline, in addition to the neural network plant model. The
controller training is computationally expensive, because it requires the use of dynamic
backpropagation [HaJe99 on page 33-2]. On the positive side, model reference control applies
to a larger class of plant than does NARMA-L2 control.

 Introduction to Neural Network Control Systems

25-3



Design Neural Network Predictive Controller in Simulink

In this section...
“System Identification” on page 25-4
“Predictive Control” on page 25-5
“Use the Neural Network Predictive Controller Block” on page 25-6

The neural network predictive controller that is implemented in the Deep Learning Toolbox software
uses a neural network model of a nonlinear plant to predict future plant performance. The controller
then calculates the control input that will optimize plant performance over a specified future time
horizon. The first step in model predictive control is to determine the neural network plant model
(system identification). Next, the plant model is used by the controller to predict future performance.
(See the Model Predictive Control Toolbox™ documentation for complete coverage of the application
of various model predictive control strategies to linear systems.)

The following section describes the system identification process. This is followed by a description of
the optimization process. Finally, it discusses how to use the model predictive controller block that is
implemented in the Simulink environment.

System Identification
The first stage of model predictive control is to train a neural network to represent the forward
dynamics of the plant. The prediction error between the plant output and the neural network output
is used as the neural network training signal. The process is represented by the following figure:

The neural network plant model uses previous inputs and previous plant outputs to predict future
values of the plant output. The structure of the neural network plant model is given in the following
figure.

25 Control Systems

25-4



This network can be trained offline in batch mode, using data collected from the operation of the
plant. You can use any of the training algorithms discussed in “Multilayer Shallow Neural Networks
and Backpropagation Training” on page 23-2 for network training. This process is discussed in more
detail in following sections.

Predictive Control
The model predictive control method is based on the receding horizon technique [SoHa96 on page
33-2]. The neural network model predicts the plant response over a specified time horizon. The
predictions are used by a numerical optimization program to determine the control signal that
minimizes the following performance criterion over the specified horizon

J = ∑
j = N1

N2
(yr(t + j)− ym(t + j))2 + ρ ∑

j = 1

Nu
(u′(t + j− 1)− u′(t + j− 2))2

where N1, N2, and Nu define the horizons over which the tracking error and the control increments
are evaluated. The u′ variable is the tentative control signal, yr is the desired response, and ym is the
network model response. The ρ value determines the contribution that the sum of the squares of the
control increments has on the performance index.

The following block diagram illustrates the model predictive control process. The controller consists
of the neural network plant model and the optimization block. The optimization block determines the
values of u′ that minimize J, and then the optimal u is input to the plant. The controller block is
implemented in Simulink, as described in the following section.

 Design Neural Network Predictive Controller in Simulink

25-5



Use the Neural Network Predictive Controller Block
This section shows how the NN Predictive Controller block is used. The first step is to copy the NN
Predictive Controller block from the Deep Learning Toolbox block library to the Simulink Editor. See
the Simulink documentation if you are not sure how to do this. This step is skipped in the following
example.

An example model is provided with the Deep Learning Toolbox software to show the use of the
predictive controller. This example uses a catalytic Continuous Stirred Tank Reactor (CSTR). A
diagram of the process is shown in the following figure.

The dynamic model of the system is

dh(t)
dt = w1(t) + w2(t)− 0.2 h(t)

dCb(t)
dt = (Cb1− Cb(t))

w1(t)
h(t) + (Cb2− Cb(t))

w2(t)
h(t) −

k1Cb(t)
(1 + k2Cb(t))2

where h(t) is the liquid level, Cb(t) is the product concentration at the output of the process, w1(t) is
the flow rate of the concentrated feed Cb1, and w2(t) is the flow rate of the diluted feed Cb2. The input
concentrations are set to Cb1 = 24.9 and Cb2 = 0.1. The constants associated with the rate of
consumption are k1 = 1 and k2 = 1.

The objective of the controller is to maintain the product concentration by adjusting the flow w1(t). To
simplify the example, set w2(t) = 0.1. The level of the tank h(t) is not controlled for this experiment.

To run this example:

1 Start MATLAB.
2 Type predcstr in the MATLAB Command Window. This command opens the Simulink Editor

with the following model.

25 Control Systems

25-6



The Plant block contains the Simulink CSTR plant model. The NN Predictive Controller block
signals are connected as follows:

• Control Signal is connected to the input of the Plant model.
• The Plant Output signal is connected to the Plant block output.
• The Reference is connected to the Random Reference signal.

3 Double-click the NN Predictive Controller block. This opens the following window for designing
the model predictive controller. This window enables you to change the controller horizons N2
and Nu. (N1 is fixed at 1.) The weighting parameter ρ, described earlier, is also defined in this
window. The parameter α is used to control the optimization. It determines how much reduction
in performance is required for a successful optimization step. You can select which linear
minimization routine is used by the optimization algorithm, and you can decide how many
iterations of the optimization algorithm are performed at each sample time. The linear
minimization routines are slight modifications of those discussed in “Multilayer Shallow Neural
Networks and Backpropagation Training” on page 23-2.

 Design Neural Network Predictive Controller in Simulink

25-7



4 Select Plant Identification. This opens the following window. You must develop the neural
network plant model before you can use the controller. The plant model predicts future plant
outputs. The optimization algorithm uses these predictions to determine the control inputs that
optimize future performance. The plant model neural network has one hidden layer, as shown
earlier. You select the size of that layer, the number of delayed inputs and delayed outputs, and
the training function in this window. You can select any of the training functions described in
“Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2 to train the
neural network plant model.

25 Control Systems

25-8



5 Click Generate Training Data. The program generates training data by applying a series of
random step inputs to the Simulink plant model. The potential training data is then displayed in a
figure similar to the following.

 Design Neural Network Predictive Controller in Simulink

25-9



6 Click Accept Data, and then click Train Network in the Plant Identification window. Plant
model training begins. The training proceeds according to the training algorithm (trainlm in
this case) you selected. This is a straightforward application of batch training, as described in
“Multilayer Shallow Neural Networks and Backpropagation Training” on page 23-2. After the
training is complete, the response of the resulting plant model is displayed, as in the following
figure. (There are also separate plots for validation and testing data, if they exist.)

25 Control Systems

25-10



You can then continue training with the same data set by selecting Train Network again, you
can Erase Generated Data and generate a new data set, or you can accept the current plant
model and begin simulating the closed loop system. For this example, begin the simulation, as
shown in the following steps.

7 Select OK in the Plant Identification window. This loads the trained neural network plant model
into the NN Predictive Controller block.

8 Select OK in the Neural Network Predictive Control window. This loads the controller
parameters into the NN Predictive Controller block.

9 Return to the Simulink Editor and start the simulation by choosing the menu option Simulation
> Run. As the simulation runs, the plant output and the reference signal are displayed, as in the
following figure.

 Design Neural Network Predictive Controller in Simulink

25-11



25 Control Systems

25-12



Design NARMA-L2 Neural Controller in Simulink

In this section...
“Identification of the NARMA-L2 Model” on page 25-13
“NARMA-L2 Controller” on page 25-14
“Use the NARMA-L2 Controller Block” on page 25-15

The neurocontroller described in this section is referred to by two different names: feedback
linearization control and NARMA-L2 control. It is referred to as feedback linearization when the plant
model has a particular form (companion form). It is referred to as NARMA-L2 control when the plant
model can be approximated by the same form. The central idea of this type of control is to transform
nonlinear system dynamics into linear dynamics by canceling the nonlinearities. This section begins
by presenting the companion form system model and showing how you can use a neural network to
identify this model. Then it describes how the identified neural network model can be used to develop
a controller. This is followed by an example of how to use the NARMA-L2 Control block, which is
contained in the Deep Learning Toolbox blockset.

Identification of the NARMA-L2 Model
As with model predictive control, the first step in using feedback linearization (or NARMA-L2) control
is to identify the system to be controlled. You train a neural network to represent the forward
dynamics of the system. The first step is to choose a model structure to use. One standard model that
is used to represent general discrete-time nonlinear systems is the nonlinear autoregressive-moving
average (NARMA) model:

y(k + d) = N[y(k), y(k− 1), …, y(k− n + 1), u(k), u(k− 1), …, u(k− n + 1)]

where u(k) is the system input, and y(k) is the system output. For the identification phase, you could
train a neural network to approximate the nonlinear function N. This is the identification procedure
used for the NN Predictive Controller.

If you want the system output to follow some reference trajectory
y(k + d) = yr(k + d), the next step is to develop a nonlinear controller of the form:

u(k) = G[y(k), y(k− 1), …, y(k− n + 1), yr(k + d), u(k− 1), …, u(k−m + 1)]

The problem with using this controller is that if you want to train a neural network to create the
function G to minimize mean square error, you need to use dynamic backpropagation ([NaPa91 on
page 33-2] or [HaJe99 on page 33-2]). This can be quite slow. One solution, proposed by
Narendra and Mukhopadhyay [NaMu97 on page 33-2], is to use approximate models to represent
the system. The controller used in this section is based on the NARMA-L2 approximate model:

y (k + d) = f [y(k), y(k− 1), …, y(k− n + 1), u(k− 1), …, u(k−m + 1)]
+g[y(k), y(k− 1), …, y(k− n + 1), u(k− 1), …, u(k−m + 1)] ⋅ u(k)

This model is in companion form, where the next controller input u(k) is not contained inside the
nonlinearity. The advantage of this form is that you can solve for the control input that causes the
system output to follow the reference y(k + d) = yr(k + d). The resulting controller would have the
form

 Design NARMA-L2 Neural Controller in Simulink

25-13



u(k) =
yr(k + d)− f [y(k), y(k− 1), …, y(k− n + 1), u(k− 1), …, u(k− n + 1)]

g[y(k), y(k− 1), …, y(k− n + 1), u(k− 1), …, u(k− n + 1)]

Using this equation directly can cause realization problems, because you must determine the control
input u(k) based on the output at the same time, y(k). So, instead, use the model

y(k + d) = f [y(k), y(k− 1), …, y(k− n + 1), u(k), u(k− 1), …, u(k− n + 1)]
+g[y(k), …, y(k− n + 1), u(k), …, u(k− n + 1)] ⋅ u(k + 1)

where d ≥ 2. The following figure shows the structure of a neural network representation.

NARMA-L2 Controller
Using the NARMA-L2 model, you can obtain the controller

u(k + 1) =
yr(k + d)− f [y(k), …, y(k− n + 1), u(k), …, u(k− n + 1)]

g[y(k), …, y(k− n + 1), u(k), …, u(k− n + 1)]

which is realizable for d ≥ 2. The following figure is a block diagram of the NARMA-L2 controller.

25 Control Systems

25-14



This controller can be implemented with the previously identified NARMA-L2 plant model, as shown
in the following figure.

Use the NARMA-L2 Controller Block
This section shows how the NARMA-L2 controller is trained. The first step is to copy the NARMA-L2
Controller block from the Deep Learning Toolbox block library to the Simulink Editor. See the

 Design NARMA-L2 Neural Controller in Simulink

25-15



Simulink documentation if you are not sure how to do this. This step is skipped in the following
example.

An example model is provided with the Deep Learning Toolbox software to show the use of the
NARMA-L2 controller. In this example, the objective is to control the position of a magnet suspended
above an electromagnet, where the magnet is constrained so that it can only move in the vertical
direction, as in the following figure.

The equation of motion for this system is

d2y(t)
dt2 = − g + α

M
i2(t)
y(t) −

β
M

dy(t)
dt

where y(t) is the distance of the magnet above the electromagnet, i(t) is the current flowing in the
electromagnet, M is the mass of the magnet, and g is the gravitational constant. The parameter β is a
viscous friction coefficient that is determined by the material in which the magnet moves, and α is a
field strength constant that is determined by the number of turns of wire on the electromagnet and
the strength of the magnet.

To run this example:

1 Start MATLAB.
2 Type narmamaglev in the MATLAB Command Window. This command opens the Simulink Editor

with the following model. The NARMA-L2 Control block is already in the model.

25 Control Systems

25-16



3 Double-click the NARMA-L2 Controller block. This opens the following window. This window
enables you to train the NARMA-L2 model. There is no separate window for the controller,
because the controller is determined directly from the model, unlike the model predictive
controller.

4 This window works the same as the other Plant Identification windows, so the training process is
not repeated. Instead, simulate the NARMA-L2 controller.

5 Return to the Simulink Editor and start the simulation by choosing the menu option Simulation
> Run. As the simulation runs, the plant output and the reference signal are displayed, as in the
following figure.

 Design NARMA-L2 Neural Controller in Simulink

25-17



25 Control Systems

25-18



Design Model-Reference Neural Controller in Simulink

The neural model reference control architecture uses two neural networks: a controller network and
a plant model network, as shown in the following figure. The plant model is identified first, and then
the controller is trained so that the plant output follows the reference model output.

The following figure shows the details of the neural network plant model and the neural network
controller as they are implemented in the Deep Learning Toolbox software. Each network has two
layers, and you can select the number of neurons to use in the hidden layers. There are three sets of
controller inputs:

• Delayed reference inputs
• Delayed controller outputs
• Delayed plant outputs

For each of these inputs, you can select the number of delayed values to use. Typically, the number of
delays increases with the order of the plant. There are two sets of inputs to the neural network plant
model:

• Delayed controller outputs
• Delayed plant outputs

As with the controller, you can set the number of delays. The next section shows how you can set the
parameters.

 Design Model-Reference Neural Controller in Simulink

25-19



Use the Model Reference Controller Block
This section shows how the neural network controller is trained. The first step is to copy the Model
Reference Control block from the Deep Learning Toolbox blockset to Simulink Editor. See the
Simulink documentation if you are not sure how to do this. This step is skipped in the following
example.

An example model is provided with the Deep Learning Toolbox software to show the use of the model
reference controller. In this example, the objective is to control the movement of a simple, single-link
robot arm, as shown in the following figure:

The equation of motion for the arm is

d2ϕ
dt2 = − 10sinϕ− 2dϕ

dt + u

where ϕ is the angle of the arm, and u is the torque supplied by the DC motor.

The objective is to train the controller so that the arm tracks the reference model

d2yr
dt2 = − 9yr − 6

dyr
dt + 9r

25 Control Systems

25-20



where yr is the output of the reference model, and r is the input reference signal.

This example uses a neural network controller with a 5-13-1 architecture. The inputs to the controller
consist of two delayed reference inputs, two delayed plant outputs, and one delayed controller
output. A sampling interval of 0.05 seconds is used.

To run this example:

1 Start MATLAB.
2 Type mrefrobotarm in the MATLAB Command Window. This command opens the Simulink

Editor with the Model Reference Control block already in the model.

3 Double-click the Model Reference Control block. This opens the following window for training the
model reference controller.

 Design Model-Reference Neural Controller in Simulink

25-21



4 The next step would normally be to click Plant Identification, which opens the Plant
Identification window. You would then train the plant model. Because the Plant Identification
window is identical to the one used with the previous controllers, that process is omitted here.

5 Click Generate Training Data. The program starts generating the data for training the
controller. After the data is generated, the following window appears.

25 Control Systems

25-22



6 Click Accept Data. Return to the Model Reference Control window and click Train Controller.
The program presents one segment of data to the network and trains the network for a specified
number of iterations (five in this case). This process continues, one segment at a time, until the
entire training set has been presented to the network. Controller training can be significantly
more time consuming than plant model training. This is because the controller must be trained
using dynamic backpropagation (see [HaJe99 on page 33-2]). After the training is complete,
the response of the resulting closed loop system is displayed, as in the following figure.

 Design Model-Reference Neural Controller in Simulink

25-23



7 Go back to the Model Reference Control window. If the performance of the controller is not
accurate, then you can select Train Controller again, which continues the controller training
with the same data set. If you would like to use a new data set to continue training, select
Generate Data or Import Data before you select Train Controller. (Be sure that Use Current
Weights is selected if you want to continue training with the same weights.) It might also be
necessary to retrain the plant model. If the plant model is not accurate, it can affect the
controller training. For this example, the controller should be accurate enough, so select OK.
This loads the controller weights into the Simulink model.

8 Return to the Simulink Editor and start the simulation by choosing the menu option Simulation
> Run. As the simulation runs, the plant output and the reference signal are displayed, as in the
following figure.

25 Control Systems

25-24



 Design Model-Reference Neural Controller in Simulink

25-25



Import-Export Neural Network Simulink Control Systems

In this section...
“Import and Export Networks” on page 25-26
“Import and Export Training Data” on page 25-28

Import and Export Networks
The controller and plant model networks that you develop are stored within Simulink controller
blocks. At some point you might want to transfer the networks into other applications, or you might
want to transfer a network from one controller block to another. You can do this by using the Import
Network and Export Network menu options. The following example leads you through the export
and import processes. (The NARMA-L2 window is used for this example, but the same procedure
applies to all the controllers.)

1 Repeat the first three steps of the NARMA-L2 example in “Use the NARMA-L2 Controller Block”
on page 25-15. The NARMA-L2 Plant Identification window should now be open.

2 Select File > Export Network, as shown below.

This opens the following window.

3 Select Export to Disk. The following window opens. Enter the file name test in the box, and
select Save. This saves the controller and plant networks to disk.

25 Control Systems

25-26



4 Retrieve that data with the Import menu option. Select File > Import Network, as in the
following figure.

This causes the following window to appear. Follow the steps indicated to retrieve the data that
you previously exported. Once the data is retrieved, you can load it into the controller block by
clicking OK or Apply. Notice that the window only has an entry for the plant model, even though
you saved both the plant model and the controller. This is because the NARMA-L2 controller is
derived directly from the plant model, so you do not need to import both networks.

 Import-Export Neural Network Simulink Control Systems

25-27



Import and Export Training Data
The data that you generate to train networks exists only in the corresponding plant identification or
controller training window. You might want to save the training data to the workspace or to a disk file
so that you can load it again at a later time. You might also want to combine data sets manually and
then load them back into the training window. You can do this by using the Import and Export
buttons. The following example leads you through the import and export processes. (The NN
Predictive Control window is used for this example, but the same procedure applies to all the
controllers.)

1 Repeat the first five steps of the NN Predictive Control example in “Use the Neural Network
Predictive Controller Block” on page 25-6. Then select Accept Data. The Plant Identification
window should then be open, and the Import and Export buttons should be active.

25 Control Systems

25-28



2 Click Export to open the following window.

3 Click Export to Disk. The following window opens. Enter the filename testdat in the box, and
select Save. This saves the training data structure to disk.

4 Now retrieve the data with the import command. Click Import in the Plant Identification window
to open the following window. Follow the steps indicated on the following page to retrieve the
data that you previously exported. Once the data is imported, you can train the neural network
plant model.

 Import-Export Neural Network Simulink Control Systems

25-29



25 Control Systems

25-30



Radial Basis Neural Networks

• “Introduction to Radial Basis Neural Networks” on page 26-2
• “Radial Basis Neural Networks” on page 26-3
• “Probabilistic Neural Networks” on page 26-8
• “Generalized Regression Neural Networks” on page 26-11

26



Introduction to Radial Basis Neural Networks
Radial basis networks can require more neurons than standard feedforward backpropagation
networks, but often they can be designed in a fraction of the time it takes to train standard
feedforward networks. They work best when many training vectors are available.

You might want to consult the following paper on this subject: Chen, S., C.F.N. Cowan, and P.M. Grant,
“Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks,” IEEE
Transactions on Neural Networks, Vol. 2, No. 2, March 1991, pp. 302–309.

This topic discusses two variants of radial basis networks, generalized regression networks (GRNN)
and probabilistic neural networks (PNN). You can read about them in P.D. Wasserman, Advanced
Methods in Neural Computing, New York: Van Nostrand Reinhold, 1993, on pp. 155–61 and pp. 35–
55, respectively.

Important Radial Basis Functions
Radial basis networks can be designed with either newrbe or newrb. GRNNs and PNNs can be
designed with newgrnn and newpnn, respectively.

26 Radial Basis Neural Networks

26-2



Radial Basis Neural Networks

In this section...
“Neuron Model” on page 26-3
“Network Architecture” on page 26-4
“Exact Design (newrbe)” on page 26-5
“More Efficient Design (newrb)” on page 26-6
“Examples” on page 26-6

Neuron Model
Here is a radial basis network with R inputs.

Notice that the expression for the net input of a radbas neuron is different from that of other
neurons. Here the net input to the radbas transfer function is the vector distance between its weight
vector w and the input vector p, multiplied by the bias b. (The || dist || box in this figure accepts
the input vector p and the single row input weight matrix, and produces the dot product of the two.)

The transfer function for a radial basis neuron is

radbas(n) = e−n2

Here is a plot of the radbas transfer function.

The radial basis function has a maximum of 1 when its input is 0. As the distance between w and p
decreases, the output increases. Thus, a radial basis neuron acts as a detector that produces 1
whenever the input p is identical to its weight vector w.

 Radial Basis Neural Networks

26-3



The bias b allows the sensitivity of the radbas neuron to be adjusted. For example, if a neuron had a
bias of 0.1 it would output 0.5 for any input vector p at vector distance of 8.326 (0.8326/b) from its
weight vector w.

Network Architecture
Radial basis networks consist of two layers: a hidden radial basis layer of S1 neurons, and an output
linear layer of S2 neurons.

The || dist || box in this figure accepts the input vector p and the input weight matrix IW1,1, and
produces a vector having S1 elements. The elements are the distances between the input vector and
vectors iIW1,1 formed from the rows of the input weight matrix.

The bias vector b1 and the output of || dist || are combined with the MATLAB operation .* , which
does element-by-element multiplication.

The output of the first layer for a feedforward network net can be obtained with the following code:

a{1} = radbas(netprod(dist(net.IW{1,1},p),net.b{1}))

Fortunately, you won't have to write such lines of code. All the details of designing this network are
built into design functions newrbe and newrb, and you can obtain their outputs with sim.

You can understand how this network behaves by following an input vector p through the network to
the output a2. If you present an input vector to such a network, each neuron in the radial basis layer
will output a value according to how close the input vector is to each neuron's weight vector.

Thus, radial basis neurons with weight vectors quite different from the input vector p have outputs
near zero. These small outputs have only a negligible effect on the linear output neurons.

In contrast, a radial basis neuron with a weight vector close to the input vector p produces a value
near 1. If a neuron has an output of 1, its output weights in the second layer pass their values to the
linear neurons in the second layer.

In fact, if only one radial basis neuron had an output of 1, and all others had outputs of 0s (or very
close to 0), the output of the linear layer would be the active neuron's output weights. This would,
however, be an extreme case. Typically several neurons are always firing, to varying degrees.

Now look in detail at how the first layer operates. Each neuron's weighted input is the distance
between the input vector and its weight vector, calculated with dist. Each neuron's net input is the

26 Radial Basis Neural Networks

26-4



element-by-element product of its weighted input with its bias, calculated with netprod. Each
neuron's output is its net input passed through radbas. If a neuron's weight vector is equal to the
input vector (transposed), its weighted input is 0, its net input is 0, and its output is 1. If a neuron's
weight vector is a distance of spread from the input vector, its weighted input is spread, its net
input is sqrt(−log(.5)) (or 0.8326), therefore its output is 0.5.

Exact Design (newrbe)
You can design radial basis networks with the function newrbe. This function can produce a network
with zero error on training vectors. It is called in the following way:

net = newrbe(P,T,SPREAD)

The function newrbe takes matrices of input vectors P and target vectors T, and a spread constant
SPREAD for the radial basis layer, and returns a network with weights and biases such that the
outputs are exactly T when the inputs are P.

This function newrbe creates as many radbas neurons as there are input vectors in P, and sets the
first-layer weights to P'. Thus, there is a layer of radbas neurons in which each neuron acts as a
detector for a different input vector. If there are Q input vectors, then there will be Q neurons.

Each bias in the first layer is set to 0.8326/SPREAD. This gives radial basis functions that cross 0.5 at
weighted inputs of +/− SPREAD. This determines the width of an area in the input space to which
each neuron responds. If SPREAD is 4, then each radbas neuron will respond with 0.5 or more to any
input vectors within a vector distance of 4 from their weight vector. SPREAD should be large enough
that neurons respond strongly to overlapping regions of the input space.

The second-layer weights IW 2,1 (or in code, IW{2,1}) and biases b2 (or in code, b{2}) are found by
simulating the first-layer outputs a1 (A{1}), and then solving the following linear expression:

[W{2,1} b{2}] * [A{1}; ones(1,Q)] = T

You know the inputs to the second layer (A{1}) and the target (T), and the layer is linear. You can use
the following code to calculate the weights and biases of the second layer to minimize the sum-
squared error.

Wb = T/[A{1}; ones(1,Q)]

Here Wb contains both weights and biases, with the biases in the last column. The sum-squared error
is always 0, as explained below.

There is a problem with C constraints (input/target pairs) and each neuron has C +1 variables (the C
weights from the C radbas neurons, and a bias). A linear problem with C constraints and more than
C variables has an infinite number of zero error solutions.

Thus, newrbe creates a network with zero error on training vectors. The only condition required is to
make sure that SPREAD is large enough that the active input regions of the radbas neurons overlap
enough so that several radbas neurons always have fairly large outputs at any given moment. This
makes the network function smoother and results in better generalization for new input vectors
occurring between input vectors used in the design. (However, SPREAD should not be so large that
each neuron is effectively responding in the same large area of the input space.)

The drawback to newrbe is that it produces a network with as many hidden neurons as there are
input vectors. For this reason, newrbe does not return an acceptable solution when many input
vectors are needed to properly define a network, as is typically the case.

 Radial Basis Neural Networks

26-5



More Efficient Design (newrb)
The function newrb iteratively creates a radial basis network one neuron at a time. Neurons are
added to the network until the sum-squared error falls beneath an error goal or a maximum number
of neurons has been reached. The call for this function is

net = newrb(P,T,GOAL,SPREAD)

The function newrb takes matrices of input and target vectors P and T, and design parameters GOAL
and SPREAD, and returns the desired network.

The design method of newrb is similar to that of newrbe. The difference is that newrb creates
neurons one at a time. At each iteration the input vector that results in lowering the network error
the most is used to create a radbas neuron. The error of the new network is checked, and if low
enough newrb is finished. Otherwise the next neuron is added. This procedure is repeated until the
error goal is met or the maximum number of neurons is reached.

As with newrbe, it is important that the spread parameter be large enough that the radbas neurons
respond to overlapping regions of the input space, but not so large that all the neurons respond in
essentially the same manner.

Why not always use a radial basis network instead of a standard feedforward network? Radial basis
networks, even when designed efficiently with newrbe, tend to have many times more neurons than a
comparable feedforward network with tansig or logsig neurons in the hidden layer.

This is because sigmoid neurons can have outputs over a large region of the input space, while
radbas neurons only respond to relatively small regions of the input space. The result is that the
larger the input space (in terms of number of inputs, and the ranges those inputs vary over) the more
radbas neurons required.

On the other hand, designing a radial basis network often takes much less time than training a
sigmoid/linear network, and can sometimes result in fewer neurons' being used, as can be seen in the
next example.

Examples
The example “Radial Basis Approximation” on page 32-127 shows how a radial basis network is used
to fit a function. Here the problem is solved with only five neurons.

Examples “Radial Basis Underlapping Neurons” on page 32-131 and “Radial Basis Overlapping
Neurons” on page 32-133 examine how the spread constant affects the design process for radial basis
networks.

In “Radial Basis Underlapping Neurons” on page 32-131, a radial basis network is designed to solve
the same problem as in “Radial Basis Approximation” on page 32-127. However, this time the spread
constant used is 0.01. Thus, each radial basis neuron returns 0.5 or lower for any input vector with a
distance of 0.01 or more from its weight vector.

Because the training inputs occur at intervals of 0.1, no two radial basis neurons have a strong output
for any given input.

“Radial Basis Underlapping Neurons” on page 32-131 showed that having too small a spread constant
can result in a solution that does not generalize from the input/target vectors used in the design.
Example “Radial Basis Overlapping Neurons” on page 32-133 shows the opposite problem. If the

26 Radial Basis Neural Networks

26-6



spread constant is large enough, the radial basis neurons will output large values (near 1.0) for all
the inputs used to design the network.

If all the radial basis neurons always output 1, any information presented to the network becomes
lost. No matter what the input, the second layer outputs 1's. The function newrb will attempt to find a
network, but cannot because of numerical problems that arise in this situation.

The moral of the story is, choose a spread constant larger than the distance between adjacent input
vectors, so as to get good generalization, but smaller than the distance across the whole input space.

For this problem that would mean picking a spread constant greater than 0.1, the interval between
inputs, and less than 2, the distance between the leftmost and rightmost inputs.

 Radial Basis Neural Networks

26-7



Probabilistic Neural Networks

In this section...
“Network Architecture” on page 26-8
“Design (newpnn)” on page 26-9

Probabilistic neural networks can be used for classification problems. When an input is presented, the
first layer computes distances from the input vector to the training input vectors and produces a
vector whose elements indicate how close the input is to a training input. The second layer sums
these contributions for each class of inputs to produce as its net output a vector of probabilities.
Finally, a compete transfer function on the output of the second layer picks the maximum of these
probabilities, and produces a 1 for that class and a 0 for the other classes. The architecture for this
system is shown below.

Network Architecture

It is assumed that there are Q input vector/target vector pairs. Each target vector has K elements.
One of these elements is 1 and the rest are 0. Thus, each input vector is associated with one of K
classes.

The first-layer input weights, IW1,1 (net.IW{1,1}), are set to the transpose of the matrix formed
from the Q training pairs, P'. When an input is presented, the || dist || box produces a vector
whose elements indicate how close the input is to the vectors of the training set. These elements are
multiplied, element by element, by the bias and sent to the radbas transfer function. An input vector
close to a training vector is represented by a number close to 1 in the output vector a1. If an input is
close to several training vectors of a single class, it is represented by several elements of a1 that are
close to 1.

The second-layer weights, LW1,2 (net.LW{2,1}), are set to the matrix T of target vectors. Each
vector has a 1 only in the row associated with that particular class of input, and 0s elsewhere. (Use
function ind2vec to create the proper vectors.) The multiplication Ta1 sums the elements of a1 due
to each of the K input classes. Finally, the second-layer transfer function, compet, produces a 1
corresponding to the largest element of n2, and 0s elsewhere. Thus, the network classifies the input
vector into a specific K class because that class has the maximum probability of being correct.

26 Radial Basis Neural Networks

26-8



Design (newpnn)
You can use the function newpnn to create a PNN. For instance, suppose that seven input vectors and
their corresponding targets are

P = [0 0;1 1;0 3;1 4;3 1;4 1;4 3]'

which yields

P =
     0     1     0     1     3     4     4
     0     1     3     4     1     1     3
Tc = [1 1 2 2 3 3 3]

which yields

Tc =
     1     1     2     2     3     3     3

You need a target matrix with 1s in the right places. You can get it with the function ind2vec. It
gives a matrix with 0s except at the correct spots. So execute

T = ind2vec(Tc) 

which gives

T =
   (1,1)        1
   (1,2)        1
   (2,3)        1
   (2,4)        1
   (3,5)        1
   (3,6)        1
   (3,7)        1

Now you can create a network and simulate it, using the input P to make sure that it does produce
the correct classifications. Use the function vec2ind to convert the output Y into a row Yc to make
the classifications clear.

net = newpnn(P,T);
Y = sim(net,P);
Yc = vec2ind(Y)

This produces

Yc =
     1     1     2     2     3     3     3

You might try classifying vectors other than those that were used to design the network. Try to
classify the vectors shown below in P2.

P2 = [1 4;0 1;5 2]'
P2 =
     1     0     5
     4     1     2

Can you guess how these vectors will be classified? If you run the simulation and plot the vectors as
before, you get

 Probabilistic Neural Networks

26-9



Yc =
     2     1     3

These results look good, for these test vectors were quite close to members of classes 2, 1, and 3,
respectively. The network has managed to generalize its operation to properly classify vectors other
than those used to design the network.

You might want to try “PNN Classification” on page 32-139. It shows how to design a PNN, and how
the network can successfully classify a vector not used in the design.

26 Radial Basis Neural Networks

26-10



Generalized Regression Neural Networks
In this section...
“Network Architecture” on page 26-11
“Design (newgrnn)” on page 26-12

Network Architecture
A generalized regression neural network (GRNN) is often used for function approximation. It has a
radial basis layer and a special linear layer.

The architecture for the GRNN is shown below. It is similar to the radial basis network, but has a
slightly different second layer.

Here the nprod box shown above (code function normprod) produces S2 elements in vector n2. Each
element is the dot product of a row of LW2,1 and the input vector a1, all normalized by the sum of the
elements of a1. For instance, suppose that

LW{2,1}= [1 -2;3 4;5 6];
a{1} = [0.7;0.3];

Then

aout = normprod(LW{2,1},a{1})
aout =
    0.1000
    3.3000
    5.3000

The first layer is just like that for newrbe networks. It has as many neurons as there are input/ target
vectors in P. Specifically, the first-layer weights are set to P'. The bias b1 is set to a column vector of
0.8326/SPREAD. The user chooses SPREAD, the distance an input vector must be from a neuron's
weight vector to be 0.5.

Again, the first layer operates just like the newrbe radial basis layer described previously. Each
neuron's weighted input is the distance between the input vector and its weight vector, calculated
with dist. Each neuron's net input is the product of its weighted input with its bias, calculated with
netprod. Each neuron's output is its net input passed through radbas. If a neuron's weight vector is

 Generalized Regression Neural Networks

26-11



equal to the input vector (transposed), its weighted input will be 0, its net input will be 0, and its
output will be 1. If a neuron's weight vector is a distance of spread from the input vector, its
weighted input will be spread, and its net input will be sqrt(−log(.5)) (or 0.8326). Therefore its
output will be 0.5.

The second layer also has as many neurons as input/target vectors, but here LW{2,1} is set to T.

Suppose you have an input vector p close to pi, one of the input vectors among the input vector/target
pairs used in designing layer 1 weights. This input p produces a layer 1 ai output close to 1. This
leads to a layer 2 output close to ti, one of the targets used to form layer 2 weights.

A larger spread leads to a large area around the input vector where layer 1 neurons will respond
with significant outputs. Therefore if spread is small the radial basis function is very steep, so that
the neuron with the weight vector closest to the input will have a much larger output than other
neurons. The network tends to respond with the target vector associated with the nearest design
input vector.

As spread becomes larger the radial basis function's slope becomes smoother and several neurons
can respond to an input vector. The network then acts as if it is taking a weighted average between
target vectors whose design input vectors are closest to the new input vector. As spread becomes
larger more and more neurons contribute to the average, with the result that the network function
becomes smoother.

Design (newgrnn)
You can use the function newgrnn to create a GRNN. For instance, suppose that three input and
three target vectors are defined as

P = [4 5 6];
T = [1.5 3.6 6.7];

You can now obtain a GRNN with

net = newgrnn(P,T);

and simulate it with

P = 4.5;
v = sim(net,P);

You might want to try “GRNN Function Approximation” on page 32-135 as well.

Function Description
compet Competitive transfer function.
dist Euclidean distance weight function.
dotprod Dot product weight function.
ind2vec Convert indices to vectors.
negdist Negative Euclidean distance weight function.
netprod Product net input function.
newgrnn Design a generalized regression neural network.
newpnn Design a probabilistic neural network.

26 Radial Basis Neural Networks

26-12



Function Description
newrb Design a radial basis network.
newrbe Design an exact radial basis network.
normprod Normalized dot product weight function.
radbas Radial basis transfer function.
vec2ind Convert vectors to indices.

 Generalized Regression Neural Networks

26-13





Self-Organizing and Learning Vector
Quantization Networks

• “Introduction to Self-Organizing and LVQ” on page 27-2
• “Cluster with a Competitive Neural Network” on page 27-3
• “Cluster with Self-Organizing Map Neural Network” on page 27-8
• “Learning Vector Quantization (LVQ) Neural Networks” on page 27-27

27



Introduction to Self-Organizing and LVQ
Self-organizing in networks is one of the most fascinating topics in the neural network field. Such
networks can learn to detect regularities and correlations in their input and adapt their future
responses to that input accordingly. The neurons of competitive networks learn to recognize groups
of similar input vectors. Self-organizing maps learn to recognize groups of similar input vectors in
such a way that neurons physically near each other in the neuron layer respond to similar input
vectors. Self-organizing maps do not have target vectors, since their purpose is to divide the input
vectors into clusters of similar vectors. There is no desired output for these types of networks.

Learning vector quantization (LVQ) is a method for training competitive layers in a supervised
manner (with target outputs). A competitive layer automatically learns to classify input vectors.
However, the classes that the competitive layer finds are dependent only on the distance between
input vectors. If two input vectors are very similar, the competitive layer probably will put them in the
same class. There is no mechanism in a strictly competitive layer design to say whether or not any
two input vectors are in the same class or different classes.

LVQ networks, on the other hand, learn to classify input vectors into target classes chosen by the
user.

You might consult the following reference: Kohonen, T., Self-Organization and Associative Memory,
2nd Edition, Berlin: Springer-Verlag, 1987.

Important Self-Organizing and LVQ Functions
You can create competitive layers and self-organizing maps with competlayer and selforgmap,
respectively.

You can create an LVQ network with the function lvqnet.

27 Self-Organizing and Learning Vector Quantization Networks

27-2



Cluster with a Competitive Neural Network
In this section...
“Architecture” on page 27-3
“Create a Competitive Neural Network” on page 27-3
“Kohonen Learning Rule (learnk)” on page 27-4
“Bias Learning Rule (learncon)” on page 27-5
“Training” on page 27-5
“Graphical Example” on page 27-6

The neurons in a competitive layer distribute themselves to recognize frequently presented input
vectors.

Architecture
The architecture for a competitive network is shown below.

The ‖ dist ‖ box in this figure accepts the input vector p and the input weight matrix IW1,1, and
produces a vector having S1 elements. The elements are the negative of the distances between the
input vector and vectors iIW1,1 formed from the rows of the input weight matrix.

Compute the net input n1 of a competitive layer by finding the negative distance between input vector
p and the weight vectors and adding the biases b. If all biases are zero, the maximum net input a
neuron can have is 0. This occurs when the input vector p equals that neuron's weight vector.

The competitive transfer function accepts a net input vector for a layer and returns neuron outputs of
0 for all neurons except for the winner, the neuron associated with the most positive element of net
input n1. The winner's output is 1. If all biases are 0, then the neuron whose weight vector is closest
to the input vector has the least negative net input and, therefore, wins the competition to output a 1.

Reasons for using biases with competitive layers are introduced in “Bias Learning Rule (learncon)” on
page 27-5.

Create a Competitive Neural Network
You can create a competitive neural network with the function competlayer. A simple example
shows how this works.

 Cluster with a Competitive Neural Network

27-3



Suppose you want to divide the following four two-element vectors into two classes.

p = [.1 .8 .1 .9; .2 .9 .1 .8]

p =
    0.1000    0.8000    0.1000    0.9000
    0.2000    0.9000    0.1000    0.8000

There are two vectors near the origin and two vectors near (1,1).

First, create a two-neuron competitive layer.:

net = competlayer(2);

Now you have a network, but you need to train it to do the classification job.

The first time the network is trained, its weights will initialized to the centers of the input ranges with
the function midpoint. You can check see these initial values using the number of neurons and the
input data:

wts = midpoint(2,p)

wts =
    0.5000    0.5000
    0.5000    0.5000

These weights are indeed the values at the midpoint of the range (0 to 1) of the inputs.

The initial biases are computed by initcon, which gives

biases = initcon(2)

biases =
    5.4366
    5.4366

Recall that each neuron competes to respond to an input vector p. If the biases are all 0, the neuron
whose weight vector is closest to p gets the highest net input and, therefore, wins the competition,
and outputs 1. All other neurons output 0. You want to adjust the winning neuron so as to move it
closer to the input. A learning rule to do this is discussed in the next section.

Kohonen Learning Rule (learnk)
The weights of the winning neuron (a row of the input weight matrix) are adjusted with the Kohonen
learning rule. Supposing that the ith neuron wins, the elements of the ith row of the input weight
matrix are adjusted as shown below.

Ii W1, 1(q) = Ii W1, 1(q− 1) + α(p(q)− Ii W1, 1(q− 1))

The Kohonen rule allows the weights of a neuron to learn an input vector, and because of this it is
useful in recognition applications.

Thus, the neuron whose weight vector was closest to the input vector is updated to be even closer.
The result is that the winning neuron is more likely to win the competition the next time a similar
vector is presented, and less likely to win when a very different input vector is presented. As more
and more inputs are presented, each neuron in the layer closest to a group of input vectors soon

27 Self-Organizing and Learning Vector Quantization Networks

27-4



adjusts its weight vector toward those input vectors. Eventually, if there are enough neurons, every
cluster of similar input vectors will have a neuron that outputs 1 when a vector in the cluster is
presented, while outputting a 0 at all other times. Thus, the competitive network learns to categorize
the input vectors it sees.

The function learnk is used to perform the Kohonen learning rule in this toolbox.

Bias Learning Rule (learncon)
One of the limitations of competitive networks is that some neurons might not always be allocated. In
other words, some neuron weight vectors might start out far from any input vectors and never win
the competition, no matter how long the training is continued. The result is that their weights do not
get to learn and they never win. These unfortunate neurons, referred to as dead neurons, never
perform a useful function.

To stop this, use biases to give neurons that only win the competition rarely (if ever) an advantage
over neurons that win often. A positive bias, added to the negative distance, makes a distant neuron
more likely to win.

To do this job a running average of neuron outputs is kept. It is equivalent to the percentages of times
each output is 1. This average is used to update the biases with the learning function learncon so
that the biases of frequently active neurons become smaller, and biases of infrequently active neurons
become larger.

As the biases of infrequently active neurons increase, the input space to which those neurons respond
increases. As that input space increases, the infrequently active neuron responds and moves toward
more input vectors. Eventually, the neuron responds to the same number of vectors as other neurons.

This has two good effects. First, if a neuron never wins a competition because its weights are far from
any of the input vectors, its bias eventually becomes large enough so that it can win. When this
happens, it moves toward some group of input vectors. Once the neuron's weights have moved into a
group of input vectors and the neuron is winning consistently, its bias will decrease to 0. Thus, the
problem of dead neurons is resolved.

The second advantage of biases is that they force each neuron to classify roughly the same
percentage of input vectors. Thus, if a region of the input space is associated with a larger number of
input vectors than another region, the more densely filled region will attract more neurons and be
classified into smaller subsections.

The learning rates for learncon are typically set an order of magnitude or more smaller than for
learnk to make sure that the running average is accurate.

Training
Now train the network for 500 epochs. You can use either train or adapt.

net.trainParam.epochs = 500;
net = train(net,p);

Note that train for competitive networks uses the training function trainru. You can verify this by
executing the following code after creating the network.

net.trainFcn

 Cluster with a Competitive Neural Network

27-5



ans =
trainru

For each epoch, all training vectors (or sequences) are each presented once in a different random
order with the network and weight and bias values updated after each individual presentation.

Next, supply the original vectors as input to the network, simulate the network, and finally convert its
output vectors to class indices.

a = sim(net,p);
ac = vec2ind(a)

ac =
     1     2     1     2

You see that the network is trained to classify the input vectors into two groups, those near the
origin, class 1, and those near (1,1), class 2.

It might be interesting to look at the final weights and biases.

net.IW{1,1}

ans =
    0.1000    0.1500
    0.8500    0.8500

net.b{1}

ans =
    5.4367
    5.4365 

(You might get different answers when you run this problem, because a random seed is used to pick
the order of the vectors presented to the network for training.) Note that the first vector (formed
from the first row of the weight matrix) is near the input vectors close to the origin, while the vector
formed from the second row of the weight matrix is close to the input vectors near (1,1). Thus, the
network has been trained—just by exposing it to the inputs—to classify them.

During training each neuron in the layer closest to a group of input vectors adjusts its weight vector
toward those input vectors. Eventually, if there are enough neurons, every cluster of similar input
vectors has a neuron that outputs 1 when a vector in the cluster is presented, while outputting a 0 at
all other times. Thus, the competitive network learns to categorize the input.

Graphical Example
Competitive layers can be understood better when their weight vectors and input vectors are shown
graphically. The diagram below shows 48 two-element input vectors represented with + markers.

27 Self-Organizing and Learning Vector Quantization Networks

27-6



The input vectors above appear to fall into clusters. You can use a competitive network of eight
neurons to classify the vectors into such clusters.

Try “Competitive Learning” on page 32-116 to see a dynamic example of competitive learning.

 Cluster with a Competitive Neural Network

27-7



Cluster with Self-Organizing Map Neural Network

In this section...
“Topologies (gridtop, hextop, randtop)” on page 27-9
“Distance Functions (dist, linkdist, mandist, boxdist)” on page 27-12
“Architecture” on page 27-14
“Create a Self-Organizing Map Neural Network (selforgmap)” on page 27-14
“Training (learnsomb)” on page 27-16
“Examples” on page 27-19

Self-organizing feature maps (SOFM) learn to classify input vectors according to how they are
grouped in the input space. They differ from competitive layers in that neighboring neurons in the
self-organizing map learn to recognize neighboring sections of the input space. Thus, self-organizing
maps learn both the distribution (as do competitive layers) and topology of the input vectors they are
trained on.

The neurons in the layer of an SOFM are arranged originally in physical positions according to a
topology function. The function gridtop, hextop, or randtop can arrange the neurons in a grid,
hexagonal, or random topology. Distances between neurons are calculated from their positions with a
distance function. There are four distance functions, dist, boxdist, linkdist, and mandist. Link
distance is the most common. These topology and distance functions are described in “Topologies
(gridtop, hextop, randtop)” on page 27-9 and “Distance Functions (dist, linkdist, mandist, boxdist)”
on page 27-12.

Here a self-organizing feature map network identifies a winning neuron i* using the same procedure
as employed by a competitive layer. However, instead of updating only the winning neuron, all
neurons within a certain neighborhood Ni* (d) of the winning neuron are updated, using the Kohonen
rule. Specifically, all such neurons i ∊ Ni* (d) are adjusted as follows:

wi (q) = wi (q− 1) + α(p(q)− wi (q− 1))

or

wi (q) = (1− α) wi (q− 1) + αp(q)

Here the neighborhood Ni* (d) contains the indices for all of the neurons that lie within a radius d of
the winning neuron i*.

Ni(d) = j, di j ≤ d

Thus, when a vector p is presented, the weights of the winning neuron and its close neighbors move
toward p. Consequently, after many presentations, neighboring neurons have learned vectors similar
to each other.

Another version of SOFM training, called the batch algorithm, presents the whole data set to the
network before any weights are updated. The algorithm then determines a winning neuron for each
input vector. Each weight vector then moves to the average position of all of the input vectors for
which it is a winner, or for which it is in the neighborhood of a winner.

27 Self-Organizing and Learning Vector Quantization Networks

27-8



To illustrate the concept of neighborhoods, consider the figure below. The left diagram shows a two-
dimensional neighborhood of radius d = 1 around neuron 13. The right diagram shows a
neighborhood of radius d = 2.

These neighborhoods could be written as N13(1) = {8, 12, 13, 14, 18} and
N13(2) = {3, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 23}.

The neurons in an SOFM do not have to be arranged in a two-dimensional pattern. You can use a one-
dimensional arrangement, or three or more dimensions. For a one-dimensional SOFM, a neuron has
only two neighbors within a radius of 1 (or a single neighbor if the neuron is at the end of the line).
You can also define distance in different ways, for instance, by using rectangular and hexagonal
arrangements of neurons and neighborhoods. The performance of the network is not sensitive to the
exact shape of the neighborhoods.

Topologies (gridtop, hextop, randtop)
You can specify different topologies for the original neuron locations with the functions gridtop,
hextop, and randtop.

The gridtop topology starts with neurons in a rectangular grid similar to that shown in the previous
figure. For example, suppose that you want a 2-by-3 array of six neurons. You can get this with

pos = gridtop([2, 3])
pos =
     0     1     0     1     0     1
     0     0     1     1     2     2

Here neuron 1 has the position (0,0), neuron 2 has the position (1,0), and neuron 3 has the position
(0,1), etc.

Note that had you asked for a gridtop with the dimension sizes reversed, you would have gotten a
slightly different arrangement:

 Cluster with Self-Organizing Map Neural Network

27-9



pos = gridtop([3, 2])
pos =
     0     1     2     0     1     2
     0     0     0     1     1     1

You can create an 8-by-10 set of neurons in a gridtop topology with the following code:

pos = gridtop([8 10]);
plotsom(pos)

As shown, the neurons in the gridtop topology do indeed lie on a grid.

The hextop function creates a similar set of neurons, but they are in a hexagonal pattern. A 2-by-3
pattern of hextop neurons is generated as follows:

pos = hextop([2, 3])
pos =
         0    1.0000    0.5000    1.5000         0    1.0000
         0         0    0.8660    0.8660    1.7321    1.7321 

Note that hextop is the default pattern for SOM networks generated with selforgmap.

You can create and plot an 8-by-10 set of neurons in a hextop topology with the following code:

pos = hextop([8 10]);
plotsom(pos)

27 Self-Organizing and Learning Vector Quantization Networks

27-10



Note the positions of the neurons in a hexagonal arrangement.

Finally, the randtop function creates neurons in an N-dimensional random pattern. The following
code generates a random pattern of neurons.

pos = randtop([2, 3])
pos =
         0    0.7620    0.6268    1.4218    0.0663    0.7862
    0.0925         0    0.4984    0.6007    1.1222    1.4228

You can create and plot an 8-by-10 set of neurons in a randtop topology with the following code:

pos = randtop([8 10]);
plotsom(pos)

 Cluster with Self-Organizing Map Neural Network

27-11



For examples, see the help for these topology functions.

Distance Functions (dist, linkdist, mandist, boxdist)
In this toolbox, there are four ways to calculate distances from a particular neuron to its neighbors.
Each calculation method is implemented with a special function.

The dist function calculates the Euclidean distances from a home neuron to other neurons. Suppose
you have three neurons:

pos2 = [0 1 2; 0 1 2]
pos2 =
     0     1     2
     0     1     2

You find the distance from each neuron to the other with

D2 = dist(pos2)
D2 =
         0    1.4142    2.8284
    1.4142         0    1.4142
    2.8284    1.4142         0

Thus, the distance from neuron 1 to itself is 0, the distance from neuron 1 to neuron 2 is 1.4142, etc.

The graph below shows a home neuron in a two-dimensional (gridtop) layer of neurons. The home
neuron has neighborhoods of increasing diameter surrounding it. A neighborhood of diameter 1

27 Self-Organizing and Learning Vector Quantization Networks

27-12



includes the home neuron and its immediate neighbors. The neighborhood of diameter 2 includes the
diameter 1 neurons and their immediate neighbors.

As for the dist function, all the neighborhoods for an S-neuron layer map are represented by an S-
by-S matrix of distances. The particular distances shown above (1 in the immediate neighborhood, 2
in neighborhood 2, etc.), are generated by the function boxdist. Suppose that you have six neurons
in a gridtop configuration.

pos = gridtop([2, 3])
pos =
     0     1     0     1     0     1
     0     0     1     1     2     2

Then the box distances are

d = boxdist(pos)
d =
     0     1     1     1     2     2
     1     0     1     1     2     2
     1     1     0     1     1     1
     1     1     1     0     1     1
     2     2     1     1     0     1
     2     2     1     1     1     0

The distance from neuron 1 to 2, 3, and 4 is just 1, for they are in the immediate neighborhood. The
distance from neuron 1 to both 5 and 6 is 2. The distance from both 3 and 4 to all other neurons is
just 1.

The link distance from one neuron is just the number of links, or steps, that must be taken to get to
the neuron under consideration. Thus, if you calculate the distances from the same set of neurons
with linkdist, you get

dlink =
     0     1     1     2     2     3
     1     0     2     1     3     2
     1     2     0     1     1     2
     2     1     1     0     2     1
     2     3     1     2     0     1
     3     2     2     1     1     0

The Manhattan distance between two vectors x and y is calculated as

D = sum(abs(x-y))

 Cluster with Self-Organizing Map Neural Network

27-13



Thus if you have

W1 = [1 2; 3 4; 5 6]
W1 =
     1     2
     3     4
     5     6

and

P1 = [1;1]
P1 =
     1
     1

then you get for the distances

Z1 = mandist(W1,P1)
Z1 =
     1
     5
     9

The distances calculated with mandist do indeed follow the mathematical expression given above.

Architecture
The architecture for this SOFM is shown below.

This architecture is like that of a competitive network, except no bias is used here. The competitive
transfer function produces a 1 for output element a1

i corresponding to i*, the winning neuron. All
other output elements in a1 are 0.

Now, however, as described above, neurons close to the winning neuron are updated along with the
winning neuron. You can choose from various topologies of neurons. Similarly, you can choose from
various distance expressions to calculate neurons that are close to the winning neuron.

Create a Self-Organizing Map Neural Network (selforgmap)
You can create a new SOM network with the function selforgmap. This function defines variables
used in two phases of learning:

27 Self-Organizing and Learning Vector Quantization Networks

27-14



• Ordering-phase learning rate
• Ordering-phase steps
• Tuning-phase learning rate
• Tuning-phase neighborhood distance

These values are used for training and adapting.

Consider the following example.

Suppose that you want to create a network having input vectors with two elements, and that you
want to have six neurons in a hexagonal 2-by-3 network. The code to obtain this network is:

net = selforgmap([2 3]);

Suppose that the vectors to train on are:

P = [.1 .3 1.2 1.1 1.8 1.7 .1 .3 1.2 1.1 1.8 1.7;...
0.2 0.1 0.3 0.1 0.3 0.2 1.8 1.8 1.9 1.9 1.7 1.8];

You can configure the network to input the data and plot all of this with:

net = configure(net,P);
plotsompos(net,P)

The green spots are the training vectors. The initialization for selforgmap spreads the initial
weights across the input space. Note that they are initially some distance from the training vectors.

 Cluster with Self-Organizing Map Neural Network

27-15



When simulating a network, the negative distances between each neuron’s weight vector and the
input vector are calculated (negdist) to get the weighted inputs. The weighted inputs are also the
net inputs (netsum). The net inputs compete (compet) so that only the neuron with the most positive
net input will output a 1.

Training (learnsomb)
The default learning in a self-organizing feature map occurs in the batch mode (trainbu). The
weight learning function for the self-organizing map is learnsomb.

First, the network identifies the winning neuron for each input vector. Each weight vector then moves
to the average position of all of the input vectors for which it is a winner or for which it is in the
neighborhood of a winner. The distance that defines the size of the neighborhood is altered during
training through two phases.

Ordering Phase

This phase lasts for the given number of steps. The neighborhood distance starts at a given initial
distance, and decreases to the tuning neighborhood distance (1.0). As the neighborhood distance
decreases over this phase, the neurons of the network typically order themselves in the input space
with the same topology in which they are ordered physically.

Tuning Phase

This phase lasts for the rest of training or adaption. The neighborhood size has decreased below 1 so
only the winning neuron learns for each sample.

Now take a look at some of the specific values commonly used in these networks.

Learning occurs according to the learnsomb learning parameter, shown here with its default value.

Learning Parameter Default Value Purpose
LP.init_neighborhood 3 Initial neighborhood size
LP.steps 100 Ordering phase steps

The neighborhood size NS is altered through two phases: an ordering phase and a tuning phase.

The ordering phase lasts as many steps as LP.steps. During this phase, the algorithm adjusts ND
from the initial neighborhood size LP.init_neighborhood down to 1. It is during this phase that
neuron weights order themselves in the input space consistent with the associated neuron positions.

During the tuning phase, ND is less than 1. During this phase, the weights are expected to spread out
relatively evenly over the input space while retaining their topological order found during the
ordering phase.

Thus, the neuron's weight vectors initially take large steps all together toward the area of input space
where input vectors are occurring. Then as the neighborhood size decreases to 1, the map tends to
order itself topologically over the presented input vectors. Once the neighborhood size is 1, the
network should be fairly well ordered. The training continues in order to give the neurons time to
spread out evenly across the input vectors.

As with competitive layers, the neurons of a self-organizing map will order themselves with
approximately equal distances between them if input vectors appear with even probability throughout

27 Self-Organizing and Learning Vector Quantization Networks

27-16



a section of the input space. If input vectors occur with varying frequency throughout the input
space, the feature map layer tends to allocate neurons to an area in proportion to the frequency of
input vectors there.

Thus, feature maps, while learning to categorize their input, also learn both the topology and
distribution of their input.

You can train the network for 1000 epochs with

net.trainParam.epochs = 1000;
net = train(net,P);

 Cluster with Self-Organizing Map Neural Network

27-17



plotsompos(net,P)

27 Self-Organizing and Learning Vector Quantization Networks

27-18



You can see that the neurons have started to move toward the various training groups. Additional
training is required to get the neurons closer to the various groups.

As noted previously, self-organizing maps differ from conventional competitive learning in terms of
which neurons get their weights updated. Instead of updating only the winner, feature maps update
the weights of the winner and its neighbors. The result is that neighboring neurons tend to have
similar weight vectors and to be responsive to similar input vectors.

Examples
Two examples are described briefly below. You also might try the similar examples “One-Dimensional
Self-Organizing Map” on page 32-120 and “Two-Dimensional Self-Organizing Map” on page 32-123.

One-Dimensional Self-Organizing Map

Consider 100 two-element unit input vectors spread evenly between 0° and 90°.

angles = 0:0.5*pi/99:0.5*pi;

Here is a plot of the data.

P = [sin(angles); cos(angles)];

 Cluster with Self-Organizing Map Neural Network

27-19



A self-organizing map is defined as a one-dimensional layer of 10 neurons. This map is to be trained
on these input vectors shown above. Originally these neurons are at the center of the figure.

Of course, because all the weight vectors start in the middle of the input vector space, all you see
now is a single circle.

As training starts the weight vectors move together toward the input vectors. They also become
ordered as the neighborhood size decreases. Finally the layer adjusts its weights so that each neuron
responds strongly to a region of the input space occupied by input vectors. The placement of
neighboring neuron weight vectors also reflects the topology of the input vectors.

27 Self-Organizing and Learning Vector Quantization Networks

27-20



Note that self-organizing maps are trained with input vectors in a random order, so starting with the
same initial vectors does not guarantee identical training results.

Two-Dimensional Self-Organizing Map

This example shows how a two-dimensional self-organizing map can be trained.

First some random input data is created with the following code:

P = rands(2,1000);

Here is a plot of these 1000 input vectors.

A 5-by-6 two-dimensional map of 30 neurons is used to classify these input vectors. The two-
dimensional map is five neurons by six neurons, with distances calculated according to the
Manhattan distance neighborhood function mandist.

The map is then trained for 5000 presentation cycles, with displays every 20 cycles.

Here is what the self-organizing map looks like after 40 cycles.

 Cluster with Self-Organizing Map Neural Network

27-21



The weight vectors, shown with circles, are almost randomly placed. However, even after only 40
presentation cycles, neighboring neurons, connected by lines, have weight vectors close together.

Here is the map after 120 cycles.

After 120 cycles, the map has begun to organize itself according to the topology of the input space,
which constrains input vectors.

The following plot, after 500 cycles, shows the map more evenly distributed across the input space.

27 Self-Organizing and Learning Vector Quantization Networks

27-22



Finally, after 5000 cycles, the map is rather evenly spread across the input space. In addition, the
neurons are very evenly spaced, reflecting the even distribution of input vectors in this problem.

Thus a two-dimensional self-organizing map has learned the topology of its inputs' space.

It is important to note that while a self-organizing map does not take long to organize itself so that
neighboring neurons recognize similar inputs, it can take a long time for the map to finally arrange
itself according to the distribution of input vectors.

Training with the Batch Algorithm

The batch training algorithm is generally much faster than the incremental algorithm, and it is the
default algorithm for SOFM training. You can experiment with this algorithm on a simple data set
with the following commands:

x = simplecluster_dataset
net = selforgmap([6 6]);
net = train(net,x);

This command sequence creates and trains a 6-by-6 two-dimensional map of 36 neurons. During
training, the following figure appears.

 Cluster with Self-Organizing Map Neural Network

27-23



There are several useful visualizations that you can access from this window. If you click SOM
Weight Positions, the following figure appears, which shows the locations of the data points and the
weight vectors. As the figure indicates, after only 200 iterations of the batch algorithm, the map is
well distributed through the input space.

When the input space is high dimensional, you cannot visualize all the weights at the same time. In
this case, click SOM Neighbor Distances. The following figure appears, which indicates the
distances between neighboring neurons.

This figure uses the following color coding:

27 Self-Organizing and Learning Vector Quantization Networks

27-24



• The blue hexagons represent the neurons.
• The red lines connect neighboring neurons.
• The colors in the regions containing the red lines indicate the distances between neurons.
• The darker colors represent larger distances.
• The lighter colors represent smaller distances.

Four groups of light segments appear, bounded by some darker segments. This grouping indicates
that the network has clustered the data into four groups. These four groups can be seen in the
previous weight position figure.

Another useful figure can tell you how many data points are associated with each neuron. Click SOM
Sample Hits to see the following figure. It is best if the data are fairly evenly distributed across the
neurons. In this example, the data are concentrated a little more in the corner neurons, but overall
the distribution is fairly even.

You can also visualize the weights themselves using the weight plane figure. Click SOM Input
Planes in the training window to obtain the next figure. There is a weight plane for each element of

 Cluster with Self-Organizing Map Neural Network

27-25



the input vector (two, in this case). They are visualizations of the weights that connect each input to
each of the neurons. (Lighter and darker colors represent larger and smaller weights, respectively.) If
the connection patterns of two inputs are very similar, you can assume that the inputs were highly
correlated. In this case, input 1 has connections that are very different than those of input 2.

You can also produce all of the previous figures from the command line. Try these plotting commands:
plotsomhits, plotsomnc, plotsomnd, plotsomplanes, plotsompos, and plotsomtop.

27 Self-Organizing and Learning Vector Quantization Networks

27-26



Learning Vector Quantization (LVQ) Neural Networks
In this section...
“Architecture” on page 27-27
“Creating an LVQ Network” on page 27-28
“LVQ1 Learning Rule (learnlv1)” on page 27-30
“Training” on page 27-31
“Supplemental LVQ2.1 Learning Rule (learnlv2)” on page 27-32

Architecture
The LVQ network architecture is shown below.

An LVQ network has a first competitive layer and a second linear layer. The competitive layer learns
to classify input vectors in much the same way as the competitive layers of “Cluster with Self-
Organizing Map Neural Network” on page 27-8 described in this topic. The linear layer transforms
the competitive layer’s classes into target classifications defined by the user. The classes learned by
the competitive layer are referred to as subclasses and the classes of the linear layer as target
classes.

Both the competitive and linear layers have one neuron per (sub or target) class. Thus, the
competitive layer can learn up to S1 subclasses. These, in turn, are combined by the linear layer to
form S2 target classes. (S1 is always larger than S2.)

For example, suppose neurons 1, 2, and 3 in the competitive layer all learn subclasses of the input
space that belongs to the linear layer target class 2. Then competitive neurons 1, 2, and 3 will have
LW2,1 weights of 1.0 to neuron n2 in the linear layer, and weights of 0 to all other linear neurons.
Thus, the linear neuron produces a 1 if any of the three competitive neurons (1, 2, or 3) wins the
competition and outputs a 1. This is how the subclasses of the competitive layer are combined into
target classes in the linear layer.

In short, a 1 in the ith row of a1 (the rest to the elements of a1 will be zero) effectively picks the ith
column of LW2,1 as the network output. Each such column contains a single 1, corresponding to a
specific class. Thus, subclass 1s from layer 1 are put into various classes by the LW2,1a1 multiplication
in layer 2.

You know ahead of time what fraction of the layer 1 neurons should be classified into the various
class outputs of layer 2, so you can specify the elements of LW2,1 at the start. However, you have to go

 Learning Vector Quantization (LVQ) Neural Networks

27-27



through a training procedure to get the first layer to produce the correct subclass output for each
vector of the training set. This training is discussed in “Training” on page 27-5. First, consider how to
create the original network.

Creating an LVQ Network
You can create an LVQ network with the function lvqnet,

net = lvqnet(S1,LR,LF)

where

• S1 is the number of first-layer hidden neurons.
• LR is the learning rate (default 0.01).
• LF is the learning function (default is learnlv1).

Suppose you have 10 input vectors. Create a network that assigns each of these input vectors to one
of four subclasses. Thus, there are four neurons in the first competitive layer. These subclasses are
then assigned to one of two output classes by the two neurons in layer 2. The input vectors and
targets are specified by

P = [-3 -2 -2 0 0 0 0 2 2 3; 0 1 -1 2 1 -1 -2 1 -1 0];

and

Tc = [1 1 1 2 2 2 2 1 1 1];

It might help to show the details of what you get from these two lines of code.

P,Tc
P =
    -3    -2    -2     0     0     0     0     2     2     3
     0     1    -1     2     1    -1    -2     1    -1     0
Tc =
     1     1     1     2     2     2     2     1     1     1

A plot of the input vectors follows.

27 Self-Organizing and Learning Vector Quantization Networks

27-28



As you can see, there are four subclasses of input vectors. You want a network that classifies p1, p2,
p3, p8, p9, and p10 to produce an output of 1, and that classifies vectors p4, p5, p6, and p7 to produce
an output of 2. Note that this problem is nonlinearly separable, and so cannot be solved by a
perceptron, but an LVQ network has no difficulty.

Next convert the Tc matrix to target vectors.

T = ind2vec(Tc);

This gives a sparse matrix T that can be displayed in full with

targets = full(T)

which gives

targets =
     1     1     1     0     0     0     0     1     1     1
     0     0     0     1     1     1     1     0     0     0

This looks right. It says, for instance, that if you have the first column of P as input, you should get
the first column of targets as an output; and that output says the input falls in class 1, which is
correct. Now you are ready to call lvqnet.

Call lvqnet to create a network with four neurons.

net = lvqnet(4);

Configure and confirm the initial values of the first-layer weight matrix are initialized by the function
midpoint to values in the center of the input data range.

net = configure(net,P,T);
net.IW{1}
ans =
     0     0
     0     0
     0     0
     0     0

Confirm that the second-layer weights have 60% (6 of the 10 in Tc) of its columns with a 1 in the first
row, (corresponding to class 1), and 40% of its columns have a 1 in the second row (corresponding to
class 2). With only four columns, the 60% and 40% actually round to 50% and there are two 1's in
each row.

net.LW{2,1}
ans =
     1     1     0     0
     0     0     1     1

This makes sense too. It says that if the competitive layer produces a 1 as the first or second element,
the input vector is classified as class 1; otherwise it is a class 2.

You might notice that the first two competitive neurons are connected to the first linear neuron (with
weights of 1), while the second two competitive neurons are connected to the second linear neuron.
All other weights between the competitive neurons and linear neurons have values of 0. Thus, each of
the two target classes (the linear neurons) is, in fact, the union of two subclasses (the competitive
neurons).

You can simulate the network with sim. Use the original P matrix as input just to see what you get.

 Learning Vector Quantization (LVQ) Neural Networks

27-29



Y = net(P);
Yc = vec2ind(Y)
Yc =
     1     1     1     1     1     1     1     1     1     1

The network classifies all inputs into class 1. Because this is not what you want, you have to train the
network (adjusting the weights of layer 1 only), before you can expect a good result. The next two
sections discuss two LVQ learning rules and the training process.

LVQ1 Learning Rule (learnlv1)
LVQ learning in the competitive layer is based on a set of input/target pairs.

p1, t1 , p2, t2 , … pQ, tQ

Each target vector has a single 1. The rest of its elements are 0. The 1 tells the proper classification
of the associated input. For instance, consider the following training pair.

p1 =
2
−1
0

, t1 =

0
0
1
0

Here there are input vectors of three elements, and each input vector is to be assigned to one of four
classes. The network is to be trained so that it classifies the input vector shown above into the third
of four classes.

To train the network, an input vector p is presented, and the distance from p to each row of the input
weight matrix IW1,1 is computed with the function negdist. The hidden neurons of layer 1 compete.
Suppose that the ith element of n1 is most positive, and neuron i* wins the competition. Then the
competitive transfer function produces a 1 as the i*th element of a1. All other elements of a1 are 0.

When a1 is multiplied by the layer 2 weights LW2,1, the single 1 in a1 selects the class k* associated
with the input. Thus, the network has assigned the input vector p to class k* and α2

k* will be 1. Of
course, this assignment can be a good one or a bad one, for tk* can be 1 or 0, depending on whether
the input belonged to class k* or not.

Adjust the i*th row of IW1,1 in such a way as to move this row closer to the input vector p if the
assignment is correct, and to move the row away from p if the assignment is incorrect. If p is
classified correctly,

αk ∗
2 = tk ∗ = 1

compute the new value of the i*th row of IW1,1 as

Ii ∗ W1, 1(q) = Ii ∗ W1, 1(q− 1) + α(p(q)− Ii ∗ W1, 1(q− 1))

On the other hand, if p is classified incorrectly,

αk ∗
2 = 1 ≠ tk ∗ = 0

compute the new value of the i*th row of IW1,1 as

27 Self-Organizing and Learning Vector Quantization Networks

27-30



Ii ∗ W1, 1(q) = Ii ∗ W1, 1(q− 1)− α(p(q)− Ii ∗ W1, 1(q− 1))

You can make these corrections to the i*th row of IW1,1 automatically, without affecting other rows of
IW1,1, by back-propagating the output errors to layer 1.

Such corrections move the hidden neuron toward vectors that fall into the class for which it forms a
subclass, and away from vectors that fall into other classes.

The learning function that implements these changes in the layer 1 weights in LVQ networks is
learnlv1. It can be applied during training.

Training
Next you need to train the network to obtain first-layer weights that lead to the correct classification
of input vectors. You do this with train as with the following commands. First, set the training
epochs to 150. Then, use train:

net.trainParam.epochs = 150;
net = train(net,P,T);

Now confirm the first-layer weights.

net.IW{1,1}
ans =
    0.3283    0.0051
   -0.1366    0.0001
   -0.0263    0.2234
         0   -0.0685

The following plot shows that these weights have moved toward their respective classification groups.

To confirm that these weights do indeed lead to the correct classification, take the matrix P as input
and simulate the network. Then see what classifications are produced by the network.

Y = net(P);
Yc = vec2ind(Y)

 Learning Vector Quantization (LVQ) Neural Networks

27-31



This gives

Yc =
     1     1     1     2     2     2     2     1     1     1

which is expected. As a last check, try an input close to a vector that was used in training.

pchk1 = [0; 0.5];
Y = net(pchk1);
Yc1 = vec2ind(Y)

This gives

Yc1 =
     2

This looks right, because pchk1 is close to other vectors classified as 2. Similarly,

pchk2 = [1; 0];
Y = net(pchk2);
Yc2 = vec2ind(Y)

gives

Yc2 =
     1

This looks right too, because pchk2 is close to other vectors classified as 1.

You might want to try the example program “Learning Vector Quantization” on page 32-143. It
follows the discussion of training given above.

Supplemental LVQ2.1 Learning Rule (learnlv2)
The following learning rule is one that might be applied after first applying LVQ1. It can improve the
result of the first learning. This particular version of LVQ2 (referred to as LVQ2.1 in the literature
[Koho97 on page 33-2]) is embodied in the function learnlv2. Note again that LVQ2.1 is to be
used only after LVQ1 has been applied.

Learning here is similar to that in learnlv2 except now two vectors of layer 1 that are closest to the
input vector can be updated, provided that one belongs to the correct class and one belongs to a
wrong class, and further provided that the input falls into a “window” near the midplane of the two
vectors.

The window is defined by

min
di
d j

,
d j
di

> s

where

s ≡ 1−w
1 + w

(where di and dj are the Euclidean distances of p from i*IW1,1 and j*IW1,1, respectively). Take a value
for w in the range 0.2 to 0.3. If you pick, for instance, 0.25, then s = 0.6. This means that if the

27 Self-Organizing and Learning Vector Quantization Networks

27-32



minimum of the two distance ratios is greater than 0.6, the two vectors are adjusted. That is, if the
input is near the midplane, adjust the two vectors, provided also that the input vector p and j*IW1,1

belong to the same class, and p and i*IW1,1 do not belong in the same class.

The adjustments made are

Ii ∗ W1, 1(q) = Ii ∗ W1, 1(q− 1)− α(p(q)− Ii ∗ W1, 1(q− 1))

and

Ij ∗ W1, 1(q) = Ij ∗ W1, 1(q− 1) + α(p(q)− Ij ∗ W1, 1(q− 1))

Thus, given two vectors closest to the input, as long as one belongs to the wrong class and the other
to the correct class, and as long as the input falls in a midplane window, the two vectors are adjusted.
Such a procedure allows a vector that is just barely classified correctly with LVQ1 to be moved even
closer to the input, so the results are more robust.

Function Description
competlayer Create a competitive layer.
learnk Kohonen learning rule.
selforgmap Create a self-organizing map.
learncon Conscience bias learning function.
boxdist Distance between two position vectors.
dist Euclidean distance weight function.
linkdist Link distance function.
mandist Manhattan distance weight function.
gridtop Gridtop layer topology function.
hextop Hexagonal layer topology function.
randtop Random layer topology function.
lvqnet Create a learning vector quantization network.
learnlv1 LVQ1 weight learning function.
learnlv2 LVQ2 weight learning function.

 Learning Vector Quantization (LVQ) Neural Networks

27-33





Adaptive Filters and Adaptive Training

28



Adaptive Neural Network Filters
In this section...
“Adaptive Functions” on page 28-2
“Linear Neuron Model” on page 28-2
“Adaptive Linear Network Architecture” on page 28-3
“Least Mean Square Error” on page 28-5
“LMS Algorithm (learnwh)” on page 28-6
“Adaptive Filtering (adapt)” on page 28-6

The ADALINE (adaptive linear neuron) networks discussed in this topic are similar to the perceptron,
but their transfer function is linear rather than hard-limiting. This allows their outputs to take on any
value, whereas the perceptron output is limited to either 0 or 1. Both the ADALINE and the
perceptron can solve only linearly separable problems. However, here the LMS (least mean squares)
learning rule, which is much more powerful than the perceptron learning rule, is used. The LMS, or
Widrow-Hoff, learning rule minimizes the mean square error and thus moves the decision boundaries
as far as it can from the training patterns.

In this section, you design an adaptive linear system that responds to changes in its environment as it
is operating. Linear networks that are adjusted at each time step based on new input and target
vectors can find weights and biases that minimize the network's sum-squared error for recent input
and target vectors. Networks of this sort are often used in error cancelation, signal processing, and
control systems.

The pioneering work in this field was done by Widrow and Hoff, who gave the name ADALINE to
adaptive linear elements. The basic reference on this subject is Widrow, B., and S.D. Sterns, Adaptive
Signal Processing, New York, Prentice-Hall, 1985.

The adaptive training of self-organizing and competitive networks is also considered in this section.

Adaptive Functions
This section introduces the function adapt, which changes the weights and biases of a network
incrementally during training.

Linear Neuron Model
A linear neuron with R inputs is shown below.

28 Adaptive Filters and Adaptive Training

28-2



This network has the same basic structure as the perceptron. The only difference is that the linear
neuron uses a linear transfer function, named purelin.

The linear transfer function calculates the neuron's output by simply returning the value passed to it.

α = purelin(n) = purelin(Wp + b) = Wp + b

This neuron can be trained to learn an affine function of its inputs, or to find a linear approximation
to a nonlinear function. A linear network cannot, of course, be made to perform a nonlinear
computation.

Adaptive Linear Network Architecture
The ADALINE network shown below has one layer of S neurons connected to R inputs through a
matrix of weights W.

This network is sometimes called a MADALINE for Many ADALINEs. Note that the figure on the right
defines an S-length output vector a.

The Widrow-Hoff rule can only train single-layer linear networks. This is not much of a disadvantage,
however, as single-layer linear networks are just as capable as multilayer linear networks. For every
multilayer linear network, there is an equivalent single-layer linear network.

Single ADALINE (linearlayer)

Consider a single ADALINE with two inputs. The following figure shows the diagram for this network.

 Adaptive Neural Network Filters

28-3



The weight matrix W in this case has only one row. The network output is

α = purelin(n) = purelin(Wp + b) = Wp + b

or

α = w1,1p1 + w1,2p2 + b

Like the perceptron, the ADALINE has a decision boundary that is determined by the input vectors
for which the net input n is zero. For n = 0 the equation Wp + b = 0 specifies such a decision
boundary, as shown below (adapted with thanks from [HDB96 on page 33-2]).

Input vectors in the upper right gray area lead to an output greater than 0. Input vectors in the lower
left white area lead to an output less than 0. Thus, the ADALINE can be used to classify objects into
two categories.

However, ADALINE can classify objects in this way only when the objects are linearly separable.
Thus, ADALINE has the same limitation as the perceptron.

You can create a network similar to the one shown using this command:

net = linearlayer;
net = configure(net,[0;0],[0]);

The sizes of the two arguments to configure indicate that the layer is to have two inputs and one
output. Normally train does this configuration for you, but this allows us to inspect the weights
before training.

The network weights and biases are set to zero, by default. You can see the current values using the
commands:

28 Adaptive Filters and Adaptive Training

28-4



W = net.IW{1,1}
W =
     0     0

and

b = net.b{1}
b =
     0

You can also assign arbitrary values to the weights and bias, such as 2 and 3 for the weights and −4
for the bias:

net.IW{1,1} = [2 3];
net.b{1} = -4;

You can simulate the ADALINE for a particular input vector.

p = [5; 6];
a = sim(net,p)
a =
    24

To summarize, you can create an ADALINE network with linearlayer, adjust its elements as you
want, and simulate it with sim.

Least Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS) algorithm is an example of
supervised training, in which the learning rule is provided with a set of examples of desired network
behavior.

p1, t1 , p2, t2 , … pQ, tQ

Here pq is an input to the network, and tq is the corresponding target output. As each input is applied
to the network, the network output is compared to the target. The error is calculated as the
difference between the target output and the network output. The goal is to minimize the average of
the sum of these errors.

mse = 1
Q ∑

k = 1

Q
e(k)2 = 1

Q ∑
k = 1

Q
t(k)− α(k))2

The LMS algorithm adjusts the weights and biases of the ADALINE so as to minimize this mean
square error.

Fortunately, the mean square error performance index for the ADALINE network is a quadratic
function. Thus, the performance index will either have one global minimum, a weak minimum, or no
minimum, depending on the characteristics of the input vectors. Specifically, the characteristics of
the input vectors determine whether or not a unique solution exists.

You can learn more about this topic in Chapter 10 of [HDB96 on page 33-2].

 Adaptive Neural Network Filters

28-5



LMS Algorithm (learnwh)
Adaptive networks will use the LMS algorithm or Widrow-Hoff learning algorithm based on an
approximate steepest descent procedure. Here again, adaptive linear networks are trained on
examples of correct behavior.

The LMS algorithm, shown here, is discussed in detail in “Linear Neural Networks” on page 30-14.

W(k + 1) = W(k) + 2αe(k)pT(k)

b(k + 1) = b(k) + 2αe(k)

Adaptive Filtering (adapt)
The ADALINE network, much like the perceptron, can only solve linearly separable problems. It is,
however, one of the most widely used neural networks found in practical applications. Adaptive
filtering is one of its major application areas.

Tapped Delay Line

You need a new component, the tapped delay line, to make full use of the ADALINE network. Such a
delay line is shown in the next figure. The input signal enters from the left and passes through N-1
delays. The output of the tapped delay line (TDL) is an N-dimensional vector, made up of the input
signal at the current time, the previous input signal, etc.

Adaptive Filter

You can combine a tapped delay line with an ADALINE network to create the adaptive filter shown in
the next figure.

28 Adaptive Filters and Adaptive Training

28-6



The output of the filter is given by

α(k) = purelin(Wp + b) = ∑
i = 1

R
w1, αi (k− i + 1) + b

In digital signal processing, this network is referred to as a finite impulse response (FIR) filter
[WiSt85 on page 33-2]. Take a look at the code used to generate and simulate such an adaptive
network.

Adaptive Filter Example

First, define a new linear network using linearlayer.

Assume that the linear layer has a single neuron with a single input and a tap delay of 0, 1, and 2
delays.

net = linearlayer([0 1 2]);
net = configure(net,0,0);

 Adaptive Neural Network Filters

28-7



You can specify as many delays as you want, and can omit some values if you like. They must be in
ascending order.

You can give the various weights and the bias values with

net.IW{1,1} = [7 8 9];
net.b{1} = [0];

Finally, define the initial values of the outputs of the delays as

pi = {1 2};

These are ordered from left to right to correspond to the delays taken from top to bottom in the
figure. This concludes the setup of the network.

To set up the input, assume that the input scalars arrive in a sequence: first the value 3, then the
value 4, next the value 5, and finally the value 6. You can indicate this sequence by defining the
values as elements of a cell array in curly braces.

p = {3 4 5 6};

Now, you have a network and a sequence of inputs. Simulate the network to see what its output is as
a function of time.

[a,pf] = sim(net,p,pi)

This simulation yields an output sequence

a
    [46]    [70]    [94]    [118]

and final values for the delay outputs of

pf
    [5]    [6]

The example is sufficiently simple that you can check it without a calculator to make sure that you
understand the inputs, initial values of the delays, etc.

The network just defined can be trained with the function adapt to produce a particular output
sequence. Suppose, for instance, you want the network to produce the sequence of values 10, 20, 30,
40.

t = {10 20 30 40};

You can train the defined network to do this, starting from the initial delay conditions used above.

Let the network adapt for 10 passes over the data.

for i = 1:10
    [net,y,E,pf,af] = adapt(net,p,t,pi);
end

This code returns the final weights, bias, and output sequence shown here.

wts = net.IW{1,1}
wts =
    0.5059    3.1053    5.7046

28 Adaptive Filters and Adaptive Training

28-8



bias = net.b{1}
bias =
   -1.5993
y
y = 
    [11.8558]    [20.7735]    [29.6679]    [39.0036]

Presumably, if you ran additional passes the output sequence would have been even closer to the
desired values of 10, 20, 30, and 40.

Thus, adaptive networks can be specified, simulated, and finally trained with adapt. However, the
outstanding value of adaptive networks lies in their use to perform a particular function, such as
prediction or noise cancelation.

Prediction Example

Suppose that you want to use an adaptive filter to predict the next value of a stationary random
process, p(t). You can use the network shown in the following figure to do this prediction.

The signal to be predicted, p(t), enters from the left into a tapped delay line. The previous two values
of p(t) are available as outputs from the tapped delay line. The network uses adapt to change the
weights on each time step so as to minimize the error e(t) on the far right. If this error is 0, the
network output a(t) is exactly equal to p(t), and the network has done its prediction properly.

Given the autocorrelation function of the stationary random process p(t), you can calculate the error
surface, the maximum learning rate, and the optimum values of the weights. Commonly, of course,
you do not have detailed information about the random process, so these calculations cannot be
performed. This lack does not matter to the network. After it is initialized and operating, the network
adapts at each time step to minimize the error and in a relatively short time is able to predict the
input p(t).

Chapter 10 of [HDB96 on page 33-2] presents this problem, goes through the analysis, and shows
the weight trajectory during training. The network finds the optimum weights on its own without any
difficulty whatsoever.

You also can try the example nnd10nc to see an adaptive noise cancelation program example in
action. This example allows you to pick a learning rate and momentum (see “Multilayer Shallow
Neural Networks and Backpropagation Training” on page 23-2), and shows the learning trajectory,
and the original and cancelation signals versus time.

 Adaptive Neural Network Filters

28-9



Noise Cancelation Example

Consider a pilot in an airplane. When the pilot speaks into a microphone, the engine noise in the
cockpit combines with the voice signal. This additional noise makes the resultant signal heard by
passengers of low quality. The goal is to obtain a signal that contains the pilot's voice, but not the
engine noise. You can cancel the noise with an adaptive filter if you obtain a sample of the engine
noise and apply it as the input to the adaptive filter.

As the preceding figure shows, you adaptively train the neural linear network to predict the combined
pilot/engine signal m from an engine signal n. The engine signal n does not tell the adaptive network
anything about the pilot's voice signal contained in m. However, the engine signal n does give the
network information it can use to predict the engine's contribution to the pilot/engine signal m.

The network does its best to output m adaptively. In this case, the network can only predict the
engine interference noise in the pilot/engine signal m. The network error e is equal to m, the pilot/
engine signal, minus the predicted contaminating engine noise signal. Thus, e contains only the
pilot's voice. The linear adaptive network adaptively learns to cancel the engine noise.

Such adaptive noise canceling generally does a better job than a classical filter, because it subtracts
from the signal rather than filtering it out the noise of the signal m.

Try “Adaptive Noise Cancellation” on page 32-203 for an example of adaptive noise cancellation.

Multiple Neuron Adaptive Filters

You might want to use more than one neuron in an adaptive system, so you need some additional
notation. You can use a tapped delay line with S linear neurons, as shown in the next figure.

28 Adaptive Filters and Adaptive Training

28-10



Alternatively, you can represent this same network in abbreviated form.

If you want to show more of the detail of the tapped delay line—and there are not too many delays—
you can use the following notation:

Here, a tapped delay line sends to the weight matrix:

 Adaptive Neural Network Filters

28-11



• The current signal
• The previous signal
• The signal delayed before that

You could have a longer list, and some delay values could be omitted if desired. The only requirement
is that the delays must appears in increasing order as they go from top to bottom.

28 Adaptive Filters and Adaptive Training

28-12



Advanced Topics

• “Shallow Neural Networks with Parallel and GPU Computing” on page 29-2
• “Optimize Neural Network Training Speed and Memory” on page 29-10
• “Choose a Multilayer Neural Network Training Function” on page 29-14
• “Improve Shallow Neural Network Generalization and Avoid Overfitting” on page 29-25
• “Edit Shallow Neural Network Properties” on page 29-35
• “Custom Neural Network Helper Functions” on page 29-45
• “Automatically Save Checkpoints During Neural Network Training” on page 29-46
• “Deploy Shallow Neural Network Functions” on page 29-48
• “Deploy Training of Shallow Neural Networks” on page 29-51

29



Shallow Neural Networks with Parallel and GPU Computing
In this section...
“Modes of Parallelism” on page 29-2
“Distributed Computing” on page 29-2
“Single GPU Computing” on page 29-4
“Distributed GPU Computing” on page 29-6
“Parallel Time Series” on page 29-8
“Parallel Availability, Fallbacks, and Feedback” on page 29-8

Note For deep learning, parallel and GPU support is automatic. You can train a convolutional neural
network (CNN, ConvNet) or long short-term memory networks (LSTM or BiLSTM networks) using the
trainNetwork function and choose the execution environment (CPU, GPU, multi-GPU, and parallel)
using trainingOptions.

Training in parallel, or on a GPU, requires Parallel Computing Toolbox. For more information on deep
learning with GPUs and in parallel, see “Deep Learning with Big Data on CPUs, GPUs, in Parallel, and
on the Cloud” on page 1-7.

Modes of Parallelism
Neural networks are inherently parallel algorithms. Multicore CPUs, graphical processing units
(GPUs), and clusters of computers with multiple CPUs and GPUs can take advantage of this
parallelism.

Parallel Computing Toolbox, when used in conjunction with Deep Learning Toolbox, enables neural
network training and simulation to take advantage of each mode of parallelism.

For example, the following shows a standard single-threaded training and simulation session:

[x, t] = bodyfat_dataset;
net1 = feedforwardnet(10);
net2 = train(net1, x, t);
y = net2(x);

The two steps you can parallelize in this session are the call to train and the implicit call to sim
(where the network net2 is called as a function).

In Deep Learning Toolbox you can divide any data, such as x and t in the previous example code,
across samples. If x and t contain only one sample each, there is no parallelism. But if x and t
contain hundreds or thousands of samples, parallelism can provide both speed and problem size
benefits.

Distributed Computing
Parallel Computing Toolbox allows neural network training and simulation to run across multiple CPU
cores on a single PC, or across multiple CPUs on multiple computers on a network using MATLAB
Parallel Server.

29 Advanced Topics

29-2



Using multiple cores can speed calculations. Using multiple computers can allow you to solve
problems using data sets too big to fit in the RAM of a single computer. The only limit to problem size
is the total quantity of RAM available across all computers.

To manage cluster configurations, use the Cluster Profile Manager from the MATLAB Home tab
Environment menu Parallel > Manage Cluster Profiles.

To open a pool of MATLAB workers using the default cluster profile, which is usually the local CPU
cores, use this command:

pool = parpool

Starting parallel pool (parpool) using the 'Processes' profile ... connected to 4 workers.

When parpool runs, it displays the number of workers available in the pool. Another way to
determine the number of workers is to query the pool:

pool.NumWorkers

   4

Now you can train and simulate the neural network with data split by sample across all the workers.
To do this, set the train and sim parameter 'useParallel' to 'yes'.

net2 = train(net1,x,t,'useParallel','yes')
y = net2(x,'useParallel','yes')

Use the 'showResources' argument to verify that the calculations ran across multiple workers.

net2 = train(net1,x,t,'useParallel','yes','showResources','yes');
y = net2(x,'useParallel','yes','showResources','yes');

MATLAB indicates which resources were used. For example:

Computing Resources:
Parallel Workers
  Worker 1 on MyComputer, MEX on PCWIN64
  Worker 2 on MyComputer, MEX on PCWIN64
  Worker 3 on MyComputer, MEX on PCWIN64
  Worker 4 on MyComputer, MEX on PCWIN64

When train and sim are called, they divide the input matrix or cell array data into distributed
Composite values before training and simulation. When sim has calculated a Composite, this output
is converted back to the same matrix or cell array form before it is returned.

However, you might want to perform this data division manually if:

• The problem size is too large for the host computer. Manually defining the elements of Composite
values sequentially allows much bigger problems to be defined.

• It is known that some workers are on computers that are faster or have more memory than others.
You can distribute the data with differing numbers of samples per worker. This is called load
balancing.

The following code sequentially creates a series of random datasets and saves them to separate files:

pool = gcp;
for i=1:pool.NumWorkers

 Shallow Neural Networks with Parallel and GPU Computing

29-3



  x = rand(2,1000);
  save(['inputs' num2str(i)],'x');
  t = x(1,:) .* x(2,:) + 2 * (x(1,:) + x(2,:));
  save(['targets' num2str(i)],'t');
  clear x t
end

Because the data was defined sequentially, you can define a total dataset larger than can fit in the
host PC memory. PC memory must accommodate only a sub-dataset at a time.

Now you can load the datasets sequentially across parallel workers, and train and simulate a network
on the Composite data. When train or sim is called with Composite data, the 'useParallel'
argument is automatically set to 'yes'. When using Composite data, configure the network’s input
and outputs to match one of the datasets manually using the configure function before training.

xc = Composite;
tc = Composite;
for i=1:pool.NumWorkers
  data = load(['inputs' num2str(i)],'x');
  xc{i} = data.x;
  data = load(['targets' num2str(i)],'t');
  tc{i} = data.t;
  clear data
end
net2 = configure(net1,xc{1},tc{1});
net2 = train(net2,xc,tc);
yc = net2(xc);

To convert the Composite output returned by sim, you can access each of its elements, separately if
concerned about memory limitations.

for i=1:pool.NumWorkers
  yi = yc{i}
end

Combined the Composite value into one local value if you are not concerned about memory
limitations.

y = {yc{:}};

When load balancing, the same process happens, but, instead of each dataset having the same
number of samples (1000 in the previous example), the numbers of samples can be adjusted to best
take advantage of the memory and speed differences of the worker host computers.

It is not required that each worker have data. If element i of a Composite value is undefined, worker
i will not be used in the computation.

Single GPU Computing
The number of cores, size of memory, and speed efficiencies of GPU cards are growing rapidly with
each new generation. Where video games have long benefited from improved GPU performance,
these cards are now flexible enough to perform general numerical computing tasks like training
neural networks.

29 Advanced Topics

29-4



For the latest GPU requirements, see the web page for Parallel Computing Toolbox; or query MATLAB
to determine whether your PC has a supported GPU. This function returns the number of GPUs in
your system:

count = gpuDeviceCount

count =

    1

If the result is one or more, you can query each GPU by index for its characteristics. This includes its
name, number of multiprocessors, SIMDWidth of each multiprocessor, and total memory.

gpu1 = gpuDevice(1)

gpu1 = 

  CUDADevice with properties:

                      Name: 'NVIDIA RTX A5000'
                     Index: 1
         ComputeCapability: '8.6'
            SupportsDouble: 1
             DriverVersion: 11.6000
            ToolkitVersion: 11.2000
        MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152 (49.15 KB)
        MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 25553076224 (25.55 GB)
           AvailableMemory: 25153765376 (25.15 GB)
       MultiprocessorCount: 64
              ClockRateKHz: 1695000
               ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
    KernelExecutionTimeout: 0
          CanMapHostMemory: 1
           DeviceSupported: 1
           DeviceAvailable: 1
            DeviceSelected: 1

The simplest way to take advantage of the GPU is to specify call train and sim with the parameter
argument 'useGPU' set to 'yes' ('no' is the default).

net2 = train(net1,x,t,'useGPU','yes')
y = net2(x,'useGPU','yes')

If net1 has the default training function trainlm, you see a warning that GPU calculations do not
support Jacobian training, only gradient training. So the training function is automatically changed to
the gradient training function trainscg. To avoid the notice, you can specify the function before
training:

net1.trainFcn = 'trainscg';

To verify that the training and simulation occur on the GPU device, request that the computer
resources be shown:

 Shallow Neural Networks with Parallel and GPU Computing

29-5



net2 = train(net1,x,t,'useGPU','yes','showResources','yes')
y = net2(x,'useGPU','yes','showResources','yes')

Each of the above lines of code outputs the following resources summary:

Computing Resources:
GPU device #1, GeForce GTX 470

Many MATLAB functions automatically execute on a GPU when any of the input arguments is a
gpuArray. Normally you move arrays to and from the GPU with the functions gpuArray and gather.
However, for neural network calculations on a GPU to be efficient, matrices need to be transposed
and the columns padded so that the first element in each column aligns properly in the GPU memory.
Deep Learning Toolbox provides a special function called nndata2gpu to move an array to a GPU
and properly organize it:

xg = nndata2gpu(x);
tg = nndata2gpu(t);

Now you can train and simulate the network using the converted data already on the GPU, without
having to specify the 'useGPU' argument. Then convert and return the resulting GPU array back to
MATLAB with the complementary function gpu2nndata.

Before training with gpuArray data, the network’s input and outputs must be manually configured
with regular MATLAB matrices using the configure function:
net2 = configure(net1,x,t);  % Configure with MATLAB arrays
net2 = train(net2,xg,tg);    % Execute on GPU with NNET formatted gpuArrays
yg = net2(xg);               % Execute on GPU
y = gpu2nndata(yg);          % Transfer array to local workspace

On GPUs and other hardware where you might want to deploy your neural networks, it is often the
case that the exponential function exp is not implemented with hardware, but with a software library.
This can slow down neural networks that use the tansig sigmoid transfer function. An alternative
function is the Elliot sigmoid function whose expression does not include a call to any higher order
functions:

(equation)    a = n / (1 + abs(n))

Before training, the network’s tansig layers can be converted to elliotsig layers as follows:

for i=1:net.numLayers
  if strcmp(net.layers{i}.transferFcn,'tansig')
    net.layers{i}.transferFcn = 'elliotsig';
  end
end

Now training and simulation might be faster on the GPU and simpler deployment hardware.

Distributed GPU Computing
Distributed and GPU computing can be combined to run calculations across multiple CPUs and/or
GPUs on a single computer, or on a cluster with MATLAB Parallel Server.

The simplest way to do this is to specify train and sim to do so, using the parallel pool determined
by the cluster profile you use. The 'showResources' option is especially recommended in this case,
to verify that the expected hardware is being employed:

29 Advanced Topics

29-6



net2 = train(net1,x,t,'useParallel','yes','useGPU','yes','showResources','yes')
y = net2(x,'useParallel','yes','useGPU','yes','showResources','yes')

These lines of code use all available workers in the parallel pool. One worker for each unique GPU
employs that GPU, while other workers operate as CPUs. In some cases, it might be faster to use only
GPUs. For instance, if a single computer has three GPUs and four workers each, the three workers
that are accelerated by the three GPUs might be speed limited by the fourth CPU worker. In these
cases, you can specify that train and sim use only workers with unique GPUs.

net2 = train(net1,x,t,'useParallel','yes','useGPU','only','showResources','yes')
y = net2(x,'useParallel','yes','useGPU','only','showResources','yes')

As with simple distributed computing, distributed GPU computing can benefit from manually created
Composite values. Defining the Composite values yourself lets you indicate which workers to use,
how many samples to assign to each worker, and which workers use GPUs.

For instance, if you have four workers and only three GPUs, you can define larger datasets for the
GPU workers. Here, a random dataset is created with different sample loads per Composite element:

numSamples = [1000 1000 1000 300];
xc = Composite;
tc = Composite;
for i=1:4
  xi = rand(2,numSamples(i));
  ti = xi(1,:).^2 + 3*xi(2,:);
  xc{i} = xi;
  tc{i} = ti;
end

You can now specify that train and sim use the three GPUs available:

net2 = configure(net1,xc{1},tc{1});
net2 = train(net2,xc,tc,'useGPU','yes','showResources','yes');
yc = net2(xc,'showResources','yes');

To ensure that the GPUs get used by the first three workers, manually converting each worker’s
Composite elements to gpuArrays. Each worker performs this transformation within a parallel
executing spmd block.

spmd
  if spmdIndex <= 3
    xc = nndata2gpu(xc);
    tc = nndata2gpu(tc);
  end
end

Now the data specifies when to use GPUs, so you do not need to tell train and sim to do so.

net2 = configure(net1,xc{1},tc{1});
net2 = train(net2,xc,tc,'showResources','yes');
yc = net2(xc,'showResources','yes');

Ensure that each GPU is used by only one worker, so that the computations are most efficient. If
multiple workers assign gpuArray data on the same GPU, the computation will still work but will be
slower, because the GPU will operate on the multiple workers’ data sequentially.

 Shallow Neural Networks with Parallel and GPU Computing

29-7



Parallel Time Series
For time series networks, simply use cell array values for x and t, and optionally include initial input
delay states xi and initial layer delay states ai, as required.

net2 = train(net1,x,t,xi,ai,'useGPU','yes')
y = net2(x,xi,ai,'useParallel','yes','useGPU','yes')

net2 = train(net1,x,t,xi,ai,'useParallel','yes')
y = net2(x,xi,ai,'useParallel','yes','useGPU','only')

net2 = train(net1,x,t,xi,ai,'useParallel','yes','useGPU','only')
y = net2(x,xi,ai,'useParallel','yes','useGPU','only')

Note that parallelism happens across samples, or in the case of time series across different series.
However, if the network has only input delays, with no layer delays, the delayed inputs can be
precalculated so that for the purposes of computation, the time steps become different samples and
can be parallelized. This is the case for networks such as timedelaynet and open-loop versions of
narxnet and narnet. If a network has layer delays, then time cannot be “flattened” for purposes of
computation, and so single series data cannot be parallelized. This is the case for networks such as
layrecnet and closed-loop versions of narxnet and narnet. However, if the data consists of
multiple sequences, it can be parallelized across the separate sequences.

Parallel Availability, Fallbacks, and Feedback
As mentioned previously, you can query MATLAB to discover the current parallel resources that are
available.

To see what GPUs are available on the host computer:

gpuCount = gpuDeviceCount
for i=1:gpuCount
  gpuDevice(i)
end

To see how many workers are running in the current parallel pool:

poolSize = pool.NumWorkers

To see the GPUs available across a parallel pool running on a PC cluster using MATLAB Parallel
Server:

spmd
  worker.index = spmdIndex;
  worker.name = system('hostname');
  worker.gpuCount = gpuDeviceCount;
  try
    worker.gpuInfo = gpuDevice;
  catch
    worker.gpuInfo = [];
  end
  worker
end

When 'useParallel' or 'useGPU' are set to 'yes', but parallel or GPU workers are unavailable,
the convention is that when resources are requested, they are used if available. The computation is

29 Advanced Topics

29-8



performed without error even if they are not. This process of falling back from requested resources to
actual resources happens as follows:

• If 'useParallel' is 'yes' but Parallel Computing Toolbox is unavailable, or a parallel pool is
not open, then computation reverts to single-threaded MATLAB.

• If 'useGPU' is 'yes' but the gpuDevice for the current MATLAB session is unassigned or not
supported, then computation reverts to the CPU.

• If 'useParallel' and 'useGPU' are 'yes', then each worker with a unique GPU uses that
GPU, and other workers revert to CPU.

• If 'useParallel' is 'yes' and 'useGPU' is 'only', then workers with unique GPUs are used.
Other workers are not used, unless no workers have GPUs. In the case with no GPUs, all workers
use CPUs.

When unsure about what hardware is actually being employed, check gpuDeviceCount,
gpuDevice, and pool.NumWorkers to ensure the desired hardware is available, and call train and
sim with 'showResources' set to 'yes' to verify what resources were actually used.

 Shallow Neural Networks with Parallel and GPU Computing

29-9



Optimize Neural Network Training Speed and Memory
In this section...
“Memory Reduction” on page 29-10
“Fast Elliot Sigmoid” on page 29-10

Memory Reduction
Depending on the particular neural network, simulation and gradient calculations can occur in
MATLAB or MEX. MEX is more memory efficient, but MATLAB can be made more memory efficient in
exchange for time.

To determine whether MATLAB or MEX is being used, use the 'showResources' option, as shown
in this general form of the syntax:

net2 = train(net1,x,t,'showResources','yes')

If MATLAB is being used and memory limitations are a problem, the amount of temporary storage
needed can be reduced by a factor of N, in exchange for performing the computations N times
sequentially on each of N subsets of the data.

net2 = train(net1,x,t,'reduction',N);

This is called memory reduction.

Fast Elliot Sigmoid
Some simple computing hardware might not support the exponential function directly, and software
implementations can be slow. The Elliot sigmoid elliotsig function performs the same role as the
symmetric sigmoid tansig function, but avoids the exponential function.

Here is a plot of the Elliot sigmoid:

n = -10:0.01:10;
a = elliotsig(n);
plot(n,a)

29 Advanced Topics

29-10



Next, elliotsig is compared with tansig.

a2 = tansig(n);
h = plot(n,a,n,a2);
legend(h,'elliotsig','tansig','Location','NorthWest')

 Optimize Neural Network Training Speed and Memory

29-11



To train a neural network using elliotsig instead of tansig, transform the network’s transfer
functions:

[x,t] = bodyfat_dataset;
net = feedforwardnet;
view(net)
net.layers{1}.transferFcn = 'elliotsig';
view(net)
net = train(net,x,t);
y = net(x)

Here, the times to execute elliotsig and tansig are compared. elliotsig is approximately four
times faster on the test system.

n = rand(5000,5000);
tic,for i=1:100,a=tansig(n); end, tansigTime = toc;
tic,for i=1:100,a=elliotsig(n); end, elliotTime = toc;
speedup = tansigTime / elliotTime

speedup =

    4.1406

However, while simulation is faster with elliotsig, training is not guaranteed to be faster, due to
the different shapes of the two transfer functions. Here, 10 networks are each trained for tansig
and elliotsig, but training times vary significantly even on the same problem with the same
network.

29 Advanced Topics

29-12



[x,t] = bodyfat_dataset;
tansigNet = feedforwardnet;
tansigNet.trainParam.showWindow = false;
elliotNet = tansigNet;
elliotNet.layers{1}.transferFcn = 'elliotsig';
for i=1:10, tic, net = train(tansigNet,x,t); tansigTime = toc, end
for i=1:10, tic, net = train(elliotNet,x,t), elliotTime = toc, end 

 Optimize Neural Network Training Speed and Memory

29-13



Choose a Multilayer Neural Network Training Function
In this section...
“SIN Data Set” on page 29-15
“PARITY Data Set” on page 29-16
“ENGINE Data Set” on page 29-18
“CANCER Data Set” on page 29-19
“CHOLESTEROL Data Set” on page 29-21
“DIABETES Data Set” on page 29-22
“Summary” on page 29-24

It is very difficult to know which training algorithm will be the fastest for a given problem. It depends
on many factors, including the complexity of the problem, the number of data points in the training
set, the number of weights and biases in the network, the error goal, and whether the network is
being used for pattern recognition (discriminant analysis) or function approximation (regression).
This section compares the various training algorithms. Feedforward networks are trained on six
different problems. Three of the problems fall in the pattern recognition category and the three
others fall in the function approximation category. Two of the problems are simple “toy” problems,
while the other four are “real world” problems. Networks with a variety of different architectures and
complexities are used, and the networks are trained to a variety of different accuracy levels.

The following table lists the algorithms that are tested and the acronyms used to identify them.

Acronym Algorithm Description
LM trainlm Levenberg-Marquardt
BFG trainbfg BFGS Quasi-Newton
RP trainrp Resilient Backpropagation
SCG trainscg Scaled Conjugate Gradient
CGB traincgb Conjugate Gradient with Powell/Beale Restarts
CGF traincgf Fletcher-Powell Conjugate Gradient
CGP traincgp Polak-Ribiére Conjugate Gradient
OSS trainoss One Step Secant
GDX traingdx Variable Learning Rate Backpropagation

The following table lists the six benchmark problems and some characteristics of the networks,
training processes, and computers used.

Problem Title Problem Type Network
Structure

Error Goal Computer

SIN Function
approximation

1-5-1 0.002 Sun Sparc 2

PARITY Pattern recognition 3-10-10-1 0.001 Sun Sparc 2
ENGINE Function

approximation
2-30-2 0.005 Sun Enterprise 4000

29 Advanced Topics

29-14



Problem Title Problem Type Network
Structure

Error Goal Computer

CANCER Pattern recognition 9-5-5-2 0.012 Sun Sparc 2
CHOLESTEROL Function

approximation
21-15-3 0.027 Sun Sparc 20

DIABETES Pattern recognition 8-15-15-2 0.05 Sun Sparc 20

SIN Data Set
The first benchmark data set is a simple function approximation problem. A 1-5-1 network, with
tansig transfer functions in the hidden layer and a linear transfer function in the output layer, is
used to approximate a single period of a sine wave. The following table summarizes the results of
training the network using nine different training algorithms. Each entry in the table represents 30
different trials, where different random initial weights are used in each trial. In each case, the
network is trained until the squared error is less than 0.002. The fastest algorithm for this problem is
the Levenberg-Marquardt algorithm. On the average, it is over four times faster than the next fastest
algorithm. This is the type of problem for which the LM algorithm is best suited—a function
approximation problem where the network has fewer than one hundred weights and the
approximation must be very accurate.

Algorithm Mean Time (s) Ratio Min. Time (s) Max. Time (s) Std. (s)
LM 1.14 1.00 0.65 1.83 0.38
BFG 5.22 4.58 3.17 14.38 2.08
RP 5.67 4.97 2.66 17.24 3.72
SCG 6.09 5.34 3.18 23.64 3.81
CGB 6.61 5.80 2.99 23.65 3.67
CGF 7.86 6.89 3.57 31.23 4.76
CGP 8.24 7.23 4.07 32.32 5.03
OSS 9.64 8.46 3.97 59.63 9.79
GDX 27.69 24.29 17.21 258.15 43.65

The performance of the various algorithms can be affected by the accuracy required of the
approximation. This is shown in the following figure, which plots the mean square error versus
execution time (averaged over the 30 trials) for several representative algorithms. Here you can see
that the error in the LM algorithm decreases much more rapidly with time than the other algorithms
shown.

 Choose a Multilayer Neural Network Training Function

29-15



The relationship between the algorithms is further illustrated in the following figure, which plots the
time required to converge versus the mean square error convergence goal. Here you can see that as
the error goal is reduced, the improvement provided by the LM algorithm becomes more pronounced.
Some algorithms perform better as the error goal is reduced (LM and BFG), and other algorithms
degrade as the error goal is reduced (OSS and GDX).

PARITY Data Set
The second benchmark problem is a simple pattern recognition problem—detect the parity of a 3-bit
number. If the number of ones in the input pattern is odd, then the network should output a 1;
otherwise, it should output a -1. The network used for this problem is a 3-10-10-1 network with tansig
neurons in each layer. The following table summarizes the results of training this network with the
nine different algorithms. Each entry in the table represents 30 different trials, where different
random initial weights are used in each trial. In each case, the network is trained until the squared
error is less than 0.001. The fastest algorithm for this problem is the resilient backpropagation
algorithm, although the conjugate gradient algorithms (in particular, the scaled conjugate gradient
algorithm) are almost as fast. Notice that the LM algorithm does not perform well on this problem. In

29 Advanced Topics

29-16



general, the LM algorithm does not perform as well on pattern recognition problems as it does on
function approximation problems. The LM algorithm is designed for least squares problems that are
approximately linear. Because the output neurons in pattern recognition problems are generally
saturated, you will not be operating in the linear region.

Algorithm Mean Time (s) Ratio Min. Time (s) Max. Time (s) Std. (s)
RP 3.73 1.00 2.35 6.89 1.26
SCG 4.09 1.10 2.36 7.48 1.56
CGP 5.13 1.38 3.50 8.73 1.05
CGB 5.30 1.42 3.91 11.59 1.35
CGF 6.62 1.77 3.96 28.05 4.32
OSS 8.00 2.14 5.06 14.41 1.92
LM 13.07 3.50 6.48 23.78 4.96
BFG 19.68 5.28 14.19 26.64 2.85
GDX 27.07 7.26 25.21 28.52 0.86

As with function approximation problems, the performance of the various algorithms can be affected
by the accuracy required of the network. This is shown in the following figure, which plots the mean
square error versus execution time for some typical algorithms. The LM algorithm converges rapidly
after some point, but only after the other algorithms have already converged.

The relationship between the algorithms is further illustrated in the following figure, which plots the
time required to converge versus the mean square error convergence goal. Again you can see that
some algorithms degrade as the error goal is reduced (OSS and BFG).

 Choose a Multilayer Neural Network Training Function

29-17



ENGINE Data Set
The third benchmark problem is a realistic function approximation (or nonlinear regression) problem.
The data is obtained from the operation of an engine. The inputs to the network are engine speed and
fueling levels and the network outputs are torque and emission levels. The network used for this
problem is a 2-30-2 network with tansig neurons in the hidden layer and linear neurons in the output
layer. The following table summarizes the results of training this network with the nine different
algorithms. Each entry in the table represents 30 different trials (10 trials for RP and GDX because of
time constraints), where different random initial weights are used in each trial. In each case, the
network is trained until the squared error is less than 0.005. The fastest algorithm for this problem is
the LM algorithm, followed by the BFGS quasi-Newton algorithm and the conjugate gradient
algorithms. Although this is a function approximation problem, the LM algorithm is not as clearly
superior as it was on the SIN data set. In this case, the number of weights and biases in the network
is much larger than the one used on the SIN problem (152 versus 16), and the advantages of the LM
algorithm decrease as the number of network parameters increases.

Algorithm Mean Time (s) Ratio Min. Time (s) Max. Time (s) Std. (s)
LM 18.45 1.00 12.01 30.03 4.27
BFG 27.12 1.47 16.42 47.36 5.95
SCG 36.02 1.95 19.39 52.45 7.78
CGF 37.93 2.06 18.89 50.34 6.12
CGB 39.93 2.16 23.33 55.42 7.50
CGP 44.30 2.40 24.99 71.55 9.89
OSS 48.71 2.64 23.51 80.90 12.33
RP 65.91 3.57 31.83 134.31 34.24
GDX 188.50 10.22 81.59 279.90 66.67

The following figure plots the mean square error versus execution time for some typical algorithms.
The performance of the LM algorithm improves over time relative to the other algorithms.

29 Advanced Topics

29-18



The relationship between the algorithms is further illustrated in the following figure, which plots the
time required to converge versus the mean square error convergence goal. Again you can see that
some algorithms degrade as the error goal is reduced (GDX and RP), while the LM algorithm
improves.

CANCER Data Set
The fourth benchmark problem is a realistic pattern recognition (or nonlinear discriminant analysis)
problem. The objective of the network is to classify a tumor as either benign or malignant based on
cell descriptions gathered by microscopic examination. Input attributes include clump thickness,
uniformity of cell size and cell shape, the amount of marginal adhesion, and the frequency of bare
nuclei. The data was obtained from the University of Wisconsin Hospitals, Madison, from Dr. William
H. Wolberg. The network used for this problem is a 9-5-5-2 network with tansig neurons in all layers.
The following table summarizes the results of training this network with the nine different
algorithms. Each entry in the table represents 30 different trials, where different random initial
weights are used in each trial. In each case, the network is trained until the squared error is less than

 Choose a Multilayer Neural Network Training Function

29-19



0.012. A few runs failed to converge for some of the algorithms, so only the top 75% of the runs from
each algorithm were used to obtain the statistics.

The conjugate gradient algorithms and resilient backpropagation all provide fast convergence, and
the LM algorithm is also reasonably fast. As with the parity data set, the LM algorithm does not
perform as well on pattern recognition problems as it does on function approximation problems.

Algorithm Mean Time (s) Ratio Min. Time (s) Max. Time (s) Std. (s)
CGB 80.27 1.00 55.07 102.31 13.17
RP 83.41 1.04 59.51 109.39 13.44
SCG 86.58 1.08 41.21 112.19 18.25
CGP 87.70 1.09 56.35 116.37 18.03
CGF 110.05 1.37 63.33 171.53 30.13
LM 110.33 1.37 58.94 201.07 38.20
BFG 209.60 2.61 118.92 318.18 58.44
GDX 313.22 3.90 166.48 446.43 75.44
OSS 463.87 5.78 250.62 599.99 97.35

The following figure plots the mean square error versus execution time for some typical algorithms.
For this problem there is not as much variation in performance as in previous problems.

The relationship between the algorithms is further illustrated in the following figure, which plots the
time required to converge versus the mean square error convergence goal. Again you can see that
some algorithms degrade as the error goal is reduced (OSS and BFG) while the LM algorithm
improves. It is typical of the LM algorithm on any problem that its performance improves relative to
other algorithms as the error goal is reduced.

29 Advanced Topics

29-20



CHOLESTEROL Data Set
The fifth benchmark problem is a realistic function approximation (or nonlinear regression) problem.
The objective of the network is to predict cholesterol levels (ldl, hdl, and vldl) based on
measurements of 21 spectral components. The data was obtained from Dr. Neil Purdie, Department of
Chemistry, Oklahoma State University [PuLu92 on page 33-2]. The network used for this problem is
a 21-15-3 network with tansig neurons in the hidden layers and linear neurons in the output layer.
The following table summarizes the results of training this network with the nine different
algorithms. Each entry in the table represents 20 different trials (10 trials for RP and GDX), where
different random initial weights are used in each trial. In each case, the network is trained until the
squared error is less than 0.027.

The scaled conjugate gradient algorithm has the best performance on this problem, although all the
conjugate gradient algorithms perform well. The LM algorithm does not perform as well on this
function approximation problem as it did on the other two. That is because the number of weights
and biases in the network has increased again (378 versus 152 versus 16). As the number of
parameters increases, the computation required in the LM algorithm increases geometrically.

Algorithm Mean Time (s) Ratio Min. Time (s) Max. Time (s) Std. (s)
SCG 99.73 1.00 83.10 113.40 9.93
CGP 121.54 1.22 101.76 162.49 16.34
CGB 124.06 1.2 107.64 146.90 14.62
CGF 136.04 1.36 106.46 167.28 17.67
LM 261.50 2.62 103.52 398.45 102.06
OSS 268.55 2.69 197.84 372.99 56.79
BFG 550.92 5.52 471.61 676.39 46.59
RP 1519.00 15.23 581.17 2256.10 557.34
GDX 3169.50 31.78 2514.90 4168.20 610.52

 Choose a Multilayer Neural Network Training Function

29-21



The following figure plots the mean square error versus execution time for some typical algorithms.
For this problem, you can see that the LM algorithm is able to drive the mean square error to a lower
level than the other algorithms. The SCG and RP algorithms provide the fastest initial convergence.

The relationship between the algorithms is further illustrated in the following figure, which plots the
time required to converge versus the mean square error convergence goal. You can see that the LM
and BFG algorithms improve relative to the other algorithms as the error goal is reduced.

DIABETES Data Set
The sixth benchmark problem is a pattern recognition problem. The objective of the network is to
decide whether an individual has diabetes, based on personal data (age, number of times pregnant)
and the results of medical examinations (e.g., blood pressure, body mass index, result of glucose
tolerance test, etc.). The data was obtained from the University of California, Irvine, machine learning
data base. The network used for this problem is an 8-15-15-2 network with tansig neurons in all
layers. The following table summarizes the results of training this network with the nine different
algorithms. Each entry in the table represents 10 different trials, where different random initial

29 Advanced Topics

29-22



weights are used in each trial. In each case, the network is trained until the squared error is less than
0.05.

The conjugate gradient algorithms and resilient backpropagation all provide fast convergence. The
results on this problem are consistent with the other pattern recognition problems considered. The
RP algorithm works well on all the pattern recognition problems. This is reasonable, because that
algorithm was designed to overcome the difficulties caused by training with sigmoid functions, which
have very small slopes when operating far from the center point. For pattern recognition problems,
you use sigmoid transfer functions in the output layer, and you want the network to operate at the
tails of the sigmoid function.

Algorithm Mean Time (s) Ratio Min. Time (s) Max. Time (s) Std. (s)
RP 323.90 1.00 187.43 576.90 111.37
SCG 390.53 1.21 267.99 487.17 75.07
CGB 394.67 1.22 312.25 558.21 85.38
CGP 415.90 1.28 320.62 614.62 94.77
OSS 784.00 2.42 706.89 936.52 76.37
CGF 784.50 2.42 629.42 1082.20 144.63
LM 1028.10 3.17 802.01 1269.50 166.31
BFG 1821.00 5.62 1415.80 3254.50 546.36
GDX 7687.00 23.73 5169.20 10350.00 2015.00

The following figure plots the mean square error versus execution time for some typical algorithms.
As with other problems, you see that the SCG and RP have fast initial convergence, while the LM
algorithm is able to provide smaller final error.

The relationship between the algorithms is further illustrated in the following figure, which plots the
time required to converge versus the mean square error convergence goal. In this case, you can see
that the BFG algorithm degrades as the error goal is reduced, while the LM algorithm improves. The
RP algorithm is best, except at the smallest error goal, where SCG is better.

 Choose a Multilayer Neural Network Training Function

29-23



Summary
There are several algorithm characteristics that can be deduced from the experiments described. In
general, on function approximation problems, for networks that contain up to a few hundred weights,
the Levenberg-Marquardt algorithm will have the fastest convergence. This advantage is especially
noticeable if very accurate training is required. In many cases, trainlm is able to obtain lower mean
square errors than any of the other algorithms tested. However, as the number of weights in the
network increases, the advantage of trainlm decreases. In addition, trainlm performance is
relatively poor on pattern recognition problems. The storage requirements of trainlm are larger
than the other algorithms tested.

The trainrp function is the fastest algorithm on pattern recognition problems. However, it does not
perform well on function approximation problems. Its performance also degrades as the error goal is
reduced. The memory requirements for this algorithm are relatively small in comparison to the other
algorithms considered.

The conjugate gradient algorithms, in particular trainscg, seem to perform well over a wide variety
of problems, particularly for networks with a large number of weights. The SCG algorithm is almost
as fast as the LM algorithm on function approximation problems (faster for large networks) and is
almost as fast as trainrp on pattern recognition problems. Its performance does not degrade as
quickly as trainrp performance does when the error is reduced. The conjugate gradient algorithms
have relatively modest memory requirements.

The performance of trainbfg is similar to that of trainlm. It does not require as much storage as
trainlm, but the computation required does increase geometrically with the size of the network,
because the equivalent of a matrix inverse must be computed at each iteration.

The variable learning rate algorithm traingdx is usually much slower than the other methods, and
has about the same storage requirements as trainrp, but it can still be useful for some problems.
There are certain situations in which it is better to converge more slowly. For example, when using
early stopping you can have inconsistent results if you use an algorithm that converges too quickly.
You might overshoot the point at which the error on the validation set is minimized.

29 Advanced Topics

29-24



Improve Shallow Neural Network Generalization and Avoid
Overfitting

In this section...
“Retraining Neural Networks” on page 29-26
“Multiple Neural Networks” on page 29-27
“Early Stopping” on page 29-28
“Index Data Division (divideind)” on page 29-28
“Random Data Division (dividerand)” on page 29-29
“Block Data Division (divideblock)” on page 29-29
“Interleaved Data Division (divideint)” on page 29-29
“Regularization” on page 29-29
“Summary and Discussion of Early Stopping and Regularization” on page 29-31
“Posttraining Analysis (regression)” on page 29-33

Tip To learn how to set up parameters for a deep learning network, see “Set Up Parameters and
Train Convolutional Neural Network” on page 1-64.

One of the problems that occur during neural network training is called overfitting. The error on the
training set is driven to a very small value, but when new data is presented to the network the error
is large. The network has memorized the training examples, but it has not learned to generalize to
new situations.

The following figure shows the response of a 1-20-1 neural network that has been trained to
approximate a noisy sine function. The underlying sine function is shown by the dotted line, the noisy
measurements are given by the + symbols, and the neural network response is given by the solid line.
Clearly this network has overfitted the data and will not generalize well.

 Improve Shallow Neural Network Generalization and Avoid Overfitting

29-25



One method for improving network generalization is to use a network that is just large enough to
provide an adequate fit. The larger network you use, the more complex the functions the network can
create. If you use a small enough network, it will not have enough power to overfit the data. Run the
Neural Network Design example nnd11gn [HDB96 on page 33-2] to investigate how reducing the
size of a network can prevent overfitting.

Unfortunately, it is difficult to know beforehand how large a network should be for a specific
application. There are two other methods for improving generalization that are implemented in Deep
Learning Toolbox software: regularization and early stopping. The next sections describe these two
techniques and the routines to implement them.

Note that if the number of parameters in the network is much smaller than the total number of points
in the training set, then there is little or no chance of overfitting. If you can easily collect more data
and increase the size of the training set, then there is no need to worry about the following
techniques to prevent overfitting. The rest of this section only applies to those situations in which you
want to make the most of a limited supply of data.

Retraining Neural Networks
Typically each backpropagation training session starts with different initial weights and biases, and
different divisions of data into training, validation, and test sets. These different conditions can lead
to very different solutions for the same problem.

It is a good idea to train several networks to ensure that a network with good generalization is found.

Here a dataset is loaded and divided into two parts: 90% for designing networks and 10% for testing
them all.

[x, t] = bodyfat_dataset;
Q = size(x, 2);
Q1 = floor(Q * 0.90);
Q2 = Q - Q1;
ind = randperm(Q);
ind1 = ind(1:Q1);
ind2 = ind(Q1 + (1:Q2));
x1 = x(:, ind1);
t1 = t(:, ind1);
x2 = x(:, ind2);
t2 = t(:, ind2);

Next a network architecture is chosen and trained ten times on the first part of the dataset, with each
network’s mean square error on the second part of the dataset.

net = feedforwardnet(10);
numNN = 10;
NN = cell(1, numNN);
perfs = zeros(1, numNN);
for i = 1:numNN
  fprintf('Training %d/%d\n', i, numNN);
  NN{i} = train(net, x1, t1);
  y2 = NN{i}(x2);
  perfs(i) = mse(net, t2, y2);
end

Each network will be trained starting from different initial weights and biases, and with a different
division of the first dataset into training, validation, and test sets. Note that the test sets are a good

29 Advanced Topics

29-26



measure of generalization for each respective network, but not for all the networks, because data
that is a test set for one network will likely be used for training or validation by other neural
networks. This is why the original dataset was divided into two parts, to ensure that a completely
independent test set is preserved.

The neural network with the lowest performance is the one that generalized best to the second part
of the dataset.

Multiple Neural Networks
Another simple way to improve generalization, especially when caused by noisy data or a small
dataset, is to train multiple neural networks and average their outputs.

For instance, here 10 neural networks are trained on a small problem and their mean squared errors
compared to the means squared error of their average.

First, the dataset is loaded and divided into a design and test set.

[x, t] = bodyfat_dataset;
Q = size(x, 2);
Q1 = floor(Q * 0.90);
Q2 = Q - Q1;
ind = randperm(Q);
ind1 = ind(1:Q1);
ind2 = ind(Q1 + (1:Q2));
x1 = x(:, ind1);
t1 = t(:, ind1);
x2 = x(:, ind2);
t2 = t(:, ind2);

Then, ten neural networks are trained.

net = feedforwardnet(10);
numNN = 10;
nets = cell(1, numNN);
for i = 1:numNN
  fprintf('Training %d/%d\n', i, numNN)
  nets{i} = train(net, x1, t1);
end

Next, each network is tested on the second dataset with both individual performances and the
performance for the average output calculated.

perfs = zeros(1, numNN);
y2Total = 0;
for i = 1:numNN
  neti = nets{i};
  y2 = neti(x2);
  perfs(i) = mse(neti, t2, y2);
  y2Total = y2Total + y2;
end
perfs
y2AverageOutput = y2Total / numNN;
perfAveragedOutputs = mse(nets{1}, t2, y2AverageOutput) 

The mean squared error for the average output is likely to be lower than most of the individual
performances, perhaps not all. It is likely to generalize better to additional new data.

 Improve Shallow Neural Network Generalization and Avoid Overfitting

29-27



For some very difficult problems, a hundred networks can be trained and the average of their outputs
taken for any input. This is especially helpful for a small, noisy dataset in conjunction with the
Bayesian Regularization training function trainbr, described below.

Early Stopping

The default method for improving generalization is called early stopping. This technique is
automatically provided for all of the supervised network creation functions, including the
backpropagation network creation functions such as feedforwardnet.

In this technique the available data is divided into three subsets. The first subset is the training set,
which is used for computing the gradient and updating the network weights and biases. The second
subset is the validation set. The error on the validation set is monitored during the training process.
The validation error normally decreases during the initial phase of training, as does the training set
error. However, when the network begins to overfit the data, the error on the validation set typically
begins to rise. When the validation error increases for a specified number of iterations
(net.trainParam.max_fail), the training is stopped, and the weights and biases at the minimum
of the validation error are returned.

The test set error is not used during training, but it is used to compare different models. It is also
useful to plot the test set error during the training process. If the error in the test set reaches a
minimum at a significantly different iteration number than the validation set error, this might indicate
a poor division of the data set.

There are four functions provided for dividing data into training, validation and test sets. They are
dividerand (the default), divideblock, divideint, and divideind. You can access or change
the division function for your network with this property:

net.divideFcn

Each of these functions takes parameters that customize its behavior. These values are stored and
can be changed with the following network property:

net.divideParam

Index Data Division (divideind)
Create a simple test problem. For the full data set, generate a noisy sine wave with 201 input points
ranging from −1 to 1 at steps of 0.01:

p = [-1:0.01:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Divide the data by index so that successive samples are assigned to the training set, validation set,
and test set successively:

trainInd = 1:3:201
valInd = 2:3:201;
testInd = 3:3:201;
[trainP,valP,testP] = divideind(p,trainInd,valInd,testInd);
[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

29 Advanced Topics

29-28



Random Data Division (dividerand)
You can divide the input data randomly so that 60% of the samples are assigned to the training set,
20% to the validation set, and 20% to the test set, as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = dividerand(p);

This function not only divides the input data, but also returns indices so that you can divide the target
data accordingly using divideind:

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Block Data Division (divideblock)
You can also divide the input data randomly such that the first 60% of the samples are assigned to the
training set, the next 20% to the validation set, and the last 20% to the test set, as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = divideblock(p);

Divide the target data accordingly using divideind:

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Interleaved Data Division (divideint)
Another way to divide the input data is to cycle samples between the training set, validation set, and
test set according to percentages. You can interleave 60% of the samples to the training set, 20% to
the validation set and 20% to the test set as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = divideint(p);

Divide the target data accordingly using divideind.

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Regularization
Another method for improving generalization is called regularization. This involves modifying the
performance function, which is normally chosen to be the sum of squares of the network errors on
the training set. The next section explains how the performance function can be modified, and the
following section describes a routine that automatically sets the optimal performance function to
achieve the best generalization.

Modified Performance Function

The typical performance function used for training feedforward neural networks is the mean sum of
squares of the network errors.

F = mse = 1
N ∑i = 1

N
(ei)2 = 1

N ∑i = 1

N
(ti− αi)2

It is possible to improve generalization if you modify the performance function by adding a term that
consists of the mean of the sum of squares of the network weights and biases
msereg = γ * msw + 1− γ * mse, where γ is the performance ratio, and

 Improve Shallow Neural Network Generalization and Avoid Overfitting

29-29



msw = 1
n ∑j = 1

n
w j

2

Using this performance function causes the network to have smaller weights and biases, and this
forces the network response to be smoother and less likely to overfit.

The following code reinitializes the previous network and retrains it using the BFGS algorithm with
the regularized performance function. Here the performance ratio is set to 0.5, which gives equal
weight to the mean square errors and the mean square weights.

[x,t] = simplefit_dataset;
net = feedforwardnet(10,'trainbfg');
net.divideFcn = '';
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
net.performParam.regularization = 0.5;
net = train(net,x,t);

The problem with regularization is that it is difficult to determine the optimum value for the
performance ratio parameter. If you make this parameter too large, you might get overfitting. If the
ratio is too small, the network does not adequately fit the training data. The next section describes a
routine that automatically sets the regularization parameters.

Automated Regularization (trainbr)

It is desirable to determine the optimal regularization parameters in an automated fashion. One
approach to this process is the Bayesian framework of David MacKay [MacK92 on page 33-2]. In
this framework, the weights and biases of the network are assumed to be random variables with
specified distributions. The regularization parameters are related to the unknown variances
associated with these distributions. You can then estimate these parameters using statistical
techniques.

A detailed discussion of Bayesian regularization is beyond the scope of this user guide. A detailed
discussion of the use of Bayesian regularization, in combination with Levenberg-Marquardt training,
can be found in [FoHa97 on page 33-2].

Bayesian regularization has been implemented in the function trainbr. The following code shows
how you can train a 1-20-1 network using this function to approximate the noisy sine wave shown in
the figure in “Improve Shallow Neural Network Generalization and Avoid Overfitting” on page 29-25.
(Data division is cancelled by setting net.divideFcn so that the effects of trainbr are isolated
from early stopping.)

x = -1:0.05:1;
t = sin(2*pi*x) + 0.1*randn(size(x));
net = feedforwardnet(20,'trainbr');
net = train(net,x,t);

One feature of this algorithm is that it provides a measure of how many network parameters (weights
and biases) are being effectively used by the network. In this case, the final trained network uses
approximately 12 parameters (indicated by #Par in the printout) out of the 61 total weights and
biases in the 1-20-1 network. This effective number of parameters should remain approximately the
same, no matter how large the number of parameters in the network becomes. (This assumes that the
network has been trained for a sufficient number of iterations to ensure convergence.)

The trainbr algorithm generally works best when the network inputs and targets are scaled so that
they fall approximately in the range [−1,1]. That is the case for the test problem here. If your inputs

29 Advanced Topics

29-30



and targets do not fall in this range, you can use the function mapminmax or mapstd to perform the
scaling, as described in “Choose Neural Network Input-Output Processing Functions” on page 23-7.
Networks created with feedforwardnet include mapminmax as an input and output processing
function by default.

The following figure shows the response of the trained network. In contrast to the previous figure, in
which a 1-20-1 network overfits the data, here you see that the network response is very close to the
underlying sine function (dotted line), and, therefore, the network will generalize well to new inputs.
You could have tried an even larger network, but the network response would never overfit the data.
This eliminates the guesswork required in determining the optimum network size.

When using trainbr, it is important to let the algorithm run until the effective number of
parameters has converged. The training might stop with the message "Maximum MU reached." This
is typical, and is a good indication that the algorithm has truly converged. You can also tell that the
algorithm has converged if the sum squared error (SSE) and sum squared weights (SSW) are
relatively constant over several iterations. When this occurs you might want to click the stop button
in the training window.

Summary and Discussion of Early Stopping and Regularization
Early stopping and regularization can ensure network generalization when you apply them properly.

For early stopping, you must be careful not to use an algorithm that converges too rapidly. If you are
using a fast algorithm (like trainlm), set the training parameters so that the convergence is
relatively slow. For example, set mu to a relatively large value, such as 1, and set mu_dec and mu_inc
to values close to 1, such as 0.8 and 1.5, respectively. The training functions trainscg and trainbr
usually work well with early stopping.

With early stopping, the choice of the validation set is also important. The validation set should be
representative of all points in the training set.

When you use Bayesian regularization, it is important to train the network until it reaches
convergence. The sum-squared error, the sum-squared weights, and the effective number of
parameters should reach constant values when the network has converged.

 Improve Shallow Neural Network Generalization and Avoid Overfitting

29-31



With both early stopping and regularization, it is a good idea to train the network starting from
several different initial conditions. It is possible for either method to fail in certain circumstances. By
testing several different initial conditions, you can verify robust network performance.

When the data set is small and you are training function approximation networks, Bayesian
regularization provides better generalization performance than early stopping. This is because
Bayesian regularization does not require that a validation data set be separate from the training data
set; it uses all the data.

To provide some insight into the performance of the algorithms, both early stopping and Bayesian
regularization were tested on several benchmark data sets, which are listed in the following table.

Data Set Title Number of
Points

Network Description

BALL 67 2-10-1 Dual-sensor calibration for a ball position measurement
SINE (5% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 5% level
SINE (2% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 2% level
ENGINE (ALL) 1199 2-30-2 Engine sensor—full data set
ENGINE (1/4) 300 2-30-2 Engine sensor—1/4 of data set
CHOLEST (ALL) 264 5-15-3 Cholesterol measurement—full data set
CHOLEST (1/2) 132 5-15-3 Cholesterol measurement—1/2 data set

These data sets are of various sizes, with different numbers of inputs and targets. With two of the
data sets the networks were trained once using all the data and then retrained using only a fraction
of the data. This illustrates how the advantage of Bayesian regularization becomes more noticeable
when the data sets are smaller. All the data sets are obtained from physical systems except for the
SINE data sets. These two were artificially created by adding various levels of noise to a single cycle
of a sine wave. The performance of the algorithms on these two data sets illustrates the effect of
noise.

The following table summarizes the performance of early stopping (ES) and Bayesian regularization
(BR) on the seven test sets. (The trainscg algorithm was used for the early stopping tests. Other
algorithms provide similar performance.)

Mean Squared Test Set Error
Method Ball Engine

(All)
Engine
(1/4)

Choles
(All)

Choles
(1/2)

Sine (5%
N)

Sine (2%
N)

ES 1.2e-1 1.3e-2 1.9e-2 1.2e-1 1.4e-1 1.7e-1 1.3e-1
BR 1.3e-3 2.6e-3 4.7e-3 1.2e-1 9.3e-2 3.0e-2 6.3e-3
ES/BR 92 5 4 1 1.5 5.7 21

You can see that Bayesian regularization performs better than early stopping in most cases. The
performance improvement is most noticeable when the data set is small, or if there is little noise in
the data set. The BALL data set, for example, was obtained from sensors that had very little noise.

Although the generalization performance of Bayesian regularization is often better than early
stopping, this is not always the case. In addition, the form of Bayesian regularization implemented in
the toolbox does not perform as well on pattern recognition problems as it does on function
approximation problems. This is because the approximation to the Hessian that is used in the

29 Advanced Topics

29-32



Levenberg-Marquardt algorithm is not as accurate when the network output is saturated, as would be
the case in pattern recognition problems. Another disadvantage of the Bayesian regularization
method is that it generally takes longer to converge than early stopping.

Posttraining Analysis (regression)
The performance of a trained network can be measured to some extent by the errors on the training,
validation, and test sets, but it is often useful to investigate the network response in more detail. One
option is to perform a regression analysis between the network response and the corresponding
targets. The routine regression is designed to perform this analysis.

The following commands illustrate how to perform a regression analysis on a network trained.

x = [-1:.05:1];
t = sin(2*pi*x)+0.1*randn(size(x));
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
[r,m,b] = regression(t,y)

r =
    0.9935
m =
    0.9874
b =
   -0.0067

The network output and the corresponding targets are passed to regression. It returns three
parameters. The first two, m and b, correspond to the slope and the y-intercept of the best linear
regression relating targets to network outputs. If there were a perfect fit (outputs exactly equal to
targets), the slope would be 1, and the y-intercept would be 0. In this example, you can see that the
numbers are very close. The third variable returned by regression is the correlation coefficient (R-
value) between the outputs and targets. It is a measure of how well the variation in the output is
explained by the targets. If this number is equal to 1, then there is perfect correlation between
targets and outputs. In the example, the number is very close to 1, which indicates a good fit.

The following figure illustrates the graphical output provided by regression. The network outputs
are plotted versus the targets as open circles. The best linear fit is indicated by a dashed line. The
perfect fit (output equal to targets) is indicated by the solid line. In this example, it is difficult to
distinguish the best linear fit line from the perfect fit line because the fit is so good.

 Improve Shallow Neural Network Generalization and Avoid Overfitting

29-33



29 Advanced Topics

29-34



Edit Shallow Neural Network Properties

In this section...
“Custom Network” on page 29-35
“Network Definition” on page 29-36
“Network Behavior” on page 29-43

Tip To learn how to define your own layers for deep learning networks, see “Define Custom Deep
Learning Layers” on page 19-9.

Deep Learning Toolbox software provides a flexible network object type that allows many kinds of
networks to be created and then used with functions such as init, sim, and train.

Type the following to see all the network creation functions in the toolbox.

help nnnetwork

This flexibility is possible because networks have an object-oriented representation. The
representation allows you to define various architectures and assign various algorithms to those
architectures.

To create custom networks, start with an empty network (obtained with the network function) and
set its properties as desired.

net = network

The network object consists of many properties that you can set to specify the structure and behavior
of your network.

The following sections show how to create a custom network by using these properties.

Custom Network
Before you can build a network you need to know what it looks like. For dramatic purposes (and to
give the toolbox a workout) this section leads you through the creation of the wild and complicated
network shown below.

 Edit Shallow Neural Network Properties

29-35



Each of the two elements of the first network input is to accept values ranging between 0 and 10.
Each of the five elements of the second network input ranges from −2 to 2.

Before you can complete your design of this network, the algorithms it employs for initialization and
training must be specified.

Each layer's weights and biases are initialized with the Nguyen-Widrow layer initialization method
(initnw). The network is trained with Levenberg-Marquardt backpropagation (trainlm), so that,
given example input vectors, the outputs of the third layer learn to match the associated target
vectors with minimal mean squared error (mse).

Network Definition
The first step is to create a new network. Type the following code to create a network and view its
many properties:

net = network

Architecture Properties

The first group of properties displayed is labeled architecture properties. These properties allow
you to select the number of inputs and layers and their connections.

Number of Inputs and Layers

The first two properties displayed in the dimensions group are numInputs and numLayers. These
properties allow you to select how many inputs and layers you want the network to have.

net =

    dimensions:
         numInputs: 0
         numLayers: 0
         ...

29 Advanced Topics

29-36



Note that the network has no inputs or layers at this time.

Change that by setting these properties to the number of inputs and number of layers in the custom
network diagram.

net.numInputs = 2;
net.numLayers = 3;

net.numInputs is the number of input sources, not the number of elements in an input vector
(net.inputs{i}.size).

Bias Connections

Type net and press Enter to view its properties again. The network now has two inputs and three
layers.

net =
    Neural Network:
    dimensions:
         numInputs: 2
         numLayers: 3

Examine the next four properties in the connections group:

       biasConnect: [0; 0; 0]
      inputConnect: [0 0; 0 0; 0 0]
      layerConnect: [0 0 0; 0 0 0; 0 0 0]
     outputConnect: [0 0 0]

These matrices of 1s and 0s represent the presence and absence of bias, input weight, layer weight,
and output connections. They are currently all zeros, indicating that the network does not have any
such connections.

The bias connection matrix is a 3-by-1 vector. To create a bias connection to the ith layer you can set
net.biasConnect(i) to 1. Specify that the first and third layers are to have bias connections, as
the diagram indicates, by typing the following code:

net.biasConnect(1) = 1;
net.biasConnect(3) = 1;

You could also define those connections with a single line of code.

net.biasConnect = [1; 0; 1];

Input and Layer Weight Connections

The input connection matrix is 3-by-2, representing the presence of connections from two sources
(the two inputs) to three destinations (the three layers). Thus, net.inputConnect(i,j) represents
the presence of an input weight connection going to the ith layer from the jth input.

To connect the first input to the first and second layers, and the second input to the second layer (as
indicated by the custom network diagram), type

net.inputConnect(1,1) = 1;
net.inputConnect(2,1) = 1;
net.inputConnect(2,2) = 1;

or this single line of code:

 Edit Shallow Neural Network Properties

29-37



net.inputConnect = [1 0; 1 1; 0 0];

Similarly, net.layerConnect(i.j) represents the presence of a layer-weight connection going to
the ith layer from the jth layer. Connect layers 1, 2, and 3 to layer 3 as follows:

net.layerConnect = [0 0 0; 0 0 0; 1 1 1];

Output Connections

The output connections are a 1-by-3 matrix, indicating that they connect to one destination (the
external world) from three sources (the three layers).

To connect layers 2 and 3 to the network output, type

net.outputConnect = [0 1 1];

Number of Outputs

Type net and press Enter to view the updated properties. The final three architecture properties are
read-only values, which means their values are determined by the choices made for other properties.
The first read-only property in the dimension group is the number of outputs:

numOutputs: 2

By defining output connection from layers 2 and 3, you specified that the network has two outputs.

Subobject Properties

The next group of properties in the output display is subobjects:

subobjects:
            inputs: {2x1 cell array of 2 inputs}
            layers: {3x1 cell array of 3 layers}
           outputs: {1x3 cell array of 2 outputs}
            biases: {3x1 cell array of 2 biases}
      inputWeights: {3x2 cell array of 3 weights}
      layerWeights: {3x3 cell array of 3 weights}

Inputs

When you set the number of inputs (net.numInputs) to 2, the inputs property becomes a cell
array of two input structures. Each ith input structure (net.inputs{i}) contains additional
properties associated with the ith input.

To see how the input structures are arranged, type

net.inputs
ans = 
    [1x1 nnetInput]
    [1x1 nnetInput]

To see the properties associated with the first input, type

net.inputs{1}

The properties appear as follows:

ans = 
              name: 'Input'

29 Advanced Topics

29-38



    feedbackOutput: []
       processFcns: {}
     processParams: {1x0 cell array of 0 params}
   processSettings: {0x0 cell array of 0 settings}
    processedRange: []
     processedSize: 0
             range: []
              size: 0
          userdata: (your custom info)

If you set the exampleInput property, the range, size, processedSize, and processedRange
properties will automatically be updated to match the properties of the value of exampleInput.

Set the exampleInput property as follows:

net.inputs{1}.exampleInput = [0 10 5; 0 3 10];

If you examine the structure of the first input again, you see that it now has new values.

The property processFcns can be set to one or more processing functions. Type help nnprocess
to see a list of these functions.

Set the second input vector ranges to be from −2 to 2 for five elements as follows:

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};

View the new input properties. You will see that processParams, processSettings,
processedRange and processedSize have all been updated to reflect that inputs will be processed
using removeconstantrows and mapminmax before being given to the network when the network is
simulated or trained. The property processParams contains the default parameters for each
processing function. You can alter these values, if you like. See the reference page for each
processing function to learn more about their parameters.

You can set the size of an input directly when no processing functions are used:

net.inputs{2}.size = 5;

Layers

When you set the number of layers (net.numLayers) to 3, the layers property becomes a cell array
of three-layer structures. Type the following line of code to see the properties associated with the
first layer.

net.layers{1}
ans = 
    Neural Network Layer
 
              name: 'Layer'
        dimensions: 0
       distanceFcn: (none)
     distanceParam: (none)
         distances: []
           initFcn: 'initwb'
       netInputFcn: 'netsum'
     netInputParam: (none)
         positions: []
             range: []
              size: 0

 Edit Shallow Neural Network Properties

29-39



       topologyFcn: (none)
       transferFcn: 'purelin'
     transferParam: (none)
          userdata: (your custom info)

Type the following three lines of code to change the first layer’s size to 4 neurons, its transfer
function to tansig, and its initialization function to the Nguyen-Widrow function, as required for the
custom network diagram.

net.layers{1}.size = 4;
net.layers{1}.transferFcn = 'tansig';
net.layers{1}.initFcn = 'initnw';

The second layer is to have three neurons, the logsig transfer function, and be initialized with
initnw. Set the second layer’s properties to the desired values as follows:

net.layers{2}.size = 3;
net.layers{2}.transferFcn = 'logsig';
net.layers{2}.initFcn = 'initnw';

The third layer’s size and transfer function properties don't need to be changed, because the defaults
match those shown in the network diagram. You need to set only its initialization function, as follows:

net.layers{3}.initFcn = 'initnw';

Outputs

Use this line of code to see how the outputs property is arranged:

net.outputs
ans = 
    []    [1x1 nnetOutput]    [1x1 nnetOutput]

Note that outputs contains two output structures, one for layer 2 and one for layer 3. This
arrangement occurs automatically when net.outputConnect is set to [0 1 1].

View the second layer’s output structure with the following expression:

net.outputs{2}
ans = 
    Neural Network Output

              name: 'Output'
     feedbackInput: []
     feedbackDelay: 0
      feedbackMode: 'none'
       processFcns: {}
     processParams: {1x0 cell array of 0 params}
   processSettings: {0x0 cell array of 0 settings}
    processedRange: [3x2 double]
     processedSize: 3
             range: [3x2 double]
              size: 3
          userdata: (your custom info)

The size is automatically set to 3 when the second layer’s size (net.layers{2}.size) is set to that
value. Look at the third layer’s output structure if you want to verify that it also has the correct size.

29 Advanced Topics

29-40



Outputs have processing properties that are automatically applied to target values before they are
used by the network during training. The same processing settings are applied in reverse on layer
output values before they are returned as network output values during network simulation or
training.

Similar to input-processing properties, setting the exampleOutput property automatically causes
size, range, processedSize, and processedRange to be updated. Setting processFcns to a cell
array list of processing function names causes processParams, processSettings,
processedRange to be updated. You can then alter the processParam values, if you want to.

Biases, Input Weights, and Layer Weights

Enter the following commands to see how bias and weight structures are arranged:

net.biases
net.inputWeights
net.layerWeights

Here are the results of typing net.biases:

ans = 
    [1x1 nnetBias]
    []
    [1x1 nnetBias]

Each contains a structure where the corresponding connections (net.biasConnect,
net.inputConnect, and net.layerConnect) contain a 1.

Look at their structures with these lines of code:

net.biases{1}
net.biases{3}
net.inputWeights{1,1}
net.inputWeights{2,1}
net.inputWeights{2,2}
net.layerWeights{3,1}
net.layerWeights{3,2}
net.layerWeights{3,3}

For example, typing net.biases{1} results in the following output:

    initFcn: (none)
      learn: true
   learnFcn: (none)
 learnParam: (none)
       size: 4
   userdata: (your custom info)

Specify the weights’ tap delay lines in accordance with the network diagram by setting each weight’s
delays property:

net.inputWeights{2,1}.delays = [0 1];
net.inputWeights{2,2}.delays = 1;
net.layerWeights{3,3}.delays = 1;

Network Functions

Type net and press Return again to see the next set of properties.

 Edit Shallow Neural Network Properties

29-41



functions:
      adaptFcn: (none)
    adaptParam: (none)
      derivFcn: 'defaultderiv'
     divideFcn: (none)
   divideParam: (none)
    divideMode: 'sample'
       initFcn: 'initlay'
    performFcn: 'mse'
  performParam: .regularization, .normalization
      plotFcns: {}
    plotParams: {1x0 cell array of 0 params}
      trainFcn: (none)
    trainParam: (none)

Each of these properties defines a function for a basic network operation.

Set the initialization function to initlay so the network initializes itself according to the layer
initialization functions already set to initnw, the Nguyen-Widrow initialization function.

net.initFcn = 'initlay';

This meets the initialization requirement of the network.

Set the performance function to mse (mean squared error) and the training function to trainlm
(Levenberg-Marquardt backpropagation) to meet the final requirement of the custom network.

net.performFcn = 'mse';
net.trainFcn = 'trainlm';

Set the divide function to dividerand (divide training data randomly).

net.divideFcn = 'dividerand';

During supervised training, the input and target data are randomly divided into training, test, and
validation data sets. The network is trained on the training data until its performance begins to
decrease on the validation data, which signals that generalization has peaked. The test data provides
a completely independent test of network generalization.

Set the plot functions to plotperform (plot training, validation and test performance) and
plottrainstate (plot the state of the training algorithm with respect to epochs).

net.plotFcns = {'plotperform','plottrainstate'};

Weight and Bias Values

Before initializing and training the network, type net and press Return, then look at the weight and
bias group of network properties.

weight and bias values:
           IW: {3x2 cell} containing 3 input weight matrices
           LW: {3x3 cell} containing 3 layer weight matrices
            b: {3x1 cell} containing 2 bias vectors

These cell arrays contain weight matrices and bias vectors in the same positions that the connection
properties (net.inputConnect, net.layerConnect, net.biasConnect) contain 1s and the
subobject properties (net.inputWeights, net.layerWeights, net.biases) contain structures.

29 Advanced Topics

29-42



Evaluating each of the following lines of code reveals that all the bias vectors and weight matrices
are set to zeros.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.LW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

Each input weight net.IW{i,j}, layer weight net.LW{i,j}, and bias vector net.b{i} has as
many rows as the size of the ith layer (net.layers{i}.size).

Each input weight net.IW{i,j} has as many columns as the size of the jth input
(net.inputs{j}.size) multiplied by the number of its delay values
(length(net.inputWeights{i,j}.delays)).

Likewise, each layer weight has as many columns as the size of the jth layer (net.layers{j}.size)
multiplied by the number of its delay values (length(net.layerWeights{i,j}.delays)).

Network Behavior
Initialization

Initialize your network with the following line of code:

net = init(net);

Check the network's biases and weights again to see how they have changed:

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.LW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

For example,

net.IW{1,1}
ans =
   -0.3040    0.4703
   -0.5423   -0.1395
    0.5567    0.0604
    0.2667    0.4924

Training

Define the following cell array of two input vectors (one with two elements, one with five) for two
time steps (i.e., two columns).

X = {[0; 0] [2; 0.5]; [2; -2; 1; 0; 1] [-1; -1; 1; 0; 1]};

You want the network to respond with the following target sequences for the second layer, which has
three neurons, and the third layer with one neuron:

T = {[1; 1; 1] [0; 0; 0]; 1 -1};

Before training, you can simulate the network to see whether the initial network's response Y is close
to the target T.

Y = sim(net,X)
Y = 

 Edit Shallow Neural Network Properties

29-43



     [3x1 double]    [3x1 double]
     [      1.7148]    [      2.2726]

The cell array Y is the output sequence of the network, which is also the output sequence of the
second and third layers. The values you got for the second row can differ from those shown because
of different initial weights and biases. However, they will almost certainly not be equal to targets T,
which is also true of the values shown.

The next task is optional. On some occasions you may wish to alter the training parameters before
training. The following line of code displays the default Levenberg-Marquardt training parameters
(defined when you set net.trainFcn to trainlm).

net.trainParam

The following properties should be displayed.

ans = 
    Show Training Window Feedback   showWindow: true
    Show Command Line Feedback showCommandLine: false
    Command Line Frequency                show: 25
    Maximum Epochs                      epochs: 1000
    Maximum Training Time                 time: Inf
    Performance Goal                      goal: 0
    Minimum Gradient                  min_grad: 1e-07
    Maximum Validation Checks         max_fail: 6
    Mu                                      mu: 0.001
    Mu Decrease Ratio                   mu_dec: 0.1
    Mu Increase Ratio                   mu_inc: 10
    Maximum mu                          mu_max: 10000000000

You will not often need to modify these values. See the documentation for the training function for
information about what each of these means. They have been initialized with default values that work
well for a large range of problems, so there is no need to change them here.

Next, train the network with the following call:

net = train(net,X,T);

Training launches the neural network training window. To open the performance and training state
plots, click the plot buttons.

After training, you can simulate the network to see if it has learned to respond correctly:

Y = sim(net,X)

     [3x1 double]    [3x1 double]
     [      1.0000]    [     -1.0000]

The second network output (i.e., the second row of the cell array Y), which is also the third layer’s
output, matches the target sequence T.

29 Advanced Topics

29-44



Custom Neural Network Helper Functions
The toolbox allows you to create and use your own custom functions. This gives you a great deal of
control over the algorithms used to initialize, simulate, and train your networks.

Be aware, however, that custom functions may need updating to remain compatible with future
versions of the software. Backward compatibility of custom functions cannot be guaranteed.

Template functions are available for you to copy, rename and customize, to create your own versions
of these kinds of functions. You can see the list of all template functions by typing the following:

help nncustom

Each template is a simple version of a different type of function that you can use with your own
custom networks.

For instance, make a copy of the file tansig.m with the new name mytransfer.m. Start editing the
new file by changing the function name at the top from tansig to mytransfer.

You can now edit each of the sections of code that make up a transfer function, using the help
comments in each of those sections to guide you.

Once you are done, store the new function in your working folder, and assign the name of your
transfer function to the transferFcn property of any layer of any network object to put it to use.

 Custom Neural Network Helper Functions

29-45



Automatically Save Checkpoints During Neural Network
Training

During neural network training, intermediate results can be periodically saved to a MAT file for
recovery if the computer fails or you kill the training process. This helps protect the value of long
training runs, which if interrupted would need to be completely restarted otherwise. This feature is
especially useful for long parallel training sessions, which are more likely to be interrupted by
computing resource failures.

Checkpoint saves are enabled with the optional 'CheckpointFile' training argument followed by
the checkpoint file name or path. If you specify only a file name, the file is placed in the working
directory by default. The file must have the .mat file extension, but if this is not specified it is
automatically appended. In this example, checkpoint saves are made to the file called
MyCheckpoint.mat in the current working directory.

[x,t] = bodyfat_dataset;
net = feedforwardnet(10);
net2 = train(net,x,t,'CheckpointFile','MyCheckpoint.mat');

22-Mar-2013 04:49:05 First Checkpoint #1: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:49:06 Final Checkpoint #2: /WorkingDir/MyCheckpoint.mat

By default, checkpoint saves occur at most once every 60 seconds. For the previous short training
example, this results in only two checkpoint saves: one at the beginning and one at the end of
training.

The optional training argument 'CheckpointDelay' can change the frequency of saves. For
example, here the minimum checkpoint delay is set to 10 seconds for a time-series problem where a
neural network is trained to model a levitated magnet.
[x,t] = maglev_dataset;
net = narxnet(1:2,1:2,10);
[X,Xi,Ai,T] = preparets(net,x,{},t);
net2 = train(net,X,T,Xi,Ai,'CheckpointFile','MyCheckpoint.mat','CheckpointDelay',10);

22-Mar-2013 04:59:28 First Checkpoint #1: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:38 Write Checkpoint #2: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:48 Write Checkpoint #3: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:58 Write Checkpoint #4: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 05:00:08 Write Checkpoint #5: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 05:00:09 Final Checkpoint #6: /WorkingDir/MyCheckpoint.mat

After a computer failure or training interruption, you can reload the checkpoint structure containing
the best neural network obtained before the interruption, and the training record. In this case, the
stage field value is 'Final', indicating the last save was at the final epoch because training
completed successfully. The first epoch checkpoint is indicated by 'First', and intermediate
checkpoints by 'Write'.

load('MyCheckpoint.mat')

checkpoint = 

      file: '/WorkdingDir/MyCheckpoint.mat'
      time: [2013 3 22 5 0 9.0712]
    number: 6
     stage: 'Final'
       net: [1x1 network]
        tr: [1x1 struct]

29 Advanced Topics

29-46



You can resume training from the last checkpoint by reloading the dataset (if necessary), then calling
train with the recovered network.
net = checkpoint.net;
[x,t] = maglev_dataset;
load('MyCheckpoint.mat');
[X,Xi,Ai,T] = preparets(net,x,{},t);
net2 = train(net,X,T,Xi,Ai,'CheckpointFile','MyCheckpoint.mat','CheckpointDelay',10);

 Automatically Save Checkpoints During Neural Network Training

29-47



Deploy Shallow Neural Network Functions
In this section...
“Deployment Functions and Tools for Trained Networks” on page 29-48
“Generate Neural Network Functions for Application Deployment” on page 29-48
“Generate Simulink Diagrams” on page 29-50

Deployment Functions and Tools for Trained Networks
The function genFunction allows stand-alone MATLAB functions for a trained shallow neural
network. The generated code contains all the information needed to simulate a neural network,
including settings, weight and bias values, module functions, and calculations.

The generated MATLAB function can be used to inspect the exact simulation calculations that a
particular shallow neural network performs, and makes it easier to deploy neural networks for many
purposes with a wide variety of MATLAB deployment products and tools.

The function genFunction is used by the Neural Net Fitting, Neural Net Pattern Recognition,
Neural Net Clustering and Neural Net Time Series apps. For information on these apps, see “Fit
Data with a Shallow Neural Network”, “Pattern Recognition with a Shallow Neural Network”,
“Cluster Data with a Self-Organizing Map”, and “Shallow Neural Network Time-Series Prediction and
Modeling”.

The comprehensive scripts generated by these apps includes an example of deploying networks with
genFunction.

Generate Neural Network Functions for Application Deployment
The function genFunction generates a stand-alone MATLAB function for simulating any trained
shallow neural network and preparing it for deployment. This might be useful for several tasks:

• Document the input-output transforms of a neural network used as a calculation template for
manual reimplementations of the network

• Use the MATLAB Function block to create a Simulink block
• Use MATLAB Compiler to:

• Generate stand-alone executables
• Generate Excel® add-ins

• Use MATLAB Compiler SDK™ to:

• Generate C/C++ libraries
• Generate .COM components
• Generate Java® components
• Generate .NET components

• Use MATLAB Coder to:

• Generate C/C++ code

29 Advanced Topics

29-48



• Generate efficient MEX-functions

genFunction(net,'pathname') takes a neural network and file path, and produces a standalone
MATLAB function file filename.m.

genFunction(...,'MatrixOnly','yes') overrides the default cell/matrix notation and instead
generates a function that uses only matrix arguments compatible with MATLAB Coder tools. For
static networks, the matrix columns are interpreted as independent samples. For dynamic networks,
the matrix columns are interpreted as a series of time steps. The default value is 'no'.

genFunction(___,'ShowLinks','no') disables the default behavior of displaying links to
generated help and source code. The default is 'yes'.

Here a static network is trained and its outputs calculated.

[x, t] = bodyfat_dataset;
bodyfatNet = feedforwardnet(10);
bodyfatNet = train(bodyfatNet, x, t);
y = bodyfatNet(x);

The following code generates, tests, and displays a MATLAB function with the same interface as the
neural network object.

genFunction(bodyfatNet, 'bodyfatFcn');
y2 = bodyfatFcn(x);
accuracy2 = max(abs(y - y2))
edit bodyfatFcn

You can compile the new function with the MATLAB Compiler tools (license required) to a shared/
dynamically linked library with mcc.

mcc -W lib:libBodyfat -T link:lib bodyfatFcn

The next code generates another version of the MATLAB function that supports only matrix
arguments (no cell arrays). This function is tested. Then it is used to generate a MEX-function with
the MATLAB Coder tool codegen (license required), which is also tested.
genFunction(bodyfatNet, 'bodyfatFcn', 'MatrixOnly', 'yes');
y3 = bodyfatFcn(x);
accuracy3 = max(abs(y - y3))

x1Type = coder.typeof(double(0), [13, Inf]); % Coder type of input 1
codegen bodyfatFcn.m -config:mex -o bodyfatCodeGen -args {x1Type}
y4 = bodyfatCodeGen(x);
accuracy4 = max(abs(y - y4))

Here a dynamic network is trained and its outputs calculated.

[x,t] = maglev_dataset;
maglevNet = narxnet(1:2,1:2,10);
[X,Xi,Ai,T] = preparets(maglevNet,x,{},t);
maglevNet = train(maglevNet,X,T,Xi,Ai);
[y,xf,af] = maglevNet(X,Xi,Ai);

Next a MATLAB function is generated and tested. The function is then used to create a shared/
dynamically linked library with mcc.

genFunction(maglevNet,'maglevFcn');
[y2,xf,af] = maglevFcn(X,Xi,Ai);

 Deploy Shallow Neural Network Functions

29-49



accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))
mcc -W lib:libMaglev -T link:lib maglevFcn

The following code generates another version of the MATLAB function that supports only matrix
arguments (no cell arrays). This function is tested. Then it is used to generate a MEX-function with
the MATLAB Coder tool codegen, which is also tested.
genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');
x1 = cell2mat(X(1,:)); % Convert each input to matrix
x2 = cell2mat(X(2,:));
xi1 = cell2mat(Xi(1,:)); % Convert each input state to matrix
xi2 = cell2mat(Xi(2,:));
[y3,xf1,xf2] = maglevFcn(x1,x2,xi1,xi2);
accuracy3 = max(abs(cell2mat(y)-y3))

x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1
x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2
xi1Type = coder.typeof(double(0),[1 2]); % Coder type of input 1 states
xi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states
codegen maglevFcn.m -config:mex -o maglevNetCodeGen ...
                    -args {x1Type x2Type xi1Type xi2Type}
[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,xi1,xi2);
dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))

Generate Simulink Diagrams
For information on simulating shallow neural networks and deploying trained neural networks with
Simulink tools, see “Deploy Shallow Neural Network Simulink Diagrams” on page B-5.

See Also

More About
• “Deploy Training of Shallow Neural Networks” on page 29-51

29 Advanced Topics

29-50



Deploy Training of Shallow Neural Networks

Tip To learn about code generation for deep learning, see “Code Generation”.

Use MATLAB Runtime to deploy functions that can train a model. You can deploy MATLAB code that
trains neural networks as described in “Create Standalone Application from MATLAB Function”
(MATLAB Compiler).

The following methods and functions are NOT supported in deployed mode:

• Training progress dialog.
• genFunction and gensim to generate MATLAB code or Simulink blocks
• view method
• nctool, nftool, nnstart, nprtool, ntstool
• Plot functions (such as plotperform, plottrainstate, ploterrhist, plotregression,

plotfit, and so on)
• perceptron, newlind, and elmannet functions.

Here is an example of how you can deploy training of a network. Create a script to train a neural
network, for example, mynntraining.m:

% Create the predictor and response (target)
x = [0.054 0.78 0.13 0.47 0.34 0.79 0.53 0.6 0.65 0.75 0.084 0.91 0.83
     0.53 0.93 0.57 0.012 0.16 0.31 0.17 0.26 0.69 0.45 0.23 0.15 0.54];
t = [0.46 0.079 0.42 0.48 0.95 0.63 0.48 0.51 0.16 0.51 1 0.28 0.3];
% Create and display the network
net = fitnet(); 
disp('Training fitnet')
% Train the network using the data in x and t
net = train(net,x,t);
% Predict the responses using the trained network
y = net(x);
% Measure the performance
perf = perform(net,y,t)

Compile the script mynntraining.m by using the command line:

mcc -m 'mynntraining.m'

mcc invokes the MATLAB Compiler to compile code at the prompt. The flag –m compiles a MATLAB
function and generates a standalone executable. The EXE file is now in your local computer in the
working directory.

To run the compiled EXE application on computers that do not have MATLAB installed, you need to
download and install MATLAB Runtime. The readme.txt created in your working folder has more
information about the deployment requirements.

 Deploy Training of Shallow Neural Networks

29-51



See Also

More About
• “Deploy Shallow Neural Network Functions” on page 29-48

29 Advanced Topics

29-52



Historical Neural Networks

• “Historical Neural Networks Overview” on page 30-2
• “Perceptron Neural Networks” on page 30-3
• “Linear Neural Networks” on page 30-14

30



Historical Neural Networks Overview
This section covers networks that are of historical interest, but that are not as actively used today as
networks presented in other sections. Two of the networks are single-layer networks that were the
first neural networks for which practical training algorithms were developed: perceptron networks
and ADALINE networks.

The perceptron network is a single-layer network whose weights and biases can be trained to
produce a correct target vector when presented with the corresponding input vector. This perceptron
rule was the first training algorithm developed for neural networks. The original book on the
perceptron is Rosenblatt, F., Principles of Neurodynamics, Washington D.C., Spartan Press, 1961
[Rose61 on page 33-2].

At about the same time that Rosenblatt developed the perceptron network, Widrow and Hoff
developed a single-layer linear network and associated learning rule, which they called the ADALINE
(Adaptive Linear Neuron). This network was used to implement adaptive filters, which are still
actively used today. The original paper describing this network is Widrow, B., and M.E. Hoff,
“Adaptive switching circuits,” 1960 IRE WESCON Convention Record, New York IRE, 1960, pp. 96–
104.

30 Historical Neural Networks

30-2



Perceptron Neural Networks
In this section...
“Neuron Model” on page 30-3
“Perceptron Architecture” on page 30-4
“Create a Perceptron” on page 30-5
“Perceptron Learning Rule (learnp)” on page 30-6
“Training (train)” on page 30-8
“Limitations and Cautions” on page 30-12

Rosenblatt [Rose61 on page 33-2] created many variations of the perceptron. One of the simplest
was a single-layer network whose weights and biases could be trained to produce a correct target
vector when presented with the corresponding input vector. The training technique used is called the
perceptron learning rule. The perceptron generated great interest due to its ability to generalize from
its training vectors and learn from initially randomly distributed connections. Perceptrons are
especially suited for simple problems in pattern classification. They are fast and reliable networks for
the problems they can solve. In addition, an understanding of the operations of the perceptron
provides a good basis for understanding more complex networks.

The discussion of perceptrons in this section is necessarily brief. For a more thorough discussion, see
Chapter 4, “Perceptron Learning Rule,” of [HDB1996 on page 33-2], which discusses the use of
multiple layers of perceptrons to solve more difficult problems beyond the capability of one layer.

Neuron Model
A perceptron neuron, which uses the hard-limit transfer function hardlim, is shown below.

Each external input is weighted with an appropriate weight w1j, and the sum of the weighted inputs is
sent to the hard-limit transfer function, which also has an input of 1 transmitted to it through the
bias. The hard-limit transfer function, which returns a 0 or a 1, is shown below.

 Perceptron Neural Networks

30-3



The perceptron neuron produces a 1 if the net input into the transfer function is equal to or greater
than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input vectors by dividing the
input space into two regions. Specifically, outputs will be 0 if the net input n is less than 0, or 1 if the
net input n is 0 or greater. The following figure show the input space of a two-input hard limit neuron
with the weights w1,1 = −1, w1,2 = 1 and a bias b = 1.

Two classification regions are formed by the decision boundary line L at
Wp + b = 0. This line is perpendicular to the weight matrix W and shifted according to the bias b.
Input vectors above and to the left of the line L will result in a net input greater than 0 and,
therefore, cause the hard-limit neuron to output a 1. Input vectors below and to the right of the line L
cause the neuron to output 0. You can pick weight and bias values to orient and move the dividing
line so as to classify the input space as desired.

Hard-limit neurons without a bias will always have a classification line going through the origin.
Adding a bias allows the neuron to solve problems where the two sets of input vectors are not located
on different sides of the origin. The bias allows the decision boundary to be shifted away from the
origin, as shown in the plot above.

You might want to run the example program nnd4db. With it you can move a decision boundary
around, pick new inputs to classify, and see how the repeated application of the learning rule yields a
network that does classify the input vectors properly.

Perceptron Architecture
The perceptron network consists of a single layer of S perceptron neurons connected to R inputs
through a set of weights wi,j, as shown below in two forms. As before, the network indices i and j
indicate that wi,j is the strength of the connection from the jth input to the ith neuron.

30 Historical Neural Networks

30-4



The perceptron learning rule described shortly is capable of training only a single layer. Thus only
one-layer networks are considered here. This restriction places limitations on the computation a
perceptron can perform. The types of problems that perceptrons are capable of solving are discussed
in “Limitations and Cautions” on page 30-12.

Create a Perceptron
You can create a perceptron with the following:

net = perceptron;
net = configure(net,P,T);

where input arguments are as follows:

• P is an R-by-Q matrix of Q input vectors of R elements each.
• T is an S-by-Q matrix of Q target vectors of S elements each.

Commonly, the hardlim function is used in perceptrons, so it is the default.

The following commands create a perceptron network with a single one-element input vector with the
values 0 and 2, and one neuron with outputs that can be either 0 or 1:

P = [0 2];
T = [0 1];
net = perceptron;
net = configure(net,P,T);

You can see what network has been created by executing the following command:

inputweights = net.inputweights{1,1}

which yields

inputweights = 
        delays: 0

 Perceptron Neural Networks

30-5



       initFcn: 'initzero'
         learn: true
      learnFcn: 'learnp'
    learnParam: (none)
          size: [1 1]
     weightFcn: 'dotprod'
   weightParam: (none)
      userdata: (your custom info)

The default learning function is learnp, which is discussed in “Perceptron Learning Rule (learnp)”
on page 30-6. The net input to the hardlim transfer function is dotprod, which generates the
product of the input vector and weight matrix and adds the bias to compute the net input.

The default initialization function initzero is used to set the initial values of the weights to zero.

Similarly,

biases = net.biases{1}

gives

biases = 
       initFcn: 'initzero'
         learn: 1
      learnFcn: 'learnp'
    learnParam: []
          size: 1
      userdata: [1x1 struct]

You can see that the default initialization for the bias is also 0.

Perceptron Learning Rule (learnp)
Perceptrons are trained on examples of desired behavior. The desired behavior can be summarized by
a set of input, output pairs

p1t1, p2t1, …, pQtQ

where p is an input to the network and t is the corresponding correct (target) output. The objective is
to reduce the error e, which is the difference t − a between the neuron response a and the target
vector t. The perceptron learning rule learnp calculates desired changes to the perceptron's weights
and biases, given an input vector p and the associated error e. The target vector t must contain
values of either 0 or 1, because perceptrons (with hardlim transfer functions) can only output these
values.

Each time learnp is executed, the perceptron has a better chance of producing the correct outputs.
The perceptron rule is proven to converge on a solution in a finite number of iterations if a solution
exists.

If a bias is not used, learnp works to find a solution by altering only the weight vector w to point
toward input vectors to be classified as 1 and away from vectors to be classified as 0. This results in a
decision boundary that is perpendicular to w and that properly classifies the input vectors.

There are three conditions that can occur for a single neuron once an input vector p is presented and
the network's response a is calculated:

30 Historical Neural Networks

30-6



CASE 1. If an input vector is presented and the output of the neuron is correct (a = t and e = t – a =
0), then the weight vector w is not altered.

CASE 2. If the neuron output is 0 and should have been 1 (a = 0 and t = 1, and e = t – a = 1), the
input vector p is added to the weight vector w. This makes the weight vector point closer to the input
vector, increasing the chance that the input vector will be classified as a 1 in the future.

CASE 3. If the neuron output is 1 and should have been 0 (a = 1 and t = 0, and e = t – a = –1), the
input vector p is subtracted from the weight vector w. This makes the weight vector point farther
away from the input vector, increasing the chance that the input vector will be classified as a 0 in the
future.

The perceptron learning rule can be written more succinctly in terms of the error e = t – a and the
change to be made to the weight vector Δw:

CASE 1. If e = 0, then make a change Δw equal to 0.

CASE 2. If e = 1, then make a change Δw equal to pT.

CASE 3. If e = –1, then make a change Δw equal to –pT.

All three cases can then be written with a single expression:

Δw = (t − α)pT = epT

You can get the expression for changes in a neuron's bias by noting that the bias is simply a weight
that always has an input of 1:

Δb = (t − α)(1) = e

For the case of a layer of neurons you have

ΔW = (t− a)(p)T = e(p)T

and

Δb = (t− a) = e

The perceptron learning rule can be summarized as follows:

Wnew = Wold + epT

and

bnew = bold + e

where e = t – a.

Now try a simple example. Start with a single neuron having an input vector with just two elements.

net = perceptron;
net = configure(net,[0;0],0);

To simplify matters, set the bias equal to 0 and the weights to 1 and -0.8:

 Perceptron Neural Networks

30-7



net.b{1} =  [0];
w = [1 -0.8];
net.IW{1,1} = w;

The input target pair is given by

p = [1; 2];
t = [1];

You can compute the output and error with

a = net(p)
a =
     0
e = t-a
e =
     1

and use the function learnp to find the change in the weights.

dw = learnp(w,p,[],[],[],[],e,[],[],[],[],[])
dw =
     1     2

The new weights, then, are obtained as

w = w + dw
w =
    2.0000    1.2000

The process of finding new weights (and biases) can be repeated until there are no errors. Recall that
the perceptron learning rule is guaranteed to converge in a finite number of steps for all problems
that can be solved by a perceptron. These include all classification problems that are linearly
separable. The objects to be classified in such cases can be separated by a single line.

You might want to try the example nnd4pr. It allows you to pick new input vectors and apply the
learning rule to classify them.

Training (train)
If sim and learnp are used repeatedly to present inputs to a perceptron, and to change the
perceptron weights and biases according to the error, the perceptron will eventually find weight and
bias values that solve the problem, given that the perceptron can solve it. Each traversal through all
the training input and target vectors is called a pass.

The function train carries out such a loop of calculation. In each pass the function train proceeds
through the specified sequence of inputs, calculating the output, error, and network adjustment for
each input vector in the sequence as the inputs are presented.

Note that train does not guarantee that the resulting network does its job. You must check the new
values of W and b by computing the network output for each input vector to see if all targets are
reached. If a network does not perform successfully you can train it further by calling train again
with the new weights and biases for more training passes, or you can analyze the problem to see if it
is a suitable problem for the perceptron. Problems that cannot be solved by the perceptron network
are discussed in “Limitations and Cautions” on page 30-12.

30 Historical Neural Networks

30-8



To illustrate the training procedure, work through a simple problem. Consider a one-neuron
perceptron with a single vector input having two elements:

This network, and the problem you are about to consider, are simple enough that you can follow
through what is done with hand calculations if you want. The problem discussed below follows that
found in [HDB1996 on page 33-2].

Suppose you have the following classification problem and would like to solve it with a single vector
input, two-element perceptron network.

p1 =
2
2

, t1 = 0 p2 =
1
−2

, t2 = 1 p3 =
−2
2

, t3 = 0 p4 =
−1
1

, t4 = 1

Use the initial weights and bias. Denote the variables at each step of this calculation by using a
number in parentheses after the variable. Thus, above, the initial values are W(0) and b(0).

W(0) = 0 0 b(0) = 0

Start by calculating the perceptron’s output a for the first input vector p1, using the initial weights
and bias.

α = hardlim(W(0)p1 + b(0))

= hardlim 0 0
2
2

+ 0 = hardlim(0) = 1

The output a does not equal the target value t1, so use the perceptron rule to find the incremental
changes to the weights and biases based on the error.

e = t1− α = 0− 1 = − 1

ΔW = ep1
T = (− 1) 2 2 = −2 −2

Δb = e = (− 1) = − 1

You can calculate the new weights and bias using the perceptron update rules.

Wnew = Wold + epT = 0 0 + −2 −2 = −2 −2 = W(1)

bnew = bold + e = 0 + (− 1) = − 1 = b(1)

Now present the next input vector, p2. The output is calculated below.

 Perceptron Neural Networks

30-9



α = hardlim(W(1)p2 + b(1))

= hardlim −2 −2
1

−2
− 1 = hardlim(1) = 1

On this occasion, the target is 1, so the error is zero. Thus there are no changes in weights or bias, so
W(2) = W(1) = [−2 −2] and b(2) = b(1) = −1.

You can continue in this fashion, presenting p3 next, calculating an output and the error, and making
changes in the weights and bias, etc. After making one pass through all of the four inputs, you get the
values W(4) = [−3 −1] and b(4) = 0. To determine whether a satisfactory solution is obtained, make
one pass through all input vectors to see if they all produce the desired target values. This is not true
for the fourth input, but the algorithm does converge on the sixth presentation of an input. The final
values are

W(6) = [−2 −3] and b(6) = 1.

This concludes the hand calculation. Now, how can you do this using the train function?

The following code defines a perceptron.

net = perceptron;

Consider the application of a single input

p = [2; 2];

having the target

t = [0];

Set epochs to 1, so that train goes through the input vectors (only one here) just one time.

net.trainParam.epochs = 1;
net = train(net,p,t);

The new weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =
    -2    -2
b =
    -1

Thus, the initial weights and bias are 0, and after training on only the first vector, they have the
values [−2 −2] and −1, just as you hand calculated.

Now apply the second input vector p2. The output is 1, as it will be until the weights and bias are
changed, but now the target is 1, the error will be 0, and the change will be zero. You could proceed
in this way, starting from the previous result and applying a new input vector time after time. But you
can do this job automatically with train.

Apply train for one epoch, a single pass through the sequence of all four input vectors. Start with
the network definition.

net = perceptron;
net.trainParam.epochs = 1;

30 Historical Neural Networks

30-10



The input vectors and targets are

p = [[2;2] [1;-2] [-2;2] [-1;1]]
t = [0 1 0 1]

Now train the network with

net = train(net,p,t);

The new weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =
    -3    -1
b =
     0

This is the same result as you got previously by hand.

Finally, simulate the trained network for each of the inputs.

a = net(p)
a = 
      0     0     1     1

The outputs do not yet equal the targets, so you need to train the network for more than one pass.
Try more epochs. This run gives a mean absolute error performance of 0 after two epochs:

net.trainParam.epochs = 1000;
net = train(net,p,t);

Thus, the network was trained by the time the inputs were presented on the third epoch. (As you
know from hand calculation, the network converges on the presentation of the sixth input vector. This
occurs in the middle of the second epoch, but it takes the third epoch to detect the network
convergence.) The final weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =
    -2    -3
b =
     1

The simulated output and errors for the various inputs are

a = net(p)
a =
             0             1             0             1
error = a-t
error =
             0             0             0             0

You confirm that the training procedure is successful. The network converges and produces the
correct target outputs for the four input vectors.

The default training function for networks created with perceptron is trainc. (You can find this by
executing net.trainFcn.) This training function applies the perceptron learning rule in its pure
form, in that individual input vectors are applied individually, in sequence, and corrections to the
weights and bias are made after each presentation of an input vector. Thus, perceptron training with

 Perceptron Neural Networks

30-11



train will converge in a finite number of steps unless the problem presented cannot be solved with a
simple perceptron.

The function train can be used in various ways by other networks as well. Type help train to
read more about this basic function.

You might want to try various example programs. For instance, “Classification with a Two-Input
Perceptron” on page 32-156 illustrates classification and training of a simple perceptron.

Limitations and Cautions
Perceptron networks should be trained with adapt, which presents the input vectors to the network
one at a time and makes corrections to the network based on the results of each presentation. Use of
adapt in this way guarantees that any linearly separable problem is solved in a finite number of
training presentations.

As noted in the previous pages, perceptrons can also be trained with the function train. Commonly
when train is used for perceptrons, it presents the inputs to the network in batches, and makes
corrections to the network based on the sum of all the individual corrections. Unfortunately, there is
no proof that such a training algorithm converges for perceptrons. On that account the use of train
for perceptrons is not recommended.

Perceptron networks have several limitations. First, the output values of a perceptron can take on
only one of two values (0 or 1) because of the hard-limit transfer function. Second, perceptrons can
only classify linearly separable sets of vectors. If a straight line or a plane can be drawn to separate
the input vectors into their correct categories, the input vectors are linearly separable. If the vectors
are not linearly separable, learning will never reach a point where all vectors are classified properly.
However, it has been proven that if the vectors are linearly separable, perceptrons trained adaptively
will always find a solution in finite time. You might want to try “Linearly Non-separable Vectors” on
page 32-173. It shows the difficulty of trying to classify input vectors that are not linearly separable.

It is only fair, however, to point out that networks with more than one perceptron can be used to solve
more difficult problems. For instance, suppose that you have a set of four vectors that you would like
to classify into distinct groups, and that two lines can be drawn to separate them. A two-neuron
network can be found such that its two decision boundaries classify the inputs into four categories.
For additional discussion about perceptrons and to examine more complex perceptron problems, see
[HDB1996 on page 33-2].

Outliers and the Normalized Perceptron Rule

Long training times can be caused by the presence of an outlier input vector whose length is much
larger or smaller than the other input vectors. Applying the perceptron learning rule involves adding
and subtracting input vectors from the current weights and biases in response to error. Thus, an
input vector with large elements can lead to changes in the weights and biases that take a long time
for a much smaller input vector to overcome. You might want to try “Outlier Input Vectors” on page
32-161 to see how an outlier affects the training.

By changing the perceptron learning rule slightly, you can make training times insensitive to
extremely large or small outlier input vectors.

Here is the original rule for updating weights:

Δw = (t − α)pT = epT

30 Historical Neural Networks

30-12



As shown above, the larger an input vector p, the larger its effect on the weight vector w. Thus, if an
input vector is much larger than other input vectors, the smaller input vectors must be presented
many times to have an effect.

The solution is to normalize the rule so that the effect of each input vector on the weights is of the
same magnitude:

Δw = (t − α) pT

p = e pT

p

The normalized perceptron rule is implemented with the function learnpn, which is called exactly
like learnp. The normalized perceptron rule function learnpn takes slightly more time to execute,
but reduces the number of epochs considerably if there are outlier input vectors. You might try
“Normalized Perceptron Rule” on page 32-167 to see how this normalized training rule works.

 Perceptron Neural Networks

30-13



Linear Neural Networks
In this section...
“Neuron Model” on page 30-14
“Network Architecture” on page 30-15
“Least Mean Square Error” on page 30-17
“Linear System Design (newlind)” on page 30-18
“Linear Networks with Delays” on page 30-18
“LMS Algorithm (learnwh)” on page 30-20
“Linear Classification (train)” on page 30-21
“Limitations and Cautions” on page 30-23

The linear networks discussed in this section are similar to the perceptron, but their transfer function
is linear rather than hard-limiting. This allows their outputs to take on any value, whereas the
perceptron output is limited to either 0 or 1. Linear networks, like the perceptron, can only solve
linearly separable problems.

Here you design a linear network that, when presented with a set of given input vectors, produces
outputs of corresponding target vectors. For each input vector, you can calculate the network's
output vector. The difference between an output vector and its target vector is the error. You would
like to find values for the network weights and biases such that the sum of the squares of the errors is
minimized or below a specific value. This problem is manageable because linear systems have a
single error minimum. In most cases, you can calculate a linear network directly, such that its error is
a minimum for the given input vectors and target vectors. In other cases, numerical problems
prohibit direct calculation. Fortunately, you can always train the network to have a minimum error by
using the least mean squares (Widrow-Hoff) algorithm.

This section introduces linearlayer, a function that creates a linear layer, and newlind, a function
that designs a linear layer for a specific purpose.

Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only difference is that the linear
neuron uses a linear transfer function purelin.

30 Historical Neural Networks

30-14



The linear transfer function calculates the neuron's output by simply returning the value passed to it.

α = purelin(n) = purelin(Wp + b) = Wp + b

This neuron can be trained to learn an affine function of its inputs, or to find a linear approximation
to a nonlinear function. A linear network cannot, of course, be made to perform a nonlinear
computation.

Network Architecture
The linear network shown below has one layer of S neurons connected to R inputs through a matrix of
weights W.

Note that the figure on the right defines an S-length output vector a.

A single-layer linear network is shown. However, this network is just as capable as multilayer linear
networks. For every multilayer linear network, there is an equivalent single-layer linear network.

Create a Linear Neuron (linearlayer)

Consider a single linear neuron with two inputs. The following figure shows the diagram for this
network.

 Linear Neural Networks

30-15



The weight matrix W in this case has only one row. The network output is

α = purelin(n) = purelin(Wp + b) = Wp + b

or

α = w1, 1p1 + w1, 2p2 + b

Like the perceptron, the linear network has a decision boundary that is determined by the input
vectors for which the net input n is zero. For n = 0 the equation Wp + b = 0 specifies such a decision
boundary, as shown below (adapted with thanks from [HDB96 on page 33-2]).

Input vectors in the upper right gray area lead to an output greater than 0. Input vectors in the lower
left white area lead to an output less than 0. Thus, the linear network can be used to classify objects
into two categories. However, it can classify in this way only if the objects are linearly separable.
Thus, the linear network has the same limitation as the perceptron.

You can create this network using linearlayer, and configure its dimensions with two values so the
input has two elements and the output has one.

net = linearlayer;
net = configure(net,[0;0],0);

The network weights and biases are set to zero by default. You can see the current values with the
commands

W = net.IW{1,1}
W =
     0     0

and

30 Historical Neural Networks

30-16



b= net.b{1}
b =
     0

However, you can give the weights any values that you want, such as 2 and 3, respectively, with

net.IW{1,1} = [2 3];
W = net.IW{1,1}
W =
     2     3

You can set and check the bias in the same way.

net.b{1} = [-4];
b = net.b{1}
b =
     -4

You can simulate the linear network for a particular input vector. Try

p = [5;6];

You can find the network output with the function sim.

a = net(p)
a =
    24

To summarize, you can create a linear network with linearlayer, adjust its elements as you want,
and simulate it with sim.

Least Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS) algorithm is an example of
supervised training, in which the learning rule is provided with a set of examples of desired network
behavior:

p1, t1 , p2, t2 , … pQ, tQ

Here pq is an input to the network, and tq is the corresponding target output. As each input is applied
to the network, the network output is compared to the target. The error is calculated as the
difference between the target output and the network output. The goal is to minimize the average of
the sum of these errors.

mse = 1
Q ∑

k = 1

Q
e(k)2 = 1

Q ∑
k = 1

Q
(t(k)− α(k))2

The LMS algorithm adjusts the weights and biases of the linear network so as to minimize this mean
square error.

Fortunately, the mean square error performance index for the linear network is a quadratic function.
Thus, the performance index will either have one global minimum, a weak minimum, or no minimum,
depending on the characteristics of the input vectors. Specifically, the characteristics of the input
vectors determine whether or not a unique solution exists.

You can find more about this topic in Chapter 10 of [HDB96 on page 33-2].

 Linear Neural Networks

30-17



Linear System Design (newlind)
Unlike most other network architectures, linear networks can be designed directly if input/target
vector pairs are known. You can obtain specific network values for weights and biases to minimize the
mean square error by using the function newlind.

Suppose that the inputs and targets are

P = [1 2 3];
T= [2.0 4.1 5.9];

Now you can design a network.

net = newlind(P,T);

You can simulate the network behavior to check that the design was done properly.

Y = net(P)
Y =
    2.0500    4.0000    5.9500

Note that the network outputs are quite close to the desired targets.

You might try “Pattern Association Showing Error Surface” on page 32-176. It shows error surfaces
for a particular problem, illustrates the design, and plots the designed solution.

You can also use the function newlind to design linear networks having delays in the input. Such
networks are discussed in “Linear Networks with Delays” on page 30-18. First, however, delays
must be discussed.

Linear Networks with Delays
Tapped Delay Line

You need a new component, the tapped delay line, to make full use of the linear network. Such a
delay line is shown below. There the input signal enters from the left and passes through N-1 delays.
The output of the tapped delay line (TDL) is an N-dimensional vector, made up of the input signal at
the current time, the previous input signal, etc.

30 Historical Neural Networks

30-18



Linear Filter

You can combine a tapped delay line with a linear network to create the linear filter shown.

The output of the filter is given by

α(k) = purelin(Wp + b) = ∑
i = 1

R
w1, ip(k− i + 1) + b

The network shown is referred to in the digital signal processing field as a finite impulse response
(FIR) filter [WiSt85 on page 33-2]. Look at the code used to generate and simulate such a network.

 Linear Neural Networks

30-19



Suppose that you want a linear layer that outputs the sequence T, given the sequence P and two
initial input delay states Pi.

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5 6 4 20 7 8};

You can use newlind to design a network with delays to give the appropriate outputs for the inputs.
The delay initial outputs are supplied as a third argument, as shown below.

net = newlind(P,T,Pi);

You can obtain the output of the designed network with

Y = net(P,Pi)

to give

Y = [2.7297] [10.5405] [5.0090] [14.9550] [10.7838] [5.9820]

As you can see, the network outputs are not exactly equal to the targets, but they are close and the
mean square error is minimized.

LMS Algorithm (learnwh)
The LMS algorithm, or Widrow-Hoff learning algorithm, is based on an approximate steepest descent
procedure. Here again, linear networks are trained on examples of correct behavior.

Widrow and Hoff had the insight that they could estimate the mean square error by using the squared
error at each iteration. If you take the partial derivative of the squared error with respect to the
weights and biases at the kth iteration, you have

∂e2(k)
∂w1, j

= 2e(k) ∂e(k)
∂w1, j

for j = 1,2,…,R and

∂e2(k)
∂b = 2e(k)∂e(k)

∂b

Next look at the partial derivative with respect to the error.

∂e(k)
∂w1, j

= ∂[t(k)− α(k)]
∂w1, j

= ∂
∂w1, j

[t(k)− (Wp(k) + b)]

or

∂e(k)
∂w1, j

= ∂
∂w1, j

t(k)− ∑
i = 1

R
w1, ipi(k) + b

Here pi(k) is the ith element of the input vector at the kth iteration.

This can be simplified to

∂e(k)
∂w1, j

= − p j(k)

30 Historical Neural Networks

30-20



and

∂e(k)
∂b = − 1

Finally, change the weight matrix, and the bias will be

2αe(k)p(k)

and

2αe(k)

These two equations form the basis of the Widrow-Hoff (LMS) learning algorithm.

These results can be extended to the case of multiple neurons, and written in matrix form as

W(k + 1) = W(k) + 2αe(k)pT(k)
b(k + 1) = b(k) + 2αe(k)

Here the error e and the bias b are vectors, and α is a learning rate. If α is large, learning occurs
quickly, but if it is too large it can lead to instability and errors might even increase. To ensure stable
learning, the learning rate must be less than the reciprocal of the largest eigenvalue of the
correlation matrix pTp of the input vectors.

You might want to read some of Chapter 10 of [HDB96 on page 33-2] for more information about
the LMS algorithm and its convergence.

Fortunately, there is a toolbox function, learnwh, that does all the calculation for you. It calculates
the change in weights as

dw = lr*e*p' 

and the bias change as

db = lr*e

The constant 2, shown a few lines above, has been absorbed into the code learning rate lr. The
function maxlinlr calculates this maximum stable learning rate lr as 0.999 * P'*P.

Type help learnwh and help maxlinlr for more details about these two functions.

Linear Classification (train)
Linear networks can be trained to perform linear classification with the function train. This function
applies each vector of a set of input vectors and calculates the network weight and bias increments
due to each of the inputs according to learnp. Then the network is adjusted with the sum of all these
corrections. Each pass through the input vectors is called an epoch. This contrasts with adapt which
adjusts weights for each input vector as it is presented.

Finally, train applies the inputs to the new network, calculates the outputs, compares them to the
associated targets, and calculates a mean square error. If the error goal is met, or if the maximum
number of epochs is reached, the training is stopped, and train returns the new network and a
training record. Otherwise train goes through another epoch. Fortunately, the LMS algorithm
converges when this procedure is executed.

 Linear Neural Networks

30-21



A simple problem illustrates this procedure. Consider the linear network introduced earlier.

Suppose you have the following classification problem.

p1 =
2
2

, t1 = 0 p2 =
1
−2

, t2 = 1 p3 =
−2
2

, t3 = 0 p4 =
−1
1

, t4 = 1

Here there are four input vectors, and you want a network that produces the output corresponding to
each input vector when that vector is presented.

Use train to get the weights and biases for a network that produces the correct targets for each
input vector. The initial weights and bias for the new network are 0 by default. Set the error goal to
0.1 rather than accept its default of 0.

P = [2 1 -2 -1;2 -2 2 1];
T = [0 1 0 1];
net = linearlayer;
net.trainParam.goal= 0.1;
net = train(net,P,T); 

The problem runs for 64 epochs, achieving a mean square error of 0.0999. The new weights and bias
are

weights = net.iw{1,1}
weights =
   -0.0615   -0.2194
bias = net.b(1)
bias =
    [0.5899]

You can simulate the new network as shown below.

A = net(P)
A =
    0.0282    0.9672    0.2741    0.4320

You can also calculate the error.

err = T - sim(net,P)
err =
   -0.0282    0.0328   -0.2741    0.5680

Note that the targets are not realized exactly. The problem would have run longer in an attempt to
get perfect results had a smaller error goal been chosen, but in this problem it is not possible to

30 Historical Neural Networks

30-22



obtain a goal of 0. The network is limited in its capability. See “Limitations and Cautions” on page 30-
23 for examples of various limitations.

This example program, “Training a Linear Neuron” on page 32-179, shows the training of a linear
neuron and plots the weight trajectory and error during training.

You might also try running the example program nnd10lc. It addresses a classic and historically
interesting problem, shows how a network can be trained to classify various patterns, and shows how
the trained network responds when noisy patterns are presented.

Limitations and Cautions
Linear networks can only learn linear relationships between input and output vectors. Thus, they
cannot find solutions to some problems. However, even if a perfect solution does not exist, the linear
network will minimize the sum of squared errors if the learning rate lr is sufficiently small. The
network will find as close a solution as is possible given the linear nature of the network's
architecture. This property holds because the error surface of a linear network is a multidimensional
parabola. Because parabolas have only one minimum, a gradient descent algorithm (such as the LMS
rule) must produce a solution at that minimum.

Linear networks have various other limitations. Some of them are discussed below.

Overdetermined Systems

Consider an overdetermined system. Suppose that you have a network to be trained with four one-
element input vectors and four targets. A perfect solution to wp + b = t for each of the inputs might
not exist, for there are four constraining equations, and only one weight and one bias to adjust.
However, the LMS rule still minimizes the error. You might try “Linear Fit of Nonlinear Problem” on
page 32-184 to see how this is done.

Underdetermined Systems

Consider a single linear neuron with one input. This time, in “Underdetermined Problem” on page 32-
189, train it on only one one-element input vector and its one-element target vector:

P = [1.0];
T = [0.5];

Note that while there is only one constraint arising from the single input/target pair, there are two
variables, the weight and the bias. Having more variables than constraints results in an
underdetermined problem with an infinite number of solutions. You can try “Underdetermined
Problem” on page 32-189 to explore this topic.

Linearly Dependent Vectors

Normally it is a straightforward job to determine whether or not a linear network can solve a
problem. Commonly, if a linear network has at least as many degrees of freedom (S *R + S = number
of weights and biases) as constraints (Q = pairs of input/target vectors), then the network can solve
the problem. This is true except when the input vectors are linearly dependent and they are applied
to a network without biases. In this case, as shown with the example “Linearly Dependent Problem”
on page 32-195, the network cannot solve the problem with zero error. You might want to try
“Linearly Dependent Problem” on page 32-195.

 Linear Neural Networks

30-23



Too Large a Learning Rate

You can always train a linear network with the Widrow-Hoff rule to find the minimum error solution
for its weights and biases, as long as the learning rate is small enough. Example “Too Large a
Learning Rate” on page 32-198 shows what happens when a neuron with one input and a bias is
trained with a learning rate larger than that recommended by maxlinlr. The network is trained with
two different learning rates to show the results of using too large a learning rate.

30 Historical Neural Networks

30-24



Neural Network Object Reference

• “Neural Network Object Properties” on page 31-2
• “Neural Network Subobject Properties” on page 31-11

31



Neural Network Object Properties
In this section...
“General” on page 31-2
“Architecture” on page 31-2
“Subobject Structures” on page 31-5
“Functions” on page 31-6
“Weight and Bias Values” on page 31-9

These properties define the basic features of a network. “Neural Network Subobject Properties” on
page 31-11 describes properties that define network details.

General
Here are the general properties of neural networks.

net.name

This property consists of a string defining the network name. Network creation functions, such as
feedforwardnet, define this appropriately. But it can be set to any string as desired.

net.userdata

This property provides a place for users to add custom information to a network object. Only one field
is predefined. It contains a secret message to all Deep Learning Toolbox users:

net.userdata.note

Architecture
These properties determine the number of network subobjects (which include inputs, layers, outputs,
targets, biases, and weights), and how they are connected.

net.numInputs

This property defines the number of inputs a network receives. It can be set to 0 or a positive integer.

Clarification

The number of network inputs and the size of a network input are not the same thing. The number of
inputs defines how many sets of vectors the network receives as input. The size of each input (i.e., the
number of elements in each input vector) is determined by the input size (net.inputs{i}.size).

Most networks have only one input, whose size is determined by the problem.

Side Effects

Any change to this property results in a change in the size of the matrix defining connections to
layers from inputs, (net.inputConnect) and the size of the cell array of input subobjects
(net.inputs).

31 Neural Network Object Reference

31-2



net.numLayers

This property defines the number of layers a network has. It can be set to 0 or a positive integer.

Side Effects

Any change to this property changes the size of each of these Boolean matrices that define
connections to and from layers:

net.biasConnect
net.inputConnect
net.layerConnect
net.outputConnect

and changes the size of each cell array of subobject structures whose size depends on the number of
layers:

net.biases
net.inputWeights
net.layerWeights
net.outputs

and also changes the size of each of the network's adjustable parameter's properties:

net.IW
net.LW
net.b

net.biasConnect

This property defines which layers have biases. It can be set to any N-by-1 matrix of Boolean values,
where Nl is the number of network layers (net.numLayers). The presence (or absence) of a bias to
the ith layer is indicated by a 1 (or 0) at

net.biasConnect(i)

Side Effects

Any change to this property alters the presence or absence of structures in the cell array of biases
(net.biases) and, in the presence or absence of vectors in the cell array, of bias vectors (net.b).

net.inputConnect

This property defines which layers have weights coming from inputs.

It can be set to any Nl × Ni matrix of Boolean values, where Nl is the number of network layers
(net.numLayers), and Ni is the number of network inputs (net.numInputs). The presence (or
absence) of a weight going to the ith layer from the jth input is indicated by a 1 (or 0) at
net.inputConnect(i,j).

Side Effects

Any change to this property alters the presence or absence of structures in the cell array of input
weight subobjects (net.inputWeights) and the presence or absence of matrices in the cell array of
input weight matrices (net.IW).

 Neural Network Object Properties

31-3



net.layerConnect

This property defines which layers have weights coming from other layers. It can be set to any Nl ×
Nl matrix of Boolean values, where Nl is the number of network layers (net.numLayers). The
presence (or absence) of a weight going to the ith layer from the jth layer is indicated by a 1 (or 0) at

net.layerConnect(i,j)

Side Effects

Any change to this property alters the presence or absence of structures in the cell array of layer
weight subobjects (net.layerWeights) and the presence or absence of matrices in the cell array of
layer weight matrices (net.LW).

net.outputConnect

This property defines which layers generate network outputs. It can be set to any 1 × Nl matrix of
Boolean values, where Nl is the number of network layers (net.numLayers). The presence (or
absence) of a network output from the ith layer is indicated by a 1 (or 0) at
net.outputConnect(i).

Side Effects

Any change to this property alters the number of network outputs (net.numOutputs) and the
presence or absence of structures in the cell array of output subobjects (net.outputs).

net.numOutputs (read only)

This property indicates how many outputs the network has. It is always equal to the number of 1s in
net.outputConnect.

net.numInputDelays (read only)

This property indicates the number of time steps of past inputs that must be supplied to simulate the
network. It is always set to the maximum delay value associated with any of the network's input
weights:

numInputDelays = 0;
for i=1:net.numLayers
  for j=1:net.numInputs
    if net.inputConnect(i,j)
      numInputDelays = max( ...
        [numInputDelays net.inputWeights{i,j}.delays]);
    end
  end
end

net.numLayerDelays (read only)

This property indicates the number of time steps of past layer outputs that must be supplied to
simulate the network. It is always set to the maximum delay value associated with any of the
network's layer weights:

numLayerDelays = 0;
for i=1:net.numLayers
  for j=1:net.numLayers
    if net.layerConnect(i,j)

31 Neural Network Object Reference

31-4



      numLayerDelays = max( ...
       [numLayerDelays net.layerWeights{i,j}.delays]);
    end
  end
end

net.numWeightElements (read only)

This property indicates the number of weight and bias values in the network. It is the sum of the
number of elements in the matrices stored in the two cell arrays:

net.IW
new.b

Subobject Structures
These properties consist of cell arrays of structures that define each of the network's inputs, layers,
outputs, targets, biases, and weights.

The properties for each kind of subobject are described in “Neural Network Subobject Properties” on
page 31-11.

net.inputs

This property holds structures of properties for each of the network's inputs. It is always an Ni × 1
cell array of input structures, where Ni is the number of network inputs (net.numInputs).

The structure defining the properties of the ith network input is located at

net.inputs{i}

If a neural network has only one input, then you can access net.inputs{1} without the cell array
notation as follows:

net.input

Input Properties

See “Inputs” on page 31-11 for descriptions of input properties.

net.layers

This property holds structures of properties for each of the network's layers. It is always an Nl × 1
cell array of layer structures, where Nl is the number of network layers (net.numLayers).

The structure defining the properties of the ith layer is located at net.layers{i}.

Layer Properties

See “Layers” on page 31-12 for descriptions of layer properties.

net.outputs

This property holds structures of properties for each of the network's outputs. It is always a 1 × Nl
cell array, where Nl is the number of network outputs (net.numOutputs).

 Neural Network Object Properties

31-5



The structure defining the properties of the output from the ith layer (or a null matrix []) is located
at net.outputs{i} if net.outputConnect(i) is 1 (or 0).

If a neural network has only one output at layer i, then you can access net.outputs{i} without the
cell array notation as follows:

net.output

Output Properties

See “Outputs” on page 31-16 for descriptions of output properties.

net.biases

This property holds structures of properties for each of the network's biases. It is always an Nl × 1
cell array, where Nl is the number of network layers (net.numLayers).

The structure defining the properties of the bias associated with the ith layer (or a null matrix []) is
located at net.biases{i} if net.biasConnect(i) is 1 (or 0).

Bias Properties

See “Biases” on page 31-18 for descriptions of bias properties.

net.inputWeights

This property holds structures of properties for each of the network's input weights. It is always an Nl
× Ni cell array, where Nl is the number of network layers (net.numLayers), and Ni is the number of
network inputs (net.numInputs).

The structure defining the properties of the weight going to the ith layer from the jth input (or a null
matrix []) is located at net.inputWeights{i,j} if net.inputConnect(i,j) is 1 (or 0).

Input Weight Properties

See “Input Weights” on page 31-19 for descriptions of input weight properties.

net.layerWeights

This property holds structures of properties for each of the network's layer weights. It is always an Nl
×Nl cell array, where Nl is the number of network layers (net.numLayers).

The structure defining the properties of the weight going to the ith layer from the jth layer (or a null
matrix []) is located at net.layerWeights{i,j} if net.layerConnect(i,j) is 1 (or 0).

Layer Weight Properties

See “Layer Weights” on page 31-20 for descriptions of layer weight properties.

Functions
These properties define the algorithms to use when a network is to adapt, is to be initialized, is to
have its performance measured, or is to be trained.

31 Neural Network Object Reference

31-6



net.adaptFcn

This property defines the function to be used when the network adapts. It can be set to the name of
any network adapt function. The network adapt function is used to perform adaption whenever
adapt is called.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

For a list of functions, type help nntrain.

Side Effects

Whenever this property is altered, the network's adaption parameters (net.adaptParam) are set to
contain the parameters and default values of the new function.

net.adaptParam

This property defines the parameters and values of the current adapt function. Call help on the
current adapt function to get a description of what each field means:

help(net.adaptFcn)

net.derivFcn

This property defines the derivative function to be used to calculate error gradients and Jacobians
when the network is trained using a supervised algorithm, such as backpropagation. You can set this
property to the name of any derivative function.

For a list of functions, type help nnderivative.

net.divideFcn

This property defines the data division function to be used when the network is trained using a
supervised algorithm, such as backpropagation. You can set this property to the name of a division
function.

For a list of functions, type help nndivision.

Side Effects

Whenever this property is altered, the network's adaption parameters (net.divideParam) are set to
contain the parameters and default values of the new function.

net.divideParam

This property defines the parameters and values of the current data-division function. To get a
description of what each field means, type the following command:

help(net.divideFcn)

net.divideMode

This property defines the target data dimensions which to divide up when the data division function is
called. Its default value is 'sample' for static networks and 'time' for dynamic networks. It may
also be set to 'sampletime' to divide targets by both sample and timestep, 'all' to divide up
targets by every scalar value, or 'none' to not divide up data at all (in which case all data is used for
training, none for validation or testing).

 Neural Network Object Properties

31-7



net.initFcn

This property defines the function used to initialize the network's weight matrices and bias vectors. .
The initialization function is used to initialize the network whenever init is called:

net = init(net)

Side Effects

Whenever this property is altered, the network's initialization parameters (net.initParam) are set
to contain the parameters and default values of the new function.

net.initParam

This property defines the parameters and values of the current initialization function. Call help on
the current initialization function to get a description of what each field means:

help(net.initFcn)

net.performFcn

This property defines the function used to measure the network’s performance. The performance
function is used to calculate network performance during training whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

For a list of functions, type help nnperformance.
Side Effects

Whenever this property is altered, the network's performance parameters (net.performParam) are
set to contain the parameters and default values of the new function.

net.performParam

This property defines the parameters and values of the current performance function. Call help on
the current performance function to get a description of what each field means:

help(net.performFcn)

net.plotFcns

This property consists of a row cell array of strings, defining the plot functions associated with a
network. The neural network training window, which is opened by the train function, shows a
button for each plotting function. Click the button during or after training to open the desired plot.

net.plotParams

This property consists of a row cell array of structures, defining the parameters and values of each
plot function in net.plotFcns. Call help on the each plot function to get a description of what each
field means:

help(net.plotFcns{i})

net.trainFcn

This property defines the function used to train the network. It can be set to the name of any of the
training functions, which is used to train the network whenever train is called.

31 Neural Network Object Reference

31-8



[net,tr] = train(NET,P,T,Pi,Ai)

For a list of functions, type help nntrain.

Side Effects

Whenever this property is altered, the network's training parameters (net.trainParam) are set to
contain the parameters and default values of the new function.

net.trainParam

This property defines the parameters and values of the current training function. Call help on the
current training function to get a description of what each field means:

help(net.trainFcn)

Weight and Bias Values
These properties define the network's adjustable parameters: its weight matrices and bias vectors.

net.IW

This property defines the weight matrices of weights going to layers from network inputs. It is always
an Nl × Ni cell array, where Nl is the number of network layers (net.numLayers), and Ni is the
number of network inputs (net.numInputs).

The weight matrix for the weight going to the ith layer from the jth input (or a null matrix []) is
located at net.IW{i,j} if net.inputConnect(i,j) is 1 (or 0).

The weight matrix has as many rows as the size of the layer it goes to (net.layers{i}.size). It
has as many columns as the product of the input size with the number of delays associated with the
weight:

net.inputs{j}.size * length(net.inputWeights{i,j}.delays)

The preprocessing function net.inputs{i}.processFcns is specified as
'removeconstantrows' by default in some networks. In this case, if the network input X contains m
rows where all row elements have the same value, the weight matrix has m less columns than the
above product. For more details about the network input X, see train.

These dimensions can also be obtained from the input weight properties:

net.inputWeights{i,j}.size

net.LW

This property defines the weight matrices of weights going to layers from other layers. It is always an
Nl × Nl cell array, where Nl is the number of network layers (net.numLayers).

The weight matrix for the weight going to the ith layer from the jth layer (or a null matrix []) is
located at net.LW{i,j} if net.layerConnect(i,j) is 1 (or 0).

The weight matrix has as many rows as the size of the layer it goes to (net.layers{i}.size). It
has as many columns as the product of the size of the layer it comes from with the number of delays
associated with the weight:

 Neural Network Object Properties

31-9



net.layers{j}.size * length(net.layerWeights{i,j}.delays)

These dimensions can also be obtained from the layer weight properties:

net.layerWeights{i,j}.size

net.b

This property defines the bias vectors for each layer with a bias. It is always an Nl × 1 cell array,
where Nl is the number of network layers (net.numLayers).

The bias vector for the ith layer (or a null matrix []) is located at net.b{i} if
net.biasConnect(i) is 1 (or 0).

The number of elements in the bias vector is always equal to the size of the layer it is associated with
(net.layers{i}.size).

This dimension can also be obtained from the bias properties:

net.biases{i}.size

See Also
feedforwardnet | patternnet | network

Related Examples
• “Neural Network Subobject Properties” on page 31-11
• “Fit Data Using the Neural Net Fitting App” on page 32-2
• “Body Fat Estimation” on page 32-36

31 Neural Network Object Reference

31-10



Neural Network Subobject Properties
These properties define the details of a network's inputs, layers, outputs, targets, biases, and weights.

In this section...
“Inputs” on page 31-11
“Layers” on page 31-12
“Outputs” on page 31-16
“Biases” on page 31-18
“Input Weights” on page 31-19
“Layer Weights” on page 31-20

Inputs
These properties define the details of each ith network input.

net.inputs{1}.name

This property consists of a string defining the input name. Network creation functions, such as
feedforwardnet, define this appropriately. But it can be set to any string as desired.

net.inputs{i}.feedbackInput (read only)

If this network is associated with an open-loop feedback output, then this property will indicate the
index of that output. Otherwise it will be an empty matrix.

net.inputs{i}.processFcns

This property defines a row cell array of processing function names to be used by ith network input.
The processing functions are applied to input values before the network uses them.
Side Effects

Whenever this property is altered, the input processParams are set to default values for the given
processing functions, processSettings, processedSize, and processedRange are defined by
applying the process functions and parameters to exampleInput.

For a list of processing functions, type help nnprocess.

net.inputs{i}.processParams

This property holds a row cell array of processing function parameters to be used by ith network
input. The processing parameters are applied by the processing functions to input values before the
network uses them.
Side Effects

Whenever this property is altered, the input processSettings, processedSize, and
processedRange are defined by applying the process functions and parameters to exampleInput.

net.inputs{i}.processSettings (read only)

This property holds a row cell array of processing function settings to be used by ith network input.
The processing settings are found by applying the processing functions and parameters to

 Neural Network Subobject Properties

31-11



exampleInput and then used to provide consistent results to new input values before the network
uses them.

net.inputs{i}.processedRange (read only)

This property defines the range of exampleInput values after they have been processed with
processingFcns and processingParams.

net.inputs{i}.processedSize (read only)

This property defines the number of rows in the exampleInput values after they have been
processed with processingFcns and processingParams.

net.inputs{i}.range

This property defines the range of each element of the ith network input.

It can be set to any Ri × 2 matrix, where Ri is the number of elements in the input
(net.inputs{i}.size), and each element in column 1 is less than the element next to it in column
2.

Each jth row defines the minimum and maximum values of the jth input element, in that order:

net.inputs{i}(j,:)

Uses

Some initialization functions use input ranges to find appropriate initial values for input weight
matrices.

Side Effects

Whenever the number of rows in this property is altered, the input size, processedSize, and
processedRange change to remain consistent. The sizes of any weights coming from this input and
the dimensions of the weight matrices also change.

net.inputs{i}.size

This property defines the number of elements in the ith network input. It can be set to 0 or a positive
integer.

Side Effects

Whenever this property is altered, the input range, processedRange, and processedSize are
updated. Any associated input weights change size accordingly.

net.inputs{i}.userdata

This property provides a place for users to add custom information to the ith network input.

Layers
These properties define the details of each ith network layer.

31 Neural Network Object Reference

31-12



net.layers{i}.name

This property consists of a string defining the layer name. Network creation functions, such as
feedforwardnet, define this appropriately. But it can be set to any string as desired.

net.layers{i}.dimensions

This property defines the physical dimensions of the ith layer's neurons. Being able to arrange a
layer's neurons in a multidimensional manner is important for self-organizing maps.

It can be set to any row vector of 0 or positive integer elements, where the product of all the
elements becomes the number of neurons in the layer (net.layers{i}.size).

Uses

Layer dimensions are used to calculate the neuron positions within the layer
(net.layers{i}.positions) using the layer's topology function
(net.layers{i}.topologyFcn).

Side Effects

Whenever this property is altered, the layer's size (net.layers{i}.size) changes to remain
consistent. The layer's neuron positions (net.layers{i}.positions) and the distances between
the neurons (net.layers{i}.distances) are also updated.

net.layers{i}.distanceFcn

This property defines which of the distance functions is used to calculate distances between
neurons in the ith layer from the neuron positions. Neuron distances are used by self-organizing
maps. It can be set to the name of any distance function.

For a list of functions, type help nndistance.

Side Effects

Whenever this property is altered, the distances between the layer's neurons
(net.layers{i}.distances) are updated.

net.layers{i}.distances (read only)

This property defines the distances between neurons in the ith layer. These distances are used by self-
organizing maps:

net.layers{i}.distances

It is always set to the result of applying the layer's distance function
(net.layers{i}.distanceFcn) to the positions of the layer's neurons
(net.layers{i}.positions).

net.layers{i}.initFcn

This property defines which of the layer initialization functions are used to initialize the ith layer, if
the network initialization function (net.initFcn) is initlay. If the network initialization is set to
initlay, then the function indicated by this property is used to initialize the layer's weights and
biases.

 Neural Network Subobject Properties

31-13



net.layers{i}.netInputFcn

This property defines which of the net input functions is used to calculate the ith layer's net input,
given the layer's weighted inputs and bias during simulating and training.

For a list of functions, type help nnnetinput.

net.layers{i}.netInputParam

This property defines the parameters of the layer's net input function. Call help on the current net
input function to get a description of each field:

help(net.layers{i}.netInputFcn)

net.layers{i}.positions (read only)

This property defines the positions of neurons in the ith layer. These positions are used by self-
organizing maps.

It is always set to the result of applying the layer's topology function
(net.layers{i}.topologyFcn) to the positions of the layer's dimensions
(net.layers{i}.dimensions).

Plotting

Use plotsom to plot the positions of a layer's neurons.

For instance, if the first-layer neurons of a network are arranged with dimensions
(net.layers{1}.dimensions) of [4 5], and the topology function
(net.layers{1}.topologyFcn) is hextop, the neurons' positions can be plotted as follows:

plotsom(net.layers{1}.positions)

net.layers{i}.range (read only)

This property defines the output range of each neuron of the ith layer.

31 Neural Network Object Reference

31-14



It is set to an Si × 2 matrix, where Si is the number of neurons in the layer (net.layers{i}.size),
and each element in column 1 is less than the element next to it in column 2.

Each jth row defines the minimum and maximum output values of the layer's transfer function
net.layers{i}.transferFcn.

net.layers{i}.size

This property defines the number of neurons in the ith layer. It can be set to 0 or a positive integer.

Side Effects

Whenever this property is altered, the sizes of any input weights going to the layer
(net.inputWeights{i,:}.size), any layer weights going to the layer
(net.layerWeights{i,:}.size) or coming from the layer (net.layerWeights{i,:}.size),
and the layer's bias (net.biases{i}.size), change.

The dimensions of the corresponding weight matrices (net.IW{i,:}, net.LW{i,:},
net.LW{:,i}), and biases (net.b{i}) also change.

Changing this property also changes the size of the layer's output (net.outputs{i}.size) and
target (net.targets{i}.size) if they exist.

Finally, when this property is altered, the dimensions of the layer's neurons
(net.layers{i}.dimension) are set to the same value. (This results in a one-dimensional
arrangement of neurons. If another arrangement is required, set the dimensions property directly
instead of using size.)

net.layers{i}.topologyFcn

This property defines which of the topology functions are used to calculate the ith layer's neuron
positions (net.layers{i}.positions) from the layer's dimensions
(net.layers{i}.dimensions).

For a list of functions, type help nntopology.

Side Effects

Whenever this property is altered, the positions of the layer's neurons
(net.layers{i}.positions) are updated.

Use plotsom to plot the positions of the layer neurons. For instance, if the first-layer neurons of a
network are arranged with dimensions (net.layers{1}.dimensions) of [8 10] and the topology
function (net.layers{1}.topologyFcn) is randtop, the neuron positions are arranged to
resemble the following plot:

plotsom(net.layers{1}.positions)

 Neural Network Subobject Properties

31-15



net.layers{i}.transferFcn

This function defines which of the transfer functions is used to calculate the ith layer's output, given
the layer's net input, during simulation and training.

For a list of functions, type help nntransfer.

net.layers{i}.transferParam

This property defines the parameters of the layer's transfer function. Call help on the current
transfer function to get a description of what each field means:

help(net.layers{i}.transferFcn)

net.layers{i}.userdata

This property provides a place for users to add custom information to the ith network layer.

Outputs
net.outputs{i}.name

This property consists of a string defining the output name. Network creation functions, such as
feedforwardnet, define this appropriately. But it can be set to any string as desired.

net.outputs{i}.feedbackInput

If the output implements open-loop feedback (net.outputs{i}.feedbackMode = 'open'), then
this property indicates the index of the associated feedback input, otherwise it will be an empty
matrix.

net.outputs{i}.feedbackDelay

This property defines the timestep difference between this output and network inputs. Input-to-output
network delays can be removed and added with removedelay and adddelay functions resulting in
this property being incremented or decremented respectively. The difference in timing between

31 Neural Network Object Reference

31-16



inputs and outputs is used by preparets to properly format simulation and training data, and used
by closeloop to add the correct number of delays when closing an open-loop output, and openloop
to remove delays when opening a closed loop.

net.outputs{i}.feedbackMode

This property is set to the string 'none' for non-feedback outputs. For feedback outputs it can either
be set to 'open' or 'closed'. If it is set to 'open', then the output will be associated with a
feedback input, with the property feedbackInput indicating the input's index.

net.outputs{i}.processFcns

This property defines a row cell array of processing function names to be used by the ith network
output. The processing functions are applied to target values before the network uses them, and
applied in reverse to layer output values before being returned as network output values.

Side Effects

When you change this property, you also affect the following settings: the output parameters
processParams are modified to the default values of the specified processing functions;
processSettings, processedSize, and processedRange are defined using the results of
applying the process functions and parameters to exampleOutput; the ith layer size is updated to
match the processedSize.

For a list of functions, type help nnprocess.

net.outputs{i}.processParams

This property holds a row cell array of processing function parameters to be used by ith network
output on target values. The processing parameters are applied by the processing functions to input
values before the network uses them.

Side Effects

Whenever this property is altered, the output processSettings, processedSize and
processedRange are defined by applying the process functions and parameters to exampleOutput.
The ith layer's size is also updated to match processedSize.

net.outputs{i}.processSettings (read only)

This property holds a row cell array of processing function settings to be used by ith network output.
The processing settings are found by applying the processing functions and parameters to
exampleOutput and then used to provide consistent results to new target values before the network
uses them. The processing settings are also applied in reverse to layer output values before being
returned by the network.

net.outputs{i}.processedRange (read only)

This property defines the range of exampleOutput values after they have been processed with
processingFcns and processingParams.

net.outputs{i}.processedSize (read only)

This property defines the number of rows in the exampleOutput values after they have been
processed with processingFcns and processingParams.

 Neural Network Subobject Properties

31-17



net.outputs{i}.size (read only)

This property defines the number of elements in the ith layer's output. It is always set to the size of
the ith layer (net.layers{i}.size).

net.outputs{i}.userdata

This property provides a place for users to add custom information to the ith layer's output.

Biases
net.biases{i}.initFcn

This property defines the weight and bias initialization functions used to set the ith layer's bias vector
(net.b{i}) if the network initialization function is initlay and the ith layer's initialization function
is initwb.

net.biases{i}.learn

This property defines whether the ith bias vector is to be altered during training and adaption. It can
be set to 0 or 1.

It enables or disables the bias's learning during calls to adapt and train.

net.biases{i}.learnFcn

This property defines which of the learning functions is used to update the ith layer's bias vector
(net.b{i}) during training, if the network training function is trainb, trainc, or trainr, or
during adaption, if the network adapt function is trains.

For a list of functions, type help nnlearn.

Side Effects

Whenever this property is altered, the biases learning parameters (net.biases{i}.learnParam)
are set to contain the fields and default values of the new function.

net.biases{i}.learnParam

This property defines the learning parameters and values for the current learning function of the ith
layer's bias. The fields of this property depend on the current learning function. Call help on the
current learning function to get a description of what each field means.

net.biases{i}.size (read only)

This property defines the size of the ith layer's bias vector. It is always set to the size of the ith layer
(net.layers{i}.size).

net.biases{i}.userdata

This property provides a place for users to add custom information to the ith layer's bias.

31 Neural Network Object Reference

31-18



Input Weights
net.inputWeights{i,j}.delays

This property defines a tapped delay line between the jth input and its weight to the ith layer. It must
be set to a row vector of increasing values. The elements must be either 0 or positive integers.

Side Effects

Whenever this property is altered, the weight's size (net.inputWeights{i,j}.size) and the
dimensions of its weight matrix (net.IW{i,j}) are updated.

net.inputWeights{i,j}.initFcn

This property defines which of the Weight and Bias Initialization Functions is used to initialize the
weight matrix (net.IW{i,j}) going to the ith layer from the jth input, if the network initialization
function is initlay, and the ith layer's initialization function is initwb. This function can be set to
the name of any weight initialization function.

net.inputWeights{i,j}.initSettings (read only)

This property is set to values useful for initializing the weight as part of the configuration process
that occurs automatically the first time a network is trained, or when the function configure is
called on a network directly.

net.inputWeights{i,j}.learn

This property defines whether the weight matrix to the ith layer from the jth input is to be altered
during training and adaption. It can be set to 0 or 1.

net.inputWeights{i,j}.learnFcn

This property defines which of the learning functions is used to update the weight matrix
(net.IW{i,j}) going to the ith layer from the jth input during training, if the network training
function is trainb, trainc, or trainr, or during adaption, if the network adapt function is trains.
It can be set to the name of any weight learning function.

For a list of functions, type help nnlearn.

net.inputWeights{i,j}.learnParam

This property defines the learning parameters and values for the current learning function of the ith
layer's weight coming from the jth input.

The fields of this property depend on the current learning function
(net.inputWeights{i,j}.learnFcn). Evaluate the above reference to see the fields of the
current learning function.

Call help on the current learning function to get a description of what each field means.

net.inputWeights{i,j}.size (read only)

This property defines the dimensions of the ith layer's weight matrix from the jth network input. It is
always set to a two-element row vector indicating the number of rows and columns of the associated
weight matrix (net.IW{i,j}). The first element is equal to the size of the ith layer

 Neural Network Subobject Properties

31-19



(net.layers{i}.size). The second element is equal to the product of the length of the weight's
delay vectors and the size of the jth input:

length(net.inputWeights{i,j}.delays) * net.inputs{j}.size

net.inputWeights{i,j}.userdata

This property provides a place for users to add custom information to the (i,j)th input weight.

net.inputWeights{i,j}.weightFcn

This property defines which of the weight functions is used to apply the ith layer's weight from the jth
input to that input. It can be set to the name of any weight function. The weight function is used to
transform layer inputs during simulation and training.

For a list of functions, type help nnweight.

net.inputWeights{i,j}.weightParam

This property defines the parameters of the layer's net input function. Call help on the current net
input function to get a description of each field.

Layer Weights
net.layerWeights{i,j}.delays

This property defines a tapped delay line between the jth layer and its weight to the ith layer. It must
be set to a row vector of increasing values. The elements must be either 0 or positive integers.

net.layerWeights{i,j}.initFcn

This property defines which of the weight and bias initialization functions is used to initialize the
weight matrix (net.LW{i,j}) going to the ith layer from the jth layer, if the network initialization
function is initlay, and the ith layer's initialization function is initwb. This function can be set to
the name of any weight initialization function.

net.layerWeights{i,j}.initSettings (read only)

This property is set to values useful for initializing the weight as part of the configuration process
that occurs automatically the first time a network is trained, or when the function configure is
called on a network directly.

net.layerWeights{i,j}.learn

This property defines whether the weight matrix to the ith layer from the jth layer is to be altered
during training and adaption. It can be set to 0 or 1.

net.layerWeights{i,j}.learnFcn

This property defines which of the learning functions is used to update the weight matrix
(net.LW{i,j}) going to the ith layer from the jth layer during training, if the network training
function is trainb, trainc, or trainr, or during adaption, if the network adapt function is trains.
It can be set to the name of any weight learning function.

For a list of functions, type help nnlearn.

31 Neural Network Object Reference

31-20



net.layerWeights{i,j}.learnParam

This property defines the learning parameters fields and values for the current learning function of
the ith layer's weight coming from the jth layer. The fields of this property depend on the current
learning function. Call help on the current net input function to get a description of each field.

net.layerWeights{i,j}.size (read only)

This property defines the dimensions of the ith layer's weight matrix from the jth layer. It is always
set to a two-element row vector indicating the number of rows and columns of the associated weight
matrix (net.LW{i,j}). The first element is equal to the size of the ith layer
(net.layers{i}.size). The second element is equal to the product of the length of the weight's
delay vectors and the size of the jth layer.

net.layerWeights{i,j}.userdata

This property provides a place for users to add custom information to the (i,j)th layer weight.

net.layerWeights{i,j}.weightFcn

This property defines which of the weight functions is used to apply the ith layer's weight from the jth
layer to that layer's output. It can be set to the name of any weight function. The weight function is
used to transform layer inputs when the network is simulated.

For a list of functions, type help nnweight.

net.layerWeights{i,j}.weightParam

This property defines the parameters of the layer's net input function. Call help on the current net
input function to get a description of each field.

 Neural Network Subobject Properties

31-21





Function Approximation, Clustering, and
Control Examples

32



Fit Data Using the Neural Net Fitting App

This example shows how to train a shallow neural network to fit data using the Neural Net Fitting
app.

Open the Neural Net Fitting app using nftool.

nftool

Select Data

The Neural Net Fitting app has example data to help you get started training a neural network.

To import example body fat data, select Import > Import Body Fat Data Set. You can use this data
set to train a neural network to estimate the body fat of someone from various measurements. If you
import your own data from file or the workspace, you must specify the predictors and responses, and
whether the observations are in rows or columns.

32 Function Approximation, Clustering, and Control Examples

32-2



Information about the imported data appears in the Model Summary. This data set contains 252
observations, each with 13 features. The responses contain the body fat percentage for each
observation.

Split the data into training, validation, and test sets. Keep the default settings. The data is split into:

• 70% for training.
• 15% to validate that the network is generalizing and to stop training before overfitting.
• 15% to independently test network generalization.

For more information on data division, see “Divide Data for Optimal Neural Network Training” on
page 23-9.

 Fit Data Using the Neural Net Fitting App

32-3



Create Network

The network is a two-layer feedforward network with a sigmoid transfer function in the hidden layer
and a linear transfer function in the output layer. The Layer size value defines the number of hidden
neurons. Keep the default layer size, 10. You can see the network architecture in the Network pane.
The network plot updates to reflect the input data. In this example, the data has 13 inputs (features)
and one output.

Train Network

To train the network, select Train > Train with Levenberg-Marquardt. This is the default training
algorithm and the same as clicking Train.

32 Function Approximation, Clustering, and Control Examples

32-4



Training with Levenberg-Marquardt (trainlm) is recommended for most problems. For noisy or
small problems, Bayesian Regularization (trainbr) can obtain a better solution, at the cost of taking
longer. For large problems, Scaled Conjugate Gradient (trainscg) is recommended as it uses
gradient calculations which are more memory efficient than the Jacobian calculations the other two
algorithms use.

In the Training pane, you can see the training progress. Training continues until one of the stopping
criteria is met. In this example, training continues until the validation error increases consecutively
for six iterations ("Met validation criterion").

Analyze Results

The Model Summary contains information about the training algorithm and the training results for
each data set.

 Fit Data Using the Neural Net Fitting App

32-5



You can further analyze the results by generating plots. To plot the linear regression, in the Plots
section, click Regression. The regression plot displays the network predictions (output) with respect
to responses (target) for the training, validation, and test sets.

32 Function Approximation, Clustering, and Control Examples

32-6



For a perfect fit, the data should fall along a 45 degree line, where the network outputs are equal to
the responses. For this problem, the fit is reasonably good for all of the data sets. If you require more
accurate results, you can retrain the network by clicking Train again. Each training will have
different initial weights and biases of the network, and can produce an improved network after
retraining.

View the error histogram to obtain additional verification of network performance. In the Plots
section, click Error Histogram.

 Fit Data Using the Neural Net Fitting App

32-7



The blue bars represent training data, the green bars represent validation data, and the red bars
represent testing data. The histogram provides an indication of outliers, which are data points where
the fit is significantly worse than most of the data. It is a good idea to check the outliers to determine
if the data is poor, or if those data points are different than the rest of the data set. If the outliers are
valid data points, but are unlike the rest of the data, then the network is extrapolating for these
points. You should collect more data that looks like the outlier points and retrain the network.

If you are unhappy with the network performance, you can do one of the following:

• Train the network again.
• Increase the number of hidden neurons.
• Use a larger training data set.

If performance on the training set is good but the test set performance is poor, this could indicate the
model is overfitting. Reducing the number of neurons can reduce the overfitting.

32 Function Approximation, Clustering, and Control Examples

32-8



You can also evaluate the network performance on an additional test set. To load additional test data
to evaluate the network with, in the Test section, click Test. The Model Summary displays the
additional test results. You can also generate plots to analyze the additional test data results.

Generate Code

Select Generate Code > Generate Simple Training Script to create MATLAB code to reproduce
the previous steps from the command line. Creating MATLAB code can be helpful if you want to learn
how to use the command line functionality of the toolbox to customize the training process. In “Fit
Data Using Command-Line Functions”, you will investigate the generated scripts in more detail.

Export Network

You can export your trained network to the workspace or Simulink®. You can also deploy the network
with MATLAB Compiler™ tools and other MATLAB code generation tools. To export your trained
network and results, select Export Model > Export to Workspace.

See Also
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition | Neural Net
Clustering | trainlm | fitnet

 Fit Data Using the Neural Net Fitting App

32-9



Related Examples
• “Fit Data with a Shallow Neural Network”
• “Pattern Recognition with a Shallow Neural Network”
• “Cluster Data with a Self-Organizing Map”
• “Shallow Neural Network Time-Series Prediction and Modeling”

32 Function Approximation, Clustering, and Control Examples

32-10



Pattern Recognition Using the Neural Net Pattern Recognition
App

This example shows how to train a shallow neural network to classify patterns using the Neural Net
Pattern Recognition app.

Open the Neural Net Pattern Recognition app using nprtool.

nprtool

Select Data

The Neural Net Pattern Recognition app has example data to help you get started training a
neural network.

To import example glass classification data, select Import > Import Glass Data Set. You can use
this data set to train a neural network to classify glass as window or non-window, using properties of
the glass chemistry. If you import your own data from file or the workspace, you must specify the
predictors and responses, and whether the observations are in rows or columns.

 Pattern Recognition Using the Neural Net Pattern Recognition App

32-11



Information about the imported data appears in the Model Summary. This data set contains 214
observations, each with 9 features. Each observation is classified into one of two classes: window or
non-window.

Split the data into training, validation, and test sets. Keep the default settings. The data is split into:

• 70% for training.
• 15% to validate that the network is generalizing and to stop training before overfitting.
• 15% to independently test network generalization.

For more information on data division, see “Divide Data for Optimal Neural Network Training” on
page 23-9.

Create Network

The network is a two-layer feedforward network with a sigmoid transfer function in the hidden layer
and a softmax transfer function in the output layer. The size of the hidden layer corresponds to the

32 Function Approximation, Clustering, and Control Examples

32-12



number of hidden neurons. The default layer size is 10. You can see the network architecture in the
Network pane. The number of output neurons is set to 2, which is equal to the number of classes
specified by the response data.

Train Network

To train the network, click Train.

In the Training pane, you can see the training progress. Training continues until one of the stopping
criteria is met. In this example, training continues until the validation error increases consecutively
for six iterations ("Met validation criterion").

 Pattern Recognition Using the Neural Net Pattern Recognition App

32-13



Analyze Results

The Model Summary contains information about the training algorithm and the training results for
each data set.

You can further analyze the results by generating plots. To plot the confusion matrices, in the Plots
section, click Confusion Matrix. The network outputs are very accurate, as you can see by the high
numbers of correct classifications in the green squares (diagonal) and the low numbers of incorrect
classifications in the red squares (off-diagonal).

32 Function Approximation, Clustering, and Control Examples

32-14



View the ROC curve to obtain additional verification of network performance. In the Plots section,
click ROC Curve.

 Pattern Recognition Using the Neural Net Pattern Recognition App

32-15



The colored lines in each axis represent the ROC curves. The ROC curve is a plot of the true positive
rate (sensitivity) versus the false positive rate (1 - specificity) as the threshold is varied. A perfect test
would show points in the upper-left corner, with 100% sensitivity and 100% specificity. For this
problem, the network performs very well.

If you are unhappy with the network performance, you can do one of the following:

• Train the network again.
• Increase the number of hidden neurons.
• Use a larger training data set.

If performance on the training set is good but the test set performance is poor, this could indicate the
model is overfitting. Reducing the number of neurons can reduce the overfitting.

32 Function Approximation, Clustering, and Control Examples

32-16



You can also evaluate the network performance on an additional test set. To load additional test data
to evaluate the network with, in the Test section, click Test. The Model Summary displays the
additional test results. You can also generate plots to analyze the additional test results.

Generate Code

Select Generate Code > Generate Simple Training Script to create MATLAB code to reproduce
the previous steps from the command line. Creating MATLAB code can be helpful if you want to learn
how to use the command line functionality of the toolbox to customize the training process. In
“Pattern Recognition Using Command-Line Functions”, you will investigate the generated scripts in
more detail.

Export Network

You can export your trained network to the workspace or Simulink®. You can also deploy the network
with MATLAB Compiler™ and other MATLAB code generation tools. To export your trained network
and results, select Export Model > Export to Workspace.

See Also
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition | Neural Net
Clustering | trainscg

 Pattern Recognition Using the Neural Net Pattern Recognition App

32-17



Related Examples
• “Pattern Recognition with a Shallow Neural Network”
• “Fit Data with a Shallow Neural Network”
• “Cluster Data with a Self-Organizing Map”
• “Shallow Neural Network Time-Series Prediction and Modeling”

32 Function Approximation, Clustering, and Control Examples

32-18



Cluster Data Using the Neural Net Clustering App

This example shows how to train a shallow neural network to cluster data using the Neural Net
Clustering app.

Open the Neural Net Clustering app using nctool.

nctool

Select Data

The Neural Net Clustering app has example data to help you get started training a neural network.

To import the example iris flower clustering data, select Import > Import Iris Flowers Data Set. If
you import your own data from file or the workspace, you must specify the predictors and whether
the observations are in rows or columns.

 Cluster Data Using the Neural Net Clustering App

32-19



Information about the imported data appears in the Model Summary. This data set contains 150
observations, each with four features.

Create Network

For clustering problems, the self-organizing feature map (SOM) is the most commonly used network.
This network has one layer, with neurons organized in a grid. Self-organizing maps learn to cluster
data based on similarity. For more information on the SOM, see “Cluster with Self-Organizing Map
Neural Network” on page 27-8.

To create the network, specify the map size, this corresponds to the number of rows and columns in
the grid. For this example, set the Map size value to 10, this corresponds to a grid with 10 rows and
10 columns. The total number of neurons is equal to the number of points in the grid, in this example,
the map has 100 neurons. You can see the network architecture in the Network pane.

32 Function Approximation, Clustering, and Control Examples

32-20



Train Network

To train the network, click Train. In the Training pane, you can see the training progress. Training
continues until one of the stopping criteria is met. In this example, training continues until the
maximum number of epochs is reached.

 Cluster Data Using the Neural Net Clustering App

32-21



Analyze Results

To analyze the training results, generate plots. For SOM training, the weight vector associated with
each neuron moves to become the center of a cluster of input vectors. In addition, neurons that are
adjacent to each other in the topology should also move close to each other in the input space,
therefore it is possible to visualize a high-dimensional inputs space in the two dimensions of the
network topology. The default topology of the SOM is hexagonal.

To plot the SOM Sample Hits, in the Plots section, click Sample Hits. This figure shows the neuron
locations in the topology, and indicates how many of the observations are associated with each of the
neurons (cluster centers). The topology is a 10-by-10 grid, so there are 100 neurons. The maximum
number of hits associated with any neuron is 5. Thus, there are 5 input vectors in that cluster.

Plot the weight planes (also referred to as component planes). In the Plots section, click Weight
Planes. This figure shows a weight plane for each element of the input features (four, in this
example). The plot shows the weights that connect each input to each of the neurons, with darker

32 Function Approximation, Clustering, and Control Examples

32-22



colors representing larger weights. If the connection patterns of two features are very similar, you
can assume that the features are highly correlated.

If you are unhappy with the network performance, you can do one of the following:

• Train the network again. Each training will have different initial weights and biases of the
network, and can produce an improved network after retraining.

• Increase the number of neurons by increasing the map size.
• Use a larger training data set.

You can also evaluate the network performance on an additional test set. To load additional test data
to evaluate the network with, in the Test section, click Test. Generate plots to analyze the additional
test results.

Generate Code

Select Generate Code > Generate Simple Training Script to create MATLAB code to reproduce
the previous steps from the command line. Creating MATLAB code can be helpful if you want to learn

 Cluster Data Using the Neural Net Clustering App

32-23



how to use the command-line functionality of the toolbox to customize the training process. In
“Cluster Data Using Command-Line Functions”, you will investigate the generated scripts in more
detail.

Export Network

You can export your trained network to the workspace or Simulink®. You can also deploy the network
with MATLAB Compiler™ tools and other MATLAB code generation tools. To export your trained
network and results, select Export Model > Export to Workspace.

See Also
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition | Neural Net
Clustering | train

Related Examples
• “Cluster Data with a Self-Organizing Map”
• “Fit Data with a Shallow Neural Network”
• “Pattern Recognition with a Shallow Neural Network”

32 Function Approximation, Clustering, and Control Examples

32-24



• “Shallow Neural Network Time-Series Prediction and Modeling”

 Cluster Data Using the Neural Net Clustering App

32-25



Fit Time Series Data Using the Neural Net Time Series App

This example shows how to train a shallow neural network to fit time series data using the Neural
Net Time Series app.

Open the Neural Net Time Series app using ntstool.

ntstool

Select Network

You can use the Neural Net Time Series app to solve three different kinds of time series problems.

• In the first type of time series problem, you would like to predict future values of a time series y t
from past values of that time series and past values of a second time series x t . This form of
prediction is called nonlinear autoregressive network with exogenous (external) input, or NARX.

• In the second type of time series problem, there is only one series involved. The future values of a
time series y t  are predicted only from past values of that series. This form of prediction is called
nonlinear autoregressive, or NAR.

• The third time series problem is similar to the first type, in that two series are involved, an input
series (predictors) x t  and an output series (responses) y t . Here you want to predict values of
y t  from previous values of x t , but without knowledge of previous values of y t .

For this example, use a NARX network. Click Select Network > NARX Network.

Select Data

The Neural Net Time Series app has example data to help you get started training a neural
network.

To import example pH neutralization process data, select Import > More Example Data Sets >
Import pH Neutralization Data Set. You can use this data set to train a neural network to predict
the pH of a solution using acid and base solution flow. If you import your own data from file or the
workspace, you must specify the predictors and responses.

32 Function Approximation, Clustering, and Control Examples

32-26



Information about the imported data appears in the Model Summary. This data set contains 2001
time steps. The predictors have two features (acid and base solution flow) and the responses have a
single feature (solution pH).

Split the data into training, validation, and test sets. Keep the default settings. The data is split into:

• 70% for training.
• 15% to validate that the network is generalizing and to stop training before overfitting.
• 15% to independently test network generalization.

For more information on data division, see “Divide Data for Optimal Neural Network Training” on
page 23-9.

Create Network

The standard NARX network is a two-layer feedforward network, with a sigmoid transfer function in
the hidden layer and a linear transfer function in the output layer. This network also uses tapped
delay lines to store previous values of the x t  and y t  sequences. Note that the output of the NARX
network, y t , is fed back to the input of the network (through delays), since y t  is a function of
y t–1 , y t–2 , . . . , y t–d . However, for efficient training this feedback loop can be opened.

Because the true output is available during the training of the network, you can use the open-loop
architecture shown below, in which the true output is used instead of feeding back the estimated
output. This has two advantages. The first is that the input to the feedforward network is more
accurate. The second is that the resulting network has a purely feedforward architecture, and
therefore a more efficient algorithm can be used for training. This network is discussed in more detail
in “Design Time Series NARX Feedback Neural Networks” on page 24-18.

The Layer size value defines the number of hidden neurons. Keep the default layer size, 10. Change
the Time delay value to 4. You might want to adjust these numbers if the network training
performance is poor.

You can see the network architecture in the Network pane.

 Fit Time Series Data Using the Neural Net Time Series App

32-27



Train Network

To train the network, select Train > Train with Levenberg-Marquardt. This is the default training
algorithm and the same as clicking Train.

32 Function Approximation, Clustering, and Control Examples

32-28



Training with Levenberg-Marquardt (trainlm) is recommended for most problems. For noisy or
small problems, Bayesian Regularization (trainbr) can obtain a better solution, at the cost of taking
longer. For large problems, Scaled Conjugate Gradient (trainscg) is recommended as it uses
gradient calculations which are more memory efficient than the Jacobian calculations the other two
algorithms use.

In the Training pane, you can see the training progress. Training continues until one of the stopping
criteria is met. In this example, training continues until the validation error increases consecutively
for six iterations ("Met validation criterion").

Analyze Results

The Model Summary contains information about the training algorithm and the training results for
each data set.

 Fit Time Series Data Using the Neural Net Time Series App

32-29



You can further analyze the results by generating plots. To plot the error autocorrelation, in the Plots
section, click Error Autocorrelation. The autocorrelation plot describes how the prediction errors
are related in time. For a perfect prediction model, there should only be one nonzero value of the
autocorrelation function, and it should occur at zero lag (this is the mean square error). This would
mean that the prediction errors were completely uncorrelated with each other (white noise). If there
was significant correlation in the prediction errors, then it should be possible to improve the
prediction - perhaps by increasing the number of delays in the tapped delay lines. In this case, the
correlations, except for the one at zero lag, fall approximately within the 95% confidence limits
around zero, so the model seems to be adequate. If even more accurate results were required, you
could retrain the network. This will change the initial weights and biases of the network, and may
produce an improved network after retraining.

32 Function Approximation, Clustering, and Control Examples

32-30



View the input-error cross-correlation plot to obtain additional verification of network performance.
In the Plots section, click Input-Error Correlation. The input-error cross-correlation plot illustrates
how the errors are correlated with the input sequence x t . For a perfect prediction model, all of the
correlations should be zero. If the input is correlated with the error, then it should be possible to
improve the prediction, perhaps by increasing the number of delays in the tapped delay lines. In this
case, most of the correlations fall within the confidence bounds around zero.

 Fit Time Series Data Using the Neural Net Time Series App

32-31



In the Plots section, click Response. This displays the outputs, responses (targets), and errors
versus time. It also indicates which time points were selected for training, testing, and validation.

32 Function Approximation, Clustering, and Control Examples

32-32



If you are unhappy with the network performance, you can do one of the following:

• Train the network again.
• Increase the number of hidden neurons.
• Use a larger training data set.

If performance on the training set is good but the test set performance is poor, this could indicate the
model is overfitting. Decreasing the layer size, and therefore decreasing the number of neurons, can
reduce the overfitting.

You can also evaluate the network performance on an additional test set. To load additional test data
to evaluate the network with, in the Test section, click Test. The Model Summary displays the
additional test data results. You can also generate plots to analyze the additional test data results.

 Fit Time Series Data Using the Neural Net Time Series App

32-33



Generate Code

Select Generate Code > Generate Simple Training Script to create MATLAB code to reproduce
the previous steps from the command line. Creating MATLAB code can be helpful if you want to learn
how to use the command-line functionality of the toolbox to customize the training process. In “Fit
Time Series Data Using Command-Line Functions”, you will investigate the generated scripts in more
detail.

Export Network

You can export your trained network to the workspace or Simulink®. You can also deploy the network
with MATLAB Compiler™ tools and other MATLAB code generation tools. To export your trained
network and results, select Export Model > Export to Workspace.

See Also
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition | Neural Net
Clustering | train | preparets | narxnet | closeloop | perform | removedelay

32 Function Approximation, Clustering, and Control Examples

32-34



Related Examples
• “Shallow Neural Network Time-Series Prediction and Modeling”
• “Fit Data with a Shallow Neural Network”
• “Pattern Recognition with a Shallow Neural Network”
• “Cluster Data with a Self-Organizing Map”

 Fit Time Series Data Using the Neural Net Time Series App

32-35



Body Fat Estimation

This example illustrates how a function fitting neural network can estimate body fat percentage
based on anatomical measurements.

The Problem: Estimate Body Fat Percentage

In this example we attempt to build a neural network that can estimate the body fat percentage of a
person described by thirteen physical attributes:

• Age (years)
• Weight (lbs)
• Height (inches)
• Neck circumference (cm)
• Chest circumference (cm)
• Abdomen circumference (cm)
• Hip circumference (cm)
• Thigh circumference (cm)
• Knee circumference (cm)
• Ankle circumference (cm)
• Biceps (extended) circumference (cm)
• Forearm circumference (cm)
• Wrist circumference (cm)

This is an example of a fitting problem, where inputs are matched up to associated target outputs,
and we would like to create a neural network which not only estimates the known targets given
known inputs, but can also generalize to accurately estimate outputs for inputs that were not used to
design the solution.

Why Neural Networks?

Neural networks are very good at function fit problems. A neural network with enough elements
(called neurons) can fit any data with arbitrary accuracy. They are particularly well suited for
addressing nonlinear problems. Given the nonlinear nature of real world phenomena, like body fat
accretion, neural networks are a good candidate for solving the problem.

The thirteen physical attributes will act as inputs to a neural network, and the body fat percentage
will be the target.

The network will be designed by using the anatomical quantities of bodies whose body fat percentage
is already known to train it to produce the target valuations.

Preparing the Data

Data for function fitting problems are set up for a neural network by organizing the data into two
matrices, the input matrix X and the target matrix T.

Each ith column of the input matrix will have thirteen elements representing a body with known body
fat percentage.

32 Function Approximation, Clustering, and Control Examples

32-36



Each corresponding column of the target matrix will have one element, representing the body fat
percentage.

Here such a dataset is loaded.

[X,T] = bodyfat_dataset;

We can view the sizes of inputs X and targets T.

Note that both X and T have 252 columns. These represent 252 physiques (inputs) and associated
body fat percentages (targets).

The input matrix X has thirteen rows, for the thirteen attributes. The target matrix T has only one
row, as for each example we only have one desired output, the body fat percentage.

size(X)

ans = 1×2

    13   252

size(T)

ans = 1×2

     1   252

Fitting a Function with a Neural Network

The next step is to create a neural network that will learn to estimate body fat percentages.

Since the neural network starts with random initial weights, the results of this example will differ
slightly every time it is run. The random seed is set to avoid this randomness. However this is not
necessary for your own applications.

setdemorandstream(491218382)

Two-layer (i.e. one-hidden-layer) feed forward neural networks can fit any input-output relationship
given enough neurons in the hidden layer. Layers which are not output layers are called hidden
layers.

We will try a single hidden layer of 15 neurons for this example. In general, more difficult problems
require more neurons, and perhaps more layers. Simpler problems require fewer neurons.

The input and output have sizes of 0 because the network has not yet been configured to match our
input and target data. This will happen when the network is trained.

net = fitnet(15);
view(net)

 Body Fat Estimation

32-37



Now the network is ready to be trained. The samples are automatically divided into training,
validation and test sets. The training set is used to teach the network. Training continues as long as
the network continues improving on the validation set. The test set provides a completely
independent measure of network accuracy.

The Neural Network Training Tool shows the network being trained and the algorithms used to train
it. It also displays the training state during training and the criteria which stopped training will be
highlighted in green.

The buttons at the bottom open useful plots which can be opened during and after training. Links
next to the algorithm names and plot buttons open documentation on those subjects.

[net,tr] = train(net,X,T);

32 Function Approximation, Clustering, and Control Examples

32-38



To see how the network's performance improved during training, either click the "Performance"
button in the training tool, or call PLOTPERFORM.

Performance is measured in terms of mean squared error, and shown in log scale. It rapidly
decreased as the network was trained.

Performance is shown for each of the training, validation, and test sets. The final network is the
network that performed best on the validation set.

 Body Fat Estimation

32-39



figure
plotperform(tr)

Testing the Neural Network

The mean squared error of the trained neural network can now be measured with respect to the
testing samples. This will give us a sense of how well the network will do when applied to data from
the real world.

testX = X(:,tr.testInd);
testT = T(:,tr.testInd);

testY = net(testX);

perf = mse(net,testT,testY)

perf = 36.9404

Another measure of how well the neural network has fit the data is the regression plot. Here the
regression is plotted across all samples.

The regression plot shows the actual network outputs plotted in terms of the associated target values.
If the network has learned to fit the data well, the linear fit to this output-target relationship should
closely intersect the bottom-left and top-right corners of the plot.

If this is not the case then further training, or training a network with more hidden neurons, would be
advisable.

32 Function Approximation, Clustering, and Control Examples

32-40



Y = net(X);

figure
plotregression(T,Y)

Another third measure of how well the neural network has fit data is the error histogram. This shows
how the error sizes are distributed. Typically most errors are near zero, with very few errors far from
that.

e = T - Y;

figure
ploterrhist(e)

 Body Fat Estimation

32-41



This example illustrated how to design a neural network that estimates the body fat percentage from
physical characteristics.

Explore other examples and the documentation for more insight into neural networks and their
applications.

32 Function Approximation, Clustering, and Control Examples

32-42



Crab Classification

This example illustrates using a neural network as a classifier to identify the sex of crabs from
physical dimensions of the crab.

The Problem: Classification of Crabs

In this example we attempt to build a classifier that can identify the sex of a crab from its physical
measurements. Six physical characteristics of a crab are considered: species, frontallip, rearwidth,
length, width and depth. The problem on hand is to identify the sex of a crab given the observed
values for each of these 6 physical characteristics.

Why Neural Networks?

Neural networks have proven themselves as proficient classifiers and are particularly well suited for
addressing non-linear problems. Given the non-linear nature of real world phenomena, like crab
classification, neural networks are certainly a good candidate for solving the problem.

The six physical characteristics will act as inputs to a neural network and the sex of the crab will be
the target. Given an input, which constitutes the six observed values for the physical characteristics
of a crab, the neural network is expected to identify if the crab is male or female.

This is achieved by presenting previously recorded inputs to a neural network and then tuning it to
produce the desired target outputs. This process is called neural network training.

Preparing the Data

Data for classification problems are set up for a neural network by organizing the data into two
matrices, the input matrix X and the target matrix T.

Each ith column of the input matrix will have six elements representing a crab's species, frontallip,
rearwidth, length, width, and depth.

Each corresponding column of the target matrix will have two elements. Female crabs are
represented with a one in the first element, male crabs with a one in the second element. (All other
elements are zero).

Here the dataset is loaded.

[x,t] = crab_dataset;
size(x)

ans = 1×2

     6   200

size(t)

ans = 1×2

     2   200

 Crab Classification

32-43



Building the Neural Network Classifier

The next step is to create a neural network that will learn to identify the sex of the crabs.

Since the neural network starts with random initial weights, the results of this example will differ
slightly every time it is run. The random seed is set to avoid this randomness. However this is not
necessary for your own applications.

setdemorandstream(491218382)

Two-layer (i.e. one-hidden-layer) feed forward neural networks can learn any input-output
relationship given enough neurons in the hidden layer. Layers which are not output layers are called
hidden layers.

We will try a single hidden layer of 10 neurons for this example. In general, more difficult problems
require more neurons, and perhaps more layers. Simpler problems require fewer neurons.

The input and output have sizes of 0 because the network has not yet been configured to match our
input and target data. This will happen when the network is trained.

net = patternnet(10);
view(net)

32 Function Approximation, Clustering, and Control Examples

32-44



Now the network is ready to be trained. The samples are automatically divided into training,
validation and test sets. The training set is used to teach the network. Training continues as long as
the network continues improving on the validation set. The test set provides a completely
independent measure of network accuracy.

[net,tr] = train(net,x,t);

 Crab Classification

32-45



To see how the network's performance improved during training, either click the "Performance"
button in the training tool, or call PLOTPERFORM.

Performance is measured in terms of mean squared error, and is shown in a log scale. It rapidly
decreased as the network was trained.

Performance is shown for each of the training, validation and test sets.

32 Function Approximation, Clustering, and Control Examples

32-46



plotperform(tr)

Testing the Classifier

The trained neural network can now be tested with the testing samples. This will give us a sense of
how well the network will do when applied to data from the real world.

The network outputs will be in the range 0 to 1, so we can use vec2ind function to get the class
indices as the position of the highest element in each output vector.

testX = x(:,tr.testInd);
testT = t(:,tr.testInd);

testY = net(testX);
testIndices = vec2ind(testY)

testIndices = 1×30

     2     2     2     1     2     2     2     1     2     2     2     2     1     1     2     2     2     1     2     2     1     2     1     1     1     1     1     2     2     1

One measure of how well the neural network has fit the data is the confusion plot. Here the confusion
matrix is plotted across all samples.

The confusion matrix shows the percentages of correct and incorrect classifications. Correct
classifications are the green squares on the matrices diagonal. Incorrect classifications form the red
squares.

 Crab Classification

32-47



If the network has learned to classify properly, the percentages in the red squares should be very
small, indicating few misclassifications.

If this is not the case then further training, or training a network with more hidden neurons, would be
advisable.

plotconfusion(testT,testY)

Here are the overall percentages of correct and incorrect classification.

[c,cm] = confusion(testT,testY)

c = 0.0333

cm = 2×2

32 Function Approximation, Clustering, and Control Examples

32-48



    12     1
     0    17

fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));

Percentage Correct Classification   : 96.666667%

fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);

Percentage Incorrect Classification : 3.333333%

Another measure of how well the neural network has fit data is the receiver operating characteristic
plot. This shows how the false positive and true positive rates relate as the thresholding of outputs is
varied from 0 to 1.

The farther left and up the line is, the fewer false positives need to be accepted in order to get a high
true positive rate. The best classifiers will have a line going from the bottom left corner, to the top left
corner, to the top right corner, or close to that.

plotroc(testT,testY)

 Crab Classification

32-49



This example illustrated using a neural network to classify crabs.

Explore other examples and the documentation for more insight into neural networks and their
applications.

32 Function Approximation, Clustering, and Control Examples

32-50



Wine Classification

This example illustrates how a pattern recognition neural network can classify wines by winery based
on its chemical characteristics.

The Problem: Classify Wines

In this example we attempt to build a neural network that can classify wines from three wineries by
thirteen attributes:

• Alcohol
• Malic acid
• Ash
• Alkalinity of ash
• Magnesium
• Total phenols
• Flavonoids
• Nonflavonoid phenols
• Proanthocyanidins
• Color intensity
• Hue
• OD280/OD315 of diluted wines
• Proline

This is an example of a pattern recognition problem, where inputs are associated with different
classes, and we would like to create a neural network that not only classifies the known wines
properly, but can also generalize to accurately classify wines that were not used to design the
solution.

Why Neural Networks?

Neural networks are very good at pattern recognition problems. A neural network with enough
elements (called neurons) can classify any data with arbitrary accuracy. They are particularly well
suited for complex decision boundary problems over many variables. Therefore, neural networks are
a good candidate for solving the wine classification problem.

The thirteen neighborhood attributes will act as inputs to a neural network, and the respective target
for each will be a 3-element class vector with a 1 in the position of the associated winery, #1, #2 or
#3.

The network will be designed by using the attributes of neighborhoods to train the network to
produce the correct target classes.

Prepare Data

Data for classification problems are set up for a neural network by organizing the data into two
matrices, the input matrix X and the target matrix T.

 Wine Classification

32-51



Each ith column of the input matrix will have thirteen elements representing a wine whose winery is
already known.

Each corresponding column of the target matrix will have three elements, consisting of two zeros and
a 1 in the location of the associated winery.

Here such a dataset is loaded.

[x,t] = wine_dataset;

We can view the sizes of inputs X and targets T.

Note that both X and T have 178 columns. These represent 178 wine sample attributes (inputs) and
associated winery class vectors (targets).

Input matrix X has thirteen rows, for the thirteen attributes. Target matrix T has three rows, as for
each example we have three possible wineries.

size(x)

ans = 1×2

    13   178

size(t)

ans = 1×2

     3   178

Pattern Recognition with a Neural Network

The next step is to create a neural network that will learn to classify the wines.

Since the neural network starts with random initial weights, the results of this example will differ
slightly every time it is run.

Two-layer (i.e. one-hidden-layer) feed forward neural networks can learn any input-output
relationship given enough neurons in the hidden layer. Layers which are not output layers are called
hidden layers.

We will try a single hidden layer of 10 neurons for this example. In general, more difficult problems
require more neurons, and perhaps more layers. Simpler problems require fewer neurons.

The input and output have sizes of 0 because the network has not yet been configured to match our
input and target data. This will happen when the network is trained.

net = patternnet(10);
view(net)

32 Function Approximation, Clustering, and Control Examples

32-52



Now the network is ready to be trained. The samples are automatically divided into training,
validation and test sets. The training set is used to teach the network. Training continues as long as
the network continues improving on the validation set. The test set provides a completely
independent measure of network accuracy.

The Neural Network Training Tool shows the network being trained and the algorithms used to train
it. It also displays the training state during training and the criteria which stopped training will be
highlighted in green.

The buttons at the bottom open useful plots which can be opened during and after training. Links
next to the algorithm names and plot buttons open documentation on those subjects.

[net,tr] = train(net,x,t);

 Wine Classification

32-53



To see how the network's performance improved during training, either click the "Performance"
button in the training tool, or call PLOTPERFORM.

Performance is measured in terms of mean squared error, and is shown in a log scale. It rapidly
decreased as the network was trained.

Performance is shown for each of the training, validation and test sets.

32 Function Approximation, Clustering, and Control Examples

32-54



plotperform(tr)

Test the Network

The mean squared error of the trained neural network can now be measured with respect to the
testing samples. This will give us a sense of how well the network will do when applied to data from
the real world.

The network outputs will be in the range 0 to 1, so we can use vec2ind function to get the class
indices as the position of the highest element in each output vector.

testX = x(:,tr.testInd);
testT = t(:,tr.testInd);

testY = net(testX);
testIndices = vec2ind(testY)

testIndices = 1×27

     1     1     1     1     1     1     1     2     2     2     2     2     2     2     2     2     2     2     2     3     3     3     3     3     3     3     3

Another measure of how well the neural network has fit the data is the confusion plot. Here the
confusion matrix is plotted across all samples.

The confusion matrix shows the percentages of correct and incorrect classifications. Correct
classifications are the green squares on the matrices diagonal. Incorrect classifications form the red
squares.

 Wine Classification

32-55



If the network has learned to classify properly, the percentages in the red squares should be very
small, indicating few misclassifications.

If this is not the case then further training, or training a network with more hidden neurons, would be
advisable.

plotconfusion(testT,testY)

Here are the overall percentages of correct and incorrect classification.

[c,cm] = confusion(testT,testY)

c = 0

cm = 3×3

32 Function Approximation, Clustering, and Control Examples

32-56



     7     0     0
     0    12     0
     0     0     8

fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));

Percentage Correct Classification   : 100.000000%

fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);

Percentage Incorrect Classification : 0.000000%

A third measure of how well the neural network has fit data is the receiver operating characteristic
plot. This shows how the false positive and true positive rates relate as the thresholding of outputs is
varied from 0 to 1.

The farther left and up the line is, the fewer false positives need to be accepted in order to get a high
true positive rate. The best classifiers will have a line going from the bottom left corner, to the top left
corner, to the top right corner, or close to that.

plotroc(testT,testY)

 Wine Classification

32-57



This example illustrated how to design a neural network that classifies wines into three wineries from
each wine's characteristics.

Explore other examples and the documentation for more insight into neural networks and their
applications.

32 Function Approximation, Clustering, and Control Examples

32-58



Cancer Detection

This example shows how to train a neural network to detect cancer using mass spectrometry data on
protein profiles.

Introduction

Serum proteomic pattern diagnostics can be used to differentiate samples from patients with and
without disease. Profile patterns are generated using surface-enhanced laser desorption and
ionization (SELDI) protein mass spectrometry. This technology has the potential to improve clinical
diagnostics tests for cancer pathologies.

The Problem: Cancer Detection

The goal is to build a classifier that can distinguish between cancer and control patients from the
mass spectrometry data.

The methodology followed in this example is to select a reduced set of measurements or "features"
that can be used to distinguish between cancer and control patients using a classifier. These features
are ion intensity levels at specific mass/charge values.

Formatting the Data

The data used in this example, provided in the file ovarian_dataset.mat, is from the FDA-NCI
Clinical Proteomics Program Databank. For a detailed description of this data set, see [1] and [2].

Create the data file OvarianCancerQAQCdataset.mat by following the steps in “Batch Processing
of Spectra Using Sequential and Parallel Computing” (Bioinformatics Toolbox). The new file contains
the variables Y, MZ, and grp.

Each column in Y represents measurements taken from a patient. There are 216 columns in Y
representing 216 patients, out of which 121 are ovarian cancer patients and 95 are normal patients.

Each row in Y represents the ion intensity level at a specific mass-charge value indicated in MZ. There
are 15000 mass-charge values in MZ and each row in Y represents the ion-intensity levels of the
patients at that particular mass-charge value.

The variable grp holds the index information as to which of these samples represent cancer patients
and which ones represent normal patients.

Ranking Key Features

This task is a typical classification problem where the number of features is much larger than the
number of observations but single feature achieves a correct classification. Therefore, the goal is to
find a classifier which appropriately learns how to weight multiple features and at the same time
produces a generalized mapping which is not over-fitted.

A simple approach for finding significant features is to assume that each M/Z value is independent
and compute a two-way t-test. rankfeatures returns an index to the most significant M/Z values,
for instance 100 indices ranked by the absolute value of the test statistic.

Load the OvarianCancerQAQCdataset.mat and rank features using rankfeatures
(Bioinformatics Toolbox) to choose 100 highest ranked measurements as inputs x.

 Cancer Detection

32-59



ind = rankfeatures(Y,grp,'Criterion','ttest','NumberOfIndices',100); 
x = Y(ind,:);

Define the targets t for the two classes as follows:

t = double(strcmp('Cancer',grp)); 
t = [t; 1-t];

The preprocessing steps from the script and example listed above are intended to demonstrate a
representative set of possible preprocessing and feature selection procedures. Using different steps
or parameters can lead to different and possibly better results.

[x,t] = ovarian_dataset;
whos x t

  Name        Size              Bytes  Class     Attributes

  t           2x216              3456  double              
  x         100x216            172800  double              

Each column in x represents one of 216 different patients.

Each row in x represents the ion intensity level at one of the 100 specific mass-charge values for each
patient.

The variable t has two rows with 216 values each of which are either [1;0], indicating a cancer
patient, or [0;1] for a normal patient.

Classification Using a Feed Forward Neural Network

Now that you have identified some significant features, you can use this information to classify the
cancer and normal samples.

Since the neural network is initialized with random initial weights, the results after training the
network vary slightly every time the example is run. To avoid this randomness, the random seed is set
to reproduce the same results every time. However, setting the random seed is not necessary for your
own applications.

setdemorandstream(672880951)

A 1-hidden layer feed forward neural network with 5 hidden layer neurons is created and trained. The
input and target samples are automatically divided into training, validation, and test sets. The
training set is used to teach the network. Training continues as long as the network continues
improving on the validation set. The test set provides an independent measure of the network
accuracy.

The input and output have sizes of 0 because the network has not yet been configured to match the
input and target data. This configuration happens when you train the network.

net = patternnet(5);
view(net)

32 Function Approximation, Clustering, and Control Examples

32-60



Now the network is ready to be trained. The samples are automatically divided into training,
validation, and test sets. The training set is used to teach the network. Training continues as long as
the network continues improving on the validation set. The test set provides an independent measure
of network accuracy.

The Neural Network Training Tool shows the network being trained and the algorithms used to train
it. It also displays the training state during training and the criteria which stopped training are
highlighted in green.

The buttons at the bottom open useful plots which can be opened during and after training. Links
next to the algorithm names and plot buttons open documentation on those subjects.

[net,tr] = train(net,x,t);

 Cancer Detection

32-61



To see how the network's performance improved during training, either click the "Performance"
button in the training tool, or use the plotperform function.

Performance is measured in terms of mean squared error, and shown on a logarithmic scale. It
rapidly decreased as the network was trained.

Performance is shown for each of the training, validation, and test sets.

32 Function Approximation, Clustering, and Control Examples

32-62



plotperform(tr)

The trained neural network can now be tested with the testing samples we partitioned from the main
dataset. The testing data was not used in training in any way and hence provides an "out-of-sample"
dataset to test the network on. This gives an estimate of how well the network will perform when
tested with data from the real world.

The network outputs are in the range 0-1. Threshold the outputs to obtain 1's and 0's indicating
cancer or normal patients, respectively.

testX = x(:,tr.testInd);
testT = t(:,tr.testInd);

testY = net(testX);
testClasses = testY > 0.5

testClasses = 2×32 logical array

   1   1   1   1   1   1   1   1   1   1   1   1   1   0   0   1   1   0   0   1   1   0   0   0   0   0   0   0   0   0   1   0
   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   0   0   1   1   0   0   1   1   1   1   1   1   1   1   1   0   1

One measure of how well the neural network has fit the data is the confusion plot.

The confusion matrix shows the percentages of correct and incorrect classifications. Correct
classifications are the green squares on the matrix diagonal. The red squares represent incorrect
classifications.

 Cancer Detection

32-63



If the network is accurate, then the percentages in the red squares are small, indicating few
misclassifications.

If the network is not accurate, then you can try training for a longer time, or training a network with
more hidden neurons.

plotconfusion(testT,testY)

Here are the overall percentages of correct and incorrect classification.

[c,cm] = confusion(testT,testY);

fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));

Percentage Correct Classification   : 84.375000%

32 Function Approximation, Clustering, and Control Examples

32-64



fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);

Percentage Incorrect Classification : 15.625000%

Another measure of how well the neural network has fit data is the receiver operating characteristic
plot. This plot shows how the false positive and true positive rates relate as the thresholding of
outputs is varied from 0 to 1.

The farther left and up the line is, the fewer false positives need to be accepted in order to get a high
true positive rate. The best classifiers have a line going from the bottom left corner, to the top left
corner, to the top right corner, or close to that.

Class 1 indicates cancer patients and class 2 indicates normal patients.

plotroc(testT,testY)

 Cancer Detection

32-65



This example demonstrates how neural networks can be used as classifiers for cancer detection. To
improve classifier performance, you can also try using techniques like principal component analysis
for reducing the dimensionality of the data used for neural network training.

References

[1] T.P. Conrads, et al., "High-resolution serum proteomic features for ovarian detection", Endocrine-
Related Cancer, 11, 2004, pp. 163-178.

32 Function Approximation, Clustering, and Control Examples

32-66



[2] E.F. Petricoin, et al., "Use of proteomic patterns in serum to identify ovarian cancer", Lancet,
359(9306), 2002, pp. 572-577.

 Cancer Detection

32-67



Character Recognition

This example illustrates how to train a neural network to perform simple character recognition.

Defining the Problem

The script prprob defines a matrix X with 26 columns, one for each letter of the alphabet. Each
column has 35 values which can either be 1 or 0. Each column of 35 values defines a 5x7 bitmap of a
letter.

The matrix T is a 26x26 identity matrix which maps the 26 input vectors to the 26 classes.

[X,T] = prprob;

Here A, the first letter, is plotted as a bit map.

plotchar(X(:,1))

Creating the First Neural Network

To solve this problem we will use a feedforward neural network set up for pattern recognition with 25
hidden neurons.

Since the neural network is initialized with random initial weights, the results after training vary
slightly every time the example is run. To avoid this randomness, the random seed is set to reproduce
the same results every time. This is not necessary for your own applications.

32 Function Approximation, Clustering, and Control Examples

32-68



setdemorandstream(pi);

net1 = feedforwardnet(25);
view(net1)

Training the first Neural Network

The function train divides up the data into training, validation and test sets. The training set is used
to update the network, the validation set is used to stop the network before it overfits the training
data, thus preserving good generalization. The test set acts as a completely independent measure of
how well the network can be expected to do on new samples.

Training stops when the network is no longer likely to improve on the training or validation sets.

net1.divideFcn = '';
net1 = train(net1,X,T,nnMATLAB);

 
Computing Resources:
MATLAB on PCWIN64
 

 Character Recognition

32-69



Training the Second Neural Network

We would like the network to not only recognize perfectly formed letters, but also noisy versions of
the letters. So we will try training a second network on noisy data and compare its ability to
generalize with the first network.

Here 30 noisy copies of each letter Xn are created. Values are limited by min and max to fall between
0 and 1. The corresponding targets Tn are also defined.

32 Function Approximation, Clustering, and Control Examples

32-70



numNoise = 30;
Xn = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*0.2,0),1);
Tn = repmat(T,1,numNoise);

Here is a noise version of A.

figure
plotchar(Xn(:,1))

Here the second network is created and trained.

net2 = feedforwardnet(25);
net2 = train(net2,Xn,Tn,nnMATLAB);

 
Computing Resources:
MATLAB on PCWIN64
 

 Character Recognition

32-71



Testing Both Neural Networks

noiseLevels = 0:.05:1;
numLevels = length(noiseLevels);
percError1 = zeros(1,numLevels);
percError2 = zeros(1,numLevels);
for i = 1:numLevels
  Xtest = min(max(repmat(X,1,numNoise)+randn(35,26*numNoise)*noiseLevels(i),0),1);

32 Function Approximation, Clustering, and Control Examples

32-72



  Y1 = net1(Xtest);
  percError1(i) = sum(sum(abs(Tn-compet(Y1))))/(26*numNoise*2);
  Y2 = net2(Xtest);
  percError2(i) = sum(sum(abs(Tn-compet(Y2))))/(26*numNoise*2);
end

figure
plot(noiseLevels,percError1*100,'--',noiseLevels,percError2*100);
title('Percentage of Recognition Errors');
xlabel('Noise Level');
ylabel('Errors');
legend('Network 1','Network 2','Location','NorthWest')

Network 1, trained without noise, has more errors due to noise than does Network 2, which was
trained with noise.

 Character Recognition

32-73



Train Stacked Autoencoders for Image Classification

This example shows how to train stacked autoencoders to classify images of digits.

Neural networks with multiple hidden layers can be useful for solving classification problems with
complex data, such as images. Each layer can learn features at a different level of abstraction.
However, training neural networks with multiple hidden layers can be difficult in practice.

One way to effectively train a neural network with multiple layers is by training one layer at a time.
You can achieve this by training a special type of network known as an autoencoder for each desired
hidden layer.

This example shows you how to train a neural network with two hidden layers to classify digits in
images. First you train the hidden layers individually in an unsupervised fashion using autoencoders.
Then you train a final softmax layer, and join the layers together to form a stacked network, which
you train one final time in a supervised fashion.

Data set

This example uses synthetic data throughout, for training and testing. The synthetic images have
been generated by applying random affine transformations to digit images created using different
fonts.

Each digit image is 28-by-28 pixels, and there are 5,000 training examples. You can load the training
data, and view some of the images.

% Load the training data into memory
[xTrainImages,tTrain] = digitTrainCellArrayData;

% Display some of the training images
clf
for i = 1:20
    subplot(4,5,i);
    imshow(xTrainImages{i});
end

32 Function Approximation, Clustering, and Control Examples

32-74



The labels for the images are stored in a 10-by-5000 matrix, where in every column a single element
will be 1 to indicate the class that the digit belongs to, and all other elements in the column will be 0.
It should be noted that if the tenth element is 1, then the digit image is a zero.

Training the first autoencoder

Begin by training a sparse autoencoder on the training data without using the labels.

An autoencoder is a neural network which attempts to replicate its input at its output. Thus, the size
of its input will be the same as the size of its output. When the number of neurons in the hidden layer
is less than the size of the input, the autoencoder learns a compressed representation of the input.

Neural networks have weights randomly initialized before training. Therefore the results from
training are different each time. To avoid this behavior, explicitly set the random number generator
seed.

rng('default')

Set the size of the hidden layer for the autoencoder. For the autoencoder that you are going to train,
it is a good idea to make this smaller than the input size.

hiddenSize1 = 100;

The type of autoencoder that you will train is a sparse autoencoder. This autoencoder uses
regularizers to learn a sparse representation in the first layer. You can control the influence of these
regularizers by setting various parameters:

 Train Stacked Autoencoders for Image Classification

32-75



• L2WeightRegularization controls the impact of an L2 regularizer for the weights of the
network (and not the biases). This should typically be quite small.

• SparsityRegularization controls the impact of a sparsity regularizer, which attempts to
enforce a constraint on the sparsity of the output from the hidden layer. Note that this is different
from applying a sparsity regularizer to the weights.

• SparsityProportion is a parameter of the sparsity regularizer. It controls the sparsity of the
output from the hidden layer. A low value for SparsityProportion usually leads to each neuron
in the hidden layer "specializing" by only giving a high output for a small number of training
examples. For example, if SparsityProportion is set to 0.1, this is equivalent to saying that
each neuron in the hidden layer should have an average output of 0.1 over the training examples.
This value must be between 0 and 1. The ideal value varies depending on the nature of the
problem.

Now train the autoencoder, specifying the values for the regularizers that are described above.

autoenc1 = trainAutoencoder(xTrainImages,hiddenSize1, ...
    'MaxEpochs',400, ...
    'L2WeightRegularization',0.004, ...
    'SparsityRegularization',4, ...
    'SparsityProportion',0.15, ...
    'ScaleData', false);

32 Function Approximation, Clustering, and Control Examples

32-76



You can view a diagram of the autoencoder. The autoencoder is comprised of an encoder followed by
a decoder. The encoder maps an input to a hidden representation, and the decoder attempts to
reverse this mapping to reconstruct the original input.

view(autoenc1)

 Train Stacked Autoencoders for Image Classification

32-77



Visualizing the weights of the first autoencoder

The mapping learned by the encoder part of an autoencoder can be useful for extracting features
from data. Each neuron in the encoder has a vector of weights associated with it which will be tuned
to respond to a particular visual feature. You can view a representation of these features.

figure()
plotWeights(autoenc1);

32 Function Approximation, Clustering, and Control Examples

32-78



You can see that the features learned by the autoencoder represent curls and stroke patterns from
the digit images.

The 100-dimensional output from the hidden layer of the autoencoder is a compressed version of the
input, which summarizes its response to the features visualized above. Train the next autoencoder on
a set of these vectors extracted from the training data. First, you must use the encoder from the
trained autoencoder to generate the features.

feat1 = encode(autoenc1,xTrainImages);

Training the second autoencoder

After training the first autoencoder, you train the second autoencoder in a similar way. The main
difference is that you use the features that were generated from the first autoencoder as the training
data in the second autoencoder. Also, you decrease the size of the hidden representation to 50, so
that the encoder in the second autoencoder learns an even smaller representation of the input data.

hiddenSize2 = 50;
autoenc2 = trainAutoencoder(feat1,hiddenSize2, ...
    'MaxEpochs',100, ...
    'L2WeightRegularization',0.002, ...
    'SparsityRegularization',4, ...
    'SparsityProportion',0.1, ...
    'ScaleData', false);

 Train Stacked Autoencoders for Image Classification

32-79



Once again, you can view a diagram of the autoencoder with the view function.

view(autoenc2)

32 Function Approximation, Clustering, and Control Examples

32-80



You can extract a second set of features by passing the previous set through the encoder from the
second autoencoder.

feat2 = encode(autoenc2,feat1);

The original vectors in the training data had 784 dimensions. After passing them through the first
encoder, this was reduced to 100 dimensions. After using the second encoder, this was reduced again
to 50 dimensions. You can now train a final layer to classify these 50-dimensional vectors into
different digit classes.

Training the final softmax layer

Train a softmax layer to classify the 50-dimensional feature vectors. Unlike the autoencoders, you
train the softmax layer in a supervised fashion using labels for the training data.

softnet = trainSoftmaxLayer(feat2,tTrain,'MaxEpochs',400);

 Train Stacked Autoencoders for Image Classification

32-81



You can view a diagram of the softmax layer with the view function.

view(softnet)

32 Function Approximation, Clustering, and Control Examples

32-82



Forming a stacked neural network

You have trained three separate components of a stacked neural network in isolation. At this point, it
might be useful to view the three neural networks that you have trained. They are autoenc1,
autoenc2, and softnet.

view(autoenc1)

 Train Stacked Autoencoders for Image Classification

32-83



view(autoenc2)

view(softnet)

As was explained, the encoders from the autoencoders have been used to extract features. You can
stack the encoders from the autoencoders together with the softmax layer to form a stacked network
for classification.

32 Function Approximation, Clustering, and Control Examples

32-84



stackednet = stack(autoenc1,autoenc2,softnet);

You can view a diagram of the stacked network with the view function. The network is formed by the
encoders from the autoencoders and the softmax layer.

view(stackednet)

With the full network formed, you can compute the results on the test set. To use images with the
stacked network, you have to reshape the test images into a matrix. You can do this by stacking the
columns of an image to form a vector, and then forming a matrix from these vectors.

% Get the number of pixels in each image
imageWidth = 28;
imageHeight = 28;
inputSize = imageWidth*imageHeight;

% Load the test images
[xTestImages,tTest] = digitTestCellArrayData;

% Turn the test images into vectors and put them in a matrix
xTest = zeros(inputSize,numel(xTestImages));
for i = 1:numel(xTestImages)
    xTest(:,i) = xTestImages{i}(:);
end

You can visualize the results with a confusion matrix. The numbers in the bottom right-hand square of
the matrix give the overall accuracy.

y = stackednet(xTest);
plotconfusion(tTest,y);

 Train Stacked Autoencoders for Image Classification

32-85



Fine tuning the stacked neural network

The results for the stacked neural network can be improved by performing backpropagation on the
whole multilayer network. This process is often referred to as fine tuning.

You fine tune the network by retraining it on the training data in a supervised fashion. Before you can
do this, you have to reshape the training images into a matrix, as was done for the test images.

% Turn the training images into vectors and put them in a matrix
xTrain = zeros(inputSize,numel(xTrainImages));
for i = 1:numel(xTrainImages)
    xTrain(:,i) = xTrainImages{i}(:);
end

32 Function Approximation, Clustering, and Control Examples

32-86



% Perform fine tuning
stackednet = train(stackednet,xTrain,tTrain);

You then view the results again using a confusion matrix.

y = stackednet(xTest);
plotconfusion(tTest,y);

 Train Stacked Autoencoders for Image Classification

32-87



Summary

This example showed how to train a stacked neural network to classify digits in images using
autoencoders. The steps that have been outlined can be applied to other similar problems, such as
classifying images of letters, or even small images of objects of a specific category.

32 Function Approximation, Clustering, and Control Examples

32-88



Iris Clustering

This example illustrates how a self-organizing map neural network can cluster iris flowers into classes
topologically, providing insight into the types of flowers and a useful tool for further analysis.

The Problem: Cluster Iris Flowers

In this example we attempt to build a neural network that clusters iris flowers into natural classes,
such that similar classes are grouped together. Each iris is described by four features:

• Sepal length in cm
• Sepal width in cm
• Petal length in cm
• Petal width in cm

This is an example of a clustering problem, where we would like to group samples into classes based
on the similarity between samples. We would like to create a neural network which not only creates
class definitions for the known inputs, but will also let us classify unknown inputs accordingly.

Why Self-Organizing Map Neural Networks?

Self-organizing maps (SOMs) are very good at creating classifications. Further, the classifications
retain topological information about which classes are most similar to others. Self-organizing maps
can be created with any desired level of detail. They are particularly well suited for clustering data in
many dimensions and with complexly shaped and connected feature spaces. They are well suited to
cluster iris flowers.

The four flower attributes will act as inputs to the SOM, which will map them onto a 2-dimensional
layer of neurons.

Preparing the Data

Data for clustering problems are set up for a SOM by organizing the data into an input matrix X.

Each ith column of the input matrix will have four elements representing the four measurements
taken on a single flower.

Here such a dataset is loaded.

x = iris_dataset;

We can view the size of inputs X.

Note that X has 150 columns. These represent 150 sets of iris flower attributes. It has four rows, for
the four measurements.

size(x)

ans = 1×2

     4   150

 Iris Clustering

32-89



Clustering with a Neural Network

The next step is to create a neural network that will learn to cluster.

selforgmap creates self-organizing maps for classifying samples with as much detail as desired by
selecting the number of neurons in each dimension of the layer.

We will try a 2-dimension layer of 64 neurons arranged in an 8x8 hexagonal grid for this example. In
general, greater detail is achieved with more neurons, and more dimensions allows for modelling the
topology of more complex feature spaces.

The input size is 0 because the network has not yet been configured to match our input data. This will
happen when the network is trained.

net = selforgmap([8 8]);
view(net)

Now the network is ready to be optimized with train.

32 Function Approximation, Clustering, and Control Examples

32-90



The Neural Network Training Tool shows the network being trained and the algorithms used to train
it. It also displays the training state during training and the criteria which stopped training will be
highlighted in green.

The buttons at the bottom open useful plots which can be opened during and after training. Links
next to the algorithm names and plot buttons open documentation on those subjects.

[net,tr] = train(net,x);

 Iris Clustering

32-91



Here the self-organizing map is used to compute the class vectors of each of the training inputs.
These classifications cover the feature space populated by the known flowers, and can now be used to
classify new flowers accordingly. The network output will be a 64x150 matrix, where each ith column
represents the jth cluster for each ith input vector with a 1 in its jth element.

The function vec2ind returns the index of the neuron with an output of 1, for each vector. The
indices will range between 1 and 64 for the 64 clusters represented by the 64 neurons.

y = net(x);
cluster_index = vec2ind(y);

plotsomtop plots the self-organizing maps topology of 64 neurons positioned in an 8x8 hexagonal
grid. Each neuron has learned to represent a different class of flower, with adjacent neurons typically
representing similar classes.

plotsomtop(net)

plotsomhits calculates the classes for each flower and shows the number of flowers in each class.
Areas of neurons with large numbers of hits indicate classes representing similar highly populated
regions of the feature space. Whereas areas with few hits indicate sparsely populated regions of the
feature space.

plotsomhits(net,x)

32 Function Approximation, Clustering, and Control Examples

32-92



plotsomnc shows the neuron neighbor connections. Neighbors typically classify similar samples.

plotsomnc(net)

 Iris Clustering

32-93



plotsomnd shows how distant (in terms of Euclidian distance) each neuron's class is from its
neighbors. Connections which are bright indicate highly connected areas of the input space. While
dark connections indicate classes representing regions of the feature space which are far apart, with
few or no flowers between them.

Long borders of dark connections separating large regions of the input space indicate that the classes
on either side of the border represent flowers with very different features.

plotsomnd(net)

32 Function Approximation, Clustering, and Control Examples

32-94



plotsomplanes shows a weight plane for each of the four input features. They are visualizations of
the weights that connect each input to each of the 64 neurons in the 8x8 hexagonal grid. Darker
colors represent larger weights. If two inputs have similar weight planes (their color gradients may
be the same or in reverse) it indicates they are highly correlated.

plotsomplanes(net)

 Iris Clustering

32-95



This example illustrated how to design a neural network that clusters iris flowers based on four of
their characteristics.

Explore other examples and the documentation for more insight into neural networks and their
applications.

32 Function Approximation, Clustering, and Control Examples

32-96



Gene Expression Analysis

This example demonstrates looking for patterns in gene expression profiles in baker's yeast using
neural networks.

The Problem: Analyzing Gene Expressions in Baker's Yeast (Saccharomyces Cerevisiae)

The goal is to gain some understanding of gene expressions in Saccharomyces cerevisiae, which is
commonly known as baker's yeast or brewer's yeast. It is the fungus that is used to bake bread and
ferment wine from grapes.

Saccharomyces cerevisiae, when introduced in a medium rich in glucose, can convert glucose to
ethanol. Initially, yeast converts glucose to ethanol by a metabolic process called "fermentation".
However, once the supply of glucose is exhausted yeast shifts from anaerobic fermentation of glucose
to aerobic respiration of ethanol. This process is called diauxic shift. This process is of considerable
interest since it is accompanied by major changes in gene expression.

The example uses DNA microarray data to study temporal gene expression of almost all genes in
Saccharomyces cerevisiae during the diauxic shift.

You need Bioinformatics Toolbox™ to run this example.

if ~nnDependency.bioInfoAvailable
    errordlg('This example requires Bioinformatics Toolbox.');
    return;
end

The Data

This example uses data from DeRisi, JL, Iyer, VR, Brown, PO. "Exploring the metabolic and genetic
control of gene expression on a genomic scale." Science. 1997 Oct 24;278(5338):680-6. PMID:
9381177

The full data set can be downloaded from the Gene Expression Omnibus website: https://
www.yeastgenome.org

Start by loading the data into MATLAB®.

load yeastdata.mat

Gene expression levels were measured at seven time points during the diauxic shift. The variable
times contains the times at which the expression levels were measured in the experiment. The
variable genes contains the names of the genes whose expression levels were measured. The
variable yeastvalues contains the "VALUE" data or LOG_RAT2N_MEAN, or log2 of ratio of
CH2DN_MEAN and CH1DN_MEAN from the seven time steps in the experiment.

To get an idea of the size of the data you can use numel(genes) to show how many genes there are
in the data set.

numel(genes)

ans = 6400

genes is a cell array of the gene names. You can access the entries using MATLAB cell array indexing:

 Gene Expression Analysis

32-97

https://www.yeastgenome.org
https://www.yeastgenome.org


genes{15}

ans = 
'YAL054C'

This indicates that the 15th row of the variable yeastvalues contains expression levels for the ORF
YAL054C.

Filtering the Genes

The data set is quite large and a lot of the information corresponds to genes that do not show any
interesting changes during the experiment. To make it easier to find the interesting genes, the first
thing to do is to reduce the size of the data set by removing genes with expression profiles that do not
show anything of interest. There are 6400 expression profiles. You can use a number of techniques to
reduce this to some subset that contains the most significant genes.

If you look through the gene list you will see several spots marked as 'EMPTY'. These are empty spots
on the array, and while they might have data associated with them, for the purposes of this example,
you can consider these points to be noise. These points can be found using the strcmp function and
removed from the data set with indexing commands.

emptySpots = strcmp('EMPTY',genes);
yeastvalues(emptySpots,:) = [];
genes(emptySpots) = [];
numel(genes)

ans = 6314

In the yeastvalues data you will also see several places where the expression level is marked as NaN.
This indicates that no data was collected for this spot at the particular time step. One approach to
dealing with these missing values would be to impute them using the mean or median of data for the
particular gene over time. This example uses a less rigorous approach of simply throwing away the
data for any genes where one or more expression level was not measured.

The function isnan is used to identify the genes with missing data and indexing commands are used
to remove the genes with missing data.

nanIndices = any(isnan(yeastvalues),2);
yeastvalues(nanIndices,:) = [];
genes(nanIndices) = [];
numel(genes)

ans = 6276

If you were to plot the expression profiles of all the remaining profiles, you would see that most
profiles are flat and not significantly different from the others. This flat data is obviously of use as it
indicates that the genes associated with these profiles are not significantly affected by the diauxic
shift; however, in this example, you are interested in the genes with large changes in expression
accompanying the diauxic shift. You can use filtering functions in the Bioinformatics Toolbox™ to
remove genes with various types of profiles that do not provide useful information about genes
affected by the metabolic change.

You can use the genevarfilter function to filter out genes with small variance over time. The
function returns a logical array of the same size as the variable genes with ones corresponding to
rows of yeastvalues with variance greater than the 10th percentile and zeros corresponding to those
below the threshold.

32 Function Approximation, Clustering, and Control Examples

32-98



mask = genevarfilter(yeastvalues);
% Use the mask as an index into the values to remove the filtered genes.
yeastvalues = yeastvalues(mask,:);
genes = genes(mask);
numel(genes)

ans = 5648

The function genelowvalfilter removes genes that have very low absolute expression values.
Note that the gene filter functions can also automatically calculate the filtered data and names.

[mask, yeastvalues, genes] = ...
    genelowvalfilter(yeastvalues,genes,'absval',log2(3));
numel(genes)

ans = 822

Use geneentropyfilter to remove genes whose profiles have low entropy:

[mask, yeastvalues, genes] = ...
    geneentropyfilter(yeastvalues,genes,'prctile',15);
numel(genes)

ans = 614

Principal Component Analysis

Now that you have a manageable list of genes, you can look for relationships between the profiles.

Normalizing the standard deviation and mean of data allows the network to treat each input as
equally important over its range of values.

Principal-component analysis (PCA) is a useful technique that can be used to reduce the
dimensionality of large data sets, such as those from microarray analysis. This technique isolates the
principal components of the dataset eliminating those components that contribute the least to the
variation in the data set.

The two settings variables can be used to apply mapstd and processpca to new data to be
consistent.

[x,std_settings] = mapstd(yeastvalues');  % Normalize data
[x,pca_settings] = processpca(x,0.15);    % PCA

The input vectors are first normalized, using mapstd, so that they have zero mean and unity variance.
processpca is the function that implements the PCA algorithm. The second argument passed to
processpca is 0.15. This means that processpca eliminates those principal components that
contribute less than 15% to the total variation in the data set. The variable pc now contains the
principal components of the yeastvalues data.

The principal components can be visualized using the scatter function.

figure
scatter(x(1,:),x(2,:));
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter Plot');

 Gene Expression Analysis

32-99



Cluster Analysis: Self-Organizing Maps

The principal components can now be clustered using the Self-Organizing map (SOM) clustering
algorithm.

The selforgmap function creates a Self-Organizing map network which can then be trained with the
train function.

The input size is 0 because the network has not yet been configured to match our input data. This will
happen when the network is trained.

net = selforgmap([5 3]);
view(net)

32 Function Approximation, Clustering, and Control Examples

32-100



Now the network is ready to be trained.

The Neural Network Training Tool shows the network being trained and the algorithms used to train
it. It also displays the training state during training and the criteria which stopped training will be
highlighted in green.

The buttons at the bottom open useful plots which can be opened during and after training. Links
next to the algorithm names and plot buttons open documentation on those subjects.

net = train(net,x);

 Gene Expression Analysis

32-101



Use plotsompos to display the network over a scatter plot of the first two dimensions of the data.

figure
plotsompos(net,x);

32 Function Approximation, Clustering, and Control Examples

32-102



You can assign clusters using the SOM by finding the nearest node to each point in the data set.

y = net(x);
cluster_indices = vec2ind(y);

Use plotsomhits to see how many vectors are assigned to each of the neurons in the map.

figure
plotsomhits(net,x);

 Gene Expression Analysis

32-103



You can also use other clustering algorithms like Hierarchical clustering and K-means, available in
the Statistics and Machine Learning Toolbox™ for cluster analysis.

Glossary

ORF - An open reading frame (ORF) is a portion of a gene's sequence that contains a sequence of
bases, uninterrupted by stop sequences, that could potentially encode a protein.

32 Function Approximation, Clustering, and Control Examples

32-104



Maglev Modeling

This example illustrates how a NARX (Nonlinear AutoRegressive with eXternal input) neural network
can model a magnet levitation dynamical system.

The Problem: Model a Magnetic Levitation System

In this example we attempt to build a neural network that can predict the dynamic behavior of a
magnet levitated using a control current.

The system is characterized by the magnet's position and a control current, both of which determine
where the magnet will be an instant later.

This is an example of a time series problem, where past values of a feedback time series (the magnet
position) and an external input series (the control current) are used to predict future values of the
feedback series.

Why Neural Networks?

Neural networks are very good at time series problems. A neural network with enough elements
(called neurons) can model dynamic systems with arbitrary accuracy. They are particularly well
suited for addressing non-linear dynamic problems. Neural networks are a good candidate for solving
this problem.

The network will be designed by using recordings of an actual levitated magnet's position responding
to a control current.

Preparing the Data

Data for function fitting problems are set up for a neural network by organizing the data into two
matrices, the input time series X and the target time series T.

The input series X is a row cell array, where each element is the associated timestep of the control
current.

The target series T is a row cell array, where each element is the associated timestep of the levitated
magnet position.

Here such a dataset is loaded.

[x,t] = maglev_dataset;

We can view the sizes of inputs X and targets T.

Note that both X and T have 4001 columns. These represent 4001 timesteps of the control current
and magnet position.

size(x)

ans = 1×2

           1        4001

size(t)

 Maglev Modeling

32-105



ans = 1×2

           1        4001

Time Series Modelling with a Neural Network

The next step is to create a neural network that will learn to model how the magnet changes position.

Since the neural network starts with random initial weights, the results of this example will differ
slightly every time it is run. The random seed is set to avoid this randomness. However this is not
necessary for your own applications.

setdemorandstream(491218381)

Two-layer (i.e. one-hidden-layer) NARX neural networks can fit any dynamical input-output
relationship given enough neurons in the hidden layer. Layers which are not output layers are called
hidden layers.

We will try a single hidden layer of 10 neurons for this example. In general, more difficult problems
require more neurons, and perhaps more layers. Simpler problems require fewer neurons.

We will also try using tap delays with two delays for the external input (control current) and feedback
(magnet position). More delays allow the network to model more complex dynamic systems.

The input and output have sizes of 0 because the network has not yet been configured to match our
input and target data. This will happen when the network is trained.

The output y(t) is also an input, whose delayed version is fed back into the network.

net = narxnet(1:2,1:2,10);
view(net)

32 Function Approximation, Clustering, and Control Examples

32-106



Before we can train the network, we must use the first two timesteps of the external input and
feedback time series to fill the two tap delay states of the network.

Furthermore, we need to use the feedback series both as an input series and target series.

The function PREPARETS prepares time series data for simulation and training for us. Xs will consist
of shifted input and target series to be presented to the network. Xi is the initial input delay states. Ai
is the layer delay states (empty in this case as there are no layer-to-layer delays), and Ts is the shifted
feedback series.

[Xs,Xi,Ai,Ts] = preparets(net,x,{},t);

Now the network is ready to be trained. The timesteps are automatically divided into training,
validation and test sets. The training set is used to teach the network. Training continues as long as
the network continues improving on the validation set. The test set provides a completely
independent measure of network accuracy.

The Neural Network Training Tool shows the network being trained and the algorithms used to train
it. It also displays the training state during training and the criteria which stopped training will be
highlighted in green.

The buttons at the bottom open useful plots which can be opened during and after training. Links
next to the algorithm names and plot buttons open documentation on those subjects.

[net,tr] = train(net,Xs,Ts,Xi,Ai);

 Maglev Modeling

32-107



To see how the network's performance improved during training, either click the "Performance"
button in the training tool, or call PLOTPERFORM.

Performance is measured in terms of mean squared error, and is shown in a log scale. It rapidly
decreased as the network was trained.

Performance is shown for each of the training, validation and test sets.

32 Function Approximation, Clustering, and Control Examples

32-108



plotperform(tr)

Testing the Neural Network

The mean squared error of the trained neural network for all timesteps can now be measured.

Y = net(Xs,Xi,Ai);

perf = mse(net,Ts,Y)

perf = 2.9245e-06

PLOTRESPONSE will show us the network's response in comparison to the actual magnet position. If
the model is accurate the '+' points will track the diamond points, and the errors in the bottom axis
will be very small.

plotresponse(Ts,Y)

 Maglev Modeling

32-109



PLOTERRCORR shows the correlation of error at time t, e(t) with errors over varying lags, e(t+lag).
The center line shows the mean squared error. If the network has been trained well all the other lines
will be much shorter, and most if not all will fall within the red confidence limits.

The function GSUBTRACT is used to calculate the error. This function generalizes subtraction to
support differences between cell array data.

E = gsubtract(Ts,Y);

ploterrcorr(E)

32 Function Approximation, Clustering, and Control Examples

32-110



Similarly, PLOTINERRCORR shows the correlation of error with respect to the inputs, with varying
degrees of lag. In this case, most or all the lines should fall within the confidence limits, including the
center line.

plotinerrcorr(Xs,E)

 Maglev Modeling

32-111



The network was trained in open loop form, where targets were used as feedback inputs. The
network can also be converted to closed loop form, where its own predictions become the feedback
inputs.

net2 = closeloop(net);
view(net2)

We can simulate the network in closed loop form. In this case the network is only given initial magnet
positions, and then must use its own predicted positions recursively to predict new positions.

This quickly results in a poor fit between the predicted and actual response. This will occur even if
the model is very good. But it is interesting to see how many steps they match before separating.

Again, PREPARETS does the work of preparing the time series data for us taking into account the
altered network.

[Xs,Xi,Ai,Ts] = preparets(net2,x,{},t);
Y = net2(Xs,Xi,Ai);
plotresponse(Ts,Y)

32 Function Approximation, Clustering, and Control Examples

32-112



If the application required us to access the predicted magnet position a timestep ahead of when it
actually occurs, we can remove a delay from the network so at any given time t, the output is an
estimate of the position at time t+1.

net3 = removedelay(net);
view(net3)

 Maglev Modeling

32-113



Again we use PREPARETS to prepare the time series for simulation. This time the network is again
very accurate as it is doing open loop prediction, but the output is shifted one timestep.

[Xs,Xi,Ai,Ts] = preparets(net3,x,{},t);
Y = net3(Xs,Xi,Ai);
plotresponse(Ts,Y)

32 Function Approximation, Clustering, and Control Examples

32-114



This example illustrated how to design a neural network that models the behavior of a dynamical
magnet levitation system.

Explore other examples and the documentation for more insight into neural networks and their
applications.

 Maglev Modeling

32-115



Competitive Learning

Neurons in a competitive layer learn to represent different regions of the input space where input
vectors occur.

P is a set of randomly generated but clustered test data points. Here the data points are plotted.

A competitive network will be used to classify these points into natural classes.

% Create inputs X.
bounds = [0 1; 0 1];   % Cluster centers to be in these bounds.
clusters = 8;          % This many clusters.
points = 10;           % Number of points in each cluster.
std_dev = 0.05;        % Standard deviation of each cluster.
x = nngenc(bounds,clusters,points,std_dev);

% Plot inputs X.
plot(x(1,:),x(2,:),'+r');
title('Input Vectors');
xlabel('x(1)');
ylabel('x(2)');

Here COMPETLAYER takes two arguments, the number of neurons and the learning rate.

We can configure the network inputs (normally done automatically by TRAIN) and plot the initial
weight vectors to see their attempt at classification.

32 Function Approximation, Clustering, and Control Examples

32-116



The weight vectors (o's) will be trained so that they occur centered in clusters of input vectors (+'s).

net = competlayer(8,.1);
net = configure(net,x);
w = net.IW{1};
plot(x(1,:),x(2,:),'+r');
hold on;
circles = plot(w(:,1),w(:,2),'ob');

Set the number of epochs to train before stopping and train this competitive layer (may take several
seconds).

Plot the updated layer weights on the same graph.

net.trainParam.epochs = 7;
net = train(net,x);

 Competitive Learning

32-117



w = net.IW{1};
delete(circles);
plot(w(:,1),w(:,2),'ob');

32 Function Approximation, Clustering, and Control Examples

32-118



Now we can use the competitive layer as a classifier, where each neuron corresponds to a different
category. Here we define am input vector X1 as [0; 0.2].

The output Y, indicates which neuron is responding, and thereby which class the input belongs.

x1 = [0; 0.2];
y = net(x1)

y = 8×1

     0
     1
     0
     0
     0
     0
     0
     0

 Competitive Learning

32-119



One-Dimensional Self-Organizing Map

Neurons in a 2-D layer learn to represent different regions of the input space where input vectors
occur. In addition, neighboring neurons learn to respond to similar inputs, thus the layer learns the
topology of the presented input space.

Here 100 data points are created on the unit circle.

A competitive network will be used to classify these points into natural classes.

angles = 0:0.5*pi/99:0.5*pi;
X = [sin(angles); cos(angles)];
plot(X(1,:),X(2,:),'+r')

The map will be a 1-dimensional layer of 10 neurons.

net = selforgmap(10);

Specify that the network is to be trained for 10 epochs and use train to train the network on the
input data.

net.trainParam.epochs = 10;
net = train(net,X);

32 Function Approximation, Clustering, and Control Examples

32-120



Now plot the trained network's weight positions by using plotsompos.

The red dots are the neuron's weight vectors, and the blue lines connect each pair within a distance
of 1.

plotsompos(net)

 One-Dimensional Self-Organizing Map

32-121



The map can now be used to classify inputs, such as [1; 0]. Either neuron 1 or 10 should have an
output of 1, as the above input vector was at one end of the presented input space. The first pair of
numbers indicate the neuron, and the single number indicates its output.

x = [1;0];
a = net(x)

a = 10×1

     0
     0
     0
     0
     0
     0
     0
     0
     0
     1

32 Function Approximation, Clustering, and Control Examples

32-122



Two-Dimensional Self-Organizing Map

As in one-dimensional problems, this self-organizing map will learn to represent different regions of
the input space where input vectors occur. In this example, however, the neurons will arrange
themselves in a two-dimensional grid, rather than a line.

We would like to classify 1000 two-element vectors in a rectangle.

X = rands(2,1000);
plot(X(1,:),X(2,:),'+r')

We will use a 5-by-6 layer of neurons to classify the vectors above. We would like each neuron to
respond to a different region of the rectangle, and neighboring neurons to respond to adjacent
regions.

The network is configured to match the dimensions of the inputs. This step is required here because
we will plot the initial weights. Normally configuration is performed automatically when training.

net = selforgmap([5 6]);
net = configure(net,X);

We can visualize the network we have just created by using plotsompos.

Each neuron is represented by a red dot at the location of its two weights. Initially, all the neurons
have the same weights in the middle of the vectors, so only one dot appears.

 Two-Dimensional Self-Organizing Map

32-123



plotsompos(net)

Now we train the map on the 1000 vectors for 1 epoch and replot the network weights.

After training, note that the layer of neurons has begun to self-organize so that each neuron now
classifies a different region of the input space, and adjacent (connected) neurons respond to adjacent
regions.

net.trainParam.epochs = 1;
net = train(net,X);

32 Function Approximation, Clustering, and Control Examples

32-124



plotsompos(net)

 Two-Dimensional Self-Organizing Map

32-125



We can now classify vectors by giving them to the network and seeing which neuron responds.

The neuron indicated by a "1" responded, so x belongs to that class.

x = [0.5;0.3];
y = net(x)

y = 30×1

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
      ⋮

32 Function Approximation, Clustering, and Control Examples

32-126



Radial Basis Approximation

This example uses the NEWRB function to create a radial basis network that approximates a function
defined by a set of data points.

Define 21 inputs P and associated targets T.

X = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ...
      .1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ...
      .3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
plot(X,T,'+');
title('Training Vectors');
xlabel('Input Vector P');
ylabel('Target Vector T');

We would like to find a function which fits the 21 data points. One way to do this is with a radial basis
network. A radial basis network is a network with two layers. A hidden layer of radial basis neurons
and an output layer of linear neurons. Here is the radial basis transfer function used by the hidden
layer.

x = -3:.1:3;
a = radbas(x);
plot(x,a)
title('Radial Basis Transfer Function');

 Radial Basis Approximation

32-127



xlabel('Input p');
ylabel('Output a');

The weights and biases of each neuron in the hidden layer define the position and width of a radial
basis function. Each linear output neuron forms a weighted sum of these radial basis functions. With
the correct weight and bias values for each layer, and enough hidden neurons, a radial basis network
can fit any function with any desired accuracy. This is an example of three radial basis functions (in
blue) are scaled and summed to produce a function (in magenta).

a2 = radbas(x-1.5);
a3 = radbas(x+2);
a4 = a + a2*1 + a3*0.5;
plot(x,a,'b-',x,a2,'b--',x,a3,'b--',x,a4,'m-')
title('Weighted Sum of Radial Basis Transfer Functions');
xlabel('Input p');
ylabel('Output a');

32 Function Approximation, Clustering, and Control Examples

32-128



The function NEWRB quickly creates a radial basis network which approximates the function defined
by P and T. In addition to the training set and targets, NEWRB takes two arguments, the sum-squared
error goal and the spread constant.

eg = 0.02; % sum-squared error goal
sc = 1;    % spread constant
net = newrb(X,T,eg,sc);

NEWRB, neurons = 0, MSE = 0.176192

To see how the network performs, replot the training set. Then simulate the network response for
inputs over the same range. Finally, plot the results on the same graph.

plot(X,T,'+');
xlabel('Input');

X = -1:.01:1;
Y = net(X);

hold on;
plot(X,Y);
hold off;
legend({'Target','Output'})

 Radial Basis Approximation

32-129



32 Function Approximation, Clustering, and Control Examples

32-130



Radial Basis Underlapping Neurons

A radial basis network is trained to respond to specific inputs with target outputs. However, because
the spread of the radial basis neurons is too low, the network requires many neurons.

Define 21 inputs P and associated targets T.

P = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ...
      .1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ...
      .3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
plot(P,T,'+');
title('Training Vectors');
xlabel('Input Vector P');
ylabel('Target Vector T');

The function NEWRB quickly creates a radial basis network which approximates the function defined
by P and T. In addition to the training set and targets, NEWRB takes two arguments, the sum-squared
error goal and the spread constant. The spread of the radial basis neurons B is set to a very small
number.

eg = 0.02; % sum-squared error goal
sc = .01;  % spread constant
net = newrb(P,T,eg,sc);

NEWRB, neurons = 0, MSE = 0.176192

 Radial Basis Underlapping Neurons

32-131



To check that the network fits the function in a smooth way, define another set of test input vectors
and simulate the network with these new inputs. Plot the results on the same graph as the training
set. The test vectors reveal that the function has been overfit! The network could have done better
with a higher spread constant.

X = -1:.01:1;
Y = net(X);
hold on;
plot(X,Y);
hold off;

32 Function Approximation, Clustering, and Control Examples

32-132



Radial Basis Overlapping Neurons

A radial basis network is trained to respond to specific inputs with target outputs. However, because
the spread of the radial basis neurons is too high, each neuron responds essentially the same, and the
network cannot be designed.

Define 21 inputs P and associated targets T.

P = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ...
      .1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ...
      .3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
plot(P,T,'+');
title('Training Vectors');
xlabel('Input Vector P');
ylabel('Target Vector T');

The function NEWRB quickly creates a radial basis network which approximates the function defined
by P and T.

In addition to the training set and targets, NEWRB takes two arguments, the sum-squared error goal
and the spread constant. The spread of the radial basis neurons B is set to a very large number.

eg = 0.02; % sum-squared error goal
sc = 100;  % spread constant
net = newrb(P,T,eg,sc);

 Radial Basis Overlapping Neurons

32-133



NEWRB, neurons = 0, MSE = 0.176192

NEWRB cannot properly design a radial basis network due to the large overlap of the input regions of
the radial basis neurons. All the neurons always output 1, and so cannot be used to generate different
responses. To see how the network performs with the training set, simulate the network with the
original inputs. Plot the results on the same graph as the training set.

Y = net(P);
hold on;
plot(P,Y);
hold off;

32 Function Approximation, Clustering, and Control Examples

32-134



GRNN Function Approximation

This example uses functions NEWGRNN and SIM.

Here are eight data points of y function we would like to fit. The functions inputs X should result in
target outputs T.

X = [1 2 3 4 5 6 7 8];
T = [0 1 2 3 2 1 2 1];

plot(X,T,'.','markersize',30)
axis([0 9 -1 4])
title('Function to approximate.')
xlabel('X')
ylabel('T')

We use NEWGRNN to create y generalized regression network. We use y SPREAD slightly lower than
1, the distance between input values, in order, to get y function that fits individual data points fairly
closely. A smaller spread would fit data better but be less smooth.

spread = 0.7;
net = newgrnn(X,T,spread);
A = net(X);

hold on
outputline = plot(X,A,'.','markersize',30,'color',[1 0 0]);

 GRNN Function Approximation

32-135



title('Create and test y network.')
xlabel('X')
ylabel('T and A')

We can use the network to approximate the function at y new input value.

x = 3.5;
y = net(x);
plot(x,y,'.','markersize',30,'color',[1 0 0]);
title('New input value.')
xlabel('X and x')
ylabel('T and y')

32 Function Approximation, Clustering, and Control Examples

32-136



Here the network's response is simulated for many values, allowing us to see the function it
represents.

X2 = 0:.1:9;
Y2 = net(X2);
plot(X2,Y2,'linewidth',4,'color',[1 0 0])
title('Function to approximate.')
xlabel('X and X2')
ylabel('T and Y2')

 GRNN Function Approximation

32-137



32 Function Approximation, Clustering, and Control Examples

32-138



PNN Classification

This example uses functions NEWPNN and SIM.

Here are three two-element input vectors X and their associated classes Tc. We would like to create y
probabilistic neural network that classifies these vectors properly.

X = [1 2; 2 2; 1 1]';
Tc = [1 2 3];
plot(X(1,:),X(2,:),'.','markersize',30)
for i = 1:3, text(X(1,i)+0.1,X(2,i),sprintf('class %g',Tc(i))), end
axis([0 3 0 3])
title('Three vectors and their classes.')
xlabel('X(1,:)')
ylabel('X(2,:)')

First we convert the target class indices Tc to vectors T. Then we design y probabilistic neural
network with NEWPNN. We use y SPREAD value of 1 because that is y typical distance between the
input vectors.

T = ind2vec(Tc);
spread = 1;
net = newpnn(X,T,spread);

Now we test the network on the design input vectors. We do this by simulating the network and
converting its vector outputs to indices.

 PNN Classification

32-139



Y = net(X);
Yc = vec2ind(Y);
plot(X(1,:),X(2,:),'.','markersize',30)
axis([0 3 0 3])
for i = 1:3,text(X(1,i)+0.1,X(2,i),sprintf('class %g',Yc(i))),end
title('Testing the network.')
xlabel('X(1,:)')
ylabel('X(2,:)')

Let's classify y new vector with our network.

x = [2; 1.5];
y = net(x);
ac = vec2ind(y);
hold on
plot(x(1),x(2),'.','markersize',30,'color',[1 0 0])
text(x(1)+0.1,x(2),sprintf('class %g',ac))
hold off
title('Classifying y new vector.')
xlabel('X(1,:) and x(1)')
ylabel('X(2,:) and x(2)')

32 Function Approximation, Clustering, and Control Examples

32-140



This diagram shows how the probabilistic neural network divides the input space into the three
classes.

x1 = 0:.05:3;
x2 = x1;
[X1,X2] = meshgrid(x1,x2);
xx = [X1(:) X2(:)]';
yy = net(xx);
yy = full(yy);
m = mesh(X1,X2,reshape(yy(1,:),length(x1),length(x2)));
m.FaceColor = [0 0.5 1];
m.LineStyle = 'none';
hold on
m = mesh(X1,X2,reshape(yy(2,:),length(x1),length(x2)));
m.FaceColor = [0 1.0 0.5];
m.LineStyle = 'none';
m = mesh(X1,X2,reshape(yy(3,:),length(x1),length(x2)));
m.FaceColor = [0.5 0 1];
m.LineStyle = 'none';
plot3(X(1,:),X(2,:),[1 1 1]+0.1,'.','markersize',30)
plot3(x(1),x(2),1.1,'.','markersize',30,'color',[1 0 0])
hold off
view(2)
title('The three classes.')
xlabel('X(1,:) and x(1)')
ylabel('X(2,:) and x(2)')

 PNN Classification

32-141



32 Function Approximation, Clustering, and Control Examples

32-142



Learning Vector Quantization

An LVQ network is trained to classify input vectors according to given targets.

Let X be 10 2-element example input vectors and C be the classes these vectors fall into. These
classes can be transformed into vectors to be used as targets, T, with IND2VEC.

x = [-3 -2 -2  0  0  0  0 +2 +2 +3;
      0 +1 -1 +2 +1 -1 -2 +1 -1  0];
c = [1 1 1 2 2 2 2 1 1 1];
t = ind2vec(c);

Here the data points are plotted. Red = class 1, Cyan = class 2. The LVQ network represents clusters
of vectors with hidden neurons, and groups the clusters with output neurons to form the desired
classes.

colormap(hsv);
plotvec(x,c)
title('Input Vectors');
xlabel('x(1)');
ylabel('x(2)');

Here LVQNET creates an LVQ layer with four hidden neurons and a learning rate of 0.1. The network
is then configured for inputs X and targets T. (Configuration normally an unnecessary step as it is
done automatically by TRAIN.)

 Learning Vector Quantization

32-143



net = lvqnet(4,0.1);
net = configure(net,x,t);

The competitive neuron weight vectors are plotted as follows.

hold on
w1 = net.IW{1};
plot(w1(1,1),w1(1,2),'ow')
title('Input/Weight Vectors');
xlabel('x(1), w(1)');
ylabel('x(2), w(2)');

To train the network, first override the default number of epochs, and then train the network. When it
is finished, replot the input vectors '+' and the competitive neurons' weight vectors 'o'. Red = class 1,
Cyan = class 2.

net.trainParam.epochs=150;
net=train(net,x,t);

32 Function Approximation, Clustering, and Control Examples

32-144



cla;
plotvec(x,c);
hold on;
plotvec(net.IW{1}',vec2ind(net.LW{2}),'o');

 Learning Vector Quantization

32-145



Now use the LVQ network as a classifier, where each neuron corresponds to a different category.
Present the input vector [0.2; 1]. Red = class 1, Cyan = class 2.

x1 = [0.2; 1];
y1 = vec2ind(net(x1))

y1 = 2

32 Function Approximation, Clustering, and Control Examples

32-146



Linear Prediction Design

This example illustrates how to design a linear neuron to predict the next value in a time series given
the last five values.

Defining a Wave Form

Here time is defined from 0 to 5 seconds in steps of 1/40 of a second.

time = 0:0.025:5;

We can define a signal with respect to time.

signal = sin(time*4*pi);
plot(time,signal)
xlabel('Time');
ylabel('Signal');
title('Signal to be Predicted');

Setting up the Problem for a Neural Network

The signal convert is then converted to a cell array. Neural Networks represent timesteps as columns
of a cell array, do distinguish them from different samples at a given time, which are represented with
columns of matrices.

signal = con2seq(signal);

 Linear Prediction Design

32-147



To set up the problem we will use the first four values of the signal as initial input delay states, and
the rest except for the last step as inputs.

Xi = signal(1:4);
X = signal(5:(end-1));
timex = time(5:(end-1));

The targets are now defined to match the inputs, but shifted earlier by one timestep.

T = signal(6:end);

Designing the Linear Layer

The function newlind will now design a linear layer with a single neuron which predicts the next
timestep of the signal given the current and four past values.

net = newlind(X,T,Xi);
view(net)

32 Function Approximation, Clustering, and Control Examples

32-148



Testing the Linear Layer

The network can now be called like a function on the inputs and delayed states to get its time
response.

Y = net(X,Xi);

The output signal is plotted with the targets.

figure
plot(timex,cell2mat(Y),timex,cell2mat(T),'+')
xlabel('Time');
ylabel('Output -  Target +');
title('Output and Target Signals');

The error can also be plotted.

figure
E = cell2mat(T)-cell2mat(Y);
plot(timex,E,'r')
hold off
xlabel('Time');
ylabel('Error');
title('Error Signal');

 Linear Prediction Design

32-149



Notice how small the error is!

This example illustrated how to design a dynamic linear network which can predict a signal's next
value from current and past values.

32 Function Approximation, Clustering, and Control Examples

32-150



Adaptive Linear Prediction

This example shows how an adaptive linear layer can learn to predict the next value in a signal, given
the current and last four values.

To learn how to forecast time series data using a deep learning network, see “Time Series
Forecasting Using Deep Learning” on page 4-16.

Defining a Wave Form

Here two time segments are defined from 0 to 6 seconds in steps of 1/40 of a second.

time1 = 0:0.025:4;      % from 0 to 4 seconds
time2 = 4.025:0.025:6;  % from 4 to 6 seconds
time = [time1 time2];  % from 0 to 6 seconds

Here is a signal which starts at one frequency but then transitions to another frequency.

signal = [sin(time1*4*pi) sin(time2*8*pi)];
plot(time,signal)
xlabel('Time');
ylabel('Signal');
title('Signal to be Predicted');

 Adaptive Linear Prediction

32-151



Setting up the Problem for a Neural Network

The signal is then converted to a cell array. Neural Networks represent timesteps as columns of a cell
array, to distinguish them from different samples at a given time, which are represented with columns
of matrices.

signal = con2seq(signal);

To set up the problem we will use the first five values of the signal as initial input delay states, and
the rest for inputs.

Xi = signal(1:5);
X = signal(6:end);
timex = time(6:end);

The targets are now defined to match the inputs. The network is to predict the current input, only
using the last five values.

T = signal(6:end);

Creating the Linear Layer

The function linearlayer creates a linear layer with a single neuron with a tap delay of the last five
inputs.

net = linearlayer(1:5,0.1);
view(net)

32 Function Approximation, Clustering, and Control Examples

32-152



Adapting the Linear Layer

The function adapt simulates the network on the input, while adjusting its weights and biases after
each timestep in response to how closely its output matches the target. It returns the update
networks, it outputs, and its errors.

[net,Y] = adapt(net,X,T,Xi);

The output signal is plotted with the targets.

figure
plot(timex,cell2mat(Y),timex,cell2mat(T),'+')
xlabel('Time');
ylabel('Output -  Target +');
title('Output and Target Signals');

 Adaptive Linear Prediction

32-153



The error can also be plotted.

figure
E = cell2mat(T)-cell2mat(Y);
plot(timex,E,'r')
hold off
xlabel('Time');
ylabel('Error');
title('Error Signal');

32 Function Approximation, Clustering, and Control Examples

32-154



Notice how small the error is except for initial errors and the network learns the systems behavior at
the beginning and after the system transition.

This example illustrated how to simulate an adaptive linear network which can predict a signal's next
value from current and past values despite changes in the signals behavior.

 Adaptive Linear Prediction

32-155



Classification with a Two-Input Perceptron

A two-input hard limit neuron is trained to classify four input vectors into two categories.

Each of the four column vectors in X defines a two-element input vectors and a row vector T defines
the vector's target categories. We can plot these vectors with PLOTPV.

X = [ -0.5 -0.5 +0.3 -0.1;  ...
      -0.5 +0.5 -0.5 +1.0];
T = [1 1 0 0];
plotpv(X,T);

The perceptron must properly classify the four input vectors in X into the two categories defined by T.
Perceptrons have HARDLIM neurons. These neurons are capable of separating an input space with a
straight line into two categories (0 and 1).

Here PERCEPTRON creates a new neural network with a single neuron. The network is then
configured to the data, so we can examine its initial weight and bias values. (Normally the
configuration step can be skipped as it is automatically done by ADAPT or TRAIN.)

net = perceptron;
net = configure(net,X,T);

The input vectors are replotted with the neuron's initial attempt at classification.

32 Function Approximation, Clustering, and Control Examples

32-156



The initial weights are set to zero, so any input gives the same output and the classification line does
not even appear on the plot. Fear not ... we are going to train it!

plotpv(X,T);
plotpc(net.IW{1},net.b{1});

Here the input and target data are converted to sequential data (cell array where each column
indicates a timestep) and copied three times to form the series XX and TT.

ADAPT updates the network for each timestep in the series and returns a new network object that
performs as a better classifier.

XX = repmat(con2seq(X),1,3);
TT = repmat(con2seq(T),1,3);
net = adapt(net,XX,TT);
plotpc(net.IW{1},net.b{1});

 Classification with a Two-Input Perceptron

32-157



Now SIM is used to classify any other input vector, like [0.7; 1.2]. A plot of this new point with the
original training set shows how the network performs. To distinguish it from the training set, color it
red.

x = [0.7; 1.2];
y = net(x);
plotpv(x,y);
point = findobj(gca,'type','line');
point.Color = 'red';

32 Function Approximation, Clustering, and Control Examples

32-158



Turn on "hold" so the previous plot is not erased and plot the training set and the classification line.

The perceptron correctly classified our new point (in red) as category "zero" (represented by a circle)
and not a "one" (represented by a plus).

hold on;
plotpv(X,T);
plotpc(net.IW{1},net.b{1});
hold off;

 Classification with a Two-Input Perceptron

32-159



32 Function Approximation, Clustering, and Control Examples

32-160



Outlier Input Vectors

A 2-input hard limit neuron is trained to classify 5 input vectors into two categories. However,
because 1 input vector is much larger than all of the others, training takes a long time.

Each of the five column vectors in X defines a 2-element input vectors, and a row vector T defines the
vector's target categories. Plot these vectors with PLOTPV.

X = [-0.5 -0.5 +0.3 -0.1 -40; -0.5 +0.5 -0.5 +1.0 50];
T = [1 1 0 0 1];
plotpv(X,T);

Note that 4 input vectors have much smaller magnitudes than the fifth vector in the upper left of the
plot. The perceptron must properly classify the 5 input vectors in X into the two categories defined by
T.

PERCEPTRON creates a new network which is then configured with the input and target data which
results in initial values for its weights and bias. (Configuration is normally not necessary, as it is done
automatically by ADAPT and TRAIN.)

net = perceptron;
net = configure(net,X,T);

Add the neuron's initial attempt at classification to the plot.

 Outlier Input Vectors

32-161



The initial weights are set to zero, so any input gives the same output and the classification line does
not even appear on the plot. Fear not... we are going to train it!

hold on
linehandle = plotpc(net.IW{1},net.b{1});

ADAPT returns a new network object that performs as a better classifier, the network output, and the
error. This loop adapts the network and plots the classification line, until the error is zero.

E = 1;
while (sse(E))
   [net,Y,E] = adapt(net,X,T);
   linehandle = plotpc(net.IW{1},net.b{1},linehandle);
   drawnow;
end

32 Function Approximation, Clustering, and Control Examples

32-162



Note that it took the perceptron three passes to get it right. This a long time for such a simple
problem. The reason for the long training time is the outlier vector. Despite the long training time,
the perceptron still learns properly and can be used to classify other inputs.

Now SIM can be used to classify any other input vector. For example, classify an input vector of [0.7;
1.2].

A plot of this new point with the original training set shows how the network performs. To distinguish
it from the training set, color it red.

x = [0.7; 1.2];
y = net(x);
plotpv(x,y);
circle = findobj(gca,'type','line');
circle.Color = 'red';

 Outlier Input Vectors

32-163



Turn on "hold" so the previous plot is not erased. Add the training set and the classification line to the
plot.

hold on;
plotpv(X,T);
plotpc(net.IW{1},net.b{1});
hold off;

32 Function Approximation, Clustering, and Control Examples

32-164



Finally, zoom into the area of interest.

The perceptron correctly classified our new point (in red) as category "zero" (represented by a circle)
and not a "one" (represented by a plus). Despite the long training time, the perceptron still learns
properly. To see how to reduce training times associated with outlier vectors, see the "Normalized
Perceptron Rule" example.

axis([-2 2 -2 2]);

 Outlier Input Vectors

32-165



32 Function Approximation, Clustering, and Control Examples

32-166



Normalized Perceptron Rule

A 2-input hard limit neuron is trained to classify 5 input vectors into two categories. Despite the fact
that one input vector is much bigger than the others, training with LEARNPN is quick.

Each of the five column vectors in X defines a 2-element input vectors, and a row vector T defines the
vector's target categories. Plot these vectors with PLOTPV.

X = [ -0.5 -0.5 +0.3 -0.1 -40; ...
      -0.5 +0.5 -0.5 +1.0 50];
T = [1 1 0 0 1];
plotpv(X,T);

Note that 4 input vectors have much smaller magnitudes than the fifth vector in the upper left of the
plot. The perceptron must properly classify the 5 input vectors in X into the two categories defined by
T.

PERCEPTRON creates a new network with LEARPN learning rule, which is less sensitive to large
variations in input vector size than LEARNP (the default).

The network is then configured with the input and target data which results in initial values for its
weights and bias. (Configuration is normally not necessary, as it is done automatically by ADAPT and
TRAIN.)

net = perceptron('hardlim','learnpn');
net = configure(net,X,T);

 Normalized Perceptron Rule

32-167



Add the neuron's initial attempt at classification to the plot.

The initial weights are set to zero, so any input gives the same output and the classification line does
not even appear on the plot. Fear not... we are going to train it!

hold on
linehandle = plotpc(net.IW{1},net.b{1});

ADAPT returns a new network object that performs as a better classifier, the network output, and the
error. This loop allows the network to adapt, plots the classification line, and continues until the error
is zero.

E = 1;
while (sse(E))
   [net,Y,E] = adapt(net,X,T);
   linehandle = plotpc(net.IW{1},net.b{1},linehandle);
   drawnow;
end

32 Function Approximation, Clustering, and Control Examples

32-168



Note that training with LEARNP took only 3 epochs, while solving the same problem with LEARNPN
required 32 epochs. Thus, LEARNPN does much better job than LEARNP when there are large
variations in input vector size.

Now SIM can be used to classify any other input vector. For example, classify an input vector of [0.7;
1.2].

A plot of this new point with the original training set shows how the network performs. To distinguish
it from the training set, color it red.

x = [0.7; 1.2];
y = net(x);
plotpv(x,y);
circle = findobj(gca,'type','line');
circle.Color = 'red';

 Normalized Perceptron Rule

32-169



Turn on "hold" so the previous plot is not erased. Add the training set and the classification line to the
plot.

hold on;
plotpv(X,T);
plotpc(net.IW{1},net.b{1});
hold off;

32 Function Approximation, Clustering, and Control Examples

32-170



Finally, zoom into the area of interest.

The perceptron correctly classified our new point (in red) as category "zero" (represented by a circle)
and not a "one" (represented by a plus). The perceptron learns properly in much shorter time in spite
of the outlier (compare with the "Outlier Input Vectors" example).

axis([-2 2 -2 2]);

 Normalized Perceptron Rule

32-171



32 Function Approximation, Clustering, and Control Examples

32-172



Linearly Non-separable Vectors

A 2-input hard limit neuron fails to properly classify 5 input vectors because they are linearly non-
separable.

Each of the five column vectors in X defines a 2-element input vectors, and a row vector T defines the
vector's target categories. Plot these vectors with PLOTPV.

X = [ -0.5 -0.5 +0.3 -0.1 -0.8; ...
      -0.5 +0.5 -0.5 +1.0 +0.0 ];
T = [1 1 0 0 0];
plotpv(X,T);

The perceptron must properly classify the input vectors in X into the categories defined by T. Because
the two kinds of input vectors cannot be separated by a straight line, the perceptron will not be able
to do it.

Here the initial perceptron is created and configured. (The configuration step is normally optional, as
it is performed automatically by ADAPT and TRAIN.)

net = perceptron;
net = configure(net,X,T);

Add the neuron's initial attempt at classification to the plot. The initial weights are set to zero, so any
input gives the same output and the classification line does not even appear on the plot.

 Linearly Non-separable Vectors

32-173



hold on
plotpv(X,T);
linehandle = plotpc(net.IW{1},net.b{1});

ADAPT returns a new network after learning on the input and target data, the outputs and error. The
loop allows the network to repeatedly adapt, plots the classification line, and stops after 25 iterations.

for a = 1:25
   [net,Y,E] = adapt(net,X,T);
   linehandle = plotpc(net.IW{1},net.b{1},linehandle);  drawnow;
end;

32 Function Approximation, Clustering, and Control Examples

32-174



Note that zero error was never obtained. Despite training, the perceptron has not become an
acceptable classifier. Only being able to classify linearly separable data is the fundamental limitation
of perceptrons.

 Linearly Non-separable Vectors

32-175



Pattern Association Showing Error Surface

A linear neuron is designed to respond to specific inputs with target outputs.

X defines two 1-element input patterns (column vectors). T defines the associated 1-element targets
(column vectors).

X = [1.0 -1.2];
T = [0.5 1.0];

ERRSURF calculates errors for y neuron with y range of possible weight and bias values. PLOTES
plots this error surface with y contour plot underneath. The best weight and bias values are those
that result in the lowest point on the error surface.

w_range = -1:0.1:1;
b_range = -1:0.1:1;
ES = errsurf(X,T,w_range,b_range,'purelin');
plotes(w_range,b_range,ES);

The function NEWLIND will design y network that performs with the minimum error.

net = newlind(X,T);

SIM is used to simulate the network for inputs X. We can then calculate the neurons errors. SUMSQR
adds up the squared errors.

32 Function Approximation, Clustering, and Control Examples

32-176



A = net(X)

A = 1×2

    0.5000    1.0000

E = T - A

E = 1×2

     0     0

SSE = sumsqr(E)

SSE = 0

PLOTES replots the error surface. PLOTEP plots the "position" of the network using the weight and
bias values returned by SOLVELIN. As can be seen from the plot, SOLVELIN found the minimum error
solution.

plotes(w_range,b_range,ES);
plotep(net.IW{1,1},net.b{1},SSE);

We can now test the associator with one of the original inputs, -1.2, and see if it returns the target,
1.0.

 Pattern Association Showing Error Surface

32-177



x = -1.2;
y = net(x)

y = 1

32 Function Approximation, Clustering, and Control Examples

32-178



Training a Linear Neuron

A linear neuron is trained to respond to specific inputs with target outputs.

X defines two 1-element input patterns (column vectors). T defines associated 1-element targets
(column vectors). A single input linear neuron with y bias can be used to solve this problem.

X = [1.0 -1.2];
T = [0.5 1.0];

ERRSURF calculates errors for y neuron with y range of possible weight and bias values. PLOTES
plots this error surface with y contour plot underneath. The best weight and bias values are those
that result in the lowest point on the error surface.

w_range = -1:0.2:1;  b_range = -1:0.2:1;
ES = errsurf(X,T,w_range,b_range,'purelin');
plotes(w_range,b_range,ES);

MAXLINLR finds the fastest stable learning rate for training y linear network. For this example, this
rate will only be 40% of this maximum. NEWLIN creates y linear neuron. NEWLIN takes these
arguments: 1) Rx2 matrix of min and max values for R input elements, 2) Number of elements in the
output vector, 3) Input delay vector, and 4) Learning rate.

maxlr = 0.40*maxlinlr(X,'bias');
net = newlin([-2 2],1,[0],maxlr);

 Training a Linear Neuron

32-179



Override the default training parameters by setting the performance goal.

net.trainParam.goal = .001;

To show the path of the training we will train only one epoch at y time and call PLOTEP every epoch.
The plot shows y history of the training. Each dot represents an epoch and the blue lines show each
change made by the learning rule (Widrow-Hoff by default).

% [net,tr] = train(net,X,T);
net.trainParam.epochs = 1;
net.trainParam.show = NaN;
h=plotep(net.IW{1},net.b{1},mse(T-net(X)));     
[net,tr] = train(net,X,T);                                                    
r = tr;
epoch = 1;
while true
   epoch = epoch+1;
   [net,tr] = train(net,X,T);
   if length(tr.epoch) > 1
      h = plotep(net.IW{1,1},net.b{1},tr.perf(2),h);
      r.epoch=[r.epoch epoch]; 
      r.perf=[r.perf tr.perf(2)];
      r.vperf=[r.vperf NaN];
      r.tperf=[r.tperf NaN];
   else
      break
   end
end

32 Function Approximation, Clustering, and Control Examples

32-180



 Training a Linear Neuron

32-181



tr=r;

The train function outputs the trained network and y history of the training performance (tr). Here
the errors are plotted with respect to training epochs: The error dropped until it fell beneath the
error goal (the black line). At that point training stopped.

plotperform(tr);

32 Function Approximation, Clustering, and Control Examples

32-182



Now use SIM to test the associator with one of the original inputs, -1.2, and see if it returns the
target, 1.0. The result is very close to 1, the target. This could be made even closer by lowering the
performance goal.

x = -1.2;
y = net(x)

y = 0.9817

 Training a Linear Neuron

32-183



Linear Fit of Nonlinear Problem

A linear neuron is trained to find the minimum sum-squared error linear fit to y nonlinear input/
output problem.

X defines four 1-element input patterns (column vectors). T defines associated 1-element targets
(column vectors). Note that the relationship between values in X and in T is nonlinear. I.e. No W and
B exist such that X*W+B = T for all of four sets of X and T values above.

X = [+1.0 +1.5 +3.0 -1.2];
T = [+0.5 +1.1 +3.0 -1.0];

ERRSURF calculates errors for y neuron with y range of possible weight and bias values. PLOTES
plots this error surface with y contour plot underneath.

The best weight and bias values are those that result in the lowest point on the error surface. Note
that because y perfect linear fit is not possible, the minimum has an error greater than 0.

w_range =-2:0.4:2;  b_range = -2:0.4:2;
ES = errsurf(X,T,w_range,b_range,'purelin');
plotes(w_range,b_range,ES);

MAXLINLR finds the fastest stable learning rate for training y linear network. NEWLIN creates y
linear neuron. NEWLIN takes these arguments: 1) Rx2 matrix of min and max values for R input
elements, 2) Number of elements in the output vector, 3) Input delay vector, and 4) Learning rate.

32 Function Approximation, Clustering, and Control Examples

32-184



maxlr = maxlinlr(X,'bias');
net = newlin([-2 2],1,[0],maxlr);

Override the default training parameters by setting the maximum number of epochs. This ensures
that training will stop.

net.trainParam.epochs = 15;

To show the path of the training we will train only one epoch at y time and call PLOTEP every epoch
(code not shown here). The plot shows y history of the training. Each dot represents an epoch and the
blue lines show each change made by the learning rule (Widrow-Hoff by default).

% [net,tr] = train(net,X,T);
net.trainParam.epochs = 1;
net.trainParam.show = NaN;
h=plotep(net.IW{1},net.b{1},mse(T-net(X)));     
[net,tr] = train(net,X,T);                                                    
r = tr;
epoch = 1;
while epoch < 15
   epoch = epoch+1;
   [net,tr] = train(net,X,T);
   if length(tr.epoch) > 1
      h = plotep(net.IW{1,1},net.b{1},tr.perf(2),h);
      r.epoch=[r.epoch epoch]; 
      r.perf=[r.perf tr.perf(2)];
      r.vperf=[r.vperf NaN];
      r.tperf=[r.tperf NaN];
   else
      break
   end
end

 Linear Fit of Nonlinear Problem

32-185



32 Function Approximation, Clustering, and Control Examples

32-186



tr=r;

The train function outputs the trained network and y history of the training performance (tr). Here
the errors are plotted with respect to training epochs.

Note that the error never reaches 0. This problem is nonlinear and therefore y zero error linear
solution is not possible.

plotperform(tr);

 Linear Fit of Nonlinear Problem

32-187



Now use SIM to test the associator with one of the original inputs, -1.2, and see if it returns the
target, 1.0.

The result is not very close to 0.5! This is because the network is the best linear fit to y nonlinear
problem.

x = -1.2;
y = net(x)

y = -1.1803

32 Function Approximation, Clustering, and Control Examples

32-188



Underdetermined Problem

A linear neuron is trained to find y non-unique solution to an undetermined problem.

X defines one 1-element input patterns (column vectors). T defines an associated 1-element target
(column vectors). Note that there are infinite values of W and B such that the expression W*X+B = T
is true. Problems with multiple solutions are called underdetermined.

X = [+1.0];
T = [+0.5];

ERRSURF calculates errors for y neuron with y range of possible weight and bias values. PLOTES
plots this error surface with y contour plot underneath. The bottom of the valley in the error surface
corresponds to the infinite solutions to this problem.

w_range = -1:0.2:1;  b_range = -1:0.2:1;
ES = errsurf(X,T,w_range,b_range,'purelin');
plotes(w_range,b_range,ES);

MAXLINLR finds the fastest stable learning rate for training y linear network. NEWLIN creates y
linear neuron. NEWLIN takes these arguments: 1) Rx2 matrix of min and max values for R input
elements, 2) Number of elements in the output vector, 3) Input delay vector, and 4) Learning rate.

maxlr = maxlinlr(X,'bias');
net = newlin([-2 2],1,[0],maxlr);

 Underdetermined Problem

32-189



Override the default training parameters by setting the performance goal.

net.trainParam.goal = 1e-10;

To show the path of the training we will train only one epoch at y time and call PLOTEP every epoch.
The plot shows y history of the training. Each dot represents an epoch and the blue lines show each
change made by the learning rule (Widrow-Hoff by default).

% [net,tr] = train(net,X,T);
net.trainParam.epochs = 1;
net.trainParam.show = NaN;
h=plotep(net.IW{1},net.b{1},mse(T-net(X)));
[net,tr] = train(net,X,T);
r = tr;
epoch = 1;
while true
   epoch = epoch+1;
   [net,tr] = train(net,X,T);
   if length(tr.epoch) > 1
      h = plotep(net.IW{1,1},net.b{1},tr.perf(2),h);
      r.epoch=[r.epoch epoch];
      r.perf=[r.perf tr.perf(2)];
      r.vperf=[r.vperf NaN];
      r.tperf=[r.tperf NaN];
   else
      break
   end
end
tr=r;

32 Function Approximation, Clustering, and Control Examples

32-190



 Underdetermined Problem

32-191



Here we plot the NEWLIND solution. Note that the TRAIN (white dot) and SOLVELIN (red circle)
solutions are not the same. In fact, TRAINWH will return y different solution for different initial
conditions, while SOLVELIN will always return the same solution.

solvednet = newlind(X,T);
hold on;
plot(solvednet.IW{1,1},solvednet.b{1},'ro')
hold off;

32 Function Approximation, Clustering, and Control Examples

32-192



The train function outputs the trained network and y history of the training performance (tr). Here
the errors are plotted with respect to training epochs: Once the error reaches the goal, an adequate
solution for W and B has been found. However, because the problem is underdetermined, this solution
is not unique.

subplot(1,2,1);
plotperform(tr);

 Underdetermined Problem

32-193



We can now test the associator with one of the original inputs, 1.0, and see if it returns the target,
0.5. The result is very close to 0.5. The error can be reduced further, if required, by continued
training with TRAINWH using y smaller error goal.

x = 1.0;
y = net(x)

y =

    0.5000

32 Function Approximation, Clustering, and Control Examples

32-194



Linearly Dependent Problem

A linear neuron is trained to find the minimum error solution for y problem with linearly dependent
input vectors. If y linear dependence in input vectors is not matched in the target vectors, the
problem is nonlinear and does not have y zero error linear solution.

X defines three 2-element input patterns (column vectors). Note that 0.5 times the sum of (column)
vectors 1 and 3 results in vector 2. This is called linear dependence.

X = [ 1.0   2.0   3.0; ...
      4.0   5.0   6.0];

T defines an associated 1-element target (column vectors). Note that 0.5 times the sum of -1.0 and 0.5
does not equal 1.0. Because the linear dependence in X is not matched in T this problem is nonlinear
and does not have y zero error linear solution.

T = [0.5 1.0 -1.0];

MAXLINLR finds the fastest stable learning rate for TRAINWH. NEWLIN creates y linear neuron.
NEWLIN takes these arguments: 1) Rx2 matrix of min and max values for R input elements, 2)
Number of elements in the output vector, 3) Input delay vector, and 4) Learning rate.

maxlr = maxlinlr(X,'bias');
net = newlin([0 10;0 10],1,[0],maxlr);

TRAIN uses the Widrow-Hoff rule to train linear networks by default. We will display each 50 epochs
and train for y maximum of 500 epochs.

net.trainParam.show = 50;     % Frequency of progress displays (in epochs).
net.trainParam.epochs = 500;  % Maximum number of epochs to train.
net.trainParam.goal = 0.001;  % Sum-squared error goal.

Now the network is trained on the inputs X and targets T. Note that, due to the linear dependence
between input vectors, the problem did not reach the error goal represented by the black line.

[net,tr] = train(net,X,T);

 Linearly Dependent Problem

32-195



We can now test the associator with one of the original inputs, [1; 4] , and see if it returns the target,
0.5. The result is not 0.5 as the linear network could not fit the nonlinear problem caused by the
linear dependence between input vectors.

p = [1.0; 4];
y = net(p)

y = 0.8971

32 Function Approximation, Clustering, and Control Examples

32-196



 Linearly Dependent Problem

32-197



Too Large a Learning Rate

A linear neuron is trained to find the minimum error solution for a simple problem. The neuron is
trained with the learning rate larger than the one suggested by MAXLINLR.

X defines two 1-element input patterns (column vectors). T defines associated 1-element targets
(column vectors).

X = [+1.0 -1.2];
T = [+0.5 +1.0];

ERRSURF calculates errors for a neuron with a range of possible weight and bias values. PLOTES
plots this error surface with a contour plot underneath. The best weight and bias values are those
that result in the lowest point on the error surface.

w_range = -2:0.4:2;
b_range = -2:0.4:2;
ES = errsurf(X,T,w_range,b_range,'purelin');
plotes(w_range,b_range,ES);

MAXLINLR finds the fastest stable learning rate for training a linear network. NEWLIN creates a
linear neuron. To see what happens when the learning rate is too large, increase the learning rate to
225% of the recommended value. NEWLIN takes these arguments: 1) Rx2 matrix of min and max
values for R input elements, 2) Number of elements in the output vector, 3) Input delay vector, and 4)
Learning rate.

32 Function Approximation, Clustering, and Control Examples

32-198



maxlr = maxlinlr(X,'bias');
net = newlin([-2 2],1,[0],maxlr*2.25);

Override the default training parameters by setting the maximum number of epochs. This ensures
that training will stop:

net.trainParam.epochs = 20;

To show the path of the training we will train only one epoch at a time and call PLOTEP every epoch
(code not shown here). The plot shows a history of the training. Each dot represents an epoch and the
blue lines show each change made by the learning rule (Widrow-Hoff by default).

%[net,tr] = train(net,X,T);                                                    
net.trainParam.epochs = 1;
net.trainParam.show = NaN;
h=plotep(net.IW{1},net.b{1},mse(T-net(X)));     
[net,tr] = train(net,X,T);                                                    
r = tr;
epoch = 1;
while epoch < 20
   epoch = epoch+1;
   [net,tr] = train(net,X,T);
   if length(tr.epoch) > 1
      h = plotep(net.IW{1,1},net.b{1},tr.perf(2),h);
      r.epoch=[r.epoch epoch]; 
      r.perf=[r.perf tr.perf(2)];
      r.vperf=[r.vperf NaN];
      r.tperf=[r.tperf NaN];
   else
      break
   end
end

 Too Large a Learning Rate

32-199



32 Function Approximation, Clustering, and Control Examples

32-200



tr=r;

The train function outputs the trained network and a history of the training performance (tr). Here
the errors are plotted with respect to training epochs.

plotperform(tr);

 Too Large a Learning Rate

32-201



We can now use SIM to test the associator with one of the original inputs, -1.2, and see if it returns
the target, 1.0. The result is not very close to 0.5! This is because the network was trained with too
large a learning rate.

x = -1.2;
y = net(x)

y = 2.0913

32 Function Approximation, Clustering, and Control Examples

32-202



Adaptive Noise Cancellation

A linear neuron is allowed to adapt so that given one signal, it can predict a second signal.

TIME defines the time steps of this simulation. P defines a signal over these time steps. T is a signal
derived from P by shifting it to the left, multiplying it by 2 and adding it to itself.

time = 1:0.01:2.5;
X = sin(sin(time).*time*10);
P = con2seq(X);
T = con2seq(2*[0 X(1:(end-1))] + X);

Here is how the two signals are plotted:

plot(time,cat(2,P{:}),time,cat(2,T{:}),'--')
title('Input and Target Signals')
xlabel('Time')
legend({'Input','Target'})

The linear network must have tapped delay in order to learn the time-shifted correlation between P
and T. NEWLIN creates a linear layer. [-3 3] is the expected input range. The second argument is the
number of neurons in the layer. [0 1] specifies one input with no delay and one input with a delay of
one. The last argument is the learning rate.

net = newlin([-3 3],1,[0 1],0.1);

 Adaptive Noise Cancellation

32-203



ADAPT simulates adaptive networks. It takes a network, a signal, and a target signal, and filters the
signal adaptively. Plot the output Y in blue, the target T in red and the error E in green. By t=2 the
network has learned the relationship between the input and the target and the error drops to near
zero.

[net,Y,E,Pf]=adapt(net,P,T);
plot(time,cat(2,Y{:}),'b', ...
   time,cat(2,T{:}),'r', ...
   time,cat(2,E{:}),'g',[1 2.5],[0 0],'k')
legend({'Output','Target','Error'})

32 Function Approximation, Clustering, and Control Examples

32-204



Shallow Neural Networks Bibliography

33



Shallow Neural Networks Bibliography
[Batt92] Battiti, R., “First and second order methods for learning: Between steepest descent and
Newton's method,” Neural Computation, Vol. 4, No. 2, 1992, pp. 141–166.

[Beal72] Beale, E.M.L., “A derivation of conjugate gradients,” in F.A. Lootsma, Ed., Numerical
methods for nonlinear optimization, London: Academic Press, 1972.

[Bren73] Brent, R.P., Algorithms for Minimization Without Derivatives, Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[Caud89] Caudill, M., Neural Networks Primer, San Francisco, CA: Miller Freeman Publications,
1989.

This collection of papers from the AI Expert Magazine gives an excellent introduction to the field of
neural networks. The papers use a minimum of mathematics to explain the main results clearly.
Several good suggestions for further reading are included.

[CaBu92] Caudill, M., and C. Butler, Understanding Neural Networks: Computer Explorations, Vols.
1 and 2, Cambridge, MA: The MIT Press, 1992.

This is a two-volume workbook designed to give students “hands on” experience with neural
networks. It is written for a laboratory course at the senior or first-year graduate level. Software for
IBM PC and Apple Macintosh computers is included. The material is well written, clear, and helpful in
understanding a field that traditionally has been buried in mathematics.

[Char92] Charalambous, C.,“Conjugate gradient algorithm for efficient training of artificial neural
networks,” IEEE Proceedings, Vol. 139, No. 3, 1992, pp. 301–310.

[ChCo91] Chen, S., C.F.N. Cowan, and P.M. Grant, “Orthogonal least squares learning algorithm for
radial basis function networks,” IEEE Transactions on Neural Networks, Vol. 2, No. 2, 1991, pp. 302–
309.

This paper gives an excellent introduction to the field of radial basis functions. The papers use a
minimum of mathematics to explain the main results clearly. Several good suggestions for further
reading are included.

[ChDa99] Chengyu, G., and K. Danai, “Fault diagnosis of the IFAC Benchmark Problem with a model-
based recurrent neural network,” Proceedings of the 1999 IEEE International Conference on Control
Applications, Vol. 2, 1999, pp. 1755–1760.

[DARP88] DARPA Neural Network Study, Lexington, MA: M.I.T. Lincoln Laboratory, 1988.

This book is a compendium of knowledge of neural networks as they were known to 1988. It presents
the theoretical foundations of neural networks and discusses their current applications. It contains
sections on associative memories, recurrent networks, vision, speech recognition, and robotics.
Finally, it discusses simulation tools and implementation technology.

[DeHa01a] De Jesús, O., and M.T. Hagan, “Backpropagation Through Time for a General Class of
Recurrent Network,” Proceedings of the International Joint Conference on Neural Networks,
Washington, DC, July 15–19, 2001, pp. 2638–2642.

[DeHa01b] De Jesús, O., and M.T. Hagan, “Forward Perturbation Algorithm for a General Class of
Recurrent Network,” Proceedings of the International Joint Conference on Neural Networks,
Washington, DC, July 15–19, 2001, pp. 2626–2631.

33 Shallow Neural Networks Bibliography

33-2



[DeHa07] De Jesús, O., and M.T. Hagan, “Backpropagation Algorithms for a Broad Class of Dynamic
Networks,” IEEE Transactions on Neural Networks, Vol. 18, No. 1, January 2007, pp. 14 -27.

This paper provides detailed algorithms for the calculation of gradients and Jacobians for arbitrarily-
connected neural networks. Both the backpropagation-through-time and real-time recurrent learning
algorithms are covered.

[DeSc83] Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 1983.

[DHH01] De Jesús, O., J.M. Horn, and M.T. Hagan, “Analysis of Recurrent Network Training and
Suggestions for Improvements,” Proceedings of the International Joint Conference on Neural
Networks, Washington, DC, July 15–19, 2001, pp. 2632–2637.

[Elma90] Elman, J.L., “Finding structure in time,” Cognitive Science, Vol. 14, 1990, pp. 179–211.

This paper is a superb introduction to the Elman networks described in Chapter 10, “Recurrent
Networks.”

[FeTs03] Feng, J., C.K. Tse, and F.C.M. Lau, “A neural-network-based channel-equalization strategy
for chaos-based communication systems,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, Vol. 50, No. 7, 2003, pp. 954–957.

[FlRe64] Fletcher, R., and C.M. Reeves, “Function minimization by conjugate gradients,” Computer
Journal, Vol. 7, 1964, pp. 149–154.

[FoHa97] Foresee, F.D., and M.T. Hagan, “Gauss-Newton approximation to Bayesian regularization,”
Proceedings of the 1997 International Joint Conference on Neural Networks, 1997, pp. 1930–1935.

[GiMu81] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, New York: Academic Press,
1981.

[GiPr02] Gianluca, P., D. Przybylski, B. Rost, P. Baldi, “Improving the prediction of protein secondary
structure in three and eight classes using recurrent neural networks and profiles,” Proteins:
Structure, Function, and Genetics, Vol. 47, No. 2, 2002, pp. 228–235.

[Gros82] Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland: Reidel Press, 1982.

This book contains articles summarizing Grossberg's theoretical psychophysiology work up to 1980.
Each article contains a preface explaining the main points.

[HaDe99] Hagan, M.T., and H.B. Demuth, “Neural Networks for Control,” Proceedings of the 1999
American Control Conference, San Diego, CA, 1999, pp. 1642–1656.

[HaJe99] Hagan, M.T., O. De Jesus, and R. Schultz, “Training Recurrent Networks for Filtering and
Control,” Chapter 12 in Recurrent Neural Networks: Design and Applications, L. Medsker and L.C.
Jain, Eds., CRC Press, pp. 311–340.

[HaMe94] Hagan, M.T., and M. Menhaj, “Training feed-forward networks with the Marquardt
algorithm,” IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1999, pp. 989–993, 1994.

This paper reports the first development of the Levenberg-Marquardt algorithm for neural networks.
It describes the theory and application of the algorithm, which trains neural networks at a rate 10 to
100 times faster than the usual gradient descent backpropagation method.

 Shallow Neural Networks Bibliography

33-3



[HaRu78] Harrison, D., and Rubinfeld, D.L., “Hedonic prices and the demand for clean air,” J.
Environ. Economics & Management, Vol. 5, 1978, pp. 81-102.

This data set was taken from the StatLib library, which is maintained at Carnegie Mellon University.

[HDB96] Hagan, M.T., H.B. Demuth, and M.H. Beale, Neural Network Design, Boston, MA: PWS
Publishing, 1996.

This book provides a clear and detailed survey of basic neural network architectures and learning
rules. It emphasizes mathematical analysis of networks, methods of training networks, and
application of networks to practical engineering problems. It has example programs, an instructor’s
guide, and transparency overheads for teaching.

[HDH09] Horn, J.M., O. De Jesús and M.T. Hagan, “Spurious Valleys in the Error Surface of
Recurrent Networks - Analysis and Avoidance,” IEEE Transactions on Neural Networks, Vol. 20, No.
4, pp. 686-700, April 2009.

This paper describes spurious valleys that appear in the error surfaces of recurrent networks. It also
explains how training algorithms can be modified to avoid becoming stuck in these valleys.

[Hebb49] Hebb, D.O., The Organization of Behavior, New York: Wiley, 1949.

This book proposed neural network architectures and the first learning rule. The learning rule is used
to form a theory of how collections of cells might form a concept.

[Himm72] Himmelblau, D.M., Applied Nonlinear Programming, New York: McGraw-Hill, 1972.

[HuSb92] Hunt, K.J., D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop, Neural Networks for Control
System — A Survey,” Automatica, Vol. 28, 1992, pp. 1083–1112.

[JaRa04] Jayadeva and S.A.Rahman, “A neural network with O(N) neurons for ranking N numbers in
O(1/N) time,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 51, No. 10, 2004,
pp. 2044–2051.

[Joll86] Jolliffe, I.T., Principal Component Analysis, New York: Springer-Verlag, 1986.

[KaGr96] Kamwa, I., R. Grondin, V.K. Sood, C. Gagnon, Van Thich Nguyen, and J. Mereb, “Recurrent
neural networks for phasor detection and adaptive identification in power system control and
protection,” IEEE Transactions on Instrumentation and Measurement, Vol. 45, No. 2, 1996, pp. 657–
664.

[Koho87] Kohonen, T., Self-Organization and Associative Memory, 2nd Edition, Berlin: Springer-
Verlag, 1987.

This book analyzes several learning rules. The Kohonen learning rule is then introduced and
embedded in self-organizing feature maps. Associative networks are also studied.

[Koho97] Kohonen, T., Self-Organizing Maps, Second Edition, Berlin: Springer-Verlag, 1997.

This book discusses the history, fundamentals, theory, applications, and hardware of self-organizing
maps. It also includes a comprehensive literature survey.

[LiMi89] Li, J., A.N. Michel, and W. Porod, “Analysis and synthesis of a class of neural networks:
linear systems operating on a closed hypercube,” IEEE Transactions on Circuits and Systems, Vol. 36,
No. 11, 1989, pp. 1405–1422.

33 Shallow Neural Networks Bibliography

33-4



This paper discusses a class of neural networks described by first-order linear differential equations
that are defined on a closed hypercube. The systems considered retain the basic structure of the
Hopfield model but are easier to analyze and implement. The paper presents an efficient method for
determining the set of asymptotically stable equilibrium points and the set of unstable equilibrium
points. Examples are presented. The method of Li, et. al., is implemented in Advanced Topics in the
User’s Guide.

[Lipp87] Lippman, R.P., “An introduction to computing with neural nets,” IEEE ASSP Magazine,
1987, pp. 4–22.

This paper gives an introduction to the field of neural nets by reviewing six neural net models that
can be used for pattern classification. The paper shows how existing classification and clustering
algorithms can be performed using simple components that are like neurons. This is a highly readable
paper.

[MacK92] MacKay, D.J.C., “Bayesian interpolation,” Neural Computation, Vol. 4, No. 3, 1992, pp.
415–447.

[Marq63] Marquardt, D., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,”
SIAM Journal on Applied Mathematics, Vol. 11, No. 2, June 1963, pp. 431–441.

[McPi43] McCulloch, W.S., and W.H. Pitts, “A logical calculus of ideas immanent in nervous activity,”
Bulletin of Mathematical Biophysics, Vol. 5, 1943, pp. 115–133.

A classic paper that describes a model of a neuron that is binary and has a fixed threshold. A network
of such neurons can perform logical operations.

[MeJa00] Medsker, L.R., and L.C. Jain, Recurrent neural networks: design and applications, Boca
Raton, FL: CRC Press, 2000.

[Moll93] Moller, M.F., “A scaled conjugate gradient algorithm for fast supervised learning,” Neural
Networks, Vol. 6, 1993, pp. 525–533.

[MuNe92] Murray, R., D. Neumerkel, and D. Sbarbaro, “Neural Networks for Modeling and Control
of a Non-linear Dynamic System,” Proceedings of the 1992 IEEE International Symposium on
Intelligent Control, 1992, pp. 404–409.

[NaMu97] Narendra, K.S., and S. Mukhopadhyay, “Adaptive Control Using Neural Networks and
Approximate Models,” IEEE Transactions on Neural Networks, Vol. 8, 1997, pp. 475–485.

[NaPa91] Narendra, Kumpati S. and Kannan Parthasarathy, “Learning Automata Approach to
Hierarchical Multiobjective Analysis,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 20,
No. 1, January/February 1991, pp. 263–272.

[NgWi89] Nguyen, D., and B. Widrow, “The truck backer-upper: An example of self-learning in neural
networks,” Proceedings of the International Joint Conference on Neural Networks, Vol. 2, 1989, pp.
357–363.

This paper describes a two-layer network that first learned the truck dynamics and then learned how
to back the truck to a specified position at a loading dock. To do this, the neural network had to solve
a highly nonlinear control systems problem.

[NgWi90] Nguyen, D., and B. Widrow, “Improving the learning speed of 2-layer neural networks by
choosing initial values of the adaptive weights,” Proceedings of the International Joint Conference on
Neural Networks, Vol. 3, 1990, pp. 21–26.

 Shallow Neural Networks Bibliography

33-5



Nguyen and Widrow show that a two-layer sigmoid/linear network can be viewed as performing a
piecewise linear approximation of any learned function. It is shown that weights and biases generated
with certain constraints result in an initial network better able to form a function approximation of an
arbitrary function. Use of the Nguyen-Widrow (instead of purely random) initial conditions often
shortens training time by more than an order of magnitude.

[Powe77] Powell, M.J.D., “Restart procedures for the conjugate gradient method,” Mathematical
Programming, Vol. 12, 1977, pp. 241–254.

[Pulu92] Purdie, N., E.A. Lucas, and M.B. Talley, “Direct measure of total cholesterol and its
distribution among major serum lipoproteins,” Clinical Chemistry, Vol. 38, No. 9, 1992, pp. 1645–
1647.

[RiBr93] Riedmiller, M., and H. Braun, “A direct adaptive method for faster backpropagation
learning: The RPROP algorithm,” Proceedings of the IEEE International Conference on Neural
Networks, 1993.

[Robin94] Robinson, A.J., “An application of recurrent nets to phone probability estimation,” IEEE
Transactions on Neural Networks, Vol. 5 , No. 2, 1994.

[RoJa96] Roman, J., and A. Jameel, “Backpropagation and recurrent neural networks in financial
analysis of multiple stock market returns,” Proceedings of the Twenty-Ninth Hawaii International
Conference on System Sciences, Vol. 2, 1996, pp. 454–460.

[Rose61] Rosenblatt, F., Principles of Neurodynamics, Washington, D.C.: Spartan Press, 1961.

This book presents all of Rosenblatt's results on perceptrons. In particular, it presents his most
important result, the perceptron learning theorem.

[RuHi86a] Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning internal representations by
error propagation,” in D.E. Rumelhart and J.L. McClelland, Eds., Parallel Data Processing, Vol. 1,
Cambridge, MA: The M.I.T. Press, 1986, pp. 318–362.

This is a basic reference on backpropagation.

[RuHi86b] Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning representations by back-
propagating errors,” Nature, Vol. 323, 1986, pp. 533–536.

[RuMc86] Rumelhart, D.E., J.L. McClelland, and the PDP Research Group, Eds., Parallel Distributed
Processing, Vols. 1 and 2, Cambridge, MA: The M.I.T. Press, 1986.

These two volumes contain a set of monographs that present a technical introduction to the field of
neural networks. Each section is written by different authors. These works present a summary of
most of the research in neural networks to the date of publication.

[Scal85] Scales, L.E., Introduction to Non-Linear Optimization, New York: Springer-Verlag, 1985.

[SoHa96] Soloway, D., and P.J. Haley, “Neural Generalized Predictive Control,” Proceedings of the
1996 IEEE International Symposium on Intelligent Control, 1996, pp. 277–281.

[VoMa88] Vogl, T.P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, “Accelerating the
convergence of the backpropagation method,” Biological Cybernetics, Vol. 59, 1988, pp. 256–264.

33 Shallow Neural Networks Bibliography

33-6



Backpropagation learning can be speeded up and made less sensitive to small features in the error
surface such as shallow local minima by combining techniques such as batching, adaptive learning
rate, and momentum.

[WaHa89] Waibel, A., T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition
using time-delay neural networks,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
Vol. 37, 1989, pp. 328–339.

[Wass93] Wasserman, P.D., Advanced Methods in Neural Computing, New York: Van Nostrand
Reinhold, 1993.

[WeGe94] Weigend, A. S., and N. A. Gershenfeld, eds., Time Series Prediction: Forecasting the
Future and Understanding the Past, Reading, MA: Addison-Wesley, 1994.

[WiHo60] Widrow, B., and M.E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON Convention
Record, New York IRE, 1960, pp. 96–104.

[WiSt85] Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York: Prentice-Hall, 1985.

This is a basic paper on adaptive signal processing.

 Shallow Neural Networks Bibliography

33-7





Mathematical Notation

A



Mathematics and Code Equivalents
In this section...
“Mathematics Notation to MATLAB Notation” on page A-2
“Figure Notation” on page A-2

The transition from mathematics to code or vice versa can be made with the aid of a few rules. They
are listed here for reference.

Mathematics Notation to MATLAB Notation
To change from mathematics notation to MATLAB notation:

• Change superscripts to cell array indices. For example,

p1 p 1

• Change subscripts to indices within parentheses. For example,

p2 p(2)

and

p2
1 p 1 (2)

• Change indices within parentheses to a second cell array index. For example,

p1(k− 1) p 1, k− 1

• Change mathematics operators to MATLAB operators and toolbox functions. For example,

ab a ∗ b

Figure Notation
The following equations illustrate the notation used in figures.

n = w1, 1p1 + w1, 2p2 + ... + 21, RpR + b

W =
w1, 1 w1, 2 ... w1, R
w2, 1 w2, 2 ... w2, R
wS, 1 wS, 2 ... wS, R

A Mathematics and Code Equivalents

A-2



Neural Network Blocks for the Simulink
Environment

B



Neural Network Simulink Block Library

In this section...
“Transfer Function Blocks” on page B-2
“Net Input Blocks” on page B-3
“Weight Blocks” on page B-3
“Processing Blocks” on page B-3

The Deep Learning Toolbox product provides a set of blocks you can use to build neural networks
using Simulink software, or that the function gensim can use to generate the Simulink version of any
network you have created using MATLAB software.

Open the Deep Learning Toolbox block library with the command:

neural

This opens a library window that contains five blocks. Each of these blocks contains additional blocks.

Transfer Function Blocks
Double-click the Transfer Functions block in the Neural library window to open a window containing
several transfer function blocks.

B Neural Network Simulink Block Library

B-2



Each of these blocks takes a net input vector and generates a corresponding output vector whose
dimensions are the same as the input vector.

Net Input Blocks
Double-click the Net Input Functions block in the Neural library window to open a window containing
two net-input function blocks.

Each of these blocks takes any number of weighted input vectors, weight layer output vectors, and
bias vectors, and returns a net-input vector.

Weight Blocks
Double-click the Weight Functions block in the Neural library window to open a window containing
three weight function blocks.

Each of these blocks takes a neuron’s weight vector and applies it to an input vector (or a layer
output vector) to get a weighted input value for a neuron.

It is important to note that these blocks expect the neuron’s weight vector to be defined as a column
vector. This is because Simulink signals can be column vectors, but cannot be matrices or row
vectors.

It is also important to note that because of this limitation you have to create S weight function blocks
(one for each row), to implement a weight matrix going to a layer with S neurons.

This contrasts with the other two kinds of blocks. Only one net input function and one transfer
function block are required for each layer.

Processing Blocks

Double-click the Processing Functions block in the Neural library window to open a window
containing processing blocks and their corresponding reverse-processing blocks.

 Neural Network Simulink Block Library

B-3



Each of these blocks can be used to preprocess inputs and postprocess outputs.

B Neural Network Simulink Block Library

B-4



Deploy Shallow Neural Network Simulink Diagrams
In this section...
“Example” on page B-5
“Suggested Exercises” on page B-7
“Generate Functions and Objects” on page B-7

The function gensim generates block descriptions of networks so you can simulate them using
Simulink software.

gensim(net,st)

The second argument to gensim determines the sample time, which is normally chosen to be some
positive real value.

If a network has no delays associated with its input weights or layer weights, this value can be set to
-1. A value of -1 causes gensim to generate a network with continuous sampling.

Example
Here is a simple problem defining a set of inputs p and corresponding targets t.

p = [1 2 3 4 5];
t = [1 3 5 7 9];

The code below designs a linear layer to solve this problem.

net = newlind(p,t)

You can test the network on your original inputs with sim.

y = sim(net,p)

The results show the network has solved the problem.

y =
      1.0000    3.0000    5.0000    7.0000    9.0000

Call gensim as follows to generate a Simulink version of the network.

gensim(net,-1)

The second argument is -1, so the resulting network block samples continuously.

The call to gensim opens the following Simulink Editor, showing a system consisting of the linear
network connected to a sample input and a scope.

 Deploy Shallow Neural Network Simulink Diagrams

B-5



To test the network, double-click the input Constant x1 block on the left.

The input block is actually a standard Constant block. Change the constant value from the initial
randomly generated value to 2, and then click OK.

Select the menu option Simulation > Run. Simulink takes a moment to simulate the system.

When the simulation is complete, double-click the output y1 block on the right to see the following
display of the network’s response.

B Deploy Shallow Neural Network Simulink Diagrams

B-6



Note that the output is 3, which is the correct output for an input of 2.

Suggested Exercises
Here are a couple exercises you can try.

Change the Input Signal

Replace the constant input block with a signal generator from the standard Simulink Sources
blockset. Simulate the system and view the network’s response.

Use a Discrete Sample Time

Recreate the network, but with a discrete sample time of 0.5, instead of continuous sampling.

gensim(net,0.5)

Again, replace the constant input with a signal generator. Simulate the system and view the
network’s response.

Generate Functions and Objects
For information on simulating and deploying shallow neural networks with MATLAB functions, see
“Deploy Shallow Neural Network Functions” on page 29-48.

 Deploy Shallow Neural Network Simulink Diagrams

B-7





Code Notes

C



Deep Learning Toolbox Data Conventions

In this section...
“Dimensions” on page C-2
“Variables” on page C-2

Dimensions
The following code dimensions are used in describing both the network signals that users commonly
see, and those used by the utility functions:

Ni = Number of network inputs = net.numInputs
Ri = Number of elements in input i = net.inputs{i}.size
Nl = Number of layers = net.numLayers
Si = Number of neurons in layer i = net.layers{i}.size
Nt = Number of targets  
Vi = Number of elements in target i, equal to
Sj, where j is the ith layer with a target. (A
layer n has a target if net.targets(n) == 1.)

 

No = Number of network outputs  
Ui = Number of elements in output i, equal to
Sj, where j is the ith layer with an output (A
layer n has an output if net.outputs(n) ==
1.)

 

ID = Number of input delays = net.numInputDelays
LD = Number of layer delays = net.numLayerDelays
TS = Number of time steps  
Q = Number of concurrent vectors or sequences  

Variables
The variables a user commonly uses when defining a simulation or training session are

P Network inputs Ni-by-TS cell array, where each element P{i,ts} is an Ri-by-
Q matrix

Pi Initial input delay
conditions

Ni-by-ID cell array, where each element Pi{i,k} is an Ri-by-
Q matrix

Ai Initial layer delay
conditions

Nl-by-LD cell array, where each element Ai{i,k} is an Si-by-
Q matrix

T Network targets Nt-by-TS cell array, where each element P{i,ts} is a Vi-by-Q
matrix

These variables are returned by simulation and training calls:

C Deep Learning Toolbox Data Conventions

C-2



Y Network outputs No-by-TS cell array, where each element Y{i,ts} is a Ui-by-Q
matrix

E Network errors Nt-by-TS cell array, where each element P{i,ts} is a Vi-by-Q
matrix

perf Network performance  

Utility Function Variables

These variables are used only by the utility functions.

Pc Combined inputs Ni-by-(ID+TS) cell array, where each element P{i,ts} is
an Ri-by-Q matrix

Pc = [Pi P] = Initial input delay conditions and network
inputs

Pd Delayed inputs Ni-by-Nj-by-TS cell array, where each element Pd{i,j,ts} is an
(Ri*IWD(i,j))-by-Q matrix, and where IWD(i,j) is the number
of delay taps associated with the input weight to layer i from
input j

Equivalently,
IWD(i,j) = length(net.inputWeights{i,j}.delays)

Pd is the result of passing the elements of P through each
input weight's tap delay lines. Because inputs are always
transformed by input delays in the same way, it saves time to
do that operation only once instead of for every training
step.

BZ Concurrent bias vectors Nl-by-1 cell array, where each element BZ{i} is an Si-by-Q
matrix

Each matrix is simply Q copies of the net.b{i} bias vector.
IWZ Weighted inputs Ni-by-Nl-by-TS cell array, where each element

IWZ{i,j,ts} is an Si-by-???-by-Q matrix
LWZ Weighted layer outputs Ni-by-Nl-by-TS cell array, where each element

LWZ{i,j,ts} is an Si-by-Q matrix
N Net inputs Ni-by-TS cell array, where each element N{i,ts} is an Si-

by-Q matrix
A Layer outputs Nl-by-TS cell array, where each element A{i,ts} is an Si-

by-Q matrix
Ac Combined layer outputs Nl-by-(LD+TS) cell array, where each element A{i,ts} is

an Si-by-Q matrix

Ac = [Ai A] = Initial layer delay conditions and layer
outputs.

 Deep Learning Toolbox Data Conventions

C-3



Tl Layer targets Nl-by-TS cell array, where each element Tl{i,ts} is an Si-
by-Q matrix

Tl contains empty matrices [] in rows of layers i not
associated with targets, indicated by net.targets(i) ==
0.

El Layer errors Nl-by-TS cell array, where each element El{i,ts} is an Si-
by-Q matrix

El contains empty matrices [] in rows of layers i not
associated with targets, indicated by net.targets(i) ==
0.

X Column vector of all weight
and bias values

 

C Deep Learning Toolbox Data Conventions

C-4


	Deep Networks
	Deep Learning in MATLAB
	What Is Deep Learning?
	Start Deep Learning Faster Using Transfer Learning
	Deep Learning Workflows
	Deep Learning Apps
	Train Classifiers Using Features Extracted from Pretrained Networks
	Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud
	Deep Learning Using Simulink
	Deep Learning Interpretability
	Deep Learning Customization
	Deep Learning Import and Export

	Pretrained Deep Neural Networks
	Compare Pretrained Neural Networks
	Load Pretrained Neural Networks
	Visualize Pretrained Neural Networks
	Feature Extraction
	Transfer Learning
	Import and Export Neural Networks
	Pretrained Neural Networks for Audio Applications
	Pretrained Models on GitHub

	Learn About Convolutional Neural Networks
	Example Deep Learning Networks Architectures
	Multiple-Input and Multiple-Output Networks
	Multiple-Input Networks
	Multiple-Output Networks

	List of Deep Learning Layers
	Deep Learning Layers

	Specify Layers of Convolutional Neural Network
	Image Input Layer
	Convolutional Layer
	Batch Normalization Layer
	ReLU Layer
	Cross Channel Normalization (Local Response Normalization) Layer
	Max and Average Pooling Layers
	Dropout Layer
	Fully Connected Layer
	Output Layers

	Set Up Parameters and Train Convolutional Neural Network
	Specify Solver and Maximum Number of Epochs
	Specify and Modify Learning Rate
	Specify Validation Data
	Select Hardware Resource
	Save Checkpoint Networks and Resume Training
	Set Up Parameters in Convolutional and Fully Connected Layers
	Train Your Network

	Train Network with Numeric Features
	Train Network on Image and Feature Data
	Compare Activation Layers
	Deep Learning Tips and Tricks
	Choose Network Architecture
	Choose Training Options
	Improve Training Accuracy
	Fix Errors in Training
	Prepare and Preprocess Data
	Use Available Hardware
	Fix Errors With Loading from MAT-Files

	Long Short-Term Memory Neural Networks
	LSTM Neural Network Architecture
	Layers
	Classification, Prediction, and Forecasting
	Sequence Padding, Truncation, and Splitting
	Normalize Sequence Data
	Out-of-Memory Data
	Visualization
	LSTM Layer Architecture


	Deep Network Designer
	Transfer Learning with Deep Network Designer
	Build Networks with Deep Network Designer
	Transfer Learning
	Image Classification
	Sequence Classification
	Numeric Data Classification
	Convert Classification Network into Regression Network
	Multiple-Input and Multiple-Output Networks
	Deep Networks
	Advanced Deep Learning Applications
	dlnetwork for Custom Training Loops
	Check Network

	Train Networks Using Deep Network Designer
	Select Training Options
	Train Network
	Next Steps

	Import Custom Layer into Deep Network Designer
	Import Data into Deep Network Designer
	Import Data
	Image Augmentation
	Validation Data

	Create Simple Sequence Classification Network Using Deep Network Designer
	Train Network for Time Series Forecasting Using Deep Network Designer
	Generate MATLAB Code from Deep Network Designer
	Generate MATLAB Code to Recreate Network Layers
	Generate MATLAB Code to Train Network

	View Autogenerated Custom Layers Using Deep Network Designer
	Image-to-Image Regression in Deep Network Designer
	Generate Experiment Using Deep Network Designer
	Transfer Learning with Pretrained Audio Networks in Deep Network Designer
	Export Image Classification Network from Deep Network Designer to Simulink

	Deep Learning with Images
	Classify Webcam Images Using Deep Learning
	Train Deep Learning Network to Classify New Images
	Train Residual Network for Image Classification
	Classify Image Using GoogLeNet
	Extract Image Features Using Pretrained Network
	Transfer Learning Using Pretrained Network
	Transfer Learning Using AlexNet
	Create Simple Deep Learning Neural Network for Classification
	Train Convolutional Neural Network for Regression
	Train Network with Multiple Outputs
	Convert Classification Network into Regression Network
	Train Generative Adversarial Network (GAN)
	Train Conditional Generative Adversarial Network (CGAN)
	Train Wasserstein GAN with Gradient Penalty (WGAN-GP)
	Train Fast Style Transfer Network
	Train a Siamese Network to Compare Images
	Train a Siamese Network for Dimensionality Reduction
	Train Neural ODE Network
	Train Variational Autoencoder (VAE) to Generate Images
	Lane and Vehicle Detection in Simulink Using Deep Learning
	Classify ECG Signals in Simulink Using Deep Learning
	Classify Images in Simulink Using GoogLeNet
	Multilabel Image Classification Using Deep Learning
	Acceleration for Simulink Deep Learning Models
	Run Acceleration Mode from the User Interface
	Run Acceleration Mode Programmatically


	Deep Learning with Time Series, Sequences, and Text
	Sequence Classification Using Deep Learning
	Sequence Classification Using 1-D Convolutions
	Time Series Forecasting Using Deep Learning
	Train Speech Command Recognition Model Using Deep Learning
	Sequence-to-Sequence Classification Using Deep Learning
	Sequence-to-Sequence Regression Using Deep Learning
	Sequence-to-One Regression Using Deep Learning
	Train Network with Complex-Valued Data
	Train Network with LSTM Projected Layer
	Predict Battery State of Charge Using Deep Learning
	Classify Videos Using Deep Learning
	Classify Videos Using Deep Learning with Custom Training Loop
	Train Sequence Classification Network Using Data With Imbalanced Classes
	Sequence-to-Sequence Classification Using 1-D Convolutions
	Time Series Anomaly Detection Using Deep Learning
	Sequence Classification Using CNN-LSTM Network
	Train Latent ODE Network with Irregularly Sampled Time-Series Data
	Multivariate Time Series Anomaly Detection Using Graph Neural Network
	Classify Text Data Using Deep Learning
	Classify Text Data Using Convolutional Neural Network
	Multilabel Text Classification Using Deep Learning
	Classify Text Data Using Custom Training Loop
	Generate Text Using Autoencoders
	Define Text Encoder Model Function
	Define Text Decoder Model Function
	Sequence-to-Sequence Translation Using Attention
	Generate Text Using Deep Learning
	Pride and Prejudice and MATLAB
	Word-By-Word Text Generation Using Deep Learning
	Image Captioning Using Attention
	Language Translation Using Deep Learning
	Predict and Update Network State in Simulink
	Classify and Update Network State in Simulink
	Time Series Prediction in Simulink Using Deep Learning Network
	Battery State of Charge Estimation in Simulink Using Deep Learning Network
	Improve Performance of Deep Learning Simulations in Simulink
	Physical System Modeling Using LSTM Network in Simulink

	Deep Learning Tuning and Visualization
	Explore Network Predictions Using Deep Learning Visualization Techniques
	Deep Dream Images Using GoogLeNet
	Grad-CAM Reveals the Why Behind Deep Learning Decisions
	Interpret Deep Learning Time-Series Classifications Using Grad-CAM
	Understand Network Predictions Using Occlusion
	Investigate Classification Decisions Using Gradient Attribution Techniques
	Understand Network Predictions Using LIME
	Investigate Spectrogram Classifications Using LIME
	Interpret Deep Network Predictions on Tabular Data Using LIME
	Explore Semantic Segmentation Network Using Grad-CAM
	Investigate Audio Classifications Using Deep Learning Interpretability Techniques
	Generate Untargeted and Targeted Adversarial Examples for Image Classification
	Train Image Classification Network Robust to Adversarial Examples
	Generate Adversarial Examples for Semantic Segmentation
	Verify Robustness of Deep Learning Neural Network
	Out-of-Distribution Detection for Deep Neural Networks
	Out-of-Distribution Data Discriminator for YOLO v4 Object Detector
	Resume Training from Checkpoint Network
	Deep Learning Using Bayesian Optimization
	Train Deep Learning Networks in Parallel
	Monitor Deep Learning Training Progress
	Customize Output During Deep Learning Network Training
	Detect Issues During Deep Neural Network Training
	Detect Vanishing Gradients in Deep Neural Networks by Plotting Gradient Distributions
	Investigate Network Predictions Using Class Activation Mapping
	View Network Behavior Using tsne
	Visualize Activations of a Convolutional Neural Network
	Visualize Activations of LSTM Network
	Visualize Features of a Convolutional Neural Network
	Visualize Image Classifications Using Maximal and Minimal Activating Images
	Monitor GAN Training Progress and Identify Common Failure Modes
	Convergence Failure
	Mode Collapse

	Deep Learning Visualization Methods
	Visualization Methods
	Interpretability Methods for Nonimage Data

	ROC Curve and Performance Metrics
	Introduction to ROC Curve
	Performance Curve with MATLAB
	ROC Curve for Multiclass Classification
	Performance Metrics
	Classification Scores and Thresholds
	Pointwise Confidence Intervals

	Compare Deep Learning Models Using ROC Curves

	Manage Deep Learning Experiments
	Create a Deep Learning Experiment for Classification
	Create a Deep Learning Experiment for Regression
	Use Experiment Manager to Train Networks in Parallel
	Set Up Parallel Environment

	Offload Experiments as Batch Jobs to Cluster
	Create Batch Job on Cluster
	Track Progress of Batch Job
	Interrupt Training in Batch Job
	Retrieve Results and Clean Up Data

	Evaluate Deep Learning Experiments by Using Metric Functions
	Try Multiple Pretrained Networks for Transfer Learning
	Experiment with Weight Initializers for Transfer Learning
	Tune Experiment Hyperparameters by Using Bayesian Optimization
	Choose Training Configurations for LSTM Using Bayesian Optimization
	Run a Custom Training Experiment for Image Comparison
	Use Experiment Manager to Train Generative Adversarial Networks (GANs)
	Use Bayesian Optimization in Custom Training Experiments
	Custom Training with Multiple GPUs in Experiment Manager
	Keyboard Shortcuts for Experiment Manager
	Shortcuts for General Navigation
	Shortcuts for Experiment Browser
	Shortcuts for Results Table

	Debug Code Before and After Running Experiments
	Debug Setup and Training Functions
	Debug Metric Functions


	Deep Learning in Parallel and the Cloud
	Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud
	Train Single Network in Parallel
	Train Multiple Networks in Parallel
	Batch Deep Learning
	Manage Cluster Profiles and Automatic Pool Creation
	Deep Learning Precision
	Reproducibility

	Deep Learning in the Cloud
	Access MATLAB in the Cloud
	Work with Big Data in the Cloud

	Work with Deep Learning Data in the Cloud
	Deep Learning with MATLAB on Multiple GPUs
	Use Multiple GPUs in Local Machine
	Use Multiple GPUs in Cluster
	Optimize Mini-Batch Size and Learning Rate
	Select Particular GPUs to Use for Training
	Train Multiple Networks on Multiple GPUs
	Advanced Support for Fast Multi-Node GPU Communication

	Deep Learning with Big Data
	Work with Big Data in Parallel
	Preprocess Data in Background
	Work with Big Data in the Cloud
	Preprocess Data for Custom Training Loops

	Run Custom Training Loops on a GPU and in Parallel
	Train Network on GPU
	Train Single Network in Parallel
	Train Multiple Networks in Parallel
	Use Experiment Manager to Train in Parallel

	Cloud AI Workflow Using the Deep Learning Container
	Train Network in the Cloud Using Automatic Parallel Support
	Use parfeval to Train Multiple Deep Learning Networks
	Send Deep Learning Batch Job to Cluster
	Train Network Using Automatic Multi-GPU Support
	Use parfor to Train Multiple Deep Learning Networks
	Work with Deep Learning Data in AWS
	Work with Deep Learning Data in Azure Blob Storage
	Train Network in Parallel with Custom Training Loop
	Train Network Using Federated Learning
	Train Network on Amazon Web Services Using MATLAB Deep Learning Container
	Use Amazon S3 Buckets with MATLAB Deep Learning Container
	Use Experiment Manager in the Cloud with MATLAB Deep Learning Container

	Computer Vision Examples
	Gesture Recognition using Videos and Deep Learning
	Code Generation for Object Detection by Using Single Shot Multibox Detector
	Point Cloud Classification Using PointNet Deep Learning
	Activity Recognition from Video and Optical Flow Data Using Deep Learning
	Import Pretrained ONNX YOLO v2 Object Detector
	Export YOLO v2 Object Detector to ONNX
	Object Detection Using SSD Deep Learning
	Object Detection Using YOLO v3 Deep Learning
	Object Detection Using YOLO v4 Deep Learning
	Object Detection Using YOLO v2 Deep Learning
	Semantic Segmentation Using Deep Learning
	Semantic Segmentation Using Dilated Convolutions
	Train Simple Semantic Segmentation Network in Deep Network Designer
	Semantic Segmentation of Multispectral Images Using Deep Learning
	3-D Brain Tumor Segmentation Using Deep Learning
	Define Custom Pixel Classification Layer with Tversky Loss
	Train Object Detector Using R-CNN Deep Learning
	Object Detection Using Faster R-CNN Deep Learning
	Perform Instance Segmentation Using Mask R-CNN
	Estimate Body Pose Using Deep Learning
	Generate Image from Segmentation Map Using Deep Learning
	Classify Defects on Wafer Maps Using Deep Learning
	Detect Defects on Printed Circuit Boards Using YOLO v4 Network
	Detect Image Anomalies Using Explainable FCDD Network
	Detect Image Anomalies Using Pretrained ResNet-18 Feature Embeddings

	Image Processing Examples
	Remove Noise from Color Image Using Pretrained Neural Network
	Increase Image Resolution Using Deep Learning
	JPEG Image Deblocking Using Deep Learning
	Image Processing Operator Approximation Using Deep Learning
	Develop Camera Processing Pipeline Using Deep Learning
	Brighten Extremely Dark Images Using Deep Learning
	Classify Tumors in Multiresolution Blocked Images
	Unsupervised Day-to-Dusk Image Translation Using UNIT
	Quantify Image Quality Using Neural Image Assessment
	Neural Style Transfer Using Deep Learning
	Unsupervised Medical Image Denoising Using CycleGAN
	Unsupervised Medical Image Denoising Using UNIT
	Segment Lungs from CT Scan Using Pretrained Neural Network
	Brain MRI Segmentation Using Pretrained 3-D U-Net Network
	Breast Tumor Segmentation from Ultrasound Using Deep Learning
	Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

	Automated Driving Examples
	Train a Deep Learning Vehicle Detector
	Create Occupancy Grid Using Monocular Camera and Semantic Segmentation
	Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

	Navigation Examples
	Train Deep Learning-Based Sampler for Motion Planning
	Accelerate Motion Planning with Deep-Learning-Based Sampler

	Lidar Examples
	Code Generation for Lidar Object Detection Using SqueezeSegV2 Network
	Lidar Object Detection Using Complex-YOLO v4 Network
	Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning
	Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning
	Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network
	Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network
	Code Generation for Lidar Point Cloud Segmentation Network
	Lidar 3-D Object Detection Using PointPillars Deep Learning

	Signal Processing Examples
	Learn Pre-Emphasis Filter Using Deep Learning
	Hand Gesture Classification Using Radar Signals and Deep Learning
	Waveform Segmentation Using Deep Learning
	Classify ECG Signals Using Long Short-Term Memory Networks
	Generate Synthetic Signals Using Conditional GAN
	Classify Time Series Using Wavelet Analysis and Deep Learning
	Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning
	Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi
	Deploy Signal Segmentation Deep Network on Raspberry Pi
	Anomaly Detection Using Autoencoder and Wavelets
	Fault Detection Using Wavelet Scattering and Recurrent Deep Networks
	Parasite Classification Using Wavelet Scattering and Deep Learning
	Detect Anomalies Using Wavelet Scattering with Autoencoders
	Denoise Signals with Adversarial Learning Denoiser Model
	Human Health Monitoring Using Continuous Wave Radar and Deep Learning
	Classify ECG Signals Using DAG Network Deployed to FPGA
	Code Generation for a Deep Learning Simulink Model to Classify ECG Signals
	Modulation Classification Using Wavelet Analysis on NVIDIA Jetson
	Crack Identification from Accelerometer Data
	Time-Frequency Feature Embedding with Deep Metric Learning
	Time-Frequency Convolutional Network for EEG Data Classification
	Detect Anomalies In Signals Using deepSignalAnomalyDetector
	Detect Anomalies in Machinery Using LSTM Autoencoder

	Wireless Comm Examples
	OFDM Autoencoder for Wireless Communications
	Train DQN Agent for Beam Selection
	CSI Feedback with Autoencoders
	Modulation Classification by Using FPGA
	Neural Network for Digital Predistortion Design - Online Training
	Neural Network for Digital Predistortion Design - Offline Training
	Neural Network for Beam Selection
	Spectrum Sensing with Deep Learning to Identify 5G and LTE Signals
	Autoencoders for Wireless Communications
	Modulation Classification with Deep Learning
	Training and Testing a Neural Network for LLR Estimation
	Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation
	Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

	Audio Examples
	Transfer Learning with Pretrained Audio Networks
	Speech Command Recognition in Simulink
	Speaker Identification Using Custom SincNet Layer and Deep Learning
	Dereverberate Speech Using Deep Learning Networks
	Speaker Recognition Using x-vectors
	Speaker Diarization Using x-vectors
	Train Spoken Digit Recognition Network Using Out-of-Memory Audio Data
	Train Spoken Digit Recognition Network Using Out-of-Memory Features
	Keyword Spotting in Noise Code Generation with Intel MKL-DNN
	Keyword Spotting in Noise Code Generation on Raspberry Pi
	Speech Command Recognition Code Generation on Raspberry Pi
	Speech Command Recognition Code Generation with Intel MKL-DNN
	Train Generative Adversarial Network (GAN) for Sound Synthesis
	Sequential Feature Selection for Audio Features
	Acoustic Scene Recognition Using Late Fusion
	Keyword Spotting in Noise Using MFCC and LSTM Networks
	Speech Emotion Recognition
	Spoken Digit Recognition with Wavelet Scattering and Deep Learning
	Cocktail Party Source Separation Using Deep Learning Networks
	Voice Activity Detection in Noise Using Deep Learning
	Denoise Speech Using Deep Learning Networks
	Accelerate Audio Deep Learning Using GPU-Based Feature Extraction
	Acoustics-Based Machine Fault Recognition
	Acoustics-Based Machine Fault Recognition Code Generation with Intel MKL-DNN
	Acoustics-Based Machine Fault Recognition Code Generation on Raspberry Pi
	End-to-End Deep Speech Separation
	Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning
	3-D Sound Event Localization and Detection Using Trained Recurrent Convolutional Neural Network
	Speech Command Recognition Code Generation with Intel MKL-DNN Using Simulink
	Speech Command Recognition on Raspberry Pi Using Simulink
	Audio-Based Anomaly Detection for Machine Health Monitoring
	3-D Speech Enhancement Using Trained Filter and Sum Network
	Train 3-D Speech Enhancement Network Using Deep Learning
	Audio Transfer Learning Using Experiment Manager
	Audio Event Classification Using TensorFlow Lite on Raspberry Pi

	Reinforcement Learning Examples
	Reinforcement Learning Using Deep Neural Networks
	Reinforcement Learning Workflow
	Reinforcement Learning Environments
	Reinforcement Learning Agents
	Create Deep Neural Network Policies and Value Functions
	Train Reinforcement Learning Agents
	Deploy Trained Policies

	Create Simulink Environment and Train Agent
	Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation
	Create DQN Agent Using Deep Network Designer and Train Using Image Observations
	Imitate MPC Controller for Lane Keeping Assist
	Train DDPG Agent to Control Flying Robot
	Train Biped Robot to Walk Using Reinforcement Learning Agents
	Train Humanoid Walker
	Train DDPG Agent for Adaptive Cruise Control
	Train DQN Agent for Lane Keeping Assist Using Parallel Computing
	Train DDPG Agent for Path-Following Control
	Train PPO Agent for Automatic Parking Valet

	Predictive Maintenance Examples
	Chemical Process Fault Detection Using Deep Learning
	Rolling Element Bearing Fault Diagnosis Using Deep Learning
	Remaining Useful Life Estimation Using Convolutional Neural Network
	Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data
	Battery Cycle Life Prediction Using Deep Learning

	Computational Finance Examples
	Compare Deep Learning Networks for Credit Default Prediction
	Interpret and Stress-Test Deep Learning Networks for Probability of Default
	Hedge Options Using Reinforcement Learning Toolbox™
	Use Deep Learning to Approximate Barrier Option Prices with Heston Model
	Backtest Strategies Using Deep Learning
	Deep Reinforcement Learning for Optimal Trade Execution

	Import, Export, and Customization
	Train Deep Learning Model in MATLAB
	Training Methods
	Decisions

	Define Custom Deep Learning Layers
	Layer Templates
	Intermediate Layer Architecture
	Output Layer Architecture
	Check Validity of Custom Layer

	Define Custom Deep Learning Intermediate Layers
	Intermediate Layer Architecture
	Intermediate Layer Template
	Formatted Inputs and Outputs
	Custom Layer Acceleration
	Intermediate Layer Properties
	Forward Functions
	Reset State Function
	Backward Function
	GPU Compatibility
	Check Validity of Layer

	Define Custom Deep Learning Output Layers
	Output Layer Architecture
	Output Layer Templates
	Custom Layer Acceleration
	Output Layer Properties
	Forward Loss Function
	Backward Loss Function
	GPU Compatibility
	Check Validity of Layer

	Define Custom Deep Learning Layer with Learnable Parameters
	Intermediate Layer Template
	Name Layer and Specify Superclasses
	Declare Properties and Learnable Parameters
	Create Constructor Function
	Create Initialize Function
	Create Forward Functions
	Completed Layer
	GPU Compatibility
	Check Validity of Custom Layer Using checkLayer
	Include Custom Layer in Network

	Define Custom Deep Learning Layer with Multiple Inputs
	Intermediate Layer Template
	Name Layer and Specify Superclasses
	Declare Properties and Learnable Parameters
	Create Constructor Function
	Create Forward Functions
	Completed Layer
	GPU Compatibility
	Check Validity of Layer with Multiple Inputs
	Use Custom Weighted Addition Layer in Network

	Define Custom Deep Learning Layer with Formatted Inputs
	Intermediate Layer Template
	Name Layer and Specify Superclasses
	Declare Properties and Learnable Parameters
	Create Constructor Function
	Create Initialize Function
	Create Forward Functions
	Completed Layer
	GPU Compatibility
	Include Custom Layer in Network

	Define Custom Recurrent Deep Learning Layer
	Intermediate Layer Template
	Name Layer
	Declare Properties, State, and Learnable Parameters
	Create Constructor Function
	Create Initialize Function
	Create Predict Function
	Create Reset State Function
	Completed Layer
	GPU Compatibility
	Include Custom Layer in Network

	Define Custom Classification Output Layer
	Classification Output Layer Template
	Name the Layer and Specify Superclasses
	Declare Layer Properties
	Create Constructor Function
	Create Forward Loss Function
	Completed Layer
	GPU Compatibility
	Check Output Layer Validity
	Include Custom Classification Output Layer in Network

	Define Custom Regression Output Layer
	Regression Output Layer Template
	Name the Layer and Specify Superclasses
	Declare Layer Properties
	Create Constructor Function
	Create Forward Loss Function
	Completed Layer
	GPU Compatibility
	Check Output Layer Validity
	Include Custom Regression Output Layer in Network

	Specify Custom Layer Backward Function
	Create Custom Layer
	Create Backward Function
	Complete Layer
	GPU Compatibility

	Specify Custom Output Layer Backward Loss Function
	Create Custom Layer
	Create Backward Loss Function
	Complete Layer
	GPU Compatibility

	Custom Layer Function Acceleration
	Acceleration Considerations

	Deep Learning Network Composition
	Automatically Initialize Learnable dlnetwork Objects for Training
	Predict and Forward Functions
	GPU Compatibility

	Define Nested Deep Learning Layer
	Intermediate Layer Template
	Name Layer and Specify Superclasses
	Declare Properties and Learnable Parameters
	Create Constructor Function
	Create Forward Functions
	Completed Layer
	GPU Compatibility

	Train Deep Learning Network with Nested Layers
	Define Custom Deep Learning Layer for Code Generation
	Intermediate Layer Template
	Name Layer and Specify Superclasses
	Specify Code Generation Pragma
	Declare Properties and Learnable Parameters
	Create Constructor Function
	Create Forward Functions
	Completed Layer
	Check Custom Layer for Code Generation Compatibility

	Check Custom Layer Validity
	Check Custom Layer Validity
	List of Tests
	Generated Data
	Diagnostics

	Specify Custom Weight Initialization Function
	Compare Layer Weight Initializers
	Assemble Network from Pretrained Keras Layers
	Replace Unsupported Keras Layer with Function Layer
	Assemble Multiple-Output Network for Prediction
	Automatic Differentiation Background
	What Is Automatic Differentiation?
	Forward Mode
	Reverse Mode

	Use Automatic Differentiation In Deep Learning Toolbox
	Custom Training and Calculations Using Automatic Differentiation
	Use dlgradient and dlfeval Together for Automatic Differentiation
	Derivative Trace
	Characteristics of Automatic Derivatives

	Define Custom Training Loops, Loss Functions, and Networks
	Define Deep Learning Network for Custom Training Loops
	Specify Loss Functions
	Update Learnable Parameters Using Automatic Differentiation

	Specify Training Options in Custom Training Loop
	Solver Options
	Learn Rate
	Plots
	Verbose Output
	Mini-Batch Size
	Number of Epochs
	Validation
	L2 Regularization
	Gradient Clipping
	Single CPU or GPU Training
	Checkpoints

	Train Network Using Custom Training Loop
	Train Sequence Classification Network Using Custom Training Loop
	Define Model Loss Function for Custom Training Loop
	Create Model Loss Function for Model Defined as dlnetwork Object
	Create Model Loss Function for Model Defined as Function
	Evaluate Model Loss Function
	Update Learnable Parameters Using Gradients
	Use Model Loss Function in Custom Training Loop
	Debug Model Loss Functions

	Update Batch Normalization Statistics in Custom Training Loop
	Train Robust Deep Learning Network with Jacobian Regularization
	Make Predictions Using dlnetwork Object
	Train Network Using Model Function
	Update Batch Normalization Statistics Using Model Function
	Make Predictions Using Model Function
	Initialize Learnable Parameters for Model Function
	Default Layer Initializations
	Learnable Parameter Sizes
	Glorot Initialization
	He Initialization
	Gaussian Initialization
	Uniform Initialization
	Orthogonal Initialization
	Unit Forget Gate Initialization
	Ones Initialization
	Zeros Initialization
	Storing Learnable Parameters

	Deep Learning Function Acceleration for Custom Training Loops
	Accelerate Deep Learning Function Directly
	Accelerate Parts of Deep Learning Function
	Reusing Caches
	Storing and Clearing Caches
	Acceleration Considerations

	Accelerate Custom Training Loop Functions
	Evaluate Performance of Accelerated Deep Learning Function
	Check Accelerated Deep Learning Function Outputs
	Solve Partial Differential Equations Using Deep Learning
	Solve Partial Differential Equation with L-BFGS Method and Deep Learning
	Solve Ordinary Differential Equation Using Neural Network
	Dynamical System Modeling Using Neural ODE
	Reduced Order Modeling Using Continuous-Time Echo State Network
	Node Classification Using Graph Convolutional Network
	Multilabel Graph Classification Using Graph Attention Networks
	Train Network Using Cyclical Learning Rate for Snapshot Ensembling
	Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX
	Support Packages for Interoperability
	Functions that Import Deep Learning Networks
	Visualize Imported Network
	Predict with Imported Model
	Transfer Learning with Imported Network
	Deploy Imported Network
	Functions that Export Networks and Layer Graphs

	Tips on Importing Models from TensorFlow, PyTorch, and ONNX
	Import Functions of Deep Learning Toolbox
	Recommended Functions to Import TensorFlow Models
	Autogenerated Custom Layers
	Placeholder Layers
	Input Dimension Ordering
	Data Formats for Prediction with dlnetwork
	Input Data Preprocessing

	Deploy Imported TensorFlow Model with MATLAB Compiler
	Select Function to Import ONNX Pretrained Network
	Decisions
	Actions

	Classify Images in Simulink with Imported TensorFlow Network
	Inference Comparison Between TensorFlow and Imported Networks for Image Classification
	Inference Comparison Between ONNX and Imported Networks for Image Classification
	List of Functions with dlarray Support
	Deep Learning Toolbox Functions with dlarray Support
	Domain-Specific Functions with dlarray Support
	MATLAB Functions with dlarray Support
	Notable dlarray Behaviors

	Monitor Custom Training Loop Progress
	Create Training Progress Monitor
	Training Progress Window
	Monitor Custom Training Loop Progress During Training

	Train Bayesian Neural Network

	Deep Learning Data Preprocessing
	Datastores for Deep Learning
	Select Datastore
	Input Datastore for Training, Validation, and Inference
	Specify Read Size and Mini-Batch Size
	Transform and Combine Datastores
	Use Datastore for Parallel Training and Background Dispatching

	Create and Explore Datastore for Image Classification
	Preprocess Images for Deep Learning
	Resize Images Using Rescaling and Cropping
	Augment Images for Training with Random Geometric Transformations
	Perform Additional Image Processing Operations Using Built-In Datastores
	Apply Custom Image Processing Pipelines Using Combine and Transform

	Preprocess Volumes for Deep Learning
	Read Volumetric Data
	Pair Image and Label Data
	Preprocess Volumetric Data
	Examples

	Preprocess Data for Domain-Specific Deep Learning Applications
	Image Processing Applications
	Object Detection
	Semantic Segmentation
	Lidar Processing Applications
	Signal Processing Applications
	Audio Processing Applications
	Text Analytics

	Develop Custom Mini-Batch Datastore
	Overview
	Implement MiniBatchable Datastore
	Add Support for Shuffling
	Validate Custom Mini-Batch Datastore

	Augment Images for Deep Learning Workflows
	Augment Pixel Labels for Semantic Segmentation
	Augment Bounding Boxes for Object Detection
	Prepare Datastore for Image-to-Image Regression
	Train Network Using Out-of-Memory Sequence Data
	Train Network Using Custom Mini-Batch Datastore for Sequence Data
	Classify Out-of-Memory Text Data Using Deep Learning
	Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore
	Data Sets for Deep Learning
	Image Data Sets
	Time Series and Signal Data Sets
	Video Data Sets
	Text Data Sets
	Audio Data Sets
	Point Cloud Data Sets

	Choose an App to Label Ground Truth Data

	Deep Learning Code Generation
	Code Generation for Deep Learning Networks
	Code Generation for Semantic Segmentation Network
	Lane Detection Optimized with GPU Coder
	Code Generation for a Sequence-to-Sequence LSTM Network
	Deep Learning Prediction on ARM Mali GPU
	Code Generation for Object Detection by Using YOLO v2
	Code Generation for Object Detection Using YOLO v3 Deep Learning Network
	Code Generation for Object Detection Using YOLO v4 Deep Learning
	Deep Learning Prediction with NVIDIA TensorRT Library
	Traffic Sign Detection and Recognition
	Logo Recognition Network
	Code Generation for Denoising Deep Neural Network
	Train and Deploy Fully Convolutional Networks for Semantic Segmentation
	Code Generation for Semantic Segmentation Network That Uses U-net
	Code Generation for Deep Learning on ARM Targets
	Deep Learning Prediction with ARM Compute Using codegen
	Deep Learning Code Generation on Intel Targets for Different Batch Sizes
	Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN
	Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi
	Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net
	Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net
	Code Generation for LSTM Network on Raspberry Pi
	Code Generation for LSTM Network That Uses Intel MKL-DNN
	Cross Compile Deep Learning Code for ARM Neon Targets
	Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning
	Quantize Residual Network Trained for Image Classification and Generate CUDA Code
	Quantize Layers in Object Detectors and Generate CUDA Code
	Explore Quantized Semantic Segmentation Network Using Grad-CAM
	Quantize Semantic Segmentation Network and Generate CUDA Code
	Parameter Pruning and Quantization of Image Classification Network
	Prune Image Classification Network Using Taylor Scores
	Quantization Workflow Prerequisites
	Prerequisites for All Quantization Workflows
	Supported Networks and Layers
	Prerequisites for Calibration
	Prerequisites for Quantization
	Prerequisites for Validation

	Prepare Data for Quantizing Networks
	Datastores
	Choose a Built-In Datastore
	Calibration and Validation
	Transform and Combine Datastores

	Quantization of Deep Neural Networks
	Precision and Range
	Histograms of Dynamic Ranges

	Prune Filters in a Detection Network Using Taylor Scores
	Compress Neural Network Using Projection
	Prerequisites for Deep Learning with TensorFlow Lite Models
	MathWorks Products
	Third-Party Hardware and Software
	Environment Variables

	Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi
	Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and Raspberry Pi
	Deploy Pose Estimation Application Using TensorFlow Lite Model (TFLite) Model on Host and Raspberry Pi
	Deploy Semantic Segmentation Application Using TensorFlow Lite Model on Host and Raspberry Pi
	Deploy Classification Application Using Mobilenet-V3 TensorFlow Lite Model on Host and Raspberry Pi
	Compress Image Classification Network for Deployment to Resource-Constrained Embedded Devices

	Neural Network Objects, Data, and Training Styles
	Workflow for Neural Network Design
	Four Levels of Neural Network Design
	Neuron Model
	Simple Neuron
	Transfer Functions
	Neuron with Vector Input

	Neural Network Architectures
	One Layer of Neurons
	Multiple Layers of Neurons
	Input and Output Processing Functions

	Create Neural Network Object
	Configure Shallow Neural Network Inputs and Outputs
	Understanding Shallow Network Data Structures
	Simulation with Concurrent Inputs in a Static Network
	Simulation with Sequential Inputs in a Dynamic Network
	Simulation with Concurrent Inputs in a Dynamic Network

	Neural Network Training Concepts
	Incremental Training with adapt
	Batch Training
	Training Feedback


	Multilayer Shallow Neural Networks and Backpropagation Training
	Multilayer Shallow Neural Networks and Backpropagation Training
	Multilayer Shallow Neural Network Architecture
	Neuron Model (logsig, tansig, purelin)
	Feedforward Neural Network

	Prepare Data for Multilayer Shallow Neural Networks
	Choose Neural Network Input-Output Processing Functions
	Representing Unknown or Don't-Care Targets

	Divide Data for Optimal Neural Network Training
	Create, Configure, and Initialize Multilayer Shallow Neural Networks
	Other Related Architectures
	Initializing Weights (init)

	Train and Apply Multilayer Shallow Neural Networks
	Training Algorithms
	Training Example
	Use the Network

	Analyze Shallow Neural Network Performance After Training
	Improving Results

	Limitations and Cautions

	Dynamic Neural Networks
	Introduction to Dynamic Neural Networks
	How Dynamic Neural Networks Work
	Feedforward and Recurrent Neural Networks
	Applications of Dynamic Networks
	Dynamic Network Structures
	Dynamic Network Training

	Design Time Series Time-Delay Neural Networks
	Prepare Input and Layer Delay States

	Design Time Series Distributed Delay Neural Networks
	Design Time Series NARX Feedback Neural Networks
	Multiple External Variables

	Design Layer-Recurrent Neural Networks
	Create Reference Model Controller with MATLAB Script
	Multiple Sequences with Dynamic Neural Networks
	Neural Network Time-Series Utilities
	Train Neural Networks with Error Weights
	Normalize Errors of Multiple Outputs
	Multistep Neural Network Prediction
	Set Up in Open-Loop Mode
	Multistep Closed-Loop Prediction From Initial Conditions
	Multistep Closed-Loop Prediction Following Known Sequence
	Following Closed-Loop Simulation with Open-Loop Simulation


	Control Systems
	Introduction to Neural Network Control Systems
	Design Neural Network Predictive Controller in Simulink
	System Identification
	Predictive Control
	Use the Neural Network Predictive Controller Block

	Design NARMA-L2 Neural Controller in Simulink
	Identification of the NARMA-L2 Model
	NARMA-L2 Controller
	Use the NARMA-L2 Controller Block

	Design Model-Reference Neural Controller in Simulink
	Use the Model Reference Controller Block

	Import-Export Neural Network Simulink Control Systems
	Import and Export Networks
	Import and Export Training Data


	Radial Basis Neural Networks
	Introduction to Radial Basis Neural Networks
	Important Radial Basis Functions

	Radial Basis Neural Networks
	Neuron Model
	Network Architecture
	Exact Design (newrbe)
	More Efficient Design (newrb)
	Examples

	Probabilistic Neural Networks
	Network Architecture
	Design (newpnn)

	Generalized Regression Neural Networks
	Network Architecture
	Design (newgrnn)


	Self-Organizing and Learning Vector Quantization Networks
	Introduction to Self-Organizing and LVQ
	Important Self-Organizing and LVQ Functions

	Cluster with a Competitive Neural Network
	Architecture
	Create a Competitive Neural Network
	Kohonen Learning Rule (learnk)
	Bias Learning Rule (learncon)
	Training
	Graphical Example

	Cluster with Self-Organizing Map Neural Network
	Topologies (gridtop, hextop, randtop)
	Distance Functions (dist, linkdist, mandist, boxdist)
	Architecture
	Create a Self-Organizing Map Neural Network (selforgmap)
	Training (learnsomb)
	Examples

	Learning Vector Quantization (LVQ) Neural Networks
	Architecture
	Creating an LVQ Network
	LVQ1 Learning Rule (learnlv1)
	Training
	Supplemental LVQ2.1 Learning Rule (learnlv2)


	Adaptive Filters and Adaptive Training
	Adaptive Neural Network Filters
	Adaptive Functions
	Linear Neuron Model
	Adaptive Linear Network Architecture
	Least Mean Square Error
	LMS Algorithm (learnwh)
	Adaptive Filtering (adapt)


	Advanced Topics
	Shallow Neural Networks with Parallel and GPU Computing
	Modes of Parallelism
	Distributed Computing
	Single GPU Computing
	Distributed GPU Computing
	Parallel Time Series
	Parallel Availability, Fallbacks, and Feedback

	Optimize Neural Network Training Speed and Memory
	Memory Reduction
	Fast Elliot Sigmoid

	Choose a Multilayer Neural Network Training Function
	SIN Data Set
	PARITY Data Set
	ENGINE Data Set
	CANCER Data Set
	CHOLESTEROL Data Set
	DIABETES Data Set
	Summary

	Improve Shallow Neural Network Generalization and Avoid Overfitting
	Retraining Neural Networks
	Multiple Neural Networks
	Early Stopping
	Index Data Division (divideind)
	Random Data Division (dividerand)
	Block Data Division (divideblock)
	Interleaved Data Division (divideint)
	Regularization
	Summary and Discussion of Early Stopping and Regularization
	Posttraining Analysis (regression)

	Edit Shallow Neural Network Properties
	Custom Network
	Network Definition
	Network Behavior

	Custom Neural Network Helper Functions
	Automatically Save Checkpoints During Neural Network Training
	Deploy Shallow Neural Network Functions
	Deployment Functions and Tools for Trained Networks
	Generate Neural Network Functions for Application Deployment
	Generate Simulink Diagrams

	Deploy Training of Shallow Neural Networks

	Historical Neural Networks
	Historical Neural Networks Overview
	Perceptron Neural Networks
	Neuron Model
	Perceptron Architecture
	Create a Perceptron
	Perceptron Learning Rule (learnp)
	Training (train)
	Limitations and Cautions

	Linear Neural Networks
	Neuron Model
	Network Architecture
	Least Mean Square Error
	Linear System Design (newlind)
	Linear Networks with Delays
	LMS Algorithm (learnwh)
	Linear Classification (train)
	Limitations and Cautions


	Neural Network Object Reference
	Neural Network Object Properties
	General
	Architecture
	Subobject Structures
	Functions
	Weight and Bias Values

	Neural Network Subobject Properties
	Inputs
	Layers
	Outputs
	Biases
	Input Weights
	Layer Weights


	Function Approximation, Clustering, and Control Examples
	Fit Data Using the Neural Net Fitting App
	Pattern Recognition Using the Neural Net Pattern Recognition App
	Cluster Data Using the Neural Net Clustering App
	Fit Time Series Data Using the Neural Net Time Series App
	Body Fat Estimation
	Crab Classification
	Wine Classification
	Cancer Detection
	Character Recognition
	Train Stacked Autoencoders for Image Classification
	Iris Clustering
	Gene Expression Analysis
	Maglev Modeling
	Competitive Learning
	One-Dimensional Self-Organizing Map
	Two-Dimensional Self-Organizing Map
	Radial Basis Approximation
	Radial Basis Underlapping Neurons
	Radial Basis Overlapping Neurons
	GRNN Function Approximation
	PNN Classification
	Learning Vector Quantization
	Linear Prediction Design
	Adaptive Linear Prediction
	Classification with a Two-Input Perceptron
	Outlier Input Vectors
	Normalized Perceptron Rule
	Linearly Non-separable Vectors
	Pattern Association Showing Error Surface
	Training a Linear Neuron
	Linear Fit of Nonlinear Problem
	Underdetermined Problem
	Linearly Dependent Problem
	Too Large a Learning Rate
	Adaptive Noise Cancellation

	Shallow Neural Networks Bibliography
	Shallow Neural Networks Bibliography

	Mathematical Notation
	Mathematics and Code Equivalents
	Mathematics Notation to MATLAB Notation
	Figure Notation


	Neural Network Blocks for the Simulink Environment
	Neural Network Simulink Block Library
	Transfer Function Blocks
	Net Input Blocks
	Weight Blocks
	Processing Blocks

	Deploy Shallow Neural Network Simulink Diagrams
	Example
	Suggested Exercises
	Generate Functions and Objects


	Code Notes
	Deep Learning Toolbox Data Conventions
	Dimensions
	Variables



